W M Michigan Technological University

Create the Future Digital Commons @ Michigan Tech

Dissertations, Master's Theses and Master's Dissertations, Master's Theses and Master's
Reports - Open Reports
2014

HIGH PERFORMANCE, LOW COST SUBSPACE DECOMPOSITION
AND POLYNOMIAL ROOTING FOR REAL TIME DIRECTION OF
ARRIVAL ESTIMATION: ANALYSIS AND IMPLEMENTATION

Mrudula V. Athi
Michigan Technological University

Follow this and additional works at: https://digitalcommons.mtu.edu/etds

b Part of the Electrical and Computer Engineering Commons, and the Mathematics Commons
Copyright 2014 Mrudula V. Athi

Recommended Citation

Athi, Mrudula V., "HIGH PERFORMANCE, LOW COST SUBSPACE DECOMPOSITION AND POLYNOMIAL
ROOTING FOR REAL TIME DIRECTION OF ARRIVAL ESTIMATION: ANALYSIS AND IMPLEMENTATION",
Master's Thesis, Michigan Technological University, 2014.

https://doi.org/10.37099/mtu.dc.etds/823

Follow this and additional works at: https://digitalcommons.mtu.edu/etds

b Part of the Electrical and Computer Engineering Commons, and the Mathematics Commons

http://www.mtu.edu/
http://www.mtu.edu/
https://digitalcommons.mtu.edu/
https://digitalcommons.mtu.edu/etds
https://digitalcommons.mtu.edu/etds
https://digitalcommons.mtu.edu/etd
https://digitalcommons.mtu.edu/etd
https://digitalcommons.mtu.edu/etds?utm_source=digitalcommons.mtu.edu%2Fetds%2F823&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.mtu.edu%2Fetds%2F823&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=digitalcommons.mtu.edu%2Fetds%2F823&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.37099/mtu.dc.etds/823
https://digitalcommons.mtu.edu/etds?utm_source=digitalcommons.mtu.edu%2Fetds%2F823&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.mtu.edu%2Fetds%2F823&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=digitalcommons.mtu.edu%2Fetds%2F823&utm_medium=PDF&utm_campaign=PDFCoverPages

HIGH PERFORMANCE, LOW COST SUBSPACE DECOMPOSITION AND
POLYNOMIAL ROOTING FOR REAL TIME DIRECTION OF ARRIVAL

ESTIMATION: ANALYSIS AND IMPLEMENTATION

By

Mrudula V. Athi

A THESIS
Submitted in partial fulfillment of the requirements for the degree of
MASTER OF SCIENCE

In Electrical Engineering

MICHIGAN TECHNOLOGICAL UNIVERSITY

2014

© 2014 Mrudula V. Athi

This thesis has been approved in partial fulfillment of the requirements for the Degree of

MASTER OF SCIENCE In Electrical Engineering.

Department of Electrical and Computer Engineering

Thesis Advisor:
Committee Member:
Committee Member:

Department Chair:

Dr. Seyed A. (Reza) Zekavat
Dr. Timothy C. Havens
Dr. Allan Struthers

Dr. Daniel R. Fuhrmann

To amma appa

for unwavering belief in my capabilities that has been my biggest source of inspiration and

for their constant support.

Contents

Listof Figures e xiii
Listof Tables Xvil
Acknowledgments Xix
Abstract xxi
1 Introduction 1
1.1 Wireless Local Positioning System (WLPS) 3
1.1.1 Localization 3

1.1.2 WLPS - working and design 3

1.2 Antenna Atrayo e e e 7

1.3 Direction of arrival (DOA) estimation methods 9
1.3.1 Delay and sum (DAS) 9

.32 MUSIC 11

1.3.3 Root-MUSIC 13

1.4 Implementation of real-time signal processing algorithms 17
1.4.1 Real-time digital signal processing (DSP) system 17

vii

1.4.2 Real-time constraints
1.43 DSPhardware for WLPSo oL
1.5 Thesis Contribution Lo
1.5.1 Fast converging SVD for real-time signal processing and its FPGA
implementationo
1.5.2 Real-time root-MUSIC DOA estimation via a parallel polynomial
rootingmethod L L

1.6 Organizationo e

Fast converging SVD for real-time signal processing and its FPGA
implementation
2.1 Introduction
2.2 Proposed Method
2.2.1 Traditional Method- Jacobi SVD algorithm and BLV Array
2.2.2 Proposed algorithm for faster convergence
2.3 Design and Implementation
2.3.1 Proposed System Design
2.3.1.1 Controller and Big element finder
23.12 Coremodules.
2.3.2 Implementationon FPGA
2.3.2.1 Bigelementfinder

23.22 Diagonal PE oo

2.3.2.3 Columnand Rowrotation 42

2.4 Simulations and Discussionso 42
24.1 SimulationResults oL 42
2.4.2 ImplementationResults 45
2.4.3 Latency and Throughput 46
2.5 Conclusion e 50
Details of FPGA implementation for proposed SVD 51
3.1 System Generator designflow 0L, 52
32 FPGAModules 54
3.2.1 Findingthe N/2bigelements. 54
3.2.2 Submatrix selectoro Lo 61
3.2.3 Parameter generatoro oo 64

324 2 x 2 matrix multiplication for row and column submatrix
multiplication Lo 68

3.3 Conclusion e 71

Real-time root-MUSIC DOA estimation via a parallel polynomial rooting

method 73
4.1 Introduction 74
42 Background 77

4.2.1 Global geometry of Newtonmap 77

X

4.3 Complex dynamics of root-MUSIC polynomial and proposed polynomial

rooting technique 82
4.3.1 Symmetry of polynomial roots across unitcircle 85
432 Accessestoinfinity 86
4.3.3 Proposed set of initial points 87
434 Proposedmethod L L. 88
4.4 Simulation and Complexity analysis 90
45 Conclusion 93
S Conclusion 95
5.1 Conclusion 95
5.2 FutureWork 98
5.2.1 Inthedirectionof SVD oL 98
5.2.1.1 Improvements to the proposed design 98
5.2.1.2 DevelopinganlIP 0. 99
5.2.1.3 SVD using 4-Dimensional Given Rotation 100
5.2.2 In the direction of polynomial rooting 101
5.2.2.1 Complex dynamics of Newton map of root-MUSIC
polynomial Lo 101
5.2.2.2 Implementation andothers 102
References 103

A Timing diagrams for proposed design and BLV array

X1

Xii

List of Figures

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

1.10

1.11

2.1

2.2

2.3

Wireless Local Positioning System
WLPS signaling scheme
WLPS Structureo

DBS Structure e e

Roots of root-MUSIC polynomial
Root-MUSIC
Real-time DSPsystem

Root-MUSIC system e

BLV Array for N=8. Data transmission is represented as solid arrows and
rotation parameters transmission with unfilled arrows
System level design for the proposed algorithm
Finite State Machine for finding the biggest element in each row in a matrix

of size N e

24

Number of sweeps vs. matrix size 44

2.5 Convergence of matrix depicted as reduction in off diagonal norm vs
iterationnumber Lo 44
2.6 Timing diagram for the proposed SVD method 49
3.1 Design flow for System Generator development 52
3.2 State machine for finding the N/2 big entries of N x N streaming matrix
under row column exclusivity condition L. 56
3.3 State machine for zeroing out the diagonal entries of a N X N streaming
MALTIX . . o o e e e e e e 56
3.4 Flow chart for finding the big element and its row column indices 57
3.5 State machine for finding the biggest element from the channel of a
streaming matriX i e e e e e e e e e e e 57
3.6 State machine for zeroing out the row and column of a N X N streaming
matrix corresponding to the bigelement 58
3.7 HLD diagram for the FPGA module to find 4 big elements from a 8 x 8
streaming matriX e e e 59
3.8 Timing diagram for the FPGA module for finding 4 big elements from a
8 x 8 streaming matrixo 60
3.9 An example of extracting a 2 X 2 submatrix corresponding to indices 1 and
jfroma8x8matrix 61
3.10 FPGA module for selecting a submatrix 62

X1V

3.11

3.12

3.13

3.14

3.15

4.1

4.2

4.3

4.4

4.5

Timing diagram for the FPGA module for extracting a 2 X 2 submatrix from
a8 x 8 streaming matrix e 63
FPGA module for parameter generation 66
Timing diagram for the FPGA module for generating left and right rotation
PArameters e e e e e e e e e e e 67
Timing diagram for the FPGA module for 2 x 2 submatrix multiplication . . 69
FPGA module for 2 x 2 matrix multiplication used for row and column

submatrix multiplications 70

Anexample NewtonMap 78

Newton map of RM polynomial of degree 6 ie. a sensor array of 4 elements

at various channel conditionso 83
(@) SNR=-10db 83
(b) SNR=10db 83
(¢c) SNR=Odbandpdb=-5db 83
(d SNR=infdb 83
Newton map of RM polynomial of various degrees at SNR=0db 84
(@) Arraysize=4 84
(b) Arraysize=6 84
(c) Arraysize=8 84
Computations vs RMSE in DOA for AWGN channel 92
Computations vs RMSE in DOA for Rician channel 93

XV

5.1

5.2

A.l

A2

Root-MUSIC system with proposed algorithms 96
SVD using 4 dimensional Given’s rotation 100
Detailed timing diagrams for BL.V array 124
Detailed timing diagrams for proposed design and BLV array 125

XVvi

List of Tables

1.1

1.2

2.1

22

3.1

3.2

4.1

Comparison of DOA estimation techniques 17
Comparison of various DSP hardwares 18
FPGA Implementation of BLV and Proposed array for 4 x 4 matrix 46
FPGA Implementation of BLV and Proposed array for 8 x 8 matrix 46
Comparision of CORDIC in word serial and parallel configurations 65
Occupancy and frequency of operation for row multiplication 68

Comparison of computational complexity of various polynomial rooting

method e 91

Xvil

Acknowledgments

I would like to thank Dr. Seyed A. Zekavat, who guided from the very first day of my
Masters and gave valuable inputs for the progress of my thesis. I thank him for his constant
attention to detail, technical guidance in preparing papers and helping me find a direction

for my resaerch.

I thank my committee - Dr. Dr. Timothy C. Havens and Dr. Allan Struthers, who took time

out of their busy schedule to evaluate and make the thesis better.

I would like to further thank Dr.Allan Struthers for his valuable inputs to mathematical
aspects of my thesis. His class, which I took in Fall 2013 was helpful in developing portion

of my thesis.

I’m particularly thankful to Shankar Giri Venkata Giri, fellow student who helped
me understand various aspects of FPGA implementation and hardware design. Many
discussions that I had with him over the course of two years have helped me scrutinize

my ideas. I am thankful for his patience and constant support as a friend.

I would like to thank Andrew Boettcher, fellow classmate with whom I presented a poster

for his help in understanding few complex mathematical concepts.

Xix

Asif Al-Rasheed ,Amir Torabi and Mohsen Jamalabdollahi fellow researchers and friends

provided moral support and encouragement.

Special thanks go out to Chuck and Mark, for instant and proactive help with any issues in

the lab. They were awesome and immensely approachable.

Finally, I would like to thank my parents, my sister and Swaraj, who were an endless source

of encouragement and support.

XX

Abstract

This thesis develops high performance real-time signal processing modules for direction
of arrival (DOA) estimation for localization systems. It proposes highly parallel
algorithms for performing subspace decomposition and polynomial rooting, which are
otherwise traditionally implemented using sequential algorithms. The proposed algorithms
address the emerging need for real-time localization for a wide range of applications.
As the antenna array size increases, the complexity of signal processing algorithms
increases, making it increasingly difficult to satisfy the real-time constraints. This
thesis addresses real-time implementation by proposing parallel algorithms, that maintain
considerable improvement over traditional algorithms, especially for systems with larger
number of antenna array elements. Singular value decomposition (SVD) and polynomial
rooting are two computationally complex steps and act as the bottleneck to achieving
real-time performance. The proposed algorithms are suitable for implementation on field
programmable gated arrays (FPGAs), single instruction multiple data (SIMD) hardware
or application specific integrated chips (ASICs), which offer large number of processing
elements that can be exploited for parallel processing. The designs proposed in this thesis

are modular, easily expandable and easy to implement.

Firstly, this thesis proposes a fast converging SVD algorithm. The proposed method

reduces the number of iterations it takes to converge to correct singular values, thus

Xxi

achieving closer to real-time performance. A general algorithm and a modular system
design are provided making it easy for designers to replicate and extend the design to
larger matrix sizes. Moreover, the method is highly parallel, which can be exploited in
various hardware platforms mentioned earlier. A fixed point implementation of proposed
SVD algorithm is presented. The FPGA design is pipelined to the maximum extent to
increase the maximum achievable frequency of operation. The system was developed with
the objective of achieving high throughput. Various modern cores available in FPGAs were

used to maximize the performance and details of these modules are presented in detail.

Finally, a parallel polynomial rooting technique based on Newton’s method applicable
exclusively to root-MUSIC polynomials is proposed. Unique characteristics of
root-MUSIC polynomial’s complex dynamics were exploited to derive this polynomial
rooting method. The technique exhibits parallelism and converges to the desired root
within fixed number of iterations, making this suitable for polynomial rooting of large
degree polynomials. We believe this is the first time that complex dynamics of root-MUSIC

polynomial were analyzed to propose an algorithm.

In all, the thesis addresses two major bottlenecks in a direction of arrival estimation system,

by providing simple, high throughput, parallel algorithms .

Xxii

Chapter 1

Introduction

Localization is a key component of various modern day applications such as wireless
sensor networks (WSNs) [1], wireless body area networks (WBANSs) [2], localization
in acoustic arrays [3], network based localization [4, 5], localization in space based
solar power generation [6] etc. These applications have a wide range of impact ranging
from user experience improvement to effective safety and monitoring and exploring new
frontiers of science and technology. Implementation of localization techniques require
fairly complex signal processing algorithms. The complexity of these signal processing
algorithms is magnified due to the fact that most of its applications demand real-time
output. In addition, many localization applications are in mobile systems which may
have to limited processing power and battery life. Thus, development of low complexity,

and high performance localization algorithms are vital to its emerging applications. New

algorithms amenable to parallelization, choice of platform suitable for such algorithms,
efficient implementation and design on selected hardware are the key to developing a good

real-time signal processing module.

This thesis was motivated by the need for real-time signal processing algorithms for
wireless local positioning system (WLPS) [7] being developed at Michigan Technological
University. WLPS is an active positioning system based on direct sequence-code division
multiple access (DS-CDMA) scheme for indoor and urban areas. More specifically,
this thesis addresses the need for real-time signal processing modules for direction of

arrival(DOA) techniques.

This chapter offers an overview of the WLPS and introduces various components of the
system. Different direction of arrival (DOA) techniques are discussed and root-MUSIC
system is described in detail. Design and implementation aspects of a generic real-time
signal processing system are introduced. Finally, we introduce the contributions of this
thesis for the DOA root-MUSIC algorithm for implementation on WLPS signal processing

platforms.

1.1 Wireless Local Positioning System (WLPS)

1.1.1 Localization

Positioning systems can be categorized as global positioning system (GPS) and local
positioning system (LPS). GPS is a widely known precise satellite based positioning
system. However, it does not perform well in indoor areas or urban areas due to reflections.
Therefore, it is usually integrated with other local positioning systems such as LPS. LPS
can be broadly categorized into two types: self positioning, where a mobile device finds
its own instantaneous location with resepct to a fixed point, and remote positioning, where
a mobile device finds the instantaneous position of other objects with respect to its own
position. WLPS that is a system that is being developed at the Wireless Lab of Michigan

Tech, is an active remote LPS that allows relative positioning of mobiles via mobiles.

1.1.2 WLPS - working and design

WLPS proposed in [8], is a remote active localization system that incorporates DS-CDMA
signaling to localize mobile nodes. WLPS uses direction of arrival (DOA) and round trip
time of arrival (TOA) of the signal from an active node to estimate the position of the

node. Round trip TOA avoids a need to time synchronization that is a key component

TRX

Figure 1.1: Wireless Local Positioning System

ID Request (IDR) Signal
transmitted by DBS ID transmitted by the TRX

\

JL L

Tpss

Time of Arrival Duty Cycle = 7/ IRT

ID Request Repetition Time (IRT)

Figure 1.2: WLPS signaling scheme

of many TOA estimation algorithms. This reduces the complexity of this system that is
vital for mobile applications. WLPS consists of a dynamic base station (DBS) in each of
the monitoring mobile and a transponder (TRX) in target mobile as show in Figure 1.1.
Each DBS is assigned a unique identification (ID). When a DBS trasnmits an ID request
signal (IDR) to all the targets in its neighbourhood, the TRX responds with their IDs. On
recognition of the target by DBS, it positions and tracks the target. Figure 1.2 represents

the communication scheme described above.

The performance of WLPS system can be degraded due to inter-TRX-interference (IXI) at
the DBS as well as inter-DBS-interference (IDI) at TRX. Multiple access (MA) schemes

such as spatial division MA (SDMA) [9] and DS-CDMA [10] are employed to reduce

Transmitter

Omni-directional ID Request |
«—— Modulator [« MA scheme 1
Antenna of TRX ; (IDR) signal | |
Receiver
Directionof | |
Antenna array of DBS | retl:\g:fer Arrival (P;z:;?;i;
(DOA) |
Time of _i|_~
» Arrival
(TOA)

Figure 1.3: WLPS Structure

the interference effects. SDMA via beamforming (BF) and DS-CDMA are employed
at the DBA. Therefore, TRX is simple and needs an omnidirectional antenna, a simple
demodulator and a DS-CDMA transmitter. DBS as shown in Figure 1.3 has a complex
structure. The receiver consists of an antenna array for SDMA, a MA receiver and a
diversity combiner. The baseband signal is used for TOA and DOA estimation, which
in turn is used for localization and tracking. Figure 1.4 represents the DBS structure in
detail. RF front-end, analog to digital converter (ADC), digital down converter (DDC),
phase-amplitude compensation with synchronisation and frequency tracking form the MA
receiver. The baseband signal undergoes beamforming and is then used for channel
estimation and TOA computation. DOA is obtained from individual channels before

beamforming. The theoretical analysis of the system was carried in [7, 8] and various

Phase, amplitude
com pensation

Y’ RF frontend H™ ADC
Phase, amplitude
Y, RF frontend M ADC Cum'pem};m

Y» RF frontend [+ ADC (| Buffer iwf DDC P conpension

BF | _gu! Equilizer (| Detection

A

Phase, amplitude 4.4,

I
-nizati on Channel
Frequency Ll E stimation
tracking v" “
LRDOA L TOA
HR. DOA +
< Transmitter Position Estimation

Figure 1.4: DBS Structure

aspects of receiver implementation were dealt in [11, 12]. The optimum beamforming for
WLPS were explored in [13, 14] and suitable TOA estimation was proposed in [15]. A
novel DOA estimation technique was proposed in [16] and ways to fuse DOA and TOA
information was proposed in [17]. In this thesis, we dwell further into DOA estimation
techniques by proposing high performance, low cost real-time signal processing algorithms

with emphasis on implementation.

1.2 Antenna Array

An antenna array defined as a set of two or more antennas, is an important component
of DBS receiver. Antenna arrays serve various purposes such as increasing overall gain,
providing spatial diversity, optimizing signal to interference plus noise ratio (SINR) and
DOA estimation [9]. Antenna arrays of different geometries, spacing and dimensions are
used in various applications. For the purpose of WLPS, a linear array of N equally spaced
antenna elements is used. In WLPS, antenna array is used for beamforming and DOA
estimation. Figure 1.5 shows an antenna array of patch antennas developed for WLPS at

the Wireless Positioning Lab of Michigan Tech.

Let x1,...,xy be the signals received by antenna elements 1 to N. The output from antenna
elements are multiplied in weights wy,...,wy and summed together resulting in a signal
N
y=Y wux, =W"X (1.1)
n=1

Let A be the wavelength, d the distance of separation and 6pps be the DOA, then array

vector is given as

7j27TdSiH(9D0A) 7j27T(N71)dSin(9DOA)

V=I[l,ee % ,...e P] (1.2)

V wy (1)
x1(n) é
w, (1)
x5 (n) é

\./

V wy@m .
v () é @ y(n) = Z XnWn

n=1

Figure 1.5: Antenna Array
and received signal is

N i i
—j2m(n—1)dsin(6pp4)
AF — 2 wpe 4 -

n=1

Array antennas as stated before are required for DOA estimation and beamforming. The
antenna array beam width decreases and beamforming resolution increases with number
of antenna array elements. With increase in applications using higher frequencies and
increasing popularity of patch antennas, the antenna size is decreasing. This has lead to
usage of larger number of antenna arrays for mobile applications, which in turn increase

the complexity of signal processing algorithms being used.

1.3 Direction of arrival (DOA) estimation methods

Various DOA estimation techniques have been proposed and implemented [9]. Here, we
introduce only those that are important for the thesis namely : Delay and sum (DAS),
Multiple signal classification (MUSIC) and root-MUSIC. Each of these methods will be

introduced here and a comparison of these will be provided.

1.3.1 Delay and sum (DAS)

DAS is the simplest of all DOA estimation methods in terms of complexity and
implementation. The derivation and signal model of DAS is briefed here [18]. It involves
applying a set of complex weights W = [wy,...,wy]| consistent with the array vector in
(1.2) on N incoming signals, summing them and measuring the output power. The weights
delay the signal by changing its phase. Weight applied to the i antenna corresponds to

2m(i—1)dsin(0)
A

wi(0) = e/%(®) where ¢;(6) = (1.4)

In (1.4) 0 is the phase at which the weight is evaluated, d is the separation between elements

and A is wavelength as stated before. The input signal at each antenna i is given as

r; :Re[Aej(wf+90+¢i(6D0A))] (1.5)

where A is the amplitude of received signal, @ = 27 fj is the angular frequency for center

frequency fo and ¢;(6ppa) is the relative phase delay of the signal due to Opps which is

given as
—2m(i—1)dsin(0
9i(6poa) = ()?L (60s) (1.6)
When the weights are applied to received signal and summed
N
R(6,6p0a) =Y riwi(6)
i=1
N
ZAej(ﬂ)l+90)ej¢i(900A)ej¢i(9) (1.7)

=1

N
ZAej(wH‘GO)ej¢’i(9D0A)+¢i(9)
i=1

In (1.7) r; is the received signal as given in (1.5), ¢;(0) is given in (1.6), Opp4 is the angle
of DOA, 6 is the phase introduced due to distance between transmitter and receiver and

all other parameters are as defined previously.
The angle 6 is varied from 6 € [—907,90°] and the received power is measured in steps of

10

AB at 6, wherel=1,....LandL=1+ %. The received power corresponds to
P(8,6pos) = f%ue(e,, 8pon)|* (1.8)
When 6; = Opps, power maximizes. Thus estimated DOA éDOA is given as
Opos = arg maxP(6,6poa) (1.9)

DAS performs well only at high SNR conditions and is very sensitive to calibration and
multipath. The resolution depends on L (introduced in (1.8)), therefore increasing the

computational cost for very high degree accuracy.

1.3.2 MUSIC

Given the condition that number of antennas are more than the number of sources and an
estimate of number of sources is available, one can use a more complex DOA estimation
technique known as multiple signal classification (MUSIC) [19]. For an array of N sensors

and M sources (M < N), the received sensor signal is

y(t) =V xx(t) +n(t) (1.10)

11

where V = [V(6y),....,V(6y)] is the steering matrix, x(¢) = [x1(¢),....,xp(t)]T is the
transmitted signal and n(t) = [n(¢),....,ny(¢)]” is the additive noise. The covariance matrix

and its eigen decomposition is given as

R=E(xx) = EAEP + E A EH (1.11)

E; and E,, are the signal and noise subspaces respectively. E(.) is the expectation operation.

Ay = diag(?tl,....,QLM) and A, = GZI(NfM)x(NfM) (1.12)

are the signal and noise eigenvalue vectors respectively, where 62 is the noise variance and

I represents an identity matrix.

The MUSIC spectrum corresponds to

1

S9) = Viteyav ey’

A=E,E; (1.13)

0 is the angle at which the spectrum is evaluated and the range and resolution of the MUSIC
depends on desired precision of DOA estimation. V is the steering vector as given in (1.10)
and E, is the noise subpaces as given in (1.12). Figure 1.6 depicts the MUSIC spectrum
for a Oppos = 30°. The DOA is found by searching the spectrum for the peak. The peak
corresponds to the Oppas. Figure 1.7 represents the flow of operations done for MUSIC.

MUSIC is known to offer good results at even low SNR and multipath conditions, but is

12

Fower Spacial Spectrum (dB)

25 26 27 28 29 an) 3z 33 34 35
True DOA (degree)

Figure 1.6: MUSIC Spectrum

highly sensitive to calibration. As the number of snapshots increases the performance of
MUSIC asymptotically approaches the lower Cramer-Rao bouns (CRLB) [20]. Variations

of MUSIC are available in huge numbers. [21, 22] describe few of these variations.

1.3.3 Root-MUSIC

Spectrum search step in MUSIC is an expensive operation. [23] proposes a new method

for finding the DOA, applicable exclusively to uniform linear array (ULA). For a ULA, the

13

Observed signal X

\Z

Construct the signal covariance matrix Ry

\Z

Perform the eigenvalue decomposition

N\

Extract the noise subspace Vy

\Z

Calculate the spatial spectrum P

\Z

Obtain DOA from spectral peak

Figure 1.7: MUSIC

h element of steering vector, V(0) corresponds to

Vo (0) = e 2m(Dsin(®) 1 N

(1.14)

where d is the separation between the elements of antenna array and A is the wavelength

of the signal. The inverse of MUSIC spectrum in (1.13) can be simplified using (1.14) as

$71()

N N @) o
Z Z —j2mm(%) sin()Amne_/27rn(z)s1n(9)

Z aleaﬂnl(%)sin(@)

14

(1.15)

25 T T T T T T T T T
E[:-:] 1 OI 1 1 E 1 1 1
o E o
] s | RERnCR EEEEE E PRt SR EER EEEPRTL SEPRCES CERERRE SRLREE -
I NOSRROE{HRROS SN AR NS SURPIS ROMNES RSOSSNSO
5 s s
1E] ']
= ' '
2 : :
= .
= 1 ' &
= i
A NSSRN S ISV O A1 U SN SRS SRS SO (1
A | ' ICI | | ' T)I

60 -45 -30 -15 0 15 30 45 g0 75
DOA (degree) Corresponding to Phase of Roots

Figure 1.8: Roots of root-MUSIC polynomial

where d, A and 6 are parameters as explained in (1.14) and (1.13) respectively. In addition,
a; = Y,u_n—iAmn is the sum of entries of A along the [diagonal. A polynomial can be

constructed as

D)= Y @z (1.16)

where a; is as explained in (1.15). It is well known that roots on the unit circle of a
polynomial D(z) are used to extract the DOA of the signal. Figure 1.8 depicts the roots of
D(z) with Opga = 30°. As it is observed, the root on unit circle is the one corresponding to

Opoa. Figure 1.9 depicts the flow of operations for obtaining DOA using root-MUSIC. It is

15

Construct the signal covariance matrix Ry

N2

Perform the eigenvalue decomposition

N7

Extract the noise subspace V,

N7

Calculate the coefficient of D(z)

N7

Find all the roots of D(z)

N2

Find the root closestto the unit circle

N7

Obtain DOA from above root

Figure 1.9: Root-MUSIC

known that root-MUSIC performs better than MUSIC [24]. The limitation of root-MUSIC
is the fact that it can be applied in its original form only for ULA. This issue has been

addressed in various works such as [25]-[26].

Table 1.1 summarizes the advantages and shortcomings of each of the methods described
and few other methods popularly know. As observed from this table, root-MUSIC is a very
high resolution technique, however its complexity is high as well. High complexity may
avoid real time implementation. Moreover, complexity leads to high power consumption.

This thesis proposes algorithms that address the complexity issue of root-MUSIC.

16

Table 1.1
Comparison of DOA estimation techniques

Sensitivity | Sensitivity Sensitivity | Resolution | Complexity
to SNR | to calibration | to multipath
DAS[9] High Moderate High Low Low
Maximum[27] | Moderate Moderate Moderate Moderate | Moderate
Entropy
MUSIC[19] Low High Low High High
root-MUSIS[23] Lower High Lower Very high High
ESPRIT[28] Low Low Low High Very High
FUSION[16] Moderate Moderate Moderate | Very High | Moderate

1.4 Implementation of real-time signal processing

algorithms

1.4.1 Real-time digital signal processing (DSP) system

A generic real-time DSP system can be represented as shown in Figure 1.10 [29]. The
output of a sensor x'(¢) is amplified by the amplifier and the amplified signal x(¢) is passed
through an anti-aliasing filter to limit the bandwidth of the signal, so that it satisfies the
sampling theorem. The analog-to-digital converter (ADC) converts the analog signal x(t)
into digital signal x(n), which is then ready to be processed by a DSP hardware. The reverse
operations namely digital-to-analog (DAC), reconstruction filtering and amplification are
applied once the DSP hardware produces the processed output signals. There are various

choices for DSP hardware and the choice depends on various factors such as required

17

x'(t) x(t) | Antialiasing x(n) = x(nT)

. — ADC
filter

Amplifier

DSP
Hardware
Amplifier
< | Reco?iT;c;ctlon . DAC .
y(®) '(t) y(n)

Figure 1.10: Real-time DSP system

Table 1.2

Comparison of various DSP hardwares

ASIC | FPGA | Microproces- DSP DSP processors
sors Microco- | Processors with HW
ntrollers Processors accelerators
Flexibility | None | Limited High High Medium
Design time | Long | Medium Short Short Short
Power Low Low Medium Low Low
Consumption -medium -high -medium -medium
Performance | High High Low- Medium- High
-medium -high
Development | High | Medium Low Low Low
cost
Production | Low Low Medium Low Medium
cost -medium -high -medium

performance, cost, development time etc. Various DSP hardwares and their comparison

is replicated here from [29] in Table 1.2 for the convenience of the reader.

18

1.4.2 Real-time constraints

Real-time computing is a concept applicable to any hardware or software system. A system
is called "real-time" if it satisfies certain "real-time constraint”. A real-time constraint
implies that the system guarantees a response within a time frame. A real-time system
can be classified as hard if missing a deadline implies total failure of the system and soft
if missing a deadline merely causes the degradation of performance and not a complete

failure.

A DSP system is said to be real-time if the signal processing time 7, is less than the
sampling period 7. This implies that a processing task needs to be completed before a

new sample comes in. Considering #;o as the overhead time for I/O operations then

ty+10<T (1.17)

Therefore, the processing speed determines the maximum rate at which signal can be
sampled. On the other hand, we can use faster DSP hardware to keep up with the desired
sampling rate. Faster DSP hardware alone may not be enough to keep up with the sampling
speed. Combination of simplified DSP algorithms, optimized system design or program
and parallel processing needs to be adopted to achieve a given performance requirement.

It is the duty of the system designer/architect to maintain a balance between cost and

19

performance.

1.4.3 DSP hardware for WLPS

Field programmable gated arrays (FPGA) in the past were used as co-processor to digital
signal processors in DSP systems. With recent improvements in FPGA capabilities, FPGAs
are being considered as the main processor rather than a co-processor. We choose to

implement the DSP algorithms of WLPS system on FPGA due to following reasons :

1. Flexibility of design : WLPS is still in its development stages and we expect various
changes to the individual modules of the system. Usually, the DSP algorithms
go through multiple revisions. Programmability of FPGAs enables revisions with
minimal cost. Once the system design is finalized and the migration of design to
application specific integrated circuits (ASICs) will be required, FPGA design can

be adopted with little change.

2. Parallel architecture : Real-time constraints along with the requirement for
high throughput transmission in WLPS necessitates highly parallel DSP algorithms.
FPGA is a logical choice of hardware when planning to implement a highly parallel
design. Other hardware such as digital signal processors and microprocessors have
very little or no parallel processing elements that can be used for implementing our

algorithms.

20

3. Accommodating other functionalities: WLPS hosts control logic apart from signal
processing logic. Traditionally, the control task is delegated to a co-processor
or external controller. But with large amount of processing elements available
on FPGA, we can accommodate both control and DSP logic. Moreover, in
critical applications such as security, surveillance, rescue etc, a considerable portion
of processing elements needs to be dedicated to avoiding failures of system.
Accommodating all the processing on single chip leads to compactness and faster
inter-process communication, both of which are required in mobile applications
where WLPS will be used. Moreover, FPGAs have wide variety of high speed 1/Os

which can be used for connecting to the RF frontend and other units on the system.

1.5 Thesis Contribution

Root-MUSIC was chosen as DOA estimation technique because it offers a better
performance compared to MUSIC itself with reduced complexity. Figure 1.11 represents
a conventional DOA system. Computationally intensive modules in a root-MUSIC system
are subspace decomposition and polynomial rooting. These modules could possibly be the
bottlenecks of the system in meeting real-time constraints. The subspace decomposition

can be done either by performing Eigen value decomposition (EVD) of covariance matrix

21

or Singular value decomposition (SVD) of the data matrix. Let

A=UxvT (1.18)

be the SVD of A . Here, U and V are the sigular vectors and X is a diagonal matrix of

singular values . Then

ATA=vxTyTyzy? —yxlyy? (1.19)

Y'yisa diagonal matrix with Gl-z entries. Therefore, o; are the eigenvalues of ATA and V
are the eigenvectors. Thus, we can safely say that either of the decompositions are the same.
We choose to use SVD because matrix multiplication for obtaining covariance matrix can
be avoided. Moreover, noise eigenvectors loose precision when matrix multiplication is
accomplished in fixed point designs. The first contribution of this paper is the development
of a SVD algorithm suitable for real-time signal processing. The second contribution is
that we propose a highly parallel polynomial rooting scheme. These contributions together

leas to a low cost, high performance system for DOA estimation.

22

1 L - -
21 Data matrix . Subspace . Noise _ Computlng_the
RF frontend formation »| decompose > subspace > polynomial
-tion (SVD) Extraction coefficients
N
3| Polynomial - Finding the DOA
. > root closest > .
rooting oo calculation
to unit circle

Figure 1.11: Root-MUSIC system

1.5.1 Fast converging SVD for real-time signal processing and its

FPGA implementation

Traditionally, SVD is sequential process as implemented in LAPACK and sequential
machines [30]. Sequential algorithms have been driving designers away from
implementing real-time DOA systems. When digital signal processors are the chosen DSP
hardware, these sequential SVD algorithms can be used. For small matrix sizes, digital
signal processors meet real-time constraints, but for larger matrix sizes meeting real-time
constraints without any parallel processing is not possible. This has lead us to look into

parallel algorithms for SVD.

Parallel algorithms for SVD have already been proposed in the literature [31]. These
algorithms are suitable for implementation in platforms such as FPGA and ASICs, where
there is enough parallelism to exploit. FPGA implementations of these SVD methods

have been presented [32] in the past. All of these implementations haven’t addressed

23

one crucial issue of number of iterations it takes for the matrix to converge to correct
singular values. Reducing the number of iterations to converge, can help the DSP system
to meet the real-time constraints for larger matrices as well. A new approach for reducing
the number of iterations for larger matrix size is proposed in this thesis. Although a
large number of applications require SVD, there are no commercial off-the-shelf (COTS)
intellectual property (IP) cores. Moreover, the research articles present SVD techniques
which are difficult to replicate and often not well documented. This thesis provides a
detailed description of SVD design with improved performance, which makes it easier for
designers to replicate and make further changes. Modularity and extendibility can easily
lead to development of IP cores. Although the proposed algorithm can be adopted for any
DSP hardware, this thesis proposes path ways to exploit special functional units in FPGA

to maximize performance.

1.5.2 Real-time root-MUSIC DOA estimation via a parallel

polynomial rooting method

Polynomial rooting has been a subject of study for mathematicians for over centuries
now. Finding all roots of a complex polynomial with low complexity, especially of
degree greater than four is a subject of ongoing research. Many methods of varying
orders of complexity have been proposed in the literature [33]-[34] but implementation

of polynomial rooting on FPGA is rare if ever discussed. Polynomial rooting used in

24

LAPACK and implementations on sequential machines are based on companion matrix
techniques [35]. Polynomial rooting using eigenvalue decomposition of companion matrix
is inherently sequential and so are most of its variations. Implementation of these sequential
algorithms on even high speed DSP hardwares cannot guarantee that the system is capable
of meeting real-time constraints. Meeting the real-time constraints becomes increasingly
difficult with increasing polynomial degree and for systems working at very high sampling
rates. Few proposed polynomial rooting techniques [36, 37] are capable of parallelization,

but these methods are either too complex to implement or are computationally intensive.

Motivated by these shortcoming in existing techniques and also propelled by findings of
some unique geometry in Newton map of root-MUSIC polynomial, a new method of
polynomial rooting specific to root-MUSIC was proposed in this thesis. There is a need for
IP cores for generic polynomial rooting. Although the proposed method applies uniquely
to root-MUSIC polynomial, it can be developed into an IP core because many existing
and emerging applciaitons require DOA estimation for localization. Modularity, ease of
implementation, extremely simple algorithm, extendability are main advantages of the

proposed method.

25

1.6 Organization

This thesis is organized as follows. Chapter 2 describes the fast converging SVD method,
its algorithm and a system level design. In addition, simulation results depicting the
improvement in convergence are presented. Chapter 3 describes the implementation of
the proposed SVD method on FPGAs. Details of each module is given, along with
resource consumption and timing diagrams. The overall resource consumption and
maximum achievable frequency of the SVD system are presented along with latency and
throughput calculations. Chapter 4 presents the proposed polynomial rooting technique
for root-MUSIC. The complex dynamics of the Newton map of the root-MUSIC is
presented and findings regarding the unique characteristics of root-MUSIC polynomials
are presented and proved. The proposed method is compared with existing polynomial
rooting techniques. Finally, Chapter 5 concludes and lists possible directions for future

work.

26

Chapter 2

Fast converging SVD for real-time signal
processing and its FPGA

implementation

This chapter introduces a novel fast converging Jacobi like SVD algorithm applicable
to real-time signal processing of massive sensor arrays. The proposed algorithm highly
increases the SVD convergence rate for larger matrices when compared to traditional
Jacobi based methods. The parallel nature of the Jacobi methods is key to real time
implementation intended for FPGAs. A highly modular system design which retains the
inherent parallelism of the Jacobi based systolic arrays is proposed. The system was

implemented for 4 x 4 and 8 x 8 matrix sizes on Virtex-6 FPGA. The proposed design was

27

compared with the traditional design in terms of FPGA resource consumption, maximum

achievable frequency and latency throughput tradeoff.

2.1 Introduction

Singular Value Decomposition (SVD) is an important component of many signal
processing algorithms. Many applications such as image processing [38, 39, 40],
channel estimation in multiple input multiple output -orthogonal frequency division
multiple access (MIMO-OFDM) systems [41, 42, 43], biomedical applications [44] and
direction-of-arrival (DOA) estimation for source Localization [18, 7] require real-time
SVD. These applications demand fast convergence and high accuracy. For small sized
arrays, it is easy to meet the above requirements given the high density of logic and
high clock rates available on present day hardware. On the other hand in applications
dealing with large matrices [45, 46, 47] achieving fast convergence is a difficult task.
There is an increasing need for real time computation of SVD for large matrices because
emerging applications using large arrays are proposed. Since there is an upper limit
to the logic density and clocking rates in hardware, there is a need for fast converging
SVD algorithms. Specifically, this work was motivated by the implementation of fast
converging SVD algorithm for DOA estimation in new wireless local positioning system
(WLPS) [7]. A fast converging SVD in WLPS would ultimately lead to lower power

consumption in mobile applications. Moreover, it supports real time SVD computations

28

for large matrices associated with large aperture antenna arrays. Configurable hardware
platforms such as field programmable gated array (FPGA) or application specific integrated
circuits (ASICs) are ideal for implementing WLPS. These platforms have huge number of
logic at our disposition and are suitable for implementing parallel algorithms. As we will
be implementing our parallel algorithms on these platforms, from hereon we refer to these

as "parallel hardware".

SVD procedure prescribed by Golub-Kahan-Reinsch [48] is the standard method on
sequential processors and is not suitable for parallel hardware. On the other hand,
widely known Jacobi method [48] has inherent parallelism that has been exploited in
many variations of this algorithm. This method can only be used for symmetric matrices
and it has the advantage of quadratic convergence [49]. Moreover, it is proven to be
more accurate than QR based methods [50]. Forsythe and Henrici [51] extended the
Jacobi method to general matrix and a cyclic version of their proposed approach was
later implemented by Brent-Luk-Van (BLV)on a Systolic Array[31]. BLV method uses
a two-sided transformation and is proven to retain the quadratic convergence of Jacobi
method [52]. Hestens proposed a one-sided variation of Jacobi’s method but Hestens

method does not directly produce singular vectors like the two-sided methods[53].

Special purpose CORDIC algorithm [54] and reduction in computations of the BLV
array [55] have motivated implementations of SVD on Field Programmable Gated Arrays

(FPGA). An improved SVD systolic array was proposed in [32] and is known to perform

29

three times more efficient and faster than BLV. Although this method is faster than the
original BLV, the convergence behaviour in terms of number of sweeps remains unchanged.
For larger matrix sizes the number of sweeps in BLV is prohibitively large[56] and hence
unsuitable for applications requiring real-time computation of SVD. Another FPGA based
implementation was proposed in [57] which folds a 4x4 SVD problem to obtain the
SVD of a larger matrix. Folding is a natural choice of implementation given limited
hardware resources but this increases the computation time. We note that most efforts in
improving SVD arrays are targeted towards decreasing the computation time of an iteration
or reducing the hardware resources consumed. Since the above methods have already lead
to maximum efficiency of a processing element, we delve into speeding up the convergence

by decreasing the number of sweeps.

Unlike traditional methods which follow a fixed ordering of subproblems ,we propose a
dynamic ordering where large element in each iteration is targeted. This highly increases
the SVD convergence rate in larger matrices compared to traditional Jacobi based methods.
The performance is compared in terms of number of sweeps. Monte Carlo simulations of
various matrix sizes were carried and results are reported. The proposed method reduces
the number of iterations by half for large matrix sizes. A fixed point streaming architecture
was also proposed and implemented in Xilinx FPGA. Both the traditional and proposed
methods are implemented and compared in terms of resources consumed, throughput and

latency. The details of implementation are provied in future chapter.

30

Section 2.2 describes the traditional fixed order Jacobi method for reference. It is followed
by the description of proposed algorithm. Section 2.3 outlines the architecture and provides
details of hardware implementation. Section 2.4 describes the simulation result and
compares the various aspects of implementation for the proposed and traditional algorithm.

Section 2.5 concludes the chapter.

2.2 Proposed Method

In this section, first the traditional Jacobi based SVD method and the BLV array are

introduced. Next, the proposed method and it’s associated algorithm are introduced.

2.2.1 Traditional Method- Jacobi SVD algorithm and BLV Array

Jacobi methods use a sequence of plane rotations to diagonalize a matrix A. For SVD,

two-sided plane rotations as shown below are used.

Aiv1 =JT A, 2.1)

are used. Here J; and J, are Jacobi rotations of 6; and 6, in the (p,q) plane (p < g).A

Jacobi matrix J is an identity matrix where four elements with indices (p, p), (p,q), (¢,p)

31

and (g, q) are replaced by following values

Jpp =¢05(0),Jpq = sin(0),J,p = —sin(0),Jyq = cos(0) (2.2)

are replaced with cos and sin of a rotation parameter 8. 0 is 6; and 6, for left and right
sided rotations respectively. In each iteration 6; and 0, pairs are calculated to annihilate the
off-diagonal elements of a 2 x 2 submatrix. The two sided rotation applied to each 2 x 2

submatrix corresponds to:

T T
/
), 0 c Sy app Qpg cr Sy
= (2.3)
/
0 gy —s] ¢y agp dgg| | —Sr Cr
p q
T T
/ / .. o
G Gigen| _ |9 dij GGy | | e S (0.4)
/ /
Yirnj Ait1); R I L R DV A A2 V) I s

i J

where ¢; = cos(0)), ¢, = cos(6;), s; = sin()), s, = sin(6,) and a,,, a,, are the diagonal
elements obtained after applying the two sided digonalization process. It is observed that
a left sided Jacobi rotation affects only the elements in columns p and ¢ and right sided
Jacobi rotation affects only elements in rows p and g. This exposes inherit parallelism in
Jacobi method and its evident that in a matrix of size N (N even) N/2 subproblems can

be solved in parallel. Therefore an iteration consists of solving N /2 subproblems and it

is a convention to call N such iterations as a sweep. The iterations are carried on till the

32

off-diagonal norm of the matrix A given as

off(A) = sum; .;A};, forA € R (2.5)

is within a specified tolerance.

Number of iterations

(2.6)

sweeps = —
Matrix size

is within a specified tolerance.

Numerous parallel ordering schemes have been proposed in literature[31]. The basic
building blocks of the BLV array consists of a Processing Element (PE) which is allocated
to solve a 2 x 2 submatrix. There are functionally two types of PEs. A diagonal PE solves
for 6, and 6; and applies the rotation specified in (2.3) to the diagonal submatrix. It also
transmits the rotation parameters to the neighbouring processor. An off-diagonal PE applies
left sided rotation 6; to 2 x 2 submatrices on the rows p and ¢ and right sided rotation 6,
to 2 X 2 submatrices on the columns p and g. The array therefore consists of N /2 diagonal
PEs and (N/2)? — (N/2) off-diagonal PEs. Fig 2.1 depicts the structure of the array and
communication between the processing elements. After each iteration, data is swapped
between PEs consistent with the ordering scheme. The BLV array is step synchronised due
to which PEs are ideal for almost about 66% of the time. Efficiency was improved by a

factor of 3 by operating on data as and when it is available, rather than synchronizing the

33

Au Ap Az A Ais A Az A
PEyy PE, PEg, REy
An An A l%\u Axs Az Ay Ax
Asr Az Azz Az Aszs Asg A3z Asg
PEyg PEy; PE;; PEy3
Asr As A Aw Ass Ags Asr Agg
< I I T T
As1 Asz Ass Ass Ass Asp As7 Asg
PEyg PE;, PE;, PEys
Ass Asy Az Ae Ass Ao Agz Aes
A An Az Az Azs A A7 Ags
PEs, PEs, PEs, PE,
Az Ag Asz Ass Ass Ass Agy 2\85

Figure 2.1: BLV Array for N=8. Data transmission is represented as solid
arrows and rotation parameters transmission with unfilled arrows

steps [32]. Although this method increase the efficiency compared to the BLV array, the

number of iterations still remain unchanged. We aim to address this issue and reduce the

number of iterations required.

2.2.2 Proposed algorithm for faster convergence

The fixed ordering scheme used in BLV array has the advantages of simple design and low
resource consumption, but for larger matrix sizes it take formidable number of iterations to
converge. In this new algorithm, we address this issue of slow convergence by deviating
from the traditional fixed ordering. We propose that in each iteration big off diagonal
elements to be targeted. That is instead of forming a 2 x 2 submatrix using block-diagonal

elements, the submatrix is formed by big off-diagonal elements. Since N/2 subproblems

34

are solved in parallel, we can target N/2 big elements which satisfy the row column
exclusivity. Row column exclusivity refers to the fact that N /2 big elements cannot have
same row or column numbers as any of the other N/2 — 1 elements row and column
numbers. Using this kind of dynamic ordering, we guarantee that in each iteration, the
biggest element and few other large elements are targeted. Unlike fixed order schemes, this
guarantees that the big off-diagonal elements are annihilated within the first few iterations
and remaining iterations are allocated to annihilating the already small elements to the

desired accuracy. The proposed algorithms is as follows.

repeat
1. Find N/2 big elements from off diagonal entries.
(xi,yi) fori=1,...,N/2
where Xj 11 # X1, Xir1 7 V1,..i»
Vikl 7 X1,is Viel Z V1,0

and x; # y;

fori=1,....N/2do
2.1.Select 2 x 2 submatrix Ay, to be processed by diagonal PE

A Ay,
Adiag:

Ayixi Ayi}’i
2.2.Diagonal Processor

— Solve the 2 x 2 SVD subproblem to obtain 6, and 6;

— Calculate and output left and right rotation parameters

35

— Apply two sided Jacobi rotation on 2 x 2 submatrix

/
Adiag

=J ;Adiag‘] r
— Output data and wait for new input data

2.3.Column Processors

fori=1,....,(N/2—1) do

— Select2 x 2 submatrix

if x; <y;
Acy j—1%i Acy Vi
Acor=
Ac, jXi Acyyi
else _
ACijlyi Ac, jXi
Acol=
Aczj}’i AC2ixi

where ¢ # x;,yifork=1,...,(N—2)
— Apply right-sided rotation to the column submatrix

A/

col —

Acoldr
—Output data and wait for new input data
—Replace the submatrix back into the matrix
end for

2.4.Row Processors

fori=1,...,(N/2—1)do
—Select2 x 2 submatrix

if x; < Vi

36

Axirzj—l
A}’OW:

A)’iVZj—l
else

A}’ir2j—1
Arow:

Axirzj—l

Axiry j

Ayiry j

Ayiry j

Asiry j

where r # x;,yifork=1,...,(N —2)

—Apply left-sided rotation to column submatrix

_7q
row ~— J[AVOW

—Output data and wait for new input data

—Replace the submatrix back into the matrix

end for

end for

until off diagonal norm ,0ff(A) < & (tolerance)

37

2.3 Design and Implementation

2.3.1 Proposed System Design

2.3.1.1 Controller and Big element finder

Similar to other Jacobi methods, the proposed method is suitable for parallel
implementation. With an increase in the available processing units on parallel hardware,
resources are hardly a limitation. Accordingly, we propose a highly parallel system
shown in Figure 2.2. The solid arrows depict the communication of rotation parameters
and plane arrows depict the communication of matrix elements. Because the proposed
method is iterative, the stopping criterion is calculated and further iterations are started if a
predefined tolerance is not met. This functionality is included in the controller. Controller
also transfers data between the output and input memory banks if the iterations are to be
continued. The proposed design is also intended to be pipelined to increase the throughput
and controller needs to be designed accordingly. The big element finder module finds N /2
big elements as specified in the step 1 of the algorithm. This module produces N /2 pairs

of row and column to be transmitted to the N /2 core modules.

38

Diagonal [PE | Row 5
submatrix Column ¥|__rotation |1 A
.
Extractor rotation [~ P
" Memory
Off- Column bank
diagonal rotation .
submatrix =i 2] - R“‘f"
extractor oumn . rotation
rotation
/2-1 /\
: Switch
. Matrix
K -
Diagonal PE > Ru‘f’ i
; rotation
submatrix Column
extractor rotation i
—

Column I_. L

rotation

Off-
diagonal
submatrix
extractor

.
.
X Row
Column ¥|_rotation | "/
rotation

> Controller <

Figure 2.2: System level design for the proposed algorithm

2.3.1.2 Core modules

The term core module refers to a set of modules which consists of a diagonal submatrix
extractor, an off-diagonal submatrix extractor, a diagonal PE and N /2 pairs of column
and row rotations. The diagonal submatrix extractor extracts a submatrix as described in
step 2.1 of the algorithm. Off-diagonal submatrix extractor extracts N/2 — 1 submatrices
as described in step 2.3 and 2.4 of the algorithm. These modules are necessitated due to
dynamic ordering followed in the prescribed algorithm. The diagonal PE calculates the
rotation parameters and transmits them to the column and row rotation modules. Column
and row rotation applies the right and left sided rotations to the selected submatrices. A

switch matrix is needed between column and row rotation modules to pass the appropriate

39

matrices to the row rotation modules. It should be noted that a set of diagonal PE, column
and row rotations are called a diagonal PE and a pair of column and row rotations are called
off-diagonal PE in the BLV array. Hence, the number of parameter generators (N /2) and
two sided rotation modules((N /2)?) remain unchanged for the proposed approach and BLV

array. The proposed high level design can be adopted for any parallel hardware.

2.3.2 Implementation on FPGA

As a proof of design and performance analysis, we chose to implement the proposed
algorithm on Virtex-6 XCVLX365T using high-level design tool called System Generator
for DSP by Xilinx. As the design was inherently parallel, we tried to further improve the
system by pipelining to the maximum possible limit. Both the BLV array and the proposed
algorithm were implemented to ensure a fair comparison. The modularity of design and
implementation makes it easy for extending the system to bigger matrix sizes and word
length if desired. BLV array consists of modules: diagonal PE, column and row rotation
and data switching modules. The proposed array has additional modules: big element
finder, submatrix extractor and switch matrix. Submatrix extractor and switch matrix are

simple multiplexer based implementations with fine grain pipelining .

40

Umax =0
start p(Ipay =0
Counter=10

Counter= N
Counter= N

Vex = Vin
Iimay = Counter
Counter= Counter+ 1

Vrnax = Vinax
max = Imax

Vo>V
in 7 Vmax Counter= Counter+ 1

viﬂ < vmax

V;'n ? Vmax

Figure 2.3: Finite State Machine for finding the biggest element in each
row in a matrix of size N

2.3.2.1 Big element finder

This module finds the N/2 big elements which are row and column exclusive. It was
assumed that the data of each row of matrix is received in streaming fashion. State machine
in Figure 2.3 is used to find the biggest element in each row of a matrix of size N.
The largest of these N biggest elements gives the row and column number of the biggest
element. The next biggest element is found among rows and columns excluding the rows

and columns from which the previous biggest elements were found.

2.3.2.2 Diagonal PE

The Diagonal PE calculates the rotation parameters via Two-Plane-Rotation (TPR)

method[55]. The inverse tan, sin and cos functions are implemented using CORDIC 4.0

41

macro provided by System Generator. Since hardware resources is not a constraint for
smaller matrix sizes we choose not to fold the operations. For bigger matrix sizes the
operations can be folded to save hardware resources. Each Diagonal PE uses 4 CORDIC

modules.

2.3.2.3 Column and Row rotation

Column and row rotations are each a 2 X 2 matrix multiplication, which translates to
8 multiplications and 4 additions. These are implemented using DSP48Es available in
abundance in recent FPGAs. Multiplier design based on DSP slices are reported to consume
lesser power [58]. For larger size matrices, multiplication operation can be folded into a

single DSP48E by trading latency for higher frequency of operation.

2.4 Simulations and Discussions

2.4.1 Simulation Results

The performance of the proposed algorithm was compared with the BLV in terms of
number of sweeps required to reduce the off diagonal norm (sum of the square of all the

off diagonal elements) to a specified tolerance to a specified tolerance (in our simulations it

42

is 10719). It is conventional to measure convergence behaviour in terms of sweeps, where
the sweeps represent number of iterations divide by N, for a matrix of size N x N. The
simulations were conducted for matrix sizes ranging from 4 x 4 to 128 x 128. Monte-Carlo
simulations with uniformly distributed matrix elements were conducted. Figure 2.4 depicts
the number of sweeps for various matrix sizes for the BLV array and the proposed array. It
was found that the number of sweeps for proposed array plateaus for large matrix size. This
means that for matrix sizes greater than 32 the number of iterations is nearly proportional
to the matrix size. The factor by which the number of sweeps reduces increases with matrix

size, hence the advantage of the method is highlighted for larger matrices.

In order to explain the observed effect we plot the off diagonal norm vs the iteration number
in Figure 2.5. For N = 128, it is observed that the proposed algorithm’s off diagonal norm
reduces to set tolerance in a lower number of iterations as compared to the BLV array. The
convergence of the proposed array for N = 128 is similar to that of BLV array for size
N = 64. This difference in convergence behaviour between the proposed and BLV array is
not very evident for N = 8 Note that the tolerance used for simulations(10~1°) is an overkill
for envisioned applications. Targeting the big elements in the initial iterations accelerates
the annihilation of the off diagonal elements, resulting in the improved performance of the
proposed method. This can be observed in Figure 2.5 where the off diagonal norm drops

rapidly in the initial iterations for proposed method as against the BLV method.

43

—©— BLV Array
——&— Proposed Method

~

(o]
T

Average Number of Sweeps
£ [§)]

w
T

0 20 40 60 80 100 120 140
Matrix Size (N)

Figure 2.4: Number of sweeps vs. matrix size

10:< ‘ ‘
- - = = =BLV Array N=128
Proposed Array N=128
o 5) = = = BLV Array N=64 |
© T~a - Proposed Array N=64
2 ~| = = = BLV Array N=8
)] Proposed Array N=8
S ~ i
= N
E | s
o 1 \
— -5 N .
® i N
s Y
o I \
)
@© 1 - 1
a -10H .
= I
@) A I
' 8
_1 5 L .
_20 1 1 1 1
200 400 600 800 1000

Number of iterations

Figure 2.5: Convergence of matrix depicted as reduction in off diagonal
norm vs iteration number

44

2.4.2 Implementation Results

For the purpose of fair comparison, FPGA implementation of the proposed and traditional
BLV was done. Both the systems were designed with maximum possible pipelining
resulting in comparable maximum achievable frequency of operation. Table 2.1 and 2.2
compare the resource consumption and maximum achievable frequency of the 4 x 4 and
8 x 8 proposed array with BLV arrays of equivalent size. Efforts were made to pipeline both
the arrays to maximum possible extent to achieve the maximum frequency of operation.
Given the iterative nature of the algorithm, similar frequency of operation with reduced
number of sweeps amounts to faster overall convergence of the method. Although, we
observe a marginal increase in resource consumption for the proposed design, the total
number of slices consumed is less than 25% leaving area for other signal processing
modules in the original applications. The DSP48Es have been pipelined in three stages
which is the minimum for multiplier-based design. For bigger arrays, when the available
number of DSP8Es fall short, we can fold the multiplication operation and pipeline the

DSP slices up-to six stages to operate the DSP slices upto a maximum of 600MHz [58].

45

Table 2.1

FPGA Implementation of BLV and Proposed array for 4 x 4 matrix

Available on | BLV Array | Proposed Array
Virtex 6 4x4) 4x4)
Maximum 180.408 MHz | 180.018 MHz
Achievable Frequency
Slice Registers 455,040 12,386 (2%) 14,208(3%)
Slice LUTs 227,520 10,987 (4%) 12,641(5%)
Occupied Slice 56,880 3569 (6%) 4094(7%)
DSP48Els 576 64 (11%) 64(11%)
Table 2.2

FPGA Implementation of BLV and Proposed array for 8 x 8 matrix

BLV Array(8 x 8)

Proposed Array(8 x 8)

Maximum Achievable 107.001 MHz 106.633 MHz
Frequency
Slice Registers 45,343(10%) 51,254(11%)
Slice LUTs 42,322 (18%) 47,749(20%)
Occupied Slice 14,300 (25%) 16,371(28%)
DSP48Els 160 (27%) 160(27%)

2.4.3 Latency and Throughput

46

Latency and throughput are two key parameters for choosing a parallel and pipelined design
for an application. Figure 2.6 sketches the timing of our design to investigate the throughput
and latency tradeoffs of our system. This diagram does not depict the fine level pipelining
and is being used to quantify the latency and throughput in general. Only modules which
contribute to the latency (the ones whose latency cannot be hidden in other modules) are
depicted. The throughput is equal to the inverse of the latency of the processing element

with the highest latency, also called the critical element. In this case, part of diagonal

processor which calculates the rotations parameters (referred to as parameter generator) is
the critical element and is common to both proposed and BLV array. Hence, throughput for

the proposed and BLV array is equivalent and corresponds to

Tproposed = Tpv = = 0 2.7)

L(Sc) Tpg

Here L(.) is the latency of any given processing element and 7), is the latency of

parameter generator. Latency can be calculated in way described via [59],

M
L=(2xic—1)xL(S:)+ Y, L(S) (2.8)
i=i.+1

where i, is the index number of the critical stage S, S; is i’ stage of the pipeline and M is
the total number of pipeline stages. For our design, we consider the parameter generator
as the critical stage. In this case, the number of stages prior to parameter generator is N /2

and accordingly index number if the critical stage is

| =

ic - + 1 (2'9)
and latency is given as

N
Lproposed: (2>< (5"’1)_1) ><Tpg‘}'Tcm‘}"Iva‘i'Trm (210)

47

where T¢,, T, and T, are latencies of column multiplication, switch matrix and row
multiplication, respectively.T),, was introduced in (2.7). Except the processing element,
all other modules have an idle time. This can be avoided by either folding the operations
for saving area or by balancing the pipeline in a better way. Also, the critical element
experiences an idle time before starting the next iteration on data set 1. This can be avoided

by trying to keep the overall latency as an integral multiple of the latency of critical stage .

L=1xTy Q2.11)

Where L in the overall latency and integer / is the number of data sets that can be processed
before the next iteration on first data set starts. 7}, has been introduced in (2.7). It is
to be noted that for larger N ,latency can be very large and we might have to go for
different scheme of finding the large elements, where we may not be able to target best
N/2 large elements always. Not being able to target the best large elements might impact
the convergence minimally but the convergence behaviour will be still better than BLV.
Latency and throughput tradeoff is a decision to be made based on the requirements of an

application.

48

poylowr QA S pesodoid oy} J10J weaSerp Suri], :9°g IN3I g

-~

195 BJep JO U0NeI3}| puodas

I
L4

g _|x|u&|x|§ H|X§¢T§|x|u&|x| E*Ez_l

€ 195 eJep Jo uoresay) 1s.

»

I4

4
N

{105 eyep Jo uonesay 114

L4

T §os e1ep Jo vorjeia) i1y

1
L4

wiy

o o o o

wiy

414
IN) voneandninjy moy

T uonedydimy Moy

G

XUII YoNMg

wy|

wi
N uoned)dignu uunjo)

I g_as__n_m_:s uunjo)

@
N Joteiaugd sajausese

T J0jeJauat Jajaweieq

£105eleq ‘
LRl @
TRSER] (O

puada

(2/N}iopuly uowaja Big

oo o0

T 4aput) Juauy 1s0331g

49

2.5 Conclusion

A new and fast converging algorithm for SVD suitable for real-time signal processing
applications was proposed. A highly parallel and pipelined design for implementing this
algorithm was also proposed. The higher convergence rate of the proposed technique was
depicted by the reduction of the number of sweeps as the matrix size increases. Thus,
the number of iterations needed by the proposed technique is significantly reduced (by
about 50%) compared to the traditional BLV as the matrix size increases. The FPGA
implementation proved that the system has the same throughput as the traditional system.
Reduced number of sweeps with the same throughput implies faster convergence. Only
a marginal increase in hardware resources was observed. The system can be clocked at
frequency as high as 180 MHz for 4 x 4 matrix while occupying less than 10% of slices
in Virtex-6 FPGA. We also noted that better convergence and comparable throughput is
obtained as a tradeoff of latency. Hence, this proposed method is suitable for signal

processing applications which operate on streaming data rather than on burst mode data.

50

Chapter 3

Details of FPGA implementation for

proposed SVD

This chapter details the various aspects of FPGA implementation of SVD method proposed
in previous chapter. The modules are explained in greater detail with help of finite state
machine (FSM) diagrams and implementation diagrams. The overall system performance
and comparative analysis has already been discussed in chapter 2, hence we limit
the discussions in this chapter to implementation details of individual modules. The
discussions in this chapter facilitates easy replication of the FPGA implementation. The
modules are designed to eases the process of extending the proposed design to larger
matrix sizes in the event of increase in number of antenna array elements. The design

was pipelined to maximum possible extent to maximize the frequency of operation. As

51

Algorithmicverification
in MATLAB

|

Draft and elaborate System
specifications

Develop an executable
modelin Simulink

Functionaltesting
viainterface to
Simulink

Developthe system
generatordesign

1linxD3SP

Blockset

AutomaticRTL
Xilinx Coregen generation RTL verification
RTL

Xilinximplementation
flow

) O

Bitstream

Downloadto FPGA

Figure 3.1: Design flow for System Generator development

mentioned before, the design was implemented on Virtex-6 XCVLX365T using high-level

design tool called System Generator for DSP by Xilinx.

3.1 System Generator design flow

Figure 3.1 gives an overview of the various steps involved in System Generator design flow
[60, 61]. A robust design needs to go through all of these steps and many times through
multiple iterations of these. First step is to verify and analyze the proposed algorithms in

MATLAB. A well written and detailed system specification document is a good starting

52

point for FPGA design. Better the understanding of the various aspects of system design
and features, lesser the number of iterations it takes through the design flow to arrive at
the final implementation. Both the High level description (HLD) and low level description
(LLD) need to be described in sufficient detail. Use of FSM diagrams, flowcharts and
expected timing diagrams is encouraged. Since the proposed design is a fixed point design,
world length and effects of word length need too be calculated and be specified as part
of specifications document. Next, an executable Simulink model needs to be developed.
This provides us with the understanding of timing of the system. This step is optional but
is highly encourages as it may ease the process of System Generator design and come on
handy when debugging and functional testing. Xilinx provides DSP blockset and other
reference blockset for System Generator design. These blocksets need to be used for
developing a System Generator design. It is important to follow the system specifications.
System Generator can be easily interfaced to Simulink. While developing the individual
modules and also while integrating different modules, one can use the Simulink interface
to perform functional testing. Waveform viewer tool in System Generator is a convenient
way to check the latencies. Often, functional verification and going through the iterations
of design and testing is the most time consuming part of the design flow. System Generator
uses the Xilinx Coregen functionality to automatically generate the RTL. Once the RTL is
generated, RTL test bench needs to be created and RTL verification needs to take place.
From here on, the steps are similar to a regular FPGA design flow of synthesis, translate,

map, place and route and programming the FPGA with bitstream.

53

3.2 FPGA Modules

Various FPGA modules are described in details before the overall FPGA design is
presented. A subset of these modules were used for implementing the BLV array as well.
Throughout this discussion the notation of (worlength_fractional) bits is used to represent
the fixed point notation. For example, (16_14) implies the signal is of 16 bit wordlength
with 14 fractional bits. Also the term "streaming matrix" implies that each row of the
matrix is received in streaming fashion. Hence, we have N channels corresponding to each
row of a N X N matrix. Each element of the column is received in sequential manner.
Therefore it takes N clock periods to receive the entire matrix over N channels. This signal
flow is assumed to improve latency and also to keep the number of I/O pins to an optimum
number. In case of very large N, the channels might need to be time multiplexed as we
may not have enough I/O pins.The latency calculations were already discussed in sufficient

detail in Section2.4.3.

3.2.1 Finding the N /2 big elements

This module finds the N /2 big elements which are row and column exclusive. Figure 3.2
represents the state machine for this module. First the diagonal elements are zeroed out as

the big elements need to be from the off-diagonal. Zeroing out the diagonal elements is

54

a simple task achieved with N of these state machines depicted in Figure 3.3. The index
i in each of these state machines represents the channel number. For example 2"¢ state
machine with index i = 2 will be repeatedly pounding the 2" element of the streaming row
data. In Figure 3.2 this operation is represented as zerodiag(). Next, the biggest element of
the matrix is found as depicted in Figure 3.4. While the data (matrix entries) is streaming,
the biggest element of each row can be obtained at the end of N clock periods using the
state machine depicted in Figure 3.5. Again, N of these state machine are required to
find the biggest element from N channels. The N biggest elements are then searched for
biggest element. This can be done using a combinatorial circuit. We implement a log,(N)
stage search for finding the biggest element out of N elements. This can be done using
N — 1 comparators. The comparators should also output the index of the biggest element.
After the biggest element is obtained, the entries corresponding to row and column of the
biggest element are zeroed out using the state machine in Figure 3.6. Finding the biggest
element of a streaming matrix and then zeroing out the row and column corresponding to
the biggest element is referred to as findmax() in Figure 3.2. And the biggest element of
the resultant streaming matrix (after zeroing out the row and column entries to maintain
row and column exclusivity) is then found by Figure 3.4. This operation is represented as
zerorowcol(). This step is repeated till N /2 such big elements are found. We need not zero

out the row and column entries after finding the N /2" big element.

Figure 3.7 is the System Generator module for finding 4 big elements of a 8 x 8 streaming

matrix.

55

N N
counter = counter #

‘.'!'
counter =

Input = output
output = findmaz()
Counter = Counter + 1

Input = new;nput
zerodiag()

Counter =10

counter # 3

Figure 3.2: State machine for finding the N/2 big entries of N x N
streaming matrix under row column exclusivity condition

start=»

Counter=N ‘ounter =N

" Output =0
Counter = Counter + 1

Counter #1

Output = Input

Counter = Counter + 1 Counter =1

Figure 3.3: State machine for zeroing out the diagonal entries of a N x N

streaming matrix
Figure 3.7 is the System Generator module for finding 4 big elements of a 8 X 8 streaming
matrix. From the description above it is understood that first big element is found at the
end of N +log>(N) clock cycles from the time of first column streams in. The indices of
second element at logy(N) + L(zerorowcol) ,where L(.) is the latency of function. The
indices of subsequent big elements is obtained at subsequent logy(N) + L(zerorowcol)
clock cycles. Figure 3.8 depicts the timing diagram for the modules in Figure 3.7. The

clock cycles at which the first, second, third and fourth big element indices are found

56

N input channels
(16_12)

Find the maximum from each channel

N values (16_12)
N column indices (3_0)

Find the maximum from N values

1 column index (3_0)
1 row index (3_0)

Zero the row and column
corresponding to the maximum value

N output channels
(16_12)

Figure 3.4: Flow chart for finding the big element and its row column

indices

Vmax = 0
Imax =0
Counter=10

start -

Counter= N
Counter= N

,,,,,,,,,, = Vi " Vmax = Vmax

Vin > Vimax Imax = Imax

Counter= Counter+ 1

Vin > Vimax

Counter = Counter + 1

Vfﬂ < Vmax

Figure 3.5: State machine for finding the biggest element from the channel

of a streaming matrix

57

Counter =0
ColIndex = newColIndex
RowlIndex = newRowlndex

start =»

Counter # ColIndex
&& Rowlndex # 1

Counter = ColIndex
||Rowlnder =i

Output =0
Counter = Counter + 1

Output = Input
Counter = Counter + 1

Counter # Collndex
&& Rowlnder #1

Counter = Collndex
|RowIndez =i

Counter # Collndex
&& RowlIndex #1

Figure 3.6: State machine for zeroing out the row and column of a N x N
streaming matrix corresponding to the big element

include the latencies mentioned above and latencies due to pipelining. The figure serves

the purpose of understanding the latencies of the module.

58

X1Iew SUIuean)s § X g ©
woJJ SJUdWR 31q puy 03 A[Npowl YO Y} 10J WeISeIp (' TH :L°€ IN3L|

gheipTomz

J=unca JuEsucs

unQgl gisuust

&D)

i

A AT

LBeIp o

H

Eunco

HnQEY

i

Ll3uuBLp

A n{l
£
8
8

]
glElp om

Eunco

H

7
2
c
£
@
o

HnQEY

A AT
.Ef
8

]
glEIp o

Eunco

H

;
2
8

unQgl Sisuuse

(D)

i

FABPUIT MO EXBPUIT ML THBPUIT ML L¥EPUI D

EXEWpUY 7 THEWpUY LXEW T puly
s [| 1 A._ i u
<

Beipowm:

Eunco

wasfsgng ngEY!

Fl3uUBLYD

&)

jkﬂthLﬂT
bx]
£
3
2
8

pne Jno
(L] ‘n_ L

ne ng

22 w A|_ [uw

no JBunca

2
A
!
2
,—|Innn n*
o [l T
141

1| Lino u AI_|A._ Lo U g e au Beip olz
ol g @no _| gno
gu A._ gu ‘|_. gu
Gno gine gne JEunes An_ ZIUBISUTD
1] 1] 1]
gu) o Ll g — RS R L i sno & D ElRuER
sl o £ g o 1l g D)
o Zno no
cuy zulgd ol zw P—
e T =rd
1] ¢ _ LIuEIEUCD

Niil

F

o = v ' ' gl -
i D) s=pnog
$a3pulT |00 £x3puUlT | Z¥EpUl |9 L¥3pUIT |00 \eIp oz
B .L A e ++

[hlela]

LIBuuByD

I

O

59

channel1 __
channel2 __
channel3 __
channel4 __
channel5 |
channel6
channel7
channel8

ow_index1 0

col indexl T i 3 : ;

ow_index2 0
col index2
ow_index3 0
col index3 p
ow_index4

_|=|:|=|=|:|=|=|:|=|=|__|=|=|_-|_—|=|:|=|=|:|=|=|:|=|=|=|=|=|=|_ pmmn o e e | | e | [e P | | e e e | e e e e [[e ¥ o T | | ¥ e | e | | | e [[T s [[|

[| | N | | Sy N | S N NN N N | A |)|) |- [Ny N || N ||y | Ny | N Y LS ||y N ||y | N N N NN N N | N | N |)N || || N || ||y ||y N A N N O | N | _-
| e e | e e | e e . | e P T T T T [| [s | e e e | | e | [e P | | e e e | e e e T [e ¥ T T | | ¥ e | e | | | | e [[s [[|

[| | N | | Sy N | S Ny S N Y N N N N | A T |)|) |- [Ny N || N ||y | Ny A N L || N ||y | N N N NN NN | N | N)N || || || ||y ||y N A N N | N - _
o | e e e | e e | e . | e P e P T T T T [| [o | pm e e | | e | [e P | | e e | e e e e T [T ¥ T T | | ¥ ¥ e | | | | | e [[s s [[|

P N, P, N, N U O O
4 2] : 1 0 3 4 2

T TR

Second Big element Third Big element Fourth Big element

First Big element s indices indices

indices

20 30 40 50 60
Time in seconds

Figure 3.8: Timing diagram for the FPGA module for finding 4 big
elements from a 8 x 8 streaming matrix

60

a1z a4 @17

@22 azq aze a7

32 i34 36 37

Lo b a4 ae a7

as2 as4 ase asy

a2 gl ades daa a7

a7z aya aje d77

g2 rga age g7

Extract submatrix

Figure 3.9: An example of extracting a 2 X 2 submatrix corresponding to

indices 1 and j from a 8 x 8 matrix

3.2.2 Submatrix selector

Once the indices of the big elements are available, we need to extract the submatrix with

the biggest element as one of the off-diagonal element and symmetrically opposite entry

of the N X N matrix as the other off-diagonal element. Figure 3.9 shows an example of

submatrix extraction for a row column indices (i, j). Either a;; or aj; is the big element

found previously. Selecting submatrix is a simple logic based on multiplexers as depicted

in Figure 3.10. The input to the module is streaming data of N channels and the output is

the submatrix which is produced at a downsampled rate of f;/N where f; is the frequency

of operation. Figure 3.11 shows the timing diagram of extracting a 2 X 2 matrix from a

8 x 8 matrix given the row and column index.

61

Ci—————m|int =mater

oW —
‘|"N InZ bigiges
2 0
=1 -
sort
_ [ea—
ol 2k ourz Ed
= 40 d1
d1 Stz daz -1
cl= dz Cuta a2 i
e el 01 Cutd b, B11
a5 Outs as Down Sample 16 14
de eI g —" -
Ot T Mucesd
MuxZ
serial_to__paralle ||||.rlr|f|..i
el
oD
d1 -
£ |—
<4
% Down Samplel ”M.H:
Fuzs
_l | o o
o
di our1 4 I aa]
oz P .
a2 Ot _ g2 - m o |‘AMV
da Cut3 _ H b21
45 - Down Samplez
16_14 Delay2 .m;.\\\ - _=._M==M '.n!w =] 16_14
Mux2 Ot MUt
OwtT
senal_to_parallelq
16_14

Down Sample3

Figure 3.10: FPGA module for selecting a submatrix

62

XLIjeWw Sureans § X § B Wolj XLjeuwqns
7 X 7 ® 3unoenxe Ioj o[npow yHJ Y} J0j weaderp Jurwi], (Y 1°¢ InsL

SPUI02aS I W1
194 0F Gt 0 5 0z ¢ 0l ¢ 0

_ _.,__Eu

|

IBEEREEEREE .
iEER
(7] Ljommmp

195001 W20
£005 0 Bi00 08¥'|
0FZ¥ 0 0%} 6021 |

FEZED ChE} 6L0)

63

3.2.3 Parameter generator

Given a submatrix, we apply the method given in [55] to obtain the rotation parameters that
will annihilate the offdiagonal elements. Parameter generator only generates the parameter
for left and right rotation. It does not apply them to the matrix. Let A be the submatrix for
which the rotation parameters need to be generated.

ar ap
A= (3.1)

as azn

Then

p1=(an+an)/2, p2=(ax—an)/2
(3.2)

q1= (a1 —a12)/2, g2 = (ar1 +ar2)/2

These parameters are used for calculating the left and right rotation parameters, 6, and 62

0_ =tan"'(q1/p1), 0+ =tan ' (q2/p2)
(3.3)

0, = (9+—9,)/2, 6, = (9++9,)/2

We then calculate the cos(0) , sin(0;) , cos(6,) and sin(6,)of these rotations parameters

and transmit them. The arctan ,sin and cos operations are performed using CORDIC cores.

64

Table 3.1
Comparision of CORDIC in word serial and parallel configurations

Maximum pipelining | Maximum pipelining
configuration configuration
Maximum frequency of operation 139.237 MHz 18.469MHz
Slice flip flops 16% 16%
4 input LUTs 15% 2%
DSP48Es 8% 8%

For further details of CORDIC configuration and architecture refer to [62].

The same operations are performed in Figure 3.12. Since physical space on FPGA was
not a concern we chose to implement the CORDIC 4.0 with parallel architecture. This
helped us achieve high frequency of operations. System generator core provides us
with options to specify the level of pipelining. We can get maximum performance by
pipelining to maximum extent which will cause more flip-flops to be used. Using minimal
pipelining on the other hand reduces the number of flip flops used but cause reduction in
maximum achievable frequency of operation. For the sake of comparison we synthesized a
parameter generator one with CORDIC configured with maximum pipelining and another
with minimal pipelining. This was implemented in Virtex 4 FPGA. The occupancy and
frequency of operation can be compared in Table 3.1. What we can observe is only the
number of flip flops that are occupied has increased in parallel configurations with huge

increase in frequency of operation

65

0

al1

B

Y'Y

N
B

Y'Yy

58w
]

:

Bat

—p{ b

17_14
out)
i 18 14 2017 A ._IV'
» x_in 1 -
= - = i theta_nsg » % 0.5 Thetal pheze_in cost
AddSub 1614 phase_out & PiEad i
Chult Py _in 1714 o y_out—{2)
- AddSubé CMults =
_ CORDIC 4.0 2 CORDIC 4.0
! -
L0 M x05 = "_:N..:_ B
AddSub1 1614 plo2*®
U " b
Register 17_14
CMult
AddSubs il
18_14 7 é
S 2017 =
| B =08 P xD5 Toois P phesein 1711
a2
= x_in o
AddSub2 s 16_14 e > Bm;u
u
CORDIC 4.0 1
T > x05
s 4 3t GORDIC 4.0 3 Register1
AddSUb3 15 14
CMulta

Figure 3.12: FPGA module for parameter generation

66

s1ojowrered uonejor JyIu
pue 1J9[SUNeIUIS J10J A[Npowl YHJ, Y3 J10J weidelp Suril], €1 ¢ I3

SPUO2RS U Al
0 0¢ 07 01

67

Table 3.2
Occupancy and frequency of operation for row multiplication

Used Available | Utilization
Maximum frequency of operation | 260.756 MHz NA NA
Slice flip flops 128 30,720 v1%
4 input LUTs 152 30,720 1%
DSP48Es 8 192 4%

3.2.4 2 x 2 matrix multiplication for row and column submatrix

multiplication

Once the parameters are generated we need to apply the left and right sided rotation
(column and row rotations) to the submatrices. Applying the rotation is 2 2 X 2 matrix
multiplication . A 2 x 2 matrix multiplication is 8 multiplications and 4 additions. We
implement these using DSP48Es available in abundance in recent FPGAs. A 2 x 2
multiplication corresponding to left sided rotation is given as

bi1 bpp cos(0) sin(0) ai; ap
B = = * (3.4)

b21 b22 —Sin(e) COS(Q) anq ann
For column multiplication only the parameters change. The row multiplication module was
synthesized on Virtex 4 and the occupancy and maximum achievable frequency achieved
are as show in Table 3.2.This is depicted in Figure 3.15 and the corresponding timing

diagram in Figure 3.14.

68

XLIjeuIqns

7 X 7 10] onpowl yYOJ 9y 10] weiderp Jurwiy,

SpU03RS I 3|

uonesrdnnw
JARNERUEIL |

69

bi1=al1"cal2™s

2 2 Xo
D covepn > -
Ka*¥o+ho
- M_rv I [it R
1613
16_14 Delay1
] ¥ 1o
et
> x| Xo
= | 1604 ¥o*¥o
CMult1 =
@& i 1613 &
a1z 16J14 e 221
DSP48 Maool
(L&)
» %o =22,
Ph Xo*vo
1613
o
DSP48 Maoo2
o =] > Xe*Yortio
Delagd = l P v P T 2
g] L b1Z=a11*s+alZc
Delay4 J 1613

No

DSP48 Maoro3

Figure 3.15: FPGA module for 2 x 2
and column submatrix multiplications

Xo*Yo+ho
_ il Mo (D
1613 b21=a21°0-a22"s
Delay§ =
o
o ¥o¥¥o DSP48 Maood
»
16_13
B

o

DSP48 Maoob

3o Xo*Yo
16_13
P

»

Yo
i Xo*Yo+lo

> -2
DSP48 Maoof ‘D|V R 1613
(2}
[5 |Delay? |_|V.
w_ =2 [P vo P b22=a21"s+al2'c
Delays
P o
DSP48 MaooT

matrix multiplication used for row

70

3.3 Conclusion

Modules which have major impact on the performance of the system such as parameter
generator , row column multiplication (described in Section 2.3.2) were detailed in this
chapter. We also detail the modules specific to proposed method namely big element finder
and submatrix extractor. Other modules such as switch matrix and controller are simple
to design and are open to interpretation by the designer. Controller can be implemented
either as an FSM or on a soft core processors. Implementing on soft core processor
makes the design easier and faster. The same soft core processors can be used for other
control operations as well. We have tried to optimize the modules for performance.
Special fucntional units such as DSP48E and IP cores such as CORDIC have been used to
maximize performance. Although using these modules makes our design vendor specific,
we believe these functional units and cores are available in most modern day FPGAs and
can be easily replaced. This chapter describes the important modules in a detailed fashion

and serves as a refernce for designers intending to replicate or extend the proposed design.

71

Chapter 4

Real-time root-MUSIC DOA estimation

via a parallel polynomial rooting method

This chapter describes a new parallel polynomial rooting technique for real-time signal
processing implementation of root-MUSIC suitable. Complex dynamics of root-MUSIC
polynomial’s Newton map were exploited to prescribe a minimal set of initial points for
Newton’s method. The proposed method is based on adaption of Newton’s method as
a global polynomial rooting technique. A set of initial points which guarantee that at
least one of them would converge to the root closest to the unit circle (that corresponds
to the direction of arrival (DOA)) were proposed. A comparison of the proposed method
with existing general polynomial rooting technique was done to assess the computational

complexity and possibility of parallelization. In addition, the performance of proposed

73

system when incorporated into root-MUSIC was analyzed in terms of computations

required to achieve a given accuracy of DOA.

4.1 Introduction

Direction of arrival (DOA) is a problem of interest in various applications such as wireless
sensor networks (WSN), body area networks, local positioning systems etc. We are
motivated to implement DOA estimation for a remote positioning system know as wireless
local positioning system (WLPS)[7]. A WLPS system is intended for mobile devices,
hence is limited in processing capabilities and requires real-time output. Over the past
decades, various DOA estimation techniques have been developed. Subspace based
techniques such as MUSIC[19], ESPRIT[28], maximum likelihood [63] and developments
thereafter have gained significant attention. In particular, MUSIC and its variations have
become popular due to their robustness, ease of implementation and because they are
independent of array configuration. The spectrum search in MUSIC is a high complexity
step and leads to the development of a search-free variation known as root-MUSIC[23].
Root-MUSIC uses polynomial rooting to find roots closest to the unit circle and in its
original form is applicable only to uniform linear arrays (ULA). It is proven to have
performance asymptotically similar to the MUSIC[24]. In WLPS, we deal with uniform

linear array, hence root-MUSIC is a good choice for our DOA estimation.

74

As the number of sensors in the array increase, polynomial rooting becomes increasingly
computation intensive. Researchers have proposed methods to reduce the complexity
of polynomial rooting for DOA using Householder transformation[64, 65], which is a
sequential process unsuitable for parallel implementations. Root-MUSIC based on unitary
transformation resulting in real coefficient polynomials[66] were proposed as well. In this
chapter, we aim to address polynomial rooting for complex coefficient polynomials, as the

real polynomial rooting is a subset problem.

In mathematics, finding all roots of a complex polynomial of large degrees is an ongoing
research [67].The most common method for finding the roots of a polynomial is via
eigenvalue decomposition of companion matrix[35] and its faster variations [68, 69].
These methods are used in LAPACK and implementations on sequential machines.
Their sequential nature make them unsuitable for real-time signal processing applications
implemented on configurable platforms such as field programmable gated arrays (FPGA)
and and single instruction multiple data (SIMD) platforms such as graphical processing
units (GPU). Methods based on polynomial factorization [36, 70], though amenable to
parallelization, are extremely complex to implement. Newton’s method is a popular local
rooting technique which can be adapted as a global rooting technique if a set of initial
seed points which converge to each root can be obtained [37]. Newton’s method has the
advantages of fast convergence, simplicity of implementation and numerical stability. An
attempt at using Newton’s method was done in [71] by choosing an initial point using

delay and sum (DAS) and iterating using root-MUSIC polynomial. This is effectively a

75

local polynomial rooting technique and it fails to converge to the correct root in low SNR

and multipath conditions.

This chapter depicts that root-MUSIC polynomial has a well defined Newton map
geometry. This geometry is exploited to obtain a small set of well defined points which
can be used as initial points for Newton’s method. These set of points are selected
such that there exists initial points for each root. By doing so, we are able to overcome
the problem faced by [71] and effectively convert the Newton’s method into a global
polynomial rooting. Moreover, these set of points guarantee the convergence to the root
closest to the polynomial irrespective of the nature of the channel. All the points in the
prescribed set can be iterated in parallel, thus reducing overall processing time. Quadratic
convergence of Newton’s method allows us to fix the number of iterations based on the
desired precisions of the root. The proposed method is highly parallel, terminates within
fixed number of iterations resulting in a system with fixed latency, is easy to implement and
can be easily extended to large sensor arrays. These properties make it highly suitable for

implementation on FPGAs and SIMD hardware.

Section 4.2 highlights Newton map and signal model of the root-MUSIC crucial in
developing the proposed method. Section 4.3 explores the complex dynamics of
the Newton Map of root-MUSIC polynomial and emphasizes on certain well-defined
characteristics that lead to the proposed method of polynomial rooting. Section 4.4

compares the proposed method to traditional methods in terms of computation complexity

76

and it is found to be simpler than other methods and costs a degree less than other methods

when implemented in parallel fashion. Section 4.5 concludes the chapter.

4.2 Background

This section explains the global geometry of Newton Map of a generic complex univariate

polynomial [37]. We than briefly review the signal model of root-MUSIC.

4.2.1 Global geometry of Newton map

Throughout this chapter we deal with a complex univariate polynomial p(z) : C — C of a

degree d. Newton’s root finding method iterates on the associated Newton map

NP:C%C,Z%z—& 4.1)

P'(z)

to arrive at the root & such that p(&) = 0. Newton map is a conformal map as the analytic
function has derivative at all points of the complex plane. Given a starting point zg, if the
sequence (zo,21 = Np(20),22 = Np(z1)) converges to &, then zg is said to be in the basin of §.
Collection of all such starting points which converges to & is called the basin of root &. In
addition, the connected components of the basin containing root & is called the immediate

basin Ug . Connected spaces imply that any two points in space D can be connected by

77

Figure 4.1: An example Newton Map

a curve lying wholly within D. In Figure 4.1, a Newton map of a fourth degree complex
univariate polynomial (4 —3i)z* + (2 —3i)z> 4 (1 — 2i)z% + (1 — 3i)z+ (24 1i) was sketched
to illustrate different aspects of the geometry. The blue, green, red and yellow regions are
the basins of the four roots of this polynomial, which are in turn indicated by black points
in the complex plane. The basins are shaded in order to indicate how fast they converge to

the root [72, 73].

Critical points of a conformal map forms the complex dynamics of the map. Hence we

78

study the critical points of N,, which are the solutions of

Np(z) = %’gf) =0 4.2)
The roots of the polynomial and those of the second order derivative including multiplicities
form the total number of critical points of a Newton map. The points in white in Figure 4.1
represent solutions of p”(z) = 0. Hence, both black and white points together form the
complete set of the critical points. Let mg be the number of critical points in the immediate
basin Ug of a root &. From proposition 6 of [37], we know that an immediate basin has
mg access to infinity. Accesses to infinity are the channels of basin that extend to infinity
and each basin has atleast one such channel. This can be verified in Figure 4.1, where red,
green and yellow basins have one access to infinity as there is only one critical point in the

basin. Blue basin on the other hand has three separate accesses to infinity.

A set of at most 1.11d1og?d points (where d is the degree of the polynomial) in C can be
constructed for every polynomial p(z), such that there is at least one point in the set that
belongs to the basin of each root[37]. Polynomial p needs to be normalized such that all
its roots stay within the unit disk D. A specific set of ns starting points ry exp(i1};) were

suggested, where

s = [0.266321ogd],n = [(8.32547dlogd)] 4.3)

79

d—1 2v-1 21j
rv=(14+V2)(——=)% ,19]:7] (4.4)

for1 <v<sand 0 < j<mn—1. Itis to be noted that this applies to any polynomial and
results in large number of starting points. In this chapter, we aim to reduce the number of

starting points by exploiting the specific geometry of the root-MUSIC polynomial.

For an array of M sensors and L sources (L < M), the received sensor signal is

y(t) =V xx(t)+n(t) 4.5)

where V = [V(6y),....,V(6.)] is the steering matrix, x(t) = [x(¢),....,x.(¢t)]T is the
transmitted signal and n(t) = [n1(t),....,np(¢)]7 is the additive noise. The covariance

matrix and it’s eigen decomposition corresponds to

R = E(xx") = E,A;EF + E A EX (4.6)

E; and E,, are the signal and noise subspace respectively. E(.) is the expectation opertaion.

Ag =diag(M, ... AL) and Ay = 6Ly 1) (M1 (4.7)

80

are the signal and noise eiegenvalue vectors repectively, where 62 is the noise variance and

I represents an identitiy matrix. The MUSIC spectrum corresponds to

1

= VAV (8]’ A=E,E, (4.8)

S(0)

Here 6 represents the angle at which the spectrum is evaluated and the range and resolution
depends on desired precision of DOA estimation. V is the steering vector as given in (4.5)
and E, is the noise subpaces as given in (4.7). For a uniform linear array the m'™ element

of steering vector, V(0) is

Vin(0) = e~ 2mmz)sn®) -y — 1 M (4.9)

,where s is the seperation between elements of the antenna array and A is the wavelength

of the signal. Inverse of MUSIC spectrum in (4.8) can be simplified using(4.9) as

M M
s1(6)= Z Ze—jzmn(%)Sin(e)Amneﬂﬂm(%)sin(e)
m=1n=1
M—1 (4.10)
— Z ale—j2nl(%)sin(6)
I=—M+1

where s, A and 0 are parameters as explained in (4.9) and (4.8) respectively. In addition,

lth

a; =Y m—n—1Amn 1s the sum of entries of A along the /'" diagonal. A polynomial can be

81

constructed as

D)= Y az’ (4.11)

where a; is as explained in (4.10). It is well known that roots on the unit circle of a
polynomial D(z) give the direction of arrival of the signal. From now on we refer to D(z)

as root-MUSIC polynomial (RM polynomial).

4.3 Complex dynamics of root-MUSIC polynomial and

proposed polynomial rooting technique

Exploring the dynamics of Newton map of the RM polynomial was the key to arriving at
our polynomial rooting method. In this section, we make a few observations regarding
Newton map of RM polynomials and try to prove that these observations are valid for
any RM. Figure 4.2 depicts the Newton map for RM polynomial of degree d = 6 i.e.,
for a sensor array of size M = 4. The received signal was measured at different channel
conditions namely AWGN channel with SNR = —10db and SNR = 10db, Rician channel
with NLOS/LOS = —5db and additive noise of SNR = 0 and ideal channel condition of
SNR = inf. Figure 4.3 depcits the Newton map for various sensor array size (M) ie. RM

polynomials of various degrees (d = 2M — 2) at AWGN with SNR = 0db. A unit circle is

82

also marked to offer an idea regarding relative positioning of the roots.

(a) SNR=-10db (b) SNR=10db
(¢) SNR=0db and pdb=-5db (d) SNR=inf db

Figure 4.2: Newton map of RM polynomial of degree 6 ie. a sensor array
of 4 elements at various channel conditions

83

(a) Array size=4 (b) Array size=6

(¢) Array size=8

Figure 4.3: Newton map of RM polynomial of various degrees at SNR=0db

84

4.3.1 Symmetry of polynomial roots across unit circle

The hermitian nature of matrix A in (4.8) enables the coefficients of polynomial D(z) to be

complex conjugate pairs a; = a;. Accordingly,

D(z) =D"(z) (4.12)

d— d—1
D) = T] (- 200" = T](1 - 72) @i
k=0 k=0

where d is the degree of polynomial. z; and 7 are the d roots of the polynomial. Since
D(z) = D*(z) we have 7;~! = z;. This confirms that roots of a RM polynomial exist in

pairs which are symmetric across the unit circle. Let the d roots of D(z) be represented as

20 = |20[e/ 8] 2yt = |zg1[e/ e (4.14)

where d = 2M — 2. Due to symmetric nature the roots, the DOA represented by that roots

are equal.
A A
— = — ke k=0...d/2—1 4.15
g e = 5 A8k 1 / (4.15)

85

This can be validated via Newton maps depicted in Figure 4.2 and Figure 4.3, where roots
exist in symmetric pairs independent of the channel conditions and degree of polynomial
be. Moreover, as SNR increases the roots corresponding to DOA move closer to the unit

circle.

4.3.2 Accesses to infinity

As stated before, the critical points of the polynomial, hence the accesses to infinity are
important in understanding the complex dynamics. For a polynomial D(z) of degree d,
total number of critical points are (d + (d —2)) corresponding to d roots of D(z) and (d —2)
roots of D”(z). From Figure 4.3 we can see that roots of D”(z) (depicted in white points)
always lie in the basin of roots of D(z) found within unit disk. We do not know of any case
where this does not hold true for RM polynomials. This implies only roots within the unit
disk have multiple access to infinity. Also we observe that basin of the roots fork into two
channels at the apex of convex hull of roots outside the unit disk. Hence the total number

of channels that intersect with the unit disk are

Ny==+d-2-2)=d-2 (4.16)

86

4.3.3 Proposed set of initial points

(4.15) confirms that DOA corresponding to the symmetric pair of roots are equal and it
suffices to find one of the two. Thus, we need to find only half of the roots of a polynomial
which reduces the number of initial points required for the Newton’s method by two fold.
We choose to find the set of roots inside the unit circle for two reasons. Firstly, the intial
points can be placed on the unit circle for we know that unit circle lies entirely in the basins
of the inner roots. Secondly, the distance between the initial point and the root it converges
to is less, thus reducing the number of Newton iterations it takes to converge to the roots.
From (4.16) we know that number of channel on the unit circle is (d —2). Ignoring the
fact that each channel can be of varying thickness on the unit circle, we place the (d —2)
equi-spaced initial points on the unit circle. This can lead to some of the roots having more
than one initial points in its basin. One might argue that it is possible that no initial point
lies in the basin of one or more roots. We observed that thickness of the channels are almost
similar, reducing the chances of missing a basin while placing an initial point. We confirm
with the help of extensive simulations of Newton maps of RM polynomial of degree 6 to
510 (M = 6 to 256) that none of the basins are missed. The proposed set of initial points

are

- 21k

o =1%e™N . k=1...N, 4.17)

87

,where N, is the number of channels on unit disk as given in (4.16). In order to give a
perspective on the reduction in size of initial set of points, we compute the number of
initial points prescribed in (4.17) and (4.3). For polynomial of degree 14 (M = 8) the size
of initial set is 12 points for the proposed method as compared to 308 points for the later.
The huge size of initial set is justified for a generic polynomial but would be an overkill for

structured simple polynomial like ours.

4.3.4 Proposed method

Now that the initial set of points are available to us, we can apply Newton’s method to each
of these initial points simultaneously. The required number of iterations (&;) is decided by
the desired precision of roots. The correct root (corresponding to the DOA) from final set
of points can be identified by two conditions. Firstly, the difference between consequent

Newton iterations should converge to predefined tolerance (&) within N; iterations. That is

Ziv1— 2z —> €asi— N; (4.18)

This test eliminates all the initial points which lead to orbits attracted to stable periodic
orbits. The second and more obvious condition being the correct root is the root closest to

the unit circle.

The algorithm for proposed method is as below.

88

Choose €, N;

Determine N, =d —2

Initialize final set of points Ny = []
fori=1,...,N,do

initial point, zjo = 1 xe = M

for j=1,...,N;do

i P(Zi<j71))
P/(Zi(j—l))

ij = Zi(j-1)
end for
ifzj—1 —z; — €as j— N; then
Ny = [Ny, zin;]
else
discard z;y,
end if
end for

Find root closest to the unit circle z fipq

8poa = sin™! (zlﬁ arg(zfinat))

89

4.4 Simulation and Complexity analysis

It is clear that we need to perform N, x N; polynomial evaluations of p(z) and p'(z)
each. Without using any special polynomial evaluation methods, each of these polynomial
evaluations p(z) of degree d requires 2d multiplications and d additions and polynomial
evaluations p’(z) requires d multiplications and d additions. It also needs N; x N,, divisions
and subtractions. Thus total number of floating point operations (assigning same weights

to +,-,x,/) required for proposed method is

Total flops (proposed) = N, x N; x (5d +2) (4.19)

Since N, = O(d), the overall computations is in the order of O(d?). Using (d — 2) parallel
processors, the cost of computations in each processor is O(d). Table 4.1 compares
the various existing polynomial rooting with proposed method in terms of computation
complexity and possibility of parallel implementation. Lower number of initial points,
sufficient exploitable parallelism and O(d) cost for each processor justifies the superiority
of the proposed method over others. Monte-Carlo simulations were conducted to evaluate
the performance of the proposed system in various channel conditions. We compare the
performance in terms of root mean square error (RMSE) in DOA estimation at varying
number of computations. The computations were expressed as total number of flops

required for proposed method given in (4.19) and compared with the method proposed in

90

Table 4.1
Comparison of computational complexity of various polynomial rooting

method
Method Computational Parallel Comments
Complexity Implementations
Eigenvalue of 0(d?) None,QR decomp. | Each QR step
companion matrix is inherently is O(d?)
using QR decomp.[35] sequential
Fast QR based 0(d?) None,QR decomp. | Each QR step
on n'" roots is inherently is O(d)
of unity of p(z)[68] sequential
Roots by bala- O(dlog>(d)logB) O(log®d)logh Factorization
nced factorization using O(dlog®d) introduces
of polynomial[70] processors errors
Newton’s method O(d*log*(d)) O(d) using Large set of
for general O(dlog*d) initial points
polynomial[37] processors
Proposed method 0(d?) O(d) using Method specific
for RM to RM
polynomial O(d) processors polynomials

The total number of flops required for this method is :

Total flops (existing method) = 123 xd* +32xd

91

[68], as this is an improved version of popular "eigenvalue of companion matrix" methods.

(4.20)

Figure 4.4 and Figure 4.5 evaluates the performance of proposed method for a single
source at DOA = 35° where 32 samples were used for constructing covariance matrix for
pure AWGN channel and Rician channel with one non-line of sight (NLOS) component
respectively. It can be observed that the proposed method can achieve same the RMSE as

existing method, with much lesser number of computations. Usually under good channel

—g— Exisitng polynomil rooting at SNR=-10ch
—o~— Exising polynomial rooting at SNR=-10dh 1
—8— Exisitng polynomial rooting at SNR=-5db

% Exising polynomial rooting at SNR=-5db

RMSE of IODOA

Number of computations (FLOPS) i
Figure 4.4: Computations vs RMSE in DOA for AWGN channel

conditions computationally cheap methods such as Delay and Sum (DAS) and its variations
are used and systems resort to more complex methods like root-MUSIC only when channel
conditions worse. Therefore, we have chosen to evaluate the performance only at low SNR
and multipath conditions. It is to be noted that the proposed algorithm only replaces the root
finding step in root-MUSIC algorithm therefore the overall performance of root-MUSIC
remains unchanged. The advantage of proposed method lies in reduced complexity and

inherent parallelism over traditional root finding methods.

92

\ \ \ \
_g Exiing polynomial rooting at NLOS/LOS=-5db

—g— Proposed polynomial rootng at NLOSILOS=-3db
—a— Exisitng polynomial roofing at NLOS/LOS=-10ch
—— Proposed polynomil rooting at NLOS/LOS=-10db

RMSE of IDODOA

- -
“o

f

)
Number of computations (FLOPS) il
Figure 4.5: Computations vs RMSE in DOA for Rician channel

4.5 Conclusion

In this chapter, we propose a new parallel polynomial rooting technique for root-MUSIC.
Complex dynamics of root-MUSIC polynomial’s Newton maps were studied and few well
defined characteristics were described and proved. By providing a well defined set of
initial points for Newton’s method that guarantee convergence to the desired root, we
eliminated the need for other complex polynomial rooting techniques. The proposed
method has an overall computational cost of O(d?) and O(d) when implemented on O(d)

parallel processors. It is seen that comparable accuracy in DOA can be achieved via much

93

lower computations by using the proposed technique. Inherent parallelism, fixed latency,
ease of implementation and ease of extension to large sensor array (hence higher degree
polynomial rooting) characterize this method and makes it suitable for real-time signal
processing. Based on the results of this chapter is it anticipated that better understanding of
complex dynamics of polynomials in other DOA techniques and signal processing schemes
can lead to better polynomial rooting techniques. Future directions involve implementing
the proposed method on a FPGA platform and exploring other polynomials in DOA

estimation techniques.

94

Chapter 5

Conclusion

5.1 Conclusion

There is a growing need for real-time localization systems with various civilian and
military applications. DOA estimation is considered a key component in many emerging
localization systems such as WLPS. Subspace based DOA estimation for ULA, known
as root-MUSIC was chosen for WLPS due to its superior performance with lower
computational complexity compared to other subspace methods. Although root-MUSIC
is computationally less complex than other DOA estimation techniques, it is still not
simplified enough to meet the real-time constraints. This thesis was motivated by the need

for real-time signal processing for root-MUSIC DOA implementation. Figure 5.1 depicts

95

the root-MUSIC system with proposed algorithms replacing the traditional algorithms.
The contributions of this thesis are mainly focused on: Fast converging SVD (subspace
decomposition) and low cost, parallel polynomial rooting. The proposed modules are
underlined. Both these algortihms were proposed with the objective of meeting real-time
constraints for the WLPS system. FPGA was chosen as the hardware platform for reasons
discussed before in section ??. Both the proposed algorithms were analyzed and compared

with existing algorithms. SVD algorithm was implemented on FPGA.

1

> Noise Computing the
RF Data matrix .| Proposed > subspace - polifnonfial
frontend > formation SVD Extraction coefficients
N

Proposed Finding the
Pml .| rootclosest - DOA
TJYF “l totheunit “| calculation
footng circle

Figure 5.1: Root-MUSIC system with proposed algorithms

A new fast converging SVD was proposed, which depicted reduction in the number of
iterations by almost half for large matrix sizes. This algorithm is suitable for real-time
signal processing applications such as localization, channel estimation in MIMO systems,
image processing etc. The fast convergence rate was due to the proposed dynamic ordering
where % big elements were annihilated in each iteration, where N is the size of matrix.
The proposed algorithm retained the parallelism proposed in [31]. The performance was

analyzed against BLV array in terms of number sweeps (iteration/N) at various matrix

96

sizes. The results were promising and motivated us to implement the proposed algorithm

on FPGA.

A system design for the proposed algorithm was presented so that it can be utilized by
designers who might want to adopt the proposed algorithm for other hardware platforms.
The proposed design can be extended to bigger matrix sizes with minimal changes. The
traditional BLV array and the proposed design were implemented on FPGA to compare
their convergence rate and throughput. Highly parallel and pipelined architectures were
developed for both designs. Comparative throughput for both algorithms coupled with
faster convergence for the proposed algorithm represents the achievable improvement in
the proposed method. Upto 180MHz of maximum frequency (f,,:) can be achieved for
a 4 x 4 matrix while it occupies less than 10% of FPGA capacity . 8 x 8 SVD can be
clocked at upto 107M Hz with less than 30% occupancy. The tradeoff of proposed method
is increase in initial latency. For streaming architecture such as the one proposed it this
thesis, the latency only impacts the time of first output, which can be treated as warming

up period.

With improvements in SVD, the complexity bottleneck was shifted to the computationally
complex task of polynomial rooting. = As mentioned before in section 4.1 many
polynomial rooting techniques are sequential and unsuitable for real-time polynomial
rooting implementation. This thesis proposes a set of initial points such that all roots can

be found by applying Newton iterations to these points. This initial set was developed

97

vis analyzing complex dynamics of Newton Map of the root-MUSIC polynomial. The
proposed method was compared with many existing methods, both sequential and parallel.
When implemented in sequential manner the proposed method has computations cost of
O(d?) and when implemented on O(d) parallel processors its cost is O(d), where d is the
degree of polynomial. The proposed method operates based on unique characteristics of

root-MUSIC.

5.2 Future Work

5.2.1 In the direction of SVD

5.2.1.1 Improvements to the proposed design

1. Continued design effort: Although maximum amount of parallelism has been
exploited and the system has been pipelined to a large extent, continued design efforts
can lead to slight improvements in the performance. The question remains if the

improvement achieved is worth the design effort.

2. Improvement in latency: As already pointed out, the tradeoff of improvement in
performance is an increase in initial latency. Although for streaming data processing,

this latency translates to warm-up period, we believe this can be reduced using better

98

schemes to find % maximum elements. Another question that remains unanswered
is "How much degradation in performance will be seen if we do not target the best
%’ maximum elements?" . The present scheme finds the best possible %V maximum

elements following row column exclusivity. We can improve the latency if we deviate

from the proposed scheme but at the cost of performance.

5.2.1.2 Developing an IP

It was emphasised throughout the thesis that there are no COTS IP cores for SVD. The
design can easily lead to a versatile IP by working on the robustness of the design and by

introducing more configurability. Following configurations can be introduced :

1. Word length and accuracy of singular values.

2. Matrix size as dynamic reconfiguration of FPGA [74]

3. Implementation of multiplication can be configured to either use DSP48Es or LUT

base multipliers.

4. Implementation of CORDIC: Individual CORDIC modules can be configured but a
high level configuration for all CORDICs will be convenient for users.This can be

incorporated to either maximize the performance or minimize occupied slices.

99

5.2.1.3 SVD using 4-Dimensional Given Rotation

Hmailtonian Quaternion algebra has been known for quite some time now and in [75], it
was used for replacing 2 x 2 plane rotation with more powerful 4 x 4 rotation. This leads
to Quaternion Jacobi like method for eigen value decomposition (EVD), which guarantees
at least one sweep less than 2 x 2 Jacobi. It is possible to derive an SVD using 4 x 4

Quaternion Jacobi rotation (J4).

Ain An| Az Ap Ais A | Az Asg
A An| Ax Ap Axs A | Ay Ass
Az Asﬁ Asz Az Ass Assx/-\ﬂ Asg
Az An| Az An Ass Ass | Az Asg
S %)
As1 Asz| Asz As Ass Ass | Asz Ass
Acr Az | Aez Aes Aes Ass | Ae7 Aes
5 52
Az Az | A An A A | Amr Ass
Ag1 Asx | Ags Am Aes Ags | As7 Ass

Figure 5.2: SVD using 4 dimensional Given’s rotation

Figure 5.2 shows 2 x 2 array of J4 processors used for digitalizing a 8 x 8 matrix. Similar

100

to original BLV a static ordering scheme can be developed for J4 based systolic array.
This will lead to a reduction in the number of sweeps. But the question remains " Is this
reduction in the number of sweeps justified by the increase in complexity?" J4 algebra for
symmetric matrices has already been successfully derived for, but J4 algebra for general
matrix needs attention. In a fashion similar to proposed method, we can target more than

one big element in 4 x 4 submatrix.

5.2.2 In the direction of polynomial rooting

5.2.2.1 Complex dynamics of Newton map of root-MUSIC polynomial

Although many of the observations of complex dynamics of Newton map of root-MUSIC
polynomial have been proven in section 4.3, the access to infinity and related observations
haven’t been thoroughly treated. Study in this direction might expose further reduction
of set of initial points or might expose shortcomings of the method that haven’t been

discovered yet.

101

5.2.2.2 Implementation and others

1. FPGA implementation of the proposed Polynomial rooting needs to be completed to

evaluate the occupancy and maximum achievable frequency of operation.

2. For larger degree of polynomials, it will be an interesting observation to see if
implementing the proposed algorithm on graphical programming unit (GPU) offers

any advantage over FPGA implementation.

3. To explore if other polynomial rooting based subspace techniques exhibit regular

complex dynamics like root-MUSIC does.

102

References

[1] N. Patwari, J. N. Ash, S. Kyperountas, A. O. Hero, R. L. Moses, and N. S. Correal,
“Locating the nodes: cooperative localization in wireless sensor networks,” Signal

Processing Magazine, IEEE, vol. 22, no. 4, pp. 54-69, 2005.

[2] M. Chen, S. Gonzalez, A. Vasilakos, H. Cao, and V. C. Leung, “Body area networks:

A survey,” Mobile Networks and Applications, vol. 16, no. 2, pp. 171-193, 2011.

2

[3] A. Nehorai and E. Paldi, “Acoustic vector-sensor array processing,” Signal

Processing, IEEE Transactions on, vol. 42, no. 9, pp. 2481-2491, 1994.

[4] S. Guolin, C. Jie, G. Wei, and K. J. R. Liu, “Signal processing techniques in
network-aided positioning: a survey of state-of-the-art positioning designs,” Signal

Processing Magazine, IEEE, vol. 22, no. 4, pp. 12-23, 2005.

[5] S. Gezici, T. Zhi, G. B. Giannakis, H. Kobayashi, A. F. Molisch, H. V. Poor, and

Z.. Sahinoglu, “Localization via ultra-wideband radios: a look at positioning aspects

103

[6]

[7]

[8]

[9]

[10]

[11]

for future sensor networks,” Signal Processing Magazine, IEEE, vol. 22, no. 4,

pp. 70-84, 2005.

S. A. Zekavat, O. Abdelkhalik, S. T. Goh, and D. R. Fuhrmann, “A novel space-based
solar power collection via LEO satellite networks: Orbital management via wireless

local positioning systems,” in Aerospace Conference, 2010 IEEE, pp. 1-9.

T. Hui and S. A. Zekavat, “A novel wireless local positioning system via a merger of
DS-CDMA and beamforming: Probability-of-detection performance analysis under
array perturbations,” Vehicular Technology, IEEE Transactions on, vol. 56, no. 3,

pp. 1307-1320, 2007. (Reza).

S. A. Zekavat, H. Tong, and J. Tan, “A novel wireless local positioning system
for airport (indoor) security,” in Defense and Security, pp. 522-533, International

Society for Optics and Photonics.

L. C. Godara, “Application of antenna arrays to mobile communications. ii.
beam-forming and direction-of-arrival considerations,” Proceedings of the IEEE,

vol. 85, no. 8, pp. 1195-1245, 1997.

A. J. Viterbi, CDMA: principles of spread spectrum communication. Addison

Wesley Longman Publishing Co., Inc., 1995.

S. G. V. Giri, G. A. Price, and S. R. Zekavat, “A novel synchronization method for

active positioning via DSSS: Achieving low resource usage and latency,” in Wireless

104

[12]

[13]

[14]

[15]

[16]

for Space and Extreme Environments (WIiSEE), 2013 IEEFE International Conference

on, pp. 1-6.

M. Roddewig, S. A. Zekavat, and S. Nooshabadi, “Design of a costas loop down
converter,” in Circuits and Systems, 2009. MWSCAS °09. 52nd IEEE International

Midwest Symposium on, pp. 244-247. (Reza).

H. Tong and S. A. Zekavat, “LCMV beamforming for a novel wireless local
positioning system: a stationarity analysis,” in Defense and Security, pp. 851-862,

International Society for Optics and Photonics.

H. Tong, J. Pourrostam, and S. Zekavat, “Optimum beam-forming for a novel
wireless local positioning system: a stationarity analysis and solution,” EURASIP

Journal on Advances in Signal Processing, vol. 2007, 2007.

M. Pourkhaatoun and S. Zekavat, “A novel ICA-based TOA estimation technique:
achieving high resolution, high reliability, and, low cost,” in proceedings IEEE
International Workshop on Signal Processing and its Applications, WOSPA, vol. 8§,

pp. 18-20.

S. Zekavat, A. Kolbus, X. Yang, Z. Wang, J. Pourrostam, and M. Pourkhaatoun, “A
novel implementation of DOA estimation for node localization on software defined
radios: achieving high performance with low complexity,” in Signal Processing
and Communications, 2007. ICSPC 2007. IEEE International Conference on,

pp. 983-986, IEEE.

105

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Z. Wang, “A novel semidistributed localization via multinode TOA2ASDOA

fusion,” Vehicular Technology, IEEE Transactions on, vol. 58, no. 7, pp. 3426-3435,

2009.

S. A. R. Zekavat, An Introduction to Direction-of-Arrival Estimation Techniques via

Antenna Arrays, pp. 279-317. John Wiley and Sons, Inc., 2011.

R. O. Schmidt, “Multiple emitter location and signal parameter estimation,’

Antennas and Propagation, IEEE Transactions on, vol. 34, no. 3, pp. 276-280, 1986.

P. Stoica and A. Nehorai, “MUSIC, maximum likelihood, and cramer-rao bound:
further results and comparisons,” Acoustics, Speech and Signal Processing, IEEE

Transactions on, vol. 38, no. 12, pp. 2140-2150, 1990.

D. A. Linebarger, R. D. DeGroat, and E. M. Dowling, “Efficient direction-finding
methods employing forward/backward averaging,” Signal Processing, IEEE

Transactions on, vol. 42, no. 8, pp. 2136-2145, 1994.

J. T. Mayhan and L. Niro, “Spatial spectral estimation using multiple beam
antennas,” Antennas and Propagation, IEEE Transactions on, vol. 35, no. 8,

pp. 897-906, 1987.

A. Barabell, “Improving the resolution performance of eigenstructure-based
direction-finding algorithms,” in Acoustics, Speech, and Signal Processing, IEEE

International Conference on ICASSP ’83., vol. 8, pp. 336-339.

106

[24]

[25]

[26]

[27]

[28]

[29]

[30]

B. D. Rao and K. V. S. Hari, “Performance analysis of root-music,” Acoustics,

Speech and Signal Processing, IEEE Transactions on, vol. 37, no. 12,

pp. 1939-1949, 1989.

C. P. Mathews and M. D. Zoltowski, “Eigenstructure techniques for 2-D angle
estimation with uniform circular arrays,” Signal Processing, IEEE Transactions on,

vol. 42, no. 9, pp. 2395-2407, 1994.

M. Costa, A. Richter, F. Belloni, and V. Koivunen, ‘“Polynomial rooting-based
direction finding for arbitrary array configurations,” in Sensor Array and

Multichannel Signal Processing Workshop, 2008. SAM 2008. 5th IEEE, pp. 58—62.

J. P. Burg, “Maximum entropy spectral analysis,” in 37th Annual International

Meeting., Society of Exploration Geophysics.

R. Roy and T. Kailath, “ESPRIT-estimation of signal parameters via rotational
invariance techniques,” Acoustics, Speech and Signal Processing, IEEE Transactions

on, vol. 37, no. 7, pp. 984-995, 1989.

S. M. Kuo, B. H. Lee, and W. Tian, Real-Time Digital Signal Processing:

Fundamentals, Implementations and Applications. John Wiley and Sons, 2013.

E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, and A. McKenney, “LAPACK user’s guide SIAM,”

1999.

107

[31]

[32]

[33]

[34]

[35]

[36]

[37]

F. T. L. R. P. Brent and C. V. Loan, “Computation of the singular value

decomposition using mesh-connected processors,” 1985.

A. Ahmedsaid, A. Amira, and A. Bouridane, “Improved SVD systolic array
and implementation on FPGA,” in Field-Programmable Technology (FPT), 2003.

Proceedings. 2003 IEEE International Conference on, pp. 35—42.

J. M. McNamee, “A bibliography on roots of polynomials,” Journal of

Computational and Applied Mathematics, vol. 47, no. 3, pp. 391-394, 1993.

J. M. McNamee and V. Pan, Numerical methods for roots of polynomials, vol. 16.

Newnes, 2013.

A. Edelman and H. Murakami, “Polynomial roots from companion matrix

eigenvalues,” Mathematics of Computation, vol. 64, no. 210, pp. 763-776, 1995.

V. Y. Pan, “Univariate polynomials: Nearly optimal algorithms for numerical
factorization and root-finding,” Journal of Symbolic Computation, vol. 33, no. 5,

pp. 701-733, 2002.

J. Hubbard, D. Schleicher, and S. Sutherland, “How to find all roots of complex
polynomials by newton’s method,” Inventiones mathematicae, vol. 146, no. 1,

pp. 1-33, 2001.

108

[38]

[39]

[40]

[41]

[42]

[43]

H. Andrews and C. Patterson, “Singular value decompositions and digital image
processing,” Acoustics, Speech and Signal Processing, IEEE Transactions on,

vol. 24, no. 1, pp. 26-53, 1976.

A. Ahmedsaid and A. Amira, “Accelerating SVD on reconfigurable hardware
for image denoising,” in Image Processing, 2004. ICIP *04. 2004 International

Conference on, vol. 1, pp. 259-262 Vol. 1.

M. Rahmati, M. S. Sadri, and M. A. Naeini, “FPGA based singular value
decomposition for image processing applications,” in Application-Specific Systems,
Architectures and Processors, 2008. ASAP 2008. International Conference on,

pp- 185-190.

Y. L. Chen, C. Z. Zhan, T. J. Jheng, and A. Y. Wu, “Reconfigurable adaptive singular
value decomposition engine design for high-throughput MIMO-OFDM systems,”

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 21, no. 4,

pp. 747-760, 2013.

J. Lofgren, S. Mehmood, N. Khan, B. Masood, M. Awan, 1. Khan, N. A. Chisty,
and P. Nilsson, “Hardware implementation of an SVD based MIMO OFDM channel

estimator,” in NORCHIP, 2009, pp. 1-4.

W. Yue, K. Cunningham, P. Nagvajara, and J. Johnson, “Singular value

decomposition hardware for MIMO: State of the art and custom design,” in

109

[44]

[45]

[46]

[47]

[48]

[49]

Reconfigurable Computing and FPGAs (ReConFig), 2010 International Conference

on, pp. 400-405.

S. K. Jha and R. D. S. Yadava, “Denoising by singular value decomposition and
its application to electronic nose data processing,” Sensors Journal, IEEE, vol. 11,

no. 1, pp. 3544, 2011.

A. Said, T. Kalker, L. Bowon, and M. Fozunbal, “Massively parallel processing of
signals in dense microphone arrays,” in Circuits and Systems (ISCAS), Proceedings

of 2010 IEEE International Symposium on, pp. 3080-3083.

T. L. Marzetta, “How much training is required for multiuser MIMO?,” in Signals,
Systems and Computers, 2006. ACSSC ’06. Fortieth Asilomar Conference on,

pp. 359-363.

H. A. Suraweera, N. Hien Quoc, T. Q. Duong, Y. Chau, and E. G. Larsson,
“Multi-pair amplify-and-forward relaying with very large antenna arrays,” in

Communications (ICC), 2013 IEEE International Conference on, pp. 4635-4640.

G. Golub and C. Van Loan, Matrix Computations. Johns Hopkins University Press,

1996.

J. H. Wilkinson, “Note on the quadratic convergence of the cyclic jacobi process,”

Numerische Mathematik, vol. 4, no. 1, pp. 296-300, 1962.

110

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

J. Demmel and V. K., “Jacobi’s method is more accurate than QR,” SIAM Journal

on Matrix Analysis and Applications, vol. 13, no. 4, pp. 1204-1245, 1992.

G. E. F. Henrici and P., “The cyclic jacobi method for computing the principal values

of a complex matrix,” Trans. Amer. Math. Soc, 1958.

F. T. Luk and P. Haesun, “A proof of convergence for two parallel Jacobi SVD

algorithms,” Computers, IEEE Transactions on, vol. 38, no. 6, pp. 806-811, 1989.

M. R. Hestenes, “Inversion of matrices by biorthogonalization and related results,”

vol. 6, pp. 51-90, Mar. 1958.

J. R. Cavallaro and F. T. Luk, “CORDIC arithmetic for an SVD processor,” in

Computer Arithmetic (ARITH), 1987 IEEE 8th Symposium on, pp. 113-120.

B. Yang and J. BAtihme, “Reducing the computations of the singular value
decomposition array given by Brent and Luk,” SIAM Journal on Matrix Analysis

and Applications, vol. 12, no. 4, pp. 713-725, 1991.

N. D. Hemkumar and J. R. Cavallaro, “A systolic VLSI architecture for complex
SVD,” in Circuits and Systems, 1992. ISCAS ’92. Proceedings., 1992 IEEE

International Symposium on, vol. 3, pp. 1061-1064 vol.3.

M. Weiwei, M. E. Kaye, D. M. Luke, and R. Doraiswami, “An FPGA-based singular
value decomposition processor,” in Electrical and Computer Engineering, 2006.

CCECE ’06. Canadian Conference on, pp. 1047-1050.

111

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

Xilinx, Virtex-6 FPGA DSP48E1 Slice-User Guide, 2011.

H. Javaid, X. He, A. Ignjatovic, and S. Parameswaran, “Optimal synthesis of latency
and throughput constrained pipelined MPSoCs targeting streaming applications,’
in Hardware/Software Codesign and System Synthesis (CODES+ISSS), 2010

IEEE/ACM/IFIP International Conference on, pp. 75-84, Oct 2010.

Xilinx, System Generator for DSP- User Guide, 2012.

Xilinx, System Generator for DSP-Getting Started Guide, 2011.

Xilinx, LogiCORE IP CORDIC v 4.0 -Product Specification, 2011.

Y. Bresler and A. Macovski, “Exact maximum likelihood parameter estimation
of superimposed exponential signals in noise,” Acoustics, Speech and Signal

Processing, IEEE Transactions on, vol. 34, no. 5, pp. 1081-1089, 1986.

L. C.Zhao, P. R. Krishnaiah, and Z. D. Bai, “On detection of the number of signals in
presence of white noise,” Journal of Multivariate Analysis, vol. 20, no. 1, pp. 1-25,

1986.

Z. Bai, P. R. Krishnaiah, and L. Zhao, “On the direction of arrival estimation,” report,

DTIC Document, 1987.

J. Selva, “Computation of spectral and root MUSIC through real polynomial
rooting,” Signal Processing, IEEE Transactions on, vol. 53, no. 5, pp. 1923-1927,

2005.

112

[67] J. M. McNamee and V. Pan, Numerical methods for roots of polynomials, vol. 16.

Newnes, 2013.

[68] D. A. Bini, L. Gemignani, and V. Y. Pan, “Fast and stable QR eigenvalue
algorithms for generalized companion matrices and secular equations,” Numerische

Mathematik, vol. 100, no. 3, pp. 373—408, 2005.

[69] D. A. Bini, L. Gemignani, and V. Y. Pan, “Improved initialization of the accelerated
and robust QR-like polynomial root-finding,” Electronic Transactions on Numerical

Analysis, vol. 17, pp. 195-205, 2004.

[70] C. A. Neff and J. H. Reif, “An efficient algorithm for the complex roots problem,”

Journal of Complexity, vol. 12, no. 2, pp. 81-115, 1996.

[711 S. A. Zekavat, A. Kolbus, Y. Xiaofeng, W. Zhonghai, J. Pourrostam, and
M. Pourkhaatoun, “A novel implementation of DOA estimation for node localization
on software defined radios: Achieving high performance with low complexity,” in
Signal Processing and Communications, 2007. ICSPC 2007. IEEE International

Conference on, pp. 983-986.

[72] W. T. Shaw, Complex analysis with Mathematica, vol. 1. Cambridge University

Press, 2006.

[73] M. McClure, “Newton’s method for complex polynomials,” A preprint version of
a, "Mathematical Graphics" column from Mathematica in Education and Research,

pp- 1-15, 2006.

113

[74]

[75]

[76]

[77]

[78]

[79]

P. Lysaght, B. Blodget, J. Mason, J. Young, and B. Bridgford, “Invited paper:
Enhanced architectures, design methodologies and CAD tools for dynamic

reconfiguration of xilinx FPGAs,” in Field Programmable Logic and Applications,

2006. FPL 06. International Conference on, pp. 1-6, IEEE.

N. Mackey, “Hamilton and jacobi meet again: Quaternions and the eigenvalue
problem,” SIAM journal on matrix analysis and applications, vol. 16, no. 2,

pp. 421-435, 1995.

F. Belloni, A. Richter, and V. Koivunen, “Doa estimation via manifold separation for
arbitrary array structures,” Signal Processing, IEEE Transactions on, vol. 55, no. 10,

pp. 48004810, 2007.

L. Hong-bing, G. Yi-duo, and G. Jian, “Computational efficient DOA estimation
algorithm based on MSWF and polynomial rooting,” in Automatic Control and

Artificial Intelligence (ACAI 2012), International Conference on, pp. 672-675.

J. M. McNamee, “An updated supplementary bibliography on roots of polynomials,”
Journal of Computational and Applied Mathematics, vol. 110, no. 2, pp. 305-306,

1999.

K. V. Rangarao and S. Venkatanarasimhan, “gold-MUSIC: A variation on MUSIC
to accurately determine peaks of the spectrum,” Antennas and Propagation, IEEE

Transactions on, vol. 61, no. 4, pp. 2263-2268, 2013.

114

[80]

[81]

[82]

[83]

[84]

[85]

H. Rohling, M.-M. Meinecke, K. Mott, and L. Urs, “Research activities in
automotive radar,” in Physics and Engineering of Millimeter and Sub-Millimeter

Waves, 2001. The Fourth International Kharkov Symposium on, vol. 1, pp. 48-51,

IEEE.

K. Saneyoshi, “Drive assist system using stereo image recognition,” in Intelligent

Vehicles Symposium, 1996., Proceedings of the 1996 IEEE, pp. 230-235, IEEE.

A. Ahmedsaid, A. Amira, and A. Bouridane, “Accelerating MUSIC method
on reconfigurable hardware for source localisation,” in Circuits and Systems,
2004. ISCAS '04. Proceedings of the 2004 International Symposium on, vol. 3,

pp. II-369-72 Vol.3.

C. Bobda and N. Steenbock, “Singular value decomposition on distributed
reconfigurable systems,” in Rapid System Prototyping, 12th International Workshop

on, 2001., pp. 38-43.

I. Bravo, P. Jimenez, M. Mazo, J. L. Lazaro, and A. Gardel, “Implementation in
FPGA of Jacobi method to solve the eigenvalue and eigenvector problem,” in Field
Programmable Logic and Applications, 2006. FPL ’06. International Conference

on, pp. 1-4.

S. Chi-Chia and J. Gotze, “VLSI circuit design concept for parallel iterative
algorithms in nanoscale,” in Communications and Information Technology, 2009.

ISCIT 2009. 9th International Symposium on, pp. 688—692.

115

[86] G. A. Constantinides, P. Y. K. Cheung, and W. Luk, “Wordlength optimization for
linear digital signal processing,” Computer-Aided Design of Integrated Circuits and

Systems, IEEE Transactions on, vol. 22, no. 10, pp. 1432-1442, 2003.

[87] J. Coyne, D. Cyganski, and R. J. Duckworth, “FPGA-based co-processor for singular
value array reconciliation tomography,” in Field-Programmable Custom Computing

Machines, 2008. FCCM °08. 16th International Symposium on, pp. 163—-172.

[88] Z. Drmac, “Implementation of jacobi rotations for accurate singular value
computation in floating point arithmetic,” SIAM Journal on Scientific Computing,

vol. 18, no. 4, pp. 1200-1222, 1997.

[89] Z. Drmac and K. Veselic, “New fast and accurate jacobi SVD algorithm. i,” SIAM

Journal on Matrix Analysis and Applications, vol. 29, no. 4, pp. 1322-1342, 2008.

[90] Z. Drmac and K. Veselic, “New fast and accurate jacobi SVD algorithm. II,” SIAM

Journal on Matrix Analysis and Applications, vol. 29, no. 4, pp. 1343-1362, 2008.

[91] P. M. Gatis Valters1, “Automation of FPGA implementation of unitary transforms

based on elementary generalized unitary rotation,” 2011.

[92] C. Kotas and J. Barhen, “Singular value decomposition utilizing parallel algorithms

on graphical processors,” in OCEANS 2011, pp. 1-7.

[93] H. Kuan-Ju, S. Wei-Yeh, C. Jui Chung, F. Chih Wei, and F. Wai-Chi, “A pipeline

VLSI design of fast singular value decomposition processor for real-time EEG

116

[94]

[95]

[96]

[97]

system based on on-line recursive independent component analysis,” in Engineering
in Medicine and Biology Society (EMBC), 2013 35th Annual International

Conference of the IEEE, pp. 1944—1947.

H. Kyungtae and B. L. Evans, “Wordlength optimization with
complexity-and-distortion measure and its application to broadband wireless
demodulator design,” in Acoustics, Speech, and Signal Processing, 2004.
Proceedings. (ICASSP '04). IEEE International Conference on, vol. 5, pp. V-37-40

vol.5.

H. Kyungtae, A. G. Olson, and B. L. Evans, “Automatic floating-point to fixed-point
transformations,” in Signals, Systems and Computers, 2006. ACSSC ’06. Fortieth

Asilomar Conference on, pp. 79-83.

N. Le Bihan and S. J. Sangwine, “Jacobi method for quaternion matrix singular
value decomposition,” Applied Mathematics and Computation, vol. 187, no. 2,

pp. 1265-1271, 2007.

L. M. Ledesma-Carrillo, E. Cabal-Yepez, R. de J Romero-Troncoso,
A. Garcia-Perez, R. A. Osornio-Rios, and T. D. Carozzi, “Reconfigurable
FPGA-based unit for singular value decomposition of large m x n matrices,” in
Reconfigurable Computing and FPGAs (ReConFig), 2011 International Conference

on, pp. 345-350.

117

[98] N. Mackey, “Hamilton and Jacobi meet again: Quaternions and the eigenvalue

problem,” SIAM J. Matrix Anal. Appl., vol. 16, no. 2, pp. 421-435, 1995.

[99] K. Natarajan, S. Arun, K. Murugaraj, and M. John, “An application specific matrix
processor for signal subspace based speech enhancement in noise robust speech
recognition applications,” in ASIC, 2007. ASICON ’07. 7th International Conference

on, pp. 766-769.

[100] P. Soo-Chang, C. Ja-Han, and D. Jian-Jiun, “Quaternion matrix singular value
decomposition and its applications for color image processing,” in [mage
Processing, 2003. ICIP 2003. Proceedings. 2003 International Conference on,

vol. 1, pp. [-805-8 vol.1.

[101] H. H. Volker Strumpen and A. Agarwal, “A stream algorithm for the SVD,” 2003.

[102] B. B. Zhou and R. P. Brent, “On parallel implementation of the one-sided
Jacobi algorithm for singular value decompositions,” in Parallel and Distributed

Processing, 1995. Proceedings. Euromicro Workshop on, pp. 401-408.

[103] D. A. Bini, F. Daddi, and L. Gemignani, “On the shifted QR iteration applied
to companion matrices,” Electronic Transactions on Numerical Analysis, vol. 18,

pp. 137-152, 2004.

[104] D. A. Bini, V. Mehrmann, V. Olshevsky, E. E. Tyrtyshnikov, and M. van Barel,
Numerical methods for structured matrices and applications, vol. 199. Springer,

2010.

118

[105] S. Chandrasekaran, M. Gu, J. Xia, and J. Zhu, A Fast QR Algorithm for Companion
Matrices, vol. 179 of Operator Theory: Advances and Applications, book section 7,

pp. 111-143. BirkhAd’ user Basel, 2008.

[106] N. Dowlut and A. Manikas, “A polynomial rooting approach to super-resolution
array design,” Signal Processing, IEEE Transactions on, vol. 48, no. 6,

pp. 15591569, 2000.

[107] A. Edelman and H. Murakami, “Polynomial roots from companion matrix

eigenvalues,” Mathematics of Computation, vol. 64, no. 210, pp. 763-776, 1995.

[108] B. Friedlander, “The root-MUSIC algorithm for direction finding with interpolated

arrays,” Signal Processing, vol. 30, no. 1, pp. 15-29, 1993.

[109] G.F. Hatke and K. W. Forsythe, “A class of polynomial rooting algorithms for joint
azimuth/elevation estimation using multidimensional arrays,” in Signals, Systems
and Computers, 1994. 1994 Conference Record of the Twenty-Eighth Asilomar

Conference on, vol. 1, pp. 694—699 vol.1.

[110] B. Kalantari, “Voronoi diagrams and polynomial root-finding,” in Voronoi Diagrams,

2009. ISVD °09. Sixth International Symposium on, pp. 31-40.

[111] S. G. Krantz, S. Kress, and R. Kress, Handbook of complex variables. Springer,

1999.

119

[112] M. Lang and B. C. Frenzel, “Polynomial root finding,” Signal Processing Letters,

IEEE, vol. 1, no. 10, pp. 141-143, 1994.

[113] E. Lin, L. Bai, and M. Kam, “Efficient DOA estimation method employing unitary
improved polynomial rooting,” in Acoustics, Speech, and Signal Processing, 2004.
Proceedings. (ICASSP °04). IEEE International Conference on, vol. 2, pp. 1i—257-60

vol.2.

[114] J. McKee, J. F. McKee, and C. Smyth, Number theory and polynomials. Cambridge

University Press, 2008.

[115] J. M. McNamee, “An updated supplementary bibliography on roots of polynomials,”

J. Comput. Appl. Math., vol. 110, no. 2, pp. 305-306, 1999.

[116] J. M. McNamee and V. Pan, Numerical methods for roots of polynomials, vol. 16.

Newnes, 2013.

[117] Z. Ming, Y. Li, and Z. Yongquan, “Hybrid evolution strategies for simultaneous
solving all real roots of polynomial,” in Computer, Mechatronics, Control and
Electronic Engineering (CMCE), 2010 International Conference on, vol. 2,

pp. 283-286.

[118] M. Rubsamen and A. B. Gershman, “Direction-of-arrival estimation for nonuniform
sensor arrays: From manifold separation to fourier domain MUSIC methods,” Signal

Processing, IEEE Transactions on, vol. 57, no. 2, pp. 588-599, 2009.

120

[119]

[120]

[121]

[122]

[123]

[124]

[125]

D. Schleicher, “On the number of iterations of Newton’s method for complex
polynomials,” Ergodic Theory and Dynamical Systems, vol. 22, no. 3, pp. 935-945,

2002.

A. J. Weiss and B. Friedlander, “Direction finding for diversely polarized signals
using polynomial rooting,” in Signals, Systems and Computers, 1991. 1991

Conference Record of the Twenty-Fifth Asilomar Conference on, pp. 287-289 vol.1.

C. Xiang, X. Jingmin, and Y. Nishio, “Real polynomial form of music for uniform
linear array,” in Signal Processing Systems (SiPS), 2013 IEEE Workshop on,

pp- 366-370.

F. G. Yan, M. Jin, and X. Qiao, “Low-complexity DOA estimation based on
compressed MUSIC and its performance analysis,” Signal Processing, IEEE

Transactions on, vol. 61, no. 8, pp. 1915-1930, 2013.

R. Zekavat and R. M. Buehrer, Handbook of position location: theory, practice and

advances, vol. 27. John Wiley and Sons, 2011.

Y. Zhang and Z.-z. Zeng, “A new method for simultaneous extraction of all roots of
algebraic polynomial,” in Computational Intelligence and Security, 2009. CIS ’09.

International Conference on, vol. 1, pp. 197-200.

F. Uhlig, “The cal dqr algorithm, basic theory, convergence, and conditional

stability,” Numerische Mathematik, vol. 76, no. 4, pp. 515-553, 1997.

121

Appendix A

Timing diagrams for proposed design

and BLYV array

This appendix contains the detailed timing diagrams for BLV array and proposed array.
The latency calculations and a brief timing diagram were presented in Section 2.4.3. The
diagrams here are only for reference for designer who want to get a better idea of how

proposed array differs from the traditional BLV array in terms of timing.

123

Timing Diagram for BLV array

DIZgonal SUDmatre columm

!

Parameter Generator 1
Parameter Generator 2 am
Parameter Generator 3
Parameter Generator 4 Tpm

5

E

Ulagong il.l%m%“l’ll

5

i [tipli ﬁf f
Di%%glgg? srunfilrggthr%{aco umi
I12gonal sUDMatre columi

§

]

]

multiplication 4

5

]

i2g submatrix columy

§

]

- h'm‘m'?n'! ol
12 submatro column
TOf Hlag gu&mainx CoTUmm

5

]

5

E

[i] Hlag gu&ma[m column

Ui Hlag Eu&mafnx COUmn

E

T Elag §u§magm column

5

]

ﬁ rn'nlir:rinn infd
O diag submatrix column

§

]

multiplication 1 of 3
I8g submatr column

5

]

Ui Elag !uémafnx COumn

iplicatinn 3 nf 1

§

]

i submatrix column

5

]

Ui Hlag Eu&matnx COIUmA

5

E

[i] Elag guémagm column

multinlicatinn 3 nf 4

BBl BB
UL

5

]

Row Multiplication 1 of 1

%mﬂm?ﬂﬁlﬂlﬂ

s upto

Row Multiplication 4 of 4

VTErnal data exch ange| WIthin

submatrix
External datz exchangefacroks

submatrices)

Lt
h

Figure A.1: Detailed timing diagrams for BLV array

124

Timing Diagram for proposed amay

1
mmm@@@
I g
E
m i
[L [EE@ g ||
e s
e iy
| | __-..._- 10
.-I @ fe I mmm---.@.@.@
CMRCHRC gidene
B | @ | & &N
© | e
8 | wiET | elele
B | | @ sl
B @ e
E
R HHBHARRE i : delE| ks
SRR ML R T EE LI
FMEEIES B U & 3 TlE| |3
& E|&|E|& s

Figure A.2: Detailed timing diagrams for proposed design and BLV array
125

	HIGH PERFORMANCE, LOW COST SUBSPACE DECOMPOSITION AND POLYNOMIAL ROOTING FOR REAL TIME DIRECTION OF ARRIVAL ESTIMATION: ANALYSIS AND IMPLEMENTATION
	Recommended Citation

	ATHI.pdf

