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Abstract

In this report, we survey results on distance magic graphs and some closely
related graphs. A distance magic labeling of a graph G with magic con-
stant k is a bijection � from the vertex set to {1, 2, . . . , n}, such that for
every vertex x ∑

y∈NG(x)

�(y) = k,

where NG(x) is the set of vertices of G adjacent to x. If the graph G has
a distance magic labeling we say that G is a distance magic graph.

In Chapter 1, we explore the background of distance magic graphs by
introducing examples of magic squares, magic graphs, and distance magic
graphs.

In Chapter 2, we begin by examining some basic results on distance
magic graphs. We next look at results on different graph structures in-
cluding regular graphs, multipartite graphs, graph products, join graphs,
and splitting graphs. We conclude with other perspectives on distance
magic graphs including embedding theorems, the matrix representation
of distance magic graphs, lifted magic rectangles, and distance magic con-
stants.

In Chapter 3, we study graph labelings that retain the same labels as
distance magic labelings, but alter the definition in some other way. These
labelings include balanced distance magic labelings, closed distance magic
labelings, D-distance magic labelings, and distance antimagic labelings.

In Chapter 4, we examine results on neighborhood magic labelings,
group distance magic labelings, and group distance antimagic labelings.
These graph labelings change the label set, but are otherwise similar to
distance magic graphs.

In Chapter 5, we examine some applications of distance magic and
distance antimagic labeling to the fair scheduling of tournaments.

In Chapter 6, we conclude with some open problems.
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Chapter 1

Introduction

One mathematical object that has delighted mathematicians and laypeople for gener-
ations is the magic square. A magic square is an array in which each entry is distinct,
but each row, column, and diagonal adds to the same number. Perhaps the most
famous example is the 3× 3 magic square below with constant sum 15.

8 1 6
3 5 7
4 9 2

Figure 1: 3× 3 Magic Square

The first recorded magic square is in a Chinese manuscript dated around 2200 BC.
Magic squares continued to appear in books and art in many cultures, including the
Mayans, Hasua people of Africa, and Renaissance Europe. Even Benjamin Franklin
created similar arrays with beautiful symmetries [45].

Because of this historical interest in magic squares, in 1963, Jǐŕı Sedláček intro-
duced magic labelings of graphs. A graph is an ordered pair (V,E), consisting of a
set V of vertices and a set E, disjoint from V , of edges , together with an incidence
function ψ that associates with each edge of G an unordered pair of (not necessarily
distinct) vertices of G. [11] Sedláček defined a magic labeling of a graph G = G(V,E)
as a bijection f from the edge set E to a set of positive integers such that

• f(ei) �= f(ej) for all distinct ei, ej ∈ E, and

• ∑
e∈NE(x) f(e) is the same for every x ∈ V ,

where NE(x) is the set of edges incident to x. [50]

Like magic squares, magic labelings require a constant sum. Indeed, a magic
square of side n provides a magic labeling of the complete bipartite graph Kn,n. Let
{r1, r2, . . . , rn} and {c1, c2, . . . , cn} be the bipartition of vertices. Then given n × n
magic square M , define the magic labeling of Kn,n by taking f(ri, cj) to be the entry

9



r1

r2

r3

c1

c2

c3

8

1

6
3

5

7
4
9

2

Figure 1.1: Magic Labeling of K3,3 from the 3× 3 Magic Square in Figure 1

in row i and column j. Specifically, the magic square in Figure 1 provides a magic
labeling of K3,3 in Figure 1.1.

Another example, the graph in Figure 1.2, is a magic graph with magic constant
50. Notice this graph is not regular ; that is, not every vertex is adjacent to the same
number of vertices. Nevertheless, the constant sum property is retained.

A

B

CD

E

F

40

25

10

2
13

15

7

30
5

3

Figure 1.2: A Magic Graph

These magic labelings were easily extended to vertex-magic total labelings, edge-
magic total labelings, and other magic labelings by many authors. For more infor-
mation on magic graphs, see Gallian’s survey. [28]

In general, graph labelings are often created in such a way as to provide informa-
tion about the graph. For example, the distance between two vertices of graph G is
the minimum number of edges required to travel from one vertex to the other. This
property is displayed in the following example. To address the problem of assigning
radio frequencies, Griggs and Yeh defined the Ld(2, 1)-labeling in which vertices of
distance 1 and 2 must differ by 2d and d respectively [31]. Additionally, Gavoille, et
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al. created a method of labeling that allows one to compute the distance between
vertices without any information about the graph except the labels [29].

This survey focuses on distance magic labelings, which combine the qualities of
magic and distance labelings. A distance magic labeling of G = G(V,E) is defined as
a bijection � : V → {1, 2, . . . , n} with the property that there is a positive integer k,
the magic constant , such that for every x ∈ V (G), w(x) =

∑
y∈NG(x) �(y) = k, where

NG(x) = {y ∈ V (G) : y is adjacent to x} is the open neighborhood of x. We call w(x)
the weight of vertex x [40], [55]. Any graph that permits a distance magic labeling
is a distance magic graph. Notice that unlike the original magic labelings, distance
magic labelings are vertex, not edge labelings.

For example, the graph in Figure 1.3 is a distance magic graph with magic constant
k = 14.

1

2

3

4

5

6

Figure 1.3: A Distance Magic graph

Because of the number of graph related papers and the difficulty in obtaining
some papers, distance magic labelings have also been called 1-vertex-magic vertex la-
belings [40] and sigma labelings (or Σ-labelings) [9]. Each name emphasizes a different
aspect of the labeling. “Distance magic” emphasizes the connection to magic squares
and magic labelings. “1-vertex-magic” emphasizes the distance involved, which in
the case of the paper that introduced the term, was a distance of 1 [40]. “Σ-labeling”
emphasizes that the weight of each vertex is a constant sum. For clarity, we will use
the term “distance magic” in this paper.

Distance magic labelings of a variety of graphs have been studied. Regular graphs,
graph products, and multipartite graphs all admit distance magic labelings in circum-
stances we will explore. In addition, both distance magic labeling and the related topic
of antimagic labeling can be directly applied to the fair scheduling of tournaments.

11



Symbol Meaning

V (G) Vertices in graph G
E(G) Edges in graph G
NG(x) Neighborhood of vertex x in G
deg(x) Degree of vertex x
|G| Order of graph G
δ(G) Minimum degree of the vertices of G
Δ(G) Maximum degree of the vertices of G
Kn Complete graph on n vertices
Km,n Complete bipartite graph with partite sets of order m and n
Pn Path on n vertices
Cn Cycle on n vertices
Wn Wheel formed by joining Cn−1 to a center vertex

G Complement of graph G
A B Symmetric difference of sets A and B
G ◦H Lexicographic product of graphs G and H
G×H Direct product of graphs G and H
G�H Cartesian product of graphs G and H
G�H Strong product of graphs G and H
G �� H Bowtie product of graphs G and H
G+H Join graph of graphs G and H
S ′(G) Splitting graph of G
Sp(G) Spectrum of G

12



Chapter 2

Distance Magic Graphs

2.1 Basic Results

Many of these basic results were compiled in a previous Distance Magic Graphs
survey [7]. We include proofs of some of these results to clarify the concepts.

The first two theorems provide necessary conditions and attributes for distance
magic graphs.

The degree of vertex x, denoted deg(x), is the number of vertices adjacent to x.
The order of a graph is the number of vertices in a graph.

Theorem 2.1. [35], [40], [55] A necessary condition for the existence of a distance
magic labeling � of a graph G of order n is

kn =
∑
x∈V

deg(x)�(x),

where k is the magic constant.

Proof. Certainly the sum of the weights on all vertices is kn. Conversely, for each
vertex x ∈ V , this sum counts the label on x exactly deg(x) times. Thus the equation
holds.

Theorem 2.2. [35], [40], [47] [55] Let G be an r-regular distance magic graph of

order n. Then k = r(n+1)
2

.

Proof. Because the graph is r-regular, deg(x) = r for all vertices x. Substituting into
our necessary condition from Theorem 2.1 yields

kn =
∑
x∈V

r�(x).

13



Thus dividing by n we have:

k =
r

n

∑
x∈V

�(x)

=
r(n+ 1)

2
.

The next four theorems reveal types of graphs that are not distance magic.

Theorem 2.3. [35], [40], [47], [55] No r-regular graph with r-odd can be a distance
magic graph.

Proof. By Theorem 2.2, k = r(n+1)
2

. Thus if r is odd, n must be odd. However, it
is impossible to draw such a graph. (The number of vertices of odd degree in any
graph must be even.) Thus no r-regular graph with r-odd can be a distance magic
graph.

Theorem 2.4. [35], [55] Let G be a graph of order n which has two vertices of
degree n− 1. Then G is not a distance magic graph.

Proof. Let x1 and x2 be distinct vertices of degree n− 1 on graph G, and suppose G
is distance magic with labeling � and magic constant k.
Then

k =
n∑

i=1

�(xi)− �(x1)

=
n∑

i=1

�(xi)− �(x2)

=⇒ �(x1) = �(x2).

By definition, the vertex labels on distance magic graphs are distinct so G cannot be
distance magic.

Lemma 2.5. [40] If G contains two vertices xi and xj such that |NG(xi)∩NG(xj)| =
deg(xi)− 1 = deg(xj)− 1, then G has no labeling.

A t-matching of G is a collection of t independent edges of G.

Theorem 2.6. [51] Let {e} denote a single edge and {2e} denote two edges.

• The graph Kn − {e} has a distance magic labeling if and only if n = 1, 2, or 3.

• The graph Kn−{2e}, (n ≥ 3) has a distance magic labeling if and only if n = 4
or 5 and {2e} is a 2-matching.

14



Theorem 2.7. [40]

• The path Pn on n vertices is a distance magic graph if and only if n = 1 or
n = 3.

• The cycle Cn of length n is a distance magic graph if and only if n = 4.

• The complete graph Kn on n vertices is a distance magic graph if and only if
n = 1.

• The wheel Wn(n ≥ 4), formed by joining the vertices of Cn−1 to an extra center
point, is a distance magic graph if and only if n = 5.

• The tree T is a distance magic graph if and only if T = P1 or T = P3.

Proof. Consider the possible graphs named above. Labeling P1 = K1 is trivial. The
other possible graphs are pictured in Figure 2.1. The impossibility of a distance magic

1 23
2

1

3

4

5 2

1

3

4
P3 C4 W5

Figure 2.1: Basic Graphs

labeling of other paths, cycles, complete graphs, wheels, and trees follows directly from
Theorem 2.5.

Theorem 2.8. [43], [54] Let x, y, z ∈ V . If G is distance magic, deg(x) = deg(y) =
deg(z) = 2 and y is adjacent to x and z, then either G is isomorphic to C4 or G
contains a component isomorphic to C4.

Corollary 2.9. [35], [55] If C is a cycle component of a distance magic graph G,
then C is a 4-cycle.

Corollary 2.10. [35], [55] If a graph G has a path (v, w, x, y, z) with deg(w) =
deg(y) = 2, then G is not a distance magic graph.

Let δ(G) denote the least degree of any vertex in G and let Δ(G) denote the
maximum degree of any vertex in G. A perfect matching M is a set of pairwise non-
adjacent edges such that every vertex from the original graph is incident to exactly
one edge in the matching.

15



Theorem 2.11. [8] Let G be any graph of order n with Δ(G) = n− 1. Then G is a
distance magic graph if and only if n is odd and G ∼= (Kn−1 −M) +K1 where M is
a perfect matching in Kn−1.

Theorem 2.12. [54] If G is a nontrivial distance magic graph and δ(G) = 1, then
either G is isomorphic to P3 or G contains exactly one component isomorphic to P3

and all other components are isomorphic to K2,2 = C4.

Theorem 2.13. [7], [35], [55] Let G be a nontrivial distance magic graph of order
n with magic constant k. Then the following are equivalent.

• k = n

• δ(G) = 1

• Either G is isomorphic to P3 or G contains exactly one component isomorphic
to P3 and all other components are isomorphic to K2,2

∼= C4.

The symmetric difference of two sets is the set of elements that are in one but not
both sets. Let A B denote the symmetric difference of sets A and B.

Theorem 2.14. [35], [55] Let u and v be vertices of a distance magic graph G.
Then |NG(u) NG(v)| = 0 or ≥ 3.

Corollary 2.15. [35], [55] Let G be a graph of order n which has two vertices of
degree n− 1. Then G is not a distance magic graph.

Lemma 2.16. [40] Let G be a graph of order n. If Δ(G)(Δ(G) + 1) > δ(G)(2n −
δ(G) + 1) then G does not have a distance magic labeling.

The following table, compiled from [8], characterizes all distance magic graphs of
orders 4 through 7.

Order Isomorphic to
4 C4

5 W5

6 K6 −M
7 P3

⋃
C4, K3,4, or (K6 −M) +K1

2.2 Regular Graphs

An r-regular graph is a graph in which every vertex is adjacent to r other vertices.
For example, the sample distance magic graph in the introduction was a 4-regular
graph on 6 vertices.

Theorem 2.17.

16



• [37]There exists a 4-regular distance magic graph of odd order n if and only if
n ≥ 17.

• [39]There exists a 6-regular distance magic graph of odd order n if and only if
n = 9 or n ≥ 13.

• [39]There exists an 8-regular distance magic graph of odd order n if and only
if n ≥ 15.

• [39]There exists a 10-regular distance magic graph of odd order n if and only if
n ≥ 15.

• [39]There exists a 12-regular distance magic graph of odd order n if and only if
n ≥ 15.

Theorem 2.18. [27] For n even, an r-regular distance magic graph with n vertices
exists if and only if 2 ≤ r ≤ n − 2, r ≡ 0 (mod 2) and either n ≡ 0 (mod 4) or
n ≡ r + 2 ≡ 2 (mod 4).

Theorem 2.19. [21] Let n, q be odd integers and s an integer, q ≥ 3, s ≥ 1. Let
r = 2sq, q|n, and n ≥ r + q. Then, an r-regular distance magic graph of order n
exists.

Theorem 2.20. [38] Let G be an r-regular distance magic graph of odd order n.
There exists an r-regular distance magic graph with m vertices for all odd m = n+2t,
if 2t ≥ r + 2 and if not both r

2
and t are odd.

Theorem 2.21. [21] Let n, q be odd integers and s an integer, q ≥ 3, s ≥ 1. Let
r = 2sq, q � n, and n ≥ 7r+4

2
. Then, an r-regular distance magic graph of order n

exists.

Proposition 2.22. [21] Let n, q > 1 be odd, and s ≥ 1, and r = 2sq. Then, an
r-regular distance magic graph of with m vertices exists whenever r < 2

7
(m− 2).

Let Cn(s1, s2, . . . , sm) denote the circulant graph on n vertices with vertex set
V = {x0, x1, . . . , xn−1} and {xi, xj} is an edge if and only if

i− j ∈ {±s1,±s2, . . . ,±sm}

For another interpretation of circulant graphs, see the Other Distances section.

Observation 2.23. [17] If Cn(1, d) is a distance magic circulant graph, then n ≡ 0
(mod 2). Moreover, when d is odd, then n ≡ 0 (mod 8).

For example, consider C8(1, 3) as shown in Figure 2.2. The magic constant k = 18.

Observation 2.24. [17] A graph C2d+2(1, d) is distance magic.

17



4
7

5

2
6

8

3

1

Figure 2.2: Labeling of C8(1, 3)

Theorem 2.25. [17] If d is odd, then Cn(1, d) is a distance magic graph if and only
if d2 − 1 ≡ 0 (mod n), n

gcd(n,d+1)
≡ 0 (mod 2), and n

gcd(n,d−1)
≡ 0 (mod 2).

Observation 2.26. [17] If d is even, then C2(d2−1)(1, d) is distance magic.

A hypergraph H is a pair H = (V,E) where V is a set of vertices and E is a set
of non-empty subsets of V called hyperedges. If all edges have the same cardinality
t (each edge is incident to t vertices), the hypergraph is t-uniform. Notice, in a
hypergraph, an edge can connect any number of vertices and thus generalizes the
concept of a “graph.”

If hypergraph H allows a distance magic labeling, we say H is a distance magic
hypergraph.

We define the dth power of a graph G, denoted Gd, as the graph with the same
set of vertices as G and an edge between two vertices if and only if there is a path of
length at most d between them.

The (r, t)-hypercycle, 1 ≤ r ≤ t − 1 is defined as a t-uniform hypergraph whose
vertices can be ordered cyclically in such a way that the edges are segments of that
cyclic order and every two consecutive edges share exactly r vertices. [36]

Theorem 2.27. [13] If t > 2 and r ≤ t
2
, then an (r, t)-hypercycle is not distance

magic.

Theorem 2.28. [13] If t is even, then a (t− 2, t)-hypercycle is not distance magic.

Theorem 2.29. [13] If t ∈ {3, 4, 6}, then an (r, t)-hypercycle of order n is distance
magic if and only if r = t− 1 and one of the following conditions hold:

• r = 2 and n = 6,

• r = 3 and n = 8 or n = 24,

• r = 5 and n ∈ {12, 20, 60}.
Corollary 2.30. [13] Let H be a (t− 1, t)-hypercycle of order n.

• If t is even, then H is a distance magic hypergraph if and only if 2t(t− 1) ≡ 0
(mod n), n > 2t− 1, and n

gcd(n,t)
≡ 0 (mod 2).

18



• If H is a distance magic hypergraph, then n is even.

Notice the circulant graph Cn(1, 2, . . . , d) is a 2d-regular graph that could also be
written Cd

n with our new notation. In addition, if H is a (t − 1, t)-hypercycle, then
for graph GH with the same vertices and edges as hypergraph H, GH

∼= Ct−1
n . [13]

Theorem 2.31. [13] If d is odd, then Cd
n is a distance magic graph if and only if

2d(d+ 1) ≡ 0 (mod n), n ≥ 2d+ 2, and n
gcd(n,d+1)

≡ 0 (mod 2).

Lemma 2.32. [13] If n = 2d+ 2, then Cd
n is a distance magic graph.

Theorem 2.33. [13], [51] The graph C2
n is not a distance magic graph unless n = 6.

Theorem 2.34. [51]

P k
n has a distance magic labeling if and only if n = 1 or 3 and k = 1.

2.3 Multipartite Graphs

A multipartite graph is a graph whose vertex set can be partitioned into subsets, or
parts , in such a way that no edge has both ends in the same part. [11]

Just as magic squares motivate distance magic graphs of a single part, magic
rectangles motivate the study of distance magic multipartite graphs.

A magic rectangle A = (aij) of size m × n is an m × n array whose entries are
{1, 2, . . . ,mn}, each appearing once, with all its row sums equal and with all its

column sums equal. Because the sum of all entries is mn(mn+1)
2

, we can calculate the
sum of each column and the sum of each row easily. Namely,

m∑
i=1

aij =
n(mn+ 1)

2

for all j yields the sum of each row and

n∑
j=1

aij =
m(mn+ 1)

2

for all i yields the sum of each column.

Thus m and n must both be even or both be odd; that is they must have the same
parity. [7] Such rectangles exist with few exceptions as shown by the next theorem.

Theorem 2.35. [33], [34] An m × n magic rectangle exists if and only if m,n >
1,mn > 4, and m ≡ n (mod 2).

19



However, the nonexistence of a magic rectangle does not always mean the cor-
responding distance magic graph does not exist. For example, K2,2 can be labeled
{1, 4}, {2, 3} even though there is no 2× 2 magic rectangle.

We now consider multipartite graphs of increasing size.

Theorem 2.36. [40] Let 1 ≤ n1 ≤ n2 where and let si =
∑i

j=1 nj. There exists
a distance magic labeling of the complete bipartite graph Kn1,n2 if and only if the
following conditions hold:

• n2 ≥ 2,

• n(n+ 1) ≡ 0 (mod 4), where n = s2 = |V (Kn1,n2)|, and
• ∑si

j=1(n+ 1− j) ≥ in(n+1)
4

for i = {1, 2}.

Let θ(n) be the largest value of s such that 1 + 2 + · · ·+ s = s(s+1)
2

≤ n(n+1)
4

.

Theorem 2.37. [2] If the complete bipartite graph Kn1,n2 is a distance magic graph,
then n ≡ 0 or 3 (mod 4) and 
 n√

2
� − 2 ≤ θ(n) < 
 n√

2
�, where n = n1 + n2.

Theorem 2.38. [2] The complete bipartite graph Kn1,n2 is a distance magic graph if
and only if n ≡ 0 or 3 (mod 4) where n1 + n2 = n and n

2
≤ n1 ≤ θ(n).

Beena obtained the same results, which were formatted as follows.

Theorem 2.39. [9] Let m and n be two positive integers such that m ≤ n. The
complete bipartite graph Km,n is a distance magic graph if and only if

• m+ n ≡ 0 or 3 (mod 4) and

• either n ≤ �(1 +√
2)m− 1

2
� or 2(2n+ 1)2 − (2m+ 2n+ 1)2 = 1.

We illustrate these theorems with the following example. Consider K7,12. For
partite sets V1 and V2, one labeling of K7,12 is

V1 = {8, 12, 13, 14, 15, 16, 17}, V2 = {1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 18, 19}.
This produces a magic constant of k = 95.

Let tG denote the graph obtained by taking t disconnected copies of the graph G.

Theorem 2.40. [47] Let m and n be two positive even integers such that m ≤ n.
The graph tKm,n is distance magic if and only if the conditions hold:

• m+ n ≡ 0 (mod 4)

• 1 = 2(2tn+ 1)2 − (2tm+ 2tn+ 1)2 or m ≥ (
√
2− 1)n+

√
2−1
2t

.

Corollary 2.41. [35], [54], [55] Any complete multipartite graph with two partite
sets of cardinality 1 is not a distance magic graph.
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Theorem 2.42. [40] Let 1 ≤ n1 ≤ n2 ≤ n3 and let si =
∑i

j=1 nj. There exists a
labeling of the complete tripartite graph Kn1,n2,n3 if and only if the following conditions
hold:

• n2 ≥ 2,

• n(n+ 1) ≡ 0 (mod 6), where n = s3 = |V (Kn1,n2,n3)|, and

• ∑si
j=1(n+ 1− j) ≥ in(n+1)

6
for i = {1, 2, 3}.

Theorem 2.43. [51]

• If n ≥ 6, the graph K1,s,t, 1 + s+ t = n is not distance magic.

• The complete four partite graph K1,q,s,t has a distance magic labeling if and only
if q = s = t = 2.

• The complete four partite graph K2,q,s,t has a distance magic labeling if and only
if q = s = t = 2.

Theorem 2.44. [40] Let m,n > 1. The complete m partite graph with each part of
size n is distance magic if and only if either n is even or both n and m are odd.

Theorem 2.45. [20] Let m and n be two positive even integers such that m ≤ n.
The graph Km, . . . ,m︸ ︷︷ ︸

t

,n, . . . , n︸ ︷︷ ︸
t

is distance magic if and only if the conditions hold:

• m+ n ≡ 0 (mod 4)

• 1 = 2(2tn+ 1)2 − (2tm+ 2tn+ 1)2 or m ≥ (
√
2− 1)n+

√
2−1
2t

.

The graph K4,4,8,8 meets the conditions of the previous theorem. For partite
sets V1, V2, V3 and V4, one labeling is V1 = {15, 17, 19, 24}, V2 = {14, 18, 20, 23},
V3 = {2, 4, 5, 8, 9, 12, 13, 22}, and V4 = {1, 3, 6, 7, 10, 11, 16, 21}. This produces a
magic constant of k = 225.

Theorem 2.46. [52]

• If n is even or mnp is odd, m ≥ 1, n > 1, and p > 1, then mKp, p, . . . , p︸ ︷︷ ︸
n

has a

distance magic labeling.

• If np is odd, p ≡ 3 (mod 4) and m is even, then mKp, p, . . . , p︸ ︷︷ ︸
n

does not have a

distance magic labeling.
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2.4 Graph Products

We list results on the four standard graph products: the lexicographic product, direct
product, Cartesian product, and strong product.

2.4.1 Lexicographic Product

We first discuss the lexicographic product of G and H, also called the composition of
graphs G and H, denoted G ◦ H with vertex set V (G) × V (H). (Some authors use
G[H] to denote this product.) G ◦H is created by replacing every vertex of G with a
copy of H. Thus, vertices (g, h) and (g′, h′) in G ◦H are adjacent if and only if either
g is adjacent to g′ in G or g = g′ and h is adjacent to h′ in H. [32]

Theorem 2.47. [52] Let r ≥ 1, n ≥ 3, G be an r-regular graph and Cn be the cycle
of length n. The graph G ◦ Cn admits a distance magic labeling if and only if n = 4.

For example, C3 ◦ C4, is a distance magic graph with magic constant k = 65 as
shown in Figure 2.3

1

12

2 11

3

10
4

9 6

7

5

8

Figure 2.3: Labeling of C3 ◦ C4

Theorem 2.48. [4] Let m and n be integers such that 1 ≤ m < n. Then Km,n ◦ C4

is distance magic if and only if the following conditions hold:

• The numbers a = (m+n)(4m+4n+1)(2m−1)
4mn−m−n

and b = (m+n)(4m+4n+1)(2n−1)
4mn−m−n

are integers.

• There exist integers p, q, t ≥ 1, such that p+ q = (b−a), 4n = pt, and 4m = qt.
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There are very few pairs (m,n) that satisfy this theorem. For 1 ≤ m < n ≤ 80000,
only the following pairs (m,n) yield a distance magicKm,n◦C4 graph: (9, 21), (20, 32),
(428, 548), (2328, 2748), (6408, 10368), (7592, 8600), (10098, 24378), (18860, 20840),
(39540, 42972),
(73808, 79268). [4]

Let G denote the complement of graph G.

Theorem 2.49. [52] Let m ≥ 1, n > 1, and p ≥ 3. Then mCp ◦Kn has a distance
magic labeling if and only if either n is even or mnp is odd or n is odd and p ≡ 0
(mod 4).

Theorem 2.50. [26] The graph mKp ◦Kn, where np is odd and m is even, p > 1,
m ≥ 2, is distance magic if and only if p ≡ 3 (mod 4).

Theorem 2.51. [26] Let n be odd, m ≡ r ≡ 2 (mod 4), and G be an r-regular graph
with m vertices. Then G ◦Kn is not distance magic.

Theorem 2.52. [40] If G = H ◦K2m, where H is an r-regular graph, then G has a
distance magic labeling.

Theorem 2.53. [38] An (n−3)-regular distance magic graph G with n vertices exists
if and only if n ≡ 3 (mod 6). Further G is isomorphic to Kn/3 ◦K3.

Theorem 2.54. [26] Let G be an arbitrary r-regular graph with an odd number of
vertices and let n be an odd positive integer. Then r is even and the graph G ◦Kn is
distance magic.

Consider theDutch windmill graph or friendship graph C
(t)
m . This graph is obtained

by taking t > 1 copies of the cycle Cm with a single vertex in common. [28] Figure 2.4

displays C
(5)
3 .

Figure 2.4: Dutch Windmill Graph C
(5)
3

Observation 2.55. [16] There does not exist a distance magic graph C
(t)
4 ◦ C4.

Theorem 2.56. [4] The graph C
(t)
3 ◦ C4 is not distance magic for any t > 1.
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2.4.2 Direct Product

The direct product , denoted G×H, is a graph with vertex set V (G)×V (H). Vertices
(g, h) and (g′, h′) in G×H are adjacent if and only if g is adjacent to g′ in G and h
is adjacent to h′ in H. [32]

Corollary 2.57. [6] Let G be an arbitrary regular graph. Then G × C4 is distance
magic.

Theorem 2.58. [6] A graph Cm×Cn is distance magic if and only if n = 4 or m = 4
or m,n ≡ 0 (mod 4).

For example, by the above theorems, we know C3 ×C4 is a distance magic graph.
We illustrate this with Figure 2.5. The magic constant is 26.
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8

Figure 2.5: Labeling of C3 × C4

Theorem 2.59. [5] Let m and n be two positive integers such that m ≤ n. The graph
Km,n × C4 is a distance magic graph if and only if the following conditions hold:

• m+ n ≡ 0 (mod 2) and

• m ≥
√

2(8n+1)2−1−1

8
− n.

Theorem 2.60. [20] Let m and n be two positive even integers such that m ≤ n.
The graph Km,n × C4 is distance magic if and only if the conditions hold:

• m+ n ≡ 0 (mod 2)

• 1 = 2(8n+ 1)2 − (8m+ 8n+ 1)2 or m ≥ (
√
2− 1)n+

√
2−1
8

.
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To find m and n that satisfy the above, we must solve the Diophantine equation
α = 2(4n+ 1)2 − (4m+ 4n+ 1)2 for α ∈ N. One such solution is K102,246 × C4. [20]

Theorem 2.61. [20] Consider friendship graph C
(t)
3 . There does not exist a C

(t)
3 ×C4

distance magic graph.

2.4.3 Cartesian Product

The Cartesian product , denoted G�H is a graph with vertex set V (G) × V (H).
Vertices (g, h) and (g′, h′) in G�H are adjacent if and only if g = g′ and h is adjacent
to h′ in H, or h = h′ and g is adjacent to g′ in G. [32] For an illustration of the
Cartesian product, see the Group distance magic section in Chapter 4.

Theorem 2.62. [9] Let G1 and G2 be connected graphs with δ(Gi) = 1, |V (Gi)| ≥ 3
for i = 1, 2. Then G1�G2 is not a distance magic graph.

Theorem 2.63.

• [48]Cn�Cm, n,m ≥ 3 is a distance magic graph if and only if n = m ≡ 2
(mod 4).

• [9], [51]The Cartesian product Pm�Pn for m ≥ 2 and n ≥ 2 has a distance
magic labeling if and only if m = n = 2.

• [48], [51]The Cartesian product Km�Kn,m, n ≥ 2 has a distance magic labeling
if and only if m = n = 2.

• [51]The Cartesian product Km�Kn,q, n ≤ q, has a distance magic labeling if
and only if (m,n, q) = (2, 1, 1) or (1, 1, 2).

• [51]The Cartesian product Kn�Cm has no distance magic labeling when n is
even.

• [51]The Cartesian product Kn�C3 has no distance magic labeling when n is
odd.

• [51]The Cartesian product Km,n�Pq, m,n ≥ 1 and q ≥ 2 has a distance magic
labeling if and only if m = n = 1, and q = 2.

• [51]The Cartesian product Kn�Pm, n,m ≥ 2 has a distance magic labeling if
and only if n = m = 2.

• [51]The Cartesian product Cm�Pn, n an odd integer greater than 1 or n ≡ 2
(mod 4) has no distance magic labeling.

• [51]The Cartesian product Cm�K1,n, n ≥ 1 has no distance magic labeling.

25



• [51]The Cartesian product Cm�Kn,n where n �= 2 and m odd, has no distance
magic labeling.

• [51]If n is even and m ≡ 1 (mod 4), the Cartesian product graph Cm�Kn,n+1

has no distance magic labeling.

2.4.4 Strong Product

The strong product , denoted G�H is a graph with vertex set V (G)×V (H). Vertices
(g, h) and (g′, h′) in G�H are adjacent if and only if g = g′ and h is adjacent to h′ in
H, or h = h′ and g is adjacent to g′ in G, or g is adjacent to g′ in G and h is adjacent
to h′ in H. [32]

Theorem 2.64. If n > 1 and n �≡ 0 (mod 4), Cn�C4 is not a distance magic graph.

Proof. If n = 1, C1 � C4
∼= C4 which is distance magic by Theorem 2.7.

For n = 2, C2�C4 is a 5-regular graph, which is not distance magic by Theorem 2.3.
(For a diagram, see Figure 2.6.)

x1 x2

x3
x4

x5
x6

x7x8

Figure 2.6: C2 � C4

For n ≥ 3, consider labeling the vertices as described in Figure 2.7.
If n = 3,

N(x1) = {x2, x4, x5, x6, x8, x9, x10, x12}
and

N(x5) = {x1, x2, x4, x6, x8, x9, x10, x12}.
(See Figure 2.8.) Because the weights must be equal in a distance magic graph, this
implies �(x5) = �(x1) which is impossible.

For n ≥ 5, we consider the neighborhoods of the odd vertices. We have the
following:

N(x1) = {x2, x4, x5, x6, x8, x4n−3, x4n−2, x4n}
N(x3) = {x2, x4, x6, x7, x8, x4n−2, x4n−1, x4n},
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x4n
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Figure 2.7: Vertex Layout for Cn � C4

x1 x2

x3x4

x5
x6

x7x8

x9 x10

x11x12

Figure 2.8: C3 � C4

which implies �(x5) + �(x4n−3) = �(x7) + �(x4n−1). Similarly, we have

N(x5) = {x1, x2, x4, x6, x8, x9, x10, x12}
N(x7) = {x2, x3, x4, x6, x8, x10, x11, x12},

which implies �(x1) + �(x9) = �(x3) + �(x11). Continuing in the same manner for all
odd vertices gives the final equation �(x1) + �(x4n−7) = �(x3) + �(x4n−5).

Now, vertices from the same 4-cycle each appear in two such equations. If n ≡ 3
(mod 4), by rearranging, we have a string of equations from every other 4-cycle of the
form �(x1) − �(x3) = �(x11) − �(x9) = �(x17) − �(x19) = · · · = �(x4n−1) − �(x4n−3) =
�(x5) − �(x7) = �(x15) − �(x13) = · · · = �(x4n−7) − �(x4n−5) = �(x3) − �(x1). Now,
�(x1)− �(x3) = �(x3)− �(x1) implies �(x1) = �(x3), which is impossible in a distance
magic graph.

If n ≡ 1 (mod 4), by rearranging, we have the string of equations �(x1)− �(x3) =
�(x11) − �(x9) = �(x17) − �(x19) = · · · = �(x4n−3) − �(x4n−1) = �(x7) − �(x5) =
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1 23 4

56 78

Figure 2.9: Join Graph C4 + C4

�(x13)− �(x15) = · · · = �(x4n−7)− �(x4n−5) = �(x3)− �(x1), which provides the same
problem as the previous case.

If n ≡ 2 (mod 4), by rearranging, we have the string of equations �(x1)− �(x3) =
�(x11) − �(x9) = �(x17) − �(x19) = · · · = �(x4n−7) − �(x4n−5) = �(x3) − �(x1), which
provides the same problem as the previous cases.

Thus for n > 1 and n �≡ 0 (mod 4), Cn � C4 is not a distance magic graph.

2.5 Join Graphs

A join graph is formed by the union of two graphs plus all edges connecting the
vertices of the first graph to the second graph. For example, see Figure 2.9 for a
distance magic labeling of C4 + C4 with magic constant k = 27.

Theorem 2.65. [51]

• The join graph Cn + Pm has a distance magic labeling if and only if n = 4 and
m = 1 or 3.

• The join graph Cm + Cn, m,n ≥ 3 has a distance magic labeling if and only if
n = m = 4.

• The join graph Pm + Pn has no distance magic labeling.

Theorem 2.66. [51]

• The join graph Km,n+Pq has a distance magic labeling if and only if m = n = 2
and q = 1 or 3.

• The join graph Km,n+Cq has a distance magic labeling if and only if m = 1, n =
2, and q = 4 or m = n = 2 and q = 4.

Theorem 2.67. [51]

• The join graph Cm+Kn has a distance magic labeling if and only if m = 4 and
n = 1, 2, 4, or 5.

• The join graph Pn +Km has a distance magic labeling if and only if n = 1 or
3, and m = 2.
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x1 x2
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x′1 x′2

x′3x′4

Figure 2.10: Splitting Graph S ′(C4)

Theorem 2.68. [51]

• The join graph Kn +G, n ≥ 2 has no distance magic labeling.

• The join graph Kn +Km has a distance magic labeling if and only if n = 1 and
m = 2.

• The join graph Kn +Cm has a distance magic labeling if and only if n = 1 and
m = 4.

• The join graph Kn + Pm has no distance magic labeling.

• The join graph Km,n+Kq has a distance magic labeling if and only if m = n = 2
and q = 1.

2.6 Splitting Graphs

Let S ′(G) represent the splitting graph of G. A splitting graph is obtained by adding
a new vertex x′ for every vertex x in G such that x′ is adjacent to all vertices adjacent
to x in the original graph G. For example, the splitting graph S ′(C4) is pictured in
Figure 2.10.

Theorem 2.69. [51] The splitting graph S ′(Km,n) has no distance magic labeling.

Theorem 2.70. The splitting graph S ′(G) is distance magic if and only if G ∼= Kn.

Proof. Trivially, S ′(Kn) is distance magic with magic constant k = 0.
Certainly for any vertex g and its new vertex g′ in the splitting graph, NS′(G)(g

′) ⊆
NS′(G)(g). Moreover, if NS′(G)(g

′) � NS′(G)(g), the extra vertices in the neighborhood
of g would have to have labels summing to 0, which is impossible in a distance magic
graph. For NS′(G)(g

′) = NS′(G)(g), g cannot be adjacent to any vertex. Because g
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is arbitrary, the only graphs satisfying this neighborhood restriction are of the form
S ′(Kn).

2.7 Embedding Theorems

An embedding of a graph H in graph G is an isomorphism between H and a subgraph
of G [11].

Theorem 2.71. [35], [55] Every graph is a subgraph of a distance magic graph.

An induced subgraph H is a subgraph of original graph G whose vertex set is a
subset, Y , of the vertex set of G and whose edge set consists of all edges of G which
have both ends in Y . [11]

Theorem 2.72. [2] Every graph H is an induced subgraph of a regular distance
magic graph.

Corollary 2.73. [2] There is no forbidden subgraph characterization for distance
magic graphs.

The chromatic number of graph H is the minimum number of colors in a proper
coloring of graph H.
An Eulerian graph contains an Eulerian cycle. An Eulerian cycle begins and ends at
the same vertex and uses each edge once.

Theorem 2.74. [46] Given any graph H, there is an Eulerian distance magic graph
G with chromatic number equal to H such that H is an induced subgraph of G.

Corollary 2.75. [7] The problem of deciding whether the chromatic number of an
Eulerian distance magic graph is at least 3 is NP-complete.

2.8 Matrix Representation

Let G = (V,E) be a graph of order n with V = {v1, v2, . . . , vn}. Let A = (ai,j) be
the adjacency matrix of G. Let f : V → {1, 2, . . . , n} be a bijection, which gives a
labeling of the vertices of G. The matrix Af = (bi,j) of the labeling f is defined as
follows:

bi,j =

{
ai,j if ai,j = 0
f(vj) if ai,j = 1

Notice, matrix Af is not symmetric, but Af is obtained from A by multiplying the
ith column of A by f(vi) for i = {1, 2, . . . , n}. In addition, for distance magic graph
G with magic constant k, k is an eigenvalue of Af . [7]

Corollary 2.76. [41] Let G be any regular graph. If A−1 exists, G is not distance
magic.
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2.9 Lifted Magic Rectangles and p-regular graphs

A lifted magic rectangle LMR(a, b; �) is an a × b matrix whose entries are elements
of {� + 1, � + 2, · · · , � + ab} each appearing once, such that the sum of each column
is σ(a, b; �) = 1

2
a(ab+ 2�+ 1) and the sum of each row is τ(a, b; �) = 1

2
(ab+ 2�+ 1).

Consider LMR(a, b; 0) and p-regular graph H with n′ vertices such that n′ = b + d,
where b = |V1(H)| and d = |V2(H)| for V1, V2 ⊂ V (H) such that V1 = {x1, x2, · · · , xb}
and V2 = {y1, y2, · · · , yd} form a partition of V (H).
Consider graph G arising from H by expanding each vertex xi ∈ V1(H) into a set Xi

of a independent vertices {xi1, xi2, · · · , xia} and similarly expanding each yj ∈ V2(H)
into a set of c independent vertices {yj1, yj2, · · · , yjc}. We denote this graph by
G = H[b × a, d × c]. Further, each edge xixj between two vertices of V1(H) are
replaced by a2 edges of Ka,a and each edge yiyj between two vertices of V2(H) are
replaced by c2 edges of Kc,c. Also any edge xiyj between a vertex in V1(H) and a
vertex in V2(H) is replaced by ac edges of Ka,c. Denote V1(G) = X1

⋃
X2

⋃ · · ·⋃Xb

and V2(G) = Y1
⋃
Y2

⋃ · · ·⋃Yd.[7]

Lemma 2.77. [54] Let a, b, c, d be positive integers such that a > c and both
LMR(a, b; 0) and LMR(c, d; ab) exist. Then σ(a, b; 0) = σ(c, d; ab) if and only if
d = a2b−2abc+a−c

c2
.

Lemma 2.78. [54] Let a, b, c, d be positive integers such that σ(a, b; 0) = σ(2, d; ab)
and both LMR(a, b; 0) and LMR(2, d; ab) exist. Then either a ≡ 2 (mod 4) or a is
odd and a ≡ b (mod 4) and a ≥ 5.

Theorem 2.79. [54] Let H be a p-regular graph on b + d vertices and G = H[b ×
a, d× c] be a graph with a, b, c, d satisfying conditions

• a > c

• both LMR(a, b; 0) and LMR(c, d; ab) exist, and

• d = a2b−2abc+a−c
c2

.

Then G is a distance magic graph.

2.10 Distance Magic Constants

To this point, we have looked at graph structures that permit distance magic labelings.
Some results are also known about the magic constants related to these graphs.

Theorem 2.80.

• [7], [44]For any distance magic graph G, the distance magic constant is unique.
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• [8]For any odd integer k ≥ 3, there exists a distance magic graph with magic
constant k.

• [8]There is no distance magic graph with magic constant k = 4,6,8, or 12.

• [8]Any distance magic graph with magic constant k = 10 is isomorphic to the
wheel W5.

• [8]There is no distance magic graph of order n with magic constant k = n+ 2.

• [35]A graph G of order n is a distance magic graph with magic constant k = n+1
if and only if G = tC4.

Theorem 2.81. [8] Let n be any positive integer with n ≡ 3 (mod 4). Then for each
positive integer j with 1 ≤ j ≤ n−1

2
, there exists a distance magic graph Gj of order

n with magic constant jn.

Theorem 2.82. [8] Let n be any positive integer with n ≡ 1 (mod 4). Then for each
even positive integer j with 2 ≤ j ≤ n−1

2
, there exists a distance magic graph Gj of

order n with magic constant jn.

Observation 2.83. [8] There exist distance magic graphs of order n whose distance
magic constant is not a multiple of n.

For example, consider K3,3,3,3,3 where each partite set is labeled as follows:
{1, 8, 15}, {3, 7, 10}, {5, 6, 13}, {2, 10, 12}, {4, 9, 11}. This graph of order 15 has magic
constant 96.

Corollary 2.84. [37] There exists a 4-regular distance magic graph with magic con-
stant k = 2t for every t ≥ 6.

32



Chapter 3

Related Graph Labelings

The graph labelings discussed in this chapter are closely related to distance magic
labelings.

3.1 Balanced Distance Magic Graphs

A balanced distance magic graph is a distance magic graph G of order n such that
there exists a bijection � : V (G) → {1, 2, . . . , n}, where for every vertex x ∈ V (G), if
u ∈ NG(x) with �(u) = i, there exists v ∈ NG(x), v �= u, with �(v) = |V (G)| + 1− i.
We call u and v twin vertices or twins . [6]

Proposition 3.1. [6] Let V (G) = n. Graph G is balanced distance magic if and
only if G is regular, and V (G) can be partitioned in pairs (ui, vi), i ∈ {1, . . . , n

2
} such

that N(ui) = N(vi) for all i.

Theorem 3.2. [6] Let G be a regular graph and H a graph not isomorphic to Kn

where n is odd. Then G ◦H is a balanced distance magic graph if and only if H is a
balanced distance magic graph.

Theorem 3.3. [6] The direct product G×H is balanced distance magic if and only
if one of the graphs G and H is balanced distance magic and the other one is regular.

Theorem 3.4. [6] Cm×Cn is balanced distance magic if and only if n = 4 or m = 4.

3.2 Other Distances

In this section, we explore theorems that justify the name “distance” magic because
they apply to distances other than 1. As noted in Section 2.2, powers of graphs and
circulant graphs can also be interpreted as other distances from a vertex.
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3.2.1 Closed Distance Magic Graphs

So far, we have considered distance magic or sigma graphs, which calculate the weight
of each vertex using open neighborhoods. However, we can also consider closed neigh-
borhoods in our definition. These modified graphs are called closed distance magic
or Σ′ graphs and are defined as follows.

Let G = (V,E) be a graph on n vertices. Let NG[x] = NG(x)
⋃{x} be the closed

neighborhood of x in G. The graph G is said to be a closed distance magic graph if
there is a bijection � : V (G) → {1, 2, . . . , n} with the property that there is a positive
integer k′, the magic constant , such that for every x ∈ V (G), the weight w′(x) =
�(x) +

∑
y∈NG(x) �(y) = k′. (Isolated vertices are permitted in these graphs.) [9]

This altered definition leads to some results related to distance magic graphs.

Observation 3.5. [1] If G is an r-regular closed distance magic graph on n vertices,

then k′ = (r+1)(n+1)
2

.

Theorem 3.6. [35], [41] Let G = (V,E) be a graph on n vertices and � : V (G) →
{1, 2, . . . , n} be a labeling. Then � is a distance magic labeling for G with magic
constant k if and only if � is a closed distance magic labeling for the complement G
with magic constant k′ = n(n+1)

2
− k.

Lemma 3.7. [41] There does not exist a graph of even order that admits both distance
magic and closed distance magic labelings.

Theorem 3.8. [9] Km

⋃
Kn is a closed distance magic graph if and only if m+n ≡ 0

or 3 (mod 4) and either n ≤ �(1 +√
2)m− 1

2
� or 2(2n+ 1)2 − (2m+ 2n+ 1)2 = 1.

S. Beena established a number of structural constraints for closed distance magic
graphs.

Theorem 3.9. [9]

• Let G be a closed distance magic graph on n vertices. δ(G) = 0 if and only if
G ∼= K1

⋃
rK2 where r = n−1

2
.

• Let G be a closed distance magic graph on n vertices. Δ(G) = n− 1 if and only
if G ∼= Kn.

• Let x and y be vertices of a closed distance magic graph G.
Then |NG[x] NG[y]| = 0 or ≥ 3.

• If two adjacent vertices of degree n of a graph G have exactly n − 1 common
neighbors, then G cannot be a closed distance magic graph.

• Let G be a closed distance magic graph and let H be a complete subgraph of G
of order n. Let v ∈ V (H) such that degG(v) = n − 1. Then H is a connected
component of G.
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• Let G be a closed distance magic graph and v a vertex of G with deg v ≤ 1.
Then v lies in a K1 or K2 component of G. In particular, K1 and K2 are the
only trees which are closed distance magic graphs.

• If a graph G has a path wxyz of length 3, where deg x = deg y = 2, then G
is not a closed distance magic graph. In particular, if Cn is a component of a
closed distance magic graph, then n ≤ 3.

Corollary 3.10. [1], [9] The cycle Cn is not a closed distance magic graph for all
n ≥ 4.

Theorem 3.11. [1] Consider circulant graph G = Cn(c, 2c, . . . , kc). The graph G is
closed distance magic if and only if either n = 2kc or n = (2k + 1)c and c is odd.

Corollary 3.12. [1] Given n ≥ 2 and c ≥ 1, the union of c copies of the complete
graph, denoted cKn, is closed distance magic if and only if n(c+ 1) ≡ 0 (mod 2).

Theorem 3.13. [9] The complete partite graph Kn1,n2,...,nj
is a closed distance magic

graph if and only if ni = 1 for all i = {1, 2, . . . , j}.
Proposition 3.14. [1] For any m and n such that 2 ≤ m ≤ n, Km,n is not closed
distance magic.

Theorem 3.15. [9] Let G be any connected r-regular graph, r > 0. Then G �Kn,
where n is even, is a connected closed distance magic graph.

Corollary 3.16. [1] If the product G � Cn is closed distance magic, where G is a
regular graph, then n ≡ 0 (mod 3) or −1 ∈ Sp(G).

Corollary 3.17. [1] Let the product G� Cn be closed distance magic, where G is a
2d-regular graph on m vertices. Then n ≡ 1 (mod 2) and m ≡ 1 (mod 2). Moreover,
n ≡ 3 (mod 6) or −1 ∈ Sp(G).

Theorem 3.18. [1] The strong product Cm�Cn is closed distance magic if and only
if at least one of the following conditions holds:

• m ≡ 3 (mod 6) and n ≡ 3 (mod 6)

• {m,n} = {3, x} and x is an odd number.

Theorem 3.19. [1] If m ≡ 3 (mod 6) and n ≡ 3 (mod 6), then Cm�Cn is a closed
distance magic graph.

Proposition 3.20. [1] If a strongly regular graph G on n vertices is closed distance
magic, then G ∼= Kn.

A regular graph is called strongly regular if there exist constants a ≥ 0, b ≥ 1
such that every pair of adjacent vertices has a common neighbors and every pair of
non-adjacent vertices has b common neighbors.
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Theorem 3.21. [1] Let n be an odd number and r > 0. If G is an r-regular graph
of odd order, then Kn �G is a closed distance magic graph.

Corollary 3.22. [9] The join graph Cn+H is not a closed distance magic graph for
any graph H. In particular, the wheel Wn = Cn +K1 is not a closed distance magic
graph for any value of n.

Observation 3.23. [1] Let Cm be the cycle (1, 2, . . . ,m) and let Aj be a set of pj
vertices for j = {1, 2, . . . ,m}. We construct a graph G on the vertex set

A1

⋃
A2

⋃
· · ·

⋃
Am

by placing a complete graph Kpj on each Aj, j = {1, 2, . . . ,m} and joining each vertex
in Ai to each each vertex in Aj, where {i, j} is an edge of Cm. If m �= 0 (mod 3),

then G is a closed distance magic graph and the sum of the labels in Aj is
(n+1

2 )
m

for
j = {1, 2, . . . ,m}.

Notice that if |Aj| = p for all j ∈ {1, 2, . . . ,m}, then G = Cm � Kp. Observa-
tion 3.23 partially provides the motivation for Problem 6.37 in Chapter 6.

Theorem 3.24. [9] Every graph H is an induced subgraph of some regular closed
distance magic graph.

Let V (G) = {x1, x2, . . . , xn}. The closed neighborhood adjacency matrix is defined
as A(G) + In, where A(G) is the adjacency matrix of G and In is the n× n identity
matrix.

Corollary 3.25. [41] Let G be any regular graph. If (A(G) + In)
−1 exists, G is not

closed distance magic.

Theorem 3.26. [35] Let G be a closed distance magic labeled graph with labeling �
and magic constant k′. Then

∑
y∈V (G) �(y)(deg(y) + 1) = nk′.

Theorem 3.27. [35] Let G be a closed distance magic labeled graph with labeling �
and magic constant k′. Then

∑
y∈V (G) �(y)(deg(y)− 1) = n(k′ − (n+ 1)).

Theorem 3.28. [35] Let G be a closed distance magic graph on n vertices. Then

the magic constant k′ = n(n−1)
2

if and only if G has a vertex of degree n− 1 in which
case n ≡ 1 (mod 2).

Theorem 3.29. [35] A graph G on n vertices is a closed distance magic graph with

magic constant k′ = (n−2)(n+1)
2

if and only if G is (n− 2)-regular.

Theorem 3.30. [35] A closed distance magic graph on n vertices with magic constant

k′ = n(n+1)
2

− (n+ 2) does not exist.
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Let Sp(G) denote the spectrum of G. The spectrum of a graph G is the set of num-
bers which are eigenvalues of A(G) together with their multiplicities as eigenvalues
of A(G). [10]

Theorem 3.31. [1] Consider the system w(x1) = k′, w(x2) = k′, . . . , w(xn) = k′.
This is equivalent to writing (A(G) + In) � = k′un, where � = (�(x1), . . . , �(xn)) and
un is the all ones vector of length n. If G is a closed distance magic graph and the
above system has m+ 1 linearly independent solutions, then the multiplicity of −1 in
Sp(G) is m.

Corollary 3.32. [1] Let G be a closed distance magic graph such that there exist m
linearly independent solutions to the system (A(G)+In) � = k′un such that no bijection
� : V (G) → {1, . . . , |V (G)|} is their linear combination. Then the multiplicity of −1
in Sp(G) is at least m.

Corollary 3.33. [1] If G is a regular closed distance magic graph, then −1 ∈ Sp(G).

A perfect code is a subset C(G) of V (G) such that the closed neighborhoods of
the vertices x ∈ C form the partition of G.

Corollary 3.34. [1] Let G be a regular closed distance magic graph having a perfect
code. Then the multiplicity of −1 ∈ Sp(G) is at least 2.

Corollary 3.35. [1] If graphs G and H are regular and G � H is closed distance
magic, then −1 ∈ Sp(G)

⋃
Sp(H).

The line graph of G, denoted L(G), has as its vertices the edges of G and two
edges in L(G) are adjacent if they have an end in common. [11]

Corollary 3.36. [1] Let G be an r-regular graph, r > 1. If its line graph L(G) is
closed distance magic, then 1− r ∈ Sp(G).

Proposition 3.37. [1] For given n and k, 1 < k ≤ �n−3
2
�, let the multiplicity of

−1 ∈ Sp(C(n, {1, . . . , k− 1, k+1})) be m. Then m = m1 +m2, where m1 = 2|{t|1 ≤
t ≤ k, nt ≡ 0 (mod 2k + 1)}| and m2 = 2 if n ≡ 0 (mod 6) and m2 = 0 otherwise.
In particular, if the graph C(n, {1, . . . , k − 1, k + 1}) is closed distance magic, then
nt ≡ 0 (mod 2k + 1) for some t ∈ {1, . . . , k} or n ≡ 0 (mod 6).

3.2.2 Distances Greater than 1

A bijection � : V → {1, 2, . . . , n} is said to be a D-distance magic labeling if there
exists a D-distance magic constant k′ such that for any vertex x,

w′(x) =
∑

y∈ND
G (x)

�(y) = k′,
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where ND
G (x) = {y ∈ V |d(x, y) ∈ D}. A graph admitting a D-distance magic labeling

is calledD-distance magic. Certainly a {1}-distance magic labeling is a distance magic
labeling and a {0, 1}-labeling is a closed distance magic labeling. [53]

We define d as the diameter of graph G; that is, the greatest distance between
two vertices of G. [11] Because the only {0}-distance magic graph is the trivial graph,
we exclude it from consideration. Graph G is defined as (D, r)-regular if for all
x ∈ V (G), |ND

G (x)| = r; that is, all D-neighborhoods have the same cardinality. [53]
We define the set subtraction of A and B, denoted A − B, as A − B = {x|x ∈

A, and x /∈ B}.
Lemma 3.38. [41] Let D ⊂ {0, 1, . . . , d} and D∗ = {0, 1, . . . , d} − D. Then G is
D-distance magic if and only if G is D∗-distance magic.

Let V (G) = {x1, x2, . . . , xn}. The distance D adjacency matrix, denoted AD =
[ai,j], is defined as the n× n binary matrix with ai,j = 1 if and only if d(xi, xj) ∈ D.

Theorem 3.39. [41] Let D ⊂ {0, 1, . . . , d}. If G is (D, r)-regular and A−1
D exists,

then G is not D-distance magic.

For example, consider the Petersen graph P in Figure 3.1, which is 3-regular
with order 10 and diameter 2. Let A be the adjacency matrix for P . Because
det(A) = 48 �= 0, P is not distance magic by Corollary 2.76. By Lemma 3.38, P
is not {0, 2}-distance magic. Let A + I be the closed neighborhood matrix for P .
Because det(A+ I) = 128 �= 0, P is not closed distance magic by Theorem 3.39. By
Lemma 3.38, P is also not {2}-distance magic. [41]

x1

x2

x3

x4 x5

x6

x7

x8

x9 x10

x1

x2

x3

x4

x5

x6

x7

x8

P M8

Figure 3.1: Petersen Graph and Möbius Ladder on 8 vertices

Proposition 3.40. [41] Let Mn be a Möbius Ladder of order 2n with n > 2. Mn is
neither distance magic nor closed distance magic.

For example, consider M8 in Figure 3.1. By Proposition 3.40, M8 is neither
distance magic nor closed distance magic. BecauseM8 has diameter 2, by Lemma 3.39
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and the previous statement, we know it is also not {0, 2}-distance magic or {2}-
distance magic. [41]

Lemma 3.41. [53] Simunjuntak et al. established a number of structural constraints
for D-distance magic graphs.

• Let G be a graph having connected components G1, G2, . . . , Gm, of diameters
d1, d2, . . . , dm respectively. Let D ⊆ {0, 1, . . . , dmax} and D∗ = {0, 1, . . . , dmax}−
D, where dmax = max di. If G admits a D-distance magic labeling � such that∑

y∈Gi
�(y) is constant for each i, then G is D∗-distance magic. Conversely, if

G admits a D∗-distance magic labeling �∗ such that
∑

y∈Gi
�∗(y) is constant for

each i, then G is D-distance magic.

• If a graph G contains two distinct vertices x and y such that |ND(x)
⋂
ND

G (y)| =
|ND

G (x)| − 1 = |ND
G (y)| − 1, then G is not D-distance magic.

• A graph of diameter d is not {1, 2, . . . , d}-distance magic.

• If G contains a vertex x with ND
G (x) = ∅, then G is not D-distance magic.

• If G contains two distinct vertices x and y such that ND
G (x) ⊆ ND

G (y), then G
is not D-distance magic.

• If each vertex in G has a unique vertex at distance d, then G is {1, 2, . . . , d−1}-
distance magic.

Lemma 3.42. [53] Every connected graph is {0, 1, . . . , d}-distance magic.

Because of Lemma 3.42, we call the {0, 1, . . . , d}-distance magic graph of G the
trivial D-distance magic labeling of G.

Proof. Suppose G has order n. Because G is connected and has diameter d, each
x ∈ G is an element of the neighborhood of each vertex so k′ = n(n+1)

2
.

Lemma 3.43. [53] Let G be a non-connected graph with connected components
G1, G2, . . . , Gm, of diameters d1, d2, . . . , dm respectively. Let dmax = max di and
|V (Gi)| = n for each i. G is {0, 1, . . . , dmax}-distance magic if and only if n is
even or both n and m are odd.

Theorem 3.44. [53]

• Every even cycle C2m is {1, 2, . . . ,m− 1}-distance magic.

• Every even cycle C2m is {0,m}-distance magic.

• Form a positive integer, a cycle Cn is {m}-distance magic if and only if n = 4m.

• For m a positive integer, a cycle Cn is {0, 1, . . . ,m−1,m+1, . . . , �n
2
�}-distance

magic if and only if n = 4m.
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• For m a positive integer, a 2-regular graph is {m}-distance magic if and only if
it is a disjoint union of C4m’s.

• For n ≥ 2m+ 2 a cycle Cn is not {0, 1, . . . ,m}-distance magic.

• For n ≥ 2m+ 2 a cycle Cn is not {m+ 1,m+ 2, . . . , �n
2
�}-distance magic

Lemma 3.45. [53] Let D be a distance set containing 2 but not 0. If G is a graph
of diameter at least 2 containing either

• two adjacent vertices of degree one, or

• two vertices of distance 2 having the same neighborhood,

then G is not D-distance magic.

Theorem 3.46. [41] Let G be a graph of even order and let D ⊂ {0, 1, . . . , d}. If G
is (D, r)-regular with odd r, then G is not D-distance magic.

Corollary 3.47. [41] Let D ⊂ {1, 2, . . . , d}. If G is (D, r)-regular with odd r, then
G is not D-distance magic.

Theorem 3.48. [27], [53] An odd order r-regular graph of diameter 2 is {0, 2}-
distance magic if and only if r is even and 2 ≤ r ≤ n− 2.

Theorem 3.49. [53] There exists an infinite family of regular graphs with diameter
3 admitting a {1, 2}-distance magic labeling.

Corollary 3.50. There exists an infinite family of regular graphs with diameter 3
admitting a {0, 3}-distance magic labeling.

Theorem 3.51. [27], [53] Let G be an odd order regular graph of diameter 2 and
let n be an odd positive integer. Then the graph G ◦Kn is {0, 2}-distance magic.

Theorem 3.52. [53] A complete multipartite graph is not {2}-distance magic.

Theorem 3.53. [40], [53] Let m,n > 1. The complete m partite graph with each
part of size n is {0, 2}-distance magic if and only if either n is even or both n and m
are odd.

Theorem 3.54. [40], [53] Let 1 ≤ n1 ≤ n2. Let si =
∑i

j=1 nj for complete bipartite
graph Kn1,n2. There exists a {0, 2}-distance magic labeling for Kn1,n2 if and only if
the following conditions hold:

• n2 ≥ 2,

• n(n+ 1) ≡ 0 (mod 4), where n = s2, and

• ∑si
j=1(n+ 1− j) ≥ in(n+1)

4
for i = {1, 2}.
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Theorem 3.55. [40], [53] Let 1 ≤ n1 ≤ n2 ≤ n3. Let si =
∑i

j=1 nj for complete
tripartite graph Kn1,n2,n3. There exists a {0, 2}-distance magic labeling for Kn1,n2,n3

if and only if the following conditions hold:

• n2 ≥ 2,

• n(n+ 1) ≡ 0 (mod 6), where n = s3, and

• ∑si
j=1(n+ 1− j) ≥ in(n+1)

6
for i = {1, 2, 3}.

Theorem 3.56. [52] For n ≥ 1, C4 ◦Kn is {0, 2}-distance magic.

We also can calculate the magic constant for a distance magic graph by using dom-
inating functions. A function g : V (G) → R+ = [0,∞) is said to be a D-neighborhood
fractional dominating function if for every vertex v ∈ V (G),

∑
u∈ND(v) g(u) ≥ 1. The

D-neighborhood fractional domination number of G, denoted γf (G;D) is defined as

γf (G;D) = min{
∑

v∈V (G)

g(v)|gis a D-neighborhood fractional dominating function.}

Theorem 3.57. [44] If graph G is D-distance magic, then its D-distance magic

constant k = n(n+1)
2γf (G;D)

.

For more information on fractional dominating functions and how close certain
graphs are to being distance magic or D-distance magic, see [41], [42], [44].

In [53], Simanjuntak et al. asked,

Problem 3.58. Does there exist a graph of diameter at least 3 admitting a {0, 1, 2}-
distance magic labeling?

The answer is yes. By Lemma 3.38, a graph of diameter 3 with a {3}-distance
magic labeling also has a {0, 1, 2}-distance magic labeling. We define the bowtie
product , denoted G �� H as a graph with vertex set V (G)×V (H). Vertices (g, h) and
(g′, h′) in G �� H are adjacent if and only if g is adjacent to g′ and h is adjacent to h′

or g = g′ and h is adjacent to h′. Consider C3 �� C7 in Figure 3.2. Each vertex has
2 vertices of distance 3 in each column. The magic constant for the {0, 1, 2}-labeling
is 165.

3.3 Distance Antimagic Graphs

A concept related to magic graphs is that of antimagic graphs. A distance d-antimagic
labeling of a graph G = G(V,E) is a bijection f : V (G) → {1, 2, , . . . , n} with the
property that there exists an ordering of the vertices of G such that the sequence of
the weights w(x1), w(x2), . . . , w(xn) forms an arithmetic progression with difference d.
When d = 1, f is just called a distance antimagic labeling. A graph G is a distance d-
antimagic graph if it allows a distance d-antimagic labeling, and a distance antimagic
graph when d = 1. [23]

41



1

2

3

4

5

6

7

8

9

10

11

12

13

14 15

16

17

18

19

20

21

16

21

19

17

15

20

18

16

21

7

1

10

11

16

21

7

1

2

3

4

5

6

7

1

Figure 3.2: {3}-Distance Labeled Graph
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Figure 3.3: Perfect Matching on 6 Vertices

Observation 3.59. [23] If a graph G is distance magic, then its complement G is
distance antimagic.

An ordered distance antimagic labeling of a graph G(V,E) with n vertices is a

bijection �f : V → {1, 2, . . . , n} with the property that �f(vi) = i and the sequence of
the weights w(x1), w(x2), . . . , w(xn) forms an increasing arithmetic progression with
difference one. A graph G is an ordered distance antimagic graph if it allows an
ordered distance antimagic labeling.

For example, consider the perfect matching on 6 vertices, which is the complement
of the 4-regular graph on 6 vertices. Clearly this graph admits an ordered distance
antimagic labeling as shown in Figure 3.3.

Theorem 3.60. [24] Let a, b be positive integers such that a, b > 1, ab > 4, and
a ≡ b (mod 2). Let n = ab and r = n − a − b + 1. Then there exists an r-regular
ordered distance antimagic graph with n vertices.
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Theorem 3.61. [24] The graph G = Ka�Kb is distance 2-antimagic when a, b > 1,
ab > 4, and a ≡ b (mod 2).

A magic rectangle set M =MRS(a, b; c) is a collection of c arrays (a× b) whose
entries are elements of {1, 2, . . . , abc}, each appearing once, with all row sums in
every rectangle equal to a constant s and all column sums in every direction equal to
a constant t.

Observation 3.62. [23] The graph G = c(Ka�Kb) admits a distance 2-antimagic

labeling f such that f(x) = m implies wG(x) =
(a+b)(abc+1)

2
− 2m for every x ∈ V (G)

whenever there exists a magic rectangle set MRS(a, b; c).

For more details on magic rectangle sets, see [23], [25].
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Chapter 4

Different Labels

Up to this point, all of our labelings have been bijections from V (G) → {1, 2, . . . , n}.
However, we can consider other sets of labels and determine whether they have a
magic constant.

4.1 Group Distance Magic Graphs

A more common extension of distance magic graphs is to expand the label set to an
Abelian group of order n. We use the following definition. A graph G = G(V,E)
of order n has a group distance magic labeling (or Γ-distance magic labeling ) if
there is an injection � from V to an Abelian group Γ of order n such that the weight
w(x) =

∑
x∈NG(x) �(x) = μ for all x ∈ V where μ ∈ Γ is called the magic constant . [22]

4.1.1 Zn-Distance Magic Graphs

We begin with some theorems on Zn, because these groups provide labelings that are
the closest to behaving like distance magic labelings.

Observation 4.1. [22] Every graph with n vertices and a distance magic labeling
also admits a Zn-distance magic labeling, but the converse need not be true.

For example, the graph in Figure 4.1(a) is a Z6-distance magic labeling of a 4-
regular graph on 6 vertices with magic constant μ = 10. Note the similarity to
the distance magic graph in the introduction. We contrast this with the graph in
Figure 4.1(b). By Theorem 2.81, we know C3�C4 has no distance magic labeling.
However, a Z12-distance magic labeling of C3�C4 with magic constant μ = 0 exists
as is shown in Figure 4.1(b).

Theorem 4.2. [17] If G is an r-regular distance magic graph on n vertices, where r
is odd then G is not Zn-distance magic.

Corollary 4.3. [17] If gcd(n, d + 1) = 2k + 1, p is even, n = 2m(2k + 1) and
gcd(2k + 1, 2m) = 1, then Cn(1, d) has a Zn-magic labeling.
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Figure 4.1: (a) A Z6-Distance Magic graph and (b) a Z12-Distance Magic Graph

Corollary 4.4. [17] If n = m(d2 − 1) and

• m = 1 if d is odd

• m = 2h and gcd(d+ 1, 2h) = 1 if d is even

then Cn(1, d) is Zn-distance magic.

Corollary 4.5. [12] Let m and n be two positive integers such that m is odd and n
is even. The graph Km,n is not a Z4m+4n-distance magic graph.

Observation 4.6. [15] Let G = Kn0,n1,n2,...,nm−1 be a complete m-partite graph such
that 1 ≤ n0 ≤ n1 ≤ · · · ≤ nm−1 and n = n0+n1+· · ·+nm−1 is odd. G is a Zn-distance
magic graph if and only if ni ≥ 2 for i = 1, 2, . . . ,m− 1.

Theorem 4.7. [3] A graph Cm×Cn is Zmn-distance magic if and only if m ∈ {4, 8}
or n ∈ {4, 8} or m,n ≡ 0 (mod 4).

Theorem 4.8. [22] The Cartesian product Cm�Cn, m,n ≥ 3 is a Zmn-distance
magic graph if and only if mn is even.

Observation 4.9. [22] When both m and n are even, then there exists a Zmn-
distance magic labeling of Cm�Cn for any magic constant μ ∈ Zmn, μ ≡ 2 (mod 4).
When m ≡ 0 (mod 4) and n is odd, then there exists a Zmn-distance magic labeling of
Cm�Cn for any magic constant μ ∈ Zmn, μ ≡ 0 (mod 4). When m ≡ 2 (mod 4) and
n is odd, then there exists a Zmn-distance magic labeling of Cm�Cn for any magic
constant μ ∈ Zmn, μ ≡ 0 (mod 2).

A Zn-balanced labeling of an r-regular graph G with n vertices is a bijection
� : V (G) → Zn such that w(x) ≡ r�(x) (mod n) for every x ∈ V (G).

Lemma 4.10. [19]
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• The cycle Cn for any n ≥ 3 admits a Zn-balanced labeling.

• The complete graph Kn on n ≥ 2 vertices admits a Zn-balanced labeling if and
only if n is odd.

Lemma 4.11. [19] Let G1 and G2 be regular graphs. If both G1 and G2 have Zn-
balanced labelings, then G1 �G2 has a Zn-balanced labeling.

4.1.2 General Γ-Distance Magic Graphs

Certainly many other group structures exist besides Zn. The following theorems
concern labelings from any Abelian group.

Theorem 4.12. [15] The complete bipartite graph Km,n is a group distance magic
graph if and only if m+ n �≡ 2 (mod 4).

Theorem 4.13. [15] Let G = Kn0,n1,n2,...,nm−1 be a complete m-partite graph and
n = n0 + n1 + · · ·+ nm−1. If n ≡ 2 (mod 4) and m is even, then there does not exist
an Abelian group Γ of order n such that G is a Γ-distance magic graph.

The exponent of a finite Abelian group Γ, denoted exp(Γ), is the least positive
integer m such that mx = 0 for every x ∈ Γ [49]. For example, exp(Zn1 ×· · ·×Znj

) =
lcm(n1, . . . , nj).

Given Abelian group Γ and a subset S ⊆ Γ\{0} such that −s ∈ S whenever s ∈ S,
the Cayley graph Cay(Γ;S) of Γ with respect to connection set S has vertex set Γ
such that x, y ∈ Γ are adjacent if and only if x−y ∈ S (so Cay(Γ;S) is an |S|-regular
graph). [19]

Theorem 4.14. [19] Let Γ be a finite Abelian group of order n = |Γ|, and G =
Cay(Γ, S), a Cayley graph on Γ of degree r = |S|. If exp(Γ) is a divisor of r, then G
is Γ-distance magic, and any automorphism f of Γ is an Γ-distance magic labeling of
G with magic constant μ =

∑
s∈S f(s).

Corollary 4.15. [19] Let p ≥ 2 be a prime, and let r ≥ 2 and d ≥ 1 be integers.
If p is a divisor of r, then any Cayley graph Cay(Zd

p;S) on Zd
p with degree r is Zd

p-

distance magic and any automorphism f of Zd
p is a Zd

p-distance magic labeling with
magic constant μ =

∑
s∈S f(s).

Corollary 4.16. [19] Let d ≥ 2 be an integer. Any Cayley graph Cay(Zd
2;S) on Zd

2

with an even degree |S| is Zd
2-distance magic with any automorphism f of Zd

2 as a
Zd
2-distance magic labeling with magic constant μ =

∑
s∈S f(s).

Let Qn be the n-dimensional hypercube where vertices are adjacent if and only if
the labels have Hamming distance one; that is, Qn is the graph with binary strings of
length n as its vertices and two vertices are adjacent if and only if the corresponding
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strings differ in exactly one position. Equivalently, the n-dimensional hypercube Qn

is the Cayley graph Cay(Zn
2 ;S) with

S = {(1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, 0, . . . , 1)}.
Corollary 4.17. [18] Let n ≥ 2 be an integer. If n is even, then Qn is Zn

2 -distance
magic with magic constant (1, . . . , 1).

Theorem 4.18. [22] The graph C2m × C2m has a Z2m
2 -distance magic labeling for

m ≥ 2 and the magic constant μ = (0, 0, . . . , 0).

Let ⊕ denote addition in F n
2 and let e1, . . . , en be the standard basis of Fn

2 . We say
a set A is balanced if |A0

i | = |A1
i | for every i ∈ [n] = {1, . . . , n}. A bijection f : Fn

2 →
Fn
2 is neighbor-balanced if the set L(x) = {f(y)|y ∈ NQn(x)} = {f(x ⊕ ei)|i ∈ [n]} is

balanced for every x ∈ Fn
2 .

Proposition 4.19. [30] Every neighbor-balanced f : Fn
2 → Fn

2 is a Zn
2 -distance magic

labeling of Qn.

Theorem 4.20. [30] A neighbor-balanced f : Fn
2 → Fn

2 exists for every n ≡ 2
(mod 4).

For example, consider matrix M over F2 such that

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 1 1 1 1 1 1
0 1 0 0 0 0 0 0 1 1 1 1 1 1
0 0 1 0 0 0 0 0 1 1 1 1 1 1
0 0 0 1 0 0 0 0 1 1 1 1 1 1
0 0 0 0 1 0 0 0 1 1 1 1 1 1
0 0 0 0 0 1 0 0 1 1 1 1 1 1
0 0 0 0 0 0 1 0 1 1 1 1 1 1
0 0 0 0 0 0 0 1 1 1 1 1 1 1
1 1 1 1 1 1 0 0 1 0 0 0 0 0
1 1 1 1 1 1 0 0 0 1 0 0 0 0
1 1 1 1 1 1 0 0 0 0 1 0 0 0
1 1 1 1 1 1 0 0 0 0 0 1 0 0
1 1 1 1 1 1 0 0 0 0 0 0 1 0
1 1 1 1 1 1 0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Matrix M has columns that form a balanced set and is invertible. Thus consider the
map f(x) =MxT for x ∈ F6

2 = Z6
2. Now, the vertices of Q6 are the elements of Z6

2 so
vertex x being adjacent to y is equivalent to having the distance between vertices x
and y equal to 1. The label on vertex x is MxT .

The size of a vector x ∈ Fn
2 is the number of ones in x. For 1 ≤ d ≤ n, let Dd

denote the n × (
n
d

)
matrix over Fn

2 whose columns are precisely all vectors of size d
(in some fixed linear order of Fn

2 ). [30]
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Proposition 4.21. [30] Every Dd-balanced f : Fn
2 → Fn

2 is a d-distance magic
labeling of Qn.

An n× k matrix over Fn
2 is balanced if the set of its columns is balanced; that is,

it has the same number of ones and zeros in each row. [30]

Lemma 4.22. [30] If A is a balanced n× n matrix, then ADd is balanced for every
odd 1 ≤ d ≤ n.

Theorem 4.23. [30] For every n ≡ 2 (mod 4) there exists f : Fn
2 → Fn

2 that is
Dd-balanced for every odd 1 ≤ d ≤ n.

Corollary 4.24. [30] For every n ≡ 2 (mod 4) there is a Zn
2 -distance magic labeling

of Qn that is group d-distance magic for every odd 1 ≤ d ≤ n.

Let Qn(S) be the graph on {0, 1}n with edges between two vertices whenever they
differ on exactly s ∈ S coordinates.

Corollary 4.25. [30] Qn(S) has a group distance magic labeling for every n ≡ 2
(mod 4) and every S ⊆ {1, 2, . . . , n} containing only odd integers.

Notice this is equivalent to stating Qn(S) has a group D-distance magic labeling
for every n ≡ 2 (mod 4) and every D ⊆ {1, 2, . . . , n} containing only odd integers.

Most of the work with group distance magic graphs involves graph products. Like
in chapter 2, we separate these results by the specific graph product.

Lexicographic Product

Recall that the lexicographic product of G and H is denoted G ◦ H with vertex set
V (G) × V (H). G ◦ H is created by replacing every vertex of G with a copy of H.
Thus, vertices (g, h) and (g′, h′) in G◦H are adjacent if and only if either g is adjacent
to g′ in G or g = g′ and h is adjacent to h′ in H. [32]

Lemma 4.26. [16] Let G be a graph of order n and Γ be an arbitrary Abelian group
of order 4n such that Γ ∼= Z2m × A for m ≥ 2 and some Abelian group A of order

n
2m−2 . If deg(x) ≡ c (mod 2m−1) for some constant c and any x ∈ V (G), then there
exists a Γ-distance magic labeling for the graph G ◦ C4.

Theorem 4.27. [16] Let G be a graph of order n and Γ be an arbitrary Abelian
group of order 4n such that Γ ∼= Z2 × Z2 × A for some Abelian group A of order n.
There exists a Γ-distance magic labeling for the graph G ◦ C4.

Theorem 4.28. [16] Let G be a graph of order n and Γ be an Abelian group of order
4n. If n = 2m(2k + 1) for some natural numbers m, k, and deg(x) ≡ c (mod 2m+1)
for some constant c for any x ∈ V (G), then there exists a Γ-distance magic labeling
for the graph G ◦ C4.
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Observation 4.29. [16] Let G be a graph of odd order n and Γ be an Abelian group
of order 4n. If G is an Eulerian graph (i.e. all vertices of the graph G have even
degrees), then there exists a Γ-distance magic labeling for the graph G ◦ C4.

Observation 4.30. [16] Let Km,n be a complete bipartite graph with m even and n
odd and let Γ be an Abelian group of order 4(m+n). There exists a Γ-distance magic
labeling for the graph Km,n ◦ C4.

Direct Product

Recall that the direct product , denoted G×H, is a graph with vertex set V (G)×V (H).
Vertices (g, h) and (g′, h′) in G ×H are adjacent if and only if g is adjacent to g′ in
G and h is adjacent to h′ in H. [32]

Theorem 4.31. [19] Let Gi be an ri-regular graph with ni vertices, i = {1, . . . ,m}.
Suppose ni and r/ri are coprime for i = {1, . . . ,m}, where r = r1 . . . rm. If each Gi

is Zni
-distance magic, then G1 × · · · ×Gm is Zn1...nm-distance magic.

Theorem 4.32. [3] If G is an r-regular graph of order n, then direct product G×C4

is a group distance magic graph.1

Theorem 4.33. [12]

• Let G be a graph of order n. If n = 2m(2k+1) for some natural numbers m, k,
and deg(x) ≡ c (mod 2m+2) for some constant c for any x ∈ V (G), then there
exists a group distance magic labeling for the graph G× C4.

• Let G = Kq,s,t be a complete tripartite graph with all partite sets odd. Then
G× C4 is a group distance magic graph.

• Let m and n be two positive integers such that m is odd and n is even. The graph
Km,n × C4 is not a Γ-distance magic graph for any group Γ of order 4m + 4n
having exactly one involution ι.

• Let m and n be two positive integers such that m is odd and n is even. The
graph Km,n×C4 is a Γ-distance magic graph if and only if Γ ∼= Z2×Z2×A for
a group A of order m+ n.

Theorem 4.34.

• [12]Let G be a graph of order n and Γ be an arbitrary Abelian group of order
4n such that Γ ∼= Z2 × Z2 × A for some Abelian group A of order 2n. If all
vertices of G have even degrees, then there exists a Γ-distance magic labeling
for the graph G× C8.

1This theorem is not stated but can be inferred.
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• [12]Let G be a graph of order n. If n = 2m(2k + 1) for some natural numbers
m, k, and deg(x) ≡ 2c (mod 2m+2) for some constant c for any x ∈ V (G), then
there exists a group distance magic labeling for the graph G× C8.

• [3] If G is an r-regular graph of order n for some even r, then direct product
C8 ×G is a group distance magic graph.

Observation 4.35. [12] Let m and n be two positive integers such that m ≤ n. If
the graph Km,n × C8 is a distance magic graph, then the following conditions hold:

• m+ n ≡ 0 (mod 2) and

• m ≥
√

2(16n+1)2−1−1

16
− n.

Theorem 4.36. [3] If m,n ≡ 0 (mod 4) then the direct product Cm ×Cn is A×B-
distance magic for any Abelian groups A and B of order m and n respectively.

Proposition 4.37. [3] If m,n ≡ 0 (mod 4) then the direct product Cm × Cn is
Zt ×A-distance magic for m|t and any Abelian group A of order mn

t
.

Theorem 4.38. [3] Assume that m,n ≥ 3 and m,n /∈ {4, 8}, m = 4b + d and
n = 4a + c for some integers a, b ≥ 0, where c ∈ {0, 1, 2, 3} and d ∈ {1, 2, 3}. If an
Abelian group Γ of order mn has less than max{2, a− 1} involutions, then Cm × Cn

is not Γ-distance magic.

Theorem 4.39. [3] If m,n �≡ 0 (mod 4), then Cm ×Cn is not Γ-distance magic for
any Abelian group Γ of order mn.

Corollary 4.40. [3] Assume that m,n ≥ 3 and {m,n} = {4a, 4b + c} for some
integers a ≥ 3 and b ≥ 0, c ∈ {1, 2, 3}. Then Cm × Cn can be Γ-distance magic only
in the following cases:

• c ∈ {1, 3} and Γ ∼= A × (Z2)
t+2 for some Abelian group A of odd order, where

a = 2t,

• c ∈ {1, 3} and Γ ∼= A×Z3×(Z2)
t for some Abelian group A of odd order, where

a = 3 · 2t−2,

• c ∈ {1, 3} and Γ ∼= A×(Z2)
t×Z4 for some Abelian group A of odd order, where

a = 2t,

• c ∈ {1, 3} and Γ ∼= A× (Z2)
t−2 × (Z4)

2 for some Abelian group A of odd order,
where a = 2t,

• c ∈ {1, 3} and Γ ∼= A × (Z2)
t−1 × Z8 for some Abelian group A of odd order,

where a = 2t,

• c = 2 and Γ ∼= A×(Z2)
t+3 for some Abelian group A of odd order, where a = 2t,
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• c = 2 and Γ ∼= A× Z3 × (Z2)
t+1 for some Abelian group A of odd order, where

a = 3 · 2t−2,

• c = 2 and Γ ∼= A × Z3 × (Z2)
t−1 × Z4 for some Abelian group A of odd order,

where a = 3 · 2t−2,

• c = 2 and Γ ∼= A × Z5 × (Z2)
t for some Abelian group A of odd order, where

a = 5 · 2t−3,

• c = 2 and Γ ∼= A × Z7 × (Z2)
t for some Abelian group A of odd order, where

a = 7 · 2t−3,

• c = 2 and Γ ∼= A× (Z2)
t+1 × Z4 for some Abelian group A of odd order, where

a = 2t,

• c = 2 and Γ ∼= A × (Z2)
t−1 × (Z4)

2 for some Abelian group A of odd order,
where a = 2t,

• c = 2 and Γ ∼= A × (Z2)
t × Z8 for some Abelian group A of odd order, where

a = 2t,

• c = 2 and Γ ∼= A × (Z2)
t−2 × Z4 × Z8 for some Abelian group A of odd order,

where a = 2t,

• c = 2 and Γ ∼= A× (Z2)
t−1 ×Z16 for some Abelian group A of odd order, where

a = 2t.

Observation 4.41. [3] If an r1-regular graph G1 is Γ1-distance magic and an r2-
regular graph G2 is Γ2-distance magic, then the direct product G1 × G2 is Γ1 × Γ2-
distance magic.

Theorem 4.42. [3] If G is a balanced distance magic graph and H is an r-regular
graph for r ≥ 1, then G×H is a group distance magic graph.

Proposition 4.43. [3] If G is an r-regular graph of order n for some even r, then
the direct product C2t × G, t ≥ 2, admits an A × B-distance magic labeling for any
Abelian group B of order n and an Abelian group A such that:

• A ∼= (Z2)
t,

• A ∼= Z4 × (Z2)
t−2,

• A ∼= Z8 × (Z2)
t−3,

• A ∼= (Z4)
2 × (Z2)

t−4.

Proposition 4.44. [3] If G is an r-regular graph of order n for some even r and n,
then the direct product C2t × G, t ≥ 2, admits an A × B-distance magic labeling for
any Abelian group B of order n

2
and an Abelian group A such that:
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• A ∼= Z8 × Z4 × (Z2)
t−4,

• A ∼= Z16 × (Z2)
t−3.

Cartesian Product

Recall that the Cartesian product , denoted G�H, is a graph with vertex set V (G)×
V (H). Vertices (g, h) and (g′, h′) in G�H are adjacent if and only if g = g′ and h
is adjacent to h′ in H, or h = h′ and g is adjacent to g′ in G. [32] The Cartesian
product Hq1,...,qd = Kq1� · · ·�Kqd of complete graphs is called a Hamming graph
where q1, . . . , qd ≥ 2 are integers. When q1 = · · · = qd = q, we write H(d, q) in place
of Hq, . . . , q︸ ︷︷ ︸

d

.

Theorem 4.45. [19] Suppose d, q ≥ 2 are integers such that q is a divisor of d.
Then H(d, q) is Zd

q-distance magic with magic constant ( q
2
, . . . , q

2
) when q is even and

(0, . . . , 0) when q is odd.

Lemma 4.46. [14] If m,n are odd, then Cm�Cn is not a Γ-distance magic graph
for any Abelian group Γ of order mn.

Theorem 4.47. [14] Let k = lcm(m,n). If m or n is even, then Cm�Cn has a
Zα × A-distance magic labeling for any α ≡ 0 (mod k) and any Abelian group A of
order mn

α
.

Theorem 4.48. [19] Let Gi be an ri-regular graph with ni ≥ 2 vertices, 1 ≤ i ≤ k.
Let Γi be an Abelian group of order ni such that exp(Γi) is a divisor of r−ri, 1 ≤ i ≤ k,
where r =

∑k
i=1 ri. If Gi is Γi-distance magic for 1 ≤ i ≤ k, then G1� · · ·�Gk is

Γ1 × · · · × Γk-distance magic.

Corollary 4.49. [19] Let di, ri ≥ 1 and ni ≥ 2 be integers, 1 ≤ i ≤ k. Let Gi be
an ri-regular graph with ndi

i vertices, 1 ≤ i ≤ k. Suppose ni is a divisor of r − ri,
1 ≤ i ≤ k, where r =

∑k
i=1 ri. If Gi is Zdi

ni
-distance magic for 1 ≤ i ≤ k, then

G1� · · ·�Gk is Zd1
n1

× · · · × Zdk
nk
-distance magic.

Corollary 4.50. [19] Let G,H be regular graphs with 2d, 2e vertices respectively.
Suppose both G and H have even degrees. If G is Zd

2-distance magic and H is Ze
2-

distance magic, then G�H is Zd+e
2 -distance magic.

Corollary 4.51. [19] Let pi ≥ 2 be a prime and di, ri ≥ 1 be integers with 2 ≤ ri ≤ pdii
for i = 1, 2. Let Gi be any Cayley graph on Zdi

pi
, with degree ri for i = 1, 2. If both p1

and p2 divide each of r1 and r2, then G1�G2 is Zd1
p1
× Zd2

p2
-distance magic.

An involution is a group element of order 2.

Theorem 4.52. [17] Let G be an r-regular distance magic graph on n vertices,
where r is odd. There does not exist an Abelian group Γ of order n having exactly
one involution ι such that G is Γ-distance magic.
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Observation 4.53. [17] Let G be an r-regular distance magic graph on n ≡ 2
(mod 4) vertices, where r is odd. There does not exist an Abelian group Γ of order n
such that G is Γ-distance magic.

Observation 4.54. [17] If Cn(1, d) is a Γ-distance magic circulant graph for a group
Γ, then n is even.

Theorem 4.55. [17] If gcd(n, d + 1) = 2k + 1, d and n are both even, and n =
2s(2k + 1) then Cn(1, d) has a Z2m × A-magic labeling for any m ≡ 0 (mod s) and

any Abelian group A of order s(2k+1)
m

.

Corollary 4.56. [17] If d is odd and 2d2 − 2 �≡ 0 (mod n), then Cn(1, d) is not
Γ-distance magic for any Abelian group Γ of order n.

Observation 4.57. [17] If d = 5, then Cd2−1(1, d) is Γ-distance magic for any
Abelian group Γ of order d2 − 1.

Observation 4.58. [14] If n < 2d+ 2, then Cd
n is not a Γ-distance magic graph for

any Abelian group Γ of order n.

Observation 4.59. [14] If Cd
n is a Γ-distance magic graph for a group Γ then n is

even.

Theorem 4.60. [14] Let gcd(n, d + 1) = k. If d is even, n > 2d + 1, and n = 2hk,
then Cd

n has a Zα × A-distance magic labeling for any α ≡ 0 (mod 2h) and any
Abelian group A of order n

α
.

Lemma 4.61. [14] If d is odd and 2d(d+1) �≡ 0 (mod n), then Cd
n is not a Γ-distance

magic graph for any Abelian group Γ of order n.

Theorem 4.62. [14] Let gcd(n, d+1) = k. If d is odd, n = 2hk, p ≡ 0 (mod k), and
n > 2d + 1, then Cd

n has a Zα × A-distance magic labeling for any α ≡ 0 (mod 2h)
and any Abelian group A of order n

α
.

4.2 Group Distance Antimagic Graphs

A Γ-distance antimagic labeling applies to graphs labelled with elements from Abelian
group Γ, much like Γ-distance magic labelings or group distance magic labelings. [19]

4.2.1 Zn-Distance Antimagic Graphs

Corollary 4.63. [19] Let G be an r-regular graph on n vertices such that both n and
r are even. Then G is not Zn-distance antimagic.

Theorem 4.64. [19] The circulant graph Cay(Zn;S) is Zn-distance antimagic if one
of the following holds:
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• n is even, n/2 ∈ S, S contains 2s even integers and 2t odd integers other than
n/2, and 2(s− t) + 1 and 2(t− s) + 1 are both coprime to n;

• |S| and n are coprime.

On the other hand, if |S| and n are both even, then Cay(Zn;S) is not Zn-distance
antimagic.

4.2.2 Γ-Distance Antimagic Graphs

Theorem 4.65. [19] Let G be an r-regular graph on n vertices, where n is even.
Then for any Abelian group Γ of order n with exactly one involution, G cannot be
Γ-distance antimagic unless r is odd.

Corollary 4.66. [19] Let G be an r-regular graph on n vertices such that n ≡ 2
(mod 4) and r is even. There does not exist an Abelian group Γ of order n such that
G is Γ-distance antimagic.

Theorem 4.67. [19] Let Γ be a finite Abelian group of order n = |Γ|, and G =
Cay(Γ;S), a Cayley graph on Γ of degree r = |S|. If n and r are coprime, then G is
Γ-distance antimagic, and any automorphism of Γ is an Γ-distance antimagic labeling
of G.

Corollary 4.68. [19] Let p ≥ 2 be a prime, and let r ≥ 2 and d ≥ 1 be integers.
If p is not a divisor of r, then any Cayley graph Cay(Zd

p;S) on Zd
p with degree r

is Zd
p-distance antimagic and any automorphism f of Zd

p is a Zd
p-distance antimagic

labeling.

Corollary 4.69. [19] Let d ≥ 2 be an integer. Any Cayley graph Cay(Zd
2;S) on

Zd
2 with an odd degree is Zd

2-distance antimagic with any automorphism f of Zd
2 as a

Zd
2-distance antimagic labeling.

Corollary 4.70. [19] The d-dimensional hypercube Qd is Z2d-distance antimagic if
and only if d is odd.

Corollary 4.71. [19] Let d ≥ 2 be an integer. If d is odd, then Qd is Zd
2-distance

antimagic.

Theorem 4.72. [19] Let d ≥ 3 be an integer. If d is odd or d ≡ 0 (mod 4), then Qd

is Zd
2-distance antimagic.

Remark 4.73. [19] If Qk is Zk
2-distance antimagic for some integer k ≥ 6 with k ≡ 2

(mod 4), thenQd is Z
d
2-distance antimagic for every integer d ≥ k with d ≡ 2 (mod 4).

In particular, if Q6 is Z6
2-distance antimagic, then Qd is Zd

2-distance antimagic for all
integers d ≥ 3. The problem of determining if Q6 is Z

6
2-distance antimagic is restated

in Open Problem 6.29.
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Theorem 4.74. [19] Let d ≥ 1 and q ≥ 2 be integers.

• If d and q are coprime, then the Hamming graph H(d, q) is Zqd-distance an-
timagic. In particular, Kq is Zq-distance antimagic for any q ≥ 2.

• If both d and q are even, then H(d, q) is not Zqd-distance antimagic.

Most of the work with group distance antimagic graphs involves graph products.
Like in chapter 2 and earlier in this chapter, we separate these results by the specific
graph product.

Direct Product

The direct product G1 × · · · ×Gd of d graphs G1, . . . , Gd is defined to have vertex set
V (G1)× · · · × V (Gd) such that two vertices (x1, . . . , xd) and (y1, . . . , yd) are adjacent
if and only if xi is adjacent to yi in Gi for i = 1, . . . , d.

Theorem 4.75. [19] Let Gi be an ri-regular graph with ni vertices and Γi an Abelian
group of order ni, i = 1, . . . , d. Denote r = r1 ···rd. If Gi is Γi-distance antimagic and
ni and r/ri are coprime for i = 1, . . . , d, then G1 × · · · ×Gd is Γ1 × · · · × Γd-distance
antimagic.

Let Gd
× = G× · · · ×G︸ ︷︷ ︸

dtimes

and Γd
× = Γ× · · · × Γ︸ ︷︷ ︸

dtimes

.

Corollary 4.76. [19] Suppose G is an r-regular Γ-distance antimagic graph with n
vertices, where Γ is an Abelian group of order n. If n and r are coprime, then for
any integer d ≥ 1, Gd

× is Γd-distance antimagic.

Corollary 4.77. [19] For any odd integers n1, . . . , nd ≥ 3, Cn1 × · · · ×Cnd
is Zn1 ×

· · · × Znd
-distance antimagic. In particular, for any integer d ≥ 1 and odd integer

n ≥ 3, (Cn)
d
× is Zd

n-distance antimagic.

Corollary 4.78. [19] Let n1, . . . , nd ≥ 3, be integers such that ni and nj − 1 are
coprime for distinct i, j. Then Kn1 × · · ·×Knd

is Zn1 × · · ·×Znd
-distance antimagic.

In particular, for any integers d ≥ 1 and n ≥ 3, (Kn)
d
× is Zd

n-distance antimagic.

Let Dn = Cn�P2, the prism of 2n ≥ 6 vertices.

Lemma 4.79. [19] Let n ≥ 4 be an integer not divisible by 3. Then Dn is Z2n-
distance antimagic.

Corollary 4.80. [19] Let n1, . . . , nd ≥ 4 be integers not divisible by 3. Then Dn1 ×
· · · × Dnd

is Zn1 × · · · × Znd
-distance antimagic. In particular, for any d ≥ 1, and

any n ≥ 4 not divisible by 3, (Dn)
d
× is Zd

n-distance antimagic.
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Theorem 4.81. [19] Let Gi be an ri-regular graph with ni vertices, i = 1, . . . , k.
Suppose ni and r/ri are coprime for i = 1, . . . , k, where r = r1 · · · rk. If each Gi is
Zni

-distance antimagic, then G1 × · · · ×Gk is Zn1...nk
-distance antimagic.

Corollary 4.82. [19] Let n1, . . . , nk ≥ 3 be (not necessarily distinct) integers. Then
Cn1 × · · · × Cnk

is Zn1...nk
-distance antimagic if and only if all n1, . . . , nk are odd.

In particular, for any integer d ≥ 1 and odd integer n ≥ 3, (Cn)
d
× is Znd-distance

antimagic.

Cartesian Product

Theorem 4.83. [19] Let Gi be an ri-regular graph with ni ≥ 2 vertices, 1 ≤ i ≤ k.
Let Γi be an Abelian group of order ni such that exp(Γi) is a divisor of r−ri, 1 ≤ i ≤ k,
where r =

∑k
i=1 ri. If Gi is Γi-distance antimagic for 1 ≤ i ≤ k, then G1� · · ·�Gk is

Γ1 × · · · × Γk-distance antimagic.

Corollary 4.84. [19] Let di, ri ≥ 1 and ni ≥ 2 be integers, 1 ≤ i ≤ k. Let Gi be
an ri-regular graph with ndi

i vertices, 1 ≤ i ≤ k. Suppose ni is a divisor of r − ri,
1 ≤ i ≤ k, where r =

∑k
i=1 ri. If Gi is Zdi

ni
-distance antimagic for 1 ≤ i ≤ k, then

G1� · · ·�Gk is Zd1
n1

× · · · × Zdk
nk
-distance antimagic.

Corollary 4.85. [19] Let G,H be regular graphs with 2d, 2e vertices respectively.
Suppose both G and H have even degrees. If G is Zd

2-distance antimagic and H is
Ze
2-distance antimagic, then G�H is Zd+e

2 -distance antimagic.

Corollary 4.86. [19] Let pi ≥ 2 be a prime and di, ri ≥ 1 be integers with 2 ≤ ri ≤ pdii
for i = 1, 2. Let Gi be any Cayley graph on Zdi

pi
with degree ri for i = 1, 2. If p1 divides

r2 but not r1, and p2 divides r1 but not r2, then G1�G2 is Z
d1
p1
×Zd2

p2
-distance antimagic.

Corollary 4.87. [19] Let di ≥ 1 and qi ≥ 2 be integers which are coprime, 1 ≤ i ≤ k.
If qdii is a divisor of

∑
j �=i dj(qj − 1) for 1 ≤ i ≤ k, then H(d1, q1)� · · ·�H(dk, qk) is

Z
q
d1
1
× · · · × Z

q
dk
k

-distance antimagic.

Theorem 4.88. [19]

• If n ≥ 3 is an odd integer, then Cn is Zn-distance antimagic.

• Let n1, . . . nk ≥ 3 be odd integers, where k ≥ 2. If each ni is a divisor of k − 1,
then Cn1� · · ·�Cnk

is Zn1 ×· · ·×Znk
-distance antimagic. In particular, for any

prime p and any integer d ≥ 1, Cp� · · ·�Cp (pd + 1 factors) is Zpd+1
p -distance

antimagic.

Given an r-regular graph G with n vertices and an Abelian group Γ of order n,
a bijection f : V (G) → Γ is called an Γ-balanced labeling if w(x) = rf(x) for every
x ∈ V (G).
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Theorem 4.89. [19] Let Gi be an ri-regular graph with ni ≥ 2 vertices, 1 ≤ i ≤ k.
Let Γi be an Abelian group of order ni, 1 ≤ i ≤ k, and let r =

∑k
i=1 ri. Suppose

{1, . . . , k} is partitioned into, say, I = {1, . . . , k1}, J = {k1 + 1, . . . , k2}, and L =
{k2 + 1, . . . , k} for some 0 ≤ k1 ≤ k2 ≤ k, possibly with one or two of I, J, L to be
empty, such that the following conditions are satisfied:

• for each h ∈ H,Gh is Γh-distance magic and r − rh is coprime to nh;

• for each i ∈ I,Gi is Γi-distance antimagic and exp(Γi) is a divisor of r − ri;

• for each j ∈ J,Gj admits an Γj-balanced labeling and r is coprime to nj.

Then G1� · · ·�Gk is Γ1 × · · · × Γk-distance antimagic.

Corollary 4.90. [19] Suppose Gi is an ri-regular Zdi
2 -distance magic graph, 1 ≤

i ≤ s, and Gj an rj-regular Z
dj
2 -distance antimagic graph, s + 1 ≤ j ≤ s + t. Let

r =
∑s+t

i=1 ri and d =
∑s+t

i=1 di. If ri and r have different parity for i = 1, . . . , s and the
same parity for i = s+1, . . . , s+ t, then G1� · · ·�Gs+t is Z

d
2 -distance antimagic. In

particular, if G1 is a regular Zd1
2 -distance magic graph with even degree, and G2 is a

regular Zd2
2 -distance antimagic graph with odd degree, then G1�G2 is Zd1+d2

2 -distance
antimagic.

Theorem 4.91. [19] Suppose Gi is an ri-regular graph with ni vertices which admits
a Zn-balanced labeling, 1 ≤ i ≤ k. Suppose further that ri ≤ nj for any 1 ≤ i, j,≤ k

and that r =
∑k

i=1 ri is coprime to n1 . . . nk. Then G1� · · ·�Gk is Zn1...nk
-distance

antimagic.

Denote Gk
� = G� · · ·�G︸ ︷︷ ︸

ktimes

.

Corollary 4.92. [19] Let n1, . . . , nk ≥ 3 be (not necessarily distinct) integers such
that k is coprime to n1 · · · nk. Then Cn1� · · · �Cnk

is Zn1...nk
-distance antimagic if

and only if all n1, . . . , nk are odd. In particular, for any integer k ≥ 1 and odd integer
n ≥ 3 that are coprime, (Cn)

k
� is Znk-distance antimagic.

Corollary 4.93. [19] Let p be a prime and let n1, . . . , np ≥ 3 be (not necessarily
distinct) integers none of which has p as a factor. Then Cn1� · · · �Cnp is Zn1...np-
distance antimagic if and only if all n1, . . . , np are odd. In particular, for any integers
n1, n2 ≥ 3, Cn1�Cn2 is Zn1n2-distance antimagic if and only if both n1 and n2 are
odd. Moreover, if a prime p is not a divisor of an odd integer n ≥ 3, then (Cn)

p
� is

Znp-distance antimagic.

Strong Product

The strong product , denoted G�H is a graph with vertex set V (G)×V (H). Vertices
(g, h) and (g′, h′) in G�H are adjacent if and only if g = g′ and h is adjacent to h′ in
H, or h = h′ and g is adjacent to g′ in G, or g is adjacent to g′ in G and h is adjacent
to h′ in H. [32]
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Theorem 4.94. [19] Let Gi be an ri-regular graph with ni vertices for i = 1, 2.

• Suppose both G1 and G2 have Zn-balanced labelings and r1r2+r1+r2 is coprime
to n1n2. Then G1 �G2 is Zn1n2-distance antimagic.

• Suppose G1 is Zn1-distance magic, G2 is Zn2-distance magic, r1 is coprime to
n2, and r2 is coprime to n1. Then G1 �G2 is Zn1n2-distance antimagic.

Corollary 4.95. [19] Let m,n ≥ 3 be (not necessarily distinct) integers. Then
Cm � Cn is Zmn-distance antimagic if and only if both m and n are odd.

Corollary 4.96. [19] For any odd integers m,n ≥ 3 (not necessarily distinct),
Km �Kn is Zmn-distance antimagic.

Theorem 4.97. [19] Let G be a regular graph on m vertices other than the empty
graph Km.

• If n is even, then Kn �G is Znm-distance antimagic.

• If both n and m are odd, then Kn �G is Znm-distance antimagic.

59



60



Chapter 5

Applications

One important way that distance magic and distance antimagic labelings can be used
is in the scheduling of tournaments. A fair way to schedule a tournament is to create
a round-robin, where each team plays every other team once. However, playing that
many games is not always possible. Thus, we need a fair way of scheduling when not
all of the games from the round-robin can be played. In order to be fair, each team
should play the same number of teams and the difficulty of the schedule for each team
should mimic the difficulty of playing the entire round-robin tournament. To assist
with considering the difficulty of each team’s schedule, if there are n teams in the
tournament, rank the teams from strongest to weakest so that the strongest team has
rank 1 and the weakest team has rank n. We define the strength of the i-th ranked
team as sn(i) = n+ 1− i. Thus the strongest team will have rank 1 and strength n.
Additionally, the total strength of opponents of team i in the complete round-robin
tournament is defined as Sn,n−1(i) =

n(n+1)
2

− sn(i) =
(n+1)(n−2)

2
+ i.

One way to create a fair schedule is to create a fair incomplete tournament . In a
fair incomplete tournament of n teams with k rounds , written FIT (n, k), every team
plays exactly k other teams, and the total strength of the opponents team i plays is
Sn,k(i) =

(n+1)(n−2)
2

+ i −m where m is a fixed constant. In such a tournament, the
schedule strength each team misses is the same, namely m.

Another way to create a fair schedule is to create an equalized incomplete tour-
nament . An equalized incomplete tournament of n teams with r rounds, written
EIT (n, r) is a tournament in which every team plays exactly r other teams and the
total strength of the opponents team i plays is Tn,r(i) = m for every i, where m is a
fixed constant. In such a tournament, each team has the same strength of schedule.

Certainly, we can see that EIT (n, n− k− 1) is the complement of FIT (n, k) and
thus FIT (n, k) exists if and only if EIT (n, n− k − 1) exists.

Lemma 5.1. [27] Let EIT (n, r) be an equalized tournament. Then r is even.

Theorem 5.2. [27] Let EIT (n, r) be an equalized tournament with an even number
of teams, n, and r rounds, where r ≡ 2 (mod 4). Then n ≡ 0 (mod 4).
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Table 5.1: Equalized Incomplete Tournament of 6 Rounds for 12 teams
Team Round 1 Round 2 Round 3 Round 4 Round 5 Round 6
1 2 4 6 7 9 11
2 1 3 5 8 10 12
3 4 2 7 9 11 6
4 3 1 8 10 12 5
5 9 6 2 11 7 4
6 10 5 1 12 8 3
7 12 10 3 1 5 8
8 11 9 4 2 6 7
9 5 8 12 3 1 10
10 6 7 11 4 2 9
11 8 12 10 5 3 1
12 7 11 9 6 4 2

Theorem 5.3. [27] For n even, an EIT (n, r) exists if and only if 2 ≤ r ≤ n − 2,
r ≡ 0 (mod 2) and either n ≡ 0 (mod 4) or n ≡ r + 2 ≡ 2 (mod 4).

Corollary 5.4. [27] For n even, a FIT (n, r) exists if and only if 1 ≤ r ≤ n − 1,
k ≡ 1 (mod 2) and either n ≡ 0 (mod 4) or n ≡ k + 1 ≡ 2 (mod 4).

For example, suppose you want to schedule a tournament with 12 teams where
each team plays 6 games. An EIT (12, 6) providing the opponent for each team in
each round is displayed in Table 5.1. The fixed constant m in this case is 39. Finding
an EIT (12, 6) is equivalent to finding a distance magic labeling for the 6-regular
graph on 12 vertices with magic constant 39.

Similarly, finding a FIT (12, 5) is equivalent to taking the complement of a 6-
regular graph on 12 vertices. Table 5.2 provides the opponent for each team in each
round.

Now EIT (n, r) and FIT (n, k) both attempt to replicate the results of perform-
ing the full round-robin tournament. Of course, a strong team is likely to win more
games than a weak team in such a tournament. If we want all teams to have an equal
chance of winning the tournament, we can create a handicap incomplete tournament.
A handicap incomplete tournament of n teams with r rounds, HIT (n, r), is a tourna-
ment where each team i plays r opponents with a combined strength of Sn,r(i) = t−i,
where t is a fixed constant. (This means the strongest team will play the strongest
opponents and the weakest team will play the weakest opponents.)

A special case is a handicap distance d-antimagic labeling of a graph G(V,E) with

n vertices, which is a bijection �f : V → {1, 2, . . . , n} with the property that �f(xi) = i
and the sequence of the weights w(x1), w(x2), . . . w(xn) forms an increasing arithmetic
progression with difference d. A graph G is a handicap distance d-antimagic graph if
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Table 5.2: Fair Incomplete Tournament of 5 Rounds for 12 teams
Team Round 1 Round 2 Round 3 Round 4 Round 5
1 12 3 10 5 8
2 11 4 9 6 7
3 5 1 12 8 10
4 7 2 11 9 6
5 3 10 8 1 12
6 9 11 7 2 4
7 4 9 6 11 2
8 10 12 5 3 1
9 6 7 2 4 11
10 8 5 1 12 3
11 2 6 4 7 9
12 1 8 3 10 5

it allows a handicap distance d-antimagic labeling and handicap distance antimagic
graph when d = 1. [23]

Theorem 5.5. [23] Let c(Ka�Kb) denote the graph of c mutually disjoint copies of
the Cartesian product of complete graphs Ka and Kb. Let a and b be even positive
integers such that 2 ≤ a ≤ b, 4 < ab,and c be any positive integer. Let n = abc and
G = c(Ka�Kb). Then the complement of G is a handicap distance antimagic graph
with n vertices.

Theorem 5.6. [25] Let a, b, c be positive odd integers such that 1 < a ≤ b, and q > 1
divides at least two of a, b, c. let n = abc and G = c(Ka�Kb). Then the complement
of G is a handicap distance antimagic graph with n vertices.

For example, suppose you want to schedule a tournament with 12 teams where
each team plays 5 games. A HIT (12, 5) providing the opponent for each team in
each round is displayed in Table 5.3. The fixed constant t = 39.

Let Qn denote the hypercube with the vertex set of all binary n-tuples where
vertices are adjacent if and only if they differ in exactly one position.

Theorem 5.7. [25] The graph G = cQ3 is handicap distance antimagic for any
c ≥ 1.

Theorem 5.8. [25] Let QM
4 be the graph arising from Q4 by adding the perfect

matching consisting of edges (x0x1x2x3, y0y1y2y3) satisfying xi + yi ≡ 1 (mod 2) for
i = 0, 1, 2, 3. Then cQM

4 is handicap distance antimagic for any c ≥ 1.

Observation 5.9. [25] Let G be a handicap distance antimagic graph and H a
distance magic graph such that V (G) = V (H) and E(G)

⋂
E(H) = ∅. Then the
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Table 5.3: Handicap Incomplete Tournament of 5 Rounds for 12 teams
Team Round 1 Round 2 Round 3 Round 4 Round 5
1 11 3 9 7 8
2 12 10 4 5 6
3 9 1 8 11 7
4 10 5 2 6 12
5 6 4 12 2 10
6 5 12 10 4 2
7 8 9 11 1 3
8 7 11 3 9 1
9 3 7 1 8 11
10 4 2 6 12 5
11 1 8 7 3 9
12 2 6 5 10 4

graph G � H with V (G � H) = V (G) = V (H) and E(G � H) = E(G)
⋃
E(H) is

handicap distance antimagic.
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Chapter 6

Open Problems

In this chapter, we list problems that, as far as we can determine, remain unsolved.
Seoud et. al [51] posed the following problem.

Problem 6.1. Classify whether or not the following are distance magic graphs:

• Kn�Cm where n ≥ 2, m ≥ 3;

• Cm�Pn where n ≥ 2, m ≥ 3; and

• Cm�Kn,t, where m ≥ 3, n, t ≥ 1.

S.B. Rao et. al. ask in [48] to

Problem 6.2. Characterize 4-regular distance magic graphs.1

Kovar and Silber posed this problem on regular graphs in [38].

Problem 6.3. For what values of n do (n− 5)-regular distance graphs exist?

Kovar et. al. conjectured the following in [39]:

Conjecture 6.4. For all n ≥ 14 an r-regular distance magic graph with n vertices
exists

• for all 14 ≤ r ≤ n− 3 if n ≡ 0 (mod 3)

• for all 14 ≤ r ≤ n− 5 otherwise.

Cichacz [13] asks,

Problem 6.5. Decide whether a (t − 1, t)-hypercycle of order n is a distance magic
hypergraph when t > 3 is odd.

Gregor and Kovar [30] posed the next two questions:

1This problem is partially addressed by [17] and [37].
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Conjecture 6.6. For every neighbor-balanced f : F n
2 → F n

2 there is a regular balanced
n× n matrix M and v ∈ F n

2 such that f(u) = (MuT )⊕ v for every u ∈ F n
2 .

Problem 6.7. Find a distance magic labeling of Qn for some n ≡ 2 (mod 4) that is
not neighbor-balanced.

Acharya et. al. ask [2],

Conjecture 6.8. For any even integer n ≥ 4, the n-dimensional hypercube Qn is not
a distance magic graph.

This conjecture was posed by Miller, et. al. [40] and relates to complete multipar-
tite graphs.

Conjecture 6.9. Let 1 ≤ n1 ≤ · · · ≤ nm,m > 1. Let si =
∑i

j=1 nj and n = sm.
There exists a distance magic labeling of the complete multipartite graph Kn1,...,nm if
and only if the following conditions hold:

• a2 ≥ 2,

• n(n+ 1) ≡ 0 (mod 2m), and

• ∑si
j=1(n+ 1− j) ≥ in(n+1)

2m
for 1 ≤ i ≤ m.

By Theorem 2.49 and Theorem 2.56, we know this conjecture is valid for m =
{2, 3}, but it is open for other values of m.

An independent set is a set of vertices, no two of which are adjacent. [11] Sugeng
et. al. ask, [54]

Conjecture 6.10. If G is a distance magic graph different from K1,2,2,...,2, then the
vertex set V can be partitioned into sets V1, V2, . . . , Vm such that for each i, has |Vi| > 1
and Vi is independent.

Shafiq et. al. ask in [52]

Problem 6.11. If G is a non-regular graph, determine if there is a distance magic
labeling of G ◦ C4.

2

Anholcer et. al. ask in [5]

Problem 6.12. If G is a non-regular graph, determine if there is a distance magic
labeling of G× C4.

3

Rao asks [47],

2This problem is partially addressed by [12], [16], and [4].
3This is partially addressed by [12].
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Problem 6.13. Characterize graphs G and H such that G�H is a distance magic
graph.4

Arumugum et. al. [7] ask,

Problem 6.14. Does the adjacency matrix of a distance magic graph have special
properties?5

Arumugam et. al. posed the following 2 problems in [8],

Problem 6.15. Does there exist a distance magic graph of order n ≡ 1 (mod 4) with
magic constant k = jn, where j is an odd integer with 3 ≤ j ≤ n−1

2
?

Problem 6.16. Determine the set

S = {k ∈ N : there exists a distance magic graph with magic constant k}.

It is known that 1, 2, 4, 6, 8, 12 /∈ S and integers 4n + 3 ∈ S for all n ≥ 0, integers
4n+ 1 ∈ S for all n ≥ 1, and 2n ∈ S for every n ≥ 6.

O’Neal and Slater [44] ask

Problem 6.17. Which weight sets W allow a neighborhood spread of 0; that is,
NSsp

W (G;D) = 0?

O’Neal and Slater [44] ask

Problem 6.18. Why are multiple edge magic constants are possible for a graph when
the vertex magic constant is unique?

Simanjuntak et. al. pose the following seven problems in [53]

Problem 6.19. Let G be a non-connected graph having connected components
G1, G2, . . . , Gp, each of diameter d1, d2, . . . , dp respectively. Let dmax = max di and
let there exist i, j such that |V (Gi)| �= |V (Gj)|. Does there exist G admitting a
{0, 1, . . . , dmax}-distance magic labeling other than K2

⋃
K1?

Problem 6.20. Given a particular distance set D, what are the necessary and suffi-
cient conditions for 2-regular graphs to have a D-distance magic labeling?

Problem 6.21. What are the necessary and sufficient conditions for trees to have
D-distance magic labelings where D ⊆ {0, 1, 2}?
Conjecture 6.22. Graphs with diameter 2 are not {2}-distance magic. More gener-
ally, graphs with diameter d are not {d}-distance magic.

4This is partially answered by Rao in [48].
5This is partially addressed by [41].
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Problem 6.23. Does there exist a graph of diameter larger than 2 other than P4

admitting a {0, 2}-distance magic labeling?

Problem 6.24. Does there exist an infinite family of non-regular graphs admitting a
{1, 2}-distance magic labeling?

Problem 6.25. Does there exist an infinite family of graphs with diameter at least 4
admitting a {1, 2}-distance magic labeling?

In [22], Froncek asks the following:

Problem 6.26. For a given graph Cm�Cn, determine all Abelian groups Γ such that
the graph Cm�Cn admits a Γ-distance magic labeling.6

In [19], Cichacz, et. al. ask the following five problems:

Problem 6.27. When does a Cayley graph on Zd
2 with even degree (odd degree, re-

spectively) admit a Zd
2-distance antimagic (magic, respectively) labeling?

Problem 6.28. Give a necessary and sufficient condition for the Hamming graph
H(d, q), (d ≥ 1, q ≥ 3) to be Zqd-distance antimagic.7

Problem 6.29. Prove or disprove Q6 is Z6
2-distance antimagic.

Problem 6.30. Give a necessary and sufficient condition for Cn1� · · ·�Cnd
to be

Zn1...nd
-distance antimagic when d is not coprime to n1 · · ·nd. (A necessary condition

is that all ni’s must be odd.)

Problem 6.31. Give a necessary and sufficient condition for a circulant graph on n
vertices to be Zn-distance antimagic.

In [19], Cichacz, et. al. note

Problem 6.32. If Qk is Zk
2-distance antimagic for some integer k ≥ 6 with k ≡

2 (mod 4), then Qd is Zd
2-distance antimagic for every integer d ≥ k with d ≡ 2

(mod 4); that is, if Q6 is Z
6
2-distance antimagic, then Qd is Zd

2-distance antimagic for
all integers d ≥ 3.

Anholcer et. al. conjecture [3],

Conjecture 6.33. If m,n ≡ 0 (mod 4), then Cm × Cn is a group distance magic
graph.

Anholcer et. al. conjecture [3],

6This is partially addressed by [14].
7This is partially addressed by [19].
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Conjecture 6.34. Assume that m,n ≥ 3 and {m,n} = {4a, 4b+c} for some integers
a ≥ 3 and b ≥ 0, c ∈ {1, 2, 3}. Then Cm × Cn is Γ-distance magic in the following
cases:

• c ∈ {1, 3} and Γ ∼= A×Z3×(Z2)
p for some Abelian group A of odd order, where

a = 3 · 2p−2,

• c = 2 and Γ ∼= A× Z3 × (Z2)
p+1 for some Abelian group A of odd order, where

a = 3 · 2p−2,

• c = 2 and Γ ∼= A× Z3 × (Z2)
p−1 × Z4 for some Abelian group A of odd order,

where a = 3 · 2p−2,

• c = 2 and Γ ∼= A × Z5 × (Z2)
p for some Abelian group A of odd order, where

a = 5 · 2p−3,

• c = 2 and Γ ∼= A × Z7 × (Z2)
p for some Abelian group A of odd order, where

a = 7 · 2p−3.

Froncek [23] asked the following:

Problem 6.35. For what pairs (n, r) there exists a handicap tournament HIT (n, r),
or equivalently, an r-regular handicap distance antimagic graph with n vertices?

Similarly, Froncek [25] asked the following:

Problem 6.36. For which triples (n, g, d) there exists a g-regular handicap distance
d-antimagic graph on n vertices?

Observation 3.23 partially motivated Anholcer et al. to ask the following in [1].

Problem 6.37. Let n and p1, . . . , pm be positive integers such that p1+ · · ·+ pm = n.
When is it possible to find a partition of the set {1, . . . , n} into m sets A1, . . . , Am

such that |Ai| = pi and
∑

x∈Ai
x =

(n+1
2 )
m

for every i ∈ {1, . . . ,m}.
If the above partition exists, then n ≡ x (mod 2m) where x ∈ {0,−1}.

Observation 6.38. [1] Assume that p1, . . . , pm are given in non-decreasing order.
Let Pj =

∑j
i=1 pi. If the mentioned partition exists, then for any 1 ≤ j ≤ m,∑n

i=n−Pj+1 i ≥ j
(n+1

2 )
m

.
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r-regular, 16
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symmetric difference, 16
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