
Michigan Technological University Michigan Technological University

Digital Commons @ Michigan Tech Digital Commons @ Michigan Tech

Dissertations, Master's Theses and Master's
Reports - Open

Dissertations, Master's Theses and Master's
Reports

2014

A COMPARATIVE STUDY AND EVALUATION OF COLLABORATIVE A COMPARATIVE STUDY AND EVALUATION OF COLLABORATIVE

RECOMMENDATION SYSTEMS RECOMMENDATION SYSTEMS

Joshua C. Stomberg
Michigan Technological University

Follow this and additional works at: https://digitalcommons.mtu.edu/etds

 Part of the Computer Sciences Commons

Copyright 2014 Joshua C. Stomberg

Recommended Citation Recommended Citation
Stomberg, Joshua C., "A COMPARATIVE STUDY AND EVALUATION OF COLLABORATIVE
RECOMMENDATION SYSTEMS", Master's Thesis, Michigan Technological University, 2014.
https://doi.org/10.37099/mtu.dc.etds/807

Follow this and additional works at: https://digitalcommons.mtu.edu/etds

 Part of the Computer Sciences Commons

http://www.mtu.edu/
http://www.mtu.edu/
https://digitalcommons.mtu.edu/
https://digitalcommons.mtu.edu/etds
https://digitalcommons.mtu.edu/etds
https://digitalcommons.mtu.edu/etd
https://digitalcommons.mtu.edu/etd
https://digitalcommons.mtu.edu/etds?utm_source=digitalcommons.mtu.edu%2Fetds%2F807&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.mtu.edu%2Fetds%2F807&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.37099/mtu.dc.etds/807
https://digitalcommons.mtu.edu/etds?utm_source=digitalcommons.mtu.edu%2Fetds%2F807&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.mtu.edu%2Fetds%2F807&utm_medium=PDF&utm_campaign=PDFCoverPages

A COMPARATIVE STUDY AND EVALUATION OF COLLABORATIVE

RECOMMENDATION SYSTEMS

By

Joshua C. Stomberg

A REPORT

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

In Computer Science

MICHIGAN TECHNOLOGICAL UNIVERSITY

2014

c© 2014 Joshua C. Stomberg

This report has been approved in partial fulfillment of the requirements for the Degree of

MASTER OF SCIENCE in Computer Science.

Department of Computer Science

Report Advisor: Dr. Laura Brown

Committee Member: Dr. Timothy Havens

Committee Member: Dr. Allan Struthers

Department Chair: Dr. Charles Wallace

Contents

List of Figures . ix

List of Tables . xiii

Abstract . xv

1 Introduction . 1

2 Background . 3

2.1 Recommendation Systems . 4

2.1.1 Types . 5

2.1.2 Uses . 7

2.1.3 History . 8

2.1.3.1 Netflix Prize . 9

3 Methods . 11

3.1 Bias Removal . 12

3.2 Singular Value Decomposition (SVD) . 15

3.3 Collaborative Filtering . 20

v

3.3.1 Similarity Measures . 21

3.3.2 K-nearest neighbor . 22

3.3.2.1 User-User Filtering . 22

3.3.2.2 Item-Item Filtering . 23

4 Experimental Evaluation . 25

4.1 Source Data . 25

4.2 Results . 27

4.2.1 Overview . 27

4.2.2 Bias Models . 29

4.2.3 SVD Models . 30

4.2.4 User Based Nearest Neighbor Models 31

4.2.5 Item Based Nearest Neighbor Models 33

4.2.6 Summary . 33

5 Future Work and State of the Art . 37

5.1 Potential Improvements . 37

5.2 State of the Art . 38

5.2.1 Hybrid Models . 38

5.2.2 Ensemble Methods . 39

5.2.3 Context-Aware Systems . 39

5.3 Additional Uses . 40

5.4 Conclusions . 40

vi

References . 43

A Code . 47

B SVD Parameter Selection . 48

vii

viii

List of Figures

3.1 Example Set of Ratings . 11

3.2 Bias Calculations . 13

(a) Entire Set . 13

(b) Subsetted by User . 13

(c) Subsetted by User . 13

3.3 Pseudocode version of the PQ factorization 17

3.4 Pseudocode used to update P and Q . 17

3.5 PQ Decomposition of Example Data . 18

(a) Matrix Initialization . 18

(b) After first pass on first factor . 18

(c) After First Factor Completed . 18

(d) After Second Factor Completed . 18

3.6 Neighborhood Creation for (U3,I2) . 22

(a) User-User Filtering . 22

(b) Item-Item Filtering . 22

4.1 MovieLens 100k data set . 26

ix

(a) Distribution of Ratings Per User . 26

(b) Distribution of Ratings Per Item . 26

(c) Distribution of Ratings . 26

4.2 Bias Model Error . 29

(a) Distribution . 29

(b) Density . 29

4.3 SVD Model Error . 31

(a) Distribution . 31

(b) Density . 31

4.4 User Based Nearest Neighbor Error . 32

(a) Distribution . 32

(b) Density . 32

4.5 Item Based Nearest Neighbor Error . 32

(a) Distribution . 32

(b) Density . 32

4.6 Overall Comparison . 34

4.7 Error by Base Model . 35

(a) Unaltered Error Distribution . 35

(b) Unaltered Error Density . 35

(c) Base Error Distribution . 35

(d) Base Error Density . 35

x

(e) User Error Distribution . 35

(f) User Error Density . 35

4.8 Error by Base Model (cont.) . 36

(a) Item Error Distribution . 36

(b) Item Error Density . 36

(c) U2I Error Distribution . 36

(d) U2I Error Density . 36

(e) I2U Error Distribution . 36

(f) I2U Error Density . 36

xi

xii

List of Tables

3.1 Bias Model Predictors . 15

3.2 SVD Model Predictors . 19

3.3 Collaborative Filtering Models . 24

4.1 Accuracy of Implemented Models measured by RMSE 28

4.2 SVD Selected Parameters . 30

xiii

Abstract

Consumers currently enjoy a surplus of goods (books, videos, music, or other items)

available to purchase. While this surplus often allows a consumer to find a product tailored

to their preferences or needs, the volume of items available may require considerable

time or effort on the part of the user to find the most relevant item. Recommendation

systems have become a common part of many online business that supply users books,

videos, music, or other items to consumers. These systems attempt to provide assistance to

consumers in finding the items that fit their preferences. This report presents an overview

of recommendation systems. We will also briefly explore the history of recommendation

systems and the large boost that was given to research in this field due to the Netflix

Challenge. The classical methods for collaborative recommendation systems are reviewed

and implemented, and an examination is performed contrasting the complexity and

performance among the various models. Finally, current challenges and approaches are

discussed.

xv

Chapter 1

Introduction

Currently, we are facing an ever growing deluge of information, music, videos, books,

and other commercial merchandise. While this provides new opportunities to find goods

tailored to our needs or preferences, the overall abundance serves as an increasing barrier

to find items of interest or relevance. Additionally, high visibility is given to only the

small fraction of items that are popular across diverse groups. This small fraction of

items account for a large percentage of sales and has the effect of creating a long tail in

the distribution, lots of items that individually have small sales volume, but together still

constitute a significant percentage of total sales. The long tail distribution in both sales

and visibility provides a hindrance to the discovery of items most relevant to a consumer’s

needs.

1

Recommendation systems have become an increasingly prevalent presence in our lives as

our choices in music, videos, books, and even household goods expand. Companies like

Netflix, Pandora, and Amazon look to harness the power of recommendation systems to

increase their bottom line. However, they also represent an opportunity for users/customers

to find relevant items without wasting precious time wading through the wide array of

choices available to them.

In this report, we will be looking at recommendation systems that utilize a range of

predictive models of gradually increasing complexity, each building upon previous models,

and comparing their accuracy as measured by their root mean squared error (RMSE)

on the MovieLens 100k dataset. In Chapter 2, we briefly discuss the background of

recommendation systems, the three basic types of recommendation systems, and their

various types of input and output. In Chapter 3, we explore some of the methods available

within the collaborative type of recommender systems, specifically those implemented

and evaluated in this project. In Chapter 4, we will evaluate the performance of several

recommender systems on the MovieLens dataset. Finally in Chapter 5, we summarize the

work in this project and discuss future directions.

2

Chapter 2

Background

The goal of a recommender system is to predict or recommend for every user, the items

(video, audio, text, articles, ...) that would hold the greatest interest or satisfaction to that

particular user. The standard recommendation systems in concerned with a set of users, U ,

and a set of items, I. Let there be a utility function, s, generally approximated by the set of

ratings, R, that measures the usefulness, interest, or relevance of item i to user u. Initially,

s is only defined with the elements in R. The purpose of a recommendation system is to

extrapolate the value of s for unknown (u, i) pairs.

3

2.1 Recommendation Systems

Recommendations systems can be categorized in a wide range of types. There are

three basic data models, multiple types of input data, and two basic output formats

used in all recommendation systems. The most successful systems seek to leverage

all model types and harness all available data. The three types of computation models

are: (i) collaborative/social-based filters, which use ratings from thousands of users and

statistical analyses to find correlations among users and/or items to create predictions;

(ii) content-based filters, which use data from description and/or analysis of their item

set and the user’s ratings to create predictions; and (iii) knowledge-based methods, which

use ratings and the action history of the userbase to learn rules that describe desired items,

then uses those rules to create predictions based on a user’s explicitly stated preferences.

Among the several types of system input are (i) text/video/audio, the actual content of the

item or a description/analysis of the content; (ii) views/actions, can be binary in nature

or numeric to capture repeated visits to, selection of, or sales of items; and (iii) ratings,

generally an Likert scale with a numeric representation for expressing preferences (e.g., 1

= Hated It, 2 = Didn’t Like It, 3 = Liked It, 4 = Really Liked It, 5 = Loved It).

The two types of system output are ratings and top-n lists. The first is a prediction of the

rating given a specific user and item. The second looks at the predicted ratings for all

4

unrated items to create a list of the n items that a user is most likely to enjoy.

In their 2011 survey paper, Ekstrand et al. gives a comprehensive overview of basic

collaborative filtering recommendation systems [1]. We follow their general progression

of models in this project and extend upon them, analyzing additional models with various

stages of bias removal and building upon each of them. We begin with basic statistical

models that can be generated with just a few passes through the dataset. Next, we explore

the models created by methods utilizing matrix factorization of the user-item rating matrix.

This approach attempts to determine the latent factors within each item and each users

preference for those factors in an SVD-like decomposition of the ratings matrix and

then leverage that simpler representation to estimate future ratings. Then we examine

more complex collaborative filters that attempt to identify similarity among users or items

through the latent factors determined. This similarity identifies like items or users whose

past ratings are used to predict our future expected rating.

2.1.1 Types

Collaborative- or social-based were the first and are likely the most widely used type of

recommendation system. Systems of this type seek to leverage ratings data from large

numbers of users to find items of interest to recommend. The first methods utilized

the k-nearest neighbor algorithm. These methods sought to find users and/or items

5

with greatest similarity and use that additional information to make its predictions or

recommendations.

The content-based systems use similar methods as the collaborative filtering systems, but

utilize a different set of data. The data used by content-based systems relies on features

inherent to the item and not on ratings given to items by the users. Pandora serves as an

excellent example of a content-based recommender. Pandora analyzes songs to calculate

what they term a song’s “musical genome,” and use that to find and play songs similar

to the songs that a user has rated highly. Use of a content-based has several advantages

and disadvantages. It allows for significantly greater accuracy over a social-based model

during a “cold start,” the initial period of a recommender system that starts with no ratings.

It requires developing a more compact representation of the content in addition to choosing

features from analysis of the content to provide reduced computation expenses. Some

common features include: director, actors, genre (for movies), length, topic, author, word

choice (for text), musician, lyrics, genre, key, and bpm (for music).

Knowledge-based systems attempt to learn rules and then use logic to make their

recommendations. These systems work best in situations where ratings are sparse, due to

the low frequency of their occurrence like house or car purchases, or where requirements

need to be more precisely specified. Burke describes these systems as more of a

conversational system as opposed to information filtering [2]. There are two basic types of

knowledge-based systems: constraint-based, that work by satisfying rules, and case-based,

6

similarity metrics, system. The first might apply to home purchases. A prospective buyer

specifies a price range and the systems works to provide them with available houses within

that range. This type has a greater similarity to query-type systems than any other type of

recommender systems.The second could be used in a local food finder that attempts to find

nearby restaurants with food similar to other restaurants that the user has rated highly.

2.1.2 Uses

The most visible use of recommendation systems today comes in the form of commercial

utilization. Amazon, Netflix, and Pandora are just a few of the companies that use

recommendation systems in an effort to help customers/users find the items most relevant

to them. Netflix uses your past ratings on movies to predict how much you will enjoy other

movies. Pandora uses their thumb up/down ratings and content-based system to adjust the

selection of songs played on each radio station. Amazon recommends related items based

on past purchases, item views, and suggests related items that other customers purchased

when viewing an item. These companies hope that by reducing the barrier to finding what

their customers want they can increase sales, satisfaction, and stability in the consumer

base.

7

2.1.3 History

The idea of a recommendation system was first proposed in the early 1990s [3]. Its goal

was to help Usenet users find interesting and useful content on the infant internet. The

earliest approaches would now be classified as collaborative filtering, they sought to find

similar users to the questor and utilize the data available to build personal filters [3]. At the

same time, the internet business bubble was just beginning to expand and recommendations

systems were caught up with it. This increased commercialization of recommender systems

drove improvement in a number of areas. First, recommender systems now needed to

provide value in addition to the accuracy they were already demonstrating. Second, the

size of the datasets being used had increased exponentially in the transition from a research

to a commercial environment. Additionally, long delays in computation were no longer

acceptable when being used in a rapidly changing online marketplace. Finally, marketing

professionals were more interested in lists of items that would be most relevant to a user

driving a shift in how these systems provide results. The Netflix prize would provide the

next large boost to recommendation system research [3].

8

2.1.3.1 Netflix Prize

In 2006, Netflix announced a competition with a grand prize of $1 million to the team

that could produce a recommendation algorithm that would beat their current system,

Cinematch, by 10% [4]. The ratings data they provided consisted of over 100 million

ratings over 17,700 movies, made by almost 500,000 users. Less than a week after the

beginning of the competition, there were already teams that were scoring better on the quiz

set than the Cinematch algorithm. However, it would take almost 3 years for the 10%

improvement to be reached. Initially there was a large explosion in the number of teams

that submitted results, over 20,000 teams from over 150 countries registered in the first

eight months. However that initial interest tapered off quite sharply after the first year. The

final year there was actually a fairly significant drop in the number of teams competing due

to teams combining and joining their models in an effort to increase performance [5].

9

Chapter 3

Methods

Throughout this chapter I will be employing a subset of ratings data (Table. 3.1) arbitrarily

extracted from the MovieLens dataset for use in illustrating the methods being employed.

I1 I2 I3 I4 I5

U1 3 3 4

U2 3 5

U3 4 4 3

U4 5 3 2

U5 2 5

U6 1 3

Figure 3.1: Example Set of Ratings

11

3.1 Bias Removal

We will start with three types of bias removal attempting to transform the set of ratings,

R, into a more normalized distribution. The first type of bias removal calculates the mean

rating, μ , over all users and items (see Fig. 3.2(a)).

μ =
∑rui∈R rui

|R|
. (3.1)

This has effect of centering the ratings. Thus for our example set, the general bias, or μ , is

equal to 3.33.

The second and third types of bias removal repeats the same process for the subset of ratings

for each user, Ru (in Fig. 3.2(b)), and item, Ri (in Fig. 3.2(c)), respectively. Due the the

potential small sample sizes for user and/or item ratings, Laplace smoothing is employed

to prevent outliers from having as great an impact. For our evaluation, we chose a value of

L = 25, as suggested by Ekstrand and Funk [1, 6]. The user bias, Bu, is calculated for each

user of the data set as

Bu =
∑rui∈Ru

(rui −μ)

|Ru|+L
. (3.2)

12

I1 I2 I3 I4 I5

U1 3 3 4

U2 3 5

U3 4 4 3

U4 5 3 2

U5 2 5

U6 1 3

(a) Entire Set

I1 I2 I3 I4 I5

U1 3 3 4

U2 3 5

U3 4 4 3

U4 5 3 2

U5 2 5

U6 1 3

(b) Subsetted by User

I1 I2 I3 I4 I5

U1 3 3 4

U2 3 5

U3 4 4 3

U4 5 3 2

U5 2 5

U6 1 3

(c) Subsetted by User

Figure 3.2: Bias Calculations

Similarly, the item bias, Bi, is calculated as

Bi =
∑rui∈Ri

(rui −μ)

|Ri|+L
. (3.3)

For our example data, we do not use Laplace smoothing and find the following vectors:

user bias, Bu = [0,0.67,0.33,0,0.16,−1.33], and item bias, Bi = [0.67,−1,−0.83,1,0.67].

Each bias, Bu or Bi, is also calculated as a residual bias, bu or bi, after the removal of the

13

other as

bu =
∑rui∈Ru

(rui −μ −Bi)

|Ru|+L
, and (3.4)

bi =
∑rui∈Ri

(rui −μ −Bu)

|Ri|+L
. (3.5)

For our example data, we do not use Laplace smoothing and find the following vectors,

residual user bias, bu = [0.28,−0.16,−0.44,0.39,0.25,−0.42], and residual item bias, bi =

[0.33,−0.56,−0.54,0.67,0.42].

The first model, BASEBIAS, is a basic system that uses the current mean rating, μ ,

calculated by Eq. 3.1, as the predicted rating, r̂ui = μ . This is an extremely naive model,

but it serves as a excellent starting point for construction of more complex models and as a

baseline point from which future improvements may be measured.

The next model, USERBIAS, will attempt to start minimizing the prediction error of our

baseline model by recognizing that users might have their own inherent biases that would

be reflected in the ratings they give. Starting from the baseline mean, μ , we utilize the

individual user’s bias, Bu, calculated by Eq. 3.2 to improve our model, r̂ui = μ +Bu.

Alternatively, the third model, ITEMBIAS, recognizes that just as there may be biases

inherent to each user, there might also be a general bias associated with each item. As

before, starting from the baseline mean, μ , we utilize the individual item’s bias, Bi,

14

calculated by Eq. 3.3 to improve our model r̂ui = μ +Bi.

The fourth model, U2I_BIAS, and fifth model, I2U_BIAS, are similar in nature. The

models begin with using either user bias, Bu, or item bias, Bi, then computes the residual

bias from the other as calculated in Eq. 3.4 or Eq. 3.5. The predicted ratings for the models,

U2I_BIAS and I2U_BIAS, are then calculated as r̂ui = μ +Bu +bi and r̂ui = μ +Bi +bu.

These five models serve as baseline predictors which our next models will use as a stepping

stone to hopefully greater performance and are summarized in Table. 3.1.

Model Predictor Model Name

r̂ui = μ BASEBIAS

r̂ui = μ +Bu USERBIAS

r̂ui = μ +Bi ITEMBIAS

r̂ui = μ +Bu +bi U2I_BIAS

r̂ui = μ +Bi +bu I2U_BIAS

Table 3.1

Bias Model Predictors

3.2 Singular Value Decomposition (SVD)

Any matrix, M, can be decomposed into the following parts, M = UΣΣΣVT , where M is a

m× n matrix of real values, U is a m× k matrix of the right singular vectors of M, V is

a n× k matrix of the left singular vectors of M, ΣΣΣ is a k× k matrix of the singular values

of M, and k is an integer value between 1 and max(m,n) depending on the rank of the

decomposition. The vectors in U and V form an orthonormal basis, and the values in ΣΣΣ are

15

their importance. The use of matrix factorization not only provides the benefit of allowing

the missing values within the matrix to be computed as predictions, but a reduced rank

factorization allows for smaller model sizes, faster computation times, and dimensionality

reduction among the data.

Due to the incomplete nature of R, an alternative form of the decomposition is used as

suggested by Paterek [7]. Instead of the standard R = UΣΣΣVT formulation, we will use

R = PQT where P and Q are m× k and n× k matrices. This formulation readily lends

itself to interpretation of the vectors of P and Q as user interest and item membership in

the k features respectively. Also, P and Q are found through an iterative method over the

set of training data rather than being directly calculated. This method can be thought of as

solving the following optimization problem

argmin
P,Q

‖I(R−PQT)‖2,

where I is an indicator function that returns 0 where R is undefined. An additional

advantage of the PQ factorization is the use of P and Q as description vectors of users

and items respectively in user-user and item-item collaborative filtering.

The main algorithm for performing the PQ factorization is show in Fig. 3.3. Each matrix is

initialized with some non-zero value. The general consensus is to initialize both matrices

with the same value. Then each column updated until squared error over known values

shows less than a minimum improvement (MIN_IMPROV). For performance reasons, an

16

function TRAINPQ(k, R)

P = 0.1

Q = 0.1

for i := 1 to k do

PREV_ERROR = MAX_VALUE

repeat

for rui ∈ R do

ERROR += UPDATEFACTOR(rui, u, i, k)

end for

ERROR = ERROR/‖R‖
until ERROR+MIN_IMPROV < PREV_ERROR

end for

end function

Figure 3.3: Pseudocode version of the PQ factorization

function UPDATEFACTOR(r, u, i, k)

PRED = PREDICT(user, item)

ERR = r−PRED

Puk = Puk + γ ∗ (Qik ∗ERR−λ ∗Puk)
Qik = Qik + γ ∗ (Puk ∗ERR−λ ∗Qik)
return ERR2

end function

Figure 3.4: Pseudocode used to update P and Q

additional criteria is often added to terminate the inner loop once a large number of passes

have been completed without incrementing the outer loop.

The column update function uses a gradient descent method as described in the

UPDATEFACTOR method of Fig. 3.4 that seeks to minimize the squared error over known

values. The learning rate, γ , controls how quickly the factors converge. The most

commonly used value for γ is 0.001, but can be up to 0.1. The normalization factor, λ ,

controls the penalty on the magnitude of the factors and prevents overfitting to the training

data. Commonly used values for λ are in the iterval [0,0.2] [6, 8, 9, 7].

17

Both matrices are trained simultaneously, one column or feature at a time, using a

ridge-based gradient descent method. A sum of squared error with each pass is used as

termination criteria. Once that sum has failed to decrease by more than a certain amount

from the prior pass we move onto to the next feature. As previously mentioned, there

are a number of variables that control the training algorithm and influence the final model

generated: the number of features (k), the learning rate (γ), and the normalization factor (λ).

For this report these variables were selected using 3-fold cross-validation on the training

set.

(a) Matrix Initialization (b) After first pass on first factor

(c) After First Factor Completed (d) After Second Factor Completed

Figure 3.5: PQ Decomposition of Example Data

18

In Fig. 3.5, we show how this works on the example data. We use k = 2, γ = 0.01, and λ = 0

for this example. We also limit the number of passes for each feature to 100 and initalize

P and Q to 1 as seen in Fig. 3.5(a). In Fig. 3.5(b) we can see the changes to the first

factor after a single pass though the known ratings. In Fig. 3.5(c) we can see the results

after prediction error failed to decrease enough after the twenty-second pass. Finally, in

Fig. 3.5(d) we can see the completed decomposition.

The next model, ZERO_SVD, uses a PQ factorization of the unadjusted ratings matrix, R,

to calculate predictions R̂ = PQT . The BASESVD model is similar, but builds upon the

BASEBIAS model by adjusting the ratings matrix by the predictions of that model (R−

BASEBIAS)≈ PQT . The prediction of BASE_SVD is then the combination of the matrix

approximation with the baseline predictor, R̂ = BASEBIAS +PQT . The USERSVD and

the ITEMSVD models similarily builds upon the USERBIAS and the ITEMBIAS models.

Likewise, the U2I_SVD and the I2U_SVD models builds upon the U2I_BIAS and the

I2U_BIAS models respectively. A summary of the models can be found in Table. 3.2.

Model Predictor Ratings Decomposition Model Name

r̂ui = PuQT
i PQT ≈ R ZERO_SVD

r̂ui = PuQT
i +BASEBIAS PQT ≈ (R−BASEBIAS) BASESVD

r̂ui = PuQT
i +USERBIAS PQT ≈ (R−USERBIAS) USER_SVD

r̂ui = PuQT
i + ITEMBIAS PQT ≈ (R− ITEMBIAS) ITEM_SVD

r̂ui = PuQT
i +U2I_BIAS PQT ≈ (R−U2I_BIAS) U2I_SVD

r̂ui = PuQT
i + I2U_BIAS PQT ≈ (R− I2U_BIAS) I2U_SVD

Table 3.2

SVD Model Predictors

19

3.3 Collaborative Filtering

Collaborative filtering is an idea that is related to crowd sourcing. The basic idea is

the use of large numbers of users and ratings to find similar items and users that can

assist in the creation of predictions. Similarity measures are functions for determining

how much one items is like another given a vector of features that describes them.

Common similarity measures include cosine similarity and distance functions (Manhattan,

Euclidean, Minkowski). For increased performance, item-item similarity is often used in

conjunction with caching due to the lower volatility of their similarity measures. Requires

a fairly significant number of ratings before any level of accuracy is guaranteed, however

the accuracy of the systems will increase over time as more ratings, users, and items enter

the system. New users and items need a certain number of ratings (items more so than

users) before accurate predictions can be made even if the rest of the systems has achieved

a higher level of accuracy.

Now that most of the bias has been eliminated from the ratings data, another approach to

predicting ratings must be found if greater improvement is sought. One approach is to find

similar users that have rated the item and use those ratings in our prediction. However, that

raises the question of determining similarity between users.

20

3.3.1 Similarity Measures

In their paper, Herlocker et al. [10] provides an excellent discussion of the framework

needed for collaborative filtering . For this project, we use cosine similarity, defined as

follows:

sim(v1,v2) =
v1 · v2

‖v1‖ · ‖v2‖
,

where vi is defined as a vector representation of the user or item. The representation of a

user can be Ru, their entire set of ratings, or Pu, the vector of features from the SVD model

can be used.The use of Ru has the advantage of being the most accurate representation

of the user, but requires a specialized definition of the dot product operator to deal with

ratings that are not available. On the other hand, Pu does not have that disadvantage, but

could be a less accurate representation of the user. The representation of items is similar

with identical tradeoffs.

Alternatively, similarity could be measured through distance, either Manhattan distance

d(v1,v2) = ∑
j=0
n=|vi|

|v1 j − v2 j|, Euclidean distance d(v1,v2) =
√

∑
j=0
n=|vi|

|v1 j − v2 j|2, or even

a multi-dimensional Minkowski distance d(v1,v2) = k

√
∑

j=0
n=|vi|

|v1 j − v2 j|k measurement.

However, the use of a distance measurement requires the various features to be normalized

21

to prevent any one feature from having an excessive impact on the measurement.

(a) User-User Filtering (b) Item-Item Filtering

Figure 3.6: Neighborhood Creation for (U3,I2)

3.3.2 K-nearest neighbor

3.3.2.1 User-User Filtering

The algorithm we use for user based collaborative filtering begins with the set of training

data after filtering for users that have a rating for the item we are attempting to predict

(Fig. 3.6(a)). We then compute similarity, using the description vectors learned from the

SVD models, between the remaining users and the user for whom we are attempting to

predict. We select up to the 7 nearest neighbors to create a neighborhood Ku. Instead

of using a weighted average of their ratings to directly compute a prediction, we seek to

improve upon on SVD based models by computing the prediction error for our neighbors

of the BASE model and then calculating an adjustment to our prediction using the weighted

22

average of the prediction error

r̂ui = SVDMODEL(u, i)+

∑
a∈Ku

(rai −BASE(a, i)∗ sim(u,a))

2‖Ku‖
. (BASE_UNN)

Six models were generated using user-user collaborative filtering, each based on one of

the six SVD models created; see Table. 3.3 for the complete list of collaborative filtering

models.

3.3.2.2 Item-Item Filtering

An alternative approach to user based collaborative filtering instead uses items as the basis

for comparison (Fig. 3.6(b)). The algorithm is similar to user based but instead looks for

similar items already rated by that user to compute an adjustment to the prediction

r̂ui = SVDMODEL(u, i)+

∑
a∈Ki

(rua −BASE(u,a)∗ sim(i,a))

2‖Ki‖
. (BASE_INN)

Item based algorithms have some advantage over user based as the description vector of

items is often more stable, allowing the similarity measures to be previously computed and

stored. Sarwar et al. discuss the various algorithms that can be used to perform item based

collaborative filtering in their 2001 paper [11]. An additional six models were generated

using item-item collaborative filtering, each based on one of the six SVD models created;

23

see Table. 3.3 for the complete list of collaborative filtering models.

Base Model User based variant Item based variant

ZERO_SVD ZERO_UNN ZERO_INN

BASE_SVD BASE_UNN BASE_INN

USER_SVD USER_UNN USER_INN

ITEM_SVD ITEM_UNN ITEM_INN

U2I_SVD U2I_UNN U2I_INN

I2U_SVD I2U_UNN I2U_INN

Table 3.3

Collaborative Filtering Models

24

Chapter 4

Experimental Evaluation

4.1 Source Data

For this project, we will be using the 100k MovieLens dataset [12]. The dataset as provided

by MovieLens contains 100,000 reviews from 943 users over 1682 items with every user

having at minimum 20 ratings. Figure 4.1(a) and Figure 4.1(b) show the distribution

of ratings per user and ratings per item. As might be expected, both follow a similar

distribution with every item/user having at least a few ratings and a few items/users have a

very large number of ratings. Figure 4.1(c) shows that there is a distinct skew in the ratings

distribution toward higher ratings rather than a normal distribution that might be naively

expected. The bias models will leverage this to predict future ratings.

25

0 200 400 600 800

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0

Users

N
um

be
r

of
 R

at
in

gs

(a) Distribution of Ratings Per User

0 500 1000 1500

0
10

0
20

0
30

0
40

0
50

0
60

0

Items

N
um

be
r

of
 R

at
in

gs

(b) Distribution of Ratings Per Item

Rating

N
um

be
r

of
 R

at
in

gs

1 2 3 4 5

0
50

00
10

00
0

20
00

0
30

00
0

(c) Distribution of Ratings

Figure 4.1: MovieLens 100k data set

26

4.2 Results

4.2.1 Overview

After implementing each of the models mentioned in the previous chapter using the training

data set, we now evaluate these models. A 4-way cross validation was performed for the

purpose of performance analysis. Each fold was generated using a pseudorandom method

that distributed user ratings randomly, but equally over the folds guaranteeing at least 5

ratings from each user would appear in each fold. The folds had slight (less than 0.1%)

difference in size due to the pseudorandom nature of the fold generation. We compute the

error for each element of the test set as follows,

errorui = rui − r̂ui.

and compute the root mean squared error (RMSE) for each model. We plot the error over

each element of the test sets, sorted in ascending order, creating a visual representation of

the error distribution. The x-axis is then just an index. We also plot a sample-based pdf

of the error. Here the x-axis is error and the y-axis is probability. Two of the error density

plots have a larger y-axis scale due to the presence of the BASEBIAS model which has only

discrete error values. We plot the models grouping them by model type in Fig. 4.2 though

27

Model RMSE1 RMSE2 RMSE3 RMSE4 RMSE Std. Dev.

BaseBias 1.1234 1.1276 1.1252 1.1264 1.1257 0.00179

UserBias 1.0426 1.0465 1.0411 1.0462 1.0441 0.00241

ItemBias 1.0314 1.0362 1.0369 1.0362 1.0352 0.00269

U2I_Bias 0.9613 0.9662 0.9640 0.9672 0.9647 0.00312

I2U_Bias 0.9533 0.9574 0.9550 0.9587 0.9561 0.00242

Zero_SVD 0.9489 0.9528 0.9516 0.9557 0.9523 0.00232

Base_SVD 0.9569 0.9612 0.9612 0.9633 0.9607 0.00243

User_SVD 0.9461 0.9506 0.9494 0.9544 0.9501 0.00282

Item_SVD 0.9624 0.9661 0.9649 0.9680 0.9653 0.00254

I2U_SVD 0.9529 0.9570 0.9545 0.9583 0.9557 0.00220

U2I_SVD 0.9607 0.9656 0.9633 0.9666 0.9641 0.00234

Zero_UNN 0.9603 0.9650 0.9653 0.9687 0.9648 0.00266

Base_UNN 0.9601 0.9638 0.9660 0.9672 0.9643 0.00262

User_UNN 0.9536 0.9576 0.9588 0.9618 0.9579 0.00189

Item_UNN 0.9668 0.9691 0.9713 0.9729 0.9700 0.00263

U2I_UNN 0.9659 0.9697 0.9710 0.9728 0.9698 0.00292

I2U_UNN 0.9566 0.9599 0.9610 0.9634 0.9602 0.00267

Zero_INN 0.9443 0.9474 0.9458 0.9523 0.9475 0.00254

Base_INN 0.9454 0.9485 0.9483 0.9513 0.9484 0.00343

User_INN 0.9478 0.9468 0.9495 0.9526 0.9492 0.00340

Item_INN 0.9522 0.9521 0.9533 0.9568 0.9536 0.00347

U2I_INN 0.9560 0.9596 0.9589 0.9603 0.9587 0.00282

I2U_INN 0.9557 0.9527 0.9580 0.9538 0.9550 0.00345

Table 4.1

Accuracy of Implemented Models measured by RMSE

Fig. 4.5. We also plot the models grouping them by base model in Fig. 4.7 and Fig. 4.8.

In Table. 4.1, a summary of the various model’s performance within each fold (RMSEX)

and the mean RMSE and standard deviation (Std. Dev.) over all folds is given. The results

will be discussed in greater detail by model type.

28

4.2.2 Bias Models

0 20000 40000 60000 80000 100000

−
2

−
1

0
1

E
rr

or

BaseBias
UserBias
ItemBias
U2I_Bias
I2U_Bias

(a) Distribution

−2 −1 0 1

0.
0

0.
5

1.
0

1.
5

2.
0

Error

P
ro

ba
bi

lit
y

BaseBias
UserBias
ItemBias
U2I_Bias
I2U_Bias

(b) Density

Figure 4.2: Bias Model Error

We see a large range of performance among the bias models, from BASEBIAS to the

composite bias models U2I_BIAS and I2U_BIAS. The improved performance between

the USERBIAS and ITEMBIAS models may suggest item bias has a greater impact on the

rating and therefore accuracy of the prediction than user bias. We can also see from the

error distributions in Fig. 4.2 the immediate increase in accuracy once we move beyond the

BASEBIAS model to include either user or item biases, and the additional increase when

using both.

29

4.2.3 SVD Models

Model K γ λ

ZERO_SVD 15 0.0025 0.2

BASE_SVD 40 0.01 0.2

USER_SVD 5 0.001 0.1

ITEM_SVD 40 0.02 0.2

I2U_SVD 5 0.01 0.2

U2I_SVD 5 0.02 0.2

Table 4.2

SVD Selected Parameters

As mentioned in 3.2, we began by choosing number of factors (K), learning rate (γ), and

normalization factor (λ) using a three-fold cross validation over the set of training data.

We evaluate twenty potential choices for K (5, 10, 15, ..., 100), eight different learning

rates (0.001, 0.0025, 0.005, 0.0075, 0.01, 0.02, 0.03, 0.05), and six normalization factors

(0, 0.015, 0.02, 0.05, 0.1, 0.2). We chose separately for each model (see Table. 4.2 for the

values used).

We see a much smaller range of performance among the SVD models. The only model

that stands out is the USER_SVD model, surprisingly outperforming the other models,

even the I2U_SVD and the U2I_SVD models which incorporate an additional type of

bias compensation. Also, its selected variables are different from any other model in both

number of factors (5 vs. 40,75-80) and learning rate (0.005 vs 0.02-0.05). Its normalization

factor is even different at 0.1 from all the others at 0.2. One point of interest is that

ZERO_SVD model, even though its not significantly different in terms of performance,

30

0 20000 40000 60000 80000 100000

−
4

−
2

0
2

4

E
rr

or
Zero_SVD
Base_SVD
User_SVD
ItemSVD
U2I_SVD
I2U_SVD

(a) Distribution

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Error

P
ro

ba
bi

lit
y

Zero_SVD
Base_SVD
User_SVD
ItemSVD
U2I_SVD
I2U_SVD

(b) Density

Figure 4.3: SVD Model Error

appears to have a slight positive offset relative to the other models in Fig. 4.3.

4.2.4 User Based Nearest Neighbor Models

Upon examining the user based nearest neighbors we find that contrary to our expectations,

the performance of these models has decreased across the board with one exception. The

I2U_UNN model registers a slight increase in performance measured by RMSE. Even the

standard deviation, across the cross validation folds, of these models has increased over

their SVD base models except for one. Although in this case that model is USER_UNN

with the best performance in this model type.

31

0 20000 40000 60000 80000 100000

−
4

−
2

0
2

4

E
rr

or

Zero_UNN
Base_UNN
User_UNN
Item_UNN
U2I_UNN
I2U_UNN

(a) Distribution

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Error

P
ro

ba
bi

lit
y

Zero_UNN
Base_UNN
User_UNN
Item_UNN
U2I_UNN
I2U_UNN

(b) Density

Figure 4.4: User Based Nearest Neighbor Error

0 20000 40000 60000 80000 100000

−
4

−
2

0
2

4

E
rr

or

Zero_INN
Base_INN
User_INN
Item_INN
U2I_INN
I2U_INN

(a) Distribution

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Error

P
ro

ba
bi

lit
y

Zero_INN
Base_INN
User_INN
Item_INN
U2I_INN
I2U_INN

(b) Density

Figure 4.5: Item Based Nearest Neighbor Error

32

4.2.5 Item Based Nearest Neighbor Models

When we examine the user based nearest neighbor models, we generally see slight

improvement over their base SVD model. The sole exception is that U2I_INN has

slightly worse performance than U2I_INN. Somewhat surprisingly, ZERO_INN has the

best performance measured, though it is indistinguishable from both BASE_INN and

USER_INN. Additionaly, we notice a small decrease in performance of the U2I_INN

over its base model U2I_SVD. Overall, we see an increase in performance over the SVD

type models with a continuing decrease in variance as measured by the standard deviation.

4.2.6 Summary

In summary, as can be seen in Fig. 4.7 and Fig. 4.8, models with increasing complexity

generally produced more accurate predictions with the notable exception of the user

based nearest neighbor filter. ZERO_INN produced the best results among item base

models, though insignificantly better than BASE_INN and USER_INN. A more visual

representation of the data in Table 4.1 can be seen in Fig. 4.6, where the average RMSE of

the models are plotted with whiskers at plus or minus the standard deviation.

33

Bias SVD UNN INN

Model Type

R
M

S
E

0.
8

0.
9

1.
0

1.
1

1.
2

Zero
Base

User
Item

U2I
I2U

Figure 4.6: Overall Comparison

34

0 20000 40000 60000 80000 100000

−
4

−
2

0
2

4

E
rr

or
Zero_SVD
Zero_INN
Zero_UNN

(a) Unaltered Error Distribution

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Error

P
ro

ba
bi

lit
y

Zero_SVD
Zero_INN
Zero_UNN

(b) Unaltered Error Density

0 20000 40000 60000 80000 100000

−
2

−
1

0
1

E
rr

or

BaseBias
Base_SVD
Base_INN
Base_UNN

(c) Base Error Distribution

−2 −1 0 1

0.
0

0.
5

1.
0

1.
5

2.
0

Error

P
ro

ba
bi

lit
y

BaseBias
Base_SVD
Base_INN
Base_UNN

(d) Base Error Density

0 20000 40000 60000 80000 100000

−
3

−
2

−
1

0
1

2
3

E
rr

or

UserBias
User_SVD
User_INN
User_UNN

(e) User Error Distribution

−2 0 2

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Error

P
ro

ba
bi

lit
y

UserBias
User_SVD
User_INN
User_UNN

(f) User Error Density

Figure 4.7: Error by Base Model

35

0 20000 40000 60000 80000 100000

−
3

−
2

−
1

0
1

2

E
rr

or

ItemBias
Item_SVD
Item_INN
Item_UNN

(a) Item Error Distribution

−3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Error

P
ro

ba
bi

lit
y

ItemBias
Item_SVD
Item_INN
Item_UNN

(b) Item Error Density

0 20000 40000 60000 80000 100000

−
4

−
2

0
2

E
rr

or

U2I_Bias
U2I_SVD
U2I_INN
U2I_UNN

(c) U2I Error Distribution

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Error

P
ro

ba
bi

lit
y

U2I_Bias
U2I_SVD
U2I_INN
U2I_UNN

(d) U2I Error Density

0 20000 40000 60000 80000 100000

−
4

−
2

0
2

E
rr

or

I2U_Bias
I2U_SVD
I2U_INN
I2U_UNN

(e) I2U Error Distribution

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Error

P
ro

ba
bi

lit
y

I2U_Bias
I2U_SVD
I2U_INN
I2U_UNN

(f) I2U Error Density

Figure 4.8: Error by Base Model (cont.)

36

Chapter 5

Future Work and State of the Art

5.1 Potential Improvements

In our examination of the various models’ performances, we noticed two interesting

things. The first is that ITEMBIAS performed slightly better than USERBIAS, conversely

USER_SVD performed better than ITEM_SVD. This suggests that user biases might be

more complex in nature than item biases, because of the increased performance upon

transitioning to a more complex model. Therefore it would be interesting to examine the

performance of a model that represents user bias in alternate formulations or taking into

account other information. For example, the user bias can be estimated with respect to a

particular genre, rather than a general user bias. Also, Paterek used a different approach in

37

his paper; instead of directly calculated bias, he learned values for the bias vector using a

gradient descent method in parallel with the PQ decomposition [7].

Other areas for potential improvements in performance would be to start leveraging some

of the additional data included within the MovieLens 100k dataset. This report examined

models that only used the ratings data, but the dataset includes demographic data on the

users, which could serve as another type of similarity measurement, along with genre and

other miscellaneous data on the items (movies). We already mentioned the potential of

user-genre biases. A further refinement of that approach would be to transform the boolean

membership in genre, provided in the dataset, with a potentially more accurate partial

membership using a fuzzy classifier or other similar methods. Alternatively, we could

construct fuzzy user models to relate their interest in each genre [13].

5.2 State of the Art

5.2.1 Hybrid Models

Today many recommendation systems make use of hybrid models. Models that are neither

purely content-based, nor purely collaborative-based. Instead these models seek to harness

the advantages associated with each type while also compensating for their weaknesses.

An example is that use of content-based model information can be used to compute item

38

similarity thus mitigating the Cold Start issue for new items, though not for new users [14].

The hybrid approach also allows the use of more sources of data enabling deeper analyses

and hopefully more accurate predictions.

5.2.2 Ensemble Methods

Toward the end of the Netflix competition [4], performance had ceased to be improved

through new types of models. Instead, teams were drawing from new techniques,

collectively known as ensemble methods, to enhance performance by leveraging multiple

models constructed using different techniques or parameter selection. The nature of using

these diverse models allowed these systems to leverage that diversity to make better

predictions. Each model could focus on a particular facet without loss of accuracy due

to the large number of models in the system. The final winning team, BellKor’s Pragmatic

Chaos mention the use of tens of predictors comprised of hundreds of sub-models

each [15, 16, 17].

5.2.3 Context-Aware Systems

Some areas of application, especially music, have begun exploring use of context-aware

recommendations systems that use contextual information like weather, location, or time

39

as additional input to assist in finding music relevant to the listener [18, 19, 20]. Three

different approaches are being used to integrate this information into the system: (i)

pre-filtering, the set of items is filtered using the contextual information before reaching

a more traditional model; (ii) post-filtering, output from a more traditional model is

filtered based on the context before reaching the user; and (iii) contextual modeling, the

model itself uses the contextual information together with user and item data to generate

recommendations [21].

5.3 Additional Uses

With the growing maturity of recommendation systems, many new uses are being

found outside of the traditional or commonly-known applications. Recommendation

systems have been suggested for use in requirements engineering to assist in identifying

stakeholders and eliciting desired features [22], finding a dentist [23], and improving

product line development and configuration [24].

5.4 Conclusions

This report presented an overview of recommendation systems. Specifically, collaborative

recommendation systems were discussed and implemented. An empirical evaluation was

40

performed to examine the performance of the models on the MovieLens dataset. Overall,

basic statistical methods that remove the user and item bias do quite well. More complex

models perform better (lower rating errors), with the best models using a collaborative

filtering nearest neighbor approach.

41

References

[1] Ekstrand, M. D.; Riedl, J. T.; Konstan, J. A. Foundations and Trends R© in

Human–Computer Interaction 2011, 4(2), 81–173.

[2] Burke, R. Encyclopedia of library and information systems 2000, 69(Supplement 32),

175–186.

[3] Jannach, D.; Zanker, M.; Felfernig, A.; Friedrich, G. Recommender systems: an

introduction; Cambridge University Press, 2010.

[4] Netflix Prize. http://www.netflixprize.com.

[5] Bennett, J.; Lanning, S. In Proceedings of KDD cup and workshop, Vol. 2007,

page 35, 2007.

[6] Funk, S. URL http://sifter. org/˜ simon/journal/20061211. html 2006.

[7] Paterek, A. Proceedings of KDD cup and workshop 2007, 2007, 5–8.

[8] Koren, Y.; Bell, R.; Volinsky, C. Computer 2009, 42(8), 30–37.

43

[9] Bell, R. M.; Koren, Y.; Volinsky, C. 2007.

[10] Herlocker, J. L.; Konstan, J. A.; Borchers, A.; Riedl, J. In Proceedings of the

22nd annual international ACM SIGIR conference on Research and development in

information retrieval, pages 230–237. ACM, 1999.

[11] Sarwar, B.; Karypis, G.; Konstan, J.; Riedl, J. In Proceedings of the 10th international

conference on World Wide Web, pages 285–295. ACM, 2001.

[12] Movielens 100k. Project, G. R. http://files.grouplens.org/datasets/movielens/ml-100k.zip.

[13] Al-Shamri, M. Y. H.; Bharadwaj, K. K. Expert systems with applications 2008, 35(3),

1386–1399.

[14] Grivolla, J.; Campo, D.; Sonsona, M.; Pulido, J.-M.; Badia, T. In Computational

Science and Computational Intelligence (CSCI), 2014 International Conference on,

Vol. 1, pages 297–301. IEEE, 2014.

[15] Töscher, A.; Jahrer, M.; Bell, R. M. Netflix prize documentation 2009.

[16] Koren, Y. Netflix prize documentation 2009, 81.

[17] Piotte, M.; Chabbert, M. Netflix prize documentation 2009.

[18] Wang, M.; Kawamura, T.; Sei, Y.; Nakagawa, H.; Tahara, Y.; Ohsuga, A. In Semantic

Technology; Springer, 2014; pages 17–32.

[19] Ricci, F. In Proceedings of the 21st international conference companion on World

Wide Web, pages 865–866. ACM, 2012.

44

[20] Beach, A.; Gartrell, M.; Xing, X.; Han, R.; Lv, Q.; Mishra, S.; Seada, K. In

Proceedings of the Eleventh Workshop on Mobile Computing Systems & Applications,

pages 60–65. ACM, 2010.

[21] Panniello, U.; Tuzhilin, A.; Gorgoglione, M. User Modeling and User-Adapted

Interaction 2014, 24(1-2), 35–65.

[22] Hariri, N.; Castro-Herrera, C.; Cleland-Huang, J.; Mobasher, B. In Recommendation

Systems in Software Engineering; Springer, 2014; pages 455–476.

[23] Pradhan, S.; Gay, V. In Trust Management VIII; Springer, 2014; pages 221–228.

[24] Mazo, R.; Dumitrescu, C.; Salinesi, C.; Diaz, D. In Recommendation Systems in

Software Engineering; Springer, 2014; pages 511–537.

[25] Konstan, J. A. ACM Transactions on Information Systems (TOIS) 2004, 22(1), 1–4.

[26] Herlocker, J. L.; Konstan, J. A.; Terveen, L. G.; Riedl, J. T. ACM Transactions on

Information Systems (TOIS) 2004, 22(1), 5–53.

[27] Gower, S. 2014.

[28] Kurucz, M.; Benczúr, A. A.; Csalogány, K. In Proceedings of KDD Cup and

Workshop, Vol. 12, pages 31–38. Citeseer, 2007.

45

Appendix A

Code

A tarfile containing the code used to generate and evaluate the models in this report is

available at http://www.cs.mtu.edu/ jcstombe/masters/mastersReportCode.tgz.

47

Appendix B

SVD Parameter Selection

A tarfile containing the results for the 3-fold validation of SVD

parameter selection for each of the 4 folds is available at

http://www.cs.mtu.edu/ jcstombe/masters/svdParameterSelection.tgz.

48

	A COMPARATIVE STUDY AND EVALUATION OF COLLABORATIVE RECOMMENDATION SYSTEMS
	Recommended Citation

	jcstombeMasters.pdf

