
Michigan Technological University Michigan Technological University

Digital Commons @ Michigan Tech Digital Commons @ Michigan Tech

Dissertations, Master's Theses and Master's
Reports - Open

Dissertations, Master's Theses and Master's
Reports

2014

PROOF OF CONCEPT PROTOTYPE FOR A RAILROAD PROOF OF CONCEPT PROTOTYPE FOR A RAILROAD

PEDESTRIAN WARNING SYSTEM USING WIRELESS SENSOR PEDESTRIAN WARNING SYSTEM USING WIRELESS SENSOR

NETWORKS NETWORKS

Puneeth Ramesh
Michigan Technological University

Follow this and additional works at: https://digitalcommons.mtu.edu/etds

 Part of the Electrical and Computer Engineering Commons

Copyright 2014 Puneeth Ramesh

Recommended Citation Recommended Citation
Ramesh, Puneeth, "PROOF OF CONCEPT PROTOTYPE FOR A RAILROAD PEDESTRIAN WARNING SYSTEM
USING WIRELESS SENSOR NETWORKS", Master's report, Michigan Technological University, 2014.
https://doi.org/10.37099/mtu.dc.etds/830

Follow this and additional works at: https://digitalcommons.mtu.edu/etds

 Part of the Electrical and Computer Engineering Commons

http://www.mtu.edu/
http://www.mtu.edu/
https://digitalcommons.mtu.edu/
https://digitalcommons.mtu.edu/etds
https://digitalcommons.mtu.edu/etds
https://digitalcommons.mtu.edu/etd
https://digitalcommons.mtu.edu/etd
https://digitalcommons.mtu.edu/etds?utm_source=digitalcommons.mtu.edu%2Fetds%2F830&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.mtu.edu%2Fetds%2F830&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.37099/mtu.dc.etds/830
https://digitalcommons.mtu.edu/etds?utm_source=digitalcommons.mtu.edu%2Fetds%2F830&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.mtu.edu%2Fetds%2F830&utm_medium=PDF&utm_campaign=PDFCoverPages

PROOF OF CONCEPT PROTOTYPE FOR A
RAILROAD PEDESTRIAN WARNING SYSTEM

USING WIRELESS SENSOR NETWORKS

By

Puneeth Ramesh

A REPORT

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

In Electrical Engineering

MICHIGAN TECHNOLOGICAL UNIVERSITY

2014

© 2014 Puneeth Ramesh

This report has been approved in partial fulfillment of the requirements for the Degree of
MASTER OF SCIENCE in Electrical Engineering

Department of Electrical and Computer Engineering

 Report Advisor: Dr. Roger M. Kieckhafer

 Committee Member: Dr. Zhaohui Wang

 Committee Member: Dr. Pasi Lautala

 Department Chair: Dr. Daniel R. Fuhrmann

I

Table of Contents

List of Figures .. III

Abstract .. 1

1. Introduction .. 2

1.1. Network architecture .. 2

1.2. Proof-of-Concept vs. Production System ... 3

1.2.1. Sensor Subsystem .. 4

1.2.2. Software-Configurable Radio Subsystem ... 4

1.2.3. Annunciator Subsystem... 4

1.2.4. Power Supply subsystem ... 5

2. Background .. 6

3. Basic Operation .. 7

4. Hardware implementation .. 10

4.1. Hardware used: ... 10

4.2. Node’s hardware design ... 10

4.3. Receiver node’s design ... 12

5. Software implementation .. 13

5.1. Algorithms .. 13

5.1.1. Procedure for clock correction .. 13

5.1.2. Procedure for normal operating mode ... 14

5.2. Receiver node software implementation .. 20

5.3. Software development of the monitoring GUI ... 21

6. Testing and validation ... 23

6.1. Steady state output for all 16 nodes .. 23

6.2. Network’s response with node 2 turned off.. 24

6.3. Network’s response with node 2 and node 4 turned off ... 25

6.4. Network’s response with alternate nodes turned off .. 26

6.5. Network’s response with 2 adjacent nodes turned off .. 27

7. Design constrains and compromises .. 28

7.1. Design considerations for production unit .. 28

7.2. Other design constrains .. 29

II

7.3. Choosing the proper frequency for communication ... 29

7.4. Total packet transmission time ... 30

8. Conclusion .. 32

9. Reference .. 34

Appendix A .. 36

Appendix B .. 43

Appendix C .. 53

Appendix D .. 62

Appendix E .. 66

III

List of Figures

Figure 1. Figure showing the node arrangement………………………………………….3

Figure 2. Network with multiple node failures………...…………………………...…….3

Figure 3. Figure showing one complete window…………………………………………7

Figure 4. Figure showing the Flow of data……………………………………………….8

Figure 5. Operation of railway pedestrian warning system…………………...………….9

Figure 6. Block diagram of the hardware implementation……………………………...10

Figure 7. Top and front view of the prototype node………………………….…………11

Figure 8. Table showing the received packet structure………………………………….15

Figure 9. Data stored in the next queue………………………………………….……...16

Figure 10. Data stored in the future queue……………………………………….……...16

Figure 11. Data stored in the next queue………………………………………….….....16

Figure 12. Data stored in the future queue……………………………………………...16

Figure 13. Table showing the transmitted packet structure……………………………..17

Figure 14. Payload Data in upstream and downstream……………………………..…...17

Figure 15. Clock corrections between 2 nodes………………………………………….20

Figure 16. Min, max and average sync offsets for all 16 nodes…………....……...........23

Figure 17. GUI showing each and every node’s activity……..………..………………..24

Figure 18. Table showing clock offsets for the first 5 nodes……………………………24

Figure 19. Graph showing the change in offsets as node 2 is turned off………………..25

Figure 20. Table showing clock offsets for the first 5 nodes……………………………25

Figure 21. Graph showing the change in offsets as node 2 and 4 are turned off………..26

Figure 22. GUI showing the data received from node 1…………………………...……26

Figure 23. Min, max and average sync offsets when alternate nodes are turned off……27

Figure 24. GUI showing the data received from node 1……...…………………………27

Figure 25. Table showing clock offsets received from node 1………………...………..28

Figure 26. Wi-Fi Channel spectrum [6]………...……………………………………….30

Figure 27. Node-4 communicating with 3 immediate neighbors on either side………33

1

Abstract

Wireless sensor network is an emerging research topic due to its vast and ever-

growing applications. Wireless sensor networks are made up of small nodes whose main goal

is to monitor, compute and transmit data. The nodes are basically made up of low powered

microcontrollers, wireless transceiver chips, sensors to monitor their environment and a

power source. The applications of wireless sensor networks range from basic household

applications, such as health monitoring, appliance control and security to military

application, such as intruder detection.

The wide spread application of wireless sensor networks has brought to light many

research issues such as battery efficiency, unreliable routing protocols due to node failures,

localization issues and security vulnerabilities. This report will describe the hardware

development of a fault tolerant routing protocol for railroad pedestrian warning system. The

protocol implemented is a peer to peer multi-hop TDMA based protocol for nodes arranged

in a linear zigzag chain arrangement. The basic working of the protocol was derived from

Wireless Architecture for Hard Real-Time Embedded Networks (WAHREN).

2

1. Introduction

The main objective of the project was to build a proof of concept prototype to warn the

pedestrians on railroad tracks about an oncoming train. In the US, on an average 500 people

are injured or killed every year due to pedestrian railroad accidents [11]. Most of these

accidents happen in blind spots or due to negligence. A warning system can potentially warn

victims from oncoming trains. The warning systems should be capable of functioning even in

areas such as tunnels, canyons and bridges.

1.1. Network architecture

This prototype uses a Time Division Multiple Access (TDMA) based wireless sensor

network protocol based on the concepts of Wireless Architecture for Hard Real-Time

Embedded Networks (WAHREN) [1]. This protocol uses peer-to-peer communication. The

data from each node is relayed to its neighbors until it finally reaches the end node via a

multi-hop relay. The nodes are arranged as shown in figure 1. This arrangement allows each

node to communicate with two of its immediate neighbors on either side, thus providing a

fault tolerant way of relaying data. Even if there is a single node failure on either side of a

node the data still gets transferred. The data from each node will be available at the end

nodes. For example in figure 1 data from all the nodes can be read at either node 1 or node 7.

The protocol uses a TDMA based approach where each node is assigned a time slot for

transmitting. The nodes use their time slots to either send their own data or to relay data from

neighboring nodes. The data is transferred in systolic broadcast method.

 Basic functions of the production system:

 In the production system, all nodes are equipped with sensors to detect a train, while

minimizing false detection due to natural phenomena or pranksters.

 Each detection is relayed peer-to-peer to all nodes

 Each node can decide whether to issue an alert based on the distance (number of hops) to

the nearest detection.

The prototype was built using a eZ430-RF2500 [2] development board from Texas

Instruments (TI). The development tool has a MSP430F2274 [3] microcontroller and

3

CC2500 2.4-GHz wireless transceiver [4]. To demonstrate the proper working of the protocol

each node is equipped with a Passive Infrared motion sensor (PIR sensor). The status of each

node’s sensor is relayed to the end nodes. The prototype software was developed to support

sixteen nodes; however production software could support many more.

Figure 1. Figure showing the node arrangement.

 The protocol is fault tolerant to single node failures at random locations. The network can

still reliably route data from one end to the other even with multiple single node failures at

random locations. For example, in figure 2, if nodes 3 and 6 fail, data is still reliably routed

from node 1 to node 7 through nodes 2, 4 and 5.

Figure 2. Network with multiple node failures.

1.2. Proof-of-Concept vs. Production System

The proof-of-concept system presented herein comprises the same basic subsystems and

functions as would be needed in a production system. Although it varies considerably in the

details of how the subsystems are implements, all of the principles are transferable and

adaptable to the needs of a production system.

A production system would be required to detect a train, forward that data a mile or more

down the track, and issue an audio/visual alert sufficient to attract a trespasser’s attention

well in advance of the arrival of the train. The proof of concept system is a much smaller

Node 1

Node 2 Node 4

Node 5 Node 3

2

N

Nod Node 6

Node 7 Node 1

No

de 5

Nodde 4

No

e 6

Nod

4

system, designed to detect motion of a human being in a building, forward that data up-to

100 meters down the hallway, and issue a visible alert to a researcher who is looking for it.

The system comprises four basic subsystems: a Sensor subsystem, a Software-

Configurable Radio subsystem, an Annunciator subsystem, and a Power Supply subsystem.

These subsystems are modular, and can be independently modified or adapted to in-the-field

requirements and conditions.

1.2.1. Sensor Subsystem

The proof-of-concept system employs a simple Passive Infra-Red (PIR) sensor to detect

motion of a human. By contrast, the production system would require a more sophisticated

suite of sensors to detect a train, while being insensitive to false alarms, especially those

induced by pranksters. Development of the production sensor suite is beyond the scope of

this study.

1.2.2. Software-Configurable Radio Subsystem

The Radio subsystem comprises a low-cost, low-power micro-controller and an RF

transceiver. Operation of this subsystem is completely dictated by the micro-controller

software.

The definition and operation of the entire network is completely controlled by the micro-

controller software, which can be easily adapted to any production system requirements. The

primary focus of this study is demonstrating the feasibility of the network for peer-to-peer

forwarding detection data to all nodes in the system.

The proof-of-concept transceiver operates in the unlicensed 2.4 GHz band, whereas a

production model would employ RF bands licensed to the railroads.

1.2.3. Annunciator Subsystem

The proof-of-concept Annunciator is simply an LED visible to a passer-by. A Production

model subsystem would need to be bright, loud, and annoying enough to catch the attention

of a distracted trespasser (e.g. one who is texting on a smart-phone while wearing earphones

5

and a hooded parka). Development of the production annunciator is beyond the scope of this

study.

1.2.4. Power Supply subsystem

Each proof-of-concept node is powered by a pair of AAA batteries. However, a

production model would require a self-contained renewable power supply. Several

alternatives exist, including solar, wind, and/or vibration-based sources. One advantage of

this system is that the vast majority of power is consumed when a train is present.

Development of a production Power Supply subsystem is beyond the scope of this study.

6

2. Background

 The routing protocol implemented in the prototype was derived from WAHREN [1].

The WAHREN routing protocol was designed specifically for highly reliable message

delivery over fixed networks and for hard real-time deadlines [1]. This protocol was designed

for linear topologies like figure 1. This ideally suits the requirements for sensor placement

along the railroad tracks, since they are essentially a fixed linear topology.

 The WAHREN protocol was also designed to deliver messages in fixed time, where

the delays for all packets are time bounded [1]. This is also a very important requirement for

pedestrian warning systems. The warning message has to reach the pedestrian in time; hence

delivery time of the packets is critical. The protocol uses a TDMA based approach for on

time delivery of a node’s packet and for fairness of medium access. WAHREN was also

designed to withstand single node failures at random locations. This helps reliably route data

from one end to the other even in the presence of faults [1]. The protocol also works well

with gentle curves in the topology, and can be adapted to sharp corners.

7

3. Basic Operation

 This section will describe in detail the working of the protocol. The operation of each

node can be divided into two modes: time synchronization mode and normal mode. The

protocol is based on TDMA, hence time synchronization is important. Each node is given its

own time slot. There are sixteen time slots in one window, where each time slot is 4ms.

Hence the entire window will be 64ms as shown in figure 3.

 When each node is powered on, it goes through the time synchronization mode, and

once it is done with time synchronization, it enters the normal mode and remains there

indefinitely. During the time synchronization mode, each node synchronizes its clock to its

neighbors clocks and picks a node address (which corresponds to an available time slot).

When the first node is turned on it has no neighbors, so it does not make any corrections to

its clock counts and just picks the first time slot. But when the second node is turned on, it

first checks to see if there are transmitting nodes, picks an available time slot, and then

synchronizes with the first node’s clock. Once synchronized, it starts transmitting. Once node

2 starts transmitting, node 1 detects the presence of node 2 and it also makes corrections to its

clock counts. This helps bring the clock counts of both the nodes as close as possible. Now, if

node 3 is turned on, it does the same; it first synchronizes with both nodes 1 and 2 and then

starts transmitting. All the nodes turned on follow the same procedure. Once each node

synchronizes, it enters normal mode; this is when it starts transmitting.

Figure 3. Figure showing one complete window.

8

Downstream

Downstream

Downstream

Downstream

When a node enters normal mode it does three operations:

(1) During its time slot it transmits its data or relays data received from its neighbors.

(2) During the remaining time slots it receives data from its immediate two neighbors on

either side.

(3) And at the end of each window, it performs clock count corrections based on the

arrival times of its neighbor’s packets.

The node remains in a low-power sleep mode in between these operations. Each node

will transmit its data at the middle of its time slot; for example, node one will transmit its

data at 2 msec (its time slot is from 0 – 4 msec) and node 2 will transmit its data at 6 msec

(its time slot is from 4 – 8msec), and so on. Figure 1, shows that each node can communicate

with two of its neighbors on either side. This ensures that even if one node fails, data is still

relayed to the end nodes. The data payload of each node is 4 bytes, where 2 bytes carry the

upstream data and 2 bytes carry the downstream data. This ensures that the same data is

available at both the ends.

The prototype consists of sixteen nodes. Each node transmits its own sensor data every

sixteenth window (during Window-0) and they continuously relay data received from their

Node 1 Node 2 Node 3 Node 4
Data1 Data2 Data3 Data4
Data1 Data2 Data3 Data4

 Figure 4. Figure showing the flow of data.

Node 1 Node 2 Node 3 Node 4
 Data1 Data2 Data3

Data2 Data3 Data4

Node 1 Node 2 Node 3 Node 4
 Data1 Data2

Data3 Data4

Node 1 Node 2 Node 3 Node 4
 Data1

Data4

Upstream

Upstream

Window - 0

Window - 1

Upstream
Window - 2

Upstream
Window - 3

9

during the remaining fifteen windows (Window-1 to Window-15). Figure 4 illustrates how

data gets relayed to the end nodes. Each node transmits its own data during window-0. This

is later on relayed by its neighbors to the end nodes. For example, Node 2 transmits its data

(“Data2”) during its time slot in Window-0. This is later on relayed by Node 3 and Node 1 in

Window-1 and by Node 4 in Window-2.

When each node receives a packet from its neighbors it records the arrival time of the

packet. For example in figure 1, node 1 can receive packets from both node’s 2 and 3 and

records the arrival time of the packets from both nodes. The difference in the expected arrival

time and the actual arrival time is used to find the error in the clock counts. The average error

is used to correct the nodes clock counts. This correction is done at the end of the window.

The MSP430’s clock is not sourced from a crystal oscillator hence the clock generators are

neither exceptionally accurate nor stable; hence the clock counts of all the nodes cannot be

perfectly synchronized. There will be a non-zero offset while making corrections.

In the pedestrian warning system, each and every node is equipped with a sensor to detect

the presence of a train. As soon as a train is detected the warning signal is relayed ahead of

the train as shown in the figure 5. The warning signal is forwarded to ±N nodes from the

detection; the distance to forward the alert can be dependent on the speed of the train. The

distance to forward the alert should also provide the pedestrian enough time to move away

from the tracks. In the image shown in figure 5 the warning signal reaches the pedestrian

before the train does, providing the pedestrian enough time to move away from the tracks.

Figure 5. Operation of railway pedestrian warning system.

10

LE
D

1K

Ω

4. Hardware implementation

4.1. Hardware used:

1. EZ430-RF2500 development board [2].

 MSP430F2274 microcontroller [3].

 CC2500 2.4-GHz wireless transceiver [4].

2. PIR Sensor (#555-28027) from parallax [16].

3. LED for indication.

4.2. Node’s hardware design

This section describes in detail the hardware implementation of the prototype. The

eZ430-RF2500 development board was used to implement the controller and for wireless

communication. The eZ430-RF2500 is an MSP430 wireless development tool. The

development board features a MSP430F2274 microcontroller and CC2500 2.4-GHz wireless

transceiver [2]. The IAR embedded workbench [17] was used to program and debug the

MSP430F2274 microcontroller. The schematic of the prototype is shown in Figure 6 and

actual images of the prototype’s top and front views are shown in Figure 7.

Figure 6. Block diagram of the hardware implementation.

P2.6

P3.3

P3.2

P3.1

P3.0

SCLK

SOMI

SIMO

RX Int

CS

OUTPUT

VCC

GND

P2.0

P2.1

GND

CC2500
(2.4GHz)

SIMO

SOMISOMI

SCLKSCLK

PIR
Motion
Sensor

OUTPUT

1K
Ω

L

RX Int

CSCS

RX Int
P2

P3.3

P3

P3.1

P3.0

VCC

GND

2.0

P2.1

GND

3.2

P2

2.6

MSP430

11

Figure 7. Top and front views of the prototype node.

The MSP430F2274 is 16-bit RISC architecture rated to operate between 1.8V and 3.6V.

The prototype is powered by 2 AAA batteries. The MSP430’s internal clock can be

configured to run at speeds up to 16 MHz [3]. For our application the master clock (MCLK)

is configured to run at 8 MHz. The MCLK is the clock source for the CPU and a sub-master

clock (SMCLK), configured to run at 1 MHz. SMCLK is the clock source used for the timers

and for SPI communication with the CC2500. The timer is configured in UP mode. It is

programmed to generate an interrupt at the end of each window, which is 64 msec. The timer

is also used to trigger an interrupt during the node’s transmit time slot. The node transmits its

data during this interrupt. MSP430 external port pin P2.0 is used to read the sensor status,

and port pin P2.1 is used to toggle the external LED, to signal an alert.

The MSP430 uses SPI to communicate with the CC2500 transceiver. Pins (P3.0 to P3.3)

are configured for SPI communication. P3.0 is used as chip select, P3.1 is used as slave in

master out (SIMO), P3.2 is used as slave out master in (SOMI) and P3.3 is used as clock

source (SCLK) from master to slave. Pins P3.0 to P3.3, P2.6 and P2.7 are internally

connected to the CC2500. The SPI’s clock source is derived from the SMCLK. This is

further divided by 2 resulting in an SPI data rate of 500 Kbps. Pins P2.6 and P2.7 are

PIR motion sensor

ON/OFF Switch

eZ430-RF2500 Battery Pack LED Node Address

12

connected to the CC2500’s GDO0 and GDO2 pins. These pins are user configurable pins,

used to configure the CC2500 to generate an interrupt when a packet is received. Once SPI is

configured, the CC2500 can be configured with the required settings.

The CC2500 is configured to transmit at a data rate of 250 Kbps. The CC2500 transmits

in the 2.4 GHz frequency band. The base frequency starts from 2.433 GHz. The channel

spacing is configured to 199.95 Khz. The frequency has to be picked carefully, since Wi-Fi

also uses the same frequency band. For our demonstration specifically channel number 89

was used. This corresponds to a carrier frequency of 2450.79 MHz.

Carrier frequency = Base frequency + (Channel spacing * Channel number)

 = 2.433 GHz + (199.95 Khz * 89)

 = 2450.79 MHz.

This frequency falls into the gap between Wi-Fi channels 6 and 11. The CC2500 is

configured to transmit a 4 byte preamble and a 32 bit sync word before transmitting the

payload. The payload transmitted is 7 bytes long. This is appended with a 16 bit CRC for

error detection. The CC2500 has on-chip support for CRC handling and sync word detection

[4]. Minimum shift keying (MSK) is used to modulate the data transmitted. Carrier sense is

disabled, and the GDO0 pin is configured to generate an interrupt whenever a valid packet is

received. The data is transmitted as a broadcast to all nodes in the neighborhood. Data

transmitted with a receiver address of 0xFF is considered a broadcast. The actual address of

the transmitting node is included in the payload.

4.3. Receiver node’s design

The receiver node used to collect data from any node in the network consists of the

MSP430F2274 and the eZ430’s USB debugger card. The receiver node collects data from a

targeted node and sends it to a host computer via UART (universal asynchronous

receiver/transmitter). The receiver node is configured to receive packets at the same

frequency and modulation as the network nodes. The receiver node is configured to send the

received packets to the host over UART at 9600 bauds with no flow control, no parity check

and with 1 stop bit.

13

5. Software implementation

5.1. Algorithms

 This section will describe in detail the software development for the prototype.

5.1.1. Procedure for clock correction

 The first thing that has to be done before starting to transmit is to synchronize clock

counts with the neighboring nodes. This is done using the startup sync function

“startup_sync()”. This function makes sure that the node’s clock count is as close as possible

to its neighboring nodes and also assigns a node address. In this prototype, the node address

is hardcoded for each node. To achieve time synchronization, each node’s clock counts have

to match the neighbor’s clock counts as closely as possible. This is done for 16 windows. The

window size is not updated now; this will be done once transmission starts. During startup

sync the node will not be transmitting, it only listens to other nodes. The code for updating

the clock counts to match the neighbors clock counts is shown below. The flow chart can be

found in Appendix A (flow chart 4).

 while(total_window_cnt<16) // Sync for 16 windows
 {
 __bis_SR_register(LPM1_bits + GIE); // Sleep till interrupt
 if(packet_received_flg) // Received packet is valid
 {
 if(packet_rx[0] == (node_add-1)) // Sync to the node before me
 {
 time_error = packet_rx[1]; // Grab received time

 // Calculate error with received time and expected time
 time_error -= (half_slot_size+(slot_size*(packet_rx[0]-1)));

 if(time_error > 0) // If error is positive
 while(TAR<time_error); //Wait for TAR to reach error
 TAR -= time_error; // Update TAR value

 if(packet_rx[2] == (node_add-1))
 window_count = 0; // Match window count with neighbor
 }
 else if(packet_rx[0] == node_add)
 {
 startup_sync(); // Restart startup sync
 }
 packet_received_flg = 0; // Clear flag
 }
 }

14

 The “startup_sync()” function also matches the window count with its neighbor (this

helps the node decide when to transmit its data). At the end of this function the node address

is fixed and the clock error is as small as possible. Before the node starts transmitting just to

make sure that the sync was proper, each node performs a sync check using the function

“sync_check()”. This function makes sure that the startup sync went on smoothly. It also

makes sure that the error was minimized before starting to transmit; this is done for 3

windows. If the error is large then the function again calls the startup sync. The code uses a

function to find the minimum error; this function’s working will be discussed later. The code

is shown below and the flow chart can be found in Appendix A (flow chart 5). Once done

with startup sync and sync check, the node can start transmitting data.

 while(total_window_cnt<3) // Check for 3 windows
 {
 __bis_SR_register(LPM1_bits + GIE); // Sleep till interrupt

 TI_CC_SPIStrobe(TI_CCxxx0_SIDLE); // Initialize CC2500 in Idle mode
 TI_CC_SPIStrobe(TI_CCxxx0_SRX); // Initialize CC2500 in RX mode

 time_error = 0; // Clear time error
 error_buff[0]= min_error(error_buff[0],error_buff[1],0);//Get min err
 error_buff[1]= min_error(error_buff[2],error_buff[3],2);//Get min err
 time_error = (error_buff[0] + error_buff[1])/3;// Take the average err
 if((time_error<25) && (time_error>-25)) // If error is within +-25
 {
 correct_error(); // Correct clock errors
 }
 else
 {
 startup_sync(); // Restart startup sync
 }
 }

5.1.2. Procedure for normal operating mode

 The node enters the normal operating mode once it is done with startup sync. It remains

in this mode indefinitely. At the beginning of this mode, transmission is enabled. After that

the node enters a sleep mode until it receives a packet, detects the end of the window, or

begins a transmission. First, what happens when a packet is received, is explained. As soon

as a packet is received, the MSP430 gets an interrupt from the CC2500 transceiver which

pulls it out of sleep mode, and interrupt service routine “f_RxData_ISR()” is executed. This

function collects information from the received packet and goes back to sleep. At the

beginning of the interrupt service routine the arrival time of the packet is captured. This

15

timestamp is used to find the error in clock counts. Now the received packet is uploaded from

the CC2500 via SPI communication. The packet received has the format shown in figure 8.

rx[0] Broadcast address (0xFF)
rx[1] Transmitting Node address
rx[2] Upstream data (Node address + Sensor data)
rx[3] Upstream data (Error data)
rx[4] Downstream data (Node address + Sensor data)
rx[5] Downstream data(Error data)
Figure 8. Table showing the received packet structure.

 Once a packet is received, two things are done. First, the error in the packet arrival time

with respect to the expected nominal arrival time is determined. This gives the clock offset

with respect to our current clock count. This is stored in a buffer (error_buff), and once all

the errors from our neighboring nodes are collected. This buffers information can be used to

make clock count corrections at the end of the window. This will be explained later. A

sample of how the error is calculated is shown below.

 error_buff[2]= packet_rx[1]; // Copy timestamp

 // Calculate error and store in buffer
 error_buff[2] -= (HLF_SLOT_SIZE+(SLOT_SIZE*(packet_rx[0]-1)));

 The second thing that has to be done is to store the upstream and the downstream data in

a queue so that they can be forwarded during this node’s transmit slot. The queue consists of

three sub queues – the current queue carrying data to be transmitted during the current time

slot, the next queue carrying data to be transmitted during the next time slot and the future

queue carrying data to be transmitted during the time slot after the next time slot. Once the

queue is updated and the error is calculated and stored in the error buffer, the node can go

back to sleep until the next interrupt. This procedure is repeated every time a packet is

received. The process of storing data in the queues as they are received is described next. The

flow chart can be found in Appendix A (flow chart 2).

 The shifting between queues can be better explained using the figures 9-12. Data received

from the node’s immediate neighbors (node address ± 1) are stored in the next queue as

shown in figures 9 and figure 11, this will be transmitted during this node’s time slot in the

next window. Similarly, data received from the node’s second immediate neighbors (node

16

address ± 2) are stored in the future queue as shown in figures 10 and figure 12, this will be

transmitted during this node’s time slot in the window after the next window.

 If data received is from the node above (node address+1), the downstream data is copied

to the queue as shown in figure 9.

Index [0] [1] [2] [3]
Current queue

Next queue Downstream data [0] Downstream data [1]
Future queue

Figure 9. Data stored in the next queue.

 If data received is from the node above that (node address+2), the downstream data is

copied to the queue as shown in figure 10.

Index [0] [1] [2] [3]
Current queue

Next queue
Future queue Downstream data [0] Downstream data [1]

Figure 10. Data stored in the future queue.

 If data received is from the node below (node address-1), the upstream data is copied to

the queue as shown in figure 11.

Index [0] [1] [2] [3]
Current queue

Next queue Upstream data [0] Upstream data [1]
Future queue

Figure 11. Data stored in the next queue.

 If data received is from the node below that (node address-2), the upstream data is copied

to the queue as shown in figure 12.

Index [0] [1] [2] [3]
Current queue

Next queue
Future queue Upstream data [0] Upstream data [1]

Figure 12. Data stored in the future queue.

 The queue indices are updated at the end of every window during normal mode. The

current queue index is redirected to the next queue, the next queue index is redirected to the

17

future queue and the future queue index is redirected to the current queue like a loop. This is

done with the code shown below.

 // Increment the queue indices
 curr_que_idx =(curr_que_idx>=2)?((curr_que_idx+1)-3):(curr_que_idx+1);
 next_que_idx =(next_que_idx>=2)?((next_que_idx+1)-3):(next_que_idx+1);
 futr_que_idx =(futr_que_idx>=2)?((futr_que_idx+1)-3):(futr_que_idx+1);

 What happens every time the transmissions interrupt arrives is described next. This

interrupt is triggered every time at the middle of the nodes time slot. So every node will

transmit its data during this interrupt. The data packet transmitted has the structure shown in

figure 13.

packet_tx[0] Packet length not including the length field
packet_tx[1] Broadcast address (0xFF)
packet_tx[2] Node address
packet_tx[3] Current queue[0]
packet_tx[4] Current queue[1]
packet_tx[5] Current queue[2]
packet_tx[6] Current queue[3]

Figure 13. Table showing the transmitted packet structure.

 The packet shown in figure 13 is transmitted during the node’s time slot. The current

queue has the upstream and the downstream data that has to be relayed on to the neighboring

nodes. The name of the array holding the packet is “packet_tx[]”.

 The data structure of the payload for both upstream and downstream is shown in figure

14. The first bit is used to send the 1-bit sensor data (motion detected or not), the next 7 bits

are used for the node address and the next 8 bits (1-bit used for sign and 7-bits used for

magnitude of node’s clock offset) are used to send the node’s current clock offset. The error

is saturated to ±127 before transmitting.

Bit position 15 14-8 7 6-0
Contents Sensor data Node address Error

sign
Current

error
Figure 14. Payload Data in upstream and downstream.

 The node transmits its own data when the window count is 0 and just relays data received

from the neighboring nodes for the rest of the windows. The code for this is shown below.

The flow chart can be found in Appendix A (flow chart 1).

18

 if(window_count == 0)
 {
 packet_tx[3] = ((P2IN<<7)|node_add); // Node address
 packet_tx[4] = error_data; // Current Error
 packet_tx[5] = ((P2IN<<7)|node_add); // Node address
 packet_tx[6] = error_data; // Current Error
 }
 else
 {
 packet_tx[3] = packet_queue[curr_que_idx][0]; // Transmit data from
 packet_tx[4] = packet_queue[curr_que_idx][1]; // queue
 packet_tx[5] = packet_queue[curr_que_idx][2];
 packet_tx[6] = packet_queue[curr_que_idx][3];
 }

 Once the data is transmitted the current queue’s values are reset and the node goes back

to sleep mode until the next interrupt.

 The third type of interrupt happens at the end of every window. At the end of the

window, the node is interrupted from sleep mode so that it can make corrections to the clock

counts. This keeps the nodes synchronized to each other. All this is performed in the normal

mode function “normal_mode()”.

 The average error is determined by picking up the minimum error from either side of the

node’s neighbors. The two minimum errors are averaged and the average of those is sent over

to the error correction function “correct_error()”. The code for this is shown below. The

minimum error is determined using the min error function “min_error()”.

 error_buff[0]= min_error(error_buff[0],error_buff[1],0);//Get min error
 error_buff[1]= min_error(error_buff[2],error_buff[3],2);//Get min error
 time_error = (error_buff[0] + error_buff[1])/3;// Take the average error
 correct_error(); // Correct clock errors

 The min error function has three input parameters – two errors from the error buffer and

the index. This function then returns the minimum among the two errors passed to it. Each

node first sends the errors of the nodes below its node address and then sends the errors of

nodes above its node address. This gives two errors, one above and one below the node

address. The node then takes the average of these by summing them and dividing the sum by

3 (we are dividing by 3 to include the current node, whose error will be zero).

 The min error function’s code is shown below. The errors are first checked if they are

negative. If they are negative the absolute value is taken. Then the minimum error among the

19

two absolute values is returned. If both the errors are 0xFFF (the default value) that means no

packets were received, the function will just return zero.

int32_t min_error(int32_t error_1, int32_t error_2, uint8_t index)
{
 if(error_1<0) // If first error is negative
 error_1*=-1; // Get ABS value
 if(error_2<0) // If second error is negative
 error_2*=-1; // Get ABS value
 if(error_1>error_2) // If 1st error is greater than 2nd
 {
 return error_buff[index+1]; // return second error
 }
 else
 {
 if(error_1 != 0xFFF)
 return error_buff[index]; //return first error
 else
 return 0; //return zero
 }
}

 Now that the average error is calculated, it will be sent to the error correction function

“correct_error()”. This error will be used to correct the clock counts. The error correction

code is shown below. In the error correction function, the window size is updated every 16th

window (the window_count resets every 16th window). This is done by adding the error to

the nominal window size, and the slot size is updated, the half slot size and the interrupt

trigger values to reflect the changes made to the window size. Since the window correction is

done only once every 16th window the node will just correct the TAR (counter value) during

the remaining time. At the end of the error correction function, the error buffer values are

reset to 0xFFF. The flow chart can be found in Appendix A (flow chart 3).

 if(window_count == 0)
 {
 time_error = time_error>>1;
 window_size = 16000 + time_error; // Add error to the window size
 slot_size = window_size >> 4; // slot size = window size/16
 half_slot_size = slot_size >> 1; // Half slot size= slot size/2

 TACCR0 = window_size; // Update TACCR0 with new values
 TACCR1 = half_slot_size + (slot_size*(node_add-1))- tx_delay;
 }
 else
 {
 if(time_error > 0) // If error is positive
 while(TAR<time_error); // wait for TAR to reach error
 TAR -= time_error; // Update TAR value
 }

20

Figure 15. Clock corrections between 2 nodes.

 For example, figure 15 shows clock correction procedure for 2 nodes. In this example,

node-2’s clock is 60 counts faster than node-1’s clock. Which means when node-1’s clock

reaches 16000 counts, node-2’s clock would have rolled over and reached 60 counts. The

total transmission time is 187 counts. Each node transmits ahead of time, so that the receiver

receives it at the expected arrival time. So node-1 would transmit its packet when its counter

reaches (500-187) counts, this would arrive at node-2 at (500+60) counts. Similarly, node-2’s

packet would arrive at node-1 at (1500-60) counts. Then both the nodes calculate the clock

offset as shown in the figure 15. the average clock offset is then added to the window size.

The node’s then count towards the updated window size in the next window.

5.2. Receiver node software implementation

This section describes in detail the receiver node’s software development and the

software application used to monitor the nodes’ activity. The receiver node’s CC2500 is also

configured to generate an interrupt every time a packet is received successfully. Once the

packet is received, the receiver node compares the node address of the received packet with

the target node address. If the received node address matches the target node address, the rest

of the packet is processed to be sent over the UART and to the USB debugger. The eZ430’s

USB debugger is hard coded by the manufacturer to send data at 9600 bauds [5]. Due to this

limitation either upstream or downstream data can be sent over the UART, but not both.

21

The data to be sent over UART consists of the node’s address, its sensor status and

the node’s corresponding clock count offset with respect to the nominal. The node address

and the sensor status are masked before they are sent over UART because some of the node

addresses correspond to control commands in the UART. To avoid this error, the empty bit

fields are masked before transmitting. Similarly the node’s corresponding error is a random

value which could also match some of the control commands in the UART; hence it is split

into 2 bytes (upper and lower nibble) and masked before transmitting. At the end of

transmission, a new one word line character “\n” is transmitted. This is transmitted to

indicate the end of transmission and also acts as a reference to separate the data packets at the

computer’s end. The stream flag is used to switch between upstream and downstream. The

code snippet is shown below.

 if(stream_flag == 1)
 {
 while (!(IFG2 & UCA0TXIFG)) {};// Wait while Tx Buff not empty
 UCA0TXBUF = (rx[2] | 0x60); // send byte address and sensor data
 while (!(IFG2 & UCA0TXIFG)) {};// Wait while Tx Buff not empty
 UCA0TXBUF = ((rx[3] & 0x0F)| 0x60); // send lower half of error
 while (!(IFG2 & UCA0TXIFG)) {};// Wait while Tx Buff not empty
 UCA0TXBUF = (((rx[3] & 0xF0)>>4)| 0x60);// send upper half of error
 while (!(IFG2 & UCA0TXIFG)) {};// Wait while Tx Buff not empty
 UCA0TXBUF = '\n'; // send new line char
 }
 else
 {
 while (!(IFG2 & UCA0TXIFG)) {};// Wait while Tx Buff not empty
 UCA0TXBUF = (rx[4] | 0x60); // send byte address and sensor data
 while (!(IFG2 & UCA0TXIFG)) {};// Wait while Tx Buff not empty
 UCA0TXBUF = ((rx[5] & 0x0F)| 0x60); // send lower half of error
 while (!(IFG2 & UCA0TXIFG)) {};// Wait while Tx Buff not empty
 UCA0TXBUF = (((rx[5] & 0xF0)>>4)| 0x60);// send upper half of error
 while (!(IFG2 & UCA0TXIFG)) {};// Wait while Tx Buff not empty
 UCA0TXBUF = '\n'; // send new line char
 }

5.3. Software development of the monitoring GUI

This section gives an overview of the software used to monitor each node’s activity on a

host computer. The tool helps monitor the sensor data and the error in each node. This

provides real time information of each node’s activity. This tool is designed to monitor data

from all sixteen nodes. The tool can be used to tap into any target node and collect data. This

is possible as the nodes relay data in both directions. This provides the flexibility to collect

22

data from the first node, the last node or any node in-between. The tool was designed and

programed using C#. The tool is designed to be used in tandem with a receiver node (code

described in the section 6.2). The receiver node is programed to collect data from a target

node; the collected data is then sent over to the tool in the computer via UART

communication. The tool also sends instructions back to the receiver node. The instruction

could be the desired target node or the upstream or downstream data from the desired target

node. Further details on how to use the tool can be found in the user manual (Appendix B).

23

6. Testing and validation

This section validates the working of the prototype. To test the protocol, sixteen nodes

were built. All sixteen nodes were laid out as shown in figure 1. The nodes were monitored

from node 1’s upstream data through the receiver node. The nodes stay synchronized for

extended period of time, despite significant differences in clock frequencies. The results of

the experiments conducted are described in this section.

6.1. Steady state output for all 16 nodes

The steady state output of all 16 nodes was monitored for a few minutes and the sync

offset for each node with respect to nominal clock counts was buffered for the entire

duration. 269 samples were accumulated, then the minimum, maximum and the average

offset was calculated for each node and results were plotted as shown in figure 16.

Figure 16. Minimum, maximum and average sync offsets for all 16 nodes.

Cl
oc

k
O

ffs
et

 (c
ou

nt
s)

24

Figure 17. GUI showing each and every node’s activity (left). Where green indicates that the
node is up and running. Clock offset for each node (right).

In figure 16, the x-axis is the node number and the y-axis is the sync offset with respect

to the nominal in clock counts. Each clock count is equal to 4 microseconds. The zero on the

y-axis is the nominal count. Each node’s minimum, maximum and the average clock count

offset is shown in the graph in figure 16. It can be shown in the graph that the clock offset is

bounded within a limit for each node. This clock offset is applied to the node’s window size

while making clock corrections. As expected, the clock offsets are non-zero as there will be

constant variation from the clock source. A negative offset indicates that the node’s clock is

slower than its neighbors. Similarly a positive offset indicates that the node’s clock is faster

than its neighbors.

6.2. Network’s response with node 2 turned off

This test was performed to demonstrate the impact of a missing node. Once the nodes

reached steady state, node 2 was turned off. The table in figure 18 shows node 2’s four

neighbors offsets when node 2 was turned off and then turned back on. Node 1 and node 3

are dependent on node 2 for their clock synchronization; this can be seen in figure 18. As

soon as node 2 is turned off, the magnitude of node 1’s offset decreases and node 3’s offset

increases. Now both node 1 and node 3 are synchronizing with each other.

Figure 18. Table showing clock offsets for the first 5 nodes.

25

(C
ou

nt
s)

Figure 19. Graph showing the change in offsets as node 2 is turned off.

Once node 2 is turned back on, the magnitude of node 1’s offset increases and node 3’s

offset decreases. The nodes go back to the same state as they were before. Figure 19 shows a

graph of the offsets plotted from the table in figure 18. When node 2 is turned off, the offsets

of node 4 and 5 also increase because node 4 is dependent on node 3 (as this is the only node

to the left of node 4) and both of node 5’s neighbors to the left have increased their offsets.

This validates the working of the prototype for single node failure.

6.3. Network’s response with node 2 and node 4 turned off

This test was performed to demonstrate the impact of a two alternate missing node. Once

the nodes reached steady state, node 2 was turned off and after reaching steady state node 4

was turned off. The same results as the last test can be observed when node 2 was turned off

(section 7.2). As soon as node 4 is turned off, both node 3’s and node 5’s offsets increase.

This shows that node 3 and 5 were synchronized to node 4 while it was still on. The graph is

shown in figure 21.

Figure 20. Table showing clock offsets for the first 5 nodes.

Node-2 turned OFF

26

(C
ou

nt
s)

Figure 21. Graph showing the change in offsets as node 2 and 4 are turned off.

6.4. Network’s response with alternate nodes turned off

This test was performed with all 16 nodes. To demonstrate the reliability of the network

alternate nodes were turned off. Figure 22 shows the data received from node 1 when all

even numbered nodes are turned off. This shows that even with single node failure, data is

still routed to the end nodes. Figure 23 shows that time synchronization is still achieved even

with alternate nodes off.

Figure 22. GUI showing the data received from node 1.

Node-2 turned OFF

Node-4
turned OFF

27

(C
ou

nt
s)

Figure 23. Min, max and average sync offsets when alternate nodes are turned off.

6.5. Network’s response with 2 adjacent nodes turned off

This test was performed with all 16 nodes. When two adjacent nodes are turned off, this

breaks the network into two halves. For example, in figure 24, nodes 6 and 7 were turned off;

this breaks the link and all the data after node 6 is no longer available at node 1. This

partitions the network into 2 sub-networks (node1 to node5 and node8 to node16). The table

in figure 25 shows the loss of data once both nodes 6 and 7 are turned off.

Figure 24. GUI showing the data received from node 1.

28

Figure 25. Table showing clock offsets received from node 1.

7. Design constrains and compromises

Now that the system has been described in its entirety, this section discusses in detail

some constrains faced while designing the prototype.

7.1. Design considerations for production unit

The prototype was built to demonstrate that the concept can be used to provide a reliable

warning system for pedestrians. The prototype used PIR motion sensors to detect the

presence of an object, but can be replaced with a more sophisticated detection method to

detect the presence of a train, while minimizing false detections. The prototype uses LED’s

to notify the pedestrians, this can also be replaced with other warning systems such as lights

and horns. The prototype was designed to forward alert to ±1 node; this can be extended to

±N nodes. The prototype software was designed to accommodate sixteen nodes; this can also

be further extended by reusing the time slots.

The initial design of the prototype was to make the nodes pick their addresses

automatically. The nodes at startup would listen to their neighbors and based on that would

pick an empty time slot and an address corresponding to the time slot. This can be

implemented in the production nodes because in the field the nodes can clearly hear only

their neighbors. Thus they can detect empty time slots and pick those time slots. In the

29

prototype, a starting node could hear several other nodes due to the short distance involved.

Thus, the nodes were hardcoded with their addresses and pick the time slots corresponding to

their addresses.

7.2. Other design constrains

The receiver node uses a UART to communicate with the user’s computer. The eZ430-

RF2500’s USB debugger was used to communicate with the computer. Unfortunately, the

UART communication rate is fixed to 9600 baud [5]. This resulted in limiting the maximum

number of bytes that could be transmitted in one time slot. At the rate of 9600 bauds it will

take 3.3 msec to transmit 4 bytes over UART and the time slot for each node was 4 msec. To

send both the upstream and the downstream data, 8 bytes had to be transmitted (it takes 6.6

msec to send 8 bytes). Given the fact that only 4 bytes can be sent within each time slot the

GUI is limited to displaying only the upstream or the downstream data. This limitation is

only when the user tries to receive data from nodes other than 1 and 16. All the nodes can be

monitored from the end nodes. For node 1, only the downstream is sufficient and for node 16

only the upstream is sufficient.

Each node’s data consists of the node address, sensor status and the node’s clock offset.

The node address and the sensor status can be packed into one byte but the clock offset had

to be split into two bytes. The node’s clock offset is a random number and because of that it

would sometimes match the ASCII control codes, resulting in undesirable output at the

receiver end. To avoid this issue the offset is split into 2 parts (upper nibble and the lower

nibble). This is then packed into 2 bytes and masked before transmitting. At the end of each

node’s data a delimiter (new-line character) has to be sent; this is sent to help the receiver

separate the node’s data. All this put together is 4 bytes in length.

7.3.Choosing the proper frequency for communication

The CC2500 uses the 2.4 GHz band which is commonly used by many devices, including

Wi-Fi routers. Routers commonly use channels 1 (2.401-2.423 GHz), 6 (2.426-2.448 GHz)

and 11 (2.451-2.473 GHz) [7] as shown in figure 26. But some routers use channels other

than the ones mentioned above. The frequency for the prototype was chosen experimentally

to start at 2.4508 GHz. This is in between Wi-Fi channels 6 and 11. Due to the fact that the

30

channel could still be busy, carrier sense had to be disabled because this would delay the

transmission, which is not acceptable in a time critical application.

Figure 26. Wi-Fi Channel spectrum [6].

7.4. Total packet transmission time

The protocol relies on TDMA which makes time synchronization critical. Since the clock

offset is determined based on the received packets arrival time the transmission delay has to

be included. The transmission delay can be determined analytically as shown below.

Total transmission time:

 = +

Where:

Total transmission time.

 = MSP to CC2500 SPI transfer time at 500 Kbps.

 = Wireless transmission time at 250 Kbps.

SPI transfer time:

 = + +

 = (1-byte + 7-bytes + 1-byte) at 500 Kbps.

 = (9-bytes * 8-bits) / 500K = 0.144 msec.

31

Where:

 = Length of payload data in bytes.

 = Length of Tx FIFO register’s address in bytes.

 = Length of transmission strobe command in bytes.

Wireless transmission time:

 = + + +

 = (4-bytes + 32-bits + 7-bytes + 16-bits) at 250 Kbps

 = (17-bytes * 8-bits) / 250k = 0.544 msec.

Where:

 = Length of preamble in bytes.

 = Length of sync word in bits.

 = Length of CRC in bits.

 = +

 = (0.144 + 0.544) = 0.688 msec.

The above calculation does not include the time required for the CC2500 to modulate the

data, CRC calculation and the propagation time in air. Experimentally, the average total time

to transmit a packet was determined to be 0.748 msec. This delay is included in the packet

TX interrupt. The packet is transmitted ahead of the delay time so that it arrives at the exact

time expected at the receiver. In the field, propagation delay of 5.2 ms/mile has to be added

to the total transmission time. The CC2500, when in receive mode, occasionally stops

receiving. To overcome this issue, the receive strobe is retransmitted to the CC2500 at the

end of every window.

32

8. Conclusion

The prototype was successfully built and demonstrated. The algorithm used for this

project was also validated by the performance of the prototype. The protocol shows reliable

assurance for hard real time data communication even with node failures at random locations.

The prototype can be developed into a production module with slight modifications to

warn pedestrians about oncoming trains. The production model can be easily scaled to longer

distances by reusing the time slots. The network deployment can be variable. For example, in

areas where accidents are prone to happen, network deployment can be denser than in areas

with less human activity. In places such as railway stations, bridges and curved tracks the

network deployment can be denser. A denser deployment can easily catch the pedestrian’s

attention. In areas where there is less or no human activity and in places where there is clear

visibility of oncoming trains the network deployment can be less dense.

One of the main requirements of a railway warning system is that the warning signal

reaches the pedestrian well before the train does. To ensure this, the warning signal should

travel faster than the train. In the prototype, it takes 1.024 seconds for the warning signal to

travel from one end to the other. So if the prototype nodes are placed 50 feet apart, the

warning signal travels at a speed of 499.38 mph, which is much faster than a train’s speed.

The warning signals speed can be improved further by reducing the time slots width or by

using faster data rates between nodes. It is estimated that the propagation speed can be at-

least quadrupled with minimal changes to the system software.

The prototype is designed to forward an alert to one immediate neighbor on either side. In

the production model, the alert distance (number of hops from detection) can be determined

based on the speed of the detected train. Thus, the alert distance can be larger for a train with

higher speed and smaller for a train with lower speed. The speed of the train can be easily

calculated as we know the distance between two nodes and the time it takes to travel from

one node to the next. In order to avoid false detections due to track maintenance vehicles, the

nodes can be programmed to receive a wireless command from the maintenance unit to

inhibit detection of that vehicle, while still retaining its ability to detect oncoming trains.

33

In a 2nd order power chain, such as the proof-of-concept system, when 2 adjacent nodes

fail, the network is partitioned into 2 sub-networks. The two sub-networks still relay data

within themselves from one end to the other end. Once either of the failed nodes recovers, the

two sub-networks can automatically recombine to restore the complete network.

If this level of redundancy proves insufficient, the system can be configured as a higher

order power chain. For example, in a 3rd order chain, each node communicates with its 3

nearest neighbors on either side as shown in figure 27. This would require only minor

changes to the software and that the nodes are placed such that each node is within

communication range of its 3 immediate neighbors on either side.

Figure 27. Node-4 communicating with 3 immediate neighbors on either side.

The total cost of each proof-of-concept unit was $58.28. The most expensive components

are the ez430-rf2500 development board ($40) [18] and the PIR ($9.89) motion sensor [19].

If the nodes are placed 50 feet apart from each other, there will be 105 nodes per mile. The

total hardware cost would then be $6,120 per mile. Naturally, a production system would be

more costly, due to the Sensor, Annunciator, and Power Supply subsystems. Nonetheless, it

is reasonable to expect the system cost to be in the range of a few tens of thousands of dollars

per mile.

For future work, the nodes should be capable of predicting available node addresses at

startup. Rather than hard coding the address they should be able to pick their addresses based

on the information received from the neighboring nodes. It can also be used in applications

where direct line of sight communication is not possible, like in tunnels, canyons and mines.

1 2 4 3 5 6 7 5 6 71 3 44 5 62 3

34

9. Reference

[1] R.M. Kieckhafer, “Design of a Real-Time Wireless Network for the Northern Pierre
Auger Observatory”, the Pierre Auger Collaboration, June 28, 2010.

[2] Texas instruments, eZ430-RF2500 Development Tool User guide. SLAU227A Mixed
Signal Products, 2007. , Available: http://www.ti.com/lit/ug/slau227e/slau227e.pdf.

[3] Texas instruments, MSP430x22x2, MSP430x22x4 Mixed Signal microcontroller
Datasheet, 2012. , Available: http://www.ti.com.cn/cn/lit/ds/symlink/msp430f2274.pdf.

[4] Texas instruments, CC2500 Low-Cost Low-Power 2.4 GHz RF Transceiver Datasheet,
2014. , Available: http://www.ti.com/lit/ds/symlink/cc2500.pdf.

[5] Texas instruments, Application Report SLAA378D, April 2011, Available:
http://www.ti.com/lit/an/slaa378d/slaa378d.pdf.

[6] Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications, IEEE
Standard 802.11, 2012.

[7] Wi-Fi / WLAN Channels, Frequencies, Bands & Bandwidths [online]. Accessed on:
October 2014, Available: http://www.radio-electronics.com/info/wireless/wi-fi/80211-
channels-number-frequencies-bandwidth.php.

[8] Microsoft Visual Studio 2013, C# Programming Guide. Accessed on: June 2014,
Available: http://msdn.microsoft.com/en-us/library/67ef8sbd.aspx.

[9] Microsoft Developer Network, SerialPort Class. Accessed on: June 2014, Available:
http://msdn.microsoft.com/en-us/library/system.io.ports.serialport% 28v =vs.110%29.aspx.

[10] Instructables Tutorial, Serial Port Programming With .NET. Accessed on: June 2014,
Available: http://www.instructables.com/id/Serial-Port-Programming-With-NET/step1/Set-
up-and-Open-the-Serial-Port/

[11] St. Louise Post-dispatch, Hundreds die walking the tracks each year [online]. Accessed
on: September 2014, Available: http://www.stltoday.com/news/local/metro/hundreds-die-
walking-the-tracks-each-year/a rticle_b9c8bbcc-f424-559a-a0c4-bee46f8d4fe7.html

[12] The Pierre Auger Cosmic Ray Observatory [online]. Accessed on: February 2014,
Available: http://www.auger.org /index.html

[13] Branislav.K, et al, “The Flooding Time Synchronization Protocol”, SenSys '04
Proceedings of the 2nd international conference on Embedded networked sensor systems,
Pages 39-49, Nov 2004.

35

[14] R.M. Kieckhafer, et al, “Exploiting Omissive Faults in Synchronous Approximate
Agreement”, IEEE Trans. on Computers, VOL. 49, NO. 10, October 2000.

[15] Saurabh G, et al, “Timing-sync Protocol for Sensor Networks”, SenSys '03 Proceedings
of the 1st international conference on Embedded networked sensor systems, Pages 138 – 149,
2003.

[16] Motion sensor, PIR Sensor (#555-28027) Datasheet, Parallax Inc., 2012.

[17] IAR Embedded Workbench, Compiler and Debugger toolchain for microcontrollers,
IAR systems.

[18] Texas instruments, eZ430-RF2500 Development Tool, Available:
<http://www.ti.com/tool/ez430-rf2500t#buy>

[19] Motion sensor, PIR Sensor (#555-28027), Parallax Inc., 2012. Available:
<http://www.digikey.com/product-search/en?KeyWords=55528027>

Flow Chart 36

Appendix A

Flow chart 1: Function ‘f_TxData’

Start

Turn on onboard LED (RED)
to indicated Transmitting

If (window
count = 0)

Turn of Rx interrupt till
data is transmitted

Send Node’s data. This includes
the Sensor data, node address

and the current error

Clear the queue
once data is
transmitted

Send data
from queue

Turn off LED (RED) to
indicate completed

transmitting

Enable Rx
interrupt

Return and go
back to sleep

nboard

Rx inte

s

f

the q

data. This includes
data, node address

current error

data

nable R

f LED

No

YES

Limit the current error to ±
127. So that it occupies only

1byte in the payload

Flow Chart 37

 Flow chart 2: Function ‘f_RxData_ISR’

Start

Return (and go
back to sleep if not

in sync mode)

Save time stamp for
received packet

If in Sync
mode

Read data from
CC2500 chip

If valid
packet is
received

If Packet received is
from nodes neighbor
or nearest neighbor

Update queue with
received data

Based on the packet received time calculate error
between received time and expected time and

store the error in the error buffer.

Clear Rx
interrupt flag

Exit from sleep
on return

me sta

data

p

rn (and go
o sleep if not
ync mode)

lear Rx
rrupt flag

Update queue
received da

Based on the packet rece
between received time

store the error in

e queu

et rece

lear R

YES

No

YES

YES

No

No

Flow Chart 38

Flow chart 3: Function ‘correct_error’

Start

Return

Correct clock drift by adding
the time error to the Nominal

window size

If window_count
= 0

Correct clock skew by
updating the TAR value e

Correct clock dri
the time error to

window

ck dri

YES

No

Reset error buffer values to
0xFFF

R t

Flow Chart 39

 Flow chart 4: Function ‘startup_sync’

Start

Return

YES

Set sync mode flag

If (window
count<16)

If (current received
node addresses ==

node address
before me)

If valid packet
is received

Turn on both onboard LEDs to indicate
sync mode

Enter sleep till you receive a
packet or end of window Clear packet

received flag

Clear sync flag and
turn off LEDs

board

c mod

till yoR t e a

No

No

No

YES

YES Y

A B

eived

Flow Chart 40

No

If data in packet
belongs to node

address before me
Reset window

count

Correct clock skew and
drift

Calculate time error for
received packet

e tim

lock

No

in packet
s to node
before me

k skew and
ft

me error for
packet

me

k sk

YES

YES

A B

Flow Chart 41

Flow chart 5: Function ‘sync_check’

Start

Return

If (window
count<3)

Enter sleep till you receive a
packet or end of window

Offset is too large we
need to sync again

(startup_sync)

Call function
(correct_error) to

correct clock offset

Find the minimum error on
either side of the current node
and take the average of those

errors.

If time error
is within ± 25

till yo

R t

minimu

functi

a

Offset is too large we
need to sync again

(startup_sync)

on
ode
ose

No

YES

YES

No

Flow Chart 42

Flow chart 6: function ‘normal_mode’

Start

Turn on onboard green LED to
indicate entering normal mode

Enter sleep till you receive a
packet or end of window

Calculate the average offset for
current window by adding the 2
minimum offsets obtained and

dividing by 3.

While (1)
‘Infinite loop’

Call function
(correct_error) to correct

any timing offsets

Update queue index

Update TACCR1 and enable CCR1
interrupt this is the interrupt at

which the node transmits

R1 and

board

p till yo

queu

l funct

r
2

Find the minimum offset on
either side of the current node.

avera

Toggle the external LED if
node’s sensor or neighbor’s

sensor was triggered

e exte

User Manual 43

Appendix B

User Manual

Puneeth Ramesh

October, 31, 2014

User Manual 44

Contents

1 Introduction 45

2 Overview of the tool 45

3 Basic working 46

3.1 Programming the Node’s and the receiver node 46

3.2 Connecting to the receiver node 47

3.3 Changing the target node 48

3.4 Changing streams 49

3.5 Export collected error data to spread sheet 50

3.6 Monitoring sensor data 51

3.7 Disconnecting the receiver node 52

 4 References 52

User Manual 45

1. Introduction

This document describes in detail the PC software used to monitor each node’s activity.

The tool helps monitor the sensor data and the clock offsets in each node. This provides real

time information of each node’s activity. The tool is designed to monitor data from all 16

nodes. The tool can be used to tap into any node and collect data. This is possible as the

nodes relay data in both directions. This provides the flexibility to collect data from the first

node, the last node or any node in-between. The tool was designed and programed using C#.

The tool is designed to be used in tandem with a eZ430-Rf2500 receiver node. The receiver

node is programed to collect data from a target node and send the collected data to the tool

via a UART to a USB port. The tool also sends instructions back to the receiver node. The

instruction could be the desired target node or the upstream or downstream data from the

desired target node. This document is a guide on how to use the tool to monitor and collect

error data from the nodes.

2. Overview of the tool

Figure 1. Basic layout of the tool’s GUI.

Node’s sync offset

Node’s sensor status

Node’s label

Information box

Select target node

Select Upstream/Downstream data

Select COM port

Get available com port

Export offset data to spread sheet

Connect to the com port

N

N

I

N

S

S

I

S

SS

G

S

G

S

G

S

GG

EEEEEEE

C

User Manual 46

3. Basic operation

This section will describe how to use the tool. The basic layout of the graphical user

interface (GUI) is shown in figure 1. Before we start using the GUI we need to program the

receiver node with the receiver code using IAR embedded workbench; only then we can

communicate with the receiver node. Once the receiver node is up and running we can now

start the tool by double clicking on the “WSN.exe” file. First the tool needs to connect to the

receiver node. Since serial communication (UART) is being used, we need to connect to the

appropriate COM port on the PC.

3.1 Programming the network nodes and the receiver node.

This manual assumes that the user has IAR and the required drivers installed on his

computer. To program the nodes the user needs 2 files (“node.c” and “wireless.h”).

Place both the files in the same project folder and select the device under project options

as shown in figure 2. Before programming the device, update the node address in the

main function as shown in figure 3. The node address has to be changed manually for

each and every node. Then click on the “Download and Debug” button to program the

device as shown in figure 4.

Figure 2. Select the device under project options.

Figure 3. Update the Node address in the main function of the code.

User Manual 47

Figure 4. Click on the download and debug button to program the device.

The receiver node is programmed in the same way. The receiver node also

requires two files (“receiver_node.c” and “wireless.h”) to program it. The wireless.h

file is the same for both.

3.2 Connecting to the receiver node

First, plugin the receiver node to a USB port and then to find the receiver node’s

COM port. On your desktop click start. In the search bar type Device Manager. Then

open Device Manager. This will give you the window shown in figure 5. Under ports we

can find the receivers’ COM port. In figure 5 the COM port is COM21.

Figure 5. Device Manager showing active COM ports.

 Once the COM port is known we can now connect to the receiver node. On the

tool’s GUI click the “Get Ports” button to generate a list of active COM ports on your

PC and select the receivers’ COM port as shown in figure 6.

User Manual 48

Figure 6. Selecting COM port on the GUI.

 Once we select the COM port we can now hit the “Connect” button to establish a

connection. Once the connection is established we get a confirmation in the information

box as shown in figure 7. We cannot establish a connection without selecting the COM

port. This will cause an error message on the information box.

Figure 7. After establishing connection.

3.3 Changing the target node

Once the connection is established by default the tool starts collecting data from

node 1. And by default it collects the upstream data and starts monitoring the sensor

data. We can change the target node by selecting a different node from the drop down

list next to the “UP” button as shown in figure 8. This can only be done once a

User Manual 49

connection is established. Changing the target node before establishing a connection will

result in a warning message in the info box.

Figure 8. Changing the target node.

3.4 Changing streams

We can change streams by clicking the “UP/DOWN” button, as shown in figure

9. It is useful to change streams when our target node is the 16th node, as all the data

flows downstream.

Figure 9. Collecting Upstream/Downstream data.

User Manual 50

3.5 Export collected error data to spread sheet

The tool has the capacity to store the previous 300 sync offsets for all 16 nodes.

This can be dumped into a spread sheet. Later on the data can be plotted. To save the data

to a spread sheet we just need to hit the “Export” button as shown in figure 10. This will

create or overwrite a csv file with the name “Output.csv”. It is recommended to

disconnect before exporting the data.

Figure 10. Export to spread sheet.

The data saved to the spread sheet is as shown in figure 11. This can be plotted to

see the variation with respect to nominal.

Figure 11. Exported data.

User Manual 51

3.6 Monitoring sensor data

The sensor data from each node can be monitored from the small color window

next to the node labels as shown in figure 12. The meaning of each color is shown in

figure 13.

Figure 12. Monitoring sensor data.

Figure 13. Sensor status.

The sensor is offline.

The sensor is online and no motion was detected.

The sensor is online and motion was detected.

User Manual 52

3.7 Disconnecting the receiver node

To disconnect the receiver node from the tool hit the “Disconnect” button (as

shown in figure 14) or closing the window with the “X” button at the top will also safely

disconnect the receiver node (close’s the COM port). Caution: Force closing the tool

from task manager or any other tool will lock the COM port.

Figure 14. Disconnecting the receiver node.

4. References

[1] Microsoft Visual Studio 2013, C# Programming Guide. Accessed on: June 2014,
Available: http://msdn.microsoft.com/en-us/library/67ef8sbd.aspx.

[2] Microsoft Developer Network, SerialPort Class. Accessed on: June 2014, Available:
http://msdn.microsoft.com/en-us/library/system.io.ports.serialport% 28v
=vs.110%29.aspx.

[3] Instructables Tutorial, Serial Port Programming With .NET. Accessed on: June 2014,
Available: http://www.instructables.com/id/Serial-Port-Programming-With-
NET/step1/Set-up-and-Open-the-Serial-Port/

[4] Texas instruments, MSP430x22x2, MSP430x22x4 Mixed Signal microcontroller
Datasheet, 2012. , Available: http://www.ti.com.cn/cn/lit/ds/symlink/msp430f2274.pdf.

[5] Texas instruments, CC2500 Low-Cost Low-Power 2.4 GHz RF Transceiver
Datasheet, 2014. , Available: http://www.ti.com/lit/ds/symlink/cc2500.pdf.

[6] Texas instruments, eZ430-RF2500 Development Tool User guide. SLAU227A Mixed
Signal Products, 2007. , Available: http://www.ti.com/lit/ug/slau227e/slau227e.pdf.

Node Source Code 53

Appendix C

Network Node Source Code:

#include "msp430x22x4.h" // chip-specific macros & defs
#include "stdint.h" // MSP430 data type definitions
#include "wireless.h" // Wireless setup and func definition
#define WIN_SIZE 16000 // Window size 64ms
#define SLOT_SIZE 1000 // Slot size 4ms
#define HLF_SLOT_SIZE 500 // Hlaf slot size

uint8_t node_add = 0; // Node Address
uint8_t curr_que_idx,next_que_idx,futr_que_idx;// Queue Index
uint8_t packet_received_flg = 0, sync_flg = 0; // Packet rx flag
uint8_t neigh1_flg = 0, neigh2_flg = 0, neigh3_flg = 0, neigh4_flg = 0;
uint16_t window_count = 0,total_window_cnt; // Window counts
uint16_t packet_rx[6],tx_delay = 187; // Rx packet and transmition delay
uint8_t packet_tx[7],packet_queue[3][4],rx[6];
int32_t time_error, error_buff[4];
uint16_t window_size,slot_size,half_slot_size;
uint8_t loop_i,loop_j; // Loop index variable

// ==
// Function transmits data using helper function "RFSendPacket"
// Args: none
// Retn: none
// Flow chart 1
// ==
void f_TxData(void)
{
 P1OUT |= 0x01; // Turn on Red LED
 TI_CC_GDO0_PxIE &= ~TI_CC_GDO0_PIN; // Disable int on end of packet
 uint8_t packet_size = 7,error_data = 0;// Packet length

 // Copy the current error and saturate it if greater than 1 byte
 if((time_error<=127)&&(time_error>=-127))
 {
 // Error is within 1 byte so we can copy it.
 error_data = (time_error>=0)?time_error:(0x80|(time_error*-1));
 }
 else if(time_error>127)
 {
 error_data = 127; // Upper limit (+127)
 }
 else
 {
 error_data = 0xFF; // Lower limit (-127)
 }

 packet_tx[0] = 6; // packet lng excluding lng field
 packet_tx[1] = 0xFF; // Broadcast Address
 packet_tx[2] = node_add; // Node address

 if(window_count == 0)
 {
 packet_tx[3] = ((P2IN<<7)|node_add);// Sensor data + Node address

Node Source Code 54

 packet_tx[4] = error_data; // Current error
 packet_tx[5] = ((P2IN<<7)|node_add);// Sensor data + Node address
 packet_tx[6] = error_data; // Current error
 }
 else
 {
 packet_tx[3] = packet_queue[curr_que_idx][0]; // Transmit data from
 packet_tx[4] = packet_queue[curr_que_idx][1]; // queue
 packet_tx[5] = packet_queue[curr_que_idx][2];
 packet_tx[6] = packet_queue[curr_que_idx][3];
 }

 RFSendPacket(packet_tx, packet_size); // Send data

 packet_queue[curr_que_idx][0] = 0xFF; // Clear queue
 packet_queue[curr_que_idx][1] = 0xFF; // Clear queue
 packet_queue[curr_que_idx][2] = 0xFF; // Clear queue
 packet_queue[curr_que_idx][3] = 0xFF; // Clear queue

 TI_CC_GDO0_PxIE |= TI_CC_GDO0_PIN; // Enable int on end of packet
 P1OUT &= ~0x01; // Turn off Red LED
 return; // Go back to sleep

}

//---
// Function receives data from CC2500 chip when Rx interrupt is
// generated. The Rx interrupt is generated once CC2500 receives the
// last packet. Function uses the helper function 'RFReceivePacket'
// Args: None
// Retn: None
// Flow chart 2
//---
#pragma vector=PORT2_VECTOR
__interrupt void f_RxData_ISR(void)
{
 uint8_t len = 6; //Receive 6 bytes
 uint8_t status[2]; // Buffer to store status data

 packet_rx[1] = TAR; // Store time of received packet
 packet_received_flg = 0; // Clear flag

 if(TI_CC_GDO0_PxIFG & TI_CC_GDO2_PIN)
 packet_received_flg = RFReceivePacket(rx,&len,status); //Fetch packet

 packet_rx[0] = rx[1]; // Grab transmitters node addr from pkt
 packet_rx[2] = (0x1F & rx[2]); // Grab payloads node address from pkt

 if(sync_flg == 1) // If in sync mode
 __bic_SR_register_on_exit(LPM1_bits); // Wake up on exit
 else if(packet_received_flg)
 {

 if(rx[1] == (node_add+1)) // check addr for neighbors
 {
 packet_queue[next_que_idx][2] = rx[4]; // Store data in queue
 packet_queue[next_que_idx][3] = rx[5]; // Store data in queue

Node Source Code 55

 error_buff[2]= packet_rx[1]; // Copy timestamp
 // Calculate error and store in buffer
 error_buff[2] -= (HLF_SLOT_SIZE+(SLOT_SIZE*(packet_rx[0]-1)));
 if((node_add+1)==(0x1F & rx[4]))
 {
 if((0x80 & rx[4])==0x80) // Check if sensor is ON
 neigh1_flg = 1; // Set flag
 else
 neigh1_flg = 0; // Reset flag
 }
 }
 else if(rx[1] == (node_add+2)) // check addr for neighbors
 {
 packet_queue[futr_que_idx][2] = rx[4]; // Store data in queue
 packet_queue[futr_que_idx][3] = rx[5]; // Store data in queue
 error_buff[3]= packet_rx[1]; // Copy timestamp

 // Calculate error and store in buffer
 error_buff[3] -= (HLF_SLOT_SIZE+(SLOT_SIZE*(packet_rx[0]-1)));
 if((node_add+2)==(0x1F & rx[4]))
 {
 if((0x80 & rx[4])==0x80) // Check if sensor is ON
 neigh3_flg = 1; // Set flag
 else
 neigh3_flg = 0; // Reset flag
 }
 }
 else if(rx[1] == (node_add-1)) // check addr for neighbors
 {
 packet_queue[next_que_idx][0] = rx[2]; // Store data in queue
 packet_queue[next_que_idx][1] = rx[3]; // Store data in queue
 error_buff[1]= packet_rx[1]; // Copy timestamp

 // Calculate error and store in buffer
 error_buff[1] -= (HLF_SLOT_SIZE+(SLOT_SIZE*(packet_rx[0]-1)));
 if((node_add-1)==(0x1F & rx[2]))
 {
 if((0x80 & rx[2])==0x80) // Check if sensor is ON
 neigh2_flg = 1; // Set flag
 else
 neigh2_flg = 0; // Reset flag
 }
 if(packet_rx[2] == 1)
 window_count = node_add - 2;
 }
 else if(rx[1] == (node_add-2)) // check addr for neighbors
 {
 packet_queue[futr_que_idx][0] = rx[2]; // Store data in queue
 packet_queue[futr_que_idx][1] = rx[3]; // Store data in queue
 error_buff[0]= packet_rx[1]; // Copy timestamp

 // Calculate error and store in buffer
 error_buff[0] -= (HLF_SLOT_SIZE+(SLOT_SIZE*(packet_rx[0]-1)));
 if((node_add-2)==(0x1F & rx[2]))
 {
 if((0x80 & rx[2])==0x80) // Check if sensor is ON
 neigh4_flg = 1; // Set flag

Node Source Code 56

 else
 neigh4_flg = 0; // Reset flag
 }
 }
 }
 TI_CC_GDO0_PxIFG &= ~TI_CC_GDO0_PIN; // After pkt RX, reset intrp flag.

 return; // Go back to sleep
}

//---
// Func: Pull CPU out of sleep mode during transmition and at the
// end of the window.
// Args: None
// Retn: None
//---
#pragma vector=TIMERA1_VECTOR
__interrupt void f_TimerAISR(void)
{
 switch (__even_in_range(TAIV, 10))
 {
 case TAIV_TAIFG: // Handle TAR rollover -> 0 IRQ
 window_count++; // Increament window count
 if(window_count == 16)
 window_count = 0; // Clear window count
 total_window_cnt++; // Increament window count
 TACTL &= ~TAIFG; // Clear flag
 __bic_SR_register_on_exit(LPM1_bits); // wake up on exit
 break;
 case TAIV_TACCR1: // Chnl 1 IRQ
 f_TxData(); // Transmit data
 break;
 case TAIV_TACCR2: // ignore chnl 2 IRQ
 default: // ignore everything else
 }
 return;
}

//===
// Setup the Ports, Clocks and Wireless config.
// Args: none
// Retn: none
//===
void f_setup(void)
{
 WDTCTL = WDTPW + WDTHOLD; // halt watchdog

 volatile uint16_t delay; // Variable for delay

 // This is just a software delay
 for(delay=0;delay<650;delay++);

 // Setup clock system
 BCSCTL1 = CALBC1_8MHZ; // set DCO freq.
 BCSCTL2 |= DIVS_3; // SMCLK = MCLK/8 (1MHz)
 DCOCTL = CALDCO_8MHZ; // set MCLK to 8MHz

Node Source Code 57

 // TimerA config
 TACCR0 = window_size; // ~64msec
 TACTL = TASSEL_2 |ID_2 | MC_1 | TAIE;// SMCLK, Interrupts,Up mode,div by 4

 //Port config
 P1DIR |= 0x03; // activate LEDs
 P2DIR |= 0x02; // activate LEDs
 P1OUT &= ~0x03; // Clear LEDs

 // Wireless Initialization
 TI_CC_SPISetup(); // Initialize SPI port
 P2SEL = 0; // Sets P2.6 & P2.7 as GPIO
 TI_CC_PowerupResetCCxxxx(); // Reset CCxxxx
 writeRFSettings(); // Write RF settings to config reg
 TI_CC_GDO0_PxIES |= TI_CC_GDO0_PIN; // Int on falling edge (end of pkt)
 TI_CC_GDO0_PxIFG &= ~TI_CC_GDO0_PIN; // Clear flag
 TI_CC_GDO0_PxIE |= TI_CC_GDO0_PIN; // Enable int on end of packet
 TI_CC_SPIStrobe(TI_CCxxx0_SRX); // Initialize CCxxxx in RX mode.

 // This is just a software delay
 for(delay=0;delay<650;delay++);

 P1OUT = 0x02; // Turn on green led to indicate setup is done.
}

// ===
// Function returns the minimum error
// Args: Input errors and the error buffer index
// Retn: minimum error
// ===
int32_t min_error(int32_t error_1, int32_t error_2, uint8_t index)
{
 if(error_1<0) // If first error is negative
 error_1*=-1; // Get ABS value

 if(error_2<0) // If second error is negative
 error_2*=-1; // Get ABS value

 if(error_1>error_2) // If first error is greater than second
 {
 return error_buff[index+1]; // return second error
 }
 else
 {
 if(error_1 != 0xFFF)
 return error_buff[index]; //return first error
 else
 return 0;
 }
}

// ===
// Function used to correct Clock drift and Clock skew
// Args: none
// Retn: none
// Flow chart 3
// ===

Node Source Code 58

void correct_error(void)
{

 if(window_count == 0)
 {
 time_error = time_error>>1;
 window_size = 16000 + time_error; // Add error to the window size
 slot_size = window_size >> 4; // slot size = window size/16
 half_slot_size = slot_size >> 1; // Half slot size= slot size/2

 TACCR0 = window_size; // Update TACCR0 with new values
 TACCR1 = half_slot_size + (slot_size*(node_add-1))- tx_delay;
 }
 else
 {
 if(time_error > 0) // If error is positive
 while(TAR<time_error); // wait for TAR to reach error
 TAR -= time_error; // Update TAR value
 }

 for(loop_i=0;loop_i<4;loop_i++) // Reset error buffer
 error_buff[loop_i] = 0xFFF;

 return;
}

// ==
// Function is used at startup to sync with neighbouring node
// Args: none
// Retn: none
// Flow chart 4
// ==
void startup_sync(void)
{
 P1OUT |= 0x03; // Turn on both LEDs
 sync_flg = 1; // Enable sync flag
 total_window_cnt = 0; // Clear window count

 while(total_window_cnt<16) // Sync for 16 windows
 {
 __bis_SR_register(LPM1_bits + GIE); // Sleep till interrupt
 if(packet_received_flg) // Received packet is valid
 {
 if(packet_rx[0] == (node_add-1)) // Sync to the node before me
 {
 time_error = packet_rx[1]; // Grab received time

 // Calculate error with received time and expected time
 time_error -= (half_slot_size+(slot_size*(packet_rx[0]-1)));

 if(time_error > 0) // If error is positive
 while(TAR<time_error); // wait for TAR to reach error
 TAR -= time_error; // Update TAR value

 if(packet_rx[2] == (node_add-1))
 window_count = 0; // Match window count with neighbour
 }

Node Source Code 59

 packet_received_flg = 0; // Clear flag
 }
 }

 sync_flg = 0; // Clear sync flag
 P1OUT &= ~0x03; // Turn off LEDs
}

// ===
// Function is used to check if synced properly with
// neighbouring nodes at startup.
// Args: none
// Retn: none
// Flow chart 5
// ==
void sync_check()
{
 total_window_cnt = 0; // Clear window count

 while(total_window_cnt<3) // Check for 3 windows
 {
 __bis_SR_register(LPM1_bits + GIE); // Sleep till interrupt

 TI_CC_SPIStrobe(TI_CCxxx0_SIDLE); // Initialize CCxxxx in Idle mode.
 TI_CC_SPIStrobe(TI_CCxxx0_SRX); // Initialize CCxxxx in RX mode.

 time_error = 0; // Clear time error
 error_buff[0]= min_error(error_buff[0],error_buff[1],0);//Get min error
 error_buff[1]= min_error(error_buff[2],error_buff[3],2);//Get min error
 time_error = (error_buff[0] + error_buff[1])/3;// Take the average error

 if((time_error<25) && (time_error>-25)) // If error is within +-25
 {
 correct_error(); // Correct clock errors
 } else {
 startup_sync(); // Restart startup sync
 }
 }
}

// ===
// Function executed during normal mode. Main purpose of the
// function is to correct errors at the end of each window.
// Args: none
// Retn: none
// Flow chart 6
// ===
void normal_mode(void)
{
 static uint8_t toggle_led = 0;

 // Update TACCR1 with new sizes
 TACCR1 = half_slot_size + (slot_size*(node_add-1))- tx_delay;
 TACCTL1 = CCIE; // enable CCR1 interrupt (Tx interrupt)
 P1OUT |= 0x02; // Turn on Green LED

Node Source Code 60

 while(1)
 {
 __bis_SR_register(LPM1_bits + GIE); // Enter sleep till interrupt

 TI_CC_SPIStrobe(TI_CCxxx0_SIDLE); // Initialize CCxxxx in Idle mode.
 TI_CC_SPIStrobe(TI_CCxxx0_SRX); // Initialize CCxxxx in RX mode.

 // Increment the queue indices
 curr_que_idx = (curr_que_idx>=2)?((curr_que_idx+1)-3) : (curr_que_idx+1);
 next_que_idx = (next_que_idx>=2)?((next_que_idx+1)-3) : (next_que_idx+1);
 futr_que_idx = (futr_que_idx>=2)?((futr_que_idx+1)-3) : (futr_que_idx+1);

 time_error = 0; // Clear time error
 error_buff[0]= min_error(error_buff[0],error_buff[1],0);//Get min error
 error_buff[1]= min_error(error_buff[2],error_buff[3],2);//Get min error
 time_error = (error_buff[0] + error_buff[1])/3;// Take the average error
 correct_error(); // Correct clock errors

 // Check if node's sensor or neighbours sensor is triggered
 if((P2IN&0x01)|(neigh1_flg == 1)|(neigh2_flg == 1)|\
 (neigh3_flg == 1)|(neigh4_flg == 1))
 {
 if(P2IN&0x01)
 toggle_led = 1; // Toggle every 64ms
 else
 toggle_led ^= 0x01; // Toggle every 128ms

 if(toggle_led)
 P2OUT ^= 0x02; // Toggle the LED
 else
 P2OUT &= ~0x02; // Turn off the LED
 }
 }
}

// ===
// This is the main function. Calls the setup function to
// configure the ports and other settings. Once setup is done
// startup sync is performed.After syncing we enter normal
// operating mode.
// Args: none
// Retn: none
// ===
void main()
{
 window_size = WIN_SIZE; // Initialize window size ~64ms
 slot_size = SLOT_SIZE; // Initialize slot size ~4ms
 half_slot_size = HLF_SLOT_SIZE; // Initialize half slot size
 node_add = 1; // Set node address

 curr_que_idx = 0; // Initial value for queue index
 next_que_idx = 1; // Initial value for queue index
 futr_que_idx = 2; // Initial value for queue index

 // Clear the queue (0xFF means its empty). This is where the data is stored
 for(loop_i=0; loop_i<3;loop_i++)
 for(loop_j=0;loop_j<4;loop_j++)

Node Source Code 61

 packet_queue[loop_i][loop_j] = 0xFF;

 for(loop_i=0;loop_i<4;loop_i++) // Clear error buffer
 error_buff[loop_i] = 0xFFF;

 f_setup(); // Setup Ports and wireless settings
 startup_sync(); // Perform startup sync
 sync_check(); // Check if sync was successful
 normal_mode(); // Enter normal operating mode
}

Receiver Node Source Code 62

Appendix D

Receiver Node Source Code:

#include "msp430x22x4.h" // chip-specific macros & defs
#include "stdint.h" // MSP430 data type definitions
#include "wireless.h" // Wireless setup and func definition

uint8_t packet_received_flg = 0; // Received pck flag
uint8_t rx[6]; // Received packet
uint8_t RX_node = 1,stream_flag = 0; // Target node address and stream

#pragma vector=USCIAB0RX_VECTOR
__interrupt void IsrUartEcho(void)
//---
// Func: ISR receives a command byte from the user and updates the
// stream direction (Upstream/Downstream)and the target node
// address
// Args: None
// Retn: None
//---
{
 RX_node = UCA0RXBUF; // Receive character
 stream_flag = ((RX_node & 0x80)>>7);// Upstream/Downstream
 RX_node &= 0x7F; // Update the target node add
 return;
}

//---
// Function receives data from CC2500 chip when Rx interrupt is
// generated. The Rx interrupt is generated once CC2500 receives the
// last packet. Function uses the helper function 'RFReceivePacket'
// Args: None
// Retn: None
//---
#pragma vector=PORT2_VECTOR
__interrupt void f_RxData_ISR(void)
{
 uint8_t len = 6; //Receive 6 bytes
 uint8_t status[2]; // Buffer to store status data

 packet_received_flg = 0; // Clear flag

 if(TI_CC_GDO0_PxIFG & TI_CC_GDO2_PIN)
 packet_received_flg = RFReceivePacket(rx,&len,status); //Fetch packet

 if(packet_received_flg) // Check if valid packet is received
 {
 if(rx[1] == RX_node) // check target address
 {
 P1OUT ^= 0x03; // Toggle LED
 if(stream_flag == 1) // Downstream
 {
 while (!(IFG2 & UCA0TXIFG)) {};// wait: while Tx Buff not empty
 UCA0TXBUF = (rx[2] | 0x60); // send node addr and sensor data

Receiver Node Source Code 63

 while (!(IFG2 & UCA0TXIFG)) {};// wait: while Tx Buff not empty
 UCA0TXBUF = ((rx[3] & 0x0F)| 0x60);// send lower half of error
 while (!(IFG2 & UCA0TXIFG)) {};// wait: while Tx Buff not empty
 UCA0TXBUF = (((rx[3] & 0xF0)>>4)| 0x60);// send upper half of error
 while (!(IFG2 & UCA0TXIFG)) {};// wait: while Tx Buff not empty
 UCA0TXBUF = '\n'; // send new line char
 } else {
 while (!(IFG2 & UCA0TXIFG)) {};// wait: while Tx Buff not empty
 UCA0TXBUF = (rx[4] | 0x60); // send byte addr and sensor data
 while (!(IFG2 & UCA0TXIFG)) {};// wait: while Tx Buff not empty
 UCA0TXBUF = ((rx[5] & 0x0F)| 0x60);// send lower half of error
 while (!(IFG2 & UCA0TXIFG)) {};// wait: while Tx Buff not empty
 UCA0TXBUF = (((rx[5] & 0xF0)>>4)| 0x60); // send upper half of err
 while (!(IFG2 & UCA0TXIFG)) {};// wait: while Tx Buff not empty
 UCA0TXBUF = '\n'; // send new line char
 }
 }
 }

 TI_CC_GDO0_PxIFG &= ~TI_CC_GDO0_PIN; // After pkt RX, reset intrp flag.
 return;
}

//---
// Func: Pull CPU out of sleep mode during transmition and at the
// end of the window.
// Args: None
// Retn: None
//---
#pragma vector=TIMERA1_VECTOR
__interrupt void f_TimerAISR(void)
{
 switch (__even_in_range(TAIV, 10))
 {
 case TAIV_TAIFG: // Handle TAR rollover -> 0 IRQ
 TACTL &= ~TAIFG; // Clear flag
 __bic_SR_register_on_exit(LPM1_bits); // wake up on exit
 break;
 case TAIV_TACCR1: // Chnl 1 IRQ
 break;
 case TAIV_TACCR2: // ignore chnl 2 IRQ
 default: // ignore everything else
 }
 return;
}

//===
// Setup the Ports, Clocks and Wireless config.
// Args: none
// Retn: none
//===
void f_setup(void)
{
 WDTCTL = WDTPW + WDTHOLD; // halt watchdog

 volatile uint16_t delay; // Variable for delay

Receiver Node Source Code 64

 // This is just a software delay
 for(delay=0;delay<650;delay++);

 // Setup clock system
 BCSCTL1 = CALBC1_8MHZ; // set DCO freq.
 BCSCTL2 |= DIVS_3; // SMCLK = MCLK/8 (1MHz)
 DCOCTL = CALDCO_8MHZ; // set MCLK to 8MHz

 // Setup UART
 P3SEL = 0x30; // P3.4,5 = USCI_A0 TXD/RXD
 UCA0CTL1 |= UCSSEL_2; // UART uses SMCLK
 UCA0BR0 = 104; // 1MHz 9600
 UCA0BR1 = 0; // 1MHz 9600
 UCA0MCTL = UCBRS0; // Modulation UCBRSx = 1
 UCA0CTL1 &= ~UCSWRST; // Init. USCI state machine
 IE2 |= UCA0RXIE; // Enable USCI_A0 RX IRQ

 // TimerA config
 TACCR0 = 16000; // ~64msec
 TACTL = TASSEL_2 |ID_2 | MC_1 | TAIE;// SMCLK, Interrupts,Up mode,div by 4

 //Port config
 P1DIR |= 0x03; // activate LEDs
 P2DIR |= 0x02; // activate LEDs
 P1OUT &= ~0x03; // Clear LEDs

 // Wireless Initialization
 TI_CC_SPISetup(); // Initialize SPI port
 P2SEL = 0; // Sets P2.6 & P2.7 as GPIO
 TI_CC_PowerupResetCCxxxx(); // Reset CCxxxx
 writeRFSettings(); // Write RF settings to config reg
 TI_CC_GDO0_PxIES |= TI_CC_GDO0_PIN; // Int on falling edge (end of pkt)
 TI_CC_GDO0_PxIFG &= ~TI_CC_GDO0_PIN; // Clear flag
 TI_CC_GDO0_PxIE |= TI_CC_GDO0_PIN; // Enable int on end of packet
 TI_CC_SPIStrobe(TI_CCxxx0_SRX); // Initialize CCxxxx in RX mode.

 // This is just a software delay
 for(delay=0;delay<650;delay++);

 P1OUT = 0x02; // Turn on green led to indicate setup is done.
}

// ===
// Function executed during normal mode. Main purpose of the
// function is to remain in sleep till an interrupt is
// requested.
// Args: none
// Retn: none
// ===
void normal_mode(void)
{
 while(1)
 {
 __bis_SR_register(LPM1_bits + GIE); // Enter sleep till interrupt

 TI_CC_SPIStrobe(TI_CCxxx0_SIDLE); // Initialize CCxxxx in Idle mode.

Receiver Node Source Code 65

 TI_CC_SPIStrobe(TI_CCxxx0_SRX); // Initialize CCxxxx in RX mode.
 }
}

// ===
// This is the main function. Calls the setup function to
// configure the ports and other settings. Once setup is done
// it enters normal operating mode.
// Args: none
// Retn: none
// ===
void main()
{
 f_setup(); // Setup Ports and wireless settings
 normal_mode(); // Enter normal operating mode
}

GUI Source Code 66

Appendix E

GUI Source Code:

// Include preprocessor directives
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Windows.Forms;
using System.IO;
using System.IO.Ports;
using System.Threading;

namespace WSN
{
 public partial class Form1 : Form
 {
 public Form1()
 {
 InitializeComponent();

 // Update the node address combo list
 for(int i=1;i<17;i++)
 comboBox2.Items.Add(i);
 }

 private int connect_flag = 0; // Connect flag
 private int stream_flag = 0; // Stream flag
 private string Rxdata; // Received packet
 private int tx_data = 1; // Data to transmit
 private int node_add; // Node address
 private int sensor_data; // Sensor status
 private int error_sign; // Sign +/- of error
 private int error_data; // Sync offset

 // These counter values are used as a trigger

 // to update the GUI
 private byte data_counter1 = 0;
 private byte data_counter2 = 0;
 private byte data_counter3 = 0;
 private byte data_counter4 = 0;
 private byte data_counter5 = 0;
 private byte data_counter6 = 0;
 private byte data_counter7 = 0;
 private byte data_counter8 = 0;
 private byte data_counter9 = 0;
 private byte data_counter10 = 0;
 private byte data_counter11 = 0;
 private byte data_counter12 = 0;
 private byte data_counter13 = 0;
 private byte data_counter14 = 0;

GUI Source Code 67

 private byte data_counter15 = 0;
 private byte data_counter16 = 0;
 private int average_loop = 0;

 // Buffer to store the clock offsets

 private byte[,] node_error = new byte[16, 300];
 private byte[] error_temp = new byte[16]; // Temp buffer
 private int error_loop = 0, error_index = 0; //offset index

//===
// Function: Update COM port list combo box
//===

 private void button1_Click(object sender, EventArgs e)
 {
 string[] ports = SerialPort.GetPortNames(); //Get port list
 foreach (string port in ports)
 {
 comboBox1.Items.Add(port); // Populate the combo list
 }

 }

//===
// Function: Change Upstream/Downstream settings
//===

 private void button2_Click(object sender, EventArgs e)
 {
 if (stream_flag == 0)
 {
 button2.Text = "DOWN"; // Downstream
 stream_flag = 1; // Set stream flag
 tx_data |= 0x80; // Set the stream bit
 }
 else
 {
 button2.Text = "UP"; // Upstream
 stream_flag = 0; // Set stream flag
 tx_data &= 0x7F; // Clear the stream bit
 }

 byte[] buffer = new byte[] {Convert.ToByte(tx_data)};
 try
 { // Send data via UART
 serialPort1.Write(buffer, 0, 1);
 }
 catch (InvalidOperationException err)
 {
 infobox.Text = err.Message; //Send error message
 }
 }

//===
// Function: Target address selection function
//===

GUI Source Code 68

 private void comboBox2_SelectedIndexChanged\
 (object sender, EventArgs e)
 {
 // Selected target node address
 string sel_node = comboBox2.SelectedItem.ToString();
 tx_data =(int) Decimal.Parse(sel_node); // Convert to decimal

 // Add stream info
 tx_data |= (stream_flag << 7);
 byte[] buffer = new byte[] {Convert.ToByte(tx_data)};
 try
 { // Send data via UART
 serialPort1.Write(buffer, 0, 1);
 }
 catch(InvalidOperationException err)
 {
 infobox.Text = err.Message; //Send error message
 }
 }

//===
// Function: Connect to COM port button function
//===

 private void connect_button_Click\
 (object sender, EventArgs e)
 {
 for (int i = 0; i < 16; i++)
 error_temp[i] = 0xFF; // Reset the error buffer

 if (connect_flag == 0) // If Not connected
 {
 try
 {
 serialPort1.PortName =
 comboBox1.SelectedItem.ToString();

 // Check if port is already open

 if (!serialPort1.IsOpen)
 {

 serialPort1.Encoding =
 System.Text.Encoding.GetEncoding(28591);
 infobox.Text = "Connected";
 serialPort1.Open();// Open COM port
 connect_button.Text = "Disconnect";
 connect_flag = 1; // set the connect flag
 }
 else
 {
 infobox.Text = \
 "Unable to Connect to port";
 }
 }
 catch (UnauthorizedAccessException err)
 {
 infobox.Text = err.Message;
 }

GUI Source Code 69

 catch (NullReferenceException)
 {
 infobox.Text = "Please choose a port";
 }
 catch (Exception)
 {
 infobox.Text = "Unable to Connect to port";
 }
 }
 else
 {
 try
 {
 serialPort1.Close(); // Close COM port
 infobox.Text = "Disconnected";
 connect_button.Text = "Connect";
 connect_flag = 0; // Clear connect flag
 }
 catch (Exception)
 {
 infobox.Text = "Unable to Close to port";
 }
 }
 }

//===
// Function: This function is executed when the close button is hit
//===

 private void Form1_FormClosing(object sender,
 FormClosingEventArgs e)
 {
 if (serialPort1.IsOpen)
 {
 e.Cancel = true; //cancel the form closing
 Thread CloseDown = new Thread(new
 ThreadStart(CloseSerialOnExit));

 //close port in new thread to avoid hang
 CloseDown.Start();
 }

 }

 private void CloseSerialOnExit()
 {
 try
 {
 serialPort1.Close(); //close the serial port
 }

 catch (Exception ex)
 {
 //catch any serial port closing error messages
 MessageBox.Show(ex.Message);
 }

 //now close back in the main thread

GUI Source Code 70

 this.Invoke(new EventHandler(NowClose));
 }

 private void NowClose(object sender, EventArgs e)
 {
 this.Close(); //now close the form
 }

//===
// Function: Function to Receive data from the COM port
//===

 private void serialPort1_DataReceived(object sender,
 SerialDataReceivedEventArgs e)
 {
 // Receive data from com port
 Rxdata = serialPort1.ReadLine();
 // Update GUI
 this.Invoke(new EventHandler(UpdateGUI));
 }

//===
// Function: This is where all the GUI stuff happens
//===

 private void UpdateGUI(object s, EventArgs e)
 {
 int rx_length = Rxdata.Length;// Received packet length
 int temp_data;
 if (rx_length == 3)
 {
 node_add = (Rxdata[0] & 0x1F); // Get Node address
 sensor_data = ((Rxdata[0] & 0x80)>>7); // Get sensor status

 // Get clock offset
 temp_data = ((Rxdata[1] & 0x0F) | (Rxdata[2]<<4));
 error_sign = ((temp_data & 0x80) >> 7); // Get sign of offset
 error_data = (temp_data & 0x7F); // Get offset

 if ((node_add > 0) && (node_add < 17))
 {
 // Update the highest address RX

 if (node_add > average_loop)
 average_loop = node_add;

 if ((error_index > node_add) || (error_index/
 == node_add))
 {
 for (int i = 0; i < 16; i++)
 {
 // Copy to offset buffer
 node_error[i, error_loop] = error_temp[i];
 error_temp[i] = 0xFF; // Clear temp buffer
 }
 error_loop++;
 if (error_loop == 300) // Reset buffer index
 error_loop = 0;
 }

GUI Source Code 71

 // Copy offset to temp buffer
 error_temp[node_add - 1] = (byte)temp_data;
 error_index = node_add;
 }
 }
 else
 return;

 //Update node 1's GUI info
 if(node_add == 1)
 {
 data_counter1 = 0;

 // Update node’s sensor data
 if (sensor_data == 1)
 pictureBox1.Image = WSN.Properties.Resources.red;
 else
 pictureBox1.Image = WSN.Properties.Resources.green;

 // Update node’s error data
 if (error_sign == 1)
 box_node1.Text = "-" + error_data;
 else
 box_node1.Text = "+" + error_data;

 } else if(data_counter1==48)
 {
 pictureBox1.Image = WSN.Properties.Resources.yellow;
 box_node1.Text = "";
 } else {
 data_counter1++;
 }

 //Update node 2's GUI info
 if(node_add == 2)
 {
 data_counter2 = 0;

 // Update node’s sensor data
 if (sensor_data == 1)
 pictureBox2.Image = WSN.Properties.Resources.red;
 else
 pictureBox2.Image = WSN.Properties.Resources.green;

 // Update node’s error data
 if (error_sign == 1)
 box_node2.Text = "-" + error_data;
 else
 box_node2.Text = "+" + error_data;
 }
 else if(data_counter2==48)
 {
 pictureBox2.Image = WSN.Properties.Resources.yellow;
 box_node2.Text = "";
 } else {
 data_counter2++;
 }

GUI Source Code 72

 //Update node 3's GUI info
 if(node_add == 3)
 {
 data_counter3 = 0;

 // Update node’s sensor data
 if (sensor_data == 1)
 pictureBox3.Image = WSN.Properties.Resources.red;
 else
 pictureBox3.Image = WSN.Properties.Resources.green;

 // Update node’s error data
 if (error_sign == 1)
 box_node3.Text = "-" + error_data;
 else
 box_node3.Text = "+" + error_data;
 }
 else if(data_counter3==48)
 {
 pictureBox3.Image = WSN.Properties.Resources.yellow;
 box_node3.Text = "";
 } else {
 data_counter3++;
 }

 //Update node 4's GUI info
 if(node_add == 4)
 {
 data_counter4 = 0;

 // Update node’s sensor data
 if (sensor_data == 1)
 pictureBox4.Image = WSN.Properties.Resources.red;
 else
 pictureBox4.Image = WSN.Properties.Resources.green;

 // Update node’s error data
 if (error_sign == 1)
 box_node4.Text = "-" + error_data;
 else
 box_node4.Text = "+" + error_data;
 }
 else if(data_counter4==48)
 {
 pictureBox4.Image = WSN.Properties.Resources.yellow;
 box_node4.Text = "";
 } else {
 data_counter4++;
 }

 //Update node 5's GUI info
 if(node_add == 5)
 {
 data_counter5 = 0;

 // Update node’s sensor data

GUI Source Code 73

 if (sensor_data == 1)
 pictureBox5.Image = WSN.Properties.Resources.red;
 else
 pictureBox5.Image = WSN.Properties.Resources.green;

 // Update node’s error data
 if (error_sign == 1)
 box_node5.Text = "-" + error_data;
 else
 box_node5.Text = "+" + error_data;
 }
 else if(data_counter5==48)
 {
 pictureBox5.Image = WSN.Properties.Resources.yellow;
 box_node5.Text = "";
 } else {
 data_counter5++;
 }

 //Update node 6's GUI info
 if(node_add == 6)
 {
 data_counter6 = 0;

 // Update node’s sensor data
 if (sensor_data == 1)
 pictureBox6.Image = WSN.Properties.Resources.red;
 else
 pictureBox6.Image = WSN.Properties.Resources.green;

 // Update node’s error data
 if (error_sign == 1)
 box_node6.Text = "-" + error_data;
 else
 box_node6.Text = "+" + error_data;

 }
 else if(data_counter6==48)
 {
 pictureBox6.Image = WSN.Properties.Resources.yellow;
 box_node6.Text = "";
 } else {
 data_counter6++;
 }

 //Update node 7's GUI info
 if(node_add == 7)
 {
 data_counter7 = 0;

 // Update node’s sensor data
 if (sensor_data == 1)
 pictureBox7.Image = WSN.Properties.Resources.red;
 else
 pictureBox7.Image = WSN.Properties.Resources.green;

 // Update node’s error data
 if (error_sign == 1)

GUI Source Code 74

 box_node7.Text = "-" + error_data;
 else
 box_node7.Text = "+" + error_data;
 }
 else if(data_counter7==48)
 {
 pictureBox7.Image = WSN.Properties.Resources.yellow;
 box_node7.Text = "";
 } else {
 data_counter7++;
 }

 //Update node 8's GUI info
 if(node_add == 8)
 {
 data_counter8 = 0;

 // Update node’s sensor data
 if (sensor_data == 1)
 pictureBox8.Image = WSN.Properties.Resources.red;
 else
 pictureBox8.Image = WSN.Properties.Resources.green;

 // Update node’s error data
 if (error_sign == 1)
 box_node8.Text = "-" + error_data;
 else
 box_node8.Text = "+" + error_data;

 }
 else if(data_counter8==48)
 {
 pictureBox8.Image = WSN.Properties.Resources.yellow;
 box_node8.Text = "";
 } else {
 data_counter8++;
 }

 //Update node 9's GUI info
 if(node_add == 9)
 {
 data_counter9 = 0;

 // Update node’s sensor data
 if (sensor_data == 1)
 pictureBox9.Image = WSN.Properties.Resources.red;
 else
 pictureBox9.Image = WSN.Properties.Resources.green;

 // Update node’s error data
 if (error_sign == 1)
 box_node9.Text = "-" + error_data;
 else
 box_node9.Text = "+" + error_data;
 }
 else if(data_counter9==48)
 {

GUI Source Code 75

 pictureBox9.Image = WSN.Properties.Resources.yellow;
 box_node9.Text = "";
 } else {
 data_counter9++;
 }

 //Update node 10's GUI info
 if(node_add == 10)
 {
 data_counter10 = 0;

 // Update node’s sensor data
 if (sensor_data == 1)
 pictureBox10.Image = WSN.Properties.Resources.red;
 else
 pictureBox10.Image = WSN.Properties.Resources.green;

 // Update node’s error data
 if (error_sign == 1)
 box_node10.Text = "-" + error_data;
 else
 box_node10.Text = "+" + error_data;
 }
 else if(data_counter10==48)
 {
 pictureBox10.Image = WSN.Properties.Resources.yellow;
 box_node10.Text = "";
 } else {
 data_counter10++;
 }

 if(node_add == 11)
 {
 data_counter11 = 0;

 // Update node’s sensor data
 if (sensor_data == 1)
 pictureBox11.Image = WSN.Properties.Resources.red;
 else
 pictureBox11.Image = WSN.Properties.Resources.green;

 // Update node’s error data
 if (error_sign == 1)
 box_node11.Text = "-" + error_data;
 else
 box_node11.Text = "+" + error_data;
 }
 else if(data_counter11==48)
 {
 pictureBox11.Image = WSN.Properties.Resources.yellow;
 box_node11.Text = "";
 } else {
 data_counter11++;
 }

 //Update node 11's GUI info
 if(node_add == 12)

GUI Source Code 76

 {
 data_counter12 = 0;

 // Update node’s sensor data
 if (sensor_data == 1)
 pictureBox12.Image = WSN.Properties.Resources.red;
 else
 pictureBox12.Image = WSN.Properties.Resources.green;

 // Update node’s error data
 if (error_sign == 1)
 box_node12.Text = "-" + error_data;
 else
 box_node12.Text = "+" + error_data;
 }
 else if(data_counter12==48)
 {
 pictureBox12.Image = WSN.Properties.Resources.yellow;
 box_node12.Text = "";
 } else {
 data_counter12++;
 }

 //Update node 13's GUI info
 if(node_add == 13)
 {
 data_counter13 = 0;

 // Update node’s sensor data
 if (sensor_data == 1)
 pictureBox13.Image = WSN.Properties.Resources.red;
 else
 pictureBox13.Image = WSN.Properties.Resources.green;

 // Update node’s error data
 if (error_sign == 1)
 box_node13.Text = "-" + error_data;
 else
 box_node13.Text = "+" + error_data;
 }
 else if(data_counter13==48)
 {
 pictureBox13.Image = WSN.Properties.Resources.yellow;
 box_node13.Text = "";
 } else {
 data_counter13++;
 }

 //Update node 14's GUI info
 if(node_add == 14)
 {
 data_counter14 = 0;

 // Update node’s sensor data
 if (sensor_data == 1)
 pictureBox14.Image = WSN.Properties.Resources.red;
 else

GUI Source Code 77

 pictureBox14.Image = WSN.Properties.Resources.green;

 // Update node’s error data
 if (error_sign == 1)
 box_node14.Text = "-" + error_data;
 else
 box_node14.Text = "+" + error_data;
 }
 else if(data_counter14==48)
 {
 pictureBox14.Image = WSN.Properties.Resources.yellow;
 box_node14.Text = "";
 } else {
 data_counter14++;
 }

 //Update node 15's GUI info
 if (node_add == 15)
 {
 data_counter15 = 0;

 // Update node’s sensor data
 if (sensor_data == 1)
 pictureBox15.Image = WSN.Properties.Resources.red;
 else
 pictureBox15.Image = WSN.Properties.Resources.green;

 // Update node’s error data
 if (error_sign == 1)
 box_node15.Text = "-" + error_data;
 else
 box_node15.Text = "+" + error_data;
 }

 else if (data_counter15 == 48)
 {
 pictureBox15.Image = WSN.Properties.Resources.yellow;
 box_node15.Text = "";
 }
 else
 {
 data_counter15++;
 }

 //Update node 16's GUI info
 if(node_add == 16)
 {
 data_counter16 = 0;

 // Update node’s sensor data
 if (sensor_data == 1)
 pictureBox16.Image = WSN.Properties.Resources.red;
 else
 pictureBox16.Image = WSN.Properties.Resources.green;

 // Update node’s error data
 if (error_sign == 1)

GUI Source Code 78

 box_node16.Text = "-" + error_data;
 else
 box_node16.Text = "+" + error_data;
 }
 else if(data_counter16==16)
 {
 pictureBox16.Image = WSN.Properties.Resources.yellow;
 box_node16.Text = "";
 } else {
 data_counter16++;
 }
 }

//===
// Function: Function which does the exporting to spread sheet
//===

 private void button3_Click(object sender, EventArgs e)
 {
 var csv = new StringBuilder();
 string filePath = "Output.csv"; // Output file name

 for (int i = 0; i < average_loop; i++)
 {
 var newLine = string.Format("Node{0}", i+1); // Node label
 csv.Append(newLine);
 for (int j = 0; j < error_loop; j++)
 {
 if (node_error[i, j] == 0xFF)
 newLine = string.Format(","); // Empty cell
 else
 {

 if ((node_error[i, j] & 0x80) == 0x80)
 newLine = string.Format(",-{0}", \
 (node_error[i, j] & 0x7F));
 else
 newLine = string.Format(",+{0}", \
 (node_error[i, j]));
 }
 csv.Append(newLine);
 }
 newLine = string.Format("{0}", Environment.NewLine);
 csv.Append(newLine);
 }
 var result_line = string.Format("{0},Max,Min,Mean{0}",
 Environment.NewLine);// Labels Max, Min, Mean
 csv.Append(result_line);
 for (int i = 0; i < average_loop; i++)
 {
 // Get the min,max and the mean for the offsets collected
 result_line = string.Format("Node{0},=MAX({0}:{0}),
 =MIN({0}:{0}),=AVERAGE({0}:{0}){1}", i + 1,
 Environment.NewLine);
 csv.Append(result_line);
 }
 result_line = string.Format("{0}", Environment.NewLine);
 csv.Append(result_line);

GUI Source Code 79

 error_loop = 0;
 File.WriteAllText(filePath, csv.ToString()); // Write to the file
 infobox.Text = "File saved";
 }
 }
}

	PROOF OF CONCEPT PROTOTYPE FOR A RAILROAD PEDESTRIAN WARNING SYSTEM USING WIRELESS SENSOR NETWORKS
	Recommended Citation

	RAMESHReport.pdf

