2014

MEASURING HEAD IMPACT CONTACT PRESSURE IN COLLEGIATE FOOTBALL GAMES TO CORRELATE HEAD KINEMATICS TO BRAIN KINETICS ELUCIDATING BRAIN INJURY DYNAMICS

Chandrika S. Abhang
Michigan Technological University

Copyright 2014 Chandrika S. Abhang

Recommended Citation
Abhang, Chandrika S., "MEASURING HEAD IMPACT CONTACT PRESSURE IN COLLEGIATE FOOTBALL GAMES TO CORRELATE HEAD KINEMATICS TO BRAIN KINETICS ELUCIDATING BRAIN INJURY DYNAMICS", Master's report, Michigan Technological University, 2014.
http://digitalcommons.mtu.edu/etds/833

Follow this and additional works at: http://digitalcommons.mtu.edu/etds

Part of the Biomechanical Engineering Commons
MEASURING HEAD IMPACT CONTACT PRESSURE IN COLLEGIATE FOOTBALL GAMES TO CORRELATE HEAD KINEMATICS TO BRAIN KINETICS ELUCIDATING BRAIN INJURY DYNAMICS

By
Chandrika S. Abhang

A REPORT
Submitted in partial fulfillment of the requirements for the degree of
MASTER OF SCIENCE
In Mechanical Engineering

MICHIGAN TECHNOLOGICAL UNIVERSITY
2014

© 2014 Chandrika S. Abhang
This report has been approved in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE in Mechanical Engineering.

Department of Mechanical Engineering – Engineering Mechanics

Report Advisor: *Dr. Gopal Jayaraman*

Committee Member: *Dr. Ibrahim Miskioglu*

Committee Member: *Dr. Mahesh Gupta*

Committee Member: *Dr. Allan Struthers*

Department Chair: *Dr. William Predebon*
To my mother and grandfather
Table of Contents

Table of Contents.. 1

List of Figures ... 4

List of Tables .. 9

Acknowledgments ... 11

Abstract ... 12

1. Introduction .. 13

 1.1 Head Injury Facts .. 14

 1.1.1 Epidemiology of head injury .. 15

 1.1.2 Available Methods for mTBI or Concussion detection 17

 1.2 Scope of study .. 21

 1.2.1 Objective .. 21

 1.2.2 Strategy ... 21

2. Methods and Materials .. 22

 2.1 Head Injury Mechanism .. 22

 2.2 NOCSAE Drop Tests for Linear Impact Accelerations .. 23

 2.3 Analytical Calculations for Angular Impact Accelerations 25

 2.4 Impact Pressure Measurement .. 28

 2.5 Finite Element Simulations with Impact Pressures .. 31

 2.5.1 Introduction ... 31

 2.5.2 Input to FE model .. 31

Chandrika S. Abhang | Michigan Tech
2.5.3 Importing a validated FE model ... 32
2.5.4 Analysis module: Transient Structural... 34
2.5.5 Material Assignments .. 34
2.5.6 Mesh .. 34
2.5.7 Boundary Conditions .. 35
2.5.8 Analysis Settings and Load Conditions ... 38

3. Results and Discussions .. 39

3.1 Head Kinematics: Comparison of Accelerations ... 39

3.1.1 Introduction .. 39
3.1.2 Pressure Films and Topaq Analyser .. 41
3.1.3 NOCSAE drop test analyser .. 41
3.1.4 Analytical angular accelerations .. 42
3.1.5 Results: Graphical comparison of all accelerations 43
3.1.6 Discussions .. 46
3.1.7 Formula Proposition ... 47

3.2 Brain Kinetics: Stress Distributions ... 49

3.2.1 Frontal Impact - Introduction .. 49
3.2.2 Frontal Impact – Summary of Results ... 49
3.2.3 Frontal Impact – Result Discussions .. 50
3.2.4 Frontal Impact – Pressure Curves ... 51
3.2.5 Frontal Impact – Simulation Results (Pressure Contours) 53
3.2.6 45 to Frontal Impact – Introduction .. 58
3.2.7 45 to Frontal Impact – Summary of Results ... 58
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.8</td>
<td>45 to Frontal Impact – Result Discussions</td>
<td>59</td>
</tr>
<tr>
<td>3.2.9</td>
<td>45 to Frontal Impact – Pressure Curves</td>
<td>60</td>
</tr>
<tr>
<td>3.2.10</td>
<td>45-to-Frontal Impact – Simulation Results (Pressure Contours)</td>
<td>62</td>
</tr>
<tr>
<td>3.2.11</td>
<td>Lateral Impact – Introduction</td>
<td>67</td>
</tr>
<tr>
<td>3.2.12</td>
<td>Lateral Impact – Summary of Results</td>
<td>67</td>
</tr>
<tr>
<td>3.2.13</td>
<td>Lateral Impact – Result Discussions</td>
<td>68</td>
</tr>
<tr>
<td>3.2.14</td>
<td>Lateral Impact – Pressure Curves</td>
<td>69</td>
</tr>
<tr>
<td>3.2.15</td>
<td>Lateral Impact – Simulation Results (Pressure Contours)</td>
<td>71</td>
</tr>
<tr>
<td>3.2.16</td>
<td>Posterior Impact – Introduction</td>
<td>76</td>
</tr>
<tr>
<td>3.2.17</td>
<td>Posterior Impact – Summary of Results</td>
<td>76</td>
</tr>
<tr>
<td>3.2.18</td>
<td>Posterior Impact – Result Discussions</td>
<td>77</td>
</tr>
<tr>
<td>3.2.19</td>
<td>Posterior Impact – Pressure curves</td>
<td>78</td>
</tr>
<tr>
<td>3.2.20</td>
<td>Posterior Impact – Simulation Results (Pressure Contours)</td>
<td>80</td>
</tr>
<tr>
<td>3.3</td>
<td>Overall Result Discussions</td>
<td>85</td>
</tr>
<tr>
<td>4.</td>
<td>Correlation between Head Kinematics and Brain Kinetics</td>
<td>86</td>
</tr>
<tr>
<td>4.1</td>
<td>Formula Proposition</td>
<td>92</td>
</tr>
<tr>
<td>5.</td>
<td>Conclusions</td>
<td>95</td>
</tr>
<tr>
<td>6.</td>
<td>Future Scope</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Error! Bookmark not defined.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Appendix A</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>Appendix B</td>
<td>114</td>
</tr>
<tr>
<td></td>
<td>Appendix C</td>
<td>121</td>
</tr>
<tr>
<td></td>
<td>Appendix D</td>
<td>122</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>124</td>
</tr>
</tbody>
</table>
List of Figures

Figure 1.1 Wayne State Tolerance Curve [26] ... 19
Figure 1.2 Linear (top) and Angular (bottom) Acceleration Tolerance levels of concussions and TBIs [27] .. 20
Figure 2.1 Pictorial representation of head-on collision in American football games to explain head injury mechanism ... 22
Figure 2.2 NOCSAE Drop Test: Photograph of Experimental Setup similar to that in MTU, MEEM Biomechanics Lab ... 24
Figure 2.3 Plot of experimentally measured linear accelerations as a function of time ... 25
Figure 2.4 Cross section of a Fujifilm Prescale from Sensor Products Inc website [28]. 28
Figure 2.5 Sample Fujifilm prescale (pressure film) showing 2 feet drop impact 29
Figure 2.6 Analysis through Topaq scanner and software showing pressure readings (left) and pseudo image (right) for 2 feet drop height .. 29
Figure 2.7 Screenshots of Impact areas marked on FE model, Frontal region (left-top); Posterior region (right-top), Lateral region (left-bottom); 45 to frontal region (right-bottom) ... 33
Figure 2.8 Screenshot of spring connection from remote point 35
Figure 2.9 Screenshot of Remote point connecting to skull stem 36
Figure 3.1 Screenshots showing orientation of FE head model aligned with drop test head form .. 40
Figure 3.2 Plot of experimentally measured linear acceleration and analytically calculated angular acceleration as a function of drop heights (Frontal Impact) 44
Figure 3.3 Plot of experimentally measured linear acceleration and analytically calculated angular acceleration as a function of drop heights (45 to Frontal Impact) 44
Figure 3.4 Plot of experimentally measured linear acceleration and analytically calculated angular acceleration as a function of drop heights (Lateral Impact) 45
Figure 3.5 Plot of experimentally measured linear acceleration and analytically calculated angular acceleration as a function of drop heights (Posterior Impact) 45
Figure 3.6 Plot of Maximum Principal Stress and Von-Mises Stress for Frontal impact obtained from ANSYS simulations as a function of drop heights .. 49
Figure 3.7 Plot of analytically calculated impact pressures as a function of time (frontal impact 2 feet drop height) .. 51
Figure 3.8 Plot of analytically calculated impact pressures as a function of time (frontal impact 3 feet drop height) .. 51
Figure 3.9 Plot of analytically calculated impact pressures as a function of time (frontal impact 4 feet drop height) .. 52
Figure 3.10 Plot of analytically calculated impact pressures as a function of time (frontal impact 5 feet drop height) .. 52
Figure 3.11 Von Mises Stress Distribution Contours - Frontal Impact 2 feet 53
Figure 3.12 Maximum Principal Stress Distribution Contours - Frontal Impact 2 feet ... 53
Figure 3.13 Von Mises Stress Distribution Contours - Frontal Impact 3 feet 54
Figure 3.14 Maximum Principal Stress Distribution Contours - Frontal Impact 3 feet ... 54
Figure 3.15 Von Mises Stress Distribution Contours - Frontal Impact 4 feet 55
Figure 3.16 Maximum Principal Stress Distribution Contours - Frontal Impact 4 feet ... 55
Figure 3.17 Von Mises Stress Distribution Contours - Frontal Impact 5 feet 56
Figure 3.18 Maximum Principal Stress Distribution Contours - Frontal Impact 5 feet ... 56
Figure 3.19 Location of peak value of Maximum Principal Stress on skull (without scalp) for Frontal 5 feet impact .. 57
Figure 3.20 Plot of Maximum Principal Stress and Von-Mises Stress for 45-to-frontal impact obtained from ANSYS simulations as a function of drop heights 58
Figure 3.21 Plot of analytically calculated impact pressures as a function of time (45 to frontal impact 2 feet drop height) ... 60
Figure 3.22 Plot of analytically calculated impact pressures as a function of time (45 to frontal impact 3 feet drop height) ... 61
Figure 3.23 Plot of analytically calculated impact pressures as a function of time (45 to frontal impact 4 feet drop height) ... 61
Figure 3.24 Plot of analytically calculated impact pressures as a function of time (45 to frontal impact 5 feet drop height) ... 62
Figure 3.25 Von Mises Stress Distribution Contours – 45 to Frontal Impact 2 feet 62
Figure 3.26 Maximum Principal Stress Distribution Contours – 45 to Frontal Impact 2 feet... 63
Figure 3.27 Von Mises Stress Distribution Contours – 45 to Frontal Impact 3 feet 63
Figure 3.28 Maximum Principal Stress Distribution Contours – 45 to Frontal Impact 3 feet... 64
Figure 3.29 Von Mises Stress Distribution Contours – 45 to Frontal Impact 4 feet 64
Figure 3.30 Maximum Principal Stress Distribution Contours - 45 to Frontal Impact 4 feet .. 65
Figure 3.31 Von Mises Stress Distribution Contours - 45 to Frontal Impact 5 feet 65
Figure 3.32 Maximum Principal Stress Distribution Contours - 45 to Frontal Impact 5 feet.. 66
Figure 3.33 Location of peak value of Maximum Principal Stress on skull (without scalp) for 45-to-frontal 5 feet impact.. 66
Figure 3.34 Plot of Maximum Principal Stress and Von-Mises Stress for lateral impact obtained from ANSYS simulations as a function of drop heights... 67
Figure 3.35 Plot of analytically calculated impact pressures as a function of time (lateral impact 2 feet drop height).. 69
Figure 3.36 Plot of analytically calculated impact pressures as a function of time (lateral impact 3 feet drop height).. 69
Figure 3.37 Plot of analytically calculated impact pressures as a function of time (lateral impact 4 feet drop height).. 70
Figure 3.38 Plot of analytically calculated impact pressures as a function of time (lateral impact 5 feet drop height).. 70
Figure 3.39 Von Mises Stress Distribution Contours - Lateral Impact 2 feet 71
Figure 3.40 Maximum Principal Stress Distribution Contours - Lateral Impact 2 feet.... 71
Figure 3.41 Von Mises Stress Distribution Contours - Lateral Impact 3 feet 72
Figure 3.42 Maximum Principal Stress Distribution Contours - Lateral Impact 3 feet.... 72
Figure 3.43 Von Mises Stress Distribution Contours - Lateral Impact 4 feet 73
Figure 3.44 Maximum Principal Stress Distribution Contours - Lateral Impact 4 feet.... 73
Figure 3.45 Von Mises Stress Distribution Contours - Lateral Impact 5 feet 74
Figure 3.46 Maximum Principal Stress Distribution Contours - Lateral Impact 5 feet.... 74
Figure 3.47 Location of peak value of Maximum Principal Stress near impact region on skull (without scalp) for Lateral 5 feet impact

Figure 3.48 Location of peak value of Maximum Principal Stress opposite to impact region on skull (without scalp) for Lateral 5 feet impact

Figure 3.49 Plot of Maximum Principal Stress and Von-Mises Stress for posterior impact obtained from ANSYS simulations as a function of drop heights

Figure 3.50 Plot of analytically calculated impact pressures as a function of time (posterior impact 2 feet drop height)

Figure 3.51 Plot of analytically calculated impact pressures as a function of time (posterior impact 3 feet drop height)

Figure 3.52 Plot of analytically calculated impact pressures as a function of time (posterior impact 4 feet drop height)

Figure 3.53 Plot of analytically calculated impact pressures as a function of time (posterior impact 5 feet drop height)

Figure 3.54 Von Mises Stress Distribution Contours - Posterior Impact 2 feet

Figure 3.55 Maximum Principal Stress Distribution Contours - Posterior Impact 2 feet

Figure 3.56 Von Mises Stress Distribution Contours - Posterior Impact 3 feet

Figure 3.57 Maximum Principal Stress Distribution Contours - Posterior Impact 3 feet

Figure 3.58 Von Mises Stress Distribution Contours - Posterior Impact 4 feet

Figure 3.59 Maximum Principal Stress Distribution Contours - Posterior Impact 4 feet

Figure 3.60 Von Mises Stress Distribution Contours - Posterior Impact 5 feet

Figure 3.61 Maximum Principal Stress Distribution Contours - Posterior Impact 5 feet

Figure 3.62 Location of peak value of Maximum Principal Stress on skull (without scalp) for Posterior 5 feet impact

Figure 4.1 Plot of Linear Acceleration values for frontal, 45-to-frontal, lateral and posterior impact regions as a function of drop heights to determine TBI drop height for various regions from TBI Tolerance acceleration value

Figure 4.2 Linear-TBI drop height for Frontal impact region located on the plot of Maximum Principal Stress and Von-Mises Stress as a function of time

Figure 4.3 Linear-TBI drop height for 45-to-Frontal impact region located on the plot of Maximum Principal Stress and Von-Mises Stress as a function of time
Figure 4.4 Linear-TBI drop height for Lateral impact region located on the plot of Maximum Principal Stress and Von-Mises Stress as a function of time.................. 89
Figure 4.5 Linear-TBI drop height for Posterior impact region located on the plot of Maximum Principal Stress and Von-Mises Stress as a function of time................. 90
Figure 4.6 Bar plot of brain failure strain and maximum principal strain obtained from FE Simulations for Frontal, 45-to-Frontal, Lateral and Posterior impacts and their respective TBI-tolerant drop heights... 91
Figure B0.1 Finite Element Modeler module of ANSYS 14.5................................. 114
Figure B0.2 Screenshot of Body Grouping in Head assembly according to its Components (layers) in ANSYS 14.5... 114
Figure B0.3 Screenshot of Transient Structural module highlighting Engineering data step (Materials) tab in ANSYS 14.5... 115
Figure B0.4 Screenshot of FE Model importing process in Transient Structural module .. 115
Figure B0.5 Screenshot of Material Assignment process to the Scalp....................... 116
Figure D0.6 Layers of human head [31]... 122
Figure D0.7 Structural differentiation of human brain [32].................................... 123
List of Tables

Table 2.1 Modeling Details of Human Head FE Model [29] ... 32
Table 2.2 Material Properties of Human Head (validated FE model) [29] 34
Table 2.3 Mesh of imported validated FE model ... 34
Table 2.4 Remote Point Controls.. 36
Table 2.5 Spring Controls... 37
Table 3.1 Linear acceleration values from pressure films and Topaq analyser.............. 41
Table 3.2 Maximum linear acceleration values from NOCSAE drop tests...................... 42
Table 3.3 Maximum angular acceleration values calculated analytically from linear accelerations of drop tests... 43
Table 3.4 TBI criterion for frontal, 45-to-frontal, lateral and posterior regions based on equation E12 .. 48
Table 3.5 Results of Frontal Impact for 2, 3, 4 and 5 feet drop heights 49
Table 3.6 Results of 45-to-Frontal Impact for 2, 3, 4 and 5 feet drop heights................. 58
Table 3.7 Results of Lateral Impact for 2, 3, 4 and 5 feet drop heights........................ 67
Table 3.8 Results of Posterior Impact for 2, 3, 4 and 5 feet drop heights....................... 76
Table 4.1 Drop Heights for TBI tolerance level (linear acceleration).............................. 87
Table 4.2 Summary of Stresses corresponding to Linear-TBI Tolerance Drop Heights.. 90
Table A0.1 HICP for Frontal impact of 2 feet drop height.. 98
Table A0.2 HICP for Frontal impact of 3 feet drop height.. 99
Table A0.3 HICP for frontal impact of 4 feet drop height.. 100
Table A0.4 HICP for frontal impact of 5 feet drop height.. 101
Table A0.5 HICP for 45-to-frontal impact of 2 feet drop height................................. 102
Table A0.6 HICP for 45-to-frontal impact of 3 feet drop height................................. 103
Table A0.7 HICP for 45-to-frontal impact of 4 feet drop height................................. 104
Table A0.8 HICP for 45-to-frontal impact of 5 feet drop height................................. 105
Table A0.9 HICP for lateral impact of 2 feet drop height.. 106
Table A0.10 HICP for lateral impact of 3 feet drop height.. 107
Table A0.11 HICP for lateral impact of 4 feet drop height.. 108

Chandrika S. Abhang | Michigan Tech
Table A0.12 HICP for lateral impact of 5 feet drop height ... 109
Table A0.13 HICP for posterior impact of 2 feet drop height .. 110
Table A0.14 HICP for posterior impact of 3 feet drop height ... 111
Table A0.15 HICP for posterior impact of 4 feet drop height .. 112
Table A0.16 HICP for posterior impact of 5 feet drop height ... 113
Table B0.17 Analysis Settings : Various Controls .. 116
Table B0.18 Step Controls : Time Cycle and end time specifications 118
Acknowledgments

First of all, I would like to thank my mother, Manorama Abhang for recognizing and believing in my potential. Her courage to attain the difficult and belief in me has brought me this success today. Words are indeed less to appreciate her efforts and hardships she has gone through to bring me to the stage I am today. I am deeply grateful for her relentless support in all aspects of my life. I thank God for giving me such a great mother!

I am thankful to my advisor Dr. Gopal Jayaraman for his guidance and support in completion of my Master’s program. I would like to thank David Labyak for his constant support and reviews on my work. I wouldn't have completed my work without the support of these two. Thanks to the rest of my defense committee, Dr. Allan Struthers, Dr. Mahesh Gupta and Dr. Ibrahim Miskioglu for taking time to review my work. I would like to thank my research colleague and lab-mate Krishnatej Bhamidipati for providing me with the essential data of drop tests and pressure films.

Thank you to Kohler Co. and my Kohler colleagues for supporting me during the end phase of my Master’s program.

Last but not the least; a special thank you to my best friends at MTU: Ranjeeth Naik, Yogita Uplane and Jayesh Borde for emotionally supporting me throughout my research days. The discussions and chats I had with you all helped me resume my work with renewed enthusiasm!

Chandrika S. Abhang | Michigan Tech
Abstract

Does a brain store thoughts and memories the way a computer saves its files? How can a single hit or a fall erase all those memories? Brain Mapping and traumatic brain injuries (TBIs) have become widely researched fields today. Many researchers have been studying TBIs caused to adult American football players however youth athletes have been rarely considered for these studies, contradicting to the fact that American football enrolls highest number of collegiate and high-school children than adults. This research is an attempt to contribute to the field of youth TBIs.

Earlier studies have related head kinematics (linear and angular accelerations) to TBIs. However, fewer studies have dealt with brain kinetics (impact pressures and stresses) occurring during head-on collisions. The National Operating Committee on Standards for Athletic Equipment (NOCSAE) drop tests were conducted for linear impact accelerations and the Head Impact Contact Pressures (HICP) calculated from them were applied to a validated FE model. The results showed lateral region of the head as the most vulnerable region to damage from any drop height or impact distance followed by posterior region. The TBI tolerance levels in terms of Von-Mises and Maximum Principal Stresses deduced for lateral impact were 30 MPa and 18 MPa respectively. These levels were corresponding to 2.625 feet drop height. The drop heights beyond this value will result in TBI causing stress concentrations in human head without any detectable structural damage to the brain tissue. This data can be utilized for designing helmets that provide cushioning to brain along with providing a resistance to shear.

Chandrika S. Abhang | Michigan Tech
1. Introduction

Could your brain be accessed by a computer after you die? Is it possible to retain it with all its thoughts and feelings? How about uploading your brain into a robot? This is not a sci-fi movie plot but a thought from arguably, the most intelligent man on planet – Stephan Hawking. He believes that human brain is like a computer program of one’s body. So, theoretically it can be synced to a computer. Technology could make it happen in future thus providing us a form of life after death [1]. Brain Preservation Foundation is trying to preserve the brain along with its memories, emotions and consciousness. They are working on chemical fixation, plastic embedding and three-dimensional structuring techniques for the same [2]. Dmitry Itskov wishes to attain cybernetic immortality through his 2045 Initiative. He believes someday he will be able to upload his brain into a robot [3]. Neurovigil Inc. has become successful in developing a device called as iBrain which analyzes brain signals and converts them into text-based speech reader. This device will be launched soon with its first demonstration by Stephan Hawking probably replacing his current infrared speech-reading device. iBrain will also be used to treat traumatic brain injuries and understand diseases like Alzheimer’s, autism, epilepsy and other neuropathologies [4]. These ambitious projects, high-end technologies and intelligent minds are working towards finding answers to a few basic questions – What happens inside a brain when we think? How does it infer through logical reasoning and observations? To sum it up -- How exactly does a brain work?

Brain research has got a new boost with the BRAIN (Brain Research through Advancing Innovative Neurotechnologies) Initiative launched by National Institutes of Health (NIH)
and the Obama government. Also known as the ‘Brain Activity Map’ project, it literally aims towards mapping activity of every neuron in the human brain. This initiative will generate a dynamic brain model explaining interaction of individual cells and complex neural circuits in both space and time [5]. This will help us to understand how brain functions ultimately helping us to treat and prevent brain disorders. Brain disorders, more specifically traumatic brain injuries (TBIs) have become a major cause of physical impairment, social disorder and death. Motorcycle and car accidental injuries, sports related injuries and injuries to military personnel due to war-like situations are few of the most discussed areas in the field of neurotrauma.

This research is an attempt to contribute to this field of sports related head injuries by finding a method to detect sites of traumatic brain injuries through experimental laboratory-based drop tests and finite element methods.

1.1 Head Injury Facts
To help understand the procedures carried out during this research a brief introduction to the field of head injuries is given in this section. Importance of studying traumatic brain injuries, its causes and effects on the quality of life are presented. Basic anatomy of human head is presented in Appendix D for further reading. Pros and cons of existing methods to detect the traumatic brain injuries and concussions are also discussed in this section. A summarized objective of the research and the strategy followed to achieve it is presented at the end of this section.
1.1.1. Epidemiology of head injury

In United States, about 1.4 million people [6] or 1 out 53 individuals [7] are exposed to traumatic brain injuries (TBIs) every year. Years 2001 to 2010 saw 70 percent increase in the rate of TBI-related emergency department visits and 11 percent increase in hospitalizations [8, 9]. An age-group based statistical data shows that a large proportion of children (92.7%) show TBI-related emergency department visits than older adults (59.7%) [10]. 75 percent [11] or 3 out of 4 of these injuries are mild traumatic injuries (mTBIs or concussions) [6] and yet the most ignored ones. People have common misconceptions that concussions are not serious injuries and that they get cured after a few days of rest. These misconceptions are evident from a research done by DeMatteo and her team at McMaster University. The research shows that children diagnosed for concussion were discharged early from the hospitals and resumed activity earlier than they should [12]. This might increase the risk of a repeat injury occurs to about 3.5 million people each year [13]. Contradictory to people’s misconceptions, mild TBIs are responsible for lasting damage of white matter which closely resembles the brain pattern of Alzheimer’s dementia [14]. Studies also show that abnormalities in gray matter of the frontal cortex last for four months after concussion [15]. Measurable global and regional brain atrophy is observed even after one year of head impact [11]. These effects might worsen after the repeated injury and might result in permanent impairment of cognitive senses. TBIs increase the risk of stroke by tenfold [7] and make the injured 30 percent [16] more likely to suffer from it. This is a grave situation since multiple areas of brain seem to get affected due to an impact.
Studies also show that approximately 15% of falls or blunt traumas are traced back to sports. These falls or blunt traumas are also the second leading cause of TBI [9]. Football being one of the most fan-followed sports in US [17], is also enlisted as one of the highest concussion-incident sport along with boxing, hockey, rugby, soccer and basketball [18]. Many studies have been conducted for studying the effects of TBIs on adult athletes but no substantial data is available for young athletes considering American football has most number of young participants from high school and college levels [17]. Diagnosis of depression due to TBI in children and adolescents has increased 4.9 fold [19]. Suicidal tendencies in children are also seen to increase. The children suffering from Attention Deficit Hyperactivity Disorder (ADHD) are more prone to the moderate disability [20] whereas the ones sensitive to light and sound might develop emotional symptoms like anxiety and irritability or aggression [21] due to mild TBI.

Despite the knowledge of risks involved in repeated TBI, young athletes are usually reluctant in reporting the concussions to their coaches or parents. Most of them continue playing even after concussion and few of them even think they have a responsibility to play important games inspite of concussions [22]. Thus, development of safe tackling techniques and awareness about concussion amongst athletes, coaches and parents is not enough to avoid risks involved. Method for detecting on-field concussions should be developed to understand the severity of the injury suffered by the brain during games and mostly during practice sessions.
1.1.2. Available Methods for mTBI or Concussion detection

For years, clinicians have used neurocognitive testing to detect concussions on-field. This method is based on measuring reaction time, attention span, working memory of the player before and after the impact. This measurement is carried out by recording the responses of athletes to simple questionnaires and vision and speech tests. It also depends on athletes self-reporting their symptoms accurately. These responses can be easily forged or go unreported from player’s end in order to continue playing in the game. Thus this method involves subjective evaluation. Probability of error in detecting the severity of injury is more in these tests.

Earlier imaging studies like MRI and CT scans compared non-concussed brains with concussed brains but were not able to compare severity amongst the concussed individuals. Most researchers have assumed the concussed areas of brain to be same for all patients which is practically impossible considering the unique head anatomies and various angles of impacts. Imaging techniques have evolved a lot since then. A Diffusion Tensor Imaging (DTI) technique that gives a value called Fractional Anisotropy (FA) is developed. Fractional Anisotropy or FA is a value recorded based on the movement of water in the white matter. Uniform water movement signifies healthy white matter and gives a high value of FA whereas a damaged white matter has more random water movement giving a lower FA value. This technique is however detecting changes to the brain structure on a macroscopic level. It is detecting areas that might have lesions, bruising, blood clots or tissue tears due to severe impact [14, 11]. However, minor
changes caused due to mild TBIs might go unregistered. Another disadvantage of this
technique is that it cannot be made available rapidly on-field for diagnosis.

University of Virginia (UVA) School of Medicine has discovered a method that uses
Positron Emission Tomography (PET) scans and body’s immune response to a brain
injury. It is called the ‘Trojan Horse’ technique. Neutrophils\(^1\) respond to the TBI and
reach the injured area through blood vessels in brain. Researchers of UVA have attached
radioactive tracers on these neutrophils which can be detected through PET scans. This
helps to trace the areas affected due to TBI at the cellular or molecular level. Similar
technique exists to detect lung infections however this is an in-development process yet
to be proven for various brain injuries [23]. A portable PET scanner and necessary on-
field instrumentation can make this technique accessible and feasible.

S100B, a brain protein and a well-accepted biomarker for traumatic brain injury can be
detected through an on-field blood test. However, it has been observed that levels of this
protein increase even after physical exertion. Research is being done to differentiate these
occurrences from actual concussions [24]. This test if developed would help gauge the
severity of brain injury rapidly.

Another similar test conducted by George Mason researchers, analyses saliva of the
players before and after concussion. Changes in the saliva protein might be able to
predict occurrences of concussion. This tool if developed would be non-invasive, without
any threat of infection, easy to use and rapid to give results [25].

\(^1\) Neutrophils are the white blood cells which are a part of immune response of body to any injury.
Numerous efforts are being done to develop techniques that are on-field diagnostic, repeatable, reproducible, non-invasive, without any threat of infection and most importantly objectively evaluated i.e. independent of player response or doctor’s judgment. Engineering biomechanics of brain injury is one of the solutions to this problem and the basis of this research.

Wayne State Tolerance (WST) Curve [26] (Figure 1.1) was developed by subjecting anaesthetized animals, embalmed cadavers and human volunteers to linear frontal head impacts. This was a preliminary attempt of relating linear impact accelerations of human head to pulse duration causing skull fracture and head injury. However, in this method since the tolerance limit for head injury was based off of skull fracture limit, a precise method to determine just the head injury tolerance level should be devised.

Figure 1.1 Wayne State Tolerance Curve [26]

Anna Oeur and her research team at University of Ottawa have tried to determine these tolerance levels for non-persistent concussions, persistent concussions and TBIs through their study [27]. The linear and angular impact acceleration tolerance limits causing
Injuries are derived by her team as shown in Figure 1.2. These tolerance levels will be used as a basis in this research.

Figure 1.2 Linear (top) and Angular (bottom) Acceleration Tolerance levels of concussions and TBIs

[27]
1.2 Scope of study

1.2.1 Objective

The main objective of this study is to contribute to the field of youth TBIs and correlate head kinematics with brain kinetics to explain brain injury dynamics. Specifically, this study will address the following questions:

- Do angular impact accelerations play a prominent role in causing TBI along with linear impact accelerations?
- Can a TBI criterion be derived through their relation?
- Do TBIs causing high stress concentrations also cause detectable structural damage in the brain tissue?
- Do impact tolerances with respect to impact regions on human head?

1.2.2 Strategy

To address these questions, following milestones were established:

- Conduct NOCSAE drop tests to acquire linear accelerations and impact pressures.
- Carry out analytical procedures to determine impact pressures and angular accelerations from available linear accelerations and headform dimensions.
- For various impact regions, determine relationship between linear and angular accelerations (at specific drop heights).
- Subject the validated FE model to impact pressures on frontal, 45 to frontal, lateral and posterior regions of head
- Correlate stress distributions from FE simulations to concussion tolerance levels and determine concussion-related pressures and stresses.
2. Methods and Materials

The aim of this research was to find a correlation between head impact pressure and linear - angular acceleration as well as to derive the effect of impact pressure in terms of Von-Mises and Maximum Principal Stresses on human head model. NOCSAE drop tests, analytical procedures and finite element simulations were carried out to obtain these correlations. In order to help understand the research procedures better, this section will start with a brief introduction to head injury mechanism and proceed with the details on procedures.

2.1 Head Injury Mechanism

![Head Injury Mechanism Diagram](image)

Figure 2.1 Pictorial representation of head-on collision in American football games to explain head injury mechanism
Referring to Figure 2.1, consider two football players running towards each other at different linear accelerations. Assuming that the impact is direct central linear impact i.e. both the bodies are hitting each other in a straight line then the transmission of energies from one body to other will occur. The two bodies will experience a reactive impact force pushing them in opposite directions and decelerating them.

To simulate the above (Figure 2.1) on-field conditions in the lab we conducted the National Operating Committee on Standards for Athletic Equipment (NOCSAE) drop tests.

2.2 NOCSAE Drop Tests for Linear Impact Accelerations

NOCSAE Drop Test instrumentation was setup in Michigan Technological University’s Biomechanics Laboratory for experimentation. A NOCSAE Dummy Head Form was chosen for these tests. This head form was equipped with uniaxial accelerometers which were connected to Siglab data acquisition system. These accelerometers recorded linear acceleration values experienced by the headform due to drops from various heights.

NOCSAE Head form was oriented to focus various regions as impact locations; namely frontal, posterior, lateral & 45° to the frontal region. It was allowed to fall freely on an impactor\(^2\) from four different heights: 2, 3, 4 and 5 feet. A thin impactor was chosen for this study to incorporate the adverse impact conditions. Instantaneous linear impact acceleration values were recorded by the accelerometers for each location in X, Y and Z axes.

\(^2\) Impactor is an anvil like cylindrical structure having padded top layer and solid steel base. It is used to simulate collision effect among the headform and a hard surface.
The NOCSAE drop test experimentation setup is shown in Figure 2.2

![Figure 2.2 NOCSAE Drop Test: Photograph of Experimental Setup similar to that in MTU, MEEM Biomechanics Lab](http://moravianequipment.blogspot.com/2013/05/this-is-how-football-helmets-are.html)

Linear impact accelerations were derived from these tests.
2.3 Analytical Calculations for Angular Impact Accelerations

NOCSAE drop tests yielded linear impact acceleration values as a function of time for entire drop cycle. Only major impact event spanning from 0 to 5.468 msec (Figure 2.3) was considered for this study and other acceleration values were ignored.

![Figure 2.3 Plot of experimentally measured linear accelerations as a function of time](image)

Newton’s second law states, “The rate of change of momentum of a body is proportional to the impulse impressed on the body, and happens along the straight line on which that impulse is impressed”. It is mathematically expressed as:

\[
\vec{F} = \frac{d (m \vec{v})}{dt}
\]

\[
= m \left(\frac{d \vec{v}}{dt} \right)
\]
\(\vec{F} = m \vec{\alpha} \) \hfill \ldots (E1)

Where ‘F’ is resultant force applied, ‘m’ is mass (constant) of the body and ‘a’ is acceleration of the body.

Applying the same equation to this case, impact force ‘Fi’ was calculated from acceleration acquired through drop tests and mass of head form which was 4.716 kg. The acceleration values were in ‘Gs’ which were converted to ‘m/s²’ for calculation purposes.

Thus equation (E1) modifies as:
\[
\vec{F}_i = m_{\text{headform}} \cdot \vec{a}_{\text{droptest}}
\] \hfill \ldots (E2)

In order to gauge the effect of an impact in terms of angular acceleration on human head, an attempt to quantify values of angular acceleration through analytical methods was done.

The procedure used for the same is as explained in the following section.

Newton’s second law for rotational motion is mathematically expressed as,
\[
\vec{T} = I \cdot \vec{\alpha}
\] \hfill \ldots (E3)

Where, \(T \) = Torque or moment (in this case) the body is subjected to
\(I \) = Mass moment of inertia in kg-m²
\(\alpha \) = angular acceleration in rad /s²

Torque or moment is also expressed as a cross product of moment arm and force vector and mathematically expressed as:
\[
\vec{T} = \vec{r} \times \vec{F}_i
\] \hfill \ldots (E4)

Where, \(r \) = position vector from the axis of rotation to the point of impact in meters
\(F_i \) = impact force in N
Substituting appropriate values of r_x, r_y, and r_z for corresponding F_x, F_y, and F_z, torque values can be determined about X, Y and Z axes.

Thus, equation E3 can also be written as:

$$\ddot{\alpha} = \frac{T}{I} \ldots (E5)$$

Substituting appropriate values of torque (moment) from equation (E4) and moment of inertia for X, Y and Z axes in equation (E5) one gets:

$$\ddot{\alpha}_{xx} = \frac{T_x}{l_{xx}} \ldots (E6)$$

$$\ddot{\alpha}_{yy} = \frac{T_y}{l_{yy}} \ldots (E7)$$

$$\ddot{\alpha}_{zz} = \frac{T_z}{l_{zz}} \ldots (E8)$$

Where, α_{xx}, α_{yy}, α_{zz} are angular accelerations with respect to X, Y and Z axes.

Thus, the resultant angular acceleration will be

$$\alpha_R = \sqrt{\alpha_{xx}^2 + \alpha_{yy}^2 + \alpha_{zz}^2} \ldots (E9)$$

These values are calculated for frontal, posterior, lateral and 45 to frontal impacts from 2, 3, 4 and 5 feet drop heights. The tabulated calculations (excel calculator) can be referred in Appendix C.

These results are used to plot linear and angular accelerations against various drop heights and locations and to propose a TBI criterion based on linear and angular impact accelerations.
2.4 Impact Pressure Measurement

Along with linear impact acceleration measurements, impact pressure measurements were also carried out simultaneously. In order to do that, NOCSAE drop test impactor was covered with medium scale pressure sensitive Fujifilm Prescale (or pressure films) provided by Sensor Products Inc.. These pressure films are mylar based films which contain a layer of tiny microcapsules which rupture with application of force in turn producing image of pressure variation across the contact area. Medium scale was chosen over lower scale pressure film in order to ensure that higher values of pressures get captured precisely. It also ensured that lower values do not superimpose the critical or required higher pressure values.

The cross-sectional image acquired from the website of Sensor Products Inc. (Figure 2.4) is shown below for better understanding.

![Cross Sectional View of Fujifilm Prescale](image)

Figure 2.4 Cross section of a Fujifilm Prescale from Sensor Products Inc. website [28]

Actual physical pressure imprint caused on Fujifilm prescale due to Frontal 2feet impact is shown in Figure 2.5.
Figure 2.5 Sample Fujifilm prescale (pressure film) showing 2 feet drop impact

Topaq analyzer scanned these pressure films and displayed numerical values of pressure variations on the impacted area as shown in Figure 2.6.

Figure 2.6 Analysis through Topaq scanner and software showing pressure readings (left) and pseudo image (right) for 2 feet drop height
In order to validate this procedure the impact pressures obtained from these pressure films were put in equation E10 to calculate impact force

\[P = \frac{\vec{F}}{A} \] \hspace{1cm} \text{... (E10)}

Where \(P \) = Impact Pressure obtained from pressure films in Pa
\(\vec{F} \) = Impact force vector on impact area ‘A’

This impact force was then put as an input in equation E1 to get linear impact accelerations obtained from pressure films. These values were compared with linear impact acceleration values of drop tests (\(\vec{a}_{\text{drop test}} \)) for validation.

But as you can see in Figure 2.6, this analyzer was unable to provide a pressure curve and provides us with a single average pressure value per drop height and location. Thus, one cannot put these values as input to FE simulations. Another drawback of pressure films was that they were suitable for single impacts. Multiple impacts caused due to rebound of head after impact might have incorporated some errors in readings. However, after considering these error margins we did get substantial data of average pressure values from these pressure films which can be compared with analytically calculated impact pressures.

Hence impact pressures and linear impact accelerations obtained from pressure films were used only for comparison with analytical values of impact pressures and impact accelerations obtained from drop tests. This method can be developed more by eliminating approximations and errors of measurements.
2.5 Finite Element Simulations with Impact Pressures

2.5.1 Introduction

Traumatic brain injuries are basically caused due to transmission of impact pressures from the outer layer (scalp) to the inner layers (skull, Dura and brain) of the human head. If one is able to measure these pressures or impact forces on-field and at the time of impact then through this research concept one will be able to predict whether that individual will have a concussion or any other type of brain injury. A relationship between accelerations causing concussion and consequent impact pressures can be used for above prediction. Thus head kinematics and brain kinetics are correlated to explore brain injury dynamics.

2.5.2 Input to FE model

The impact pressure aptly named as ‘Head Impact Contact Pressure or HICP’ by this research group is calculated through equation E11

Using equations E2 and E10 we get,

\[
Pi = \frac{m \cdot \ddot{a}_{droptest}}{Ai}
\] ... (E11)

Where \(P_i\) is Head Impact Contact Pressure or HICP,
\(\ddot{a}_{droptest}\) is the linear impact acceleration obtained from NOCSAE drop tests
\(Ai\) is area of impact recorded from pressure films.

These values of HICP were used as an input to validated FE model of human head.

The calculations and HICP data are presented in the Appendix A
2.5.3 Importing a validated FE model

A validated FE model of human head was taken from David Labyak’s thesis [29]. It had the impactor and contact surfaces created for his simulations. Those were removed through Hypermesh software. The validated FE model is an orphan mesh in ABAQUS (.inp) format. Skull is created through geometry however scalp, dura and brain are generated by offsetting the mesh from the skull. Hence, one cannot import it as a geometry file in any analysis software. Solidworks, ABAQUS and ANSYS were the available options. File was made compatible to be imported in Solidworks however the model did not get imported as parts (for layers of head) and was unable to generate separate mesh for each layer of human head model. Though setup was correct in ABAQUS, multiple errors and discrepancies while importing the model were observed.

ANSYS was chosen considering the availability of software licenses in the university and compatibility of the software to import the available head model (ABAQUS) file. The validated FE human head model was imported using FEModeler feature (refer to Appendix B for more details) of ANSYS 14.5 [30].

The details of imported model are as follows:

<table>
<thead>
<tr>
<th>Body Name</th>
<th>Nodes</th>
<th>Elements</th>
<th>Generic Element Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCALP</td>
<td>3762</td>
<td>3665</td>
<td>Linear Wedge</td>
</tr>
<tr>
<td>SKULL</td>
<td>6847</td>
<td>22930</td>
<td>Linear Tetrahedron</td>
</tr>
<tr>
<td>DURA</td>
<td>4158</td>
<td>4154</td>
<td>Linear Wedge</td>
</tr>
<tr>
<td>BRAIN TISSUE</td>
<td>3971</td>
<td>17088</td>
<td>Linear Tetrahedron</td>
</tr>
</tbody>
</table>
The impact regions were created on the FE head model by creating components in FEModeler. The areas of impact as measured from the pressure film analysis were tried to replicate on FE model. This replication involved approximation of areas to match the mesh and element sizes since any change in mesh properties would deviate us from validated FE model.

The impact regions are shown in Figure 2.7

Figure 2.7 Screenshots of Impact areas marked on FE model, Frontal region (left-top); Posterior region (right-top), Lateral region (left-bottom); 45 to frontal region (right-bottom)
2.5.4 **Analysis module: Transient Structural**

Transient Structural Analysis module (also called time-history analysis) was chosen for the study. This type of analysis is used to determine dynamic response of structure caused due to these time-dependent loads. In this study, dynamic response of human head model due to time dependent pressure loads was determined.

2.5.5 **Material Assignments**

The imported model was grouped according to layers of human head and named accordingly. Appropriate materials were assigned. Material properties were kept same as that of the validated model which are enlisted in Table 2.2.

<table>
<thead>
<tr>
<th>Layer Name</th>
<th>Density (kg/m³)</th>
<th>Young’s Modulus (MPa)</th>
<th>Poisson’s Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCALP</td>
<td>1412</td>
<td>8.05</td>
<td>0.42</td>
</tr>
<tr>
<td>SKULL</td>
<td>2700</td>
<td>6500</td>
<td>0.22</td>
</tr>
<tr>
<td>DURA</td>
<td>1040</td>
<td>0.148</td>
<td>0.49</td>
</tr>
<tr>
<td>BRAIN TISSUE</td>
<td>1040</td>
<td>0.533</td>
<td>0.49</td>
</tr>
</tbody>
</table>

2.5.6 **Mesh**

Mesh was kept consistent with the validated model [29]. The details are in Table 2.3.

<table>
<thead>
<tr>
<th>Defaults</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Physics Preference</td>
<td>Mechanical</td>
</tr>
<tr>
<td>Solver Preference</td>
<td>Mechanical APDL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sizing</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Relevance Center</td>
<td>Coarse</td>
</tr>
<tr>
<td>Element Size</td>
<td>Default</td>
</tr>
<tr>
<td>Initial Size Seed</td>
<td>Active Assembly</td>
</tr>
<tr>
<td>Smoothing</td>
<td>Medium</td>
</tr>
<tr>
<td>Transition</td>
<td>Fast</td>
</tr>
<tr>
<td>Span Angle Center</td>
<td>Coarse</td>
</tr>
<tr>
<td>Maximum Layers</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Statistics</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nodes</td>
<td>12719</td>
</tr>
<tr>
<td>Elements</td>
<td>47837</td>
</tr>
</tbody>
</table>
2.5.7 Boundary Conditions

Since the FE model does not have a neck region the stem of skull was assumed as the region to be constrained. A remote point was created and connected it to the skull stem via spring as shown in Figure 2.8

![Figure 2.8 Screenshot of spring connection from remote point](image)

Remote point offers a single point association without over constraining a portion of the geometry having multiple boundary conditions scoped to it. It also gives choice of Degrees of Freedom thus facilitating boundary conditions similar to actual experimental setup. A coordinate system was created on a flat surface of the brain stem and a remote point at (0, -0.005, 0.002) was chosen from it. The coordinate system on the brain stem was created to facilitate easy measurement of the distance from the skull stem. It was not used in any of the applied boundary conditions. This remote point was named as ‘Fixed Point’ and connected to multiple set of points (named selection) called ‘Fixed_points’ located on the skull stem. These connections appear as shown in Figure 2.9.
The Degrees of freedom were manually selected constraining translation in X, Y and Z axes and allowing rotation about X, Y and Z axes as shown in Table 2.4.

Table 2.4 Remote Point Controls

<table>
<thead>
<tr>
<th>Object Name</th>
<th>Remote Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>State</td>
<td>Fully Defined</td>
</tr>
<tr>
<td>Display</td>
<td></td>
</tr>
<tr>
<td>Show Connection Lines</td>
<td>Yes</td>
</tr>
<tr>
<td>Object Name</td>
<td>Fixed Point</td>
</tr>
<tr>
<td>State</td>
<td>Fully Defined</td>
</tr>
<tr>
<td>Scope</td>
<td></td>
</tr>
<tr>
<td>Scoping Method</td>
<td>Named Selection</td>
</tr>
<tr>
<td>Named Selection</td>
<td>Fixed_points</td>
</tr>
<tr>
<td>Coordinate System</td>
<td>Fixed area</td>
</tr>
<tr>
<td>X Coordinate</td>
<td>0. m</td>
</tr>
<tr>
<td>Y Coordinate</td>
<td>-5.e-002 m</td>
</tr>
<tr>
<td>Z Coordinate</td>
<td>2.e-002 m</td>
</tr>
<tr>
<td>Location</td>
<td>Defined</td>
</tr>
<tr>
<td>Definition</td>
<td></td>
</tr>
<tr>
<td>Suppressed</td>
<td>No</td>
</tr>
<tr>
<td>Pinball Region</td>
<td>All</td>
</tr>
<tr>
<td>DOF Selection</td>
<td>Manual</td>
</tr>
<tr>
<td>X Component</td>
<td>Inactive</td>
</tr>
<tr>
<td>Y Component</td>
<td>Inactive</td>
</tr>
<tr>
<td>Z Component</td>
<td>Inactive</td>
</tr>
<tr>
<td>Rotation X</td>
<td>Active</td>
</tr>
<tr>
<td>Rotation Y</td>
<td>Active</td>
</tr>
<tr>
<td>Rotation Z</td>
<td>Active</td>
</tr>
</tbody>
</table>

Spring connection (Figure 2.8) offers elastic and flexible connection between the skull stem and fixed remote point. This avoids over-constraint by removing the rigidness of a connection along with giving a strong support to the model.

As shown in Table 2.5, the deformability of this longitudinal connection (spring) was governed through spring stiffness which was chosen as 10000N/m making it stronger than skull yet not rigid. The spring length automatically gets calculated after the source and destination points are specified, in this case remote point and fixed faces on the skull.
stem were chosen. Remote point is immobile and hence was chosen as a reference. The fixed faces on the brain stem will have motion after load application hence they were chosen under Mobile Components. Both the connections were made deformable in order to avoid over constraints.

<table>
<thead>
<tr>
<th>Object Name</th>
<th>Longitudinal</th>
</tr>
</thead>
<tbody>
<tr>
<td>State</td>
<td>Fully Defined</td>
</tr>
</tbody>
</table>

Definition
- Type: Longitudinal
- Spring Behavior: Both (Linear)
- Longitudinal Stiffness: 10000 N/m
- Longitudinal Damping: 0. N·s/m
- Preload: None
- Suppressed: No
- Spring Length: 5.4863e-002 m

Scope
- Scope: Body-Body

Reference
- Scoping Method: Remote Point
- Remote Points: Fixed Point
- Body: Multiple
- Coordinate System: Fixed area
- Reference X Coordinate: 0. m
- Reference Y Coordinate: -5.e-002 m
- Reference Z Coordinate: 2.e-002 m
- Behavior: Deformable
- Pinball Region: All

Mobile
- Scoping Method: Named Selection
- Mobile Component: Fixed_faces
- Body: Skull
- Coordinate System: Global Coordinate System
- Mobile X Coordinate: 1.5271e-002 m
- Mobile Y Coordinate: -0.11884 m
- Mobile Z Coordinate: 0.10406 m
- Mobile Location: Defined
- Behavior: Deformable
- Pinball Region: All
2.5.8 Analysis Settings and Load Conditions

Referring to the time span of major impact event in Figure 2.3, the cycle has 21 time steps starting from 0 sec and ending at 0.00546sec. These were put as analysis settings so that results on each time step would be recorded. 2 sub steps were optimally chosen for uniform distribution yet reduced processing time. Since these time steps were gained from data acquisition systems not much convergence was required.

The pressure (HICP) curves derived for various locations in Section 2.4 were put on FE model as time dependent load conditions.

This setup was then solved to get results in post processor of ANSYS 14.5.

(Refer to Appendix B for entire procedure details)
3. Results and Discussions

In this chapter, the results derived from methods described in Chapter 2 are discussed.

This chapter will go over the following:

a) Comparison between linear accelerations derived from pressure films and droptests with angular accelerations (on secondary axis) from drop test derived through analytical methods

b) Von-Mises, Maximum shear and Maximum Principal stress contours on the FE human head model

c) Von-Mises, Maximum shear and Maximum Principal stress values calculated from Concussion tolerance acceleration values and its comparison with FE results

3.1 Head Kinematics: Comparison of Accelerations

3.1.1 Introduction

In this section, a comparison between linear impact accelerations from pressure films and linear impact accelerations from drop tests is done. The angular impact accelerations calculated through analytical procedures are also plotted simultaneously.

The FE human head model was used as a reference to find centroids of the impact areas. It was oriented in ANSYS to match with the head form drop test orientation. Positive X-axis passes through the nose of the head form which is in perpendicular to the forehead and is assumed to be perpendicular to frontal and posterior impact region. Y-axis passes through the superior region of the head form. Positive Z-axis passes through the left ear and is assumed to be perpendicular to the lateral or side impact region.
plane is located approximately midway between X and Z axes and is assumed to be perpendicular to the 45 to frontal impact region. The pictorial representation of the above mentioned orientations can be seen in Figure 3.1.

Figure 3.1 Screenshots showing orientation of FE head model aligned with drop test head form

Center of mass of FE human head model was assumed to be same as that of center of mass of headform. Since, areas are replicated on the FE model, centroids of areas on FE human head model were also assumed to be same as centroids of areas of impacts on NOCSAE head form. Distance between two centroids namely center of mass of head and centroid of impact region was calculated.

Extending on the methods discussed in Chapter 2, a calculator was created in excel to generate results of linear and angular accelerations based on equations (E1- E12) (refer to Appendix C for excel calculator and calculation details)
3.1.2 Pressure Films and Topaq Analyzer

Following were the linear acceleration results for impact regions: frontal, 45 to frontal, posterior and lateral generated using pressure films, topaq analyzer and equation (E2)

(Refer to Table 3.1)

(Blue color signifies that these results will be used for comparison in later steps)

<table>
<thead>
<tr>
<th>Impact Regions</th>
<th>Height (feet)</th>
<th>Average Pressure (MPa)</th>
<th>Area measured through chalk markings (m²)</th>
<th>Linear Acceleration (m/s²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front</td>
<td>2</td>
<td>2.79</td>
<td>0.0028</td>
<td>1588.8</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2.84</td>
<td>0.0030</td>
<td>1768</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>3.25</td>
<td>0.0033</td>
<td>2068.8</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>3.42</td>
<td>0.0035</td>
<td>2483</td>
</tr>
<tr>
<td>45° to Frontal</td>
<td>2</td>
<td>3.85</td>
<td>0.0030</td>
<td>2364.6</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>4.04</td>
<td>0.0030</td>
<td>2481</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>4.26</td>
<td>0.0036</td>
<td>3144.9</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>4.63</td>
<td>0.0036</td>
<td>3418</td>
</tr>
<tr>
<td>Lateral / Side</td>
<td>2</td>
<td>3.32</td>
<td>0.0052</td>
<td>3524.6</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3.49</td>
<td>0.0057</td>
<td>4095.5</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>3.55</td>
<td>0.0060</td>
<td>4360.7</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>3.64</td>
<td>0.0064</td>
<td>4745</td>
</tr>
<tr>
<td>Posterior / Rear</td>
<td>2</td>
<td>2.77</td>
<td>0.0034</td>
<td>1921</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3.9</td>
<td>0.0039</td>
<td>3085</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>4.01</td>
<td>0.0040</td>
<td>3311</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>4.2</td>
<td>0.0041</td>
<td>3553</td>
</tr>
</tbody>
</table>

3.1.3 NOCSAE drop test analyzer

Following were the maximum linear acceleration values for impact regions: frontal, 45 to frontal, posterior and lateral generated using NOCSAE drop test analyzer and Siglab Data Acquisition System (refer to Table 3.2)

(Blue color signifies that these results will be used for comparison in later steps)
Table 3.2 Maximum linear acceleration values from NOCSAE drop tests

<table>
<thead>
<tr>
<th>Impact Regions</th>
<th>Height (feet)</th>
<th>Maximum Linear Acceleration (m/s²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front</td>
<td>2</td>
<td>2309.5</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3030</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>3634.7</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>4219</td>
</tr>
<tr>
<td>45° to Frontal</td>
<td>2</td>
<td>2019.8</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2502.7</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>3017.9</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>3427</td>
</tr>
<tr>
<td>Lateral / Side</td>
<td>2</td>
<td>2561.8</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3386.8</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>3909</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>4544</td>
</tr>
<tr>
<td>Posterior / Rear</td>
<td>2</td>
<td>2489.5</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3243</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>3923.5</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>4516.8</td>
</tr>
</tbody>
</table>

3.1.4 Analytical angular accelerations

Following were the maximum calculated values of angular acceleration for impact regions: frontal, 45 to frontal, posterior and lateral generated using linear acceleration values from drop tests, dimension details of headform & FE model and equations (E5-E9) (Refer to Table 3.3) (Blue color signifies that these results will be used for comparison in later steps)
Table 3.3 Maximum angular acceleration values calculated analytically from linear accelerations of drop tests

<table>
<thead>
<tr>
<th>Impact Regions</th>
<th>Height (feet)</th>
<th>Maximum Angular Acceleration (rad/s²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front</td>
<td>2</td>
<td>29273.3</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>36129.8</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>43318.6</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>47785.3</td>
</tr>
<tr>
<td>45° to Frontal</td>
<td>2</td>
<td>18391</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>22254</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>26185.6</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>29433</td>
</tr>
<tr>
<td>Lateral / Side</td>
<td>2</td>
<td>8065.8</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>9331.5</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>10254</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>10410</td>
</tr>
<tr>
<td>Posterior / Rear</td>
<td>2</td>
<td>18874.5</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>23401</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>29268</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>31407</td>
</tr>
</tbody>
</table>

3.1.5 Results: Graphical comparison of all accelerations

Refer to Figures 3.2, 3.3, 3.4, 3.5
Figure 3.2 Plot of experimentally measured linear acceleration and analytically calculated angular acceleration as a function of drop heights (Frontal Impact)

Figure 3.3 Plot of experimentally measured linear acceleration and analytically calculated angular acceleration as a function of drop heights (45 to Frontal Impact)
Figure 3.4 Plot of experimentally measured linear acceleration and analytically calculated angular acceleration as a function of drop heights (Lateral Impact)

Figure 3.5 Plot of experimentally measured linear acceleration and analytically calculated angular acceleration as a function of drop heights (Posterior Impact)
3.1.6 Discussions

1. Numerical values of linear accelerations for various impact regions calculated from pressure films are quite close to maximum linear accelerations acquired from NOCSAE drop tests except for frontal region. This deviation might have come in due to approximations in area measurements through chalk dust markings. The frontal region on the headform has an eye-brow line which sometimes interferes with measurement of actual area of impact thus adding into the error in area measurement. As mentioned in Section 2.4 (in description of Figure 2.6), the values acquired from pressure films are average pressure values which also adds the deviation in maximum acceleration values.

2. Maximum linear acceleration is observed for 5 feet lateral (side) impact. This observation is consistent for both pressure films (4745 m/s²) and NOCSAE drop test (4541 m/s²) readings. Minimum linear acceleration for NOCSAE drop tests is observed for 2 feet 45 to frontal impact region whereas through pressure films minimum linear acceleration observed is for 2 feet frontal impact closely followed by 3 feet frontal and 2 feet posterior impacts.

3. Maximum analytical angular acceleration amongst all impact regions and drop heights is observed for 5 feet frontal impact (47.7 krad/s²).

4. Amongst all 5 feet impacts (since 5 feet drop height observations will be used in helmet design), maximum angular acceleration is observed in frontal region (47.7 krad/s²) whereas minimum is observed in lateral region (10 krad/s²). Posterior (31 krad/s²) and 45-to-frontal (29 krad/s²) regions show angular accelerations on the higher end as well.
5. Maximum linear acceleration is observed on lateral impact region whereas maximum angular acceleration is observed on frontal impact region. Minimum linear acceleration is observed on frontal and 45-to-frontal impact regions whereas minimum angular acceleration is observed on lateral impact region.

Thus one can conclude,
- Relationship between impact accelerations and drop heights depends on impact regions
- Impact acceleration sensitivity to drop heights differs from region to region

3.1.7 Formula Proposition

From above analysis it is evident that both linear and angular impact accelerations contribute towards causing TBIs. Thus, this research group is proposing a formula relating acceleration values to the TBI.

\[
\frac{a_{\text{regional}}}{a_{\text{TBI-max}}} + \frac{\alpha_{\text{regional}}}{\alpha_{\text{TBI-max}}} \leq 1 \text{ then no TBI} \quad \ldots (E12)
\]

Where,
- \(a_{\text{regional}} \) = linear impact accelerations for a particular impact region and drop height
- \(a_{\text{TBI-max}} \) = TBI tolerant linear impact acceleration measured individually (value = 318 G) [27]
- \(\alpha_{\text{regional}} \) = angular impact accelerations for a particular impact region and drop height
- \(\alpha_{\text{TBI-max}} \) = TBI tolerant angular impact acceleration measured individually (value = 23krad/s²) [27]

This formula has to be used only when \(\frac{a_{\text{regional}}}{a_{\text{TBI-max}}} \) or \(\frac{\alpha_{\text{regional}}}{\alpha_{\text{TBI-max}}} \) is less than one. When those values are greater than 1 then this formula is not required to determine which type of
acceleration plays a prominent role in causing TBI. For example, consider case 1 of Frontal 2feet impact. Linear TBI tolerance \(\left(\frac{a_{\text{regional}}}{a_{\text{TBI-max}}^\text{linear}} \right) \) value is 0.74 however angular TBI tolerance \(\left(\frac{a_{\text{regional}}}{a_{\text{TBI-max}}^\text{angular}} \right) \) is 1.27 (refer to Table 3.4) which signifies that angular impact acceleration prominently causes TBI and above formula is not required. Now, consider case 2 of Lateral 2feet impact. Linear TBI tolerance \(\left(\frac{a_{\text{regional}}}{a_{\text{TBI-max}}^\text{linear}} \right) \) value for this impact is 0.82 however angular TBI tolerance \(\left(\frac{a_{\text{regional}}}{a_{\text{TBI-max}}^\text{angular}} \right) \) is 0.35 (refer to Table 3.4). Though, Linear TBI value is below 1 and won’t cause TBI if measured individually, if combined with angular TBI value of 0.35 it will go beyond 1 which will cause TBI.

Thus, linear impact accelerations combined with angular impact accelerations can cause TBIs even though they won’t cause TBI if occurred individually. Football head-on collisions always have a combination of linear as well as angular impact accelerations.

Table 3.4 TBI acceleration criterion for frontal, 45-to-frontal, lateral and posterior regions based on equation E12

<table>
<thead>
<tr>
<th>Drop Height</th>
<th>Linear Acc (Gs)</th>
<th>Linear TBI Tolerance</th>
<th>Ang Acc (rad/s²)</th>
<th>Angular TBI Tolerance</th>
<th>TBI Condition</th>
<th>Linear Acc (Gs)</th>
<th>Linear TBI Tolerance</th>
<th>Ang Acc (rad/s²)</th>
<th>Angular TBI Tol</th>
<th>TBI Tol</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>235</td>
<td>0.74</td>
<td>29273</td>
<td>1.27</td>
<td>296</td>
<td>0.65</td>
<td>29888</td>
<td>0.91</td>
<td>1.56</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>309</td>
<td>0.97</td>
<td>36129</td>
<td>1.57</td>
<td>255</td>
<td>0.80</td>
<td>25118</td>
<td>1.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>370</td>
<td>1.16</td>
<td>43319</td>
<td>1.88</td>
<td>308</td>
<td>0.97</td>
<td>29575</td>
<td>1.29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>430</td>
<td>1.35</td>
<td>47785</td>
<td>2.08</td>
<td>349</td>
<td>1.10</td>
<td>33220</td>
<td>1.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>430</td>
<td>1.35</td>
<td>47785</td>
<td>2.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lateral</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>264</td>
<td>0.82</td>
<td>8066</td>
<td>0.35</td>
<td>254</td>
<td>0.80</td>
<td>18875</td>
<td>0.82</td>
<td>1.62</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>345</td>
<td>1.08</td>
<td>9331</td>
<td>0.41</td>
<td>331</td>
<td>1.04</td>
<td>23401</td>
<td>1.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>399</td>
<td>1.25</td>
<td>10254</td>
<td>0.45</td>
<td>490</td>
<td>1.26</td>
<td>29268</td>
<td>1.27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>463</td>
<td>1.46</td>
<td>10410</td>
<td>0.45</td>
<td>460</td>
<td>1.45</td>
<td>31407</td>
<td>1.37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Posterior</td>
<td></td>
</tr>
</tbody>
</table>
3.2 Brain Kinetics: Stress Distributions

The validated FE model, its material properties, boundary conditions and the entire setup for all the drop heights and impact regions was maintained according to the Section 2.2.

3.2.1 Frontal Impact - Introduction

HICP or impact pressure curves (for respective drop heights) used as inputs to the validated FE model are shown in Figures 3.7-3.10. Refer to Appendix A for detailed data.

3.2.2 Frontal Impact – Summary of Results

Table 3.5 Results of Frontal Impact for 2, 3, 4 and 5 feet drop heights

<table>
<thead>
<tr>
<th>Drop Heights</th>
<th>Max. HIC Pressure (Pa)</th>
<th>Max. Principal Stress (Pa) (tension)</th>
<th>Peak Von-Mises Stress (Pa)</th>
<th>Peak Max. Shear Stress (Pa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frontal Impact</td>
<td>2</td>
<td>4.06E+06</td>
<td>4.46E+06</td>
<td>7.80E+06</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>4.87E+06</td>
<td>5.40E+06</td>
<td>9.39E+06</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>5.40E+06</td>
<td>6.09E+06</td>
<td>1.04E+07</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>5.81E+06</td>
<td>6.59E+06</td>
<td>1.12E+07</td>
</tr>
</tbody>
</table>

Figure 3.6 Plot of Maximum Principal Stress and Von-Mises Stress for Frontal impact obtained from ANSYS simulations as a function of drop heights

Chandrika S. Abhang | Michigan Tech
3.2.3 Frontal Impact – Result Discussions

- Peak values of Von-Mises stresses were observed in the frontal impact region, entire superior region of head model (scalp and skull), facial areas of skull and areas surrounding brain stem. For all drop heights the time locations of peak Von-Mises Stress values were at 3.9msec except for 5 feet frontal impact which occurred early at 3.7 msec. (Figures 3.11, 3.13, 3.15, 3.17)

- Observed Von-Mises stress contours for the entire time cycle were such that impact pressure wave has initiated from the frontal impact region of the scalp, translated through skull, dura & brain and bounced back from the posterior wall of skull. This observation matches with the Coup and Contre-Coup injury mechanisms of TBI. (Coup injury is caused at the site of impact which deforms the skull and translates the impact to the brain. Brain bounces off from the opposite wall of skull causing ContreCoup injury.)

- Peak (tension) values of Maximum Principal Stress were observed in parietal lobe that extends around frontal side of ears and few areas of brain stem (Figure 3.19). This seems structurally similar to cerebral aneurysm, a phenomenon in which arteries in brain bulge out due to their weakening and hypertension (increase in blood pressure) on them. Minimum (compression) value of Maximum Principal Stress was observed in the impact region which signifies maximum compression at the impact region. (Figures 3.12, 3.14, 3.16, 3.18)

- Peak values of Maximum Shear stress were observed in parietal lobe that extends around frontal side of ears and some areas surrounding the impact region in a lesser magnitude than maximum.
3.2.4 Frontal Impact – Pressure Curves

Figure 3.7 Plot of analytically calculated impact pressures as a function of time (frontal impact 2 feet drop height)

Figure 3.8 Plot of analytically calculated impact pressures as a function of time (frontal impact 3 feet drop height)
Figure 3.9 Plot of analytically calculated impact pressures as a function of time (frontal impact 4 feet drop height)

Figure 3.10 Plot of analytically calculated impact pressures as a function of time (frontal impact 5 feet drop height)
3.2.5 Frontal Impact – Simulation Results (Pressure Contours)

Figure 3.11 Von Mises Stress Distribution Contours - Frontal Impact 2 feet

Figure 3.12 Maximum Principal Stress Distribution Contours - Frontal Impact 2 feet
Results and Discussions

Figure 3.13 Von Mises Stress Distribution Contours - Frontal Impact 3 feet

Figure 3.14 Maximum Principal Stress Distribution Contours - Frontal Impact 3 feet
Figure 3.15 Von Mises Stress Distribution Contours - Frontal Impact 4 feet

Figure 3.16 Maximum Principal Stress Distribution Contours - Frontal Impact 4 feet
Figure 3.17 Von Mises Stress Distribution Contours - Frontal Impact 5 feet

Figure 3.18 Maximum Principal Stress Distribution Contours - Frontal Impact 5 feet
Figure 3.19 Location of peak value of Maximum Principal Stress on skull (without scalp) for Frontal 5 feet impact
3.2.6 45 to Frontal Impact – Introduction

HICP or impact pressure curves (for respective drop heights) used as inputs to the validated FE model are shown in Figures 3.21-3.24 of Section 3.2.9. Refer to Appendix A for detailed data.

3.2.7 45 to Frontal Impact – Summary of Results

Table 3.6 Results of 45-to-Frontal Impact for 2, 3, 4 and 5 feet drop heights

<table>
<thead>
<tr>
<th>Drop Heights (feet)</th>
<th>Max. HIC Pressure (Pa)</th>
<th>Max. Principal Stress (Pa) (tension)</th>
<th>Peak Von-Mises Stress (Pa)</th>
<th>Peak Max. Shear Stress (Pa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3.29E+06</td>
<td>5.27E+06</td>
<td>1.60E+07</td>
<td>9.47E+06</td>
</tr>
<tr>
<td>3</td>
<td>4.07E+06</td>
<td>6.50E+06</td>
<td>2.10E+07</td>
<td>1.17E+07</td>
</tr>
<tr>
<td>4</td>
<td>4.09E+06</td>
<td>6.59E+06</td>
<td>2.12E+07</td>
<td>1.18E+07</td>
</tr>
<tr>
<td>5</td>
<td>4.65E+06</td>
<td>7.64E+06</td>
<td>2.42E+07</td>
<td>1.35E+07</td>
</tr>
</tbody>
</table>

Figure 3.20 Plot of Maximum Principal Stress and Von-Mises Stress for 45-to-frontal impact obtained from ANSYS simulations as a function of drop heights.
3.2.8 45 to Frontal Impact – Result Discussions

- Peak values of Von-Mises stresses were observed in 45-to-frontal impact region, entire superior region of head model (scalp and skull), facial areas of skull and areas surrounding brain stem. For all drop heights the time locations of peak Von-Mises Stress values were at 3.7msec. (Figures 3.25, 3.27, 3.29, 3.31)

- Observed Von-Mises stress contours for entire time cycle were such that impact pressure wave has initiated from the 45-to-frontal impact region of the scalp, translated through skull, dura & brain and bounced back from the parietal-occipital wall of the skull. This observation matches with the Coup and Contre-Coup injury mechanisms of TBI. (Coup injury is caused at the site of impact which deforms the skull and translates the impact to the brain. Brain bounces off from the opposite wall of skull causing ContreCoup injury.)

- Peak (tension) values of Maximum Principal Stress were observed on occipital lobe behind the left ear (besides impact region) and on the exact opposite end of the impact region i.e. on superior parietal region (Figure 3.33). This seems structurally similar to cerebral aneurysm, a phenomenon in which arteries in brain bulge out due to their weakening and hypertension (increase in blood pressure) on them. Minimum (compression) value of Maximum Principal Stress was observed in the impact region which signifies maximum compression at the impact region (Figures 3.26, 3.28, 3.30, 3.32). Compressive values increased with increase in drop heights.
- Peak values of Maximum Shear stress were observed in in parietal lobe besides the left eye (near impact region) and spanned entire superior region with lesser magnitude than maximum.

3.2.9 45 to Frontal Impact – Pressure Curves

![Plot of analytically calculated impact pressures as a function of time (45 to frontal impact 2 feet drop height)](image)

Figure 3.21 Plot of analytically calculated impact pressures as a function of time (45 to frontal impact 2 feet drop height)
Figure 3.22 Plot of analytically calculated impact pressures as a function of time (45 to frontal impact 3 feet drop height)

Figure 3.23 Plot of analytically calculated impact pressures as a function of time (45 to frontal impact 4 feet drop height)
Figure 3.24 Plot of analytically calculated impact pressures as a function of time (45 to frontal impact 5 feet drop height)

3.2.10 45-to-Frontal Impact – Simulation Results (Pressure Contours)

Figure 3.25 Von Mises Stress Distribution Contours – 45 to Frontal Impact 2 feet
Figure 3.26 Maximum Principal Stress Distribution Contours – 45 to Frontal Impact 2 feet

Figure 3.27 Von Mises Stress Distribution Contours – 45 to Frontal Impact 3 feet
Figure 3.28 Maximum Principal Stress Distribution Contours – 45 to Frontal Impact 3 feet

Figure 3.29 Von Mises Stress Distribution Contours – 45 to Frontal Impact 4 feet
Results and Discussions

Figure 3.30 Maximum Principal Stress Distribution Contours - 45 to Frontal Impact 4 feet

B: Transient Structural
Maximum Principal Stress
Type: Maximum Principal Stress
Unit: Pa
Time: 3.6458e-003
10/26/2014 10:39 AM

6.599e6 Max
5.197e6
3.795e6
2.393e6
1.921e5
-4.096e5
-1.011e6
-3.213e6
-4.614e6
-6.016e6 Min

Figure 3.31 Von Mises Stress Distribution Contours - 45 to Frontal Impact 5 feet

B: Transient Structural
Equivalent Stress
Type: Equivalent (von-Mises) Stress
Unit: Pa
Time: 3.6458e-003
10/26/2014 10:23 AM

2.4248e7 Max
9.373e5
6.095e5
5.462e5
4.490e5
3.510e5
2.242e5
1.280e5
4511.7
0.089337 Min

Chandrika S. Abhang | Michigan Tech
Results and Discussions

Figure 3.32 Maximum Principal Stress Distribution Contours - 45 to Frontal Impact 5 feet

Figure 3.33 Location of peak value of Maximum Principal Stress on skull (without scalp) for 45-to-frontal 5 feet impact
3.2.11 Lateral Impact – Introduction

HICP or impact pressure curves (for respective drop heights) used as inputs to the validated FE model are shown in Figure 3.35-3.38 of Section 3.2.14. Refer to Appendix A for detailed data.

3.2.12 Lateral Impact – Summary of Results

Table 3.7 Results of Lateral Impact for 2, 3, 4 and 5 feet drop heights

<table>
<thead>
<tr>
<th>Drop Heights</th>
<th>Max. HIC Pressure (Pa)</th>
<th>Max. Principal Stress (Pa) (tension)</th>
<th>Peak Von-Mises Stress (Pa)</th>
<th>Peak Max. Shear Stress (Pa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lateral Impact</td>
<td>2</td>
<td>2.35E+06</td>
<td>1.60E+07</td>
<td>2.50E+07</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2.89E+06</td>
<td>2.02E+07</td>
<td>3.14E+07</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>3.18E+06</td>
<td>2.25E+07</td>
<td>3.45E+07</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>3.49E+06</td>
<td>2.49E+07</td>
<td>3.80E+07</td>
</tr>
</tbody>
</table>

Figure 3.34 Plot of Maximum Principal Stress and Von-Mises Stress for lateral impact obtained from ANSYS simulations as a function of drop heights
3.2.13 Lateral Impact – Result Discussions

- Peak values of Von-Mises stresses were observed in lateral impact region, entire superior region of head model (scalp and skull), facial areas of skull and areas surrounding brain stem. For all drop heights the time locations of peak Von-Mises Stress values were at 3.64msec. (Figures 3.39, 3.41, 3.43, 3.45).

- Observed Von-Mises stress contours for entire time cycle were such that impact pressure wave has initiated from the right lateral (impact) region of the scalp, translated through skull, dura & brain and bounced back from the left lateral wall of the skull. This observation matches with the Coup and Contre-Coup injury mechanisms of TBI. (Coup injury is caused at the site of impact which deforms the skull and translates the impact to the brain. Brain bounces off from the opposite wall of skull causing ContreCoup injury.)

- Peak (tension) values of Maximum Principal Stress were observed in the regions near right ear (just below the impact region) and the superior region of skull. Higher values were also observed on the opposite end i.e. left lateral region. (Figures 3.47, 3.48) This seems structurally similar to cerebral aneurysm, a phenomenon in which arteries in brain bulge out due to their weakening and hypertension (increase in blood pressure) on them. Minimum (compression) value of Maximum Principal Stress was observed in the impact region which signifies maximum compression at the impact region. (Figures 3.40, 3.42, 3.44, 3.46)

- Peak values of Maximum Shear stress were observed at smaller points near impact region edges between scalp and skull. They also spanned over right parietal region with lesser magnitude than maximum.
3.2.14 Lateral Impact – Pressure Curves

Figure 3.35 Plot of analytically calculated impact pressures as a function of time (lateral impact 2 feet drop height)

Figure 3.36 Plot of analytically calculated impact pressures as a function of time (lateral impact 3 feet drop height)
Results and Discussions

Figure 3.37 Plot of analytically calculated impact pressures as a function of time (lateral impact 4 feet drop height)

Figure 3.38 Plot of analytically calculated impact pressures as a function of time (lateral impact 5 feet drop height)
3.2.15 Lateral Impact – Simulation Results (Pressure Contours)

Figure 3.39 Von Mises Stress Distribution Contours - Lateral Impact 2 feet

Figure 3.40 Maximum Principal Stress Distribution Contours - Lateral Impact 2 feet

Chandrika S. Abhang | Michigan Tech
Results and Discussions

Figure 3.41 Von Mises Stress Distribution Contours - Lateral Impact 3 feet

Figure 3.42 Maximum Principal Stress Distribution Contours - Lateral Impact 3 feet

Chandrika S. Abhang | Michigan Tech
Figure 3.43 Von Mises Stress Distribution Contours - Lateral Impact 4 feet

Figure 3.44 Maximum Principal Stress Distribution Contours - Lateral Impact 4 feet
Figure 3.45 Von Mises Stress Distribution Contours - Lateral Impact 5 feet

Figure 3.46 Maximum Principal Stress Distribution Contours - Lateral Impact 5 feet
Figure 3.47 Location of peak value of Maximum Principal Stress near impact region on skull (without scalp) for Lateral 5 feet impact

Figure 3.48 Location of peak value of Maximum Principal Stress opposite to impact region on skull (without scalp) for Lateral 5 feet impact
3.2.16 Posterior Impact – Introduction

HICP or impact pressure curves (for respective drop heights) used as inputs to the validated FE model are shown in Figure 3.50-3.53 in Section 3.19. Refer to Appendix A for detailed data.

3.2.17 Posterior Impact – Summary of Results

Table 3.8 Results of Posterior Impact for 2, 3, 4 and 5 feet drop heights

<table>
<thead>
<tr>
<th>Drop Heights (feet)</th>
<th>Max. HIC Pressure (Pa)</th>
<th>Max. Principal Stress (Pa) (tension)</th>
<th>Max. Von-Mises Stress (Pa)</th>
<th>Peak Max. Shear Stress (Pa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3.50E+06</td>
<td>1.13E+07</td>
<td>1.74E+07</td>
<td>8.93E+06</td>
</tr>
<tr>
<td>3</td>
<td>4.10E+06</td>
<td>1.28E+07</td>
<td>1.98E+07</td>
<td>1.01E+07</td>
</tr>
<tr>
<td>4</td>
<td>4.76E+06</td>
<td>1.49E+07</td>
<td>2.30E+07</td>
<td>1.18E+07</td>
</tr>
<tr>
<td>5</td>
<td>5.33E+06</td>
<td>1.68E+07</td>
<td>2.60E+07</td>
<td>1.33E+07</td>
</tr>
</tbody>
</table>

Figure 3.49 Plot of Maximum Principal Stress and Von-Mises Stress for posterior impact obtained from ANSYS simulations as a function of drop heights
3.2.18 Posterior Impact – Result Discussions

- Peak values of Von-Mises stresses were observed in posterior impact region, entire superior region of head model (scalp and skull), facial areas of skull and areas surrounding brain stem. For all drop heights the time locations of peak Von-Mises Stress values were at 3.64msec. (Figures 3.54, 3.56, 3.58, 3.60).

- Observed Von-Mises stress contours for entire time cycle were such that impact pressure wave has initiated from the posterior (impact) region of the scalp, translated through skull, dura & brain and bounced back from the frontal wall of the skull. This observation matches with the Coup and Contre-Coup injury mechanisms of TBI. (Coup injury is caused at the site of impact which deforms the skull and translates the impact to the brain. Brain bounces off from the opposite wall of skull causing ContreCoup injury.)

- Peak (tension) values of Maximum Principal Stress were observed in the posterior occipital regions behind both the ears and areas closer to brain stem (Figures 3.62). This seems structurally similar to cerebral aneurysm, a phenomenon in which arteries in brain bulge out due to their weakening and hypertension (increase in blood pressure) on them. Minimum (compression) value of Maximum Principal Stress was observed in the impact region which signifies maximum compression at the impact region (Figures 3.55, 3.57, 3.59, 3.61) Compressive value increased with height increase.

- Peak values of Maximum Shear stress were observed in smaller areas at the center of impact region between scalp and skull layers. They also spanned over occipital region with lesser magnitude than maximum.
3.2.19 Posterior Impact – Pressure curves

Figure 3.50 Plot of analytically calculated impact pressures as a function of time (posterior impact 2 feet drop height)

Figure 3.51 Plot of analytically calculated impact pressures as a function of time (posterior impact 3 feet drop height)
Results and Discussions

Figure 3.52 Plot of analytically calculated impact pressures as a function of time (posterior impact 4 feet drop height)

Figure 3.53 Plot of analytically calculated impact pressures as a function of time (posterior impact 5 feet drop height)
3.2.20 Posterior Impact – Simulation Results (Pressure Contours)

Figure 3.54 Von Mises Stress Distribution Contours - Posterior Impact 2 feet

Figure 3.55 Maximum Principal Stress Distribution Contours - Posterior Impact 2 feet
Figure 3.56 Von Mises Stress Distribution Contours - Posterior Impact 3 feet

Figure 3.57 Maximum Principal Stress Distribution Contours - Posterior Impact 3 feet
Figure 3.58 Von Mises Stress Distribution Contours - Posterior Impact 4 feet

Figure 3.59 Maximum Principal Stress Distribution Contours - Posterior Impact 4 feet
Figure 3.60 Von Mises Stress Distribution Contours - Posterior Impact 5 feet

Figure 3.61 Maximum Principal Stress Distribution Contours - Posterior Impact 5 feet
Figure 3.62 Location of peak value of Maximum Principal Stress on skull (without scalp) for Posterior 5 feet impact
3.3 Overall Result Discussions

Overall comparison between all impact regions and drop heights is presented in this section.

- Peak value of Von-Mises Stress (38 MPa) was observed for Lateral 5 feet Impact. The magnitude of Lateral 2 feet impact (25MPa) was closer to the Posterior 5 feet impact (26MPa) which was the next highest in the peak values of Von-Mises stress. This means that the lateral impact was the most detrimental even from a shorter height or lesser distance from the impacting body.

- Peak value of Maximum Principal Stress (tension) was also observed for Lateral 5 feet Impact (~25MPa). Lateral region was also the only region which showed tensile maximum principal stress travelling from one end of skull to the other end. Refer to Figures 3.47 and 3.48

- Peak value of Maximum Shear Stress was observed in Lateral 5 feet Impact (19.6MPa) followed by 45-to-frontal 5 feet (13.5MPa) impact and Posterior 5 feet (13.3 MPa) impact.

- Least values of Von-Mises (7.8MPa), Maximum Principal (4.46MPa) and Maximum Shear (4.2 MPa) stresses were observed for Frontal 2 feet impact.

- Thus, Lateral impacts for all drop heights were the most detrimental to human brain with greater probabilities of TBI whereas the Frontal impact of 2 feet drop height was the least detrimental amongst all regions and drop heights.

Thus, one can conclude various impacts are sensitive to impact regions.
4. Correlation between Head Kinematics and Brain Kinetics

Anna Oeur and her research team at University of Ottawa reconstructed and analyzed non-persistent concussions, persistent concussions and TBIs in their study. Non-persistent concussions are the ones that resolve in few weeks whereas the persistent ones remain for years. TBIs cause permanent damage to the brain. They found that linear and angular accelerations for TBIs were higher than the non-persistent or persistent concussions. They also found that dynamic responses of some individual persistent concussions overlapped with that of TBIs thus making persistent concussions equally hazardous to human brain [27].

Extracting some data from their published abstract we got linear acceleration tolerance level for TBI as 319 G and angular acceleration tolerance level for TBI as 23000 rad/s² [27]. This section uses linear acceleration data to determine drop heights for the TBI tolerance level. Von-Mises stress and Maximum Principal Stress values for those corresponding drop heights and various impact regions were also obtained. Angular acceleration TBI tolerance is not considered since NOCSAE drop test and FE simulation data is not available for the same.

Maximum linear acceleration values (in Gs) acquired from NOCSAE drop tests for frontal, 45-to-frontal, lateral and posterior impact regions were plotted on Y-axis as a function of drop heights (in feet) on X-axis. Linear acceleration curves were represented
by dotted lines and colors were used to distinguish between the impact regions. Linear acceleration TBI tolerance value of 319G was marked horizontally in red color. The points where the red line intersected with the dotted curves were traced down to the X-axis to obtain drop heights for respective regions. Refer to Figure 4.1

Figure 4.1 Plot of Linear Acceleration values for frontal, 45-to-frontal, lateral and posterior impact regions as a function of drop heights to determine TBI drop height for various regions from TBI Tolerance acceleration value

Extracting values from Figure 4.1, we got:

Table 4.1 Drop Heights for TBI tolerance level (linear acceleration)

<table>
<thead>
<tr>
<th>Impact Region</th>
<th>TBI Tolerance Drop Height (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front</td>
<td>3.125</td>
</tr>
<tr>
<td>45-to-Frontal</td>
<td>4.25</td>
</tr>
<tr>
<td>Lateral</td>
<td>2.625</td>
</tr>
<tr>
<td>Posterior</td>
<td>2.825</td>
</tr>
</tbody>
</table>

These results are observed to be consistent with that of FE simulations.

- Lateral Impact has the least TBI Tolerance height followed by Posterior impact i.e. during lateral impacts higher TBI occurrences might be observed.
Deviation in frontal and 45-to-frontal results might have occurred due to approximation in area measurements. However, it matches with the fact that those regions will have higher TBI tolerance heights i.e. frontal and 45-to-frontal impacts are less detrimental as compared to other impacts.

These TBI tolerance heights were plotted on Figures 3.6, 3.20, 3.34 and 3.49 mentioned in Chapter 3. These figures got modified as Figures 4.2, 4.3, 4.4 and 4.5

![Figure 4.2 Linear-TBI drop height for Frontal impact region located on the plot of Maximum Principal Stress and Von-Mises Stress as a function of drop heights](image)

Figure 4.2 Linear-TBI drop height for Frontal impact region located on the plot of Maximum Principal Stress and Von-Mises Stress as a function of drop heights
Correlation between Head Kinematics and Brain Kinetics

Figure 4.3 Linear-TBI drop height for 45-to-Frontal impact region located on the plot of Maximum Principal Stress and Von-Mises Stress as a function of drop heights

Figure 4.4 Linear-TBI drop height for Lateral impact region located on the plot of Maximum Principal Stress and Von-Mises Stress as a function of drop heights

Chandrika S. Abhang | Michigan Tech
Figure 4.5 Linear-TBI drop height for Posterior impact region located on the plot of Maximum Principal Stress and Von-Mises Stress as a function of drop heights

Thus, the values of Von-Mises and Maximum Principal Stresses generated due to Linear-Acceleration TBI tolerance value are presented in Table 4.2

<table>
<thead>
<tr>
<th>Impact</th>
<th>Drop Height (feet)</th>
<th>Peak HICP (MPa)</th>
<th>Von-Mises Stress (MPa)</th>
<th>Max. Principal Stress (MPa)</th>
<th>Max. Principal Strain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frontal</td>
<td>3.125 (~3)</td>
<td>4.9</td>
<td>9.5</td>
<td>5.6</td>
<td>0.14</td>
</tr>
<tr>
<td>45-to-Frontal</td>
<td>4.25 (~4)</td>
<td>4.0</td>
<td>22.5</td>
<td>6.8</td>
<td>0.34</td>
</tr>
<tr>
<td>Lateral</td>
<td>2.625 (~3)</td>
<td>2.9</td>
<td>30</td>
<td>18</td>
<td>0.19</td>
</tr>
<tr>
<td>Posterior</td>
<td>2.825 (~3)</td>
<td>4.1</td>
<td>19</td>
<td>12.5</td>
<td>0.17</td>
</tr>
</tbody>
</table>

Maximum Principal Strain was also recorded from the FE simulations so that it can be compared with mechanical properties of the brain tissue.
Following observations can be deduced from above results (Table 4.2 and Figure 4.6):

1. Lateral Impact generates peak values of stresses at lower drop heights (2.625 feet). Thus, TBI tolerance value for lateral impacts is the least. Only 2 feet lateral impact was below TBI tolerance level whereas 3 feet, 4 feet and 5 feet were above it. Peak Von-Mises and Maximum Principal Stress levels for lateral impact were observed at 3.7 msec for 5 feet drop and 3.49 MPa HICP.

2. Posterior impact is the next detrimental impact after lateral impact affecting not just the brain but cerebellum and spinal cord directly. This region is responsible for coordinating with other parts of brain and motor movements of the entire body. Damage in this region might lead to full-body paralysis. Only 2 feet impact was below TBI tolerance level whereas 3 feet, 4 feet and 5 feet were above it. It causes
TBI beyond 2.825 feet drop height. Peak Von-Mises and Maximum Principal Stress levels for posterior impact were observed at 3.9 msec for 5 feet drop and 5.33 MPa HICP.

3. Frontal and 45-to-frontal impacts are least detrimental since those regions reach the peak tolerance stress values at higher heights. For frontal impact region, 2 and 3 feet impacts were below TBI tolerance level whereas 4 feet and 5 feet were above it, 3.125 feet was the threshold. For 45-to-frontal impact region, 2, 3 and 4 feet impacts were below TBI tolerance level whereas only 5 feet was above it, 4.25 feet was the threshold. Peak Von-Mises and Maximum Principal Stress levels for frontal impact were observed at 3.7 msec for 5 feet drop and 5.81 MPa HICP. Peak Von-Mises and Maximum Principal Stress levels for 45-to-frontal impact were observed at 3.7 msec for 5 feet drop and 4.65 MPa HICP.

4. The Maximum Principal Strain values of all impact regions are below the brain’s failure strain values. This signifies that no structural damage will be detected in MRI or CT scans yet brain will experience TBI causing higher stress concentrations.

4.1 Formula Proposition

From above analysis it is evident that both Von-Mises and Max. Principal Stresses contribute towards causing TBIs. Thus, this research group is proposing a formula similar to acceleration criterion relating stress values to the TBI.

\[
\frac{\sigma_{VM-regional}}{\sigma_{VM-TBI-max}} + \frac{\sigma_{MP-regional}}{\sigma_{MP-TBI-max}} \leq 1 \text{ then no TBI} \quad \cdots (E13)
\]

Where,

\[\sigma_{VM-regional} = \text{Von-Mises Stress for a particular impact region and drop height in MPa}\]
\(\sigma_{VM-TBI-\text{max}} \) = TBI tolerant Von-Mises Stress value in MPa (refer to Table 4.2)

\(\sigma_{MP-regional} \) = Maximum Principal Stress for a particular impact region and drop height in MPa

\(\sigma_{MP-TBI-\text{max}} \) = TBI tolerant Maximum Principal Stress value in MPa (refer to Table 4.2)

Table 4.3 TBI stress criterion for frontal, 45-to-frontal, lateral and posterior regions based on equation E13

<table>
<thead>
<tr>
<th>Drop Height (feet)</th>
<th>Von-Mises Regional Stress (MPa)</th>
<th>Von-Mises TBI max Stress (MPa)</th>
<th>Von-Mises Ratio</th>
<th>Max. Principal Stress (MPa)</th>
<th>Max. Principal TBI max Stress (MPa)</th>
<th>Max. Principal TBI condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>7.8</td>
<td>9.5</td>
<td>0.82</td>
<td>4.46</td>
<td>0.80</td>
<td>1.62</td>
</tr>
<tr>
<td>3</td>
<td>9.39</td>
<td>16</td>
<td>0.99</td>
<td>5.4</td>
<td>0.96</td>
<td>1.95</td>
</tr>
<tr>
<td>4</td>
<td>10.4</td>
<td>1.09</td>
<td>1.09</td>
<td>6.09</td>
<td>1.09</td>
<td>2.18</td>
</tr>
<tr>
<td>5</td>
<td>11.2</td>
<td>1.18</td>
<td>1.18</td>
<td>6.59</td>
<td>1.18</td>
<td>2.36</td>
</tr>
</tbody>
</table>

This formula has to be used only when \(\frac{\sigma_{VM-regional}}{\sigma_{VM-TBI-\text{max}}} \) or \(\frac{\sigma_{MP-regional}}{\sigma_{MP-TBI-\text{max}}} \) is less than one.

When those values are greater than 1 then this formula is not required to determine which type of stress plays a prominent role in causing TBI. For example, consider case 1 of Frontal 4 and 5 feet impact. Von-Mises Stress TBI tolerance \(\frac{\sigma_{VM-regional}}{\sigma_{VM-TBI-\text{max}}} \) values and Maximum Principal Stress TBI tolerance \(\frac{\sigma_{MP-regional}}{\sigma_{MP-TBI-\text{max}}} \) values are greater than 1 (refer to Table 4.3) which signifies that both types of stresses will be responsible for TBI and above formula is not required. Now, consider case 2 of Frontal 2 and 3 feet impact. Von-Mises Stress TBI tolerance \(\frac{\sigma_{VM-regional}}{\sigma_{VM-TBI-\text{max}}} \) values and Maximum Principal Stress TBI
tolerance \(\left(\frac{\sigma_{MP-regional}}{\sigma_{MP-TBI-max}} \right) \) values are less than 1 individually (refer to Table 4.3) which might be misconceived as no TBI. However, if their combined effect is observed then there is a risk of TBI.

Thus, Von-Mises Stress combined with Maximum Principal Stress can cause TBIs even though they won’t cause TBI if experienced individually.
5. Conclusions

- Tolerance impact is sensitive to impact region
- A profound relation is observed between head kinematics and brain kinetics
- Linear and angular impact accelerations can be related to propose a TBI impact tolerance criteria or a formula (equation E12)

$$\frac{a_{\text{regional}}}{a_{\text{TBI-max}}} + \frac{\alpha_{\text{regional}}}{\alpha_{\text{TBI-max}}} \leq 1 \ \text{then no TBI}$$

Where,

- $a_{\text{regional}} = \text{linear impact accelerations for a particular impact region and drop height}$
- $a_{\text{TBI-max}} = \text{TBI tolerant linear impact acceleration measured individually (value = 318 G)}$ [27]
- $\alpha_{\text{regional}} = \text{angular impact accelerations for a particular impact region and drop height}$
- $\alpha_{\text{TBI-max}} = \text{TBI tolerant angular impact acceleration measured individually (value = 23krad/s^2)}$ [27]

- Von-Mises Stresses and Maximum Principal Stresses can be related to propose a TBI impact tolerance criteria or a formula (equation E13)

$$\frac{\sigma_{\text{VM-regional}}}{\sigma_{\text{VM-TBI-max}}} + \frac{\sigma_{\text{MP-regional}}}{\sigma_{\text{MP-TBI-max}}} \leq 1 \ \text{then no TBI}$$

Where,

- $\sigma_{\text{VM-regional}} = \text{Von-Mises Stress for a particular impact region and drop height in MPa}$
\[\sigma_{VM-TBI-max} = \text{TBI tolerant Von-Mises Stress value in MPa (refer to Table 4.2)} \]

\[\sigma_{MP-regional} = \text{Maximum Principal Stress for a particular impact region and drop height in MPa} \]

\[\sigma_{MP-TBI-max} = \text{TBI tolerant Maximum Principal Stress value in MPa (refer to Table 4.2)} \]
6. Recommendations

- Precise and instantaneous pressure-area measurements should be done to facilitate linear curves of Von-Mises and Max. Principal stresses.

- Measurement of angular acceleration through NOCSAE droptest can give stress distributions with respect to angular or rotational impact.

- Determination of inertial properties through experimental methods should be done in order to validate FE model values

- FE Brain model based on region-wise varying mechanical properties and strains should be done for more realistic simulations.

- On-field measurement of impact pressures with the help of pressure films in collegiate football games and practices will yield real-time data of the games. This will help derive real-time stress distributions in human head.

- Design of helmets can consider lateral impact region as design basis. A helmet providing cushioning effect against linear acceleration along with providing resistance to shear caused to angular acceleration can be designed based on this research.
Appendix A

Head Impact Contact Pressure (HICP) Calculations

Table A0.1 HICP for Frontal impact of 2 feet drop height

<table>
<thead>
<tr>
<th>Impact Front Height (ft.) 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area measured (m²)</td>
</tr>
<tr>
<td>Mass of headform (kg)</td>
</tr>
<tr>
<td>Time G Drop Test Acc (m/s²) HICP</td>
</tr>
<tr>
<td>0.001562 0.62 6.11 1.07E+04</td>
</tr>
<tr>
<td>0.001757 1.44 14.13 2.48E+04</td>
</tr>
<tr>
<td>0.001953 7.33 71.94 1.26E+05</td>
</tr>
<tr>
<td>0.002148 20.63 202.33 3.55E+05</td>
</tr>
<tr>
<td>0.002343 40.23 394.54 6.93E+05</td>
</tr>
<tr>
<td>0.002539 65.96 646.89 1.14E+06</td>
</tr>
<tr>
<td>0.002734 96.19 943.33 1.66E+06</td>
</tr>
<tr>
<td>0.002929 129.69 1271.84 2.23E+06</td>
</tr>
<tr>
<td>0.003125 164.05 1608.79 2.83E+06</td>
</tr>
<tr>
<td>0.003320 193.11 1893.83 3.33E+06</td>
</tr>
<tr>
<td>0.003515 216.91 2127.19 3.74E+06</td>
</tr>
<tr>
<td>0.003710 233.26 2287.54 4.02E+06</td>
</tr>
<tr>
<td>0.003906 235.50 2309.48 4.06E+06</td>
</tr>
<tr>
<td>0.004101 225.90 2215.38 3.89E+06</td>
</tr>
<tr>
<td>0.004296 206.67 2026.76 3.56E+06</td>
</tr>
<tr>
<td>0.004492 177.79 1743.61 3.06E+06</td>
</tr>
<tr>
<td>0.004687 146.82 1440.42 2.53E+06</td>
</tr>
<tr>
<td>0.004882 118.39 1161.07 2.04E+06</td>
</tr>
<tr>
<td>0.005078 86.98 853.02 1.50E+06</td>
</tr>
<tr>
<td>0.005273 54.41 533.59 9.37E+05</td>
</tr>
<tr>
<td>0.005468 32.27 316.48 5.56E+05</td>
</tr>
</tbody>
</table>
Table A0.2 HICP for Frontal impact of 3 feet drop height

<table>
<thead>
<tr>
<th>Time</th>
<th>G</th>
<th>Drop Test Acc (m/s²)</th>
<th>HICP</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.001562</td>
<td>0.47</td>
<td>4.64</td>
<td>7.46E+03</td>
</tr>
<tr>
<td>0.001757</td>
<td>0.51</td>
<td>5.06</td>
<td>8.13E+03</td>
</tr>
<tr>
<td>0.001953</td>
<td>1.97</td>
<td>19.41</td>
<td>3.12E+04</td>
</tr>
<tr>
<td>0.002148</td>
<td>12.19</td>
<td>119.63</td>
<td>1.92E+05</td>
</tr>
<tr>
<td>0.002343</td>
<td>34.18</td>
<td>335.26</td>
<td>5.38E+05</td>
</tr>
<tr>
<td>0.002539</td>
<td>67.06</td>
<td>657.65</td>
<td>1.06E+06</td>
</tr>
<tr>
<td>0.002734</td>
<td>109.85</td>
<td>1077.31</td>
<td>1.73E+06</td>
</tr>
<tr>
<td>0.002929</td>
<td>156.71</td>
<td>1536.84</td>
<td>2.47E+06</td>
</tr>
<tr>
<td>0.003125</td>
<td>202.64</td>
<td>1987.30</td>
<td>3.19E+06</td>
</tr>
<tr>
<td>0.003320</td>
<td>246.96</td>
<td>2421.94</td>
<td>3.89E+06</td>
</tr>
<tr>
<td>0.003515</td>
<td>284.72</td>
<td>2792.22</td>
<td>4.48E+06</td>
</tr>
<tr>
<td>0.003710</td>
<td>305.98</td>
<td>3000.68</td>
<td>4.82E+06</td>
</tr>
<tr>
<td>0.003906</td>
<td>308.99</td>
<td>3030.22</td>
<td>4.87E+06</td>
</tr>
<tr>
<td>0.004101</td>
<td>295.20</td>
<td>2894.98</td>
<td>4.65E+06</td>
</tr>
<tr>
<td>0.004296</td>
<td>265.23</td>
<td>2601.07</td>
<td>4.18E+06</td>
</tr>
<tr>
<td>0.004492</td>
<td>226.31</td>
<td>2219.39</td>
<td>3.56E+06</td>
</tr>
<tr>
<td>0.004687</td>
<td>185.13</td>
<td>1815.56</td>
<td>2.92E+06</td>
</tr>
<tr>
<td>0.004882</td>
<td>137.88</td>
<td>1352.22</td>
<td>2.17E+06</td>
</tr>
<tr>
<td>0.005078</td>
<td>88.77</td>
<td>870.54</td>
<td>1.40E+06</td>
</tr>
<tr>
<td>0.005273</td>
<td>54.17</td>
<td>531.27</td>
<td>8.53E+05</td>
</tr>
<tr>
<td>0.005468</td>
<td>37.34</td>
<td>366.27</td>
<td>5.88E+05</td>
</tr>
</tbody>
</table>
Table A0.3 HICP for frontal impact of 4 feet drop height

<table>
<thead>
<tr>
<th>Impact</th>
<th>Front</th>
<th>Height (ft.)</th>
<th>Time G</th>
<th>Drop Test Acc (m/s²)</th>
<th>HICP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area on FE Model</td>
<td>Area (m²)</td>
<td>2.29E-03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mass of headform (m)</td>
<td>4.917</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>G</td>
<td>Drop Test Acc (m/s²)</td>
<td>HICP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.001562</td>
<td>0.40</td>
<td>4.00</td>
<td>5.96E+03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.001757</td>
<td>0.49</td>
<td>4.85</td>
<td>7.21E+03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.001953</td>
<td>0.51</td>
<td>5.06</td>
<td>7.52E+03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.002148</td>
<td>4.92</td>
<td>48.31</td>
<td>7.18E+04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.002343</td>
<td>23.94</td>
<td>234.83</td>
<td>3.49E+05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.002539</td>
<td>59.07</td>
<td>579.37</td>
<td>8.61E+05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.002734</td>
<td>108.84</td>
<td>1067.39</td>
<td>1.59E+06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.002929</td>
<td>166.58</td>
<td>1633.68</td>
<td>2.43E+06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.003125</td>
<td>223.34</td>
<td>2190.27</td>
<td>3.25E+06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.003320</td>
<td>278.72</td>
<td>2733.36</td>
<td>4.06E+06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.003515</td>
<td>331.17</td>
<td>3247.75</td>
<td>4.83E+06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.003710</td>
<td>365.12</td>
<td>3580.69</td>
<td>5.32E+06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.003906</td>
<td>370.63</td>
<td>3634.70</td>
<td>5.40E+06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.004101</td>
<td>352.67</td>
<td>3458.53</td>
<td>5.14E+06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.004296</td>
<td>316.20</td>
<td>3100.90</td>
<td>4.61E+06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.004492</td>
<td>270.54</td>
<td>2653.18</td>
<td>3.94E+06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.004687</td>
<td>222.74</td>
<td>2184.36</td>
<td>3.25E+06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.004882</td>
<td>166.15</td>
<td>1629.46</td>
<td>2.42E+06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.005078</td>
<td>106.19</td>
<td>1041.44</td>
<td>1.55E+06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.005273</td>
<td>64.50</td>
<td>632.54</td>
<td>9.40E+05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.005468</td>
<td>44.88</td>
<td>440.12</td>
<td>6.54E+05</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A0.4 HICP for frontal impact of 5 feet drop height

<table>
<thead>
<tr>
<th>Impact</th>
<th>Front</th>
<th>Height (ft.)</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area (m²)</td>
<td>0.003572</td>
<td>Area on FE Model (m²)</td>
<td>2.29E-03</td>
</tr>
<tr>
<td>Mass of headform (kg)</td>
<td>4.917</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>G</th>
<th>Drop Test Acc (m/s²)</th>
<th>HICP</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.001562</td>
<td>0.02</td>
<td>0.21</td>
<td>2.90E+02</td>
</tr>
<tr>
<td>0.001757</td>
<td>0.12</td>
<td>1.26</td>
<td>1.74E+03</td>
</tr>
<tr>
<td>0.001953</td>
<td>0.58</td>
<td>5.69</td>
<td>7.84E+03</td>
</tr>
<tr>
<td>0.002148</td>
<td>9.38</td>
<td>91.99</td>
<td>1.27E+05</td>
</tr>
<tr>
<td>0.002343</td>
<td>36.70</td>
<td>359.94</td>
<td>4.96E+05</td>
</tr>
<tr>
<td>0.002539</td>
<td>81.82</td>
<td>802.39</td>
<td>1.10E+06</td>
</tr>
<tr>
<td>0.002734</td>
<td>142.66</td>
<td>1399.06</td>
<td>1.93E+06</td>
</tr>
<tr>
<td>0.002929</td>
<td>213.06</td>
<td>2089.42</td>
<td>2.88E+06</td>
</tr>
<tr>
<td>0.003125</td>
<td>283.93</td>
<td>2784.42</td>
<td>3.83E+06</td>
</tr>
<tr>
<td>0.003320</td>
<td>352.37</td>
<td>3455.57</td>
<td>4.76E+06</td>
</tr>
<tr>
<td>0.003515</td>
<td>406.71</td>
<td>3988.53</td>
<td>5.49E+06</td>
</tr>
<tr>
<td>0.003710</td>
<td>430.25</td>
<td>4219.35</td>
<td>5.81E+06</td>
</tr>
<tr>
<td>0.003906</td>
<td>416.82</td>
<td>4087.70</td>
<td>5.63E+06</td>
</tr>
<tr>
<td>0.004101</td>
<td>375.77</td>
<td>3685.13</td>
<td>5.07E+06</td>
</tr>
<tr>
<td>0.004296</td>
<td>324.87</td>
<td>3187.93</td>
<td>4.39E+06</td>
</tr>
<tr>
<td>0.004492</td>
<td>267.19</td>
<td>2620.27</td>
<td>3.61E+06</td>
</tr>
<tr>
<td>0.004687</td>
<td>205.61</td>
<td>2016.42</td>
<td>2.78E+06</td>
</tr>
<tr>
<td>0.004882</td>
<td>140.81</td>
<td>1380.92</td>
<td>1.90E+06</td>
</tr>
<tr>
<td>0.005078</td>
<td>78.400</td>
<td>768.84</td>
<td>1.06E+06</td>
</tr>
<tr>
<td>0.005273</td>
<td>38.83</td>
<td>380.83</td>
<td>5.24E+05</td>
</tr>
<tr>
<td>0.005468</td>
<td>33.47</td>
<td>328.29</td>
<td>4.52E+05</td>
</tr>
</tbody>
</table>
Table A0.5 HICP for 45-to-frontal impact of 2 feet drop height

<table>
<thead>
<tr>
<th>Impact</th>
<th>45</th>
<th>Height (ft.)</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area measured (m²)</td>
<td>3.02E-03</td>
<td>Area on FE Model (m²)</td>
<td>3.30E-03</td>
</tr>
<tr>
<td>Mass of headform (kg)</td>
<td>4.917</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>G</td>
<td>Drop Test Acc (m/s²)</td>
<td>HICP</td>
</tr>
<tr>
<td>0.001562</td>
<td>0.81</td>
<td>8.01</td>
<td>1.30E+04</td>
</tr>
<tr>
<td>0.001757</td>
<td>3.31</td>
<td>32.49</td>
<td>5.29E+04</td>
</tr>
<tr>
<td>0.001953</td>
<td>10.71</td>
<td>105.07</td>
<td>1.71E+05</td>
</tr>
<tr>
<td>0.002148</td>
<td>24.54</td>
<td>240.73</td>
<td>3.92E+05</td>
</tr>
<tr>
<td>0.002343</td>
<td>44.98</td>
<td>441.17</td>
<td>7.18E+05</td>
</tr>
<tr>
<td>0.002539</td>
<td>70.91</td>
<td>695.41</td>
<td>1.13E+06</td>
</tr>
<tr>
<td>0.002734</td>
<td>101.42</td>
<td>994.60</td>
<td>1.62E+06</td>
</tr>
<tr>
<td>0.002929</td>
<td>134.59</td>
<td>1319.94</td>
<td>2.15E+06</td>
</tr>
<tr>
<td>0.003125</td>
<td>165.19</td>
<td>1619.97</td>
<td>2.64E+06</td>
</tr>
<tr>
<td>0.003320</td>
<td>187.60</td>
<td>1839.82</td>
<td>2.99E+06</td>
</tr>
<tr>
<td>0.003515</td>
<td>200.54</td>
<td>1966.62</td>
<td>3.20E+06</td>
</tr>
<tr>
<td>0.003710</td>
<td>205.96</td>
<td>2019.79</td>
<td>3.29E+06</td>
</tr>
<tr>
<td>0.003906</td>
<td>204.19</td>
<td>2002.49</td>
<td>3.26E+06</td>
</tr>
<tr>
<td>0.004101</td>
<td>194.12</td>
<td>1903.75</td>
<td>3.10E+06</td>
</tr>
<tr>
<td>0.004296</td>
<td>176.76</td>
<td>1733.48</td>
<td>2.82E+06</td>
</tr>
<tr>
<td>0.004492</td>
<td>155.01</td>
<td>1520.17</td>
<td>2.47E+06</td>
</tr>
<tr>
<td>0.004687</td>
<td>130.03</td>
<td>1275.21</td>
<td>2.07E+06</td>
</tr>
<tr>
<td>0.004882</td>
<td>102.26</td>
<td>1002.83</td>
<td>1.63E+06</td>
</tr>
<tr>
<td>0.005078</td>
<td>73.98</td>
<td>725.59</td>
<td>1.18E+06</td>
</tr>
<tr>
<td>0.005273</td>
<td>48.43</td>
<td>474.92</td>
<td>7.73E+05</td>
</tr>
<tr>
<td>0.005468</td>
<td>28.27</td>
<td>277.23</td>
<td>4.51E+05</td>
</tr>
</tbody>
</table>
Table A0.6 HICP for 45-to-frontal impact of 3 feet drop height

<table>
<thead>
<tr>
<th>Impact (m)</th>
<th>45</th>
<th>Height (ft.)</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area measured (m²)</td>
<td>3.02E-03</td>
<td>Area on FE Model (m²)</td>
<td>3.02E-03</td>
</tr>
<tr>
<td>Mass of headform (kg)</td>
<td>4.917</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>G</td>
<td>Drop Test Acc (m/s²)</td>
<td>HICP</td>
</tr>
<tr>
<td>0.001562</td>
<td>0.51</td>
<td>5.06</td>
<td>8.24E+03</td>
</tr>
<tr>
<td>0.001757</td>
<td>2.88</td>
<td>28.27</td>
<td>4.60E+04</td>
</tr>
<tr>
<td>0.001953</td>
<td>11.05</td>
<td>108.44</td>
<td>1.76E+05</td>
</tr>
<tr>
<td>0.002148</td>
<td>27.23</td>
<td>267.11</td>
<td>4.35E+05</td>
</tr>
<tr>
<td>0.002343</td>
<td>51.97</td>
<td>509.74</td>
<td>8.29E+05</td>
</tr>
<tr>
<td>0.002539</td>
<td>84.03</td>
<td>824.12</td>
<td>1.34E+06</td>
</tr>
<tr>
<td>0.002734</td>
<td>121.12</td>
<td>1187.86</td>
<td>1.93E+06</td>
</tr>
<tr>
<td>0.002929</td>
<td>160.80</td>
<td>1577.14</td>
<td>2.57E+06</td>
</tr>
<tr>
<td>0.003125</td>
<td>198.06</td>
<td>1942.36</td>
<td>3.16E+06</td>
</tr>
<tr>
<td>0.003320</td>
<td>227.00</td>
<td>2226.14</td>
<td>3.62E+06</td>
</tr>
<tr>
<td>0.003515</td>
<td>246.15</td>
<td>2413.92</td>
<td>3.93E+06</td>
</tr>
<tr>
<td>0.003710</td>
<td>255.20</td>
<td>2502.75</td>
<td>4.07E+06</td>
</tr>
<tr>
<td>0.003906</td>
<td>251.61</td>
<td>2467.51</td>
<td>4.01E+06</td>
</tr>
<tr>
<td>0.004101</td>
<td>235.13</td>
<td>2305.89</td>
<td>3.75E+06</td>
</tr>
<tr>
<td>0.004296</td>
<td>209.46</td>
<td>2054.18</td>
<td>3.34E+06</td>
</tr>
<tr>
<td>0.004492</td>
<td>183.47</td>
<td>1799.31</td>
<td>2.93E+06</td>
</tr>
<tr>
<td>0.004687</td>
<td>155.68</td>
<td>1526.71</td>
<td>2.48E+06</td>
</tr>
<tr>
<td>0.004882</td>
<td>122.93</td>
<td>1205.59</td>
<td>1.96E+06</td>
</tr>
<tr>
<td>0.005078</td>
<td>92.29</td>
<td>905.14</td>
<td>1.47E+06</td>
</tr>
<tr>
<td>0.005273</td>
<td>61.61</td>
<td>604.27</td>
<td>9.83E+05</td>
</tr>
<tr>
<td>0.005468</td>
<td>32.42</td>
<td>317.96</td>
<td>5.17E+05</td>
</tr>
</tbody>
</table>
Table A0.7 HICP for 45-to-frontal impact of 4 feet drop height

<table>
<thead>
<tr>
<th>Impact</th>
<th>45</th>
<th>Height (ft.)</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area measured (m²)</td>
<td>3.63E-03</td>
<td>Area on FE Model (m²)</td>
<td>3.02E-03</td>
</tr>
<tr>
<td>Mass of headform (kg)</td>
<td>4.917</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>G</td>
<td>Drop Test Acc (m/s²)</td>
<td>HICP</td>
</tr>
<tr>
<td>0.001562</td>
<td>0.27</td>
<td>2.74</td>
<td>3.72E+03</td>
</tr>
<tr>
<td>0.001757</td>
<td>0.83</td>
<td>8.22</td>
<td>1.12E+04</td>
</tr>
<tr>
<td>0.001953</td>
<td>5.72</td>
<td>56.12</td>
<td>7.61E+04</td>
</tr>
<tr>
<td>0.002148</td>
<td>21.02</td>
<td>206.13</td>
<td>2.79E+05</td>
</tr>
<tr>
<td>0.002343</td>
<td>49.93</td>
<td>489.70</td>
<td>6.64E+05</td>
</tr>
<tr>
<td>0.002539</td>
<td>92.40</td>
<td>906.19</td>
<td>1.23E+06</td>
</tr>
<tr>
<td>0.002734</td>
<td>144.51</td>
<td>1417.21</td>
<td>1.92E+06</td>
</tr>
<tr>
<td>0.002929</td>
<td>198.62</td>
<td>1947.85</td>
<td>2.64E+06</td>
</tr>
<tr>
<td>0.003125</td>
<td>247.01</td>
<td>2422.36</td>
<td>3.28E+06</td>
</tr>
<tr>
<td>0.003320</td>
<td>282.85</td>
<td>2773.87</td>
<td>3.76E+06</td>
</tr>
<tr>
<td>0.003515</td>
<td>302.32</td>
<td>2964.81</td>
<td>4.02E+06</td>
</tr>
<tr>
<td>0.003710</td>
<td>307.74</td>
<td>3017.98</td>
<td>4.09E+06</td>
</tr>
<tr>
<td>0.003906</td>
<td>300.15</td>
<td>2943.50</td>
<td>3.99E+06</td>
</tr>
<tr>
<td>0.004101</td>
<td>279.00</td>
<td>2736.10</td>
<td>3.71E+06</td>
</tr>
<tr>
<td>0.004296</td>
<td>246.02</td>
<td>2412.65</td>
<td>3.27E+06</td>
</tr>
<tr>
<td>0.004492</td>
<td>204.58</td>
<td>2006.29</td>
<td>2.72E+06</td>
</tr>
<tr>
<td>0.004687</td>
<td>163.06</td>
<td>1599.08</td>
<td>2.17E+06</td>
</tr>
<tr>
<td>0.004882</td>
<td>121.79</td>
<td>1194.40</td>
<td>1.62E+06</td>
</tr>
<tr>
<td>0.005078</td>
<td>77.53</td>
<td>760.40</td>
<td>1.03E+06</td>
</tr>
<tr>
<td>0.005273</td>
<td>41.13</td>
<td>403.41</td>
<td>5.47E+05</td>
</tr>
<tr>
<td>0.005468</td>
<td>20.65</td>
<td>202.54</td>
<td>2.75E+05</td>
</tr>
</tbody>
</table>
Table A0.8 HICP for 45-to-frontal impact of 5 feet drop height

<table>
<thead>
<tr>
<th>Impact</th>
<th>45</th>
<th>Height (ft.)</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area measured (m²)</td>
<td>3.63E-03</td>
<td>Area on FE Model (m²)</td>
<td>3.02E-03</td>
</tr>
<tr>
<td>Mass of headform (kg)</td>
<td>4.917</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>G</td>
<td>Drop Test Acc (m/s²)</td>
<td>HICP</td>
</tr>
<tr>
<td>0.001562</td>
<td>0.27</td>
<td>2.74</td>
<td>3.72E+03</td>
</tr>
<tr>
<td>0.001757</td>
<td>0.43</td>
<td>4.21</td>
<td>5.72E+03</td>
</tr>
<tr>
<td>0.001953</td>
<td>3.67</td>
<td>36.07</td>
<td>4.89E+04</td>
</tr>
<tr>
<td>0.002148</td>
<td>17.85</td>
<td>175.12</td>
<td>2.37E+05</td>
</tr>
<tr>
<td>0.002343</td>
<td>48.45</td>
<td>475.14</td>
<td>6.44E+05</td>
</tr>
<tr>
<td>0.002539</td>
<td>95.87</td>
<td>940.16</td>
<td>1.27E+06</td>
</tr>
<tr>
<td>0.002734</td>
<td>156.15</td>
<td>1531.35</td>
<td>2.08E+06</td>
</tr>
<tr>
<td>0.002929</td>
<td>219.06</td>
<td>2148.28</td>
<td>2.91E+06</td>
</tr>
<tr>
<td>0.003125</td>
<td>276.72</td>
<td>2713.74</td>
<td>3.68E+06</td>
</tr>
<tr>
<td>0.003320</td>
<td>323.45</td>
<td>3172.00</td>
<td>4.30E+06</td>
</tr>
<tr>
<td>0.003515</td>
<td>348.75</td>
<td>3420.13</td>
<td>4.64E+06</td>
</tr>
<tr>
<td>0.003710</td>
<td>349.46</td>
<td>3427.09</td>
<td>4.65E+06</td>
</tr>
<tr>
<td>0.003906</td>
<td>334.31</td>
<td>3278.55</td>
<td>4.44E+06</td>
</tr>
<tr>
<td>0.004101</td>
<td>308.32</td>
<td>3023.68</td>
<td>4.10E+06</td>
</tr>
<tr>
<td>0.004296</td>
<td>272.93</td>
<td>2676.60</td>
<td>3.63E+06</td>
</tr>
<tr>
<td>0.004492</td>
<td>230.16</td>
<td>2257.16</td>
<td>3.06E+06</td>
</tr>
<tr>
<td>0.004687</td>
<td>183.71</td>
<td>1801.63</td>
<td>2.44E+06</td>
</tr>
<tr>
<td>0.004882</td>
<td>138.21</td>
<td>1355.39</td>
<td>1.84E+06</td>
</tr>
<tr>
<td>0.005078</td>
<td>91.18</td>
<td>894.17</td>
<td>1.21E+06</td>
</tr>
<tr>
<td>0.005273</td>
<td>45.46</td>
<td>445.81</td>
<td>6.04E+05</td>
</tr>
<tr>
<td>0.005468</td>
<td>17.25</td>
<td>169.21</td>
<td>2.29E+05</td>
</tr>
</tbody>
</table>
Table A0.9 HICP for lateral impact of 2 feet drop height

<table>
<thead>
<tr>
<th>Impact</th>
<th>Side</th>
<th>Height (ft.)</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area measured (m²)</td>
<td>5.22E-03</td>
<td>Area on FE Model (m²)</td>
<td>4.74E-03</td>
</tr>
<tr>
<td>Mass of headform (kg)</td>
<td>4.917</td>
<td>Time G Drop Test Acc (m/s²)</td>
<td>HICP</td>
</tr>
<tr>
<td>0.001562</td>
<td>1.24</td>
<td>12.23</td>
<td>1.15E+04</td>
</tr>
<tr>
<td>0.001757</td>
<td>4.86</td>
<td>47.68</td>
<td>4.49E+04</td>
</tr>
<tr>
<td>0.001953</td>
<td>11.85</td>
<td>116.25</td>
<td>1.10E+05</td>
</tr>
<tr>
<td>0.002148</td>
<td>25.58</td>
<td>250.86</td>
<td>2.36E+05</td>
</tr>
<tr>
<td>0.002343</td>
<td>47.99</td>
<td>470.71</td>
<td>4.43E+05</td>
</tr>
<tr>
<td>0.002539</td>
<td>76.98</td>
<td>754.91</td>
<td>7.11E+05</td>
</tr>
<tr>
<td>0.002734</td>
<td>116.99</td>
<td>1147.35</td>
<td>1.08E+06</td>
</tr>
<tr>
<td>0.002929</td>
<td>166.09</td>
<td>1628.83</td>
<td>1.53E+06</td>
</tr>
<tr>
<td>0.003125</td>
<td>212.48</td>
<td>2083.72</td>
<td>1.96E+06</td>
</tr>
<tr>
<td>0.003320</td>
<td>246.43</td>
<td>2416.69</td>
<td>2.28E+06</td>
</tr>
<tr>
<td>0.003515</td>
<td>261.23</td>
<td>2561.82</td>
<td>2.41E+06</td>
</tr>
<tr>
<td>0.003710</td>
<td>253.94</td>
<td>2490.30</td>
<td>2.35E+06</td>
</tr>
<tr>
<td>0.003906</td>
<td>225.32</td>
<td>2209.69</td>
<td>2.08E+06</td>
</tr>
<tr>
<td>0.004101</td>
<td>185.45</td>
<td>1818.72</td>
<td>1.71E+06</td>
</tr>
<tr>
<td>0.004296</td>
<td>149.80</td>
<td>1469.11</td>
<td>1.38E+06</td>
</tr>
<tr>
<td>0.004492</td>
<td>124.48</td>
<td>1220.78</td>
<td>1.15E+06</td>
</tr>
<tr>
<td>0.004687</td>
<td>99.50</td>
<td>975.82</td>
<td>9.19E+05</td>
</tr>
<tr>
<td>0.004882</td>
<td>65.814</td>
<td>645.41</td>
<td>6.08E+05</td>
</tr>
<tr>
<td>0.005078</td>
<td>37.88</td>
<td>371.55</td>
<td>3.50E+05</td>
</tr>
<tr>
<td>0.005273</td>
<td>24.44</td>
<td>239.68</td>
<td>2.26E+05</td>
</tr>
<tr>
<td>0.005468</td>
<td>18.41</td>
<td>180.60</td>
<td>1.70E+05</td>
</tr>
</tbody>
</table>
Table A0.10 HICP for lateral impact of 3 feet drop height

<table>
<thead>
<tr>
<th>Impact Side</th>
<th>Time G Drop Test Acc (m/s²)</th>
<th>Height (ft.)</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area measured (m²)</td>
<td>5.77E-03</td>
<td>Area on FE Model (m²)</td>
<td>4.74E-03</td>
</tr>
<tr>
<td>Mass of headform (kg)</td>
<td>4.917</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.001562</td>
<td>0.58</td>
<td>5.69</td>
<td>4.85E+03</td>
</tr>
<tr>
<td>0.001757</td>
<td>1.01</td>
<td>9.91</td>
<td>8.45E+03</td>
</tr>
<tr>
<td>0.001953</td>
<td>5.63</td>
<td>55.27</td>
<td>4.71E+04</td>
</tr>
<tr>
<td>0.002148</td>
<td>15.98</td>
<td>156.76</td>
<td>1.34E+05</td>
</tr>
<tr>
<td>0.002343</td>
<td>36.23</td>
<td>355.30</td>
<td>3.03E+05</td>
</tr>
<tr>
<td>0.002539</td>
<td>68.91</td>
<td>675.79</td>
<td>5.76E+05</td>
</tr>
<tr>
<td>0.002734</td>
<td>111.76</td>
<td>1096.08</td>
<td>9.34E+05</td>
</tr>
<tr>
<td>0.002929</td>
<td>168.95</td>
<td>1656.89</td>
<td>1.41E+06</td>
</tr>
<tr>
<td>0.003125</td>
<td>237.43</td>
<td>2328.47</td>
<td>1.98E+06</td>
</tr>
<tr>
<td>0.003320</td>
<td>300.54</td>
<td>2947.30</td>
<td>2.51E+06</td>
</tr>
<tr>
<td>0.003515</td>
<td>340.43</td>
<td>3338.47</td>
<td>2.85E+06</td>
</tr>
<tr>
<td>0.003710</td>
<td>345.35</td>
<td>3386.79</td>
<td>2.89E+06</td>
</tr>
<tr>
<td>0.003906</td>
<td>315.27</td>
<td>3091.83</td>
<td>2.63E+06</td>
</tr>
<tr>
<td>0.004101</td>
<td>262.56</td>
<td>2574.90</td>
<td>2.19E+06</td>
</tr>
<tr>
<td>0.004296</td>
<td>205.76</td>
<td>2017.81</td>
<td>1.72E+06</td>
</tr>
<tr>
<td>0.004492</td>
<td>162.48</td>
<td>1593.38</td>
<td>1.36E+06</td>
</tr>
<tr>
<td>0.004687</td>
<td>130.26</td>
<td>1277.32</td>
<td>1.09E+06</td>
</tr>
<tr>
<td>0.004882</td>
<td>90.85</td>
<td>891.00</td>
<td>7.59E+05</td>
</tr>
<tr>
<td>0.005078</td>
<td>46.57</td>
<td>456.79</td>
<td>3.89E+05</td>
</tr>
<tr>
<td>0.005273</td>
<td>19.92</td>
<td>195.37</td>
<td>1.66E+05</td>
</tr>
<tr>
<td>0.005468</td>
<td>15.40</td>
<td>151.06</td>
<td>1.29E+05</td>
</tr>
</tbody>
</table>
Table A0.11 HICP for lateral impact of 4 feet drop height

<table>
<thead>
<tr>
<th>Impact</th>
<th>Side</th>
<th>Height (ft.)</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area measured (m²)</td>
<td>6.04E-03</td>
<td>Area on FE Model (m²)</td>
<td>4.74E-03</td>
</tr>
<tr>
<td>Mass of headform (kg)</td>
<td>4.917</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>G</td>
<td>Drop Test Acc (m/s²)</td>
<td>HICP</td>
</tr>
<tr>
<td>0.001562</td>
<td>0.58</td>
<td>5.67</td>
<td>4.63E+03</td>
</tr>
<tr>
<td>0.001757</td>
<td>0.51</td>
<td>5.06</td>
<td>4.12E+03</td>
</tr>
<tr>
<td>0.001953</td>
<td>3.52</td>
<td>34.60</td>
<td>2.81E+04</td>
</tr>
<tr>
<td>0.002148</td>
<td>14.17</td>
<td>139.04</td>
<td>1.13E+05</td>
</tr>
<tr>
<td>0.002343</td>
<td>35.39</td>
<td>347.07</td>
<td>2.82E+05</td>
</tr>
<tr>
<td>0.002539</td>
<td>70.82</td>
<td>694.57</td>
<td>5.65E+05</td>
</tr>
<tr>
<td>0.002734</td>
<td>118.24</td>
<td>1159.59</td>
<td>9.43E+05</td>
</tr>
<tr>
<td>0.002929</td>
<td>180.23</td>
<td>1767.45</td>
<td>1.44E+06</td>
</tr>
<tr>
<td>0.003125</td>
<td>259.01</td>
<td>2540.09</td>
<td>2.07E+06</td>
</tr>
<tr>
<td>0.003320</td>
<td>338.25</td>
<td>3317.16</td>
<td>2.70E+06</td>
</tr>
<tr>
<td>0.003515</td>
<td>390.08</td>
<td>3825.44</td>
<td>3.11E+06</td>
</tr>
<tr>
<td>0.003710</td>
<td>398.64</td>
<td>3909.41</td>
<td>3.18E+06</td>
</tr>
<tr>
<td>0.003906</td>
<td>365.51</td>
<td>3584.49</td>
<td>2.92E+06</td>
</tr>
<tr>
<td>0.004101</td>
<td>301.50</td>
<td>2956.79</td>
<td>2.41E+06</td>
</tr>
<tr>
<td>0.004296</td>
<td>230.27</td>
<td>2258.21</td>
<td>1.84E+06</td>
</tr>
<tr>
<td>0.004492</td>
<td>179.15</td>
<td>1756.90</td>
<td>1.43E+06</td>
</tr>
<tr>
<td>0.004687</td>
<td>145.67</td>
<td>1428.60</td>
<td>1.16E+06</td>
</tr>
<tr>
<td>0.004882</td>
<td>106.49</td>
<td>1044.39</td>
<td>8.50E+05</td>
</tr>
<tr>
<td>0.005078</td>
<td>66.82</td>
<td>655.33</td>
<td>5.33E+05</td>
</tr>
<tr>
<td>0.005273</td>
<td>45.15</td>
<td>442.86</td>
<td>3.60E+05</td>
</tr>
<tr>
<td>0.005468</td>
<td>34.66</td>
<td>339.90</td>
<td>2.77E+05</td>
</tr>
</tbody>
</table>
Table A0.12 HICP for lateral impact of 5 feet drop height

<table>
<thead>
<tr>
<th>Impact Side</th>
<th>Height (ft.)</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area measured (m²)</td>
<td>6.41E-03</td>
<td>Area on FE Model (m²)</td>
</tr>
<tr>
<td>Mass of headform (kg)</td>
<td>4.917</td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>G</td>
<td>Drop Test Acc (m/s²)</td>
</tr>
<tr>
<td>0.001562</td>
<td>0.66</td>
<td>6.54</td>
</tr>
<tr>
<td>0.001757</td>
<td>0.60</td>
<td>5.90</td>
</tr>
<tr>
<td>0.001953</td>
<td>3.57</td>
<td>35.02</td>
</tr>
<tr>
<td>0.002148</td>
<td>16.45</td>
<td>161.40</td>
</tr>
<tr>
<td>0.002343</td>
<td>42.29</td>
<td>414.80</td>
</tr>
<tr>
<td>0.002539</td>
<td>84.25</td>
<td>826.23</td>
</tr>
<tr>
<td>0.002734</td>
<td>141.26</td>
<td>1385.35</td>
</tr>
<tr>
<td>0.002929</td>
<td>214.65</td>
<td>2105.03</td>
</tr>
<tr>
<td>0.003125</td>
<td>307.61</td>
<td>3016.72</td>
</tr>
<tr>
<td>0.003320</td>
<td>400.45</td>
<td>3927.13</td>
</tr>
<tr>
<td>0.003515</td>
<td>458.52</td>
<td>4496.59</td>
</tr>
<tr>
<td>0.003710</td>
<td>463.08</td>
<td>4541.32</td>
</tr>
<tr>
<td>0.003906</td>
<td>415.96</td>
<td>4079.26</td>
</tr>
<tr>
<td>0.004101</td>
<td>332.51</td>
<td>3260.8</td>
</tr>
<tr>
<td>0.004296</td>
<td>246.99</td>
<td>2422.15</td>
</tr>
<tr>
<td>0.004492</td>
<td>190.72</td>
<td>1870.41</td>
</tr>
<tr>
<td>0.004687</td>
<td>151.14</td>
<td>1482.19</td>
</tr>
<tr>
<td>0.004882</td>
<td>106.88</td>
<td>1048.19</td>
</tr>
<tr>
<td>0.005078</td>
<td>69.45</td>
<td>681.07</td>
</tr>
<tr>
<td>0.005273</td>
<td>53.95</td>
<td>529.16</td>
</tr>
<tr>
<td>0.005468</td>
<td>46.66</td>
<td>457.63</td>
</tr>
</tbody>
</table>
Table A0.13 HICP for posterior impact of 2 feet drop height

<table>
<thead>
<tr>
<th>Impact</th>
<th>Rear</th>
<th>Height (ft.)</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area measured (m²)</td>
<td>3.41E-03</td>
<td>Area on FE Model (m²)</td>
<td>2.92E-03</td>
</tr>
<tr>
<td>Mass of headform (kg)</td>
<td>4.917</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>G</th>
<th>Drop Test Acc (m/s²)</th>
<th>HICP</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.001562</td>
<td>0.33</td>
<td>3.58</td>
<td>5.18E+03</td>
</tr>
<tr>
<td>0.001757</td>
<td>0.92</td>
<td>9.07</td>
<td>1.31E+04</td>
</tr>
<tr>
<td>0.001953</td>
<td>3.63</td>
<td>35.65</td>
<td>5.15E+04</td>
</tr>
<tr>
<td>0.002148</td>
<td>11.96</td>
<td>117.30</td>
<td>1.69E+05</td>
</tr>
<tr>
<td>0.002343</td>
<td>29.15</td>
<td>285.89</td>
<td>4.13E+05</td>
</tr>
<tr>
<td>0.002539</td>
<td>55.70</td>
<td>546.25</td>
<td>7.88E+05</td>
</tr>
<tr>
<td>0.002734</td>
<td>89.26</td>
<td>875.39</td>
<td>1.26E+06</td>
</tr>
<tr>
<td>0.002929</td>
<td>126.22</td>
<td>1237.87</td>
<td>1.79E+06</td>
</tr>
<tr>
<td>0.003125</td>
<td>161.87</td>
<td>1587.48</td>
<td>2.29E+06</td>
</tr>
<tr>
<td>0.003320</td>
<td>193.67</td>
<td>1899.32</td>
<td>2.74E+06</td>
</tr>
<tr>
<td>0.003515</td>
<td>221.38</td>
<td>2171.07</td>
<td>3.13E+06</td>
</tr>
<tr>
<td>0.003710</td>
<td>242.62</td>
<td>2379.32</td>
<td>3.43E+06</td>
</tr>
<tr>
<td>0.003906</td>
<td>253.85</td>
<td>2489.45</td>
<td>3.59E+06</td>
</tr>
<tr>
<td>0.004101</td>
<td>251.01</td>
<td>2461.60</td>
<td>3.55E+06</td>
</tr>
<tr>
<td>0.004296</td>
<td>233.69</td>
<td>2291.76</td>
<td>3.31E+06</td>
</tr>
<tr>
<td>0.004492</td>
<td>208.47</td>
<td>2044.48</td>
<td>2.95E+06</td>
</tr>
<tr>
<td>0.004687</td>
<td>179.52</td>
<td>1760.49</td>
<td>2.54E+06</td>
</tr>
<tr>
<td>0.004882</td>
<td>148.06</td>
<td>1452.02</td>
<td>2.10E+06</td>
</tr>
<tr>
<td>0.005078</td>
<td>117.55</td>
<td>1152.84</td>
<td>1.66E+06</td>
</tr>
<tr>
<td>0.005273</td>
<td>88.64</td>
<td>869.27</td>
<td>1.25E+06</td>
</tr>
<tr>
<td>0.005468</td>
<td>59.29</td>
<td>581.48</td>
<td>8.39E+05</td>
</tr>
</tbody>
</table>
Table A0.14 HICP for posterior impact of 3 feet drop height

<table>
<thead>
<tr>
<th>Impact Rear Height (ft.)</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area measured (m²)</td>
<td>3.89E-03</td>
</tr>
<tr>
<td>Mass of headform (kg)</td>
<td>4.917</td>
</tr>
<tr>
<td>Time</td>
<td>G</td>
</tr>
<tr>
<td>0.001562</td>
<td>0.15</td>
</tr>
<tr>
<td>0.001757</td>
<td>0.81</td>
</tr>
<tr>
<td>0.001953</td>
<td>3.76</td>
</tr>
<tr>
<td>0.002148</td>
<td>13.31</td>
</tr>
<tr>
<td>0.002343</td>
<td>34.68</td>
</tr>
<tr>
<td>0.002539</td>
<td>70.16</td>
</tr>
<tr>
<td>0.002734</td>
<td>117.04</td>
</tr>
<tr>
<td>0.002929</td>
<td>169.90</td>
</tr>
<tr>
<td>0.003125</td>
<td>221.23</td>
</tr>
<tr>
<td>0.003320</td>
<td>265.06</td>
</tr>
<tr>
<td>0.003515</td>
<td>298.99</td>
</tr>
<tr>
<td>0.003710</td>
<td>322.76</td>
</tr>
<tr>
<td>0.003906</td>
<td>330.70</td>
</tr>
<tr>
<td>0.004101</td>
<td>317.19</td>
</tr>
<tr>
<td>0.004296</td>
<td>285.48</td>
</tr>
<tr>
<td>0.004492</td>
<td>243.26</td>
</tr>
<tr>
<td>0.004687</td>
<td>198.56</td>
</tr>
<tr>
<td>0.004882</td>
<td>158.37</td>
</tr>
<tr>
<td>0.005078</td>
<td>121.36</td>
</tr>
<tr>
<td>0.005273</td>
<td>81.75</td>
</tr>
<tr>
<td>0.005468</td>
<td>42.72</td>
</tr>
</tbody>
</table>
Table A0.15 HICP for posterior impact of 4 feet drop height

<table>
<thead>
<tr>
<th>Impact Area measured (m²)</th>
<th>Rear Area on FE Model (m²)</th>
<th>Height (ft.)</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass of headform (kg)</td>
<td>4.917</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time G Drop Test Acc (m/s²) HICP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.001562</td>
<td>0.17</td>
<td>1.68</td>
<td>2.05E+03</td>
</tr>
<tr>
<td>0.001757</td>
<td>1.22</td>
<td>12.02</td>
<td>1.46E+04</td>
</tr>
<tr>
<td>0.001953</td>
<td>6.04</td>
<td>59.28</td>
<td>7.19E+04</td>
</tr>
<tr>
<td>0.002148</td>
<td>20.37</td>
<td>199.80</td>
<td>2.42E+05</td>
</tr>
<tr>
<td>0.002343</td>
<td>51.22</td>
<td>502.36</td>
<td>6.09E+05</td>
</tr>
<tr>
<td>0.002539</td>
<td>101.01</td>
<td>990.59</td>
<td>1.20E+06</td>
</tr>
<tr>
<td>0.002734</td>
<td>165.70</td>
<td>1625.03</td>
<td>1.97E+06</td>
</tr>
<tr>
<td>0.002929</td>
<td>237.13</td>
<td>2325.52</td>
<td>2.82E+06</td>
</tr>
<tr>
<td>0.003125</td>
<td>301.10</td>
<td>2952.79</td>
<td>3.58E+06</td>
</tr>
<tr>
<td>0.003320</td>
<td>351.38</td>
<td>3445.87</td>
<td>4.18E+06</td>
</tr>
<tr>
<td>0.003515</td>
<td>386.14</td>
<td>3786.83</td>
<td>4.59E+06</td>
</tr>
<tr>
<td>0.003710</td>
<td>400.09</td>
<td>3923.55</td>
<td>4.76E+06</td>
</tr>
<tr>
<td>0.003906</td>
<td>391.65</td>
<td>3840.84</td>
<td>4.66E+06</td>
</tr>
<tr>
<td>0.004101</td>
<td>361.17</td>
<td>3541.87</td>
<td>4.29E+06</td>
</tr>
<tr>
<td>0.004296</td>
<td>310.71</td>
<td>3047.10</td>
<td>3.69E+06</td>
</tr>
<tr>
<td>0.004492</td>
<td>246.41</td>
<td>2416.45</td>
<td>2.93E+06</td>
</tr>
<tr>
<td>0.004687</td>
<td>184.40</td>
<td>1808.38</td>
<td>2.19E+06</td>
</tr>
<tr>
<td>0.004882</td>
<td>140.27</td>
<td>1375.64</td>
<td>1.67E+06</td>
</tr>
<tr>
<td>0.005078</td>
<td>105.10</td>
<td>1030.68</td>
<td>1.25E+06</td>
</tr>
<tr>
<td>0.005273</td>
<td>64.54</td>
<td>632.96</td>
<td>7.67E+05</td>
</tr>
<tr>
<td>0.005468</td>
<td>27.88</td>
<td>273.44</td>
<td>3.31E+05</td>
</tr>
</tbody>
</table>

Chandrika S. Abhang | Michigan Tech
Table A0.16 HICP for posterior impact of 5 feet drop height

<table>
<thead>
<tr>
<th>Impact</th>
<th>Rear</th>
<th>Height (ft.)</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area measured (m²)</td>
<td>4.16E-03</td>
<td>Area on FE Model (m²)</td>
<td>2.92E-03</td>
</tr>
<tr>
<td>Mass of headform (kg)</td>
<td>4.917</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>G</td>
<td>Drop Test Acc (m/s²)</td>
<td>HICP</td>
</tr>
<tr>
<td>0.001562</td>
<td>0.10</td>
<td>1.054</td>
<td>1.25E+03</td>
</tr>
<tr>
<td>0.001757</td>
<td>0.27</td>
<td>2.742</td>
<td>3.24E+03</td>
</tr>
<tr>
<td>0.001953</td>
<td>2.15</td>
<td>21.098</td>
<td>2.49E+04</td>
</tr>
<tr>
<td>0.002148</td>
<td>9.35</td>
<td>91.78</td>
<td>1.08E+05</td>
</tr>
<tr>
<td>0.002343</td>
<td>29.26</td>
<td>286.94</td>
<td>3.39E+05</td>
</tr>
<tr>
<td>0.002539</td>
<td>71.23</td>
<td>698.58</td>
<td>8.25E+05</td>
</tr>
<tr>
<td>0.002734</td>
<td>136.10</td>
<td>1334.71</td>
<td>1.58E+06</td>
</tr>
<tr>
<td>0.002929</td>
<td>217.45</td>
<td>2132.46</td>
<td>2.52E+06</td>
</tr>
<tr>
<td>0.003125</td>
<td>301.61</td>
<td>2957.85</td>
<td>3.49E+06</td>
</tr>
<tr>
<td>0.003320</td>
<td>373.26</td>
<td>3660.44</td>
<td>4.32E+06</td>
</tr>
<tr>
<td>0.003515</td>
<td>425.54</td>
<td>4173.15</td>
<td>4.93E+06</td>
</tr>
<tr>
<td>0.003710</td>
<td>456.02</td>
<td>4472.12</td>
<td>5.28E+06</td>
</tr>
<tr>
<td>0.003906</td>
<td>460.59</td>
<td>4516.85</td>
<td>5.33E+06</td>
</tr>
<tr>
<td>0.004101</td>
<td>437.46</td>
<td>4290.03</td>
<td>5.07E+06</td>
</tr>
<tr>
<td>0.004296</td>
<td>383.97</td>
<td>3765.52</td>
<td>4.45E+06</td>
</tr>
<tr>
<td>0.004492</td>
<td>303.68</td>
<td>2978.10</td>
<td>3.52E+06</td>
</tr>
<tr>
<td>0.004687</td>
<td>231.17</td>
<td>2267.07</td>
<td>2.68E+06</td>
</tr>
<tr>
<td>0.004882</td>
<td>176.31</td>
<td>1729.05</td>
<td>2.04E+06</td>
</tr>
<tr>
<td>0.005078</td>
<td>122.29</td>
<td>1199.26</td>
<td>1.42E+06</td>
</tr>
<tr>
<td>0.005273</td>
<td>77.47</td>
<td>759.77</td>
<td>8.97E+05</td>
</tr>
<tr>
<td>0.005468</td>
<td>53.61</td>
<td>525.78</td>
<td>6.21E+05</td>
</tr>
</tbody>
</table>
Appendix B

Simulations with detailed ANSYS features

B.1 FEModeler

Orphan Mesh in ABAQUS (.inp) format was imported in FEModeler of ANSYS 14.5

Figure B0.1 Finite Element Modeler module of ANSYS 14.5

The model was cleaned up and ‘Body Grouping’ was done with respect to ‘Components’ in order to get each layer of human head as a separate part instead of an entire body (refer to Figure 2.10)

Figure B0.2 Screenshot of Body Grouping in Head assembly according to its Components (layers) in ANSYS 14.5
B.2 Engineering Data (Materials)

The materials were added in Engineering Data tab of the Transient Structural analysis type (explained further in Section 2.4.3). The materials considered for analysis are the same as specified in the data of validated model.

![Figure B0.3 Screenshot of Transient Structural module highlighting Engineering data step (Materials) tab in ANSYS 14.5](image)

B.3 Model

The model from FEModeler was directly imported in Model tab of Transient Structural module of ANSYS. The module was refreshed and updated to access the imported model.

![Figure B0.4 Screenshot of FE Model importing process in Transient Structural module](image)
The imported model parts were named and assigned appropriate material properties (refer to Figure 2.14)

![Figure B0.5 Screenshot of Material Assignment process to the Scalp](image)

B.4 Analysis Settings

These are a group of settings that allow setting up of our simulation model according to the actual experimental conditions. Let us consider 45 to frontal region and drop height of 3 feet to understand various controls of Analysis Settings as displayed in Table 2.5

<table>
<thead>
<tr>
<th>Object Name</th>
<th>Analysis Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>State</td>
<td>Fully Defined</td>
</tr>
</tbody>
</table>

Step Controls

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number Of Steps</td>
<td>21.</td>
</tr>
<tr>
<td>Current Step Number</td>
<td>1.</td>
</tr>
<tr>
<td>Step End Time</td>
<td>1.5625e-003 s</td>
</tr>
<tr>
<td>Auto Time Stepping</td>
<td>Off</td>
</tr>
<tr>
<td>Define By</td>
<td>Substeps</td>
</tr>
<tr>
<td>Number Of Substeps</td>
<td>2.</td>
</tr>
<tr>
<td>Time Integration</td>
<td>On</td>
</tr>
</tbody>
</table>

Solver Controls
- **Step Controls:**

This defines the number of steps in terms of time intervals that were considered for load input cycle on FE model. These are usually specified by putting ‘end time’ of each step or event in a load cycle. As explained earlier, the major impact event was also defined in terms of time steps which was inserted in the step
controls as shown in Table 2.6. ‘Auto Stepping’ was toggled ‘off’ so that more user-controlled environment can be established however ‘Time Integration’ was toggled ‘on’ so that system can integrate time dependent variables without user inputs. The time cycle was defined based on ‘SubSteps’ instead of ‘Time’ so that uniform distribution of curve can be achieved. The numbers of substeps taken were 2 in order to reduce the processing time since these time steps were gained from data acquisition systems and hence did not need much convergence.

Table B0.18 Step Controls: Time Cycle and end time specifications

<table>
<thead>
<tr>
<th>Step</th>
<th>Step End Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.5625e-003 s</td>
</tr>
<tr>
<td>2</td>
<td>1.7578e-003 s</td>
</tr>
<tr>
<td>3</td>
<td>1.9531e-003 s</td>
</tr>
<tr>
<td>4</td>
<td>2.1484e-003 s</td>
</tr>
<tr>
<td>5</td>
<td>2.3437e-003 s</td>
</tr>
<tr>
<td>6</td>
<td>2.5391e-003 s</td>
</tr>
<tr>
<td>7</td>
<td>2.7344e-003 s</td>
</tr>
<tr>
<td>8</td>
<td>2.9297e-003 s</td>
</tr>
<tr>
<td>9</td>
<td>3.125e-003 s</td>
</tr>
<tr>
<td>10</td>
<td>3.3203e-003 s</td>
</tr>
<tr>
<td>11</td>
<td>3.5156e-003 s</td>
</tr>
<tr>
<td>12</td>
<td>3.7109e-003 s</td>
</tr>
<tr>
<td>13</td>
<td>3.9063e-003 s</td>
</tr>
<tr>
<td>14</td>
<td>4.1016e-003 s</td>
</tr>
<tr>
<td>15</td>
<td>4.2969e-003 s</td>
</tr>
<tr>
<td>16</td>
<td>4.4922e-003 s</td>
</tr>
<tr>
<td>17</td>
<td>4.6875e-003 s</td>
</tr>
<tr>
<td>18</td>
<td>4.8828e-003 s</td>
</tr>
<tr>
<td>19</td>
<td>5.0781e-003 s</td>
</tr>
<tr>
<td>20</td>
<td>5.2734e-003 s</td>
</tr>
<tr>
<td>21</td>
<td>5.4687e-003 s</td>
</tr>
</tbody>
</table>

- **Solver Controls:**

 As the name specifies, these control the way a solver processes solution options. This was set to default ‘Program Controlled’ and ‘Large deflection’ was toggled ‘on’
- Restart Controls:

These define whether a new solution will start from some points of older solution versions. These were set to default ‘Program Controlled’ value and the restart files of older solutions were erased after every new run was initiated by setting ‘Retains files after Full Solve’ to ‘No’. This was done in order to avoid log of simulation history files.

- Nonlinear Controls:

Force, Moment, Displacement and Rotation convergences were set to default ‘Program Controlled’ values and Stabilization was inactivated in order to record any destabilized activity occurring due to load inputs during the simulation.

- Output Controls:

A control was established over Stress and Strain results by toggling them to ‘Yes’ however nodal forces were not constrained by selecting ‘No’ option for them. Results were stored for ‘All data points’. Other options for result storage included ‘last time point’, ‘equally spaced points’, ‘specified recurrence rate’. Maximum number of result sets were set to default ‘Program Controlled’ option which was 1000 sets per run.

- Damping Controls:
Damping controls were set to default ‘Program Controlled’ controlled value.

Stiffness coefficient was kept as a user input and numerical damping value was 0.1 by default.

- Analysis Data Management:

 Appropriate solver directory was selected facilitating effective book-keeping and well defined location for storage of all results’ log files. The unit system was defined as MKS system for the simulations.
Appendix C

Accelerations’ Calculator

Please refer to A-3 (oversized) sheet attached at the end of this document.
Appendix D

Basic Anatomy of Human Head

A background on basic anatomy of head and its terminologies is also provided here to help understand the head injury mechanics better. Hair and facial skin form the outermost layers of the head. These are not considered in this study. As shown in Figure D0.6, scalp is the next layer made up of soft tissue approximately 5 to 7 mm thick and covering the outer surface of the skull. Skull or braincase is made up from bone and varies from 4 to 7 mm in thickness. The Dura matter, the arachnoid and the Pia matter form three membranes of ‘the meninges’: a protective and nutrition-providing covering of the brain. The subdural and subarachnoid spaces are filled with cerebrospinal fluid (CSF) which is responsible for nutrient supply and signal transportation. It also protects the brain against impacts and blows by providing a cushioning effect. These individual layers are not considered in this study however a layer of Dura matter is considered.

![Layers of human head](image)

Figure D0.6 Layers of human head [31]

Brain: a huge network of nerve cells can be divided into cerebral hemispheres, cerebellum, midbrain, pons and medulla oblongata. As shown in Figure D0.7, the frontal
lobe is located on the anterior side. Adjacent to the frontal lobe is the temporal lobe located on the lateral side of the head. The parietal lobe, located above the temporal lobe, forms the lateral and superior side of the brain. The occipital lobe, located on the posterior side of the head, forms the posterior portion of the cerebral hemispheres. The cerebellum, midbrain, pons, and medulla oblongata, which lie beneath the cerebral hemispheres, form the remaining portion of the brain. The cerebellum is located at the base of the skull below the occipital lobe and parietal lobes. Brain stem connects to the spinal cord.

![Figure D0.7 Structural differentiation of human brain [32]](image)

Figure D0.7 Structural differentiation of human brain [32]
References

[8] The JAMA Network Journals, "Large increase seen in emergency departments visits for

Linear Acceleration and Angular Acceleration

<table>
<thead>
<tr>
<th>Height (feet)</th>
<th>Linear Acceleration (m/s²)</th>
<th>Angular Acceleration (rad/s²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2364.65</td>
<td>-7087.19</td>
</tr>
<tr>
<td>3</td>
<td>2481.35</td>
<td>-10093.86</td>
</tr>
<tr>
<td>4</td>
<td>3144.97</td>
<td>307.75</td>
</tr>
<tr>
<td>5</td>
<td>3418.12</td>
<td>205.96</td>
</tr>
</tbody>
</table>

Drop Heights (feet)

<table>
<thead>
<tr>
<th>Height (feet)</th>
<th>Linear Acceleration (Topaq)</th>
<th>Angular Acceleration (Topaq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2364.65</td>
<td>-7087.19</td>
</tr>
<tr>
<td>3</td>
<td>2481.35</td>
<td>-10093.86</td>
</tr>
<tr>
<td>4</td>
<td>3144.97</td>
<td>307.75</td>
</tr>
<tr>
<td>5</td>
<td>3418.12</td>
<td>205.96</td>
</tr>
</tbody>
</table>

Pressure from Films (Pa)

<table>
<thead>
<tr>
<th>Height (feet)</th>
<th>Pressure from Films (Pa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3850000</td>
</tr>
<tr>
<td>3</td>
<td>4260000</td>
</tr>
<tr>
<td>4</td>
<td>4040000</td>
</tr>
<tr>
<td>5</td>
<td>4630000</td>
</tr>
</tbody>
</table>

Area Measured (m²)

<table>
<thead>
<tr>
<th>Height (feet)</th>
<th>Area Measured (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.00302</td>
</tr>
<tr>
<td>3</td>
<td>0.00302</td>
</tr>
<tr>
<td>4</td>
<td>0.00363</td>
</tr>
<tr>
<td>5</td>
<td>0.00363</td>
</tr>
</tbody>
</table>

Mass of Headform (kg)

<table>
<thead>
<tr>
<th>Height (feet)</th>
<th>Mass of Headform (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4.917</td>
</tr>
<tr>
<td>3</td>
<td>4.917</td>
</tr>
<tr>
<td>4</td>
<td>4.917</td>
</tr>
<tr>
<td>5</td>
<td>4.917</td>
</tr>
</tbody>
</table>

Ixx (axis out of nose) and Iyy (axis out of superior head region)

- Ixx = 0.0614 kg·m²
- Iyy = 0.1070 kg·m²

Max. Acceleration (m/s²)

- Topaq: 2364.65
- Drop Tests: 3144.97

Fx and Fy

- Fx Topaq: -7087.19 N
- Fx Drop Tests: -10093.86 N
- Fy = 0 N

Gs (m/s²)

- Gs Topaq: -205.96 m/s²
- Gs Drop Tests: -307.75 m/s²

Ar (resultant from Siglab)

- Ar Topaq: 205.96 m/s²
- Ar Drop Tests: 307.75 m/s²

Ax, Ay, Az

- Ax Topaq: 134.66 m/s²
- Ax Drop Tests: 195.25 m/s²
- Ay Topaq: -47.68 m/s²
- Ay Drop Tests: -61.49 m/s²
- Az Topaq: 150.99 m/s²
- Az Drop Tests: 213.86 m/s²

Mx, My, Mz

- Mx Topaq: 487 N·m
- Mx Drop Tests: 693.4 N·m
- My Topaq: -281.4 N·m
- My Drop Tests: -400.7 N·m
- Mz Topaq: -487 N·m
- Mz Drop Tests: -693.4 N·m

Sin45 or Cos45

- Sin45 or Cos45 Topaq: 0.7071
- Sin45 or Cos45 Drop Tests: 0.7071

Angular Resultant

- Angular Resultant Topaq: 18391.11 m/s²
- Angular Resultant Drop Tests: 26185.66 m/s²

Diagram

- Graph showing acceleration and angular acceleration plots.
Posterior / Rear Impact

Axes X Y Z

<table>
<thead>
<tr>
<th>Centroid of FE Head model</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.013256</td>
<td>-0.058213</td>
<td>0.076937</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Centroid of Rear Impact Area</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.0073938</td>
<td>-0.11593</td>
<td>-0.0076186</td>
</tr>
</tbody>
</table>

Linear Acceleration

<table>
<thead>
<tr>
<th>Height (feet)</th>
<th>Linear Acceleration (m/s²)</th>
<th>Linear Acceleration (m/s²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1921.029083</td>
<td>2489.46</td>
</tr>
<tr>
<td>3</td>
<td>3085.417938</td>
<td>3243.11</td>
</tr>
<tr>
<td>4</td>
<td>3311.083994</td>
<td>3923.55</td>
</tr>
<tr>
<td>5</td>
<td>3553.386211</td>
<td>4516.85</td>
</tr>
</tbody>
</table>

Angular Acceleration

<table>
<thead>
<tr>
<th>Height (feet)</th>
<th>Angular Acceleration (rad/s²)</th>
<th>Angular Acceleration (rad/s²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1921.029083</td>
<td>2489.46</td>
</tr>
<tr>
<td>3</td>
<td>3085.417938</td>
<td>3243.11</td>
</tr>
<tr>
<td>4</td>
<td>3311.083994</td>
<td>3923.55</td>
</tr>
<tr>
<td>5</td>
<td>3553.386211</td>
<td>4516.85</td>
</tr>
</tbody>
</table>

Pressure from films (Pa)

<table>
<thead>
<tr>
<th>Height (feet)</th>
<th>Pressure from films (Pa)</th>
<th>Pressure from films (Pa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2770000</td>
<td>3900000</td>
</tr>
<tr>
<td>3</td>
<td>3311.083994</td>
<td>29268.14468</td>
</tr>
<tr>
<td>4</td>
<td>3553.386211</td>
<td>29268.14468</td>
</tr>
<tr>
<td>5</td>
<td>3553.386211</td>
<td>29268.14468</td>
</tr>
</tbody>
</table>

Area measured (m²)

<table>
<thead>
<tr>
<th>Height (feet)</th>
<th>Area measured (m²)</th>
<th>Area measured (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.00341</td>
<td>0.00389</td>
</tr>
<tr>
<td>3</td>
<td>0.00341</td>
<td>0.00389</td>
</tr>
<tr>
<td>4</td>
<td>0.00341</td>
<td>0.00389</td>
</tr>
<tr>
<td>5</td>
<td>0.00341</td>
<td>0.00389</td>
</tr>
</tbody>
</table>

Mass of headform (kg)

<table>
<thead>
<tr>
<th>Height (feet)</th>
<th>Mass of headform (kg)</th>
<th>Mass of headform (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4.917</td>
<td>4.917</td>
</tr>
<tr>
<td>3</td>
<td>4.917</td>
<td>4.917</td>
</tr>
<tr>
<td>4</td>
<td>4.917</td>
<td>4.917</td>
</tr>
<tr>
<td>5</td>
<td>4.917</td>
<td>4.917</td>
</tr>
</tbody>
</table>

Iyy (axis out of superior head region)

<table>
<thead>
<tr>
<th>Height (feet)</th>
<th>Iyy (axis out of superior head region)</th>
<th>Iyy (axis out of superior head region)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.0614</td>
<td>0.0614</td>
</tr>
<tr>
<td>3</td>
<td>0.0614</td>
<td>0.0614</td>
</tr>
<tr>
<td>4</td>
<td>0.0614</td>
<td>0.0614</td>
</tr>
<tr>
<td>5</td>
<td>0.0614</td>
<td>0.0614</td>
</tr>
</tbody>
</table>

Max. Acceleration (m/s²)

<table>
<thead>
<tr>
<th>Height (feet)</th>
<th>Max. Acceleration (m/s²)</th>
<th>Max. Acceleration (m/s²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1921.029083</td>
<td>2489.46</td>
</tr>
<tr>
<td>3</td>
<td>3085.417938</td>
<td>3243.11</td>
</tr>
<tr>
<td>4</td>
<td>3311.083994</td>
<td>3923.55</td>
</tr>
<tr>
<td>5</td>
<td>3553.386211</td>
<td>4516.85</td>
</tr>
</tbody>
</table>

Fx, Fy, Fz

<table>
<thead>
<tr>
<th>Height (feet)</th>
<th>Fx</th>
<th>Fy</th>
<th>Fz</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>8907.13</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>3</td>
<td>11167.75</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>4</td>
<td>13967.93</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>5</td>
<td>14989.17</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

Gs m/s²

<table>
<thead>
<tr>
<th>Height (feet)</th>
<th>Gs m/s²</th>
<th>Gs m/s²</th>
<th>Gs m/s²</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ar (resultant from Siglab)

<table>
<thead>
<tr>
<th>Height (feet)</th>
<th>ar (resultant from Siglab)</th>
<th>ar (resultant from Siglab)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>253.85</td>
<td>2489.46</td>
</tr>
<tr>
<td>3</td>
<td>330.71</td>
<td>3243.11</td>
</tr>
<tr>
<td>4</td>
<td>400.09</td>
<td>3923.55</td>
</tr>
<tr>
<td>5</td>
<td>460.59</td>
<td>4516.85</td>
</tr>
</tbody>
</table>

ax, ay, az

<table>
<thead>
<tr>
<th>Height (feet)</th>
<th>ax</th>
<th>ay</th>
<th>az</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>186.80</td>
<td>13.36</td>
<td>-139.28</td>
</tr>
<tr>
<td>3</td>
<td>231.60</td>
<td>12.78</td>
<td>-225.53</td>
</tr>
<tr>
<td>4</td>
<td>289.68</td>
<td>8.26</td>
<td>-225.53</td>
</tr>
<tr>
<td>5</td>
<td>310.85</td>
<td>9.60</td>
<td>-225.53</td>
</tr>
</tbody>
</table>

Mx, My, Mz

<table>
<thead>
<tr>
<th>Height (feet)</th>
<th>Mx</th>
<th>My</th>
<th>Mz</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0</td>
<td>762</td>
<td>-519.7</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>944.2</td>
<td>-644.4</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>944.2</td>
<td>-644.4</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>944.2</td>
<td>-644.4</td>
</tr>
</tbody>
</table>

(alpha)x, (alpha)y, (alpha)z

<table>
<thead>
<tr>
<th>Height (feet)</th>
<th>(alpha)x</th>
<th>(alpha)y</th>
<th>(alpha)z</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0</td>
<td>7119.55</td>
<td>-17480.31</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>8821.88</td>
<td>-21674.64</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>8821.88</td>
<td>-21674.64</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>8821.88</td>
<td>-21674.64</td>
</tr>
</tbody>
</table>

(alpha)resultant

<table>
<thead>
<tr>
<th>Height (feet)</th>
<th>(alpha)resultant</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>18874.56</td>
</tr>
<tr>
<td>3</td>
<td>23401.19</td>
</tr>
<tr>
<td>4</td>
<td>29268.14</td>
</tr>
<tr>
<td>5</td>
<td>31407.38</td>
</tr>
</tbody>
</table>