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Abstract 
Mineral dust shape and roughness are important for a multitude of processes; it is known for aspherical 
shape but the true measurements in three dimensions are rare. Atomic Force Microscope was used for 
determine both 3D shape and roughness for two dust which are commonly used in laboratory 
experiments – Arizona Test Dust (ATD) and Kaolinite. We determined both of them are rather flat and 
round; an oblate spheroid would be a good model. Loess Filter was used to smooth the particles' surface 
and correlation analysis was used to examine the surfaces' properties of the dust; we found no features 
under 100nm scales. Also, our particles' surface area result is very similar to BET surface area. 
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1. Introduction 

Mineral dust is the most abundant class of aerosol particle in atmosphere by mass (Cakmur et 

al., 2006). Dust particles also play an important role in the atmosphere. They scatter and absorb 

solar and terrestrial radiation, catalyze cloud formation at low supersaturations (cloud 

condensation nuclei) (Van den Heever et al., 2006). They also can initiate freezing below 

water’s melting point as ice nuclei (Hoose and Möhler, 2012). Roughly 50% of individual cloud 

ice residual is mineral dust (Pratt et al., 2009). For the open ocean, dust is also an important 

nutrient (Schulz et al., 2012; Formenti et al., 2011). 

The lifetime being air born of dust governs the dust influence to Earth’s atmosphere. For 

instance, large particles tend to have shorter lifetimes in the atmosphere. They settle out close 

to the region where they were emitted. In comparison, small particles have longer lifetimes to 

travel much further, even across oceans (Liu et al., 2013). Both shape and roughness of particles 

are important for determine a particles’ lifetime in atmosphere; particles have a larger surface 

area to mass ratio (e.g. small particle or particle with rough surface) would have a greater drag 

force that would reduce falling speed, therefore extending their lifetime in the 

atmosphere(Yang et al., 2011).  

Mineral dust is important for ice nuclei (IN); some types of mineral dust are better ice nuclei 

than others (Meland et al., 2012). With the limited understanding we have for ice, we think the 

shape, roughness, composition, and net charge or electric field at the particle surface are the 

main reasons for the variation of ice nucleation in clouds.  (Ehre et al., 2010; Okada et al., 2001). 

Even though shape is an important factor for all the reasons above, Formenti et al. (2011) 

mentioned “data on the third dimension of particles and the surface roughness are very rare 

but are needed for optical modeling”. There have been many studies which just assumed 

particles are spherical for modeling; furthermore, the most common device for reporting size 

distribution, the Scanning Mobility Particle Sizer (SMPS), also assumes the particles are 

spherical and only output the mobility diameter distribution.  

There have been studies of shape characteristics about dust particles. Both Scanning Electron 

Microscopy (SEM) and Atomic Force Microscopy (AFM) are good tools  to analyze dust particles 
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(Vijendran, 2007). SEM scans the sample surface by shooting an electron beam at it and 

receiving a signal back from atoms on the surface. SEM gives a very detailed picture but it is not 

well suited to measure for the particles’ heights (Reid et al., 2003), because the brightness in 

the SEM image is related to the composition of the sample and its curvature. Okada et al. (2001) 

coated particles with a Pt/Pd alloy at an angle of 26.6 degrees and calculated the height of the 

particle by measuring the shadow. They found out that the mean height of the particles is only 

5 to 10% of the maximum length. People started noticing that the optical properties of mineral 

clay aerosol can be assumed as highly eccentric oblate spheroids (Meland et al., 2012).  

Instead of electron beams shooting to the surface, AFM uses a probe with sharp tip on a 

cantilever moving across the surface of the sample row by row. While going through a non flat 

area, the tip would shift up and down. A laser directed on the tip and if the tip shift up and 

down, the receiver would detect a change in intensity. From there, AFM calculates the surface 

height for each point the tip detects.   

AFM is a natural tool for not only shape properties but also for analyzing surface roughness. 

Hela and Andreae (2008) found that Sahara dust particles are rather smooth, and Chou et al. 

(2008) also think particles are smooth. Both papers only mentioned that the dust particles used 

were smooth, but to what level of smoothness was not explained. 

This work uses the AFM to image two types of mineral dust: Arizona Test Dust (ATD) and 

Kaolinite. ATD and Kaolinte are well used in laboratory. Even with similar components, ATD is a 

much better ice nuclei than Kaolinite. We studied the shape properties and expressed their 

roughness in a few ways; we also compared the two type of dust to see a trend for being 

better/worse ice nuclei. 
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2. Method: 

2.1. Properties of AFM  

We used a Nanosurf Easyscan2 AFM (Nanoscience Instruments) to image mineral dust. To get 

the best quality images, both contact and dynamic modes were explored for the experiment; 

the dynamic mode appears to produce much more successful images with reasonable particles 

because probe tip interacts with sample surface in vertical motion and has a lower chance to 

shift particles. Contrarily, contact mode ‘drags’ the probe tip over the entire surface. Cantilever 

T-190R-10 was used for the dynamic mode; it has a spring contact of 48 N/m and a resonant 

frequency 190 KHz. We set the probe tip sampling to 2048 times per line for 2048 lines for 

sample area up to 625  with lateral resolution 5-25nm and vertical resolution 0.37nm. 

 

2.2 Sample 

We would like to use a substrate that is smooth as possible to differentiate and identify the 

difference of height between the substrate and the mineral dust particle accurately.  Mica 

(Tarheel Mica Co.) is the flattest substrate found and is very easy to use – simply use pointy 

tools to poke sideways into the layers, then use the tool as a lever to separate mica into two 

pieces. In this way two fresh surfaces are acquired. 

To make sure the particles are stable on mica, there are a few ways to prepare a sample; one 

was mixing mineral dust in water and using a syringe to deposit it on freshly peeled mica; it 

takes half an hour for the water to evaporate and at that point the sample is ready to use. We 

expect when mineral dust is mixed in water, the soluble component of the particle would 

dissolve into the water; after the water evaporates, the particles are partially cemented onto 

mica. The other way to prepare a sample is to coat the mica with a sheet of Superglue, then 

apply dust particles from air on the wet Superglue. After a couple days of drying at room 

temperature, the sample is ready to use. From the results, there is no difference in shape and 

roughness by preparation sample in the two ways above.  
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Table below shows the composition of ATD and Kaolinite. The order of composition is also the 

order of composition percentage in dust. 

Table 1. Compositions of ATD and Kaolinite 

ATD Kaolinite 
  
  
  
  

  
  
  
 -- 

 

From the table we can see the top three compositions which take the most important role are 

the same, we can conclude the components are similar. 

 

2.3 Shape analysis 

After mineral dust particle images were acquired by AFM, we identified and isolated particles 

with Nanoscience easy scan2 software. Once we had each individual particle image, we 

exported it into a square matrix with each number representing the height of that point; each 

neighboring row and column is a resolution apart physically. With the matrices, further analysis 

was developed with MatLab. 

The figure below shows the 3D images of ATD and Kaolinite. 
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Figure 1. The top row are SEM images, the bottom row are AFM images plotted by MatLab. Note: all 

images are different particles; it’s not possible to image the same particle for both SEM and AFM. The 
SEM images were taken with tilted sample stage. The height and lateral scale are different for AFM 

images. 

The first step in the analysis was to level background and zero the background noise. After that, 

we drew out the base contour. With that done, some shape properties were measured, defined, 

and calculated.  

Max length ( ) is the longest distance between two points on the contour; max height 

( ) is the highest point of the particle; projected area, , is the area inside contour; area 

equivalent diameter ( ), is the diameter of a circle which has the same amount of area as 

the contour area.  

                                                                             =                                                                     (1) 

The area of the surface which can be detected by AFM ( ) was calculated with Heron’s 

formula with the vertices (  for the  point) and lateral resolution (r). Since the bottom of the 
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particle cannot be detected by AFM, we take projected area into account, so the surface area of 

the particle ( ) reported here is 

                                                                        =  +                                                                         (2) 
The uncertainty and the calculated to ‘true value’ percentage are mentioned in conclusion and 

discussion.  

For volume of the particles, we assumed each point is a cuboid with two sides being resolution 

size and the third side being vertex size. So the volume can be expressed as 

                                                                         =  ×                                                                      (3) 

 

2.4 Roughness analysis 

From figure 2 you can see there is certain level of roughness on the flat surface from both SEM 

and AFM image. People have a hard time defining the general shape for each type of particle; 

also, the same feature might be identified to be both roughness and shape depending on the 

different scale used. There is not yet a standardized method for analyzing particle roughness. 

We represented roughness of particles in a couple of ways. They all require numerically 

smoothing the particle, and then we compared the smoothed particle with the original one. 

 We used a loess filter for smoothing; it uses local weighted linear regression to smooth our 

particle row by row and column by column. The smoothed particle shape depends on the 

window size; with a small window, the smoothed particle looks rather like the original one; on  

the other hand, a particle smoothed with a large window looks as if more of the smaller 

features have been ‘washed off’. 

Figure 2 shows a cross section of a particle with original vertices, smoothed vertices and 

residues. 
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Figure 2. all image shows information from the same cross section. The top image shows the actual 

height to lateral ratio. The middle image shows a detailed difference between original data (black line), 
smoothed by 5 point window data (red dash line) and smoothed by 11 point window data (blue dash 

line). The bottom image shows the difference between both smoothed by 5 point widow data (red dash 
line) and smoothed by 11 point window data (blue dash line). Be aware that the larger smoothing 

window creates a bigger residual. 

 

As a first measure of particle roughness, we calculated both the smoothed particles (in different 

smoothing window) surface area and the original surface area, and then we compared them to 

see how different they are. 

In the next step we subtracted the original from smoothed particle matrix to produce residuals. 

We lined up all residuals row by row and formed one series.  We used a combination of 

smoothing windows in the loess filter and correlation analysis to detect feature sizes on the 

particles’ surface. 
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2.5 SEM measurement 

Aerosol particles analyzed via Scanning Electron Microscopy were dispersed with a fluidized 

bed (TSI, 3400A), then collected on 13 mm diameter Nuclepore clear polycarbonate filters with 

a pore size of 0.1μm (Whatman Inc, Chicago, Illinois, USA) mounted in Costar Pop-Top 

membrane holders. The sample flow was split before the membrane filter and the second line 

was connected to a condensation particle counter (CPC, TSI 3772) to monitor the aerosol 

concentration. After the particles had been collected, the filters were mounted to aluminum 

stubs and coated with a 1.6nm Pt/Pd alloy layer using a Sputter coater (Hummer™ 6.2) for 

scanning electron microscopy analysis. The coated filters were imaged using an Hitachi S-4700 

field emission scanning electron microscope. 

SEM micrographs of dust particles were processed using the freely available ImageJ software 

(National Institute of Health). High magnification images of dust particles were used to estimate 

morphological parameters. Each particle was individually processed and threshold were 

adjusted to convert the image into a binary image the parameters calculated from the binary 

images were the maximum projected image, and the total projected area of the particle, . 

 

3. Result and Discussion: 

3.1 shape 

From both SEM and AFM, we see the top down view of particles and noticed that most particles 

are rather round. We compared the max length of contour and the area equivalent diameter. 

Figure 3 shows the ratio 
 = 0.7 ± 0.1 for both ATD and Kaolinite from the SEM data. 
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Figure 3. Histogram plots of /  by SEM detected particles. 

AFM shows a similar result; for ATD, 
 = 0.8 ± 0.1 and for Kaolinite, 

 = 0.76 ± 0.08.  

While collecting and analyzing data with AFM, we noticed that the height is an order of 

magnitude smaller than the max length. Figure 4 shows the  vs. .  

 
Figure 4. The max height vs. area equivalent diameter by AFM data 
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The max height is also an order of magnitude smaller than the Area equivalent Diameter. With 

the conclusion above, we think instead of spherical shape that has been used to model dust, an 

oblate spheroid would be a better choice. 

 

3.2 Surface area 

3.2.1 Surface area analysis 

With the surface area we calculated, we can calculate area per mass by using density  2.65 / for ATD and 2.6 / for Kaolinite. We found ATD area per mass is 4.4 /  and 

Kaolinte is 10.2 / . The BET surface area for ATD is 5.7 /  (Wagner et al.), which is 77% 

of our value; The BET surface area for Kaolinite is in the range of 8 to 20 /  depends on the 

source of the kaolinite (Bickmore et al. 2002); our result falls in to the range. 

 

3.2.2 Surface uncertainty analysis 

Since the AFM can’t detect the particle area facing the substrate, there is uncertainty in our 

area calculation. With the result from 3.1, we can assume our particles are oblate spheroids; we 

found uncertainty by computing an oblate spheroid model, assuming there is AFM detecting 

over the oblate spheroid and result a matrix of vertices with the center point of the matrix 

being the highest point in oblate spheroid.  

Figure below shows a 3D oblate spheroid particle ‘detected’ by AFM that we constructed. 
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Figure 5. we set oblate spheroid major axis R= 10, resolution of AFM 0.1, and the aspect ratio (major axis 

/ minor axis) is 10 which results in a 10% 

After set up the matrix, we calculate the surface area just like a real particle and find the 

difference in ratio by 

                                                                       =                                                                (4) 

Where  is the oblate spheroid surface area and  is the model’s surface area. 

In the model, with a bigger  /  ratio, we would have smaller percentage 

difference; which leads to a smaller uncertainty, and with a higher aspect ratio, the particle is 

closer to the ground, which also reduces the uncertainty. For ATD, the average aspect ratio is 8 

and the average /  ratio is 130, which result 12% difference; For Kaolinite, the average 

aspect ratio is 9 and the average /  ratio is 103, which result in an 11% difference. 

From the information above, if the particle is oblate spheroid like shape, the uncertainty would 

be in the range of 8~15% of the actual value above the actual value. 
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3.3 Roughness 

3.3.1 Surface area difference 

With the roughness analysis method, we first smoothed the original particle over and over 

again with the same window size, and then we smoothed the original particle with different 

window size, from 5 points per window up to 13 points per window. Next, we calculated 

surface area for all of the smoothed particles, and divided them by the original surface area 

( / ). Figure 6 shows the ratios for both ATD and Kaolinite. 

 
Figure 6. ATD and Kaolinite /  for both number of times smoothed with 5 point window (hollowed 

circle and triangle) and 5 to 13 window size (filled circle and triangle) by AFM data 

The first evidence is that the surface area decreased as the number of time smoothed increase 

and also as the window size increased, which is also as expected. 

We also found out that none of the smoothed particle is more than 2% smaller than original 

particle, which indicates there aren’t obvious features under 13 points window size, which is in 

the average of 130nm. However, we can’t smooth particles with a larger window because the 

outline of the particle might be evolved as well. 
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3.3.2 Autocorrelation analysis 

The figure below shows the correlation as a function of length of lag. 

 
Figure 7.  Autocorrelation function with varied length of lag by AFM data 

Both ATD and Kaolinite shows with 5 points window loess smoothing, the correlation decays to 

zero; it suggested that there are not many measureable features in that scale (around 50nm in 

average). With the other correlations by residual from 11 points and 13 points window decays 

much more slowly. Which means there are features above 100nm in size; or we could say the 

roughness is in 100nm scale or above.  

Even though the data we collect from AFM is around 10 nm resolution on average, which is 100 

Å, we can’t receive the roughness under that resolution level, but since the BET number 

mentioned above and our calculation are substantially the same; we conclude that in atomic 

level, the ATD and Kaolinite are not very rough. 

 

4. Summary 

Arizona Test Dust and Kaolinite are round and flat, oblate spheroid like. They don’t have a 

manifest shape difference and their horizontal to height scale are both eight on average.  

Also, both types of particles are smooth, we expect no feature below 100nm scale. This model 

can be used for radiative transfer, transport, and chemical reactions upon the dust. 
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