
Michigan Technological University Michigan Technological University

Digital Commons @ Michigan Tech Digital Commons @ Michigan Tech

Dissertations, Master's Theses and Master's
Reports - Open

Dissertations, Master's Theses and Master's
Reports

2014

HIGH PERFORMANCE, LOW COST SUBSPACE DECOMPOSITION HIGH PERFORMANCE, LOW COST SUBSPACE DECOMPOSITION

AND POLYNOMIAL ROOTING FOR REAL TIME DIRECTION OF AND POLYNOMIAL ROOTING FOR REAL TIME DIRECTION OF

ARRIVAL ESTIMATION: ANALYSIS AND IMPLEMENTATION ARRIVAL ESTIMATION: ANALYSIS AND IMPLEMENTATION

Mrudula V. Athi
Michigan Technological University

Follow this and additional works at: https://digitalcommons.mtu.edu/etds

 Part of the Electrical and Computer Engineering Commons, and the Mathematics Commons

Copyright 2014 Mrudula V. Athi

Recommended Citation Recommended Citation
Athi, Mrudula V., "HIGH PERFORMANCE, LOW COST SUBSPACE DECOMPOSITION AND POLYNOMIAL
ROOTING FOR REAL TIME DIRECTION OF ARRIVAL ESTIMATION: ANALYSIS AND IMPLEMENTATION",
Master's Thesis, Michigan Technological University, 2014.
https://doi.org/10.37099/mtu.dc.etds/823

Follow this and additional works at: https://digitalcommons.mtu.edu/etds

 Part of the Electrical and Computer Engineering Commons, and the Mathematics Commons

http://www.mtu.edu/
http://www.mtu.edu/
https://digitalcommons.mtu.edu/
https://digitalcommons.mtu.edu/etds
https://digitalcommons.mtu.edu/etds
https://digitalcommons.mtu.edu/etd
https://digitalcommons.mtu.edu/etd
https://digitalcommons.mtu.edu/etds?utm_source=digitalcommons.mtu.edu%2Fetds%2F823&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.mtu.edu%2Fetds%2F823&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=digitalcommons.mtu.edu%2Fetds%2F823&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.37099/mtu.dc.etds/823
https://digitalcommons.mtu.edu/etds?utm_source=digitalcommons.mtu.edu%2Fetds%2F823&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.mtu.edu%2Fetds%2F823&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=digitalcommons.mtu.edu%2Fetds%2F823&utm_medium=PDF&utm_campaign=PDFCoverPages

HIGH PERFORMANCE, LOW COST SUBSPACE DECOMPOSITION AND

POLYNOMIAL ROOTING FOR REAL TIME DIRECTION OF ARRIVAL

ESTIMATION: ANALYSIS AND IMPLEMENTATION

By

Mrudula V. Athi

A THESIS

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

In Electrical Engineering

MICHIGAN TECHNOLOGICAL UNIVERSITY

2014

c© 2014 Mrudula V. Athi

This thesis has been approved in partial fulfillment of the requirements for the Degree of

MASTER OF SCIENCE In Electrical Engineering.

Department of Electrical and Computer Engineering

Thesis Advisor: Dr. Seyed A. (Reza) Zekavat

Committee Member: Dr. Timothy C. Havens

Committee Member: Dr. Allan Struthers

Department Chair: Dr. Daniel R. Fuhrmann

To amma appa

for unwavering belief in my capabilities that has been my biggest source of inspiration and

for their constant support.

Contents

List of Figures . xiii

List of Tables . xvii

Acknowledgments . xix

Abstract . xxi

1 Introduction . 1

1.1 Wireless Local Positioning System (WLPS) 3

1.1.1 Localization . 3

1.1.2 WLPS - working and design . 3

1.2 Antenna Array . 7

1.3 Direction of arrival (DOA) estimation methods 9

1.3.1 Delay and sum (DAS) . 9

1.3.2 MUSIC . 11

1.3.3 Root-MUSIC . 13

1.4 Implementation of real-time signal processing algorithms 17

1.4.1 Real-time digital signal processing (DSP) system 17

vii

1.4.2 Real-time constraints . 19

1.4.3 DSP hardware for WLPS . 20

1.5 Thesis Contribution . 21

1.5.1 Fast converging SVD for real-time signal processing and its FPGA

implementation . 23

1.5.2 Real-time root-MUSIC DOA estimation via a parallel polynomial

rooting method . 24

1.6 Organization . 26

2 Fast converging SVD for real-time signal processing and its FPGA

implementation . 27

2.1 Introduction . 28

2.2 Proposed Method . 31

2.2.1 Traditional Method- Jacobi SVD algorithm and BLV Array 31

2.2.2 Proposed algorithm for faster convergence 34

2.3 Design and Implementation . 38

2.3.1 Proposed System Design . 38

2.3.1.1 Controller and Big element finder 38

2.3.1.2 Core modules . 39

2.3.2 Implementation on FPGA . 40

2.3.2.1 Big element finder . 41

2.3.2.2 Diagonal PE . 41

viii

2.3.2.3 Column and Row rotation 42

2.4 Simulations and Discussions . 42

2.4.1 Simulation Results . 42

2.4.2 Implementation Results . 45

2.4.3 Latency and Throughput . 46

2.5 Conclusion . 50

3 Details of FPGA implementation for proposed SVD 51

3.1 System Generator design flow . 52

3.2 FPGA Modules . 54

3.2.1 Finding the N/2 big elements . 54

3.2.2 Submatrix selector . 61

3.2.3 Parameter generator . 64

3.2.4 2 × 2 matrix multiplication for row and column submatrix

multiplication . 68

3.3 Conclusion . 71

4 Real-time root-MUSIC DOA estimation via a parallel polynomial rooting

method . 73

4.1 Introduction . 74

4.2 Background . 77

4.2.1 Global geometry of Newton map 77

ix

4.3 Complex dynamics of root-MUSIC polynomial and proposed polynomial

rooting technique . 82

4.3.1 Symmetry of polynomial roots across unit circle 85

4.3.2 Accesses to infinity . 86

4.3.3 Proposed set of initial points . 87

4.3.4 Proposed method . 88

4.4 Simulation and Complexity analysis . 90

4.5 Conclusion . 93

5 Conclusion . 95

5.1 Conclusion . 95

5.2 Future Work . 98

5.2.1 In the direction of SVD . 98

5.2.1.1 Improvements to the proposed design 98

5.2.1.2 Developing an IP . 99

5.2.1.3 SVD using 4-Dimensional Given Rotation 100

5.2.2 In the direction of polynomial rooting 101

5.2.2.1 Complex dynamics of Newton map of root-MUSIC

polynomial . 101

5.2.2.2 Implementation and others 102

References . 103

x

A Timing diagrams for proposed design and BLV array 123

xi

xii

List of Figures

1.1 Wireless Local Positioning System . 4

1.2 WLPS signaling scheme . 4

1.3 WLPS Structure . 5

1.4 DBS Structure . 6

1.5 Antenna Array . 8

1.6 MUSIC Spectrum . 13

1.7 MUSIC . 14

1.8 Roots of root-MUSIC polynomial . 15

1.9 Root-MUSIC . 16

1.10 Real-time DSP system . 18

1.11 Root-MUSIC system . 23

2.1 BLV Array for N=8. Data transmission is represented as solid arrows and

rotation parameters transmission with unfilled arrows 34

2.2 System level design for the proposed algorithm 39

2.3 Finite State Machine for finding the biggest element in each row in a matrix

of size N . 41

xiii

2.4 Number of sweeps vs. matrix size . 44

2.5 Convergence of matrix depicted as reduction in off diagonal norm vs

iteration number . 44

2.6 Timing diagram for the proposed SVD method 49

3.1 Design flow for System Generator development 52

3.2 State machine for finding the N/2 big entries of N ×N streaming matrix

under row column exclusivity condition 56

3.3 State machine for zeroing out the diagonal entries of a N ×N streaming

matrix . 56

3.4 Flow chart for finding the big element and its row column indices 57

3.5 State machine for finding the biggest element from the channel of a

streaming matrix . 57

3.6 State machine for zeroing out the row and column of a N ×N streaming

matrix corresponding to the big element 58

3.7 HLD diagram for the FPGA module to find 4 big elements from a 8× 8

streaming matrix . 59

3.8 Timing diagram for the FPGA module for finding 4 big elements from a

8×8 streaming matrix . 60

3.9 An example of extracting a 2×2 submatrix corresponding to indices i and

j from a 8×8 matrix . 61

3.10 FPGA module for selecting a submatrix 62

xiv

3.11 Timing diagram for the FPGA module for extracting a 2×2 submatrix from

a 8×8 streaming matrix . 63

3.12 FPGA module for parameter generation 66

3.13 Timing diagram for the FPGA module for generating left and right rotation

parameters . 67

3.14 Timing diagram for the FPGA module for 2×2 submatrix multiplication . . 69

3.15 FPGA module for 2× 2 matrix multiplication used for row and column

submatrix multiplications . 70

4.1 An example Newton Map . 78

4.2 Newton map of RM polynomial of degree 6 ie. a sensor array of 4 elements

at various channel conditions . 83

(a) SNR=-10db . 83

(b) SNR=10db . 83

(c) SNR=0db and pdb=-5db . 83

(d) SNR=inf db . 83

4.3 Newton map of RM polynomial of various degrees at SNR=0db 84

(a) Array size=4 . 84

(b) Array size=6 . 84

(c) Array size=8 . 84

4.4 Computations vs RMSE in DOA for AWGN channel 92

4.5 Computations vs RMSE in DOA for Rician channel 93

xv

5.1 Root-MUSIC system with proposed algorithms 96

5.2 SVD using 4 dimensional Given’s rotation 100

A.1 Detailed timing diagrams for BLV array 124

A.2 Detailed timing diagrams for proposed design and BLV array 125

xvi

List of Tables

1.1 Comparison of DOA estimation techniques 17

1.2 Comparison of various DSP hardwares 18

2.1 FPGA Implementation of BLV and Proposed array for 4×4 matrix 46

2.2 FPGA Implementation of BLV and Proposed array for 8×8 matrix 46

3.1 Comparision of CORDIC in word serial and parallel configurations 65

3.2 Occupancy and frequency of operation for row multiplication 68

4.1 Comparison of computational complexity of various polynomial rooting

method . 91

xvii

Acknowledgments

I would like to thank Dr. Seyed A. Zekavat, who guided from the very first day of my

Masters and gave valuable inputs for the progress of my thesis. I thank him for his constant

attention to detail, technical guidance in preparing papers and helping me find a direction

for my resaerch.

I thank my committee - Dr. Dr. Timothy C. Havens and Dr. Allan Struthers, who took time

out of their busy schedule to evaluate and make the thesis better.

I would like to further thank Dr.Allan Struthers for his valuable inputs to mathematical

aspects of my thesis. His class, which I took in Fall 2013 was helpful in developing portion

of my thesis.

I’m particularly thankful to Shankar Giri Venkata Giri, fellow student who helped

me understand various aspects of FPGA implementation and hardware design. Many

discussions that I had with him over the course of two years have helped me scrutinize

my ideas. I am thankful for his patience and constant support as a friend.

I would like to thank Andrew Boettcher, fellow classmate with whom I presented a poster

for his help in understanding few complex mathematical concepts.

xix

Asif Al-Rasheed ,Amir Torabi and Mohsen Jamalabdollahi fellow researchers and friends

provided moral support and encouragement.

Special thanks go out to Chuck and Mark, for instant and proactive help with any issues in

the lab. They were awesome and immensely approachable.

Finally, I would like to thank my parents, my sister and Swaraj, who were an endless source

of encouragement and support.

xx

Abstract

This thesis develops high performance real-time signal processing modules for direction

of arrival (DOA) estimation for localization systems. It proposes highly parallel

algorithms for performing subspace decomposition and polynomial rooting, which are

otherwise traditionally implemented using sequential algorithms. The proposed algorithms

address the emerging need for real-time localization for a wide range of applications.

As the antenna array size increases, the complexity of signal processing algorithms

increases, making it increasingly difficult to satisfy the real-time constraints. This

thesis addresses real-time implementation by proposing parallel algorithms, that maintain

considerable improvement over traditional algorithms, especially for systems with larger

number of antenna array elements. Singular value decomposition (SVD) and polynomial

rooting are two computationally complex steps and act as the bottleneck to achieving

real-time performance. The proposed algorithms are suitable for implementation on field

programmable gated arrays (FPGAs), single instruction multiple data (SIMD) hardware

or application specific integrated chips (ASICs), which offer large number of processing

elements that can be exploited for parallel processing. The designs proposed in this thesis

are modular, easily expandable and easy to implement.

Firstly, this thesis proposes a fast converging SVD algorithm. The proposed method

reduces the number of iterations it takes to converge to correct singular values, thus

xxi

achieving closer to real-time performance. A general algorithm and a modular system

design are provided making it easy for designers to replicate and extend the design to

larger matrix sizes. Moreover, the method is highly parallel, which can be exploited in

various hardware platforms mentioned earlier. A fixed point implementation of proposed

SVD algorithm is presented. The FPGA design is pipelined to the maximum extent to

increase the maximum achievable frequency of operation. The system was developed with

the objective of achieving high throughput. Various modern cores available in FPGAs were

used to maximize the performance and details of these modules are presented in detail.

Finally, a parallel polynomial rooting technique based on Newton’s method applicable

exclusively to root-MUSIC polynomials is proposed. Unique characteristics of

root-MUSIC polynomial’s complex dynamics were exploited to derive this polynomial

rooting method. The technique exhibits parallelism and converges to the desired root

within fixed number of iterations, making this suitable for polynomial rooting of large

degree polynomials. We believe this is the first time that complex dynamics of root-MUSIC

polynomial were analyzed to propose an algorithm.

In all, the thesis addresses two major bottlenecks in a direction of arrival estimation system,

by providing simple, high throughput, parallel algorithms .

xxii

Chapter 1

Introduction

Localization is a key component of various modern day applications such as wireless

sensor networks (WSNs) [1], wireless body area networks (WBANs) [2], localization

in acoustic arrays [3], network based localization [4, 5], localization in space based

solar power generation [6] etc. These applications have a wide range of impact ranging

from user experience improvement to effective safety and monitoring and exploring new

frontiers of science and technology. Implementation of localization techniques require

fairly complex signal processing algorithms. The complexity of these signal processing

algorithms is magnified due to the fact that most of its applications demand real-time

output. In addition, many localization applications are in mobile systems which may

have to limited processing power and battery life. Thus, development of low complexity,

and high performance localization algorithms are vital to its emerging applications. New

1

algorithms amenable to parallelization, choice of platform suitable for such algorithms,

efficient implementation and design on selected hardware are the key to developing a good

real-time signal processing module.

This thesis was motivated by the need for real-time signal processing algorithms for

wireless local positioning system (WLPS) [7] being developed at Michigan Technological

University. WLPS is an active positioning system based on direct sequence-code division

multiple access (DS-CDMA) scheme for indoor and urban areas. More specifically,

this thesis addresses the need for real-time signal processing modules for direction of

arrival(DOA) techniques.

This chapter offers an overview of the WLPS and introduces various components of the

system. Different direction of arrival (DOA) techniques are discussed and root-MUSIC

system is described in detail. Design and implementation aspects of a generic real-time

signal processing system are introduced. Finally, we introduce the contributions of this

thesis for the DOA root-MUSIC algorithm for implementation on WLPS signal processing

platforms.

2

1.1 Wireless Local Positioning System (WLPS)

1.1.1 Localization

Positioning systems can be categorized as global positioning system (GPS) and local

positioning system (LPS). GPS is a widely known precise satellite based positioning

system. However, it does not perform well in indoor areas or urban areas due to reflections.

Therefore, it is usually integrated with other local positioning systems such as LPS. LPS

can be broadly categorized into two types: self positioning, where a mobile device finds

its own instantaneous location with resepct to a fixed point, and remote positioning, where

a mobile device finds the instantaneous position of other objects with respect to its own

position. WLPS that is a system that is being developed at the Wireless Lab of Michigan

Tech, is an active remote LPS that allows relative positioning of mobiles via mobiles.

1.1.2 WLPS - working and design

WLPS proposed in [8], is a remote active localization system that incorporates DS-CDMA

signaling to localize mobile nodes. WLPS uses direction of arrival (DOA) and round trip

time of arrival (TOA) of the signal from an active node to estimate the position of the

node. Round trip TOA avoids a need to time synchronization that is a key component

3

Figure 1.1: Wireless Local Positioning System

Figure 1.2: WLPS signaling scheme

of many TOA estimation algorithms. This reduces the complexity of this system that is

vital for mobile applications. WLPS consists of a dynamic base station (DBS) in each of

the monitoring mobile and a transponder (TRX) in target mobile as show in Figure 1.1.

Each DBS is assigned a unique identification (ID). When a DBS trasnmits an ID request

signal (IDR) to all the targets in its neighbourhood, the TRX responds with their IDs. On

recognition of the target by DBS, it positions and tracks the target. Figure 1.2 represents

the communication scheme described above.

The performance of WLPS system can be degraded due to inter-TRX-interference (IXI) at

the DBS as well as inter-DBS-interference (IDI) at TRX. Multiple access (MA) schemes

such as spatial division MA (SDMA) [9] and DS-CDMA [10] are employed to reduce

4

Figure 1.3: WLPS Structure

the interference effects. SDMA via beamforming (BF) and DS-CDMA are employed

at the DBA. Therefore, TRX is simple and needs an omnidirectional antenna, a simple

demodulator and a DS-CDMA transmitter. DBS as shown in Figure 1.3 has a complex

structure. The receiver consists of an antenna array for SDMA, a MA receiver and a

diversity combiner. The baseband signal is used for TOA and DOA estimation, which

in turn is used for localization and tracking. Figure 1.4 represents the DBS structure in

detail. RF front-end, analog to digital converter (ADC), digital down converter (DDC),

phase-amplitude compensation with synchronisation and frequency tracking form the MA

receiver. The baseband signal undergoes beamforming and is then used for channel

estimation and TOA computation. DOA is obtained from individual channels before

beamforming. The theoretical analysis of the system was carried in [7, 8] and various

5

Figure 1.4: DBS Structure

aspects of receiver implementation were dealt in [11, 12]. The optimum beamforming for

WLPS were explored in [13, 14] and suitable TOA estimation was proposed in [15]. A

novel DOA estimation technique was proposed in [16] and ways to fuse DOA and TOA

information was proposed in [17]. In this thesis, we dwell further into DOA estimation

techniques by proposing high performance, low cost real-time signal processing algorithms

with emphasis on implementation.

6

1.2 Antenna Array

An antenna array defined as a set of two or more antennas, is an important component

of DBS receiver. Antenna arrays serve various purposes such as increasing overall gain,

providing spatial diversity, optimizing signal to interference plus noise ratio (SINR) and

DOA estimation [9]. Antenna arrays of different geometries, spacing and dimensions are

used in various applications. For the purpose of WLPS, a linear array of N equally spaced

antenna elements is used. In WLPS, antenna array is used for beamforming and DOA

estimation. Figure 1.5 shows an antenna array of patch antennas developed for WLPS at

the Wireless Positioning Lab of Michigan Tech.

Let x1, . . . ,xN be the signals received by antenna elements 1 to N. The output from antenna

elements are multiplied in weights w1, . . . ,wN and summed together resulting in a signal

y =
N

∑
n=1

wnxn =W HX (1.1)

Let λ be the wavelength, d the distance of separation and θDOA be the DOA, then array

vector is given as

V = [1,e
− j2πd sin(θDOA)

λ , . . . ,e
− j2π(N−1)d sin(θDOA)

λ] (1.2)

7

Figure 1.5: Antenna Array

and received signal is

AF =
N

∑
n=1

wne
− j2π(n−1)d sin(θDOA)

λ (1.3)

Array antennas as stated before are required for DOA estimation and beamforming. The

antenna array beam width decreases and beamforming resolution increases with number

of antenna array elements. With increase in applications using higher frequencies and

increasing popularity of patch antennas, the antenna size is decreasing. This has lead to

usage of larger number of antenna arrays for mobile applications, which in turn increase

the complexity of signal processing algorithms being used.

8

1.3 Direction of arrival (DOA) estimation methods

Various DOA estimation techniques have been proposed and implemented [9]. Here, we

introduce only those that are important for the thesis namely : Delay and sum (DAS),

Multiple signal classification (MUSIC) and root-MUSIC. Each of these methods will be

introduced here and a comparison of these will be provided.

1.3.1 Delay and sum (DAS)

DAS is the simplest of all DOA estimation methods in terms of complexity and

implementation. The derivation and signal model of DAS is briefed here [18]. It involves

applying a set of complex weights W = [w1, . . . ,wN] consistent with the array vector in

(1.2) on N incoming signals, summing them and measuring the output power. The weights

delay the signal by changing its phase. Weight applied to the ith antenna corresponds to

wi(θ) = e jφi(θ) where φi(θ) =
2π(i−1)d sin(θ)

λ
(1.4)

9

In (1.4) θ is the phase at which the weight is evaluated, d is the separation between elements

and λ is wavelength as stated before. The input signal at each antenna i is given as

ri = Re[Ae j(ωt+θ0+φi(θDOA))] (1.5)

where A is the amplitude of received signal, ω = 2π f0 is the angular frequency for center

frequency f0 and φi(θDOA) is the relative phase delay of the signal due to θDOA which is

given as

φi(θDOA) =
−2π(i−1)d sin(θDOA)

λ
(1.6)

When the weights are applied to received signal and summed

R(θ ,θDOA) =
N

∑
i=1

riwi(θ)

N

∑
i=1

Ae j(ωt+θ0)e jφi(θDOA)e jφi(θ)

N

∑
i=1

Ae j(ωt+θ0)e jφi(θDOA)+φi(θ)

(1.7)

In (1.7) ri is the received signal as given in (1.5), φi(θ) is given in (1.6), θDOA is the angle

of DOA, θ0 is the phase introduced due to distance between transmitter and receiver and

all other parameters are as defined previously.

The angle θ is varied from θ ∈ [−90o,90o] and the received power is measured in steps of

10

Δθ at θl where l = 1, . . . ,L and L = 1+ 180
Δθ . The received power corresponds to

P(θ ,θDOA) =
1

A2
|R(θl,θDOA)|2 (1.8)

When θl = θDOA, power maximizes. Thus estimated DOA θ̂DOA is given as

θ̂DOA = arg maxP(θ ,θDOA) (1.9)

DAS performs well only at high SNR conditions and is very sensitive to calibration and

multipath. The resolution depends on L (introduced in (1.8)), therefore increasing the

computational cost for very high degree accuracy.

1.3.2 MUSIC

Given the condition that number of antennas are more than the number of sources and an

estimate of number of sources is available, one can use a more complex DOA estimation

technique known as multiple signal classification (MUSIC) [19]. For an array of N sensors

and M sources (M < N), the received sensor signal is

y(t) =V ∗ x(t)+n(t) (1.10)

11

where V = [V (θ1),,V (θM)] is the steering matrix, x(t) = [x1(t),,xM(t)]T is the

transmitted signal and n(t)= [n1(t),,nN(t)]T is the additive noise. The covariance matrix

and its eigen decomposition is given as

R = E(xxH) = EsΛsEH
s +EnΛnEH

n (1.11)

Es and En are the signal and noise subspaces respectively. E(.) is the expectation operation.

Λs = diag(λ1,,λM) and Λn = σ2I(N−M)×(N−M) (1.12)

are the signal and noise eigenvalue vectors respectively, where σ2 is the noise variance and

I represents an identity matrix.

The MUSIC spectrum corresponds to

S(θ) =
1

V H(θ)AV (θ)
, A = EnE∗

n (1.13)

θ is the angle at which the spectrum is evaluated and the range and resolution of the MUSIC

depends on desired precision of DOA estimation. V is the steering vector as given in (1.10)

and En is the noise subpaces as given in (1.12). Figure 1.6 depicts the MUSIC spectrum

for a θDOA = 30o. The DOA is found by searching the spectrum for the peak. The peak

corresponds to the θDOA. Figure 1.7 represents the flow of operations done for MUSIC.

MUSIC is known to offer good results at even low SNR and multipath conditions, but is

12

Figure 1.6: MUSIC Spectrum

highly sensitive to calibration. As the number of snapshots increases the performance of

MUSIC asymptotically approaches the lower Cramer-Rao bouns (CRLB) [20]. Variations

of MUSIC are available in huge numbers. [21, 22] describe few of these variations.

1.3.3 Root-MUSIC

Spectrum search step in MUSIC is an expensive operation. [23] proposes a new method

for finding the DOA, applicable exclusively to uniform linear array (ULA). For a ULA, the

13

Figure 1.7: MUSIC

nth element of steering vector, V (θ) corresponds to

Vn(θ) = e− j2πn(d
λ)sin(θ), n = 1...N (1.14)

where d is the separation between the elements of antenna array and λ is the wavelength

of the signal. The inverse of MUSIC spectrum in (1.13) can be simplified using (1.14) as

S−1(θ) =
N

∑
n=1

N

∑
m=1

e− j2πm(d
λ)sin(θ)Amne j2πn(d

λ)sin(θ)

=
N−1

∑
l=−N+1

ale− j2πl(d
λ)sin(θ)

(1.15)

14

Figure 1.8: Roots of root-MUSIC polynomial

where d, λ and θ are parameters as explained in (1.14) and (1.13) respectively. In addition,

al = ∑m−n=l Amn is the sum of entries of A along the lth diagonal. A polynomial can be

constructed as

D(z) =
N−1

∑
l=−N+1

alz−l (1.16)

where al is as explained in (1.15). It is well known that roots on the unit circle of a

polynomial D(z) are used to extract the DOA of the signal. Figure 1.8 depicts the roots of

D(z) with θDOA = 30o. As it is observed, the root on unit circle is the one corresponding to

θDOA. Figure 1.9 depicts the flow of operations for obtaining DOA using root-MUSIC. It is

15

Figure 1.9: Root-MUSIC

known that root-MUSIC performs better than MUSIC [24]. The limitation of root-MUSIC

is the fact that it can be applied in its original form only for ULA. This issue has been

addressed in various works such as [25]-[26].

Table 1.1 summarizes the advantages and shortcomings of each of the methods described

and few other methods popularly know. As observed from this table, root-MUSIC is a very

high resolution technique, however its complexity is high as well. High complexity may

avoid real time implementation. Moreover, complexity leads to high power consumption.

This thesis proposes algorithms that address the complexity issue of root-MUSIC.

16

Table 1.1
Comparison of DOA estimation techniques

Sensitivity Sensitivity Sensitivity Resolution Complexity

to SNR to calibration to multipath

DAS[9] High Moderate High Low Low

Maximum[27] Moderate Moderate Moderate Moderate Moderate

Entropy

MUSIC[19] Low High Low High High

root-MUSIS[23] Lower High Lower Very high High

ESPRIT[28] Low Low Low High Very High

FUSION[16] Moderate Moderate Moderate Very High Moderate

1.4 Implementation of real-time signal processing

algorithms

1.4.1 Real-time digital signal processing (DSP) system

A generic real-time DSP system can be represented as shown in Figure 1.10 [29]. The

output of a sensor x′(t) is amplified by the amplifier and the amplified signal x(t) is passed

through an anti-aliasing filter to limit the bandwidth of the signal, so that it satisfies the

sampling theorem. The analog-to-digital converter (ADC) converts the analog signal x(t)

into digital signal x(n), which is then ready to be processed by a DSP hardware. The reverse

operations namely digital-to-analog (DAC), reconstruction filtering and amplification are

applied once the DSP hardware produces the processed output signals. There are various

choices for DSP hardware and the choice depends on various factors such as required

17

Figure 1.10: Real-time DSP system

Table 1.2
Comparison of various DSP hardwares

ASIC FPGA Microproces- DSP DSP processors

sors Microco- Processors with HW

ntrollers Processors accelerators

Flexibility None Limited High High Medium

Design time Long Medium Short Short Short

Power Low Low Medium Low Low

Consumption -medium -high -medium -medium

Performance High High Low- Medium- High

-medium -high

Development High Medium Low Low Low

cost

Production Low Low Medium Low Medium

cost -medium -high -medium

performance, cost, development time etc. Various DSP hardwares and their comparison

is replicated here from [29] in Table 1.2 for the convenience of the reader.

18

1.4.2 Real-time constraints

Real-time computing is a concept applicable to any hardware or software system. A system

is called "real-time" if it satisfies certain "real-time constraint". A real-time constraint

implies that the system guarantees a response within a time frame. A real-time system

can be classified as hard if missing a deadline implies total failure of the system and soft

if missing a deadline merely causes the degradation of performance and not a complete

failure.

A DSP system is said to be real-time if the signal processing time tp is less than the

sampling period T . This implies that a processing task needs to be completed before a

new sample comes in. Considering tIO as the overhead time for I/O operations then

tp + tIO < T (1.17)

Therefore, the processing speed determines the maximum rate at which signal can be

sampled. On the other hand, we can use faster DSP hardware to keep up with the desired

sampling rate. Faster DSP hardware alone may not be enough to keep up with the sampling

speed. Combination of simplified DSP algorithms, optimized system design or program

and parallel processing needs to be adopted to achieve a given performance requirement.

It is the duty of the system designer/architect to maintain a balance between cost and

19

performance.

1.4.3 DSP hardware for WLPS

Field programmable gated arrays (FPGA) in the past were used as co-processor to digital

signal processors in DSP systems. With recent improvements in FPGA capabilities, FPGAs

are being considered as the main processor rather than a co-processor. We choose to

implement the DSP algorithms of WLPS system on FPGA due to following reasons :

1. Flexibility of design : WLPS is still in its development stages and we expect various

changes to the individual modules of the system. Usually, the DSP algorithms

go through multiple revisions. Programmability of FPGAs enables revisions with

minimal cost. Once the system design is finalized and the migration of design to

application specific integrated circuits (ASICs) will be required, FPGA design can

be adopted with little change.

2. Parallel architecture : Real-time constraints along with the requirement for

high throughput transmission in WLPS necessitates highly parallel DSP algorithms.

FPGA is a logical choice of hardware when planning to implement a highly parallel

design. Other hardware such as digital signal processors and microprocessors have

very little or no parallel processing elements that can be used for implementing our

algorithms.

20

3. Accommodating other functionalities: WLPS hosts control logic apart from signal

processing logic. Traditionally, the control task is delegated to a co-processor

or external controller. But with large amount of processing elements available

on FPGA, we can accommodate both control and DSP logic. Moreover, in

critical applications such as security, surveillance, rescue etc, a considerable portion

of processing elements needs to be dedicated to avoiding failures of system.

Accommodating all the processing on single chip leads to compactness and faster

inter-process communication, both of which are required in mobile applications

where WLPS will be used. Moreover, FPGAs have wide variety of high speed I/Os

which can be used for connecting to the RF frontend and other units on the system.

1.5 Thesis Contribution

Root-MUSIC was chosen as DOA estimation technique because it offers a better

performance compared to MUSIC itself with reduced complexity. Figure 1.11 represents

a conventional DOA system. Computationally intensive modules in a root-MUSIC system

are subspace decomposition and polynomial rooting. These modules could possibly be the

bottlenecks of the system in meeting real-time constraints. The subspace decomposition

can be done either by performing Eigen value decomposition (EVD) of covariance matrix

21

or Singular value decomposition (SVD) of the data matrix. Let

A =UΣV T (1.18)

be the SVD of A . Here, U and V are the sigular vectors and Σ is a diagonal matrix of

singular values . Then

AT A =V ΣTUTUΣV T =V ΣT ΣV T (1.19)

ΣT Σ is a diagonal matrix with σ2
i entries. Therefore, σi are the eigenvalues of AT A and V

are the eigenvectors. Thus, we can safely say that either of the decompositions are the same.

We choose to use SVD because matrix multiplication for obtaining covariance matrix can

be avoided. Moreover, noise eigenvectors loose precision when matrix multiplication is

accomplished in fixed point designs. The first contribution of this paper is the development

of a SVD algorithm suitable for real-time signal processing. The second contribution is

that we propose a highly parallel polynomial rooting scheme. These contributions together

leas to a low cost, high performance system for DOA estimation.

22

Figure 1.11: Root-MUSIC system

1.5.1 Fast converging SVD for real-time signal processing and its

FPGA implementation

Traditionally, SVD is sequential process as implemented in LAPACK and sequential

machines [30]. Sequential algorithms have been driving designers away from

implementing real-time DOA systems. When digital signal processors are the chosen DSP

hardware, these sequential SVD algorithms can be used. For small matrix sizes, digital

signal processors meet real-time constraints, but for larger matrix sizes meeting real-time

constraints without any parallel processing is not possible. This has lead us to look into

parallel algorithms for SVD.

Parallel algorithms for SVD have already been proposed in the literature [31]. These

algorithms are suitable for implementation in platforms such as FPGA and ASICs, where

there is enough parallelism to exploit. FPGA implementations of these SVD methods

have been presented [32] in the past. All of these implementations haven’t addressed

23

one crucial issue of number of iterations it takes for the matrix to converge to correct

singular values. Reducing the number of iterations to converge, can help the DSP system

to meet the real-time constraints for larger matrices as well. A new approach for reducing

the number of iterations for larger matrix size is proposed in this thesis. Although a

large number of applications require SVD, there are no commercial off-the-shelf (COTS)

intellectual property (IP) cores. Moreover, the research articles present SVD techniques

which are difficult to replicate and often not well documented. This thesis provides a

detailed description of SVD design with improved performance, which makes it easier for

designers to replicate and make further changes. Modularity and extendibility can easily

lead to development of IP cores. Although the proposed algorithm can be adopted for any

DSP hardware, this thesis proposes path ways to exploit special functional units in FPGA

to maximize performance.

1.5.2 Real-time root-MUSIC DOA estimation via a parallel

polynomial rooting method

Polynomial rooting has been a subject of study for mathematicians for over centuries

now. Finding all roots of a complex polynomial with low complexity, especially of

degree greater than four is a subject of ongoing research. Many methods of varying

orders of complexity have been proposed in the literature [33]-[34] but implementation

of polynomial rooting on FPGA is rare if ever discussed. Polynomial rooting used in

24

LAPACK and implementations on sequential machines are based on companion matrix

techniques [35]. Polynomial rooting using eigenvalue decomposition of companion matrix

is inherently sequential and so are most of its variations. Implementation of these sequential

algorithms on even high speed DSP hardwares cannot guarantee that the system is capable

of meeting real-time constraints. Meeting the real-time constraints becomes increasingly

difficult with increasing polynomial degree and for systems working at very high sampling

rates. Few proposed polynomial rooting techniques [36, 37] are capable of parallelization,

but these methods are either too complex to implement or are computationally intensive.

Motivated by these shortcoming in existing techniques and also propelled by findings of

some unique geometry in Newton map of root-MUSIC polynomial, a new method of

polynomial rooting specific to root-MUSIC was proposed in this thesis. There is a need for

IP cores for generic polynomial rooting. Although the proposed method applies uniquely

to root-MUSIC polynomial, it can be developed into an IP core because many existing

and emerging applciaitons require DOA estimation for localization. Modularity, ease of

implementation, extremely simple algorithm, extendability are main advantages of the

proposed method.

25

1.6 Organization

This thesis is organized as follows. Chapter 2 describes the fast converging SVD method,

its algorithm and a system level design. In addition, simulation results depicting the

improvement in convergence are presented. Chapter 3 describes the implementation of

the proposed SVD method on FPGAs. Details of each module is given, along with

resource consumption and timing diagrams. The overall resource consumption and

maximum achievable frequency of the SVD system are presented along with latency and

throughput calculations. Chapter 4 presents the proposed polynomial rooting technique

for root-MUSIC. The complex dynamics of the Newton map of the root-MUSIC is

presented and findings regarding the unique characteristics of root-MUSIC polynomials

are presented and proved. The proposed method is compared with existing polynomial

rooting techniques. Finally, Chapter 5 concludes and lists possible directions for future

work.

26

Chapter 2

Fast converging SVD for real-time signal

processing and its FPGA

implementation

This chapter introduces a novel fast converging Jacobi like SVD algorithm applicable

to real-time signal processing of massive sensor arrays. The proposed algorithm highly

increases the SVD convergence rate for larger matrices when compared to traditional

Jacobi based methods. The parallel nature of the Jacobi methods is key to real time

implementation intended for FPGAs. A highly modular system design which retains the

inherent parallelism of the Jacobi based systolic arrays is proposed. The system was

implemented for 4×4 and 8×8 matrix sizes on Virtex-6 FPGA. The proposed design was

27

compared with the traditional design in terms of FPGA resource consumption, maximum

achievable frequency and latency throughput tradeoff.

2.1 Introduction

Singular Value Decomposition (SVD) is an important component of many signal

processing algorithms. Many applications such as image processing [38, 39, 40],

channel estimation in multiple input multiple output -orthogonal frequency division

multiple access (MIMO-OFDM) systems [41, 42, 43], biomedical applications [44] and

direction-of-arrival (DOA) estimation for source Localization [18, 7] require real-time

SVD. These applications demand fast convergence and high accuracy. For small sized

arrays, it is easy to meet the above requirements given the high density of logic and

high clock rates available on present day hardware. On the other hand in applications

dealing with large matrices [45, 46, 47] achieving fast convergence is a difficult task.

There is an increasing need for real time computation of SVD for large matrices because

emerging applications using large arrays are proposed. Since there is an upper limit

to the logic density and clocking rates in hardware, there is a need for fast converging

SVD algorithms. Specifically, this work was motivated by the implementation of fast

converging SVD algorithm for DOA estimation in new wireless local positioning system

(WLPS) [7]. A fast converging SVD in WLPS would ultimately lead to lower power

consumption in mobile applications. Moreover, it supports real time SVD computations

28

for large matrices associated with large aperture antenna arrays. Configurable hardware

platforms such as field programmable gated array (FPGA) or application specific integrated

circuits (ASICs) are ideal for implementing WLPS. These platforms have huge number of

logic at our disposition and are suitable for implementing parallel algorithms. As we will

be implementing our parallel algorithms on these platforms, from hereon we refer to these

as "parallel hardware".

SVD procedure prescribed by Golub-Kahan-Reinsch [48] is the standard method on

sequential processors and is not suitable for parallel hardware. On the other hand,

widely known Jacobi method [48] has inherent parallelism that has been exploited in

many variations of this algorithm. This method can only be used for symmetric matrices

and it has the advantage of quadratic convergence [49]. Moreover, it is proven to be

more accurate than QR based methods [50]. Forsythe and Henrici [51] extended the

Jacobi method to general matrix and a cyclic version of their proposed approach was

later implemented by Brent-Luk-Van (BLV)on a Systolic Array[31]. BLV method uses

a two-sided transformation and is proven to retain the quadratic convergence of Jacobi

method [52]. Hestens proposed a one-sided variation of Jacobi’s method but Hestens

method does not directly produce singular vectors like the two-sided methods[53].

Special purpose CORDIC algorithm [54] and reduction in computations of the BLV

array [55] have motivated implementations of SVD on Field Programmable Gated Arrays

(FPGA). An improved SVD systolic array was proposed in [32] and is known to perform

29

three times more efficient and faster than BLV. Although this method is faster than the

original BLV, the convergence behaviour in terms of number of sweeps remains unchanged.

For larger matrix sizes the number of sweeps in BLV is prohibitively large[56] and hence

unsuitable for applications requiring real-time computation of SVD. Another FPGA based

implementation was proposed in [57] which folds a 4x4 SVD problem to obtain the

SVD of a larger matrix. Folding is a natural choice of implementation given limited

hardware resources but this increases the computation time. We note that most efforts in

improving SVD arrays are targeted towards decreasing the computation time of an iteration

or reducing the hardware resources consumed. Since the above methods have already lead

to maximum efficiency of a processing element, we delve into speeding up the convergence

by decreasing the number of sweeps.

Unlike traditional methods which follow a fixed ordering of subproblems ,we propose a

dynamic ordering where large element in each iteration is targeted. This highly increases

the SVD convergence rate in larger matrices compared to traditional Jacobi based methods.

The performance is compared in terms of number of sweeps. Monte Carlo simulations of

various matrix sizes were carried and results are reported. The proposed method reduces

the number of iterations by half for large matrix sizes. A fixed point streaming architecture

was also proposed and implemented in Xilinx FPGA. Both the traditional and proposed

methods are implemented and compared in terms of resources consumed, throughput and

latency. The details of implementation are provied in future chapter.

30

Section 2.2 describes the traditional fixed order Jacobi method for reference. It is followed

by the description of proposed algorithm. Section 2.3 outlines the architecture and provides

details of hardware implementation. Section 2.4 describes the simulation result and

compares the various aspects of implementation for the proposed and traditional algorithm.

Section 2.5 concludes the chapter.

2.2 Proposed Method

In this section, first the traditional Jacobi based SVD method and the BLV array are

introduced. Next, the proposed method and it’s associated algorithm are introduced.

2.2.1 Traditional Method- Jacobi SVD algorithm and BLV Array

Jacobi methods use a sequence of plane rotations to diagonalize a matrix A. For SVD,

two-sided plane rotations as shown below are used.

Ai+1 = JT
l AiJr (2.1)

are used. Here Jl and Jr are Jacobi rotations of θl and θr in the (p,q) plane (p < q).A

Jacobi matrix J is an identity matrix where four elements with indices (p, p), (p,q), (q, p)

31

and (q,q) are replaced by following values

Jpp = cos(θ),Jpq = sin(θ),Jqp =−sin(θ),Jqq = cos(θ) (2.2)

are replaced with cos and sin of a rotation parameter θ . θ is θl and θr for left and right

sided rotations respectively. In each iteration θl and θr pairs are calculated to annihilate the

off-diagonal elements of a 2× 2 submatrix. The two sided rotation applied to each 2× 2

submatrix corresponds to:

⎡
⎢⎢⎣

a′pp 0

0 a′qq

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

cl sl

−sl cl

⎤
⎥⎥⎦

T

p

⎡
⎢⎢⎣

app apq

aqp aqq

⎤
⎥⎥⎦

⎡
⎢⎢⎣

cr sr

−sr cr

⎤
⎥⎥⎦

T

q

(2.3)

⎡
⎢⎢⎣

a′i j a′i(j+1)

a′(i+1) j a′(i+1) j

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

cl sl

−sl cl

⎤
⎥⎥⎦

T

i

⎡
⎢⎢⎣

ai j ai(j+1)

a(i+1) j a(i+1) j

⎤
⎥⎥⎦

⎡
⎢⎢⎣

cr sr

−sr cr

⎤
⎥⎥⎦

T

j

(2.4)

where cl = cos(θl), cr = cos(θr), sl = sin(θl), sr = sin(θr) and a′pp, a′qq are the diagonal

elements obtained after applying the two sided digonalization process. It is observed that

a left sided Jacobi rotation affects only the elements in columns p and q and right sided

Jacobi rotation affects only elements in rows p and q. This exposes inherit parallelism in

Jacobi method and its evident that in a matrix of size N (N even) N/2 subproblems can

be solved in parallel. Therefore an iteration consists of solving N/2 subproblems and it

is a convention to call N such iterations as a sweep. The iterations are carried on till the

32

off-diagonal norm of the matrix A given as

o f f (A) = sumi�= jA2
i j, f orA ∈ R (2.5)

is within a specified tolerance.

sweeps =
Number of iterations

Matrix size
(2.6)

is within a specified tolerance.

Numerous parallel ordering schemes have been proposed in literature[31]. The basic

building blocks of the BLV array consists of a Processing Element (PE) which is allocated

to solve a 2×2 submatrix. There are functionally two types of PEs. A diagonal PE solves

for θr and θl and applies the rotation specified in (2.3) to the diagonal submatrix. It also

transmits the rotation parameters to the neighbouring processor. An off-diagonal PE applies

left sided rotation θl to 2× 2 submatrices on the rows p and q and right sided rotation θr

to 2×2 submatrices on the columns p and q. The array therefore consists of N/2 diagonal

PEs and (N/2)2 − (N/2) off-diagonal PEs. Fig 2.1 depicts the structure of the array and

communication between the processing elements. After each iteration, data is swapped

between PEs consistent with the ordering scheme. The BLV array is step synchronised due

to which PEs are ideal for almost about 66% of the time. Efficiency was improved by a

factor of 3 by operating on data as and when it is available, rather than synchronizing the

33

Figure 2.1: BLV Array for N=8. Data transmission is represented as solid

arrows and rotation parameters transmission with unfilled arrows

steps [32]. Although this method increase the efficiency compared to the BLV array, the

number of iterations still remain unchanged. We aim to address this issue and reduce the

number of iterations required.

2.2.2 Proposed algorithm for faster convergence

The fixed ordering scheme used in BLV array has the advantages of simple design and low

resource consumption, but for larger matrix sizes it take formidable number of iterations to

converge. In this new algorithm, we address this issue of slow convergence by deviating

from the traditional fixed ordering. We propose that in each iteration big off diagonal

elements to be targeted. That is instead of forming a 2×2 submatrix using block-diagonal

elements, the submatrix is formed by big off-diagonal elements. Since N/2 subproblems

34

are solved in parallel, we can target N/2 big elements which satisfy the row column

exclusivity. Row column exclusivity refers to the fact that N/2 big elements cannot have

same row or column numbers as any of the other N/2 − 1 elements row and column

numbers. Using this kind of dynamic ordering, we guarantee that in each iteration, the

biggest element and few other large elements are targeted. Unlike fixed order schemes, this

guarantees that the big off-diagonal elements are annihilated within the first few iterations

and remaining iterations are allocated to annihilating the already small elements to the

desired accuracy. The proposed algorithms is as follows.

repeat

1. Find N/2 big elements from off diagonal entries.

(xi,yi) for i = 1, . . . ,N/2

where xi+1 �= x1,...,i, xi+1 �= y1,...,i,

yi+1 �= x1,...,i, yi+1 �= y1,...,i

and xi �= yi

2.

for i = 1, . . . ,N/2 do

2.1.Select 2×2 submatrix Adiag to be processed by diagonal PE

Adiag=

⎡
⎢⎢⎣

Axixi Axiyi

Ayixi Ayiyi

⎤
⎥⎥⎦

2.2.Diagonal Processor

→ Solve the 2×2 SVD subproblem to obtain θr and θl

→ Calculate and output left and right rotation parameters

35

→ Apply two sided Jacobi rotation on 2×2 submatrix

A′
diag = J′l AdiagJr

→ Output data and wait for new input data

2.3.Column Processors

for i = 1, . . . ,(N/2−1) do

→ Select2×2 submatrix

if xi < yi

Acol=

⎡
⎢⎢⎣

Ac2 j−1xi Ac2 jyi

Ac2 jxi Ac2iyi

⎤
⎥⎥⎦

else

Acol=

⎡
⎢⎢⎣

Ac2 j−1yi Ac2 jxi

Ac2 jyi Ac2ixi

⎤
⎥⎥⎦

where ck �= xi,yi f ork = 1, . . . ,(N −2)

→Apply right-sided rotation to the column submatrix

A′
col = AcolJr

→Output data and wait for new input data

→Replace the submatrix back into the matrix

end for

2.4.Row Processors

for i = 1, . . . ,(N/2−1) do

→Select2×2 submatrix

if xi < yi

36

Arow=

⎡
⎢⎢⎣

Axir2 j−1
Axir2 j

Ayir2 j−1
Ayir2 j

⎤
⎥⎥⎦

else

Arow=

⎡
⎢⎢⎣

Ayir2 j−1
Ayir2 j

Axir2 j−1
Axir2 j

⎤
⎥⎥⎦

where rk �= xi,yi f ork = 1, . . . ,(N −2)

→Apply left-sided rotation to column submatrix

A′
row = J′l Arow

→Output data and wait for new input data

→Replace the submatrix back into the matrix

end for

end for

until off diagonal norm ,o f f (A)< ξ (tolerance)

37

2.3 Design and Implementation

2.3.1 Proposed System Design

2.3.1.1 Controller and Big element finder

Similar to other Jacobi methods, the proposed method is suitable for parallel

implementation. With an increase in the available processing units on parallel hardware,

resources are hardly a limitation. Accordingly, we propose a highly parallel system

shown in Figure 2.2. The solid arrows depict the communication of rotation parameters

and plane arrows depict the communication of matrix elements. Because the proposed

method is iterative, the stopping criterion is calculated and further iterations are started if a

predefined tolerance is not met. This functionality is included in the controller. Controller

also transfers data between the output and input memory banks if the iterations are to be

continued. The proposed design is also intended to be pipelined to increase the throughput

and controller needs to be designed accordingly. The big element finder module finds N/2

big elements as specified in the step 1 of the algorithm. This module produces N/2 pairs

of row and column to be transmitted to the N/2 core modules.

38

Figure 2.2: System level design for the proposed algorithm

2.3.1.2 Core modules

The term core module refers to a set of modules which consists of a diagonal submatrix

extractor, an off-diagonal submatrix extractor, a diagonal PE and N/2 pairs of column

and row rotations. The diagonal submatrix extractor extracts a submatrix as described in

step 2.1 of the algorithm. Off-diagonal submatrix extractor extracts N/2− 1 submatrices

as described in step 2.3 and 2.4 of the algorithm. These modules are necessitated due to

dynamic ordering followed in the prescribed algorithm. The diagonal PE calculates the

rotation parameters and transmits them to the column and row rotation modules. Column

and row rotation applies the right and left sided rotations to the selected submatrices. A

switch matrix is needed between column and row rotation modules to pass the appropriate

39

matrices to the row rotation modules. It should be noted that a set of diagonal PE, column

and row rotations are called a diagonal PE and a pair of column and row rotations are called

off-diagonal PE in the BLV array. Hence, the number of parameter generators (N/2) and

two sided rotation modules((N/2)2) remain unchanged for the proposed approach and BLV

array. The proposed high level design can be adopted for any parallel hardware.

2.3.2 Implementation on FPGA

As a proof of design and performance analysis, we chose to implement the proposed

algorithm on Virtex-6 XCVLX365T using high-level design tool called System Generator

for DSP by Xilinx. As the design was inherently parallel, we tried to further improve the

system by pipelining to the maximum possible limit. Both the BLV array and the proposed

algorithm were implemented to ensure a fair comparison. The modularity of design and

implementation makes it easy for extending the system to bigger matrix sizes and word

length if desired. BLV array consists of modules: diagonal PE, column and row rotation

and data switching modules. The proposed array has additional modules: big element

finder, submatrix extractor and switch matrix. Submatrix extractor and switch matrix are

simple multiplexer based implementations with fine grain pipelining .

40

Figure 2.3: Finite State Machine for finding the biggest element in each

row in a matrix of size N

2.3.2.1 Big element finder

This module finds the N/2 big elements which are row and column exclusive. It was

assumed that the data of each row of matrix is received in streaming fashion. State machine

in Figure 2.3 is used to find the biggest element in each row of a matrix of size N.

The largest of these N biggest elements gives the row and column number of the biggest

element. The next biggest element is found among rows and columns excluding the rows

and columns from which the previous biggest elements were found.

2.3.2.2 Diagonal PE

The Diagonal PE calculates the rotation parameters via Two-Plane-Rotation (TPR)

method[55]. The inverse tan, sin and cos functions are implemented using CORDIC 4.0

41

macro provided by System Generator. Since hardware resources is not a constraint for

smaller matrix sizes we choose not to fold the operations. For bigger matrix sizes the

operations can be folded to save hardware resources. Each Diagonal PE uses 4 CORDIC

modules.

2.3.2.3 Column and Row rotation

Column and row rotations are each a 2 × 2 matrix multiplication, which translates to

8 multiplications and 4 additions. These are implemented using DSP48Es available in

abundance in recent FPGAs. Multiplier design based on DSP slices are reported to consume

lesser power [58]. For larger size matrices, multiplication operation can be folded into a

single DSP48E by trading latency for higher frequency of operation.

2.4 Simulations and Discussions

2.4.1 Simulation Results

The performance of the proposed algorithm was compared with the BLV in terms of

number of sweeps required to reduce the off diagonal norm (sum of the square of all the

off diagonal elements) to a specified tolerance to a specified tolerance (in our simulations it

42

is 10−15). It is conventional to measure convergence behaviour in terms of sweeps, where

the sweeps represent number of iterations divide by N, for a matrix of size N ×N. The

simulations were conducted for matrix sizes ranging from 4×4 to 128×128. Monte-Carlo

simulations with uniformly distributed matrix elements were conducted. Figure 2.4 depicts

the number of sweeps for various matrix sizes for the BLV array and the proposed array. It

was found that the number of sweeps for proposed array plateaus for large matrix size. This

means that for matrix sizes greater than 32 the number of iterations is nearly proportional

to the matrix size. The factor by which the number of sweeps reduces increases with matrix

size, hence the advantage of the method is highlighted for larger matrices.

In order to explain the observed effect we plot the off diagonal norm vs the iteration number

in Figure 2.5. For N = 128, it is observed that the proposed algorithm’s off diagonal norm

reduces to set tolerance in a lower number of iterations as compared to the BLV array. The

convergence of the proposed array for N = 128 is similar to that of BLV array for size

N = 64. This difference in convergence behaviour between the proposed and BLV array is

not very evident for N = 8.Note that the tolerance used for simulations(10−15) is an overkill

for envisioned applications. Targeting the big elements in the initial iterations accelerates

the annihilation of the off diagonal elements, resulting in the improved performance of the

proposed method. This can be observed in Figure 2.5 where the off diagonal norm drops

rapidly in the initial iterations for proposed method as against the BLV method.

43

0 20 40 60 80 100 120 140
1

2

3

4

5

6

7

8

Matrix Size (N)

A
ve

ra
ge

 N
um

be
r o

f S
w

ee
ps

BLV Array
Proposed Method

Figure 2.4: Number of sweeps vs. matrix size

0 200 400 600 800 1000
−20

−15

−10

−5

0

5

10

Number of iterations

O
ff

D
ia

go
na

l N
or

m
 (l

og
 s

ca
le

)

BLV Array N=128
Proposed Array N=128
BLV Array N=64
Proposed Array N=64
BLV Array N=8
Proposed Array N=8

Figure 2.5: Convergence of matrix depicted as reduction in off diagonal

norm vs iteration number

44

2.4.2 Implementation Results

For the purpose of fair comparison, FPGA implementation of the proposed and traditional

BLV was done. Both the systems were designed with maximum possible pipelining

resulting in comparable maximum achievable frequency of operation. Table 2.1 and 2.2

compare the resource consumption and maximum achievable frequency of the 4× 4 and

8×8 proposed array with BLV arrays of equivalent size. Efforts were made to pipeline both

the arrays to maximum possible extent to achieve the maximum frequency of operation.

Given the iterative nature of the algorithm, similar frequency of operation with reduced

number of sweeps amounts to faster overall convergence of the method. Although, we

observe a marginal increase in resource consumption for the proposed design, the total

number of slices consumed is less than 25% leaving area for other signal processing

modules in the original applications. The DSP48Es have been pipelined in three stages

which is the minimum for multiplier-based design. For bigger arrays, when the available

number of DSP8Es fall short, we can fold the multiplication operation and pipeline the

DSP slices up-to six stages to operate the DSP slices upto a maximum of 600MHz [58].

45

Table 2.1
FPGA Implementation of BLV and Proposed array for 4×4 matrix

Available on BLV Array Proposed Array

Virtex 6 (4×4) (4×4)

Maximum 180.408 MHz 180.018 MHz

Achievable Frequency

Slice Registers 455,040 12,386 (2%) 14,208(3%)

Slice LUTs 227,520 10,987 (4%) 12,641(5%)

Occupied Slice 56,880 3569 (6%) 4094(7%)

DSP48E1s 576 64 (11%) 64(11%)

Table 2.2
FPGA Implementation of BLV and Proposed array for 8×8 matrix

BLV Array(8×8) Proposed Array(8×8)

Maximum Achievable 107.001 MHz 106.633 MHz

Frequency

Slice Registers 45,343(10%) 51,254(11%)

Slice LUTs 42,322 (18%) 47,749(20%)

Occupied Slice 14,300 (25%) 16,371(28%)

DSP48E1s 160 (27%) 160(27%)

2.4.3 Latency and Throughput

Latency and throughput are two key parameters for choosing a parallel and pipelined design

for an application. Figure 2.6 sketches the timing of our design to investigate the throughput

and latency tradeoffs of our system. This diagram does not depict the fine level pipelining

and is being used to quantify the latency and throughput in general. Only modules which

contribute to the latency (the ones whose latency cannot be hidden in other modules) are

depicted. The throughput is equal to the inverse of the latency of the processing element

with the highest latency, also called the critical element. In this case, part of diagonal

46

processor which calculates the rotations parameters (referred to as parameter generator) is

the critical element and is common to both proposed and BLV array. Hence, throughput for

the proposed and BLV array is equivalent and corresponds to

Tproposed = TBLV =
1

L(Sc)
=

1

Tpg
(2.7)

. Here L(.) is the latency of any given processing element and Tpg is the latency of

parameter generator. Latency can be calculated in way described via [59],

L = (2× ic −1)×L(Sc)+
M

∑
i=ic+1

L(Si) (2.8)

where ic is the index number of the critical stage Sc, Si is ith stage of the pipeline and M is

the total number of pipeline stages. For our design, we consider the parameter generator

as the critical stage. In this case, the number of stages prior to parameter generator is N/2

and accordingly index number if the critical stage is

ic =
N
2
+1 (2.9)

and latency is given as

Lproposed = (2× (
N
2
+1)−1)×Tpg +Tcm +Tsm +Trm (2.10)

47

where Tcm, Tsm and Trm are latencies of column multiplication, switch matrix and row

multiplication, respectively.Tpg was introduced in (2.7). Except the processing element,

all other modules have an idle time. This can be avoided by either folding the operations

for saving area or by balancing the pipeline in a better way. Also, the critical element

experiences an idle time before starting the next iteration on data set 1. This can be avoided

by trying to keep the overall latency as an integral multiple of the latency of critical stage .

L = I ×Tpg (2.11)

Where L in the overall latency and integer I is the number of data sets that can be processed

before the next iteration on first data set starts. Tpg has been introduced in (2.7). It is

to be noted that for larger N ,latency can be very large and we might have to go for

different scheme of finding the large elements, where we may not be able to target best

N/2 large elements always. Not being able to target the best large elements might impact

the convergence minimally but the convergence behaviour will be still better than BLV.

Latency and throughput tradeoff is a decision to be made based on the requirements of an

application.

48

Big
ges

tEl
em

ent
find

er1

Big
elem

ent
find

er(N
/2)

Tm

Tm

Par
am

ete
rGe

ner
ato

r1

Par
am

ete
rGe

ner
ato

r(N
/

2)

Tpm

Tpm

Col
um

nm
ulti

plic
atio

n1

Col
um

nm
ulti

plic
atio

n(N
/

2)^
2

Tcm

Tcm

Swi
tch

Ma
trix

Tsm

Row
Mu

ltip
lica

tion
1

Row
Mu

ltip
lica

tion
(N/

2)^
2

Trm Trm

Tm

Tm

Tpm

Tpm

Tcm

Tcm

Tsm

Trm Trm

Tpm

Tpm

Tm

Tm

Tcm

Tcm

Tsm

Trm Trm

Tm

Tpm

Tm

Tpm

Tcm

Tcm

Tsm

Trm Trm

(N/
2)*

Tm
Tpg

Tcm
Tsm

Trm
Tpg

Tpg
Firs

tIte
rati

on
ofd

ata
set

1 Firs
tIte

rati
on

ofd
ata

set
2

Sec
ond

Iter
atio

no
fda

tas
et2

Firs
tIte

rati
on

ofd
ata

set
3

Dat
ase

t1
Dat

ase
t2

Dat
ase

t3

Leg
end

Fi
gu

re
2.

6:
T

im
in

g
d
ia

g
ra

m
fo

r
th

e
p
ro

p
o
se

d
S

V
D

m
et

h
o
d

49

2.5 Conclusion

A new and fast converging algorithm for SVD suitable for real-time signal processing

applications was proposed. A highly parallel and pipelined design for implementing this

algorithm was also proposed. The higher convergence rate of the proposed technique was

depicted by the reduction of the number of sweeps as the matrix size increases. Thus,

the number of iterations needed by the proposed technique is significantly reduced (by

about 50%) compared to the traditional BLV as the matrix size increases. The FPGA

implementation proved that the system has the same throughput as the traditional system.

Reduced number of sweeps with the same throughput implies faster convergence. Only

a marginal increase in hardware resources was observed. The system can be clocked at

frequency as high as 180 MHz for 4× 4 matrix while occupying less than 10% of slices

in Virtex-6 FPGA. We also noted that better convergence and comparable throughput is

obtained as a tradeoff of latency. Hence, this proposed method is suitable for signal

processing applications which operate on streaming data rather than on burst mode data.

50

Chapter 3

Details of FPGA implementation for

proposed SVD

This chapter details the various aspects of FPGA implementation of SVD method proposed

in previous chapter. The modules are explained in greater detail with help of finite state

machine (FSM) diagrams and implementation diagrams. The overall system performance

and comparative analysis has already been discussed in chapter 2, hence we limit

the discussions in this chapter to implementation details of individual modules. The

discussions in this chapter facilitates easy replication of the FPGA implementation. The

modules are designed to eases the process of extending the proposed design to larger

matrix sizes in the event of increase in number of antenna array elements. The design

was pipelined to maximum possible extent to maximize the frequency of operation. As

51

Figure 3.1: Design flow for System Generator development

mentioned before, the design was implemented on Virtex-6 XCVLX365T using high-level

design tool called System Generator for DSP by Xilinx.

3.1 System Generator design flow

Figure 3.1 gives an overview of the various steps involved in System Generator design flow

[60, 61]. A robust design needs to go through all of these steps and many times through

multiple iterations of these. First step is to verify and analyze the proposed algorithms in

MATLAB. A well written and detailed system specification document is a good starting

52

point for FPGA design. Better the understanding of the various aspects of system design

and features, lesser the number of iterations it takes through the design flow to arrive at

the final implementation. Both the High level description (HLD) and low level description

(LLD) need to be described in sufficient detail. Use of FSM diagrams, flowcharts and

expected timing diagrams is encouraged. Since the proposed design is a fixed point design,

world length and effects of word length need too be calculated and be specified as part

of specifications document. Next, an executable Simulink model needs to be developed.

This provides us with the understanding of timing of the system. This step is optional but

is highly encourages as it may ease the process of System Generator design and come on

handy when debugging and functional testing. Xilinx provides DSP blockset and other

reference blockset for System Generator design. These blocksets need to be used for

developing a System Generator design. It is important to follow the system specifications.

System Generator can be easily interfaced to Simulink. While developing the individual

modules and also while integrating different modules, one can use the Simulink interface

to perform functional testing. Waveform viewer tool in System Generator is a convenient

way to check the latencies. Often, functional verification and going through the iterations

of design and testing is the most time consuming part of the design flow. System Generator

uses the Xilinx Coregen functionality to automatically generate the RTL. Once the RTL is

generated, RTL test bench needs to be created and RTL verification needs to take place.

From here on, the steps are similar to a regular FPGA design flow of synthesis, translate,

map, place and route and programming the FPGA with bitstream.

53

3.2 FPGA Modules

Various FPGA modules are described in details before the overall FPGA design is

presented. A subset of these modules were used for implementing the BLV array as well.

Throughout this discussion the notation of (worlength_ f ractional) bits is used to represent

the fixed point notation. For example, (16_14) implies the signal is of 16 bit wordlength

with 14 fractional bits. Also the term "streaming matrix" implies that each row of the

matrix is received in streaming fashion. Hence, we have N channels corresponding to each

row of a N ×N matrix. Each element of the column is received in sequential manner.

Therefore it takes N clock periods to receive the entire matrix over N channels. This signal

flow is assumed to improve latency and also to keep the number of I/O pins to an optimum

number. In case of very large N, the channels might need to be time multiplexed as we

may not have enough I/O pins.The latency calculations were already discussed in sufficient

detail in Section2.4.3.

3.2.1 Finding the N/2 big elements

This module finds the N/2 big elements which are row and column exclusive. Figure 3.2

represents the state machine for this module. First the diagonal elements are zeroed out as

the big elements need to be from the off-diagonal. Zeroing out the diagonal elements is

54

a simple task achieved with N of these state machines depicted in Figure 3.3. The index

i in each of these state machines represents the channel number. For example 2nd state

machine with index i = 2 will be repeatedly pounding the 2nd element of the streaming row

data. In Figure 3.2 this operation is represented as zerodiag(). Next, the biggest element of

the matrix is found as depicted in Figure 3.4. While the data (matrix entries) is streaming,

the biggest element of each row can be obtained at the end of N clock periods using the

state machine depicted in Figure 3.5. Again, N of these state machine are required to

find the biggest element from N channels. The N biggest elements are then searched for

biggest element. This can be done using a combinatorial circuit. We implement a log2(N)

stage search for finding the biggest element out of N elements. This can be done using

N − 1 comparators. The comparators should also output the index of the biggest element.

After the biggest element is obtained, the entries corresponding to row and column of the

biggest element are zeroed out using the state machine in Figure 3.6. Finding the biggest

element of a streaming matrix and then zeroing out the row and column corresponding to

the biggest element is referred to as f indmax() in Figure 3.2. And the biggest element of

the resultant streaming matrix (after zeroing out the row and column entries to maintain

row and column exclusivity) is then found by Figure 3.4. This operation is represented as

zerorowcol(). This step is repeated till N/2 such big elements are found. We need not zero

out the row and column entries after finding the N/2nd big element.

Figure 3.7 is the System Generator module for finding 4 big elements of a 8×8 streaming

matrix.

55

Figure 3.2: State machine for finding the N/2 big entries of N × N
streaming matrix under row column exclusivity condition

Figure 3.3: State machine for zeroing out the diagonal entries of a N ×N
streaming matrix

Figure 3.7 is the System Generator module for finding 4 big elements of a 8×8 streaming

matrix. From the description above it is understood that first big element is found at the

end of N + log2(N) clock cycles from the time of first column streams in. The indices of

second element at log2(N) + L(zerorowcol) ,where L(.) is the latency of function. The

indices of subsequent big elements is obtained at subsequent log2(N) + L(zerorowcol)

clock cycles. Figure 3.8 depicts the timing diagram for the modules in Figure 3.7. The

clock cycles at which the first, second, third and fourth big element indices are found

56

Figure 3.4: Flow chart for finding the big element and its row column

indices

Figure 3.5: State machine for finding the biggest element from the channel

of a streaming matrix

57

Figure 3.6: State machine for zeroing out the row and column of a N ×N
streaming matrix corresponding to the big element

include the latencies mentioned above and latencies due to pipelining. The figure serves

the purpose of understanding the latencies of the module.

58

Fi
gu

re
3.

7:
H

L
D

d
ia

g
ra

m
fo

r
th

e
F

P
G

A
m

o
d
u
le

to
fi

n
d

4
b
ig

el
em

en
ts

fr
o
m

a
8
×

8
st

re
am

in
g

m
at

ri
x

59

Figure
3.8:

T
im

in
g

d
iag

ram
fo

r
th

e
F

P
G

A
m

o
d
u
le

fo
r

fi
n
d
in

g
4

b
ig

elem
en

ts
fro

m
a

8×
8

stream
in

g
m

atrix

60

Figure 3.9: An example of extracting a 2× 2 submatrix corresponding to

indices i and j from a 8×8 matrix

3.2.2 Submatrix selector

Once the indices of the big elements are available, we need to extract the submatrix with

the biggest element as one of the off-diagonal element and symmetrically opposite entry

of the N ×N matrix as the other off-diagonal element. Figure 3.9 shows an example of

submatrix extraction for a row column indices (i, j). Either ai j or a ji is the big element

found previously. Selecting submatrix is a simple logic based on multiplexers as depicted

in Figure 3.10. The input to the module is streaming data of N channels and the output is

the submatrix which is produced at a downsampled rate of fs/N where fs is the frequency

of operation. Figure 3.11 shows the timing diagram of extracting a 2× 2 matrix from a

8×8 matrix given the row and column index.

61

Figure
3.10:

F
P

G
A

m
o
d
u
le

fo
r

selectin
g

a
su

b
m

atrix

62

Fi
gu

re
3.

11
:

T
im

in
g

d
ia

g
ra

m
fo

r
th

e
F

P
G

A
m

o
d
u
le

fo
r

ex
tr

ac
ti

n
g

a
2
×

2

su
b
m

at
ri

x
fr

o
m

a
8
×

8
st

re
am

in
g

m
at

ri
x

63

3.2.3 Parameter generator

Given a submatrix, we apply the method given in [55] to obtain the rotation parameters that

will annihilate the offdiagonal elements. Parameter generator only generates the parameter

for left and right rotation. It does not apply them to the matrix. Let A be the submatrix for

which the rotation parameters need to be generated.

A =

⎡
⎢⎢⎣

a11 a12

a21 a22

⎤
⎥⎥⎦ (3.1)

Then

p1 = (a22 +a11)/2 , p2 = (a22 −a11)/2

q1 = (a21 −a12)/2 , q2 = (a21 +a12)/2

(3.2)

These parameters are used for calculating the left and right rotation parameters, θ2 and θ2

θ− = tan−1(q1/p1) , θ+ = tan−1(q2/p2)

θ1 = (θ+−θ−)/2 , θ2 = (θ++θ−)/2

(3.3)

We then calculate the cos(θ1) , sin(θ1) , cos(θ2) and sin(θ2)of these rotations parameters

and transmit them. The arctan ,sin and cos operations are performed using CORDIC cores.

64

Table 3.1
Comparision of CORDIC in word serial and parallel configurations

Maximum pipelining Maximum pipelining

configuration configuration

Maximum frequency of operation 139.237 MHz 18.469MHz

Slice flip flops 16% 16%

4 input LUTs 15% 2%

DSP48Es 8% 8%

For further details of CORDIC configuration and architecture refer to [62].

The same operations are performed in Figure 3.12. Since physical space on FPGA was

not a concern we chose to implement the CORDIC 4.0 with parallel architecture. This

helped us achieve high frequency of operations. System generator core provides us

with options to specify the level of pipelining. We can get maximum performance by

pipelining to maximum extent which will cause more flip-flops to be used. Using minimal

pipelining on the other hand reduces the number of flip flops used but cause reduction in

maximum achievable frequency of operation. For the sake of comparison we synthesized a

parameter generator one with CORDIC configured with maximum pipelining and another

with minimal pipelining. This was implemented in Virtex 4 FPGA. The occupancy and

frequency of operation can be compared in Table 3.1. What we can observe is only the

number of flip flops that are occupied has increased in parallel configurations with huge

increase in frequency of operation

65

Figure
3.12:

F
P

G
A

m
o
d
u
le

fo
r

p
aram

eter
g
en

eratio
n

66

Fi
gu

re
3.

13
:

T
im

in
g

d
ia

g
ra

m
fo

r
th

e
F

P
G

A
m

o
d
u
le

fo
r

g
en

er
at

in
g

le
ft

an
d

ri
g
h
t

ro
ta

ti
o
n

p
ar

am
et

er
s

67

Table 3.2
Occupancy and frequency of operation for row multiplication

Used Available Utilization

Maximum frequency of operation 260.756 MHz NA NA

Slice flip flops 128 30,720 v1%

4 input LUTs 152 30,720 1%

DSP48Es 8 192 4%

3.2.4 2 × 2 matrix multiplication for row and column submatrix

multiplication

Once the parameters are generated we need to apply the left and right sided rotation

(column and row rotations) to the submatrices. Applying the rotation is 2 2× 2 matrix

multiplication . A 2× 2 matrix multiplication is 8 multiplications and 4 additions. We

implement these using DSP48Es available in abundance in recent FPGAs. A 2 × 2

multiplication corresponding to left sided rotation is given as

B =

⎡
⎢⎢⎣

b11 b12

b21 b22

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

cos(θ) sin(θ)

−sin(θ) cos(θ)

⎤
⎥⎥⎦∗

⎡
⎢⎢⎣

a11 a12

a21 a22

⎤
⎥⎥⎦ (3.4)

For column multiplication only the parameters change. The row multiplication module was

synthesized on Virtex 4 and the occupancy and maximum achievable frequency achieved

are as show in Table 3.2.This is depicted in Figure 3.15 and the corresponding timing

diagram in Figure 3.14.

68

Fi
gu

re
3.

14
:

T
im

in
g

d
ia

g
ra

m
fo

r
th

e
F

P
G

A
m

o
d
u
le

fo
r

2
×

2
su

b
m

at
ri

x

m
u
lt

ip
li

ca
ti

o
n

69

Figure
3.15:

F
P

G
A

m
o
d
u
le

fo
r

2×
2

m
atrix

m
u
ltip

licatio
n

u
sed

fo
r

ro
w

an
d

co
lu

m
n

su
b
m

atrix
m

u
ltip

licatio
n
s

70

3.3 Conclusion

Modules which have major impact on the performance of the system such as parameter

generator , row column multiplication (described in Section 2.3.2) were detailed in this

chapter. We also detail the modules specific to proposed method namely big element finder

and submatrix extractor. Other modules such as switch matrix and controller are simple

to design and are open to interpretation by the designer. Controller can be implemented

either as an FSM or on a soft core processors. Implementing on soft core processor

makes the design easier and faster. The same soft core processors can be used for other

control operations as well. We have tried to optimize the modules for performance.

Special fucntional units such as DSP48E and IP cores such as CORDIC have been used to

maximize performance. Although using these modules makes our design vendor specific,

we believe these functional units and cores are available in most modern day FPGAs and

can be easily replaced. This chapter describes the important modules in a detailed fashion

and serves as a refernce for designers intending to replicate or extend the proposed design.

71

Chapter 4

Real-time root-MUSIC DOA estimation

via a parallel polynomial rooting method

This chapter describes a new parallel polynomial rooting technique for real-time signal

processing implementation of root-MUSIC suitable. Complex dynamics of root-MUSIC

polynomial’s Newton map were exploited to prescribe a minimal set of initial points for

Newton’s method. The proposed method is based on adaption of Newton’s method as

a global polynomial rooting technique. A set of initial points which guarantee that at

least one of them would converge to the root closest to the unit circle (that corresponds

to the direction of arrival (DOA)) were proposed. A comparison of the proposed method

with existing general polynomial rooting technique was done to assess the computational

complexity and possibility of parallelization. In addition, the performance of proposed

73

system when incorporated into root-MUSIC was analyzed in terms of computations

required to achieve a given accuracy of DOA.

4.1 Introduction

Direction of arrival (DOA) is a problem of interest in various applications such as wireless

sensor networks (WSN), body area networks, local positioning systems etc. We are

motivated to implement DOA estimation for a remote positioning system know as wireless

local positioning system (WLPS)[7]. A WLPS system is intended for mobile devices,

hence is limited in processing capabilities and requires real-time output. Over the past

decades, various DOA estimation techniques have been developed. Subspace based

techniques such as MUSIC[19], ESPRIT[28], maximum likelihood [63] and developments

thereafter have gained significant attention. In particular, MUSIC and its variations have

become popular due to their robustness, ease of implementation and because they are

independent of array configuration. The spectrum search in MUSIC is a high complexity

step and leads to the development of a search-free variation known as root-MUSIC[23].

Root-MUSIC uses polynomial rooting to find roots closest to the unit circle and in its

original form is applicable only to uniform linear arrays (ULA). It is proven to have

performance asymptotically similar to the MUSIC[24]. In WLPS, we deal with uniform

linear array, hence root-MUSIC is a good choice for our DOA estimation.

74

As the number of sensors in the array increase, polynomial rooting becomes increasingly

computation intensive. Researchers have proposed methods to reduce the complexity

of polynomial rooting for DOA using Householder transformation[64, 65], which is a

sequential process unsuitable for parallel implementations. Root-MUSIC based on unitary

transformation resulting in real coefficient polynomials[66] were proposed as well. In this

chapter, we aim to address polynomial rooting for complex coefficient polynomials, as the

real polynomial rooting is a subset problem.

In mathematics, finding all roots of a complex polynomial of large degrees is an ongoing

research [67].The most common method for finding the roots of a polynomial is via

eigenvalue decomposition of companion matrix[35] and its faster variations [68, 69].

These methods are used in LAPACK and implementations on sequential machines.

Their sequential nature make them unsuitable for real-time signal processing applications

implemented on configurable platforms such as field programmable gated arrays (FPGA)

and and single instruction multiple data (SIMD) platforms such as graphical processing

units (GPU). Methods based on polynomial factorization [36, 70], though amenable to

parallelization, are extremely complex to implement. Newton’s method is a popular local

rooting technique which can be adapted as a global rooting technique if a set of initial

seed points which converge to each root can be obtained [37]. Newton’s method has the

advantages of fast convergence, simplicity of implementation and numerical stability. An

attempt at using Newton’s method was done in [71] by choosing an initial point using

delay and sum (DAS) and iterating using root-MUSIC polynomial. This is effectively a

75

local polynomial rooting technique and it fails to converge to the correct root in low SNR

and multipath conditions.

This chapter depicts that root-MUSIC polynomial has a well defined Newton map

geometry. This geometry is exploited to obtain a small set of well defined points which

can be used as initial points for Newton’s method. These set of points are selected

such that there exists initial points for each root. By doing so, we are able to overcome

the problem faced by [71] and effectively convert the Newton’s method into a global

polynomial rooting. Moreover, these set of points guarantee the convergence to the root

closest to the polynomial irrespective of the nature of the channel. All the points in the

prescribed set can be iterated in parallel, thus reducing overall processing time. Quadratic

convergence of Newton’s method allows us to fix the number of iterations based on the

desired precisions of the root. The proposed method is highly parallel, terminates within

fixed number of iterations resulting in a system with fixed latency, is easy to implement and

can be easily extended to large sensor arrays. These properties make it highly suitable for

implementation on FPGAs and SIMD hardware.

Section 4.2 highlights Newton map and signal model of the root-MUSIC crucial in

developing the proposed method. Section 4.3 explores the complex dynamics of

the Newton Map of root-MUSIC polynomial and emphasizes on certain well-defined

characteristics that lead to the proposed method of polynomial rooting. Section 4.4

compares the proposed method to traditional methods in terms of computation complexity

76

and it is found to be simpler than other methods and costs a degree less than other methods

when implemented in parallel fashion. Section 4.5 concludes the chapter.

4.2 Background

This section explains the global geometry of Newton Map of a generic complex univariate

polynomial [37]. We than briefly review the signal model of root-MUSIC.

4.2.1 Global geometry of Newton map

Throughout this chapter we deal with a complex univariate polynomial p(z) : C→ C of a

degree d. Newton’s root finding method iterates on the associated Newton map

Np : C→ C,z → z− p(z)
p′(z)

(4.1)

to arrive at the root ξ such that p(ξ) = 0. Newton map is a conformal map as the analytic

function has derivative at all points of the complex plane. Given a starting point z0, if the

sequence (z0,z1 =Np(z0),z2 =Np(z1)) converges to ξ , then z0 is said to be in the basin of ξ .

Collection of all such starting points which converges to ξ is called the basin of root ξ . In

addition, the connected components of the basin containing root ξ is called the immediate

basin Uξ . Connected spaces imply that any two points in space D can be connected by

77

Figure 4.1: An example Newton Map

a curve lying wholly within D. In Figure 4.1, a Newton map of a fourth degree complex

univariate polynomial (4−3i)z4+(2−3i)z3+(1−2i)z2+(1−3i)z+(2+1i) was sketched

to illustrate different aspects of the geometry. The blue, green, red and yellow regions are

the basins of the four roots of this polynomial, which are in turn indicated by black points

in the complex plane. The basins are shaded in order to indicate how fast they converge to

the root [72, 73].

Critical points of a conformal map forms the complex dynamics of the map. Hence we

78

study the critical points of Np, which are the solutions of

N′
p(z) =

p(z)p′′(z)
p′(z)2

= 0 (4.2)

The roots of the polynomial and those of the second order derivative including multiplicities

form the total number of critical points of a Newton map. The points in white in Figure 4.1

represent solutions of p′′(z) = 0. Hence, both black and white points together form the

complete set of the critical points. Let mξ be the number of critical points in the immediate

basin Uξ of a root ξ . From proposition 6 of [37], we know that an immediate basin has

mξ access to infinity. Accesses to infinity are the channels of basin that extend to infinity

and each basin has atleast one such channel. This can be verified in Figure 4.1, where red,

green and yellow basins have one access to infinity as there is only one critical point in the

basin. Blue basin on the other hand has three separate accesses to infinity.

A set of at most 1.11d log2 d points (where d is the degree of the polynomial) in C can be

constructed for every polynomial p(z), such that there is at least one point in the set that

belongs to the basin of each root[37]. Polynomial p needs to be normalized such that all

its roots stay within the unit disk D. A specific set of ns starting points rν exp(iϑ j) were

suggested, where

s = �0.26632logd	,n = �(8.32547d logd)	 (4.3)

79

rν = (1+
√

2)(
d −1

d
)

2ν−1
4s ,ϑ j =

2π j
n

(4.4)

for 1 ≤ ν ≤ s and 0 ≤ j ≤ n− 1. It is to be noted that this applies to any polynomial and

results in large number of starting points. In this chapter, we aim to reduce the number of

starting points by exploiting the specific geometry of the root-MUSIC polynomial.

For an array of M sensors and L sources (L < M), the received sensor signal is

y(t) =V ∗ x(t)+n(t) (4.5)

where V = [V (θ1),,V (θL)] is the steering matrix, x(t) = [x1(t),,xL(t)]T is the

transmitted signal and n(t) = [n1(t),,nM(t)]T is the additive noise. The covariance

matrix and it’s eigen decomposition corresponds to

R = E(xxH) = EsΛsEH
s +EnΛnEH

n (4.6)

Es and En are the signal and noise subspace respectively. E(.) is the expectation opertaion.

Λs = diag(λ1,,λL) and Λn = σ2I(M−L)×(M−L) (4.7)

80

are the signal and noise eiegenvalue vectors repectively, where σ2 is the noise variance and

I represents an identitiy matrix. The MUSIC spectrum corresponds to

S(θ) =
1

V H(θ)AV (θ)
, A = EnE∗

n (4.8)

Here θ represents the angle at which the spectrum is evaluated and the range and resolution

depends on desired precision of DOA estimation. V is the steering vector as given in (4.5)

and En is the noise subpaces as given in (4.7). For a uniform linear array the mth element

of steering vector, V (θ) is

Vm(θ) = e− j2πm(s
λ)sin(θ), m = 1...M (4.9)

,where s is the seperation between elements of the antenna array and λ is the wavelength

of the signal. Inverse of MUSIC spectrum in (4.8) can be simplified using(4.9) as

S−1(θ) =
M

∑
m=1

M

∑
n=1

e− j2πm(s
λ)sin(θ)Amne j2πm(s

λ)sin(θ)

=
M−1

∑
l=−M+1

ale− j2πl(s
λ)sin(θ)

(4.10)

where s, λ and θ are parameters as explained in (4.9) and (4.8) respectively. In addition,

al = ∑m−n=l Amn is the sum of entries of A along the lth diagonal. A polynomial can be

81

constructed as

D(z) =
M−1

∑
l=−M+1

alz−l (4.11)

where al is as explained in (4.10). It is well known that roots on the unit circle of a

polynomial D(z) give the direction of arrival of the signal. From now on we refer to D(z)

as root-MUSIC polynomial (RM polynomial).

4.3 Complex dynamics of root-MUSIC polynomial and

proposed polynomial rooting technique

Exploring the dynamics of Newton map of the RM polynomial was the key to arriving at

our polynomial rooting method. In this section, we make a few observations regarding

Newton map of RM polynomials and try to prove that these observations are valid for

any RM. Figure 4.2 depicts the Newton map for RM polynomial of degree d = 6 i.e.,

for a sensor array of size M = 4. The received signal was measured at different channel

conditions namely AWGN channel with SNR = −10db and SNR = 10db, Rician channel

with NLOS/LOS = −5db and additive noise of SNR = 0 and ideal channel condition of

SNR = in f . Figure 4.3 depcits the Newton map for various sensor array size (M) ie. RM

polynomials of various degrees (d = 2M −2) at AWGN with SNR = 0db. A unit circle is

82

also marked to offer an idea regarding relative positioning of the roots.

(a) SNR=-10db (b) SNR=10db

(c) SNR=0db and pdb=-5db (d) SNR=inf db

Figure 4.2: Newton map of RM polynomial of degree 6 ie. a sensor array

of 4 elements at various channel conditions

83

(a) Array size=4 (b) Array size=6

(c) Array size=8

Figure 4.3: Newton map of RM polynomial of various degrees at SNR=0db

84

4.3.1 Symmetry of polynomial roots across unit circle

The hermitian nature of matrix A in (4.8) enables the coefficients of polynomial D(z) to be

complex conjugate pairs al = a∗l . Accordingly,

D(z) = D∗(z) (4.12)

Let the factorization of D(z) and D∗(z) be

D(z) =
d−1

∏
k=0

(z− zk),D∗(z) =
d−1

∏
k=0

(1− z̄kz) (4.13)

where d is the degree of polynomial. zk and z̄k are the d roots of the polynomial. Since

D(z) = D∗(z) we have z̄k
−1 = zk. This confirms that roots of a RM polynomial exist in

pairs which are symmetric across the unit circle. Let the d roots of D(z) be represented as

z0 = |z0|e j arg |z0|....zd−1 = |zd−1|e j arg |zd−1| (4.14)

where d = 2M−2. Due to symmetric nature the roots, the DOA represented by that roots

are equal.

λ
2πd

argzk =
λ

2πd
argzd−k−1, k = 0 . . .d/2−1 (4.15)

85

This can be validated via Newton maps depicted in Figure 4.2 and Figure 4.3, where roots

exist in symmetric pairs independent of the channel conditions and degree of polynomial

be. Moreover, as SNR increases the roots corresponding to DOA move closer to the unit

circle.

4.3.2 Accesses to infinity

As stated before, the critical points of the polynomial, hence the accesses to infinity are

important in understanding the complex dynamics. For a polynomial D(z) of degree d,

total number of critical points are (d+(d−2)) corresponding to d roots of D(z) and (d−2)

roots of D′′(z). From Figure 4.3 we can see that roots of D′′(z) (depicted in white points)

always lie in the basin of roots of D(z) found within unit disk. We do not know of any case

where this does not hold true for RM polynomials. This implies only roots within the unit

disk have multiple access to infinity. Also we observe that basin of the roots fork into two

channels at the apex of convex hull of roots outside the unit disk. Hence the total number

of channels that intersect with the unit disk are

Nu =
d
2
+(d −2− d

2
) = d −2 (4.16)

86

4.3.3 Proposed set of initial points

(4.15) confirms that DOA corresponding to the symmetric pair of roots are equal and it

suffices to find one of the two. Thus, we need to find only half of the roots of a polynomial

which reduces the number of initial points required for the Newton’s method by two fold.

We choose to find the set of roots inside the unit circle for two reasons. Firstly, the intial

points can be placed on the unit circle for we know that unit circle lies entirely in the basins

of the inner roots. Secondly, the distance between the initial point and the root it converges

to is less, thus reducing the number of Newton iterations it takes to converge to the roots.

From (4.16) we know that number of channel on the unit circle is (d − 2). Ignoring the

fact that each channel can be of varying thickness on the unit circle, we place the (d − 2)

equi-spaced initial points on the unit circle. This can lead to some of the roots having more

than one initial points in its basin. One might argue that it is possible that no initial point

lies in the basin of one or more roots. We observed that thickness of the channels are almost

similar, reducing the chances of missing a basin while placing an initial point. We confirm

with the help of extensive simulations of Newton maps of RM polynomial of degree 6 to

510 (M = 6 to 256) that none of the basins are missed. The proposed set of initial points

are

z0k = 1∗ e1i∗ 2πk
Nu , k = 1 . . .Nu (4.17)

87

,where Nu is the number of channels on unit disk as given in (4.16). In order to give a

perspective on the reduction in size of initial set of points, we compute the number of

initial points prescribed in (4.17) and (4.3). For polynomial of degree 14 (M = 8) the size

of initial set is 12 points for the proposed method as compared to 308 points for the later.

The huge size of initial set is justified for a generic polynomial but would be an overkill for

structured simple polynomial like ours.

4.3.4 Proposed method

Now that the initial set of points are available to us, we can apply Newton’s method to each

of these initial points simultaneously. The required number of iterations (Ni) is decided by

the desired precision of roots. The correct root (corresponding to the DOA) from final set

of points can be identified by two conditions. Firstly, the difference between consequent

Newton iterations should converge to predefined tolerance (ε) within Ni iterations. That is

|zi+1 − zi| → ε as i → Ni (4.18)

This test eliminates all the initial points which lead to orbits attracted to stable periodic

orbits. The second and more obvious condition being the correct root is the root closest to

the unit circle.

The algorithm for proposed method is as below.

88

Choose ε,Ni

Determine Nu = d −2

Initialize final set of points Nf = []

for i = 1, . . . ,Nu do

initial point, zi0 = 1∗ e1i∗ 2πk
Nu

for j = 1, . . . ,Ni do

zi j = zi(j−1)− p(zi(j−1))

p′(zi(j−1))

end for

if z j=1 − z j → ε as j → Ni then

Nf = [Nf ,ziNi]

else

discard ziNi

end if

end for

Find root closest to the unit circle z f inal

θDOA = sin−1(λ
2πd arg(z f inal))

89

4.4 Simulation and Complexity analysis

It is clear that we need to perform Nu × Ni polynomial evaluations of p(z) and p′(z)

each. Without using any special polynomial evaluation methods, each of these polynomial

evaluations p(z) of degree d requires 2d multiplications and d additions and polynomial

evaluations p′(z) requires d multiplications and d additions. It also needs Ni×Nu divisions

and subtractions. Thus total number of floating point operations (assigning same weights

to +,-,×,/) required for proposed method is

Total flops (proposed) = Nu ×Ni × (5d +2) (4.19)

Since Nu = O(d), the overall computations is in the order of O(d2). Using (d −2) parallel

processors, the cost of computations in each processor is O(d). Table 4.1 compares

the various existing polynomial rooting with proposed method in terms of computation

complexity and possibility of parallel implementation. Lower number of initial points,

sufficient exploitable parallelism and O(d) cost for each processor justifies the superiority

of the proposed method over others. Monte-Carlo simulations were conducted to evaluate

the performance of the proposed system in various channel conditions. We compare the

performance in terms of root mean square error (RMSE) in DOA estimation at varying

number of computations. The computations were expressed as total number of flops

required for proposed method given in (4.19) and compared with the method proposed in

90

Table 4.1
Comparison of computational complexity of various polynomial rooting

method

Method Computational Parallel Comments

Complexity Implementations

Eigenvalue of O(d3) None,QR decomp. Each QR step

companion matrix is inherently is O(d2)

using QR decomp.[35] sequential

Fast QR based O(d2) None,QR decomp. Each QR step

on nth roots is inherently is O(d)
of unity of p(z)[68] sequential

Roots by bala- O(dlog5(d)logB) O(log6d)logb Factorization

nced factorization using O(dlogωd) introduces

of polynomial[70] processors errors

Newton’s method O(d2log2(d)) O(d) using Large set of

for general O(dlog2d) initial points

polynomial[37] processors

Proposed method O(d2) O(d) using Method specific

for RM to RM

polynomial O(d) processors polynomials

[68], as this is an improved version of popular "eigenvalue of companion matrix" methods.

The total number of flops required for this method is :

Total flops (existing method) = 123∗d2 +32∗d (4.20)

Figure 4.4 and Figure 4.5 evaluates the performance of proposed method for a single

source at DOA = 35o where 32 samples were used for constructing covariance matrix for

pure AWGN channel and Rician channel with one non-line of sight (NLOS) component

respectively. It can be observed that the proposed method can achieve same the RMSE as

existing method, with much lesser number of computations. Usually under good channel

91

Figure 4.4: Computations vs RMSE in DOA for AWGN channel

conditions computationally cheap methods such as Delay and Sum (DAS) and its variations

are used and systems resort to more complex methods like root-MUSIC only when channel

conditions worse. Therefore, we have chosen to evaluate the performance only at low SNR

and multipath conditions. It is to be noted that the proposed algorithm only replaces the root

finding step in root-MUSIC algorithm therefore the overall performance of root-MUSIC

remains unchanged. The advantage of proposed method lies in reduced complexity and

inherent parallelism over traditional root finding methods.

92

Figure 4.5: Computations vs RMSE in DOA for Rician channel

4.5 Conclusion

In this chapter, we propose a new parallel polynomial rooting technique for root-MUSIC.

Complex dynamics of root-MUSIC polynomial’s Newton maps were studied and few well

defined characteristics were described and proved. By providing a well defined set of

initial points for Newton’s method that guarantee convergence to the desired root, we

eliminated the need for other complex polynomial rooting techniques. The proposed

method has an overall computational cost of O(d2) and O(d) when implemented on O(d)

parallel processors. It is seen that comparable accuracy in DOA can be achieved via much

93

lower computations by using the proposed technique. Inherent parallelism, fixed latency,

ease of implementation and ease of extension to large sensor array (hence higher degree

polynomial rooting) characterize this method and makes it suitable for real-time signal

processing. Based on the results of this chapter is it anticipated that better understanding of

complex dynamics of polynomials in other DOA techniques and signal processing schemes

can lead to better polynomial rooting techniques. Future directions involve implementing

the proposed method on a FPGA platform and exploring other polynomials in DOA

estimation techniques.

94

Chapter 5

Conclusion

5.1 Conclusion

There is a growing need for real-time localization systems with various civilian and

military applications. DOA estimation is considered a key component in many emerging

localization systems such as WLPS. Subspace based DOA estimation for ULA, known

as root-MUSIC was chosen for WLPS due to its superior performance with lower

computational complexity compared to other subspace methods. Although root-MUSIC

is computationally less complex than other DOA estimation techniques, it is still not

simplified enough to meet the real-time constraints. This thesis was motivated by the need

for real-time signal processing for root-MUSIC DOA implementation. Figure 5.1 depicts

95

the root-MUSIC system with proposed algorithms replacing the traditional algorithms.

The contributions of this thesis are mainly focused on: Fast converging SVD (subspace

decomposition) and low cost, parallel polynomial rooting. The proposed modules are

underlined. Both these algortihms were proposed with the objective of meeting real-time

constraints for the WLPS system. FPGA was chosen as the hardware platform for reasons

discussed before in section ??. Both the proposed algorithms were analyzed and compared

with existing algorithms. SVD algorithm was implemented on FPGA.

Figure 5.1: Root-MUSIC system with proposed algorithms

A new fast converging SVD was proposed, which depicted reduction in the number of

iterations by almost half for large matrix sizes. This algorithm is suitable for real-time

signal processing applications such as localization, channel estimation in MIMO systems,

image processing etc. The fast convergence rate was due to the proposed dynamic ordering

where N
2 big elements were annihilated in each iteration, where N is the size of matrix.

The proposed algorithm retained the parallelism proposed in [31]. The performance was

analyzed against BLV array in terms of number sweeps (iteration/N) at various matrix

96

sizes. The results were promising and motivated us to implement the proposed algorithm

on FPGA.

A system design for the proposed algorithm was presented so that it can be utilized by

designers who might want to adopt the proposed algorithm for other hardware platforms.

The proposed design can be extended to bigger matrix sizes with minimal changes. The

traditional BLV array and the proposed design were implemented on FPGA to compare

their convergence rate and throughput. Highly parallel and pipelined architectures were

developed for both designs. Comparative throughput for both algorithms coupled with

faster convergence for the proposed algorithm represents the achievable improvement in

the proposed method. Upto 180MHz of maximum frequency (fmax) can be achieved for

a 4× 4 matrix while it occupies less than 10% of FPGA capacity . 8× 8 SVD can be

clocked at upto 107MHz with less than 30% occupancy. The tradeoff of proposed method

is increase in initial latency. For streaming architecture such as the one proposed it this

thesis, the latency only impacts the time of first output, which can be treated as warming

up period.

With improvements in SVD, the complexity bottleneck was shifted to the computationally

complex task of polynomial rooting. As mentioned before in section 4.1 many

polynomial rooting techniques are sequential and unsuitable for real-time polynomial

rooting implementation. This thesis proposes a set of initial points such that all roots can

be found by applying Newton iterations to these points. This initial set was developed

97

vis analyzing complex dynamics of Newton Map of the root-MUSIC polynomial. The

proposed method was compared with many existing methods, both sequential and parallel.

When implemented in sequential manner the proposed method has computations cost of

O(d2) and when implemented on O(d) parallel processors its cost is O(d), where d is the

degree of polynomial. The proposed method operates based on unique characteristics of

root-MUSIC.

5.2 Future Work

5.2.1 In the direction of SVD

5.2.1.1 Improvements to the proposed design

1. Continued design effort: Although maximum amount of parallelism has been

exploited and the system has been pipelined to a large extent, continued design efforts

can lead to slight improvements in the performance. The question remains if the

improvement achieved is worth the design effort.

2. Improvement in latency: As already pointed out, the tradeoff of improvement in

performance is an increase in initial latency. Although for streaming data processing,

this latency translates to warm-up period, we believe this can be reduced using better

98

schemes to find N
2 maximum elements. Another question that remains unanswered

is "How much degradation in performance will be seen if we do not target the best

N
2 maximum elements?" . The present scheme finds the best possible N

2 maximum

elements following row column exclusivity. We can improve the latency if we deviate

from the proposed scheme but at the cost of performance.

5.2.1.2 Developing an IP

It was emphasised throughout the thesis that there are no COTS IP cores for SVD. The

design can easily lead to a versatile IP by working on the robustness of the design and by

introducing more configurability. Following configurations can be introduced :

1. Word length and accuracy of singular values.

2. Matrix size as dynamic reconfiguration of FPGA [74]

3. Implementation of multiplication can be configured to either use DSP48Es or LUT

base multipliers.

4. Implementation of CORDIC: Individual CORDIC modules can be configured but a

high level configuration for all CORDICs will be convenient for users.This can be

incorporated to either maximize the performance or minimize occupied slices.

99

5.2.1.3 SVD using 4-Dimensional Given Rotation

Hmailtonian Quaternion algebra has been known for quite some time now and in [75], it

was used for replacing 2× 2 plane rotation with more powerful 4× 4 rotation. This leads

to Quaternion Jacobi like method for eigen value decomposition (EVD), which guarantees

at least one sweep less than 2× 2 Jacobi. It is possible to derive an SVD using 4× 4

Quaternion Jacobi rotation (J4).

Figure 5.2: SVD using 4 dimensional Given’s rotation

Figure 5.2 shows 2×2 array of J4 processors used for digitalizing a 8×8 matrix. Similar

100

to original BLV a static ordering scheme can be developed for J4 based systolic array.

This will lead to a reduction in the number of sweeps. But the question remains " Is this

reduction in the number of sweeps justified by the increase in complexity?" J4 algebra for

symmetric matrices has already been successfully derived for, but J4 algebra for general

matrix needs attention. In a fashion similar to proposed method, we can target more than

one big element in 4×4 submatrix.

5.2.2 In the direction of polynomial rooting

5.2.2.1 Complex dynamics of Newton map of root-MUSIC polynomial

Although many of the observations of complex dynamics of Newton map of root-MUSIC

polynomial have been proven in section 4.3, the access to infinity and related observations

haven’t been thoroughly treated. Study in this direction might expose further reduction

of set of initial points or might expose shortcomings of the method that haven’t been

discovered yet.

101

5.2.2.2 Implementation and others

1. FPGA implementation of the proposed Polynomial rooting needs to be completed to

evaluate the occupancy and maximum achievable frequency of operation.

2. For larger degree of polynomials, it will be an interesting observation to see if

implementing the proposed algorithm on graphical programming unit (GPU) offers

any advantage over FPGA implementation.

3. To explore if other polynomial rooting based subspace techniques exhibit regular

complex dynamics like root-MUSIC does.

102

References

[1] N. Patwari, J. N. Ash, S. Kyperountas, A. O. Hero, R. L. Moses, and N. S. Correal,

“Locating the nodes: cooperative localization in wireless sensor networks,” Signal

Processing Magazine, IEEE, vol. 22, no. 4, pp. 54–69, 2005.

[2] M. Chen, S. Gonzalez, A. Vasilakos, H. Cao, and V. C. Leung, “Body area networks:

A survey,” Mobile Networks and Applications, vol. 16, no. 2, pp. 171–193, 2011.

[3] A. Nehorai and E. Paldi, “Acoustic vector-sensor array processing,” Signal

Processing, IEEE Transactions on, vol. 42, no. 9, pp. 2481–2491, 1994.

[4] S. Guolin, C. Jie, G. Wei, and K. J. R. Liu, “Signal processing techniques in

network-aided positioning: a survey of state-of-the-art positioning designs,” Signal

Processing Magazine, IEEE, vol. 22, no. 4, pp. 12–23, 2005.

[5] S. Gezici, T. Zhi, G. B. Giannakis, H. Kobayashi, A. F. Molisch, H. V. Poor, and

Z. Sahinoglu, “Localization via ultra-wideband radios: a look at positioning aspects

103

for future sensor networks,” Signal Processing Magazine, IEEE, vol. 22, no. 4,

pp. 70–84, 2005.

[6] S. A. Zekavat, O. Abdelkhalik, S. T. Goh, and D. R. Fuhrmann, “A novel space-based

solar power collection via LEO satellite networks: Orbital management via wireless

local positioning systems,” in Aerospace Conference, 2010 IEEE, pp. 1–9.

[7] T. Hui and S. A. Zekavat, “A novel wireless local positioning system via a merger of

DS-CDMA and beamforming: Probability-of-detection performance analysis under

array perturbations,” Vehicular Technology, IEEE Transactions on, vol. 56, no. 3,

pp. 1307–1320, 2007. (Reza).

[8] S. A. Zekavat, H. Tong, and J. Tan, “A novel wireless local positioning system

for airport (indoor) security,” in Defense and Security, pp. 522–533, International

Society for Optics and Photonics.

[9] L. C. Godara, “Application of antenna arrays to mobile communications. ii.

beam-forming and direction-of-arrival considerations,” Proceedings of the IEEE,

vol. 85, no. 8, pp. 1195–1245, 1997.

[10] A. J. Viterbi, CDMA: principles of spread spectrum communication. Addison

Wesley Longman Publishing Co., Inc., 1995.

[11] S. G. V. Giri, G. A. Price, and S. R. Zekavat, “A novel synchronization method for

active positioning via DSSS: Achieving low resource usage and latency,” in Wireless

104

for Space and Extreme Environments (WiSEE), 2013 IEEE International Conference

on, pp. 1–6.

[12] M. Roddewig, S. A. Zekavat, and S. Nooshabadi, “Design of a costas loop down

converter,” in Circuits and Systems, 2009. MWSCAS ’09. 52nd IEEE International

Midwest Symposium on, pp. 244–247. (Reza).

[13] H. Tong and S. A. Zekavat, “LCMV beamforming for a novel wireless local

positioning system: a stationarity analysis,” in Defense and Security, pp. 851–862,

International Society for Optics and Photonics.

[14] H. Tong, J. Pourrostam, and S. Zekavat, “Optimum beam-forming for a novel

wireless local positioning system: a stationarity analysis and solution,” EURASIP

Journal on Advances in Signal Processing, vol. 2007, 2007.

[15] M. Pourkhaatoun and S. Zekavat, “A novel ICA-based TOA estimation technique:

achieving high resolution, high reliability, and, low cost,” in proceedings IEEE

International Workshop on Signal Processing and its Applications, WOSPA, vol. 8,

pp. 18–20.

[16] S. Zekavat, A. Kolbus, X. Yang, Z. Wang, J. Pourrostam, and M. Pourkhaatoun, “A

novel implementation of DOA estimation for node localization on software defined

radios: achieving high performance with low complexity,” in Signal Processing

and Communications, 2007. ICSPC 2007. IEEE International Conference on,

pp. 983–986, IEEE.

105

[17] Z. Wang, “A novel semidistributed localization via multinode TOAâĂŞDOA

fusion,” Vehicular Technology, IEEE Transactions on, vol. 58, no. 7, pp. 3426–3435,

2009.

[18] S. A. R. Zekavat, An Introduction to Direction-of-Arrival Estimation Techniques via

Antenna Arrays, pp. 279–317. John Wiley and Sons, Inc., 2011.

[19] R. O. Schmidt, “Multiple emitter location and signal parameter estimation,”

Antennas and Propagation, IEEE Transactions on, vol. 34, no. 3, pp. 276–280, 1986.

[20] P. Stoica and A. Nehorai, “MUSIC, maximum likelihood, and cramer-rao bound:

further results and comparisons,” Acoustics, Speech and Signal Processing, IEEE

Transactions on, vol. 38, no. 12, pp. 2140–2150, 1990.

[21] D. A. Linebarger, R. D. DeGroat, and E. M. Dowling, “Efficient direction-finding

methods employing forward/backward averaging,” Signal Processing, IEEE

Transactions on, vol. 42, no. 8, pp. 2136–2145, 1994.

[22] J. T. Mayhan and L. Niro, “Spatial spectral estimation using multiple beam

antennas,” Antennas and Propagation, IEEE Transactions on, vol. 35, no. 8,

pp. 897–906, 1987.

[23] A. Barabell, “Improving the resolution performance of eigenstructure-based

direction-finding algorithms,” in Acoustics, Speech, and Signal Processing, IEEE

International Conference on ICASSP ’83., vol. 8, pp. 336–339.

106

[24] B. D. Rao and K. V. S. Hari, “Performance analysis of root-music,” Acoustics,

Speech and Signal Processing, IEEE Transactions on, vol. 37, no. 12,

pp. 1939–1949, 1989.

[25] C. P. Mathews and M. D. Zoltowski, “Eigenstructure techniques for 2-D angle

estimation with uniform circular arrays,” Signal Processing, IEEE Transactions on,

vol. 42, no. 9, pp. 2395–2407, 1994.

[26] M. Costa, A. Richter, F. Belloni, and V. Koivunen, “Polynomial rooting-based

direction finding for arbitrary array configurations,” in Sensor Array and

Multichannel Signal Processing Workshop, 2008. SAM 2008. 5th IEEE, pp. 58–62.

[27] J. P. Burg, “Maximum entropy spectral analysis,” in 37th Annual International

Meeting., Society of Exploration Geophysics.

[28] R. Roy and T. Kailath, “ESPRIT-estimation of signal parameters via rotational

invariance techniques,” Acoustics, Speech and Signal Processing, IEEE Transactions

on, vol. 37, no. 7, pp. 984–995, 1989.

[29] S. M. Kuo, B. H. Lee, and W. Tian, Real-Time Digital Signal Processing:

Fundamentals, Implementations and Applications. John Wiley and Sons, 2013.

[30] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz,

A. Greenbaum, S. Hammarling, and A. McKenney, “LAPACK user’s guide SIAM,”

1999.

107

[31] F. T. L. R. P. Brent and C. V. Loan, “Computation of the singular value

decomposition using mesh-connected processors,” 1985.

[32] A. Ahmedsaid, A. Amira, and A. Bouridane, “Improved SVD systolic array

and implementation on FPGA,” in Field-Programmable Technology (FPT), 2003.

Proceedings. 2003 IEEE International Conference on, pp. 35–42.

[33] J. M. McNamee, “A bibliography on roots of polynomials,” Journal of

Computational and Applied Mathematics, vol. 47, no. 3, pp. 391–394, 1993.

[34] J. M. McNamee and V. Pan, Numerical methods for roots of polynomials, vol. 16.

Newnes, 2013.

[35] A. Edelman and H. Murakami, “Polynomial roots from companion matrix

eigenvalues,” Mathematics of Computation, vol. 64, no. 210, pp. 763–776, 1995.

[36] V. Y. Pan, “Univariate polynomials: Nearly optimal algorithms for numerical

factorization and root-finding,” Journal of Symbolic Computation, vol. 33, no. 5,

pp. 701–733, 2002.

[37] J. Hubbard, D. Schleicher, and S. Sutherland, “How to find all roots of complex

polynomials by newton’s method,” Inventiones mathematicae, vol. 146, no. 1,

pp. 1–33, 2001.

108

[38] H. Andrews and C. Patterson, “Singular value decompositions and digital image

processing,” Acoustics, Speech and Signal Processing, IEEE Transactions on,

vol. 24, no. 1, pp. 26–53, 1976.

[39] A. Ahmedsaid and A. Amira, “Accelerating SVD on reconfigurable hardware

for image denoising,” in Image Processing, 2004. ICIP ’04. 2004 International

Conference on, vol. 1, pp. 259–262 Vol. 1.

[40] M. Rahmati, M. S. Sadri, and M. A. Naeini, “FPGA based singular value

decomposition for image processing applications,” in Application-Specific Systems,

Architectures and Processors, 2008. ASAP 2008. International Conference on,

pp. 185–190.

[41] Y. L. Chen, C. Z. Zhan, T. J. Jheng, and A. Y. Wu, “Reconfigurable adaptive singular

value decomposition engine design for high-throughput MIMO-OFDM systems,”

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 21, no. 4,

pp. 747–760, 2013.

[42] J. Lofgren, S. Mehmood, N. Khan, B. Masood, M. Awan, I. Khan, N. A. Chisty,

and P. Nilsson, “Hardware implementation of an SVD based MIMO OFDM channel

estimator,” in NORCHIP, 2009, pp. 1–4.

[43] W. Yue, K. Cunningham, P. Nagvajara, and J. Johnson, “Singular value

decomposition hardware for MIMO: State of the art and custom design,” in

109

Reconfigurable Computing and FPGAs (ReConFig), 2010 International Conference

on, pp. 400–405.

[44] S. K. Jha and R. D. S. Yadava, “Denoising by singular value decomposition and

its application to electronic nose data processing,” Sensors Journal, IEEE, vol. 11,

no. 1, pp. 35–44, 2011.

[45] A. Said, T. Kalker, L. Bowon, and M. Fozunbal, “Massively parallel processing of

signals in dense microphone arrays,” in Circuits and Systems (ISCAS), Proceedings

of 2010 IEEE International Symposium on, pp. 3080–3083.

[46] T. L. Marzetta, “How much training is required for multiuser MIMO?,” in Signals,

Systems and Computers, 2006. ACSSC ’06. Fortieth Asilomar Conference on,

pp. 359–363.

[47] H. A. Suraweera, N. Hien Quoc, T. Q. Duong, Y. Chau, and E. G. Larsson,

“Multi-pair amplify-and-forward relaying with very large antenna arrays,” in

Communications (ICC), 2013 IEEE International Conference on, pp. 4635–4640.

[48] G. Golub and C. Van Loan, Matrix Computations. Johns Hopkins University Press,

1996.

[49] J. H. Wilkinson, “Note on the quadratic convergence of the cyclic jacobi process,”

Numerische Mathematik, vol. 4, no. 1, pp. 296–300, 1962.

110

[50] J. Demmel and V. K., “Jacobi’s method is more accurate than QR,” SIAM Journal

on Matrix Analysis and Applications, vol. 13, no. 4, pp. 1204–1245, 1992.

[51] G. E. F. Henrici and P., “The cyclic jacobi method for computing the principal values

of a complex matrix,” Trans. Amer. Math. Soc, 1958.

[52] F. T. Luk and P. Haesun, “A proof of convergence for two parallel Jacobi SVD

algorithms,” Computers, IEEE Transactions on, vol. 38, no. 6, pp. 806–811, 1989.

[53] M. R. Hestenes, “Inversion of matrices by biorthogonalization and related results,”

vol. 6, pp. 51–90, Mar. 1958.

[54] J. R. Cavallaro and F. T. Luk, “CORDIC arithmetic for an SVD processor,” in

Computer Arithmetic (ARITH), 1987 IEEE 8th Symposium on, pp. 113–120.

[55] B. Yang and J. BÃűhme, “Reducing the computations of the singular value

decomposition array given by Brent and Luk,” SIAM Journal on Matrix Analysis

and Applications, vol. 12, no. 4, pp. 713–725, 1991.

[56] N. D. Hemkumar and J. R. Cavallaro, “A systolic VLSI architecture for complex

SVD,” in Circuits and Systems, 1992. ISCAS ’92. Proceedings., 1992 IEEE

International Symposium on, vol. 3, pp. 1061–1064 vol.3.

[57] M. Weiwei, M. E. Kaye, D. M. Luke, and R. Doraiswami, “An FPGA-based singular

value decomposition processor,” in Electrical and Computer Engineering, 2006.

CCECE ’06. Canadian Conference on, pp. 1047–1050.

111

[58] Xilinx, Virtex-6 FPGA DSP48E1 Slice-User Guide, 2011.

[59] H. Javaid, X. He, A. Ignjatovic, and S. Parameswaran, “Optimal synthesis of latency

and throughput constrained pipelined MPSoCs targeting streaming applications,”

in Hardware/Software Codesign and System Synthesis (CODES+ISSS), 2010

IEEE/ACM/IFIP International Conference on, pp. 75–84, Oct 2010.

[60] Xilinx, System Generator for DSP- User Guide, 2012.

[61] Xilinx, System Generator for DSP-Getting Started Guide, 2011.

[62] Xilinx, LogiCORE IP CORDIC v 4.0 -Product Specification, 2011.

[63] Y. Bresler and A. Macovski, “Exact maximum likelihood parameter estimation

of superimposed exponential signals in noise,” Acoustics, Speech and Signal

Processing, IEEE Transactions on, vol. 34, no. 5, pp. 1081–1089, 1986.

[64] L. C. Zhao, P. R. Krishnaiah, and Z. D. Bai, “On detection of the number of signals in

presence of white noise,” Journal of Multivariate Analysis, vol. 20, no. 1, pp. 1–25,

1986.

[65] Z. Bai, P. R. Krishnaiah, and L. Zhao, “On the direction of arrival estimation,” report,

DTIC Document, 1987.

[66] J. Selva, “Computation of spectral and root MUSIC through real polynomial

rooting,” Signal Processing, IEEE Transactions on, vol. 53, no. 5, pp. 1923–1927,

2005.

112

[67] J. M. McNamee and V. Pan, Numerical methods for roots of polynomials, vol. 16.

Newnes, 2013.

[68] D. A. Bini, L. Gemignani, and V. Y. Pan, “Fast and stable QR eigenvalue

algorithms for generalized companion matrices and secular equations,” Numerische

Mathematik, vol. 100, no. 3, pp. 373–408, 2005.

[69] D. A. Bini, L. Gemignani, and V. Y. Pan, “Improved initialization of the accelerated

and robust QR-like polynomial root-finding,” Electronic Transactions on Numerical

Analysis, vol. 17, pp. 195–205, 2004.

[70] C. A. Neff and J. H. Reif, “An efficient algorithm for the complex roots problem,”

Journal of Complexity, vol. 12, no. 2, pp. 81–115, 1996.

[71] S. A. Zekavat, A. Kolbus, Y. Xiaofeng, W. Zhonghai, J. Pourrostam, and

M. Pourkhaatoun, “A novel implementation of DOA estimation for node localization

on software defined radios: Achieving high performance with low complexity,” in

Signal Processing and Communications, 2007. ICSPC 2007. IEEE International

Conference on, pp. 983–986.

[72] W. T. Shaw, Complex analysis with Mathematica, vol. 1. Cambridge University

Press, 2006.

[73] M. McClure, “Newton’s method for complex polynomials,” A preprint version of

a,"Mathematical Graphics" column from Mathematica in Education and Research,

pp. 1–15, 2006.

113

[74] P. Lysaght, B. Blodget, J. Mason, J. Young, and B. Bridgford, “Invited paper:

Enhanced architectures, design methodologies and CAD tools for dynamic

reconfiguration of xilinx FPGAs,” in Field Programmable Logic and Applications,

2006. FPL’06. International Conference on, pp. 1–6, IEEE.

[75] N. Mackey, “Hamilton and jacobi meet again: Quaternions and the eigenvalue

problem,” SIAM journal on matrix analysis and applications, vol. 16, no. 2,

pp. 421–435, 1995.

[76] F. Belloni, A. Richter, and V. Koivunen, “Doa estimation via manifold separation for

arbitrary array structures,” Signal Processing, IEEE Transactions on, vol. 55, no. 10,

pp. 4800–4810, 2007.

[77] L. Hong-bing, G. Yi-duo, and G. Jian, “Computational efficient DOA estimation

algorithm based on MSWF and polynomial rooting,” in Automatic Control and

Artificial Intelligence (ACAI 2012), International Conference on, pp. 672–675.

[78] J. M. McNamee, “An updated supplementary bibliography on roots of polynomials,”

Journal of Computational and Applied Mathematics, vol. 110, no. 2, pp. 305–306,

1999.

[79] K. V. Rangarao and S. Venkatanarasimhan, “gold-MUSIC: A variation on MUSIC

to accurately determine peaks of the spectrum,” Antennas and Propagation, IEEE

Transactions on, vol. 61, no. 4, pp. 2263–2268, 2013.

114

[80] H. Rohling, M.-M. Meinecke, K. Mott, and L. Urs, “Research activities in

automotive radar,” in Physics and Engineering of Millimeter and Sub-Millimeter

Waves, 2001. The Fourth International Kharkov Symposium on, vol. 1, pp. 48–51,

IEEE.

[81] K. Saneyoshi, “Drive assist system using stereo image recognition,” in Intelligent

Vehicles Symposium, 1996., Proceedings of the 1996 IEEE, pp. 230–235, IEEE.

[82] A. Ahmedsaid, A. Amira, and A. Bouridane, “Accelerating MUSIC method

on reconfigurable hardware for source localisation,” in Circuits and Systems,

2004. ISCAS ’04. Proceedings of the 2004 International Symposium on, vol. 3,

pp. III–369–72 Vol.3.

[83] C. Bobda and N. Steenbock, “Singular value decomposition on distributed

reconfigurable systems,” in Rapid System Prototyping, 12th International Workshop

on, 2001., pp. 38–43.

[84] I. Bravo, P. Jimenez, M. Mazo, J. L. Lazaro, and A. Gardel, “Implementation in

FPGA of Jacobi method to solve the eigenvalue and eigenvector problem,” in Field

Programmable Logic and Applications, 2006. FPL ’06. International Conference

on, pp. 1–4.

[85] S. Chi-Chia and J. Gotze, “VLSI circuit design concept for parallel iterative

algorithms in nanoscale,” in Communications and Information Technology, 2009.

ISCIT 2009. 9th International Symposium on, pp. 688–692.

115

[86] G. A. Constantinides, P. Y. K. Cheung, and W. Luk, “Wordlength optimization for

linear digital signal processing,” Computer-Aided Design of Integrated Circuits and

Systems, IEEE Transactions on, vol. 22, no. 10, pp. 1432–1442, 2003.

[87] J. Coyne, D. Cyganski, and R. J. Duckworth, “FPGA-based co-processor for singular

value array reconciliation tomography,” in Field-Programmable Custom Computing

Machines, 2008. FCCM ’08. 16th International Symposium on, pp. 163–172.

[88] Z. Drmac, “Implementation of jacobi rotations for accurate singular value

computation in floating point arithmetic,” SIAM Journal on Scientific Computing,

vol. 18, no. 4, pp. 1200–1222, 1997.

[89] Z. Drmac and K. Veselic, “New fast and accurate jacobi SVD algorithm. i,” SIAM

Journal on Matrix Analysis and Applications, vol. 29, no. 4, pp. 1322–1342, 2008.

[90] Z. Drmac and K. Veselic, “New fast and accurate jacobi SVD algorithm. II,” SIAM

Journal on Matrix Analysis and Applications, vol. 29, no. 4, pp. 1343–1362, 2008.

[91] P. M. Gatis Valters1, “Automation of FPGA implementation of unitary transforms

based on elementary generalized unitary rotation,” 2011.

[92] C. Kotas and J. Barhen, “Singular value decomposition utilizing parallel algorithms

on graphical processors,” in OCEANS 2011, pp. 1–7.

[93] H. Kuan-Ju, S. Wei-Yeh, C. Jui Chung, F. Chih Wei, and F. Wai-Chi, “A pipeline

VLSI design of fast singular value decomposition processor for real-time EEG

116

system based on on-line recursive independent component analysis,” in Engineering

in Medicine and Biology Society (EMBC), 2013 35th Annual International

Conference of the IEEE, pp. 1944–1947.

[94] H. Kyungtae and B. L. Evans, “Wordlength optimization with

complexity-and-distortion measure and its application to broadband wireless

demodulator design,” in Acoustics, Speech, and Signal Processing, 2004.

Proceedings. (ICASSP ’04). IEEE International Conference on, vol. 5, pp. V–37–40

vol.5.

[95] H. Kyungtae, A. G. Olson, and B. L. Evans, “Automatic floating-point to fixed-point

transformations,” in Signals, Systems and Computers, 2006. ACSSC ’06. Fortieth

Asilomar Conference on, pp. 79–83.

[96] N. Le Bihan and S. J. Sangwine, “Jacobi method for quaternion matrix singular

value decomposition,” Applied Mathematics and Computation, vol. 187, no. 2,

pp. 1265–1271, 2007.

[97] L. M. Ledesma-Carrillo, E. Cabal-Yepez, R. de J Romero-Troncoso,

A. Garcia-Perez, R. A. Osornio-Rios, and T. D. Carozzi, “Reconfigurable

FPGA-based unit for singular value decomposition of large m x n matrices,” in

Reconfigurable Computing and FPGAs (ReConFig), 2011 International Conference

on, pp. 345–350.

117

[98] N. Mackey, “Hamilton and Jacobi meet again: Quaternions and the eigenvalue

problem,” SIAM J. Matrix Anal. Appl., vol. 16, no. 2, pp. 421–435, 1995.

[99] K. Natarajan, S. Arun, K. Murugaraj, and M. John, “An application specific matrix

processor for signal subspace based speech enhancement in noise robust speech

recognition applications,” in ASIC, 2007. ASICON ’07. 7th International Conference

on, pp. 766–769.

[100] P. Soo-Chang, C. Ja-Han, and D. Jian-Jiun, “Quaternion matrix singular value

decomposition and its applications for color image processing,” in Image

Processing, 2003. ICIP 2003. Proceedings. 2003 International Conference on,

vol. 1, pp. I–805–8 vol.1.

[101] H. H. Volker Strumpen and A. Agarwal, “A stream algorithm for the SVD,” 2003.

[102] B. B. Zhou and R. P. Brent, “On parallel implementation of the one-sided

Jacobi algorithm for singular value decompositions,” in Parallel and Distributed

Processing, 1995. Proceedings. Euromicro Workshop on, pp. 401–408.

[103] D. A. Bini, F. Daddi, and L. Gemignani, “On the shifted QR iteration applied

to companion matrices,” Electronic Transactions on Numerical Analysis, vol. 18,

pp. 137–152, 2004.

[104] D. A. Bini, V. Mehrmann, V. Olshevsky, E. E. Tyrtyshnikov, and M. van Barel,

Numerical methods for structured matrices and applications, vol. 199. Springer,

2010.

118

[105] S. Chandrasekaran, M. Gu, J. Xia, and J. Zhu, A Fast QR Algorithm for Companion

Matrices, vol. 179 of Operator Theory: Advances and Applications, book section 7,

pp. 111–143. BirkhÃd’user Basel, 2008.

[106] N. Dowlut and A. Manikas, “A polynomial rooting approach to super-resolution

array design,” Signal Processing, IEEE Transactions on, vol. 48, no. 6,

pp. 1559–1569, 2000.

[107] A. Edelman and H. Murakami, “Polynomial roots from companion matrix

eigenvalues,” Mathematics of Computation, vol. 64, no. 210, pp. 763–776, 1995.

[108] B. Friedlander, “The root-MUSIC algorithm for direction finding with interpolated

arrays,” Signal Processing, vol. 30, no. 1, pp. 15–29, 1993.

[109] G. F. Hatke and K. W. Forsythe, “A class of polynomial rooting algorithms for joint

azimuth/elevation estimation using multidimensional arrays,” in Signals, Systems

and Computers, 1994. 1994 Conference Record of the Twenty-Eighth Asilomar

Conference on, vol. 1, pp. 694–699 vol.1.

[110] B. Kalantari, “Voronoi diagrams and polynomial root-finding,” in Voronoi Diagrams,

2009. ISVD ’09. Sixth International Symposium on, pp. 31–40.

[111] S. G. Krantz, S. Kress, and R. Kress, Handbook of complex variables. Springer,

1999.

119

[112] M. Lang and B. C. Frenzel, “Polynomial root finding,” Signal Processing Letters,

IEEE, vol. 1, no. 10, pp. 141–143, 1994.

[113] E. Lin, L. Bai, and M. Kam, “Efficient DOA estimation method employing unitary

improved polynomial rooting,” in Acoustics, Speech, and Signal Processing, 2004.

Proceedings. (ICASSP ’04). IEEE International Conference on, vol. 2, pp. ii–257–60

vol.2.

[114] J. McKee, J. F. McKee, and C. Smyth, Number theory and polynomials. Cambridge

University Press, 2008.

[115] J. M. McNamee, “An updated supplementary bibliography on roots of polynomials,”

J. Comput. Appl. Math., vol. 110, no. 2, pp. 305–306, 1999.

[116] J. M. McNamee and V. Pan, Numerical methods for roots of polynomials, vol. 16.

Newnes, 2013.

[117] Z. Ming, Y. Li, and Z. Yongquan, “Hybrid evolution strategies for simultaneous

solving all real roots of polynomial,” in Computer, Mechatronics, Control and

Electronic Engineering (CMCE), 2010 International Conference on, vol. 2,

pp. 283–286.

[118] M. Rubsamen and A. B. Gershman, “Direction-of-arrival estimation for nonuniform

sensor arrays: From manifold separation to fourier domain MUSIC methods,” Signal

Processing, IEEE Transactions on, vol. 57, no. 2, pp. 588–599, 2009.

120

[119] D. Schleicher, “On the number of iterations of Newton’s method for complex

polynomials,” Ergodic Theory and Dynamical Systems, vol. 22, no. 3, pp. 935–945,

2002.

[120] A. J. Weiss and B. Friedlander, “Direction finding for diversely polarized signals

using polynomial rooting,” in Signals, Systems and Computers, 1991. 1991

Conference Record of the Twenty-Fifth Asilomar Conference on, pp. 287–289 vol.1.

[121] C. Xiang, X. Jingmin, and Y. Nishio, “Real polynomial form of music for uniform

linear array,” in Signal Processing Systems (SiPS), 2013 IEEE Workshop on,

pp. 366–370.

[122] F. G. Yan, M. Jin, and X. Qiao, “Low-complexity DOA estimation based on

compressed MUSIC and its performance analysis,” Signal Processing, IEEE

Transactions on, vol. 61, no. 8, pp. 1915–1930, 2013.

[123] R. Zekavat and R. M. Buehrer, Handbook of position location: theory, practice and

advances, vol. 27. John Wiley and Sons, 2011.

[124] Y. Zhang and Z.-z. Zeng, “A new method for simultaneous extraction of all roots of

algebraic polynomial,” in Computational Intelligence and Security, 2009. CIS ’09.

International Conference on, vol. 1, pp. 197–200.

[125] F. Uhlig, “The cal dqr algorithm, basic theory, convergence, and conditional

stability,” Numerische Mathematik, vol. 76, no. 4, pp. 515–553, 1997.

121

Appendix A

Timing diagrams for proposed design

and BLV array

This appendix contains the detailed timing diagrams for BLV array and proposed array.

The latency calculations and a brief timing diagram were presented in Section 2.4.3. The

diagrams here are only for reference for designer who want to get a better idea of how

proposed array differs from the traditional BLV array in terms of timing.

123

Figure A.1: Detailed timing diagrams for BLV array

124

Figure A.2: Detailed timing diagrams for proposed design and BLV array

125

	HIGH PERFORMANCE, LOW COST SUBSPACE DECOMPOSITION AND POLYNOMIAL ROOTING FOR REAL TIME DIRECTION OF ARRIVAL ESTIMATION: ANALYSIS AND IMPLEMENTATION
	Recommended Citation

	ATHI.pdf

