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Abstract 

Wireless sensor network is an emerging research topic due to its vast and ever-

growing applications. Wireless sensor networks are made up of small nodes whose main goal 

is to monitor, compute and transmit data. The nodes are basically made up of low powered 

microcontrollers, wireless transceiver chips, sensors to monitor their environment and a 

power source. The applications of wireless sensor networks range from basic household 

applications, such as health monitoring, appliance control and security to military 

application, such as intruder detection.  

The wide spread application of wireless sensor networks has brought to light many 

research issues such as battery efficiency, unreliable routing protocols due to node failures, 

localization issues and security vulnerabilities. This report will describe the hardware 

development of a fault tolerant routing protocol for railroad pedestrian warning system. The 

protocol implemented is a peer to peer multi-hop TDMA based protocol for nodes arranged 

in a linear zigzag chain arrangement. The basic working of the protocol was derived from 

Wireless Architecture for Hard Real-Time Embedded Networks (WAHREN). 
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1. Introduction 

The main objective of the project was to build a proof of concept prototype to warn the 

pedestrians on railroad tracks about an oncoming train. In the US, on an average 500 people 

are injured or killed every year due to pedestrian railroad accidents [11]. Most of these 

accidents happen in blind spots or due to negligence. A warning system can potentially warn 

victims from oncoming trains. The warning systems should be capable of functioning even in 

areas such as tunnels, canyons and bridges.  

1.1. Network architecture 

This prototype uses a Time Division Multiple Access (TDMA) based wireless sensor 

network protocol based on the concepts of Wireless Architecture for Hard Real-Time 

Embedded Networks (WAHREN) [1]. This protocol uses peer-to-peer communication. The 

data from each node is relayed to its neighbors until it finally reaches the end node via a 

multi-hop relay. The nodes are arranged as shown in figure 1. This arrangement allows each 

node to communicate with two of its immediate neighbors on either side, thus providing a 

fault tolerant way of relaying data. Even if there is a single node failure on either side of a 

node the data still gets transferred. The data from each node will be available at the end 

nodes. For example in figure 1 data from all the nodes can be read at either node 1 or node 7. 

The protocol uses a TDMA based approach where each node is assigned a time slot for 

transmitting. The nodes use their time slots to either send their own data or to relay data from 

neighboring nodes. The data is transferred in systolic broadcast method.  

     Basic functions of the production system: 

 In the production system, all nodes are equipped with sensors to detect a train, while 

minimizing false detection due to natural phenomena or pranksters. 

 Each detection is relayed peer-to-peer to all nodes 

 Each node can decide whether to issue an alert based on the distance (number of hops) to 

the nearest detection. 

The prototype was built using a eZ430-RF2500 [2] development board from Texas 

Instruments (TI). The development tool has a MSP430F2274 [3] microcontroller and 
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CC2500 2.4-GHz wireless transceiver [4]. To demonstrate the proper working of the protocol 

each node is equipped with a Passive Infrared motion sensor (PIR sensor). The status of each 

node’s sensor is relayed to the end nodes. The prototype software was developed to support 

sixteen nodes; however production software could support many more.  

 

Figure 1. Figure showing the node arrangement. 

 The protocol is fault tolerant to single node failures at random locations. The network can 

still reliably route data from one end to the other even with multiple single node failures at 

random locations. For example, in figure 2, if nodes 3 and 6 fail, data is still reliably routed 

from node 1 to node 7 through nodes 2, 4 and 5. 

 

Figure 2. Network with multiple node failures. 

1.2. Proof-of-Concept vs. Production System 

The proof-of-concept system presented herein comprises the same basic subsystems and 

functions as would be needed in a production system. Although it varies considerably in the 

details of how the subsystems are implements, all of the principles are transferable and 

adaptable to the needs of a production system.  

A production system would be required to detect a train, forward that data a mile or more 

down the track, and issue an audio/visual alert sufficient to attract a trespasser’s attention 

well in advance of the arrival of the train. The proof of concept system is a much smaller 
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system, designed to detect motion of a human being in a building, forward that data up-to 

100 meters down the hallway, and issue a visible alert to a researcher who is looking for it. 

The system comprises four basic subsystems: a Sensor subsystem, a Software-

Configurable Radio subsystem, an Annunciator subsystem, and a Power Supply subsystem. 

These subsystems are modular, and can be independently modified or adapted to in-the-field 

requirements and conditions. 

1.2.1. Sensor Subsystem 

The proof-of-concept system employs a simple Passive Infra-Red (PIR) sensor to detect 

motion of a human. By contrast, the production system would require a more sophisticated 

suite of sensors to detect a train, while being insensitive to false alarms, especially those 

induced by pranksters. Development of the production sensor suite is beyond the scope of 

this study. 

1.2.2. Software-Configurable Radio Subsystem 

The Radio subsystem comprises a low-cost, low-power micro-controller and an RF 

transceiver. Operation of this subsystem is completely dictated by the micro-controller 

software.  

The definition and operation of the entire network is completely controlled by the micro-

controller software, which can be easily adapted to any production system requirements. The 

primary focus of this study is demonstrating the feasibility of the network for peer-to-peer 

forwarding detection data to all nodes in the system. 

The proof-of-concept transceiver operates in the unlicensed 2.4 GHz band, whereas a 

production model would employ RF bands licensed to the railroads.  

1.2.3. Annunciator Subsystem 

The proof-of-concept Annunciator is simply an LED visible to a passer-by. A Production 

model subsystem would need to be bright, loud, and annoying enough to catch the attention 

of a distracted trespasser (e.g. one who is texting on a smart-phone while wearing earphones 
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and a hooded parka). Development of the production annunciator is beyond the scope of this 

study. 

1.2.4. Power Supply subsystem 

Each proof-of-concept node is powered by a pair of AAA batteries. However, a 

production model would require a self-contained renewable power supply. Several 

alternatives exist, including solar, wind, and/or vibration-based sources. One advantage of 

this system is that the vast majority of power is consumed when a train is present. 

Development of a production Power Supply subsystem is beyond the scope of this study. 
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2. Background 

 The routing protocol implemented in the prototype was derived from WAHREN [1]. 

The WAHREN routing protocol was designed specifically for highly reliable message 

delivery over fixed networks and for hard real-time deadlines [1]. This protocol was designed 

for linear topologies like figure 1. This ideally suits the requirements for sensor placement 

along the railroad tracks, since they are essentially a fixed linear topology.  

 The WAHREN protocol was also designed to deliver messages in fixed time, where 

the delays for all packets are time bounded [1]. This is also a very important requirement for 

pedestrian warning systems. The warning message has to reach the pedestrian in time; hence 

delivery time of the packets is critical. The protocol uses a TDMA based approach for on 

time delivery of a node’s packet and for fairness of medium access. WAHREN was also 

designed to withstand single node failures at random locations. This helps reliably route data 

from one end to the other even in the presence of faults [1]. The protocol also works well 

with gentle curves in the topology, and can be adapted to sharp corners. 
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3. Basic Operation 

           This section will describe in detail the working of the protocol. The operation of each 

node can be divided into two modes: time synchronization mode and normal mode. The 

protocol is based on TDMA, hence time synchronization is important. Each node is given its 

own time slot. There are sixteen time slots in one window, where each time slot is 4ms. 

Hence the entire window will be 64ms as shown in figure 3.  

 When each node is powered on, it goes through the time synchronization mode, and 

once it is done with time synchronization, it enters the normal mode and remains there 

indefinitely. During the time synchronization mode, each node synchronizes its clock to its 

neighbors clocks and picks a node address (which corresponds to an available time slot). 

When the first node is turned on it has no neighbors, so it does not make any corrections to 

its clock counts and just picks the first time slot. But when the second node is turned on, it 

first checks to see if there are transmitting nodes, picks an available time slot, and then 

synchronizes with the first node’s clock. Once synchronized, it starts transmitting. Once node 

2 starts transmitting, node 1 detects the presence of node 2 and it also makes corrections to its 

clock counts. This helps bring the clock counts of both the nodes as close as possible. Now, if 

node 3 is turned on, it does the same; it first synchronizes with both nodes 1 and 2 and then 

starts transmitting. All the nodes turned on follow the same procedure. Once each node 

synchronizes, it enters normal mode; this is when it starts transmitting.  

 

Figure 3. Figure showing one complete window. 
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Downstream 

Downstream 

Downstream 

Downstream 

When a node enters normal mode it does three operations:  

(1) During its time slot it transmits its data or relays data received from its neighbors.  

(2) During the remaining time slots it receives data from its immediate two neighbors on 

either side. 

(3) And at the end of each window, it performs clock count corrections based on the 

arrival times of its neighbor’s packets.  

The node remains in a low-power sleep mode in between these operations. Each node 

will transmit its data at the middle of its time slot; for example, node one will transmit its 

data at 2 msec (its time slot is from 0 – 4 msec) and node 2 will transmit its data at 6 msec 

(its time slot is from 4 – 8msec), and so on. Figure 1, shows that each node can communicate 

with two of its neighbors on either side. This ensures that even if one node fails, data is still 

relayed to the end nodes. The data payload of each node is 4 bytes, where 2 bytes carry the 

upstream data and 2 bytes carry the downstream data. This ensures that the same data is 

available at both the ends.  

The prototype consists of sixteen nodes. Each node transmits its own sensor data every 

sixteenth window (during Window-0) and they continuously relay data received from their 

Node 1 Node 2 Node 3 Node 4 
Data1 Data2 Data3 Data4 
Data1 Data2 Data3 Data4 

 

 

   Figure 4. Figure showing the flow of data. 
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during the remaining fifteen windows (Window-1 to Window-15). Figure 4 illustrates how 

data gets relayed to the end nodes. Each node transmits its own data during window-0. This 

is later on relayed by its neighbors to the end nodes. For example, Node 2 transmits its data 

(“Data2”) during its time slot in Window-0. This is later on relayed by Node 3 and Node 1 in 

Window-1 and by Node 4 in Window-2. 

When each node receives a packet from its neighbors it records the arrival time of the 

packet. For example in figure 1, node 1 can receive packets from both node’s 2 and 3 and 

records the arrival time of the packets from both nodes. The difference in the expected arrival 

time and the actual arrival time is used to find the error in the clock counts. The average error 

is used to correct the nodes clock counts. This correction is done at the end of the window. 

The MSP430’s clock is not sourced from a crystal oscillator hence the clock generators are 

neither exceptionally accurate nor stable; hence the clock counts of all the nodes cannot be 

perfectly synchronized. There will be a non-zero offset while making corrections.  

In the pedestrian warning system, each and every node is equipped with a sensor to detect 

the presence of a train. As soon as a train is detected the warning signal is relayed ahead of 

the train as shown in the figure 5. The warning signal is forwarded to ±N nodes from the 

detection; the distance to forward the alert can be dependent on the speed of the train. The 

distance to forward the alert should also provide the pedestrian enough time to move away 

from the tracks. In the image shown in figure 5 the warning signal reaches the pedestrian 

before the train does, providing the pedestrian enough time to move away from the tracks. 

 

 

 

 

 

Figure 5. Operation of railway pedestrian warning system. 
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4. Hardware implementation  

4.1. Hardware used: 

1. EZ430-RF2500 development board [2]. 

 MSP430F2274 microcontroller [3]. 

 CC2500 2.4-GHz wireless transceiver [4]. 

2. PIR Sensor (#555-28027) from parallax [16]. 

3. LED for indication. 

4.2. Node’s hardware design 

This section describes in detail the hardware implementation of the prototype. The 

eZ430-RF2500 development board was used to implement the controller and for wireless 

communication. The eZ430-RF2500 is an MSP430 wireless development tool. The 

development board features a MSP430F2274 microcontroller and CC2500 2.4-GHz wireless 

transceiver [2]. The IAR embedded workbench [17] was used to program and debug the 

MSP430F2274 microcontroller. The schematic of the prototype is shown in Figure 6 and 

actual images of the prototype’s top and front views are shown in Figure 7.  

 

 

 

 

 

Figure 6. Block diagram of the hardware implementation. 

P2.6 

P3.3 

P3.2 

P3.1 

P3.0 

SCLK 

SOMI 

SIMO 

RX Int 

CS 

OUTPUT 

VCC 

GND 

P2.0 

P2.1 

GND 

CC2500 
(2.4GHz) 

SIMO

SOMISOMI

SCLKSCLK

PIR 
Motion 
Sensor 

OUTPUT

1K
Ω

L

RX Int

CSCS

RX Int
P2

P3.3

P3

P3.1

P3.0

VCC

GND

2.0

P2.1

GND

3.2

P2

2.6

MSP430 



 

11 

  
 

Figure 7. Top and front views of the prototype node. 

The MSP430F2274 is 16-bit RISC architecture rated to operate between 1.8V and 3.6V. 

The prototype is powered by 2 AAA batteries. The MSP430’s internal clock can be 

configured to run at speeds up to 16 MHz [3]. For our application the master clock (MCLK) 

is configured to run at 8 MHz. The MCLK is the clock source for the CPU and a sub-master 

clock (SMCLK), configured to run at 1 MHz. SMCLK is the clock source used for the timers 

and for SPI communication with the CC2500. The timer is configured in UP mode. It is 

programmed to generate an interrupt at the end of each window, which is 64 msec. The timer 

is also used to trigger an interrupt during the node’s transmit time slot. The node transmits its 

data during this interrupt. MSP430 external port pin P2.0 is used to read the sensor status, 

and port pin P2.1 is used to toggle the external LED, to signal an alert. 

The MSP430 uses SPI to communicate with the CC2500 transceiver. Pins (P3.0 to P3.3) 

are configured for SPI communication. P3.0 is used as chip select, P3.1 is used as slave in 

master out (SIMO), P3.2 is used as slave out master in (SOMI) and P3.3 is used as clock 

source (SCLK) from master to slave. Pins P3.0 to P3.3, P2.6 and P2.7 are internally 

connected to the CC2500. The SPI’s clock source is derived from the SMCLK. This is 

further divided by 2 resulting in an SPI data rate of 500 Kbps. Pins P2.6 and P2.7 are 

PIR motion sensor 

ON/OFF Switch 

eZ430-RF2500 Battery Pack LED Node Address 
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connected to the CC2500’s GDO0 and GDO2 pins. These pins are user configurable pins, 

used to configure the CC2500 to generate an interrupt when a packet is received. Once SPI is 

configured, the CC2500 can be configured with the required settings. 

The CC2500 is configured to transmit at a data rate of 250 Kbps. The CC2500 transmits 

in the 2.4 GHz frequency band. The base frequency starts from 2.433 GHz. The channel 

spacing is configured to 199.95 Khz. The frequency has to be picked carefully, since Wi-Fi 

also uses the same frequency band. For our demonstration specifically channel number 89 

was used. This corresponds to a carrier frequency of 2450.79 MHz. 

Carrier frequency = Base frequency + (Channel spacing * Channel number) 

        = 2.433 GHz + (199.95 Khz * 89) 

        = 2450.79 MHz. 

This frequency falls into the gap between Wi-Fi channels 6 and 11. The CC2500 is 

configured to transmit a 4 byte preamble and a 32 bit sync word before transmitting the 

payload. The payload transmitted is 7 bytes long. This is appended with a 16 bit CRC for 

error detection. The CC2500 has on-chip support for CRC handling and sync word detection 

[4]. Minimum shift keying (MSK) is used to modulate the data transmitted. Carrier sense is 

disabled, and the GDO0 pin is configured to generate an interrupt whenever a valid packet is 

received. The data is transmitted as a broadcast to all nodes in the neighborhood. Data 

transmitted with a receiver address of 0xFF is considered a broadcast. The actual address of 

the transmitting node is included in the payload.  

4.3. Receiver node’s design 

The receiver node used to collect data from any node in the network consists of the 

MSP430F2274 and the eZ430’s USB debugger card. The receiver node collects data from a 

targeted node and sends it to a host computer via UART (universal asynchronous 

receiver/transmitter). The receiver node is configured to receive packets at the same 

frequency and modulation as the network nodes. The receiver node is configured to send the 

received packets to the host over UART at 9600 bauds with no flow control, no parity check 

and with 1 stop bit.  
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5. Software implementation 

5.1. Algorithms 

 This section will describe in detail the software development for the prototype.  

5.1.1. Procedure for clock correction 

 The first thing that has to be done before starting to transmit is to synchronize clock 

counts with the neighboring nodes. This is done using the startup sync function 

“startup_sync()”. This function makes sure that the node’s clock count is as close as possible 

to its neighboring nodes and also assigns a node address. In this prototype, the node address 

is hardcoded for each node. To achieve time synchronization, each node’s clock counts have 

to match the neighbor’s clock counts as closely as possible. This is done for 16 windows. The 

window size is not updated now; this will be done once transmission starts. During startup 

sync the node will not be transmitting, it only listens to other nodes. The code for updating 

the clock counts to match the neighbors clock counts is shown below. The flow chart can be 

found in Appendix A (flow chart 4). 

  while(total_window_cnt<16)        // Sync for 16 windows 
  { 
    __bis_SR_register(LPM1_bits + GIE);      // Sleep till interrupt 
    if(packet_received_flg)                  // Received packet is valid 
    { 
      if(packet_rx[0] == (node_add-1))       // Sync to the node before me 
      { 
        time_error = packet_rx[1];           // Grab received time 
 
        // Calculate error with received time and expected time 
        time_error -= (half_slot_size+(slot_size*(packet_rx[0]-1))); 
 
        if( time_error > 0 )                 // If error is positive 
          while(TAR<time_error);             //Wait for TAR to reach error 
        TAR -= time_error;                   // Update TAR value 
 
        if(packet_rx[2] == (node_add-1)) 
          window_count = 0;            // Match window count with neighbor 
      }  
      else if(packet_rx[0] == node_add)  
      { 
         startup_sync();      // Restart startup sync 
      } 
      packet_received_flg = 0;               // Clear flag 
    } 
  } 



 

14 
 

 The “startup_sync()” function also matches the window count with its neighbor (this 

helps the node decide when to transmit its data). At the end of this function the node address 

is fixed and the clock error is as small as possible. Before the node starts transmitting just to 

make sure that the sync was proper, each node performs a sync check using the function 

“sync_check()”. This function makes sure that the startup sync went on smoothly. It also 

makes sure that the error was minimized before starting to transmit; this is done for 3 

windows. If the error is large then the function again calls the startup sync. The code uses a 

function to find the minimum error; this function’s working will be discussed later. The code 

is shown below and the flow chart can be found in Appendix A (flow chart 5). Once done 

with startup sync and sync check, the node can start transmitting data. 

  while(total_window_cnt<3)             // Check for 3 windows 
  { 
    __bis_SR_register(LPM1_bits + GIE); // Sleep till interrupt 
        
    TI_CC_SPIStrobe(TI_CCxxx0_SIDLE);   // Initialize CC2500 in Idle mode 
    TI_CC_SPIStrobe(TI_CCxxx0_SRX);     // Initialize CC2500 in RX mode 
        
    time_error = 0;                     // Clear time error 
    error_buff[0]= min_error(error_buff[0],error_buff[1],0);//Get min err 
    error_buff[1]= min_error(error_buff[2],error_buff[3],2);//Get min err 
    time_error = (error_buff[0] + error_buff[1])/3;// Take the average err 
    if((time_error<25) && (time_error>-25))     // If error is within +-25 
    { 
      correct_error();                  // Correct clock errors 
    }  
    else  
    {        
      startup_sync();                   // Restart startup sync 
    } 
  } 

5.1.2. Procedure for normal operating mode 

 The node enters the normal operating mode once it is done with startup sync. It remains 

in this mode indefinitely. At the beginning of this mode, transmission is enabled. After that 

the node enters a sleep mode until it receives a packet, detects the end of the window, or 

begins a transmission. First, what happens when a packet is received, is explained. As soon 

as a packet is received, the MSP430 gets an interrupt from the CC2500 transceiver which 

pulls it out of sleep mode, and interrupt service routine “f_RxData_ISR()” is executed. This 

function collects information from the received packet and goes back to sleep. At the 

beginning of the interrupt service routine the arrival time of the packet is captured.  This 
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timestamp is used to find the error in clock counts. Now the received packet is uploaded from 

the CC2500 via SPI communication. The packet received has the format shown in figure 8. 

rx[0] Broadcast address (0xFF) 
rx[1] Transmitting Node address 
rx[2] Upstream data (Node address + Sensor data) 
rx[3] Upstream data (Error data) 
rx[4] Downstream data (Node address + Sensor data) 
rx[5] Downstream data(Error data) 
Figure 8. Table showing the received packet structure. 

 Once a packet is received, two things are done. First, the error in the packet arrival time 

with respect to the expected nominal arrival time is determined. This gives the clock offset 

with respect to our current clock count. This is stored in a buffer (error_buff), and once all 

the errors from our neighboring nodes are collected. This buffers information can be used to 

make clock count corrections at the end of the window. This will be explained later. A 

sample of how the error is calculated is shown below. 

       error_buff[2]= packet_rx[1];  // Copy timestamp 
 
       // Calculate error and store in buffer 
       error_buff[2] -= (HLF_SLOT_SIZE+(SLOT_SIZE*(packet_rx[0]-1))); 

 The second thing that has to be done is to store the upstream and the downstream data in 

a queue so that they can be forwarded during this node’s transmit slot. The queue consists of 

three sub queues – the current queue carrying data to be transmitted during the current time 

slot, the next queue carrying data to be transmitted during the next time slot and the future 

queue carrying data to be transmitted during the time slot after the next time slot. Once the 

queue is updated and the error is calculated and stored in the error buffer, the node can go 

back to sleep until the next interrupt. This procedure is repeated every time a packet is 

received. The process of storing data in the queues as they are received is described next. The 

flow chart can be found in Appendix A (flow chart 2). 

 The shifting between queues can be better explained using the figures 9-12. Data received 

from the node’s immediate neighbors (node address ± 1) are stored in the next queue as 

shown in figures 9 and figure 11, this will be transmitted during this node’s time slot in the 

next window. Similarly, data received from the node’s second immediate neighbors (node 
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address ± 2) are stored in the future queue as shown in figures 10 and figure 12, this will be 

transmitted during this node’s time slot in the window after the next window. 

 If data received is from the node above (node address+1), the downstream data is copied 

to the queue as shown in figure 9. 

Index [0] [1] [2] [3] 
Current queue     

Next queue   Downstream data [0] Downstream data [1] 
Future queue     

Figure 9. Data stored in the next queue. 

 If data received is from the node above that (node address+2), the downstream data is 

copied to the queue as shown in figure 10. 

Index [0] [1] [2] [3] 
Current queue     

Next queue     
Future queue   Downstream data [0] Downstream data [1] 

Figure 10. Data stored in the future queue. 

 If data received is from the node below (node address-1), the upstream data is copied to 

the queue as shown in figure 11. 

Index [0] [1] [2] [3] 
Current queue     

Next queue Upstream data [0] Upstream data [1]   
Future queue     

Figure 11. Data stored in the next queue. 

 If data received is from the node below that (node address-2), the upstream data is copied 

to the queue as shown in figure 12. 

Index [0] [1] [2] [3] 
Current queue     

Next queue     
Future queue Upstream data [0] Upstream data [1]   

Figure 12. Data stored in the future queue. 

 The queue indices are updated at the end of every window during normal mode. The 

current queue index is redirected to the next queue, the next queue index is redirected to the 
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future queue and the future queue index is redirected to the current queue like a loop. This is 

done with the code shown below. 

    // Increment the queue indices  
    curr_que_idx =(curr_que_idx>=2)?((curr_que_idx+1)-3):(curr_que_idx+1); 
    next_que_idx =(next_que_idx>=2)?((next_que_idx+1)-3):(next_que_idx+1); 
    futr_que_idx =(futr_que_idx>=2)?((futr_que_idx+1)-3):(futr_que_idx+1); 

 What happens every time the transmissions interrupt arrives is described next. This 

interrupt is triggered every time at the middle of the nodes time slot. So every node will 

transmit its data during this interrupt. The data packet transmitted has the structure shown in 

figure 13. 

packet_tx[0] Packet length not including the length field 
packet_tx[1] Broadcast address (0xFF) 
packet_tx[2] Node address 
packet_tx[3] Current queue[0] 
packet_tx[4] Current queue[1] 
packet_tx[5] Current queue[2] 
packet_tx[6] Current queue[3] 

Figure 13. Table showing the transmitted packet structure. 

 The packet shown in figure 13 is transmitted during the node’s time slot. The current 

queue has the upstream and the downstream data that has to be relayed on to the neighboring 

nodes. The name of the array holding the packet is “packet_tx[]”. 

 The data structure of the payload for both upstream and downstream is shown in figure 

14. The first bit is used to send the 1-bit sensor data (motion detected or not), the next 7 bits 

are used for the node address and the next 8 bits (1-bit used for sign and 7-bits used for 

magnitude of node’s clock offset) are used to send the node’s current clock offset. The error 

is saturated to ±127 before transmitting. 

Bit position 15 14-8 7 6-0 
Contents Sensor data Node address Error 

sign 
Current 

error 
Figure 14. Payload Data in upstream and downstream. 

 The node transmits its own data when the window count is 0 and just relays data received 

from the neighboring nodes for the rest of the windows. The code for this is shown below. 

The flow chart can be found in Appendix A (flow chart 1). 
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  if(window_count == 0) 
  { 
    packet_tx[3] = ((P2IN<<7)|node_add);        // Node address 
    packet_tx[4] = error_data;            // Current Error 
    packet_tx[5] = ((P2IN<<7)|node_add);        // Node address 
    packet_tx[6] = error_data;             // Current Error 
  }  
  else  
  { 
    packet_tx[3] = packet_queue[curr_que_idx][0];   // Transmit data from 
    packet_tx[4] = packet_queue[curr_que_idx][1];   // queue 
    packet_tx[5] = packet_queue[curr_que_idx][2]; 
    packet_tx[6] = packet_queue[curr_que_idx][3]; 
  } 

 Once the data is transmitted the current queue’s values are reset and the node goes back 

to sleep mode until the next interrupt.  

 The third type of interrupt happens at the end of every window. At the end of the 

window, the node is interrupted from sleep mode so that it can make corrections to the clock 

counts. This keeps the nodes synchronized to each other. All this is performed in the normal 

mode function “normal_mode()”.  

 The average error is determined by picking up the minimum error from either side of the 

node’s neighbors. The two minimum errors are averaged and the average of those is sent over 

to the error correction function “correct_error()”. The code for this is shown below. The 

minimum error is determined using the min error function “min_error()”.  

    error_buff[0]= min_error(error_buff[0],error_buff[1],0);//Get min error 
    error_buff[1]= min_error(error_buff[2],error_buff[3],2);//Get min error 
    time_error = (error_buff[0] + error_buff[1])/3;// Take the average error 
    correct_error();                    // Correct clock errors 

 The min error function has three input parameters – two errors from the error buffer and 

the index. This function then returns the minimum among the two errors passed to it. Each 

node first sends the errors of the nodes below its node address and then sends the errors of 

nodes above its node address. This gives two errors, one above and one below the node 

address. The node then takes the average of these by summing them and dividing the sum by 

3 (we are dividing by 3 to include the current node, whose error will be zero). 

 The min error function’s code is shown below. The errors are first checked if they are 

negative. If they are negative the absolute value is taken. Then the minimum error among the 
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two absolute values is returned. If both the errors are 0xFFF (the default value) that means no 

packets were received, the function will just return zero. 

int32_t min_error(int32_t error_1, int32_t error_2, uint8_t index) 
{   
  if(error_1<0)          // If first error is negative 
    error_1*=-1;                // Get ABS value 
  if(error_2<0)          // If second error is negative 
    error_2*=-1;                // Get ABS value 
  if(error_1>error_2)           // If 1st error is greater than 2nd 
  { 
    return error_buff[index+1]; // return second error 
  }   
  else   
  { 
    if(error_1 != 0xFFF) 
      return error_buff[index]; //return first error 
    else 
      return 0;     //return zero 
  } 
} 

 Now that the average error is calculated, it will be sent to the error correction function 

“correct_error()”. This error will be used to correct the clock counts. The error correction 

code is shown below. In the error correction function, the window size is updated every 16th 

window (the window_count resets every 16th window). This is done by adding the error to 

the nominal window size, and the slot size is updated, the half slot size and the interrupt 

trigger values to reflect the changes made to the window size. Since the window correction is 

done only once every 16th window the node will just correct the TAR (counter value) during 

the remaining time. At the end of the error correction function, the error buffer values are 

reset to 0xFFF. The flow chart can be found in Appendix A (flow chart 3). 

  if(window_count == 0) 
  { 
    time_error = time_error>>1; 
    window_size = 16000 + time_error;   // Add error to the window size 
    slot_size = window_size >> 4;        // slot size = window size/16 
    half_slot_size = slot_size >> 1;     // Half slot size= slot size/2 
 
    TACCR0 = window_size;                // Update TACCR0 with new values 
    TACCR1 = half_slot_size + (slot_size*(node_add-1))- tx_delay; 
  }  
  else  
  { 
    if( time_error > 0 )                 // If error is positive 
      while(TAR<time_error);             // wait for TAR to reach error 
    TAR -= time_error;                   // Update TAR value 
  } 
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Figure 15. Clock corrections between 2 nodes. 

 For example, figure 15 shows clock correction procedure for 2 nodes. In this example, 

node-2’s clock is 60 counts faster than node-1’s clock. Which means when node-1’s clock 

reaches 16000 counts, node-2’s clock would have rolled over and reached 60 counts. The 

total transmission time is 187 counts. Each node transmits ahead of time, so that the receiver 

receives it at the expected arrival time. So node-1 would transmit its packet when its counter 

reaches (500-187) counts, this would arrive at node-2 at (500+60) counts. Similarly, node-2’s 

packet would arrive at node-1 at (1500-60) counts. Then both the nodes calculate the clock 

offset as shown in the figure 15. the average clock offset is then added to the window size. 

The node’s then count towards the updated window size in the next window. 

5.2. Receiver node software implementation 

This section describes in detail the receiver node’s software development and the 

software application used to monitor the nodes’ activity. The receiver node’s CC2500 is also 

configured to generate an interrupt every time a packet is received successfully. Once the 

packet is received, the receiver node compares the node address of the received packet with 

the target node address. If the received node address matches the target node address, the rest 

of the packet is processed to be sent over the UART and to the USB debugger. The eZ430’s 

USB debugger is hard coded by the manufacturer to send data at 9600 bauds [5]. Due to this 

limitation either upstream or downstream data can be sent over the UART, but not both.  
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The data to be sent over UART consists of the node’s address, its sensor status and 

the node’s corresponding clock count offset with respect to the nominal. The node address 

and the sensor status are masked before they are sent over UART because some of the node 

addresses correspond to control commands in the UART. To avoid this error, the empty bit 

fields are masked before transmitting. Similarly the node’s corresponding error is a random 

value which could also match some of the control commands in the UART; hence it is split 

into 2 bytes (upper and lower nibble) and masked before transmitting. At the end of 

transmission, a new one word line character “\n” is transmitted. This is transmitted to 

indicate the end of transmission and also acts as a reference to separate the data packets at the 

computer’s end. The stream flag is used to switch between upstream and downstream. The 

code snippet is shown below. 

    if(stream_flag == 1) 
    { 
      while ( !(IFG2 & UCA0TXIFG)) {};// Wait while Tx Buff not empty 
      UCA0TXBUF = (rx[2] | 0x60); // send byte address and sensor data 
      while ( !(IFG2 & UCA0TXIFG)) {};// Wait while Tx Buff not empty 
      UCA0TXBUF = ((rx[3] & 0x0F)| 0x60); // send lower half of error 
      while ( !(IFG2 & UCA0TXIFG)) {};// Wait while Tx Buff not empty 
      UCA0TXBUF = (((rx[3] & 0xF0)>>4)| 0x60);// send upper half of error 
      while ( !(IFG2 & UCA0TXIFG)) {};// Wait while Tx Buff not empty 
      UCA0TXBUF = '\n';               // send new line char 
    }  
    else  
    { 
      while ( !(IFG2 & UCA0TXIFG)) {};// Wait while Tx Buff not empty 
      UCA0TXBUF = (rx[4] | 0x60); // send byte address and sensor data 
      while ( !(IFG2 & UCA0TXIFG)) {};// Wait while Tx Buff not empty 
      UCA0TXBUF = ((rx[5] & 0x0F)| 0x60); // send lower half of error 
      while ( !(IFG2 & UCA0TXIFG)) {};// Wait while Tx Buff not empty 
      UCA0TXBUF = (((rx[5] & 0xF0)>>4)| 0x60);// send upper half of error 
      while ( !(IFG2 & UCA0TXIFG)) {};// Wait while Tx Buff not empty 
      UCA0TXBUF = '\n';               // send new line char 
    } 
 
 
5.3. Software development of the monitoring GUI 

This section gives an overview of the software used to monitor each node’s activity on a 

host computer. The tool helps monitor the sensor data and the error in each node. This 

provides real time information of each node’s activity. This tool is designed to monitor data 

from all sixteen nodes. The tool can be used to tap into any target node and collect data. This 

is possible as the nodes relay data in both directions. This provides the flexibility to collect 
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data from the first node, the last node or any node in-between. The tool was designed and 

programed using C#. The tool is designed to be used in tandem with a receiver node (code 

described in the section 6.2). The receiver node is programed to collect data from a target 

node; the collected data is then sent over to the tool in the computer via UART 

communication. The tool also sends instructions back to the receiver node. The instruction 

could be the desired target node or the upstream or downstream data from the desired target 

node. Further details on how to use the tool can be found in the user manual (Appendix B). 
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6. Testing and validation 

This section validates the working of the prototype. To test the protocol, sixteen nodes 

were built. All sixteen nodes were laid out as shown in figure 1.  The nodes were monitored 

from node 1’s upstream data through the receiver node. The nodes stay synchronized for 

extended period of time, despite significant differences in clock frequencies. The results of 

the experiments conducted are described in this section. 

6.1. Steady state output for all 16 nodes 

The steady state output of all 16 nodes was monitored for a few minutes and the sync 

offset for each node with respect to nominal clock counts was buffered for the entire 

duration. 269 samples were accumulated, then the minimum, maximum and the average 

offset was calculated for each node and results were plotted as shown in figure 16. 

 

Figure 16. Minimum, maximum and average sync offsets for all 16 nodes. 
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Figure 17. GUI showing each and every node’s activity (left). Where green indicates that the 
node is up and running. Clock offset for each node (right). 

In figure 16, the x-axis is the node number and the y-axis is the sync offset with respect 

to the nominal in clock counts. Each clock count is equal to 4 microseconds. The zero on the 

y-axis is the nominal count. Each node’s minimum, maximum and the average clock count 

offset is shown in the graph in figure 16. It can be shown in the graph that the clock offset is 

bounded within a limit for each node. This clock offset is applied to the node’s window size 

while making clock corrections. As expected, the clock offsets are non-zero as there will be 

constant variation from the clock source. A negative offset indicates that the node’s clock is 

slower than its neighbors. Similarly a positive offset indicates that the node’s clock is faster 

than its neighbors.   

6.2. Network’s response with node 2 turned off 

This test was performed to demonstrate the impact of a missing node. Once the nodes 

reached steady state, node 2 was turned off. The table in figure 18 shows node 2’s four 

neighbors offsets when node 2 was turned off and then turned back on. Node 1 and node 3 

are dependent on node 2 for their clock synchronization; this can be seen in figure 18. As 

soon as node 2 is turned off, the magnitude of node 1’s offset decreases and node 3’s offset 

increases. Now both node 1 and node 3 are synchronizing with each other. 

 
Figure 18. Table showing clock offsets for the first 5 nodes. 
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Figure 19. Graph showing the change in offsets as node 2 is turned off. 

Once node 2 is turned back on, the magnitude of node 1’s offset increases and node 3’s 

offset decreases. The nodes go back to the same state as they were before. Figure 19 shows a 

graph of the offsets plotted from the table in figure 18. When node 2 is turned off, the offsets 

of node 4 and 5 also increase because node 4 is dependent on node 3 (as this is the only node 

to the left of node 4) and both of node 5’s neighbors to the left have increased their offsets. 

This validates the working of the prototype for single node failure.  

6.3. Network’s response with node 2 and node 4 turned off 

This test was performed to demonstrate the impact of a two alternate missing node. Once 

the nodes reached steady state, node 2 was turned off and after reaching steady state node 4 

was turned off. The same results as the last test can be observed when node 2 was turned off 

(section 7.2). As soon as node 4 is turned off, both node 3’s and node 5’s offsets increase. 

This shows that node 3 and 5 were synchronized to node 4 while it was still on.  The graph is 

shown in figure 21. 

 
Figure 20. Table showing clock offsets for the first 5 nodes. 

Node-2 turned OFF 
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Figure 21. Graph showing the change in offsets as node 2 and 4 are turned off. 

6.4. Network’s response with alternate nodes turned off 

This test was performed with all 16 nodes. To demonstrate the reliability of the network 

alternate nodes were turned off.  Figure 22 shows the data received from node 1 when all 

even numbered nodes are turned off. This shows that even with single node failure, data is 

still routed to the end nodes. Figure 23 shows that time synchronization is still achieved even 

with alternate nodes off. 

 
Figure 22. GUI showing the data received from node 1. 

Node-2 turned OFF 

Node-4 
turned OFF
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Figure 23. Min, max and average sync offsets when alternate nodes are turned off. 

6.5. Network’s response with 2 adjacent nodes turned off 

This test was performed with all 16 nodes. When two adjacent nodes are turned off, this 

breaks the network into two halves. For example, in figure 24, nodes 6 and 7 were turned off; 

this breaks the link and all the data after node 6 is no longer available at node 1. This 

partitions the network into 2 sub-networks (node1 to node5 and node8 to node16). The table 

in figure 25 shows the loss of data once both nodes 6 and 7 are turned off. 

 
Figure 24. GUI showing the data received from node 1. 
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Figure 25. Table showing clock offsets received from node 1. 

 

7. Design constrains and compromises 

Now that the system has been described in its entirety, this section discusses in detail 

some constrains faced while designing the prototype.  

7.1. Design considerations for production unit  

The prototype was built to demonstrate that the concept can be used to provide a reliable 

warning system for pedestrians. The prototype used PIR motion sensors to detect the 

presence of an object, but can be replaced with a more sophisticated detection method to 

detect the presence of a train, while minimizing false detections. The prototype uses LED’s 

to notify the pedestrians, this can also be replaced with other warning systems such as lights 

and horns. The prototype was designed to forward alert to ±1 node; this can be extended to 

±N nodes. The prototype software was designed to accommodate sixteen nodes; this can also 

be further extended by reusing the time slots. 

The initial design of the prototype was to make the nodes pick their addresses 

automatically. The nodes at startup would listen to their neighbors and based on that would 

pick an empty time slot and an address corresponding to the time slot. This can be 

implemented in the production nodes because in the field the nodes can clearly hear only 

their neighbors. Thus they can detect empty time slots and pick those time slots. In the 
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prototype, a starting node could hear several other nodes due to the short distance involved.  

Thus, the nodes were hardcoded with their addresses and pick the time slots corresponding to 

their addresses. 

7.2. Other design constrains 

The receiver node uses a UART to communicate with the user’s computer. The eZ430-

RF2500’s USB debugger was used to communicate with the computer. Unfortunately, the 

UART communication rate is fixed to 9600 baud [5]. This resulted in limiting the maximum 

number of bytes that could be transmitted in one time slot. At the rate of 9600 bauds it will 

take 3.3 msec to transmit 4 bytes over UART and the time slot for each node was 4 msec. To 

send both the upstream and the downstream data, 8 bytes had to be transmitted (it takes 6.6 

msec to send 8 bytes). Given the fact that only 4 bytes can be sent within each time slot the 

GUI is limited to displaying only the upstream or the downstream data. This limitation is 

only when the user tries to receive data from nodes other than 1 and 16. All the nodes can be 

monitored from the end nodes. For node 1, only the downstream is sufficient and for node 16 

only the upstream is sufficient. 

Each node’s data consists of the node address, sensor status and the node’s clock offset. 

The node address and the sensor status can be packed into one byte but the clock offset had 

to be split into two bytes. The node’s clock offset is a random number and because of that it 

would sometimes match the ASCII control codes, resulting in undesirable output at the 

receiver end. To avoid this issue the offset is split into 2 parts (upper nibble and the lower 

nibble). This is then packed into 2 bytes and masked before transmitting. At the end of each 

node’s data a delimiter (new-line character) has to be sent; this is sent to help the receiver 

separate the node’s data. All this put together is 4 bytes in length.   

7.3.Choosing the proper frequency for communication 

The CC2500 uses the 2.4 GHz band which is commonly used by many devices, including 

Wi-Fi routers. Routers commonly use channels 1 (2.401-2.423 GHz), 6 (2.426-2.448 GHz) 

and 11 (2.451-2.473 GHz) [7] as shown in figure 26. But some routers use channels other 

than the ones mentioned above. The frequency for the prototype was chosen experimentally 

to start at 2.4508 GHz. This is in between Wi-Fi channels 6 and 11. Due to the fact that the 
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channel could still be busy, carrier sense had to be disabled because this would delay the 

transmission, which is not acceptable in a time critical application.   

  

Figure 26. Wi-Fi Channel spectrum [6]. 

7.4. Total packet transmission time 

The protocol relies on TDMA which makes time synchronization critical. Since the clock 

offset is determined based on the received packets arrival time the transmission delay has to 

be included. The transmission delay can be determined analytically as shown below. 

Total transmission time: 

 =  +  

Where: 

Total transmission time. 

 = MSP to CC2500 SPI transfer time at 500 Kbps. 

 = Wireless transmission time at 250 Kbps. 

 

SPI transfer time: 

 =  +  +  

                                                    = (1-byte + 7-bytes + 1-byte) at 500 Kbps. 

                                    = (9-bytes * 8-bits) / 500K = 0.144 msec. 
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Where:  

 = Length of payload data in bytes. 

 = Length of Tx FIFO register’s address in bytes. 

 = Length of transmission strobe command in bytes. 

 

Wireless transmission time: 

 =  +  +  +  

                                         = (4-bytes + 32-bits + 7-bytes + 16-bits) at 250 Kbps 

                                             = (17-bytes * 8-bits) / 250k = 0.544 msec. 

Where: 

 = Length of preamble in bytes. 

 = Length of sync word in bits. 

 = Length of CRC in bits. 

  =  +  

                                                        = (0.144 + 0.544) = 0.688 msec. 

The above calculation does not include the time required for the CC2500 to modulate the 

data, CRC calculation and the propagation time in air. Experimentally, the average total time 

to transmit a packet was determined to be 0.748 msec. This delay is included in the packet 

TX interrupt. The packet is transmitted ahead of the delay time so that it arrives at the exact 

time expected at the receiver. In the field, propagation delay of 5.2 ms/mile has to be added 

to the total transmission time. The CC2500, when in receive mode, occasionally stops 

receiving. To overcome this issue, the receive strobe is retransmitted to the CC2500 at the 

end of every window. 
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8. Conclusion 

The prototype was successfully built and demonstrated. The algorithm used for this 

project was also validated by the performance of the prototype. The protocol shows reliable 

assurance for hard real time data communication even with node failures at random locations.  

The prototype can be developed into a production module with slight modifications to 

warn pedestrians about oncoming trains. The production model can be easily scaled to longer 

distances by reusing the time slots. The network deployment can be variable. For example, in 

areas where accidents are prone to happen, network deployment can be denser than in areas 

with less human activity. In places such as railway stations, bridges and curved tracks the 

network deployment can be denser. A denser deployment can easily catch the pedestrian’s 

attention. In areas where there is less or no human activity and in places where there is clear 

visibility of oncoming trains the network deployment can be less dense. 

One of the main requirements of a railway warning system is that the warning signal 

reaches the pedestrian well before the train does. To ensure this, the warning signal should 

travel faster than the train. In the prototype, it takes 1.024 seconds for the warning signal to 

travel from one end to the other. So if the prototype nodes are placed 50 feet apart, the 

warning signal travels at a speed of 499.38 mph, which is much faster than a train’s speed. 

The warning signals speed can be improved further by reducing the time slots width or by 

using faster data rates between nodes. It is estimated that the propagation speed can be at-

least quadrupled with minimal changes to the system software. 

The prototype is designed to forward an alert to one immediate neighbor on either side. In 

the production model, the alert distance (number of hops from detection) can be determined 

based on the speed of the detected train. Thus, the alert distance can be larger for a train with 

higher speed and smaller for a train with lower speed. The speed of the train can be easily 

calculated as we know the distance between two nodes and the time it takes to travel from 

one node to the next. In order to avoid false detections due to track maintenance vehicles, the 

nodes can be programmed to receive a wireless command from the maintenance unit to 

inhibit detection of that vehicle, while still retaining its ability to detect oncoming trains. 
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In a 2nd order power chain, such as the proof-of-concept system, when 2 adjacent nodes 

fail, the network is partitioned into 2 sub-networks. The two sub-networks still relay data 

within themselves from one end to the other end. Once either of the failed nodes recovers, the 

two sub-networks can automatically recombine to restore the complete network.  

If this level of redundancy proves insufficient, the system can be configured as a higher 

order power chain. For example, in a 3rd order chain, each node communicates with its 3 

nearest neighbors on either side as shown in figure 27. This would require only minor 

changes to the software and that the nodes are placed such that each node is within 

communication range of its 3 immediate neighbors on either side. 

 

 

 

Figure 27. Node-4 communicating with 3 immediate neighbors on either side. 

The total cost of each proof-of-concept unit was $58.28. The most expensive components 

are the ez430-rf2500 development board ($40) [18] and the PIR ($9.89) motion sensor [19]. 

If the nodes are placed 50 feet apart from each other, there will be 105 nodes per mile. The 

total hardware cost would then be $6,120 per mile. Naturally, a production system would be 

more costly, due to the Sensor, Annunciator, and Power Supply subsystems. Nonetheless, it 

is reasonable to expect the system cost to be in the range of a few tens of thousands of dollars 

per mile. 

For future work, the nodes should be capable of predicting available node addresses at 

startup. Rather than hard coding the address they should be able to pick their addresses based 

on the information received from the neighboring nodes. It can also be used in applications 

where direct line of sight communication is not possible, like in tunnels, canyons and mines. 
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Appendix A 

Flow chart 1: Function ‘f_TxData’ 
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 Flow chart 2: Function ‘f_RxData_ISR’ 
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Flow chart 3: Function ‘correct_error’ 
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 Flow chart 4: Function ‘startup_sync’ 
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Flow chart 5: Function ‘sync_check’ 
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Flow chart 6: function ‘normal_mode’ 
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1. Introduction 

This document describes in detail the PC software used to monitor each node’s activity. 

The tool helps monitor the sensor data and the clock offsets in each node. This provides real 

time information of each node’s activity. The tool is designed to monitor data from all 16 

nodes. The tool can be used to tap into any node and collect data. This is possible as the 

nodes relay data in both directions. This provides the flexibility to collect data from the first 

node, the last node or any node in-between. The tool was designed and programed using C#. 

The tool is designed to be used in tandem with a eZ430-Rf2500 receiver node. The receiver 

node is programed to collect data from a target node and send the collected data to the tool 

via a UART to a USB port. The tool also sends instructions back to the receiver node. The 

instruction could be the desired target node or the upstream or downstream data from the 

desired target node. This document is a guide on how to use the tool to monitor and collect 

error data from the nodes. 

2. Overview of the tool 

 

Figure 1. Basic layout of the tool’s GUI. 
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3. Basic operation 

This section will describe how to use the tool. The basic layout of the graphical user 

interface (GUI) is shown in figure 1. Before we start using the GUI we need to program the 

receiver node with the receiver code using IAR embedded workbench; only then we can 

communicate with the receiver node. Once the receiver node is up and running we can now 

start the tool by double clicking on the “WSN.exe” file. First the tool needs to connect to the 

receiver node. Since serial communication (UART) is being used, we need to connect to the 

appropriate COM port on the PC.  

3.1 Programming the network nodes and the receiver node. 

This manual assumes that the user has IAR and the required drivers installed on his 

computer. To program the nodes the user needs 2 files (“node.c” and “wireless.h”). 

Place both the files in the same project folder and select the device under project options 

as shown in figure 2. Before programming the device, update the node address in the 

main function as shown in figure 3. The node address has to be changed manually for 

each and every node. Then click on the “Download and Debug” button to program the 

device as shown in figure 4. 

 

Figure 2. Select the device under project options. 

 

Figure 3. Update the Node address in the main function of the code. 
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Figure 4. Click on the download and debug button to program the device. 

The receiver node is programmed in the same way. The receiver node also 

requires two files (“receiver_node.c” and “wireless.h”) to program it. The wireless.h 

file is the same for both.  

3.2 Connecting to the receiver node 

First, plugin the receiver node to a USB port and then to find the receiver node’s 

COM port. On your desktop click start. In the search bar type Device Manager. Then 

open Device Manager. This will give you the window shown in figure 5. Under ports we 

can find the receivers’ COM port. In figure 5 the COM port is COM21.  

 
Figure 5. Device Manager showing active COM ports. 

 Once the COM port is known we can now connect to the receiver node. On the 

tool’s GUI click the “Get Ports” button to generate a list of active COM ports on your 

PC and select the receivers’ COM port as shown in figure 6. 
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Figure 6. Selecting COM port on the GUI. 

 

 Once we select the COM port we can now hit the “Connect” button to establish a 

connection. Once the connection is established we get a confirmation in the information 

box as shown in figure 7. We cannot establish a connection without selecting the COM 

port. This will cause an error message on the information box.  

 

 
Figure 7. After establishing connection. 

 

3.3 Changing the target node 

Once the connection is established by default the tool starts collecting data from 

node 1. And by default it collects the upstream data and starts monitoring the sensor 

data. We can change the target node by selecting a different node from the drop down 

list next to the “UP” button as shown in figure 8. This can only be done once a 
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connection is established. Changing the target node before establishing a connection will 

result in a warning message in the info box. 

 

Figure 8. Changing the target node. 

3.4 Changing streams 

We can change streams by clicking the “UP/DOWN” button, as shown in figure 

9. It is useful to change streams when our target node is the 16th node, as all the data 

flows downstream. 

 

 

Figure 9. Collecting Upstream/Downstream data. 
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3.5 Export collected error data to spread sheet 

The tool has the capacity to store the previous 300 sync offsets for all 16 nodes. 

This can be dumped into a spread sheet. Later on the data can be plotted. To save the data 

to a spread sheet we just need to hit the “Export” button as shown in figure 10. This will 

create or overwrite a csv file with the name “Output.csv”. It is recommended to 

disconnect before exporting the data. 

 

Figure 10. Export to spread sheet. 

The data saved to the spread sheet is as shown in figure 11. This can be plotted to 

see the variation with respect to nominal. 

 

Figure 11. Exported data. 
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3.6 Monitoring sensor data 

The sensor data from each node can be monitored from the small color window 

next to the node labels as shown in figure 12. The meaning of each color is shown in 

figure 13. 

 

Figure 12. Monitoring sensor data. 

 

 

 

Figure 13. Sensor status. 

 

The sensor is offline. 

The sensor is online and no motion was detected. 

The sensor is online and motion was detected. 
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3.7 Disconnecting the receiver node 

To disconnect the receiver node from the tool hit the “Disconnect” button (as 

shown in figure 14) or closing the window with the “X” button at the top will also safely 

disconnect the receiver node (close’s the COM port). Caution: Force closing the tool 

from task manager or any other tool will lock the COM port.  

 

Figure 14. Disconnecting the receiver node. 
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Appendix C 

Network Node Source Code: 

#include "msp430x22x4.h"               // chip-specific macros & defs 
#include "stdint.h"                    // MSP430 data type definitions 
#include "wireless.h"                  // Wireless setup and func definition 
#define WIN_SIZE 16000                 // Window size 64ms 
#define SLOT_SIZE 1000           // Slot size 4ms 
#define HLF_SLOT_SIZE 500              // Hlaf slot size  
 
uint8_t node_add = 0;              // Node Address 
uint8_t curr_que_idx,next_que_idx,futr_que_idx;// Queue Index 
uint8_t packet_received_flg = 0, sync_flg = 0; // Packet rx flag 
uint8_t neigh1_flg = 0, neigh2_flg = 0, neigh3_flg = 0, neigh4_flg = 0;  
uint16_t window_count = 0,total_window_cnt;    // Window counts 
uint16_t packet_rx[6],tx_delay = 187;   // Rx packet and transmition delay           
uint8_t packet_tx[7],packet_queue[3][4],rx[6]; 
int32_t time_error, error_buff[4]; 
uint16_t window_size,slot_size,half_slot_size; 
uint8_t loop_i,loop_j;                  // Loop index variable 
 
// ============================================================ 
// Function transmits data using helper function "RFSendPacket" 
// Args:  none 
// Retn:  none 
// Flow chart 1 
// ============================================================ 
void f_TxData(void) 
{ 
  P1OUT |= 0x01;                         // Turn on Red LED 
  TI_CC_GDO0_PxIE &= ~TI_CC_GDO0_PIN;    // Disable int on end of packet 
  uint8_t packet_size = 7,error_data = 0;// Packet length 
   
  // Copy the current error and saturate it if greater than 1 byte 
  if((time_error<=127)&&(time_error>=-127)) 
  { 
 // Error is within 1 byte so we can copy it. 
    error_data = (time_error>=0)?time_error:(0x80|(time_error*-1)); 
  }  
    else if(time_error>127)  
  { 
    error_data = 127;          // Upper limit (+127) 
  }  
    else  
  { 
    error_data = 0xFF;          // Lower limit (-127) 
  } 
   
  packet_tx[0] = 6;                     // packet lng excluding lng field 
  packet_tx[1] = 0xFF;                  // Broadcast Address 
  packet_tx[2] = node_add;              // Node address 
   
  if(window_count == 0) 
  { 
    packet_tx[3] = ((P2IN<<7)|node_add);// Sensor data + Node address 
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    packet_tx[4] = error_data;          // Current error 
    packet_tx[5] = ((P2IN<<7)|node_add);// Sensor data + Node address 
    packet_tx[6] = error_data;          // Current error 
  }  
    else  
  { 
    packet_tx[3] = packet_queue[curr_que_idx][0];       // Transmit data from 
    packet_tx[4] = packet_queue[curr_que_idx][1];       // queue 
    packet_tx[5] = packet_queue[curr_que_idx][2]; 
    packet_tx[6] = packet_queue[curr_que_idx][3]; 
  } 
   
  RFSendPacket(packet_tx, packet_size); // Send data 
   
  packet_queue[curr_que_idx][0] = 0xFF; // Clear queue 
  packet_queue[curr_que_idx][1] = 0xFF; // Clear queue 
  packet_queue[curr_que_idx][2] = 0xFF; // Clear queue 
  packet_queue[curr_que_idx][3] = 0xFF; // Clear queue 
     
  TI_CC_GDO0_PxIE |= TI_CC_GDO0_PIN;    // Enable int on end of packet 
  P1OUT &= ~0x01;                       // Turn off Red LED 
  return;                               // Go back to sleep 
 
}  
 
//--------------------------------------------------------------------- 
// Function receives data from CC2500 chip when Rx interrupt is  
// generated. The Rx interrupt is generated once CC2500 receives the  
// last packet. Function uses the helper function 'RFReceivePacket' 
// Args:  None 
// Retn:  None 
// Flow chart 2 
//--------------------------------------------------------------------- 
#pragma vector=PORT2_VECTOR 
__interrupt void f_RxData_ISR(void) 
{ 
   uint8_t len = 6;                     //Receive 6 bytes 
   uint8_t status[2];                   // Buffer to store status data 
 
   packet_rx[1] = TAR;                  // Store time of received packet 
   packet_received_flg = 0;      // Clear flag 
     
   if(TI_CC_GDO0_PxIFG & TI_CC_GDO2_PIN) 
      packet_received_flg = RFReceivePacket(rx,&len,status); //Fetch packet  
 
   packet_rx[0] = rx[1];             // Grab transmitters node addr from pkt 
   packet_rx[2] = (0x1F & rx[2]);    // Grab payloads node address from pkt 
    
   if(sync_flg == 1)                            // If in sync mode 
     __bic_SR_register_on_exit(LPM1_bits);      // Wake up on exit   
   else if(packet_received_flg)  
   { 
      
     if(rx[1] == (node_add+1))                  // check addr for neighbors 
     { 
       packet_queue[next_que_idx][2] = rx[4];   // Store data in queue 
       packet_queue[next_que_idx][3] = rx[5];   // Store data in queue 
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       error_buff[2]= packet_rx[1];  // Copy timestamp 
       // Calculate error and store in buffer 
       error_buff[2] -= (HLF_SLOT_SIZE+(SLOT_SIZE*(packet_rx[0]-1))); 
       if((node_add+1)==(0x1F & rx[4])) 
       { 
         if((0x80 & rx[4])==0x80)               // Check if sensor is ON 
           neigh1_flg = 1;                      // Set flag 
         else  
           neigh1_flg = 0;                      // Reset flag 
       } 
     }  
     else if(rx[1] == (node_add+2))             // check addr for neighbors 
     {           
       packet_queue[futr_que_idx][2] = rx[4];   // Store data in queue 
       packet_queue[futr_que_idx][3] = rx[5];   // Store data in queue 
       error_buff[3]= packet_rx[1];             // Copy timestamp 
 
       // Calculate error and store in buffer 
       error_buff[3] -= (HLF_SLOT_SIZE+(SLOT_SIZE*(packet_rx[0]-1))); 
       if((node_add+2)==(0x1F & rx[4])) 
       { 
         if((0x80 & rx[4])==0x80)               // Check if sensor is ON 
           neigh3_flg = 1;                      // Set flag 
         else  
           neigh3_flg = 0;                      // Reset flag 
       } 
     }  
     else if(rx[1] == (node_add-1))             // check addr for neighbors 
     {           
       packet_queue[next_que_idx][0] = rx[2];   // Store data in queue 
       packet_queue[next_que_idx][1] = rx[3];   // Store data in queue 
       error_buff[1]= packet_rx[1];             // Copy timestamp 
 
       // Calculate error and store in buffer 
       error_buff[1] -= (HLF_SLOT_SIZE+(SLOT_SIZE*(packet_rx[0]-1))); 
       if((node_add-1)==(0x1F & rx[2]))          
       { 
         if((0x80 & rx[2])==0x80)               // Check if sensor is ON 
           neigh2_flg = 1;                      // Set flag 
         else  
           neigh2_flg = 0;                      // Reset flag 
       } 
       if(packet_rx[2] == 1) 
         window_count = node_add - 2; 
     }  
     else if(rx[1] == (node_add-2))             // check addr for neighbors 
     {           
       packet_queue[futr_que_idx][0] = rx[2];   // Store data in queue 
       packet_queue[futr_que_idx][1] = rx[3];   // Store data in queue 
       error_buff[0]= packet_rx[1];             // Copy timestamp 
 
       // Calculate error and store in buffer 
       error_buff[0] -= (HLF_SLOT_SIZE+(SLOT_SIZE*(packet_rx[0]-1))); 
       if((node_add-2)==(0x1F & rx[2])) 
       { 
         if((0x80 & rx[2])==0x80)               // Check if sensor is ON 
           neigh4_flg = 1;                      // Set flag 
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         else  
           neigh4_flg = 0;                      // Reset flag 
       } 
     } 
   } 
   TI_CC_GDO0_PxIFG &= ~TI_CC_GDO0_PIN; // After pkt RX, reset intrp flag. 
    
   return;                                      // Go back to sleep 
} 
 
//--------------------------------------------------------------------- 
// Func:  Pull CPU out of sleep mode during transmition and at the  
// end of the window. 
// Args:  None 
// Retn:  None 
//--------------------------------------------------------------------- 
#pragma vector=TIMERA1_VECTOR 
__interrupt void f_TimerAISR(void) 
{ 
   switch (__even_in_range(TAIV, 10)) 
   { 
      case TAIV_TAIFG:                  // Handle TAR rollover -> 0 IRQ 
         window_count++;                // Increament window count 
         if(window_count == 16)          
           window_count = 0;            // Clear window count 
         total_window_cnt++;            // Increament window count 
         TACTL &= ~TAIFG;               // Clear flag 
         __bic_SR_register_on_exit(LPM1_bits);  // wake up on exit 
         break; 
      case TAIV_TACCR1:                 // Chnl 1 IRQ 
        f_TxData();                     // Transmit data 
        break; 
      case TAIV_TACCR2:                 // ignore chnl 2 IRQ 
      default:                          // ignore everything else 
   } 
   return; 
}  
 
//=============================================================== 
// Setup the Ports, Clocks and Wireless config. 
// Args:  none 
// Retn:  none 
//=============================================================== 
void f_setup(void) 
{ 
   WDTCTL = WDTPW + WDTHOLD;            // halt watchdog 
   
   volatile uint16_t delay;             // Variable for delay 
   
   // This is just a software delay 
   for(delay=0;delay<650;delay++); 
    
   // Setup clock system 
   BCSCTL1 = CALBC1_8MHZ;               // set DCO freq. 
   BCSCTL2 |= DIVS_3;                   // SMCLK = MCLK/8 (1MHz) 
   DCOCTL  = CALDCO_8MHZ;               // set MCLK to 8MHz 
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   // TimerA config 
   TACCR0 = window_size;                // ~64msec 
   TACTL = TASSEL_2 |ID_2 | MC_1 | TAIE;// SMCLK, Interrupts,Up mode,div by 4 
    
   //Port config 
   P1DIR |= 0x03;                       // activate LEDs 
   P2DIR |= 0x02;                       // activate LEDs 
   P1OUT &= ~0x03;                      // Clear LEDs 
   
   // Wireless Initialization 
   TI_CC_SPISetup();                    // Initialize SPI port 
   P2SEL = 0;                           // Sets P2.6 & P2.7 as GPIO 
   TI_CC_PowerupResetCCxxxx();          // Reset CCxxxx 
   writeRFSettings();                   // Write RF settings to config reg 
   TI_CC_GDO0_PxIES |= TI_CC_GDO0_PIN;  // Int on falling edge (end of pkt) 
   TI_CC_GDO0_PxIFG &= ~TI_CC_GDO0_PIN; // Clear flag 
   TI_CC_GDO0_PxIE |= TI_CC_GDO0_PIN;   // Enable int on end of packet 
   TI_CC_SPIStrobe(TI_CCxxx0_SRX);      // Initialize CCxxxx in RX mode. 
   
   // This is just a software delay 
   for(delay=0;delay<650;delay++); 
   
   P1OUT = 0x02;            // Turn on green led to indicate setup is done.   
} 
 
// ========================================================= 
// Function returns the minimum error 
// Args:  Input errors and the error buffer index 
// Retn:  minimum error 
// ========================================================= 
int32_t min_error(int32_t error_1, int32_t error_2, uint8_t index) 
{   
  if(error_1<0)          // If first error is negative 
    error_1*=-1;                // Get ABS value 
 
  if(error_2<0)          // If second error is negative 
    error_2*=-1;                // Get ABS value 
 
  if(error_1>error_2)           // If first error is greater than second 
  { 
    return error_buff[index+1]; // return second error 
  }   
  else 
  { 
    if(error_1 != 0xFFF) 
 return error_buff[index]; //return first error 
    else 
      return 0; 
  } 
} 
 
// ========================================================= 
// Function used to correct Clock drift and Clock skew 
// Args:  none 
// Retn:  none 
// Flow chart 3 
// ========================================================= 



Node Source Code 58 
 

 
 

void correct_error(void) 
{   
 
  if(window_count == 0) 
  { 
    time_error = time_error>>1; 
    window_size = 16000 + time_error;   // Add error to the window size 
    slot_size = window_size >> 4;           // slot size = window size/16 
    half_slot_size = slot_size >> 1;        // Half slot size= slot size/2 
 
    TACCR0 = window_size;                   // Update TACCR0 with new values 
    TACCR1 = half_slot_size + (slot_size*(node_add-1))- tx_delay; 
  }  
  else  
  { 
    if( time_error > 0 )                    // If error is positive 
      while(TAR<time_error);                // wait for TAR to reach error 
    TAR -= time_error;                      // Update TAR value 
  } 
 
  for(loop_i=0;loop_i<4;loop_i++)         // Reset error buffer 
    error_buff[loop_i] = 0xFFF; 
     
  return; 
} 
 
// ========================================================== 
// Function is used at startup to sync with neighbouring node 
// Args:  none 
// Retn:  none 
// Flow chart 4 
// ========================================================== 
void startup_sync(void) 
{   
  P1OUT |= 0x03;                               // Turn on both LEDs 
  sync_flg = 1;                                // Enable sync flag 
  total_window_cnt = 0;                        // Clear window count 
    
  while(total_window_cnt<16)   // Sync for 16 windows 
  { 
    __bis_SR_register(LPM1_bits + GIE);         // Sleep till interrupt 
    if(packet_received_flg)                     // Received packet is valid 
    { 
      if(packet_rx[0] == (node_add-1))  // Sync to the node before me 
      { 
        time_error = packet_rx[1];              // Grab received time 
 
        // Calculate error with received time and expected time 
        time_error -= (half_slot_size+(slot_size*(packet_rx[0]-1))); 
 
        if( time_error > 0 )                 // If error is positive 
          while(TAR<time_error);             // wait for TAR to reach error 
        TAR -= time_error;                   // Update TAR value 
 
        if(packet_rx[2] == (node_add-1)) 
          window_count = 0;            // Match window count with neighbour 
      }  
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      packet_received_flg = 0;                  // Clear flag 
    } 
  } 
 
  sync_flg = 0;                                 // Clear sync flag 
  P1OUT &= ~0x03;                               // Turn off LEDs 
} 
 
 
// ========================================================= 
// Function is used to check if synced properly with  
// neighbouring nodes at startup. 
// Args:  none 
// Retn:  none 
// Flow chart 5 
// ======================================================== 
void sync_check() 
{ 
  total_window_cnt = 0;                 // Clear window count 
 
  while(total_window_cnt<3)             // Check for 3 windows 
  { 
    __bis_SR_register(LPM1_bits + GIE); // Sleep till interrupt 
        
    TI_CC_SPIStrobe(TI_CCxxx0_SIDLE);   // Initialize CCxxxx in Idle mode. 
    TI_CC_SPIStrobe(TI_CCxxx0_SRX);     // Initialize CCxxxx in RX mode. 
        
    time_error = 0;                     // Clear time error 
    error_buff[0]= min_error(error_buff[0],error_buff[1],0);//Get min error 
    error_buff[1]= min_error(error_buff[2],error_buff[3],2);//Get min error 
    time_error = (error_buff[0] + error_buff[1])/3;// Take the average error 
 
    if((time_error<25) && (time_error>-25))     // If error is within +-25 
    { 
      correct_error();                  // Correct clock errors 
    } else {        
      startup_sync();                   // Restart startup sync 
    } 
  } 
} 
 
// ========================================================= 
// Function executed during normal mode. Main purpose of the  
// function is to correct errors at the end of each window. 
// Args:  none 
// Retn:  none 
// Flow chart 6 
// ========================================================= 
void normal_mode(void) 
{ 
  static uint8_t toggle_led = 0; 
   
  // Update TACCR1 with new sizes 
  TACCR1 = half_slot_size + (slot_size*(node_add-1))- tx_delay; 
  TACCTL1 = CCIE;          // enable CCR1 interrupt (Tx interrupt) 
  P1OUT |= 0x02;                        // Turn on Green LED 
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  while(1) 
  { 
    __bis_SR_register(LPM1_bits + GIE); // Enter sleep till interrupt 
        
    TI_CC_SPIStrobe(TI_CCxxx0_SIDLE);   // Initialize CCxxxx in Idle mode. 
    TI_CC_SPIStrobe(TI_CCxxx0_SRX);     // Initialize CCxxxx in RX mode. 
        
    // Increment the queue indices  
    curr_que_idx = (curr_que_idx>=2)?((curr_que_idx+1)-3) : (curr_que_idx+1); 
    next_que_idx = (next_que_idx>=2)?((next_que_idx+1)-3) : (next_que_idx+1); 
    futr_que_idx = (futr_que_idx>=2)?((futr_que_idx+1)-3) : (futr_que_idx+1); 
        
    time_error = 0;                     // Clear time error 
    error_buff[0]= min_error(error_buff[0],error_buff[1],0);//Get min error 
    error_buff[1]= min_error(error_buff[2],error_buff[3],2);//Get min error 
    time_error = (error_buff[0] + error_buff[1])/3;// Take the average error 
    correct_error();                    // Correct clock errors   
      
    // Check if node's sensor or neighbours sensor is triggered 
    if((P2IN&0x01)|(neigh1_flg == 1)|(neigh2_flg == 1)|\ 
      (neigh3_flg == 1)|(neigh4_flg == 1)) 
    { 
      if(P2IN&0x01) 
        toggle_led = 1;         // Toggle every 64ms 
      else 
        toggle_led ^= 0x01;     // Toggle every 128ms 
       
      if(toggle_led) 
        P2OUT ^= 0x02;          // Toggle the LED   
      else  
        P2OUT &= ~0x02;         // Turn off the LED 
    } 
  } 
} 
 
// ========================================================= 
// This is the main function. Calls the setup function to  
// configure the ports and other settings. Once setup is done 
// startup sync is performed.After syncing we enter normal  
// operating mode. 
// Args:  none 
// Retn:  none 
// ========================================================= 
void main() 
{   
  window_size = WIN_SIZE;             // Initialize window size ~64ms 
  slot_size = SLOT_SIZE;    // Initialize slot size   ~4ms 
  half_slot_size = HLF_SLOT_SIZE;     // Initialize half slot size 
  node_add = 1;                // Set node address 
  
  curr_que_idx = 0;                     // Initial value for queue index 
  next_que_idx = 1;                     // Initial value for queue index 
  futr_que_idx = 2;                     // Initial value for queue index 
   
  // Clear the queue (0xFF means its empty). This is where the data is stored 
  for(loop_i=0; loop_i<3;loop_i++) 
    for(loop_j=0;loop_j<4;loop_j++) 
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      packet_queue[loop_i][loop_j] = 0xFF; 
   
  for(loop_i=0;loop_i<4;loop_i++)       // Clear error buffer 
      error_buff[loop_i] = 0xFFF; 
   
  f_setup();                            // Setup Ports and wireless settings 
  startup_sync();                       // Perform startup sync 
  sync_check();                         // Check if sync was successful 
  normal_mode();                        // Enter normal operating mode 
}
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Appendix D 

Receiver Node Source Code: 

#include "msp430x22x4.h"               // chip-specific macros & defs 
#include "stdint.h"                    // MSP430 data type definitions 
#include "wireless.h"                  // Wireless setup and func definition 
 
uint8_t packet_received_flg = 0;       // Received pck flag 
uint8_t rx[6];                         // Received packet 
uint8_t RX_node = 1,stream_flag = 0;   // Target node address and stream 
 
#pragma vector=USCIAB0RX_VECTOR 
__interrupt void IsrUartEcho(void) 
//--------------------------------------------------------------------- 
// Func:  ISR receives a command byte from the user and updates the  
//        stream direction (Upstream/Downstream)and the target node  
//        address 
// Args:  None 
// Retn:  None 
//--------------------------------------------------------------------- 
{ 
    RX_node = UCA0RXBUF;                // Receive character 
    stream_flag = ((RX_node & 0x80)>>7);// Upstream/Downstream 
    RX_node &= 0x7F;                    // Update the target node add 
    return; 
} 
 
//--------------------------------------------------------------------- 
// Function receives data from CC2500 chip when Rx interrupt is  
// generated. The Rx interrupt is generated once CC2500 receives the  
// last packet. Function uses the helper function 'RFReceivePacket' 
// Args:  None 
// Retn:  None 
//--------------------------------------------------------------------- 
#pragma vector=PORT2_VECTOR 
__interrupt void f_RxData_ISR(void) 
{ 
   uint8_t len = 6;                     //Receive 6 bytes 
   uint8_t status[2];                   // Buffer to store status data 
 
   packet_received_flg = 0;  // Clear flag 
     
   if(TI_CC_GDO0_PxIFG & TI_CC_GDO2_PIN) 
      packet_received_flg = RFReceivePacket(rx,&len,status); //Fetch packet  
 
 
   if(packet_received_flg)              // Check if valid packet is received 
   { 
      if(rx[1] == RX_node)              // check target address 
      { 
        P1OUT ^= 0x03;                  // Toggle LED 
        if(stream_flag == 1)            // Downstream 
        { 
          while ( !(IFG2 & UCA0TXIFG)) {};// wait: while Tx Buff not empty 
          UCA0TXBUF = (rx[2] | 0x60);     // send node addr and sensor data 
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          while ( !(IFG2 & UCA0TXIFG)) {};// wait: while Tx Buff not empty 
          UCA0TXBUF = ((rx[3] & 0x0F)| 0x60);// send lower half of error 
          while ( !(IFG2 & UCA0TXIFG)) {};// wait: while Tx Buff not empty 
          UCA0TXBUF = (((rx[3] & 0xF0)>>4)| 0x60);// send upper half of error 
          while ( !(IFG2 & UCA0TXIFG)) {};// wait: while Tx Buff not empty 
          UCA0TXBUF = '\n';               // send new line char 
        } else { 
          while ( !(IFG2 & UCA0TXIFG)) {};// wait: while Tx Buff not empty 
          UCA0TXBUF = (rx[4] | 0x60);     // send byte addr and sensor data 
          while ( !(IFG2 & UCA0TXIFG)) {};// wait: while Tx Buff not empty 
          UCA0TXBUF = ((rx[5] & 0x0F)| 0x60);// send lower half of error 
          while ( !(IFG2 & UCA0TXIFG)) {};// wait: while Tx Buff not empty 
          UCA0TXBUF = (((rx[5] & 0xF0)>>4)| 0x60); // send upper half of err 
          while ( !(IFG2 & UCA0TXIFG)) {};// wait: while Tx Buff not empty 
          UCA0TXBUF = '\n';               // send new line char 
        } 
     } 
   } 
 
   TI_CC_GDO0_PxIFG &= ~TI_CC_GDO0_PIN; // After pkt RX, reset intrp flag.    
   return; 
} 
 
//--------------------------------------------------------------------- 
// Func:  Pull CPU out of sleep mode during transmition and at the  
// end of the window. 
// Args:  None 
// Retn:  None 
//--------------------------------------------------------------------- 
#pragma vector=TIMERA1_VECTOR 
__interrupt void f_TimerAISR(void) 
{ 
   switch (__even_in_range(TAIV, 10)) 
   { 
      case TAIV_TAIFG:                  // Handle TAR rollover -> 0 IRQ 
         TACTL &= ~TAIFG;               // Clear flag 
         __bic_SR_register_on_exit(LPM1_bits);  // wake up on exit 
         break; 
      case TAIV_TACCR1:                 // Chnl 1 IRQ 
        break; 
      case TAIV_TACCR2:                 // ignore chnl 2 IRQ 
      default:                          // ignore everything else 
   } 
   return; 
} 
 
//=============================================================== 
// Setup the Ports, Clocks and Wireless config. 
// Args:  none 
// Retn:  none 
//=============================================================== 
void f_setup(void) 
{ 
   WDTCTL = WDTPW + WDTHOLD;            // halt watchdog 
   
   volatile uint16_t delay;             // Variable for delay 
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   // This is just a software delay 
   for(delay=0;delay<650;delay++); 
    
   // Setup clock system 
   BCSCTL1 = CALBC1_8MHZ;               // set DCO freq. 
   BCSCTL2 |= DIVS_3;                   // SMCLK = MCLK/8 (1MHz) 
   DCOCTL  = CALDCO_8MHZ;               // set MCLK to 8MHz 
    
   // Setup UART 
   P3SEL = 0x30;                        // P3.4,5 = USCI_A0 TXD/RXD 
   UCA0CTL1 |= UCSSEL_2;                // UART uses SMCLK 
   UCA0BR0 = 104;                       // 1MHz 9600 
   UCA0BR1 = 0;                         // 1MHz 9600 
   UCA0MCTL = UCBRS0;                   // Modulation UCBRSx = 1 
   UCA0CTL1 &= ~UCSWRST;                // Init. USCI state machine 
   IE2 |= UCA0RXIE;                     // Enable USCI_A0 RX IRQ 
    
   // TimerA config 
   TACCR0 = 16000;                      // ~64msec 
   TACTL = TASSEL_2 |ID_2 | MC_1 | TAIE;// SMCLK, Interrupts,Up mode,div by 4 
    
   //Port config 
   P1DIR |= 0x03;                       // activate LEDs 
   P2DIR |= 0x02;                       // activate LEDs 
   P1OUT &= ~0x03;                      // Clear LEDs 
   
   // Wireless Initialization 
   TI_CC_SPISetup();                    // Initialize SPI port 
   P2SEL = 0;                           // Sets P2.6 & P2.7 as GPIO 
   TI_CC_PowerupResetCCxxxx();          // Reset CCxxxx 
   writeRFSettings();                   // Write RF settings to config reg 
   TI_CC_GDO0_PxIES |= TI_CC_GDO0_PIN;  // Int on falling edge (end of pkt) 
   TI_CC_GDO0_PxIFG &= ~TI_CC_GDO0_PIN; // Clear flag 
   TI_CC_GDO0_PxIE |= TI_CC_GDO0_PIN;   // Enable int on end of packet 
   TI_CC_SPIStrobe(TI_CCxxx0_SRX);      // Initialize CCxxxx in RX mode. 
   
   // This is just a software delay 
   for(delay=0;delay<650;delay++); 
   
   P1OUT = 0x02;           // Turn on green led to indicate setup is done.   
} 
 
 
// ========================================================= 
// Function executed during normal mode. Main purpose of the  
// function is to remain in sleep till an interrupt is  
// requested. 
// Args:  none 
// Retn:  none 
// ========================================================= 
void normal_mode(void) 
{ 
  while(1) 
  { 
    __bis_SR_register(LPM1_bits + GIE); // Enter sleep till interrupt 
        
    TI_CC_SPIStrobe(TI_CCxxx0_SIDLE);   // Initialize CCxxxx in Idle mode. 
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    TI_CC_SPIStrobe(TI_CCxxx0_SRX);     // Initialize CCxxxx in RX mode.     
  } 
} 
 
// ========================================================= 
// This is the main function. Calls the setup function to  
// configure the ports and other settings. Once setup is done 
// it enters normal operating mode. 
// Args:  none 
// Retn:  none 
// ========================================================= 
void main() 
{   
  f_setup();                            // Setup Ports and wireless settings 
  normal_mode();                        // Enter normal operating mode 
} 
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Appendix E 

GUI Source Code: 

// Include preprocessor directives 
using System; 
using System.Collections.Generic; 
using System.ComponentModel; 
using System.Data; 
using System.Drawing; 
using System.Linq; 
using System.Text; 
using System.Threading.Tasks; 
using System.Windows.Forms; 
using System.IO; 
using System.IO.Ports; 
using System.Threading; 
 
namespace WSN 
{ 
    public partial class Form1 : Form 
    { 
        public Form1() 
        { 
            InitializeComponent(); 
 
            // Update the node address combo list 
            for(int i=1;i<17;i++) 
                comboBox2.Items.Add(i); 
        } 
 
        private int connect_flag = 0;       // Connect flag 
        private int stream_flag = 0;        // Stream flag 
        private string Rxdata;              // Received packet 
        private int tx_data = 1;            // Data to transmit 
        private int node_add;               // Node address 
        private int sensor_data;            // Sensor status 
        private int error_sign;             // Sign +/- of error 
        private int error_data;             // Sync offset 
 
        // These counter values are used as a trigger  

  // to update the GUI 
        private byte data_counter1 = 0;      
        private byte data_counter2 = 0; 
        private byte data_counter3 = 0; 
        private byte data_counter4 = 0; 
        private byte data_counter5 = 0; 
        private byte data_counter6 = 0; 
        private byte data_counter7 = 0; 
        private byte data_counter8 = 0; 
        private byte data_counter9 = 0; 
        private byte data_counter10 = 0; 
        private byte data_counter11 = 0; 
        private byte data_counter12 = 0; 
        private byte data_counter13 = 0; 
        private byte data_counter14 = 0; 
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        private byte data_counter15 = 0; 
        private byte data_counter16 = 0; 
        private int average_loop = 0; 
 
        // Buffer to store the clock offsets 

  private byte[,] node_error = new byte[16, 300];           
        private byte[] error_temp = new byte[16]; // Temp buffer 
        private int error_loop = 0, error_index = 0; //offset index 
 

//=============================================================== 
// Function: Update COM port list combo box 
//=============================================================== 

 
        private void button1_Click(object sender, EventArgs e) 
        { 
            string[] ports = SerialPort.GetPortNames(); //Get port list 
            foreach (string port in ports) 
            { 
                comboBox1.Items.Add(port); // Populate the combo list 
            } 
 
        } 
 
         

//=============================================================== 
// Function: Change Upstream/Downstream settings 
//=============================================================== 

        private void button2_Click(object sender, EventArgs e) 
        { 
            if (stream_flag == 0) 
            { 
                button2.Text = "DOWN";      // Downstream 
                stream_flag = 1;    // Set stream flag 
                tx_data |= 0x80;    // Set the stream bit 
            } 
            else 
            { 
                button2.Text = "UP";        // Upstream 
                stream_flag = 0;    // Set stream flag 
                tx_data &= 0x7F;    // Clear the stream bit 
            } 
 
            byte[] buffer = new byte[] {Convert.ToByte(tx_data)}; 
            try 
            {   // Send data via UART 
                serialPort1.Write(buffer, 0, 1); 
            } 
            catch (InvalidOperationException err) 
            { 
                infobox.Text = err.Message;  //Send error message 
            } 
        } 
 

//=============================================================== 
// Function: Target address selection function        
//=============================================================== 
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        private void comboBox2_SelectedIndexChanged\ 
        (object sender, EventArgs e) 
        { 
  // Selected target node address 
            string sel_node = comboBox2.SelectedItem.ToString(); 
            tx_data =(int) Decimal.Parse(sel_node); // Convert to decimal 
 
  // Add stream info 
            tx_data |= (stream_flag << 7); 
            byte[] buffer = new byte[] {Convert.ToByte(tx_data)}; 
            try 
            {   // Send data via UART 
                serialPort1.Write(buffer, 0, 1);     
            } 
            catch(InvalidOperationException err) 
            { 
                infobox.Text = err.Message;  //Send error message 
            } 
        } 
 

//=============================================================== 
// Function: Connect to COM port button function 
//=============================================================== 

        private void connect_button_Click\ 
        (object sender, EventArgs e) 
        { 
            for (int i = 0; i < 16; i++) 
                error_temp[i] = 0xFF; // Reset the error buffer 
 
            if (connect_flag == 0)  // If Not connected 
            { 
                try 
                { 
                    serialPort1.PortName =  
                       comboBox1.SelectedItem.ToString(); 
 
                    // Check if port is already open 

               if (!serialPort1.IsOpen)    
               { 

                        serialPort1.Encoding =  
                        System.Text.Encoding.GetEncoding(28591); 
                        infobox.Text = "Connected"; 
                        serialPort1.Open();// Open COM port 
                        connect_button.Text = "Disconnect"; 
                        connect_flag = 1; // set the connect flag 
                    } 
                    else 
                    { 
                        infobox.Text = \ 
                        "Unable to Connect to port"; 
                    } 
                } 
                catch (UnauthorizedAccessException err) 
                { 
                    infobox.Text = err.Message; 
                } 
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                catch (NullReferenceException) 
                { 
                    infobox.Text = "Please choose a port"; 
                } 
                catch (Exception) 
                { 
                  infobox.Text = "Unable to Connect to port"; 
                } 
            } 
            else 
            { 
                try 
                { 
                    serialPort1.Close();   // Close COM port 
                    infobox.Text = "Disconnected"; 
                    connect_button.Text = "Connect"; 
                    connect_flag = 0;      // Clear connect flag 
                } 
                catch (Exception) 
                { 
                    infobox.Text = "Unable to Close to port"; 
                } 
            } 
        } 
 

//=============================================================== 
// Function: This function is executed when the close button is hit 
//=============================================================== 

        private void Form1_FormClosing(object sender,  
        FormClosingEventArgs e) 
        { 
            if (serialPort1.IsOpen) 
            { 
                e.Cancel = true; //cancel the form closing 
                Thread CloseDown = new Thread(new  
                ThreadStart(CloseSerialOnExit));   
   
                //close port in new thread to avoid hang 
                CloseDown.Start();  
            } 
 
        } 
 
        private void CloseSerialOnExit() 
        { 
            try 
            { 
                serialPort1.Close(); //close the serial port 
            } 
 
            catch (Exception ex) 
            { 
               //catch any serial port closing error messages 
                MessageBox.Show(ex.Message);             
            } 
 
            //now close back in the main thread 



GUI Source Code 70 
 

 
 

            this.Invoke(new EventHandler(NowClose));  
        } 
 
        private void NowClose(object sender, EventArgs e) 
        { 
            this.Close(); //now close the form 
        } 
 

//=============================================================== 
// Function: Function to Receive data from the COM port 
//=============================================================== 

        private void serialPort1_DataReceived(object sender,  
        SerialDataReceivedEventArgs e) 
        { 
            // Receive data from com port 
            Rxdata = serialPort1.ReadLine(); 
            // Update GUI 
            this.Invoke(new EventHandler(UpdateGUI));         
        } 
 

//=============================================================== 
// Function: This is where all the GUI stuff happens 
//=============================================================== 

        private void UpdateGUI(object s, EventArgs e) 
        { 
            int rx_length = Rxdata.Length;// Received packet length 
            int temp_data; 
            if (rx_length == 3) 
            { 
                node_add = (Rxdata[0] & 0x1F);          // Get Node address 
                sensor_data = ((Rxdata[0] & 0x80)>>7);  // Get sensor status 
 
      // Get clock offset 
                temp_data = ((Rxdata[1] & 0x0F) | (Rxdata[2]<<4)); 
                error_sign = ((temp_data & 0x80) >> 7); // Get sign of offset 
                error_data = (temp_data & 0x7F);        // Get offset 
 
                if ((node_add > 0) && (node_add < 17)) 
                { 
     // Update the highest address RX 

  if (node_add > average_loop)    
                        average_loop = node_add; 
   
                    if ((error_index > node_add) || (error_index/ 
                     == node_add)) 
                    { 
                        for (int i = 0; i < 16; i++) 
                        { 
                            // Copy to offset buffer 
                            node_error[i, error_loop] = error_temp[i]; 
                            error_temp[i] = 0xFF;       // Clear temp buffer 
                        } 
                        error_loop++; 
                        if (error_loop == 300)          // Reset buffer index 
                        error_loop = 0; 
                    } 
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                    // Copy offset to temp buffer 
                    error_temp[node_add - 1] = (byte)temp_data; 
                    error_index = node_add; 
                } 
            } 
            else 
                return; 
 
            //Update node 1's GUI info 
            if(node_add == 1) 
            { 
                data_counter1 = 0; 
 
      // Update node’s sensor data 
                if (sensor_data == 1) 
                    pictureBox1.Image = WSN.Properties.Resources.red; 
                else 
                    pictureBox1.Image = WSN.Properties.Resources.green; 
 

     // Update node’s error data 
                if (error_sign == 1) 
                    box_node1.Text = "-" + error_data; 
                else 
                    box_node1.Text = "+" + error_data; 
                 
            } else if(data_counter1==48) 
            { 
                pictureBox1.Image = WSN.Properties.Resources.yellow; 
                box_node1.Text = ""; 
            } else { 
                data_counter1++; 
            } 
 
            //Update node 2's GUI info 
            if(node_add == 2) 
            { 
                 data_counter2 = 0; 
 

    // Update node’s sensor data 
                if (sensor_data == 1) 
                    pictureBox2.Image = WSN.Properties.Resources.red; 
                else 
                    pictureBox2.Image = WSN.Properties.Resources.green; 
 

     // Update node’s error data 
                if (error_sign == 1) 
                    box_node2.Text = "-" + error_data; 
                else 
                    box_node2.Text = "+" + error_data; 
            } 
              else if(data_counter2==48) 
            { 
                pictureBox2.Image = WSN.Properties.Resources.yellow; 
                box_node2.Text = ""; 
            } else { 
                data_counter2++; 
            } 
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            //Update node 3's GUI info 
            if(node_add == 3) 
            { 
                 data_counter3 = 0; 
 

    // Update node’s sensor data 
                if (sensor_data == 1) 
                    pictureBox3.Image = WSN.Properties.Resources.red; 
                else 
                    pictureBox3.Image = WSN.Properties.Resources.green; 
 

     // Update node’s error data 
                if (error_sign == 1) 
                    box_node3.Text = "-" + error_data; 
                else 
                    box_node3.Text = "+" + error_data; 
            } 
                else if(data_counter3==48) 
            { 
                pictureBox3.Image = WSN.Properties.Resources.yellow; 
                box_node3.Text = ""; 
            } else { 
                data_counter3++; 
            } 
 
            //Update node 4's GUI info 
            if(node_add == 4) 
            { 
                data_counter4 = 0; 
 

    // Update node’s sensor data 
                if (sensor_data == 1) 
                    pictureBox4.Image = WSN.Properties.Resources.red; 
                else 
                    pictureBox4.Image = WSN.Properties.Resources.green; 
 

     // Update node’s error data 
                if (error_sign == 1) 
                    box_node4.Text = "-" + error_data; 
                else 
                    box_node4.Text = "+" + error_data; 
            } 
            else if(data_counter4==48) 
            { 
                pictureBox4.Image = WSN.Properties.Resources.yellow; 
                box_node4.Text = ""; 
            } else { 
                data_counter4++; 
            } 
 
            //Update node 5's GUI info 
            if(node_add == 5) 
            { 
                data_counter5 = 0; 
 
          // Update node’s sensor data 
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                if (sensor_data == 1) 
                    pictureBox5.Image = WSN.Properties.Resources.red; 
                else 
                    pictureBox5.Image = WSN.Properties.Resources.green; 
 

     // Update node’s error data 
                if (error_sign == 1) 
                    box_node5.Text = "-" + error_data; 
                else 
                    box_node5.Text = "+" + error_data; 
            } 
            else if(data_counter5==48) 
            { 
                pictureBox5.Image = WSN.Properties.Resources.yellow; 
                box_node5.Text = ""; 
            } else { 
                data_counter5++; 
            } 
 
            //Update node 6's GUI info 
            if(node_add == 6) 
            { 
                data_counter6 = 0; 
 
       // Update node’s sensor data 
                if (sensor_data == 1) 
                    pictureBox6.Image = WSN.Properties.Resources.red; 
                else 
                    pictureBox6.Image = WSN.Properties.Resources.green; 
 

     // Update node’s error data 
                if (error_sign == 1) 
                    box_node6.Text = "-" + error_data; 
                else 
                    box_node6.Text = "+" + error_data; 
               
            } 
            else if(data_counter6==48) 
            { 
                pictureBox6.Image = WSN.Properties.Resources.yellow; 
                box_node6.Text = ""; 
            } else { 
                data_counter6++; 
            } 
 
            //Update node 7's GUI info 
            if(node_add == 7) 
            { 
                 data_counter7 = 0; 

     // Update node’s sensor data 
                 if (sensor_data == 1) 
                     pictureBox7.Image = WSN.Properties.Resources.red; 
                 else 
                      pictureBox7.Image = WSN.Properties.Resources.green; 
 

     // Update node’s error data 
                  if (error_sign == 1) 
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                      box_node7.Text = "-" + error_data; 
                  else 
                      box_node7.Text = "+" + error_data; 
            } 
            else if(data_counter7==48) 
            { 
                pictureBox7.Image = WSN.Properties.Resources.yellow; 
                box_node7.Text = ""; 
            } else { 
                data_counter7++; 
            } 
 
            //Update node 8's GUI info 
            if(node_add == 8) 
            { 
                 data_counter8 = 0; 
 

     // Update node’s sensor data 
                 if (sensor_data == 1) 
                     pictureBox8.Image = WSN.Properties.Resources.red; 
                 else 
                     pictureBox8.Image = WSN.Properties.Resources.green; 
 

     // Update node’s error data 
                 if (error_sign == 1) 
                     box_node8.Text = "-" + error_data; 
                 else 
                     box_node8.Text = "+" + error_data; 
             
            } 
            else if(data_counter8==48) 
            { 
                pictureBox8.Image = WSN.Properties.Resources.yellow; 
                box_node8.Text = ""; 
            } else { 
                data_counter8++; 
            } 
 
            //Update node 9's GUI info 
            if(node_add == 9) 
            { 
                 data_counter9 = 0; 
 

     // Update node’s sensor data 
                 if (sensor_data == 1) 
                     pictureBox9.Image = WSN.Properties.Resources.red; 
                 else 
                     pictureBox9.Image = WSN.Properties.Resources.green; 
 

     // Update node’s error data 
                 if (error_sign == 1) 
                     box_node9.Text = "-" + error_data; 
                 else 
                     box_node9.Text = "+" + error_data; 
            } 
            else if(data_counter9==48) 
            { 
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                pictureBox9.Image = WSN.Properties.Resources.yellow; 
                box_node9.Text = ""; 
            } else { 
                data_counter9++; 
            } 
 
            //Update node 10's GUI info 
            if(node_add == 10) 
            { 
                 data_counter10 = 0; 
 

     // Update node’s sensor data 
                 if (sensor_data == 1) 
                     pictureBox10.Image = WSN.Properties.Resources.red; 
                 else 
                     pictureBox10.Image = WSN.Properties.Resources.green; 
 

     // Update node’s error data 
                 if (error_sign == 1) 
                     box_node10.Text = "-" + error_data; 
                 else 
                     box_node10.Text = "+" + error_data; 
            } 
            else if(data_counter10==48) 
            { 
                pictureBox10.Image = WSN.Properties.Resources.yellow; 
                box_node10.Text = ""; 
            } else { 
                data_counter10++; 
            } 
 
            if(node_add == 11) 
            { 
                 data_counter11 = 0; 
 

     // Update node’s sensor data 
                 if (sensor_data == 1) 
                     pictureBox11.Image = WSN.Properties.Resources.red; 
                 else 
                     pictureBox11.Image = WSN.Properties.Resources.green; 
 

     // Update node’s error data 
                 if (error_sign == 1) 
                     box_node11.Text = "-" + error_data; 
                 else 
                     box_node11.Text = "+" + error_data; 
            } 
            else if(data_counter11==48) 
            { 
                pictureBox11.Image = WSN.Properties.Resources.yellow; 
                box_node11.Text = ""; 
            } else { 
                data_counter11++; 
            } 
 
            //Update node 11's GUI info 
            if(node_add == 12) 
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            { 
                 data_counter12 = 0; 
 

     // Update node’s sensor data 
                 if (sensor_data == 1) 
                     pictureBox12.Image = WSN.Properties.Resources.red; 
                 else 
                     pictureBox12.Image = WSN.Properties.Resources.green; 
 

     // Update node’s error data 
                 if (error_sign == 1) 
                     box_node12.Text = "-" + error_data; 
                 else 
                     box_node12.Text = "+" + error_data; 
            } 
            else if(data_counter12==48) 
            { 
                pictureBox12.Image = WSN.Properties.Resources.yellow; 
                box_node12.Text = ""; 
            } else { 
                data_counter12++; 
            } 
 
            //Update node 13's GUI info 
            if(node_add == 13) 
            { 
                 data_counter13 = 0; 
 

     // Update node’s sensor data 
                 if (sensor_data == 1) 
                     pictureBox13.Image = WSN.Properties.Resources.red; 
                 else 
                     pictureBox13.Image = WSN.Properties.Resources.green; 
 

     // Update node’s error data 
                 if (error_sign == 1) 
                     box_node13.Text = "-" + error_data; 
                 else 
                     box_node13.Text = "+" + error_data; 
            } 
            else if(data_counter13==48) 
            { 
                pictureBox13.Image = WSN.Properties.Resources.yellow; 
                box_node13.Text = ""; 
            } else { 
                data_counter13++; 
            } 
 
            //Update node 14's GUI info 
            if(node_add == 14) 
            { 
                 data_counter14 = 0; 
 

     // Update node’s sensor data 
                 if (sensor_data == 1) 
                     pictureBox14.Image = WSN.Properties.Resources.red; 
                 else 
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                     pictureBox14.Image = WSN.Properties.Resources.green; 
 

     // Update node’s error data 
                 if (error_sign == 1) 
                     box_node14.Text = "-" + error_data; 
                 else 
                     box_node14.Text = "+" + error_data; 
            } 
            else if(data_counter14==48) 
            { 
                pictureBox14.Image = WSN.Properties.Resources.yellow; 
                box_node14.Text = ""; 
            } else { 
                data_counter14++; 
            } 
 
            //Update node 15's GUI info 
            if (node_add == 15) 
            { 
                data_counter15 = 0; 
 

     // Update node’s sensor data 
                if (sensor_data == 1) 
                    pictureBox15.Image = WSN.Properties.Resources.red; 
                else 
                    pictureBox15.Image = WSN.Properties.Resources.green; 
 

     // Update node’s error data 
                if (error_sign == 1) 
                    box_node15.Text = "-" + error_data; 
                else 
                    box_node15.Text = "+" + error_data; 
            } 
 
            else if (data_counter15 == 48) 
            { 
                pictureBox15.Image = WSN.Properties.Resources.yellow; 
                box_node15.Text = ""; 
            } 
            else 
            { 
                data_counter15++; 
            } 
 
            //Update node 16's GUI info 
            if(node_add == 16) 
            { 
                 data_counter16 = 0; 
 

     // Update node’s sensor data 
                 if (sensor_data == 1) 
                     pictureBox16.Image = WSN.Properties.Resources.red; 
                 else 
                     pictureBox16.Image = WSN.Properties.Resources.green; 
 

     // Update node’s error data 
                 if (error_sign == 1) 
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                     box_node16.Text = "-" + error_data; 
                 else 
                     box_node16.Text = "+" + error_data; 
            } 
            else if(data_counter16==16) 
            { 
                pictureBox16.Image = WSN.Properties.Resources.yellow; 
                box_node16.Text = ""; 
            } else { 
                data_counter16++; 
            } 
        } 
 

//=============================================================== 
// Function: Function which does the exporting to spread sheet 
//=============================================================== 

        private void button3_Click(object sender, EventArgs e) 
        { 
            var csv = new StringBuilder(); 
            string filePath = "Output.csv";     // Output file name 
 
            for (int i = 0; i < average_loop; i++) 
            { 
                var newLine = string.Format("Node{0}", i+1);    // Node label 
                csv.Append(newLine); 
                for (int j = 0; j < error_loop; j++) 
                { 
                    if (node_error[i, j] == 0xFF) 
                        newLine = string.Format(",");           // Empty cell 
                    else 
                    { 
 
                        if ((node_error[i, j] & 0x80) == 0x80) 
                            newLine = string.Format(",-{0}", \ 
                            (node_error[i, j] & 0x7F)); 
                        else 
                            newLine = string.Format(",+{0}", \ 
                            (node_error[i, j])); 
                    } 
                    csv.Append(newLine); 
                } 
                newLine = string.Format("{0}", Environment.NewLine); 
                csv.Append(newLine); 
            } 
            var result_line = string.Format("{0},Max,Min,Mean{0}", 
            Environment.NewLine);// Labels Max, Min, Mean 
            csv.Append(result_line); 
            for (int i = 0; i < average_loop; i++) 
            { 
                // Get the min,max and the mean for the offsets collected 
                result_line = string.Format("Node{0},=MAX({0}:{0}), 
                =MIN({0}:{0}),=AVERAGE({0}:{0}){1}", i + 1,          
                Environment.NewLine); 
                csv.Append(result_line); 
            } 
            result_line = string.Format("{0}", Environment.NewLine); 
            csv.Append(result_line); 
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            error_loop = 0; 
            File.WriteAllText(filePath, csv.ToString()); // Write to the file 
            infobox.Text = "File saved"; 
        }        
    } 
} 
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