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Abstract 

 

Large earthquakes may strongly influence the activity of volcanoes through static 

and dynamic processes. In this study, we quantify the static and dynamic stress 

change on 27 volcanoes in Central America, after the Mw 7.6 Costa Rica earthquake 

of 5 September 2012. Following this event, 8 volcanoes showed signs of activity. We 

calculated the static stress change due to the earthquake on hypothetical faults 

under these volcanoes with Coulomb 3.3. For the dynamic stress change, we 

computed synthetic seismograms to simulate the waveforms at these volcanoes. 

We then calculated the Peak Dynamic Stress (PDS) from the modeled peak ground 

velocities. The resulting values are from moderate to minor changes in stress (10-1-

10-2 MPa) with the PDS values generally an order of magnitude larger than the static 

stress change. Although these values are small, they may be enough to trigger a 

response by the volcanoes, and are on the order of stress changes implicated in 

many other studies of volcano and earthquake triggering by large earthquakes. This 

study provides insight into the poorly-constrained mechanism for remote triggering.          
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1. Introduction 

 

Earthquakes have widely been recognized as capable of triggering volcanic 

eruptions. This was formerly just a supposition, which can be traced back to 1840, 

the year of a report by Charles Darwin on the eruption of two Chilean volcanoes 

(Darwin 1840, Manga and Bodsky 2006, Eggert and Walter 2009, Watt, Pyle et al. 

2009). There is now mounting evidence from a large number of earthquake-volcanic 

eruption pairs, such as the eruptions of Cordón Caulle (Chile) 38 hours after the 

Mw9.5 Chile earthquake in 1960 and Santa Maria volcano (Guatemala) 6 months 

after the M7.5 1902 Guatemala earthquake, of the relationship between seismicity 

and volcanic activity (Hill, Pollitz et al. 2002, Manga and Bodsky 2006, Eggert and 

Walter 2009, Watt, Pyle et al. 2009).  

Eruptions take place when the plumbing system of a volcano has reached a 

threshold pressure, either with slow accumulation or due to a sudden change of 

stress. It has been shown that earthquakes can sometimes provide changes of 

stress large enough to make the plumbing system reach this threshold and trigger 

an eruption (Manga and Bodsky 2006). To firm up this concept, many authors have 

statistically assessed the correlation between these two kinds of events: after 

examining historical records, they found that simple coincidence could not alone 

explain the immediate concurrence of many earthquakes and volcanic eruptions 

(Linde and Sacks 1998, Marzocchi 2002, Eggert and Walter 2009). The process of 

stress modifications, in the proximity of the volcano or in the volcanic plumbing 

system, can happen either in a static or in a dynamic way (Manga and Bodsky 2006, 

Watt, Pyle et al. 2009). Static stress changes depend on the permanent deformation 

of the Earth's crust due to the offset of a seismogenic fault. Their effects decay 

relatively quickly in space as they are inversely proportional to the cube of distance 

from the hypocenter. They are therefore considered to be effective only within the 
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near field, at a distance of a few faults lengths from the earthquake's epicenter 

(Manga and Bodsky 2006). Dynamic stress changes, on the other hand, are a 

consequence of the seismic waves released by the earthquake itself and thus 

depend on many factors such as distance, directivity, structure of the crust, 

frequency content and radiation pattern. All these parameters influence the 

amplitude of shaking and the distance that the waves can reach, but dynamic 

stresses generally decay in space according to the following formula: 

x = r-1.66   (1) 

where x is a parameter representing the intensity of the effect (Manga and Brodsky, 

2006). 

It is clear that dynamic stress changes can reach much longer distances than the 

static ones, being thus more effective in stressing far field areas; their effect is 

however transitory so requires a subsequent mechanism to make the stress change 

permanent (Manga and Bodsky 2006).  

Many authors have proposed different models in order to describe this process, 

whose importance and effectiveness is still widely discussed (Hill, Pollitz et al. 2002, 

Manga and Bodsky 2006, Watt, Pyle et al. 2009). The order of magnitude of the 

change in stress related to both static and dynamic processes is, however, usually in 

the order of 10-2 - 10-1 MPa, and thus it's thought that the magmatic system of the 

volcano must be already in a critical state in order to erupt (Manga and Brodsky, 

2006). For comparison ocean tides and solid earth tides provide change in stress in 

the order of 10-2 and 10-3 MPa, respectively (Manga and Brodsky, 2006). Changes in 

barometric pressure, which have also been implicated as triggers for changes in 

geyser activity, are on the order of 10-3 MPa (Reinhart, 1972).  

The aim of this project is to quantify the static and dynamic stress changes caused 

by the Mw. 7.6 Costa Rica earthquake of 5 September, 2012 on several active 
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volcanoes and evaluate the possibility of a link between the earthquake and 

subsequent volcanic activity documented at a subset of these volcanoes. 

In order to do so, we analyzed 27 volcanoes along the Central American Volcanic 

Arc, which stretches along the Pacific Coast, from Mexico to Panama.  

In particular, we focused on the eight volcanoes (Arenal, Rincon de la Vieja, Poas, 

Turrialba, Apoyeque, Cerro Negro, Telica and San Cristobal) that showed volcanic 

activity immediately or shortly following the seismic event, suggesting a strong 

correlation between the two. This information was collected with the help of the 

Smithsonian Institution's Global Volcanism Program's weekly reports 

(http://www.volcano.si.edu), where we searched our volcanoes and saw which of 

them actually went through volcanic activity following the earthquake. 

The static stress change is analyzed with the program Coulomb 3.3 (Toda S. et al., 

2005; Lin J. and Stein R.S., 2004) which, starting from the displacement of the 

seismogenic fault computes the stress changes at a given location at a given 

receiver fault. The results are the positive or negative amounts of shear stress 

change, normal stress change and Coulomb stress change, given in bars. For this 

work, we focus our attention on the normal stress change affecting hypothetical 

normal faults of various strike orientations situated at three kilometers of depth 

under every volcano. These simulate feeding systems, which could bring fresh 

magma to the surface. These results are then analyzed and discussed, as they are 

useful from the point of view of this research. 

 For the dynamic stress change calculations, synthetic seismograms are computed 

for hypothetical receivers at each of the volcanoes. The program used, Computer 

Programs in Seismology 3.3, or CPS by R.B. Herrmann (2003), needs several inputs: 

an Earth model, the descriptions of the receiving pseudo-seismometers' 

characteristics and the information about the source mechanism. This information 

is used to calculate synthetic seismograms. The program gives as output a three-
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component time history of ground velocity due to a particular earthquake source 

mechanism. We thus computed synthetic seismograms for all the 27 volcanoes 

treating the earthquake as a single point source, we then focused on those eight 

volcanoes which showed signs of activity and computed other synthetic 

seismograms, starting this time from the earthquake finite fault model. From these 

outputs we are able to assess the effective dynamic stress changes experienced by 

the volcanoes and thus to make considerations and hypothesis on their role in 

causing the volcanic activity. 

This project thus provides insights on the possible correlation between earthquake 

events and following volcanic activity. While there is mounting evidence for 

triggering of volcanic eruptions from large earthquakes (Hill, Pollitz et al. 2002, 

Manga and Bodsky 2006, Eggert and Walter 2009, Watt, Pyle et al. 2009), there is 

still significant uncertainty about the mechanisms involved. To find out how this 

process works and develops would be very beneficial in the field of volcanic hazard 

management, in that it would allow to government and non-government 

organizations to be aware of this real connection between the two phenomena and 

to promptly focus their actions where they are needed. This project aims to 

increase and further develop our understanding on this complicated subject. 
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2. 5 September 2012 - Mw 7.6 Costa Rica Earthquake 

2.1 Tectonic setting 

 

The Mw 7.6 earthquake of 5 September, 2012 took place below the Nicoya 

peninsula, in Costa Rica. This Central American country is located on the western 

part of the Caribbean plate, below which the Cocos plate subducts along the Middle 

American Trench. The subduction rates range from 70 to 94 mm per year (Protti et 

al., 1995) and studies have shown that there is a strong coupling between the two 

plates under the Nicoya peninsula, probably due to bathymetric features of the 

subducting oceanic floor (Protti et al., 1995). This is translated in a potential to 

produce earthquakes of significant magnitude, as has already happened in 1853, 

1900, 1950 and 1990 with events with Mw ≥ 7 (Protti et al., 1995; Dixon, 2013). The 

subduction of the Cocos plate gives rise to the Central American Volcanic Arc. This 

mountain chain, to which all the volcanoes analyzed in this project belong (with the 

exception of Volcano Azul), runs parallel to the trench and stretches from Mexico to 

Panama (Fig 2.1)(Rose et al., 1999).  
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Figure 2.1 - Map showing the epicenter of the Mw 7.6 earthquake (red circles), part of the Central 
American Volcanic Arc (yellow triangles) and the Middle American Trench (red line). Map Data: 
Google, SIO, NOAA, U.S. Navy, NGA, GEBCO. See Appendix H for documentation of permission to 
republish this material. 

 

2.2 Earthquake characteristics 

2.2.1 Earthquake description 

 

The USGS located the epicenter of this earthquakeat 10.086° N and 85.305° W, with 

an origin time of 14:42:08 UTC 5 September, 2012 

(http://comcat.cr.usgs.gov/earthquakes/eventpage/pde20120905144207800_35#s

ummary). Its hypocenter, the point at which the rupture began, has been calculated 

around 35 kilometers depth. The USGS reported that the earthquake had been 

widely felt throughout Central America, from Guatemala City to Panama, several 

hundreds of kilometers either side of the epicenter. While there have been reports 

from many local and international newspapers of damaged buildings, people 

evacuated and general panic, the earthquake directly claimed only one victim. From 

its focal mechanism (Fig. 2.2) we can identify the event as a megathrust earthquake, 

produced by a reverse fault and directly related to the subduction of the Cocos 

plate. The duration of the earthquake was approximately 60 seconds, though the 

source time function (Fig. 2.3) shows that most of its energy was released in the 

first 20 seconds of the event. A finite-fault model, described below, released by the 

USGS has a fault length of about 147 km, although the majority of the slip (200-300 

cm) was within a radius of about 30 kilometers from the hypocenter (Fig. 2.4)( 

http://comcat.cr.usgs.gov/earthquakes/eventpage/pde20120905144207800_35).    
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Figure 2.2 - Focal mechanism  of the Mw 7.6 Costa Rica earthquake. Image courtesy of the U.S. 
Geological Survey, available at 
(http://earthquake.usgs.gov/earthquakes/eqinthenews/2012/usc000cfsd/neic_c000cfsd_cmt.php). 
See Appendix H for documentation of permission to republish this material. 

 

 

Figure 2.3 - Source time function of the Mw 7.6 Costa Rica earthquake. Image courtesy of the U.S. 
Geological Survey, available at 
(http://earthquake.usgs.gov/earthquakes/eqinthenews/2012/usc000cfsd/finite_fault.php). See 
Appendix H for documentation of permission to republish this material. 
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Figure 2.4 - Cross section of slip distribution of the Mw 7.6 Costa Rica earthquake. The contours 
represent positions in space and time of the rupture front. Image courtesy of the U.S. Geological 
Survey, available at 
(http://earthquake.usgs.gov/earthquakes/eqinthenews/2012/usc000cfsd/finite_fault.php). See 
Appendix H for documentation of permission to republish this material. 

 

2.2.2 Finite fault model and directivity data 

 

A fault's finite extent, compared to a single point source, is a more realistic model 

for earthquakes and is especially important for large events. While the point-source 

model considers that all the energy of a given earthquake is released from a single 

point source (the hypocenter), a finite-fault model is a step closer to what actually 

happens in nature. In this latter model, slip is distributed over space and time. 

Typically, the earthquake fault is subdivided into many sub-faults, which may be of 

the same size or not, each with their own values of rake, dip, slip amount, slip time 
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history and thus, magnitude (Motazedian and Atkinson, 2005). In this way, each 

sub-fault is treated as a different point source and its effect can be later summed to 

that of others at the observation point, taking into account the proper time delay 

(Motazedian and Atkinson, 2005). Since the sub-faults are not expected to start to 

slip all at the same time and the amount and the duration of slip is different, a net 

effect called directivity can become significant. In a given earthquake, slip begins at 

the hypocenter and propagates away from that point. The direction of the 

propagation of the rupture front may or may not coincide with the direction of slip. 

In the direction of rupture propagation, the energy of this earthquake will thus pile 

up. This process is referred to as directivity (Somerville, 2003). This is due to the 

similar velocities that characterize the physical rupturing process of the fault, and 

the propagation of the shear waves originated at different points. For shear waves 

that propagate in the same direction as the fault rupture, the final result is that the 

energy of the shear waves amplify (Somerville, 2003). A given location can thus 

experience forward or backward directivity depending on whether the fault is 

rupturing toward or away from it. In the first case, the amplitude of the seismic 

waves will be greatly increased. At the same time, the duration is reduced and the 

frequency is increased. Backward directivity, on the contrary, reduces the waves' 

amplitude and enhances their duration and period (Sommerville, 2003). Directivity 

has a well fitting analogy in the more-known Doppler effect, where sound waves 

are perceived differently if their source is moving toward or away from the listener. 

As with directivity, in the first case the sound waves will be characterized by higher 

frequencies and a higher pitch. In the latter, waves will be more spread out, the 

frequency will be lower and the sound more dispersed. Finally, a fault can rupture 

unilaterally or bilaterally, respectively if there is either only one or two fronts of 

rupture propagation. Ground motion at any given site, particularly in the areas 

closer to the fault, may be strongly influenced by this mechanism, and thus, when 
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possible, it is important to take this into account (Bray and Rodriguez-Marek, 2004). 

This can only be done using finite fault models. The USGS issued two finite-fault 

models for this earthquake, one comprised of 225 sub-faults (Table 2.1) and the 

other 80. We used the former to calculate the static stress change at our volcanoes, 

while we used the latter when working on the finite fault model dynamic stress 

change. Although the final result is somewhat dependent on the number of sub-

faults used in the process (Motazedian and Atkinson, 2005), we decided to use the 

80-patches model to speed up the process of actually computing the waveforms 

when accounting for directivity, as well as to address processing limitations when 

calculating the synthetic seismograms.  

 

Table 2.1 - Characteristics for the Mw 7.6 Costa Rica earthquake 225 patches finite fault model, 
taken from the USGS Coulomb 3.3 input file. 

Earthquake name Costa Rica 

Epicenter coordinates 
(lat/lon, °) 

10,086 / -85,305 

Date (dd/mm/year) 05/09/2012 

UTC time 14:42:08 

Mw 7,6 

Rupture length (km) 147 

Fault geometry 
(strike/dip, °) 

317 / 19 

N. of patches 225 

Average slip (m) 0,28 

Average rake angle (°) 97,6 

Fault top (km) 11,26 

Fault bottom (km) 61,97 

Regional σ₁ 
(azimuth,/plunge, °) 

19 / 0 

Regional σ₂ 
(azimuth,/plunge, °) 

90 / 90 

Regional σ₃ 
(azimuth,/plunge, °) 

109 / 0 
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3 Central American Volcanic Arc 

3.1 Geological setting 

 

All the volcanoes taken into consideration for this thesis are located in Nicaragua, 

Costa Rica and Panama and they belong (with the exception of Volcan Azul) to the 

Central American Volcanic Arc (CAVA). This latter is a tectonically active feature 

which stretches  from the south of Mexico to Panama, extending for more than 

1500 kilometers roughly parallel to the strike of the Middle American Trench (Rose 

et al., 1999; Stoiber and Carr, 1973; Carr et al., 2003; Leeman et al., 1993 and 

reference therein). The modern arc is composed of around 50 main volcanic edifices 

and many other minor centers which make up the main volcanic front. Behind this, 

many authors (Stoiber and Carr, 1973; Carr et al., 2003; Leeman et al., 1993 and 

reference therein) recognize the existence of smaller and more weakly aligned 

clusters of volcanic features. The volcanoes are generally continuous throughout 

the arc, with the exception of a 175-kilometer gap between Turrialba and Irazù 

volcanoes in central Costa Rica and Barù volcano in northern Panama (Leeman et 

al., 1993 and reference therein). The change of the average strike between 

different parts of the arc was used to distinguish eight sections of the volcanic 

chain. Carr and colleagues (Stoiber and Carr, 1973; Carr et al., 2003) explained these 

different orientations subdividing the subducting Cocos plate in eight different parts 

as well, each one of them with a slightly different value of dip. However, more 

recent work shows that the dip of the down-going Cocos plate is laterally constant, 

with an average value of 60°, and it gets shallower only in central Costa Rica and 

Panama where there is the subduction of the Cocos Ridge (Leeman et al., 1993 and 

reference therein). The volcanic arc is also accompanied by many major parallel 
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structures, mainly normal faults and horst and graben features, which reveal an 

extensional tectonic regime, in contrast with the compressional one characterizing 

the trench (Stoiber and Carr, 1973). The basement rocks underling the volcanic 

chain vary from metamorphic, marine and non-marine sedimentary rocks and 

oceanic and arc crust fragments, and are characterized by very different ages, which 

ranges from late Paleozoic to Neogene (Leeman et al., 1993 and reference therein). 

This latter fact may be somewhat related to the equally big variety in the 

petrogenetic characteristics of the volcanic products, which range from rhyolite to 

andesite and basalt (Stoiber and Carr, 1973; Leeman et al., 1993 and reference 

therein). All the quaternary volcanism in this long section is in any case related to 

the subduction of the Cocos plate and the remaining part of the Nazca plate under 

the Caribbean plate. Their convergence rates vary according to authors, ranging 

between 94 and 60 mm/yr for the Cocos plate and being around 54 mm/yr for the 

Nazca one (Protti et al., 1995; Leeman et al., 1993 and reference therein). 

 

In Appendix A are listed, from north to south, the 27 volcanoes we worked with 

during this project. Different parameters are listed for all of them, among these, the 

distance and azimuth from the Mw 7.6 Nicoya peninsula earthquake of 5 September 

2012. 

  



20 
 

4. Volcanic activity following the earthquake 

 

Following the Mw 7.6 Nicoya earthquake, at least ten volcanoes among the 27 in our 

study showed some kind of activity. All the information here presented has been 

taken from the Weekly Reports of the Smithsonian Institution Global Volcanism 

Program (http://www.volcano.si.edu/), unless otherwise noted, and are current as 

of 15 May 2014. The volcanoes that showed any signs of activity following the 

earthquake are, in order of increasing distance from the epicenter: Arenal, Rincón 

de la Vieja, Poás, Irazú, Turrialba, Apoyeque, Tenorio, Cerro Negro, Telica, and San 

Cristóbal. Here follows a brief description of their possibly induced activity. 

Arenal was reported to have hydrothermal activity and tremor during the early days 

of September, 2013. Rising plumes of water vapor were also recorded on 8 

September 2013. The latest activity before the earthquake dates back to August 

2011 and was characterized by rising plumes. There was an increase in seismicity in 

the vicinity of the volcano as well, with an increase of nearly 10 times the average 

of the eight months leading up to September (Fig. 4.1)(Waldo Taylor, personal 

communication, 2014). The number of earthquake dropped after September. 
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Figure 4.1 - Number of earthquakes each month of 2012 and 2013 at Arenal and proximity. Data 
from the National Seismic Natwork of Costa Rica (RSN) run by the University of Costa Rica (UCR) and 
the national electric company (ICE). 

 

Rincón de la Vieja was reported to have white rising plumes from its active crater 

on 26 February 2013. Cloudy weather made it impossible to directly observe the 

crater, however the report says that the visible parts of the volcano showed no 

other signs of activity. The latest activity, a phreatic eruption, before the Mw 7.6 

Costa Rica earthquake dates back to April 2011. In addition, the rate of earthquakes 

increased drastically in September 2012, from 11 or fewer per month to 419 (Fig. 

4.2)(Waldo Taylor, personal communication 2014). By November, activity was back 

to background levels. 
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Figure 4.2 - Number of earthquakes each month of 2012 and 2013 at Rincon de la Vieja and 
proximity. Data from the National Seismic Natwork of Costa Rica (RSN) run by the University of Costa 
Rica (UCR) and the national electric company (ICE). 

 

Poás recorded several phreatic eruptions on the 27 and 28 October, 2012: water, 

sediments and rocks were ejected out of the lake that constitutes one of its craters. 

In one case, a phreatic eruption caused an ashfall event. The same kind of phreatic 

event, associated with occasional fumarolic activity, repeated itself several times in 

May-June 2013 and in the days between February and March, and March and April 

2014. The latest activity, a phreatic eruption, before the earthquake in analysis 

dates back to June 2012. 

Irazú micro-seismicity greatly increased in the day of the Nicoya earthquake. In the 

very next few days micro-seismicity was still very high. Normal level was regained 5 

days after the Nicoya earthquake (Red Seismological Nacional, 2012).   

Turrialba reported several signs of unrest with tremors, rising plumes and ashfall on 

the period between 29 May and 4 June, 2013. In July 2013, seismic activity 

(tremors) well above standard has been documented. The latest activity (crater 

incandescence) before the earthquake in analysis dates back to February 2012. 



23 
 

Tenorio didn't report any major activity but the seismicity in its proximity drastically 

increased during the month of Septmber (Fig. 4.3). Already in October, seismicity 

dropped back to normal levels.  

 

Figure 4.3 - Number of earthquakes each month of 2012 and 2013 at Tenorio and proximity. Data 
from the National Seismic Natwork of Costa Rica (RSN) run by the University of Costa Rica (UCR) and 
the national electric company (ICE). 

 

Apoyeque was affected by a seismic swarm on 6 September 2012. No activity 

before the Mw. 7.6 Costa Rica earthquake is on record. 

Cerro Negro was reported to have had enhanced tremors and general seismicity 

during the early days of June 2013. No activity before the Mw. 7.6 Costa Rica 

earthquake is on record. 

Telica had reported gas and steam rising plumes, fumarolic activity and a couple of 

small explosions on 10 and 11 September, 2012. Short plumes and incandescence 

from the crater were also recorded in the following days. The latest activity 
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(explosions, tephra and ash emissions) before the earthquake in analysis dates back 

to May 2011. 

San Cristóbal had three big explosions, with subsequent ash and gas plumes, on 8 

September 2012. The ash plumes caused significant ashfall events, with ash 

thickness on the ground up to 5 centimeters near the volcano. Sulfur dioxide 

emission was reported to be very high and above standard. These kinds of events 

repeated themselves on 11, 13 and 15 September and later in December 2012, and 

January and June 2013. Finally, gas and ash emissions were recorded during 

January, February and April 2014. Prior to the Nicoya earthquake, the most recent 

activity dates back to August 2011 and refers to gas and ash emission. 

All this information is shortly summarized in Appendix B. 

 

5. Static stress change 

5.1 Introduction to Static Stress Change 

 

The term "static stress change" in the scientific literature refers to the change in 

stress in the Earth's crust caused by the abrupt movement of a seismogenic fault. 

This change of stress can be considered permanent, in contrast to the transitory 

stress changes caused by dynamic processes, such as the passing of seismic waves 

in the crust. King et al. (1994) noted that there are some processes, such as viscous 

relaxation in the asthenosphere, which may increase the static stress change with 

time but without influencing its spatial distribution. The static stress change decays 

relatively rapidly with increasing distance from the displacement source, as 1/r3 

(where r is the radius of the circle centered in the earthquake epicenter), so it's 
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usually considered effective only in the near-field zone, a few fault lengths away 

from the epicenter (Manga and Brodsky, 2006; Delle Donne et al., 2010). Linde and 

Sacks (1998) marked the spatial limit for earthquake induced eruptions to occur, 

due to static and dynamic processes, at 750 kilometers from the epicenter; while 

Delle Donne et al. (2010) came up with an empirical relationship relating the 

magnitude of the earthquake (M) and the maximum radius of response from the 

epicenter (Rmax), in meters. The equation can be written as follows:  

M = - 6.4 + 2.17log10 Rmax  (2) 

For the Nicoya event, equation 2 yields Rmax = 2829 km. All of the volcanoes 

presented here are within both of these empirical radial limits. In addition to the 

spatial extent of the influence of earthquakes on volcanoes, one must also consider 

the time window within which stress changes are important. Static stress is thought 

to be able to influence volcanic activity for up to five years following the earthquake 

event (Bonali et al., 2013). Other authors put this limit even further, suggesting that 

volcanic activity could be directly influenced by a large earthquake even decades 

after the event (Eggert and Walter, 2009; Marzocchi, 2002).  

The minimum value of static stress change needed to cause an eruption has not 

been constrained and likely varies depending on the state of the volcano prior the 

earthquake. Manga and Brodsky (2006) summarized the minimum overpressure 

values needed for dike propagation to 1 MPa and 10-100 MPa, for basaltic and 

silicic magmas respectively. King et al. (1994), in their work about earthquake 

triggered seismicity suggest that some events were related to changes of static 

stress of less than 1 bar (0.1 MPa). Finally, Bonali et al. (2013) related new volcanic 

activity to various values of normal static stress change, classifying these values as 

"weak" (increase less than 0.02 MPa), "minor" (change between 0 and - 0.1 MPa) 

and "moderate" (change between - 0.1 and - 1.657 MPa).  
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As mentioned in Section 1, a change in normal stress can result either in unclamping 

or clamping of the hypothetical surface feeding system analyzed. Both of these 

processes are capable of promoting an eruption. The former makes dike intrusion 

easier by decreasing the value of overpressure needed by dikes to propagate. The 

latter, though it increases the overall pressure, may have the effect of squeezing 

part of the magma out of the system ("toothpaste effect") (Bonali et al., 2013 and 

reference therein). Whatever the trigger or mechanism, there is consensus in the 

scientific community that the volcano needs to be already in a very critical state in 

order to be actually affected by these induced changes of stress (Manga and 

Brodsky, 2006).          

  

 

5.2 Methodology – Coulomb 3.3 

 

The Coulomb 3.3 input data used to calculate the static stress change at our 

volcanoes comes from the USGS website, from the finite fault model section 

(http://comcat.cr.usgs.gov/earthquakes/eventpage/pde20120905144207800_35). 

The input file, based on the finite fault model from Gavin Hayes (Ji et al., 2002) 

represents the earthquake event subdivided in 225 patches, each one of them 

positioned in a common coordinated grid and having its own position, rake, dip 

angle, net slip value and magnitude. It also includes parameters for the 

characterization of the isotropic, elastic half space, in which the stress produced by 

the earthquake is experienced. In this study, we used the following values: Young's 

modulus (E = 80 GPa), Poisson's ratio (ν = 0.25) and the effective friction coefficient 

(μ' = 0.4). The regional stress is identified as follows: σ1 with azimuth of 019°, 
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plunge of 0° and surface stress of 100 bar, σ2 with azimuth of 090°, plunge of 90° 

and magnitude of 30 bar and σ3 with azimuth of 109°, plunge of 0° and magnitude 

of 0 bar 

(http://comcat.cr.usgs.gov/earthquakes/eventpage/pde20120905144207800_35). 

The input file also provides information about the grid area in analysis. All of these 

initial parameters were constant in all calculations. Coulomb 3.3, starting from the 

displacement of the seismogenic fault, computes the strain field in a three-

dimensional elastic half-space. This is then multiplied by the Young's modulus of the 

medium to calculate the stress changes at a given location at a given receiver fault.  

To compute the static stress change at the volcanoes we used the option of 

calculating the stress on a point, which enables one to specify the precise 

coordinates and depth of the point of interest. Strike, rake and dip of the receiving 

fault are also required as input parameters. We chose to analyze the effects of the 

static stress change on vertical (dip 90°) hypothetical faults. We specified that these 

be normal faults, but the normal stress calculations should not depend on the 

faulting style. These parameters would simulate the presence of possible magma 

conduits (faults, dikes)  that could be clamped or unclamped by the change in 

normal stress provided by the earthquake. The depth parameter was set as 3 

kilometers, a reasonable depth for the presence of a magmatic chamber and/or its 

surface feeding dikes. To considerate different fault orientations, the change of 

stress has been calculated for various values of strike (0°-180°), with an interval of 

22.5°. This gave eight different values of strike. Two additional strike values were 

added, 125° and 35°, representing, respectively strike directions parallel and 

orthogonal to the average direction of the Middle American Trench in our area of 

interest. The former strike value generally also indicates the direction of the Central 

American Volcanic Arc and thus, simplifying and not accounting for local variations, 

may be roughly perpendicular to the least horizontal compressive stress and so 
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appropriate for dike opening beneath volcanoes in the arc, although Quintero and 

Güendel (2000) found that the direction of least horizontal compressive stress was 

approximately N-S in the central part of the arc in Costa Rica. The outputs of the 

calculations done through Coulomb 3.3 are composed of three numerical values, in 

bar units, representing the negative or positive amount of shear stress change, 

normal stress change and Coulomb stress change at the given fault and position. 

The latter stress change is calculated using the Coulomb Failure Function, which can 

be written as: 

                   (3) 

where      is the change in shear stress,     the change in normal stress and    the 

effective fault friction coefficient on the receiver fault. A positive value for the 

Coulomb Failure Function (∆CFF) indicates that the receiver fault is closer to failure. 

For this work, we were mainly interested in the normal stress change results, which 

indicate whether the receiving fault experience clamping or unclamping. In 

Coulomb 3.3 convention, unclamping of the fault is represented by a positive stress 

change, and clamping by a negative one. However, from this point on we will follow 

the most common convention, where clamping is considerate positive and 

unclamping negative. 

We did not attempt to reconstruct the local geometry of the magma pathway for 

these volcanoes, as this has been done by Bonali and colleagues (2013). Given more 

time, this could have been done through GIS software and satellite imagery, since 

alignments of surface features, such as craters and or parasitic cones, are known to 

indicate, with a good confidence, the direction of the local σHmax and thus the 

azimuth of the magma pathway (Nakamura, 1977; Bonali et al., 2011; Corazzato 

and Tibaldi, 2006). Bonali et al. (2013), in their work calculated the static stress 

change only on the geometry of the inferred magma pathway. We argue that the 

geometry of a magma pathway inferred in this way may have changed over the 
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years, especially at volcanoes which haven't erupted for a long time (as is the case 

with some of the volcanoes we examined, see Appendix A), and that a change of 

stress may help to open and develop new dikes, characterized by new values of 

strike, from which an eruption may occur. With this assumption we preferred not to 

follow Bonali et al. (2013) approach but rather to investigate different values of 

strikes, sampling 360° with intervals of 22.5° plus those values parallel and 

orthogonal to the Middle American Trench.           

 

5.3 Results of the Static Stress Change Analysis 

The results obtained working with Coulomb 3.3 are summarized and listed in 

Appendix C. Here we can see the values of normal static stress change related to 

their receiving fault geometry. All of the calculations have been computed for 

hypothetical faults at 3 km of depth. The first thing we can notice is how, 

concordant with what we expected, the value of static stress change quickly 

decreases with space: in Fig. 5.1, we can see that it has its maximum at the closest 

volcano to the epicenter (Tenorio) with a change of 0.0402 MPa and has its 

minimum at the volcano furthest away (Cosigüina) with a negative change of 0.0004 

MPa. 
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Figure 5.1 - Line graph showing the decrease in the values of normal stress change experience at the 
volcanoes locations. The red diamond dots represent the values of maximum negative (unclamping) 
normal static stress change experienced (with the exception of Barú volcano, which experienced 
only positive stress changes). The green square dots are the absolute values of the maximum 
positive (clamping) normal static stress change experienced. The long dash and dots line and the 
dash line show, respectively, the thresholds of normal static stress changes <0.01 MPa and <0.001 
MPa. The big blue arrows indicate the volcanoes that had signs of activity following the earthquake, 
the little explosion marks, those volcanoes that actually erupted following the earthquake. 
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We can thus see that even the greatest values, found at the nearest volcanoes, fall 

into what Bonali et al. (2013) has classified as "weak" changes of stress. Starting 

from the volcano Turrialba,  168 km from the epicenter, the values are all under the 

limit of 0.01 MPa (long dash and dots black line in Fig. 5.1). These values finally 

decrease another order of magnitude (all values <0.001 MPa, dash black line in Fig. 

5.1) beyond Rota volcano, 314 km away. This is in line with the fact that the static 

stress change is thought to have influence only in the near field area. Indeed, our 

seismogenic fault length is about 147 kilometers, we have "weak" responses until 

about 1.14 times the length of our fault. After this distance our values drop and can 

be probably classified as "very weak" or "not significant". The "weak" response 

found even at the closest volcanoes could be related to the magnitude of the 

earthquake, which was only 7.6. The way we present the obtained data in Fig. 5.1 

does not take into account the different values of azimuth of each volcano. Figure 

5.2 shows the result for investigating static normal stress change on optimal normal 

faults (i.e. faults that are optimally oriented to experience the maximum change in 

stress) in our area of interest. Also from this image we see that the volcanoes 

clearly influenced by the static stress change produced by the earthquake are only 

the ones closest to the epicenter.   
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Figura 5.2 - Normal stress change for optimal normal faults in our area of investigation. The ten 
volcanoes that had signs of activity following the earthquake are circled in red.  

 

Cross-checking these results with the volcanic activity reports taken from the Global 

Volcanism Program (http://www.volcano.si.edu/), we can see that seven out of the 

ten volcanoes that showed sign of activity (identified by blue arrows and red circles 

in Fig. 5.1 and 5.2, respectively) were "weakly" influenced by this normal static 

stress change, while three out of ten experienced even weaker changes (less than 

0.001 MPa). 
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Shifting our focus to the strike values, we noted that the maximum (unclamping) 

and minimum (clamping) change of stress were frequently associated with common 

strike values. This analysis is summarized in Appendix D. In Figure 5.3 and 5.4 we 

can clearly see that the maximum values of change in normal stress, thus the 

strongest values of unclamping, are very often associated with faults characterized 

by a strike almost orthogonal (45°) or orthogonal (35°) to the Middle American 

Trench and, thus, to the strike of our seismogenic fault. Sixteen out of 29 values 

follow this pattern. Similarly, almost all of the values of maximum negative change 

in stress (thus, strongest clamping) are associated with strikes which are almost 

parallel (135°) or parallel (125°) to the average direction of the Middle American 

Trench. In this case, 18 out of 30 values suggest this behavior. 

 

Figure 5.3 - Map showing the orientations of faults at our 27 volcanoes relative to maximum 
negative (red short lines) and maximum positive (black short lines) change in stress. The earthquake 
epicenter (red circles) and of the Middle American Trench (long red line) are also shown. Map Data: 
Google, SIO, NOAA, U.S. Navy, NGA, GEBCO. See Appendix H for documentation of permission to 
republish this material. 



34 
 

 

Figure 5.4 - Pie charts showing the recurrence of strike values (listed on the right, in degrees) when 
related to the maximum negative (left) and maximum positive (right) values of stress change. 
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6. Dynamic stress change 

6.1. Introduction 

 

A dynamic stress change is a transient change in stress due to the passage of 

seismic waves. Particularly in this area of study, the dynamic stress change is called 

dynamic in contrast to the static stress change caused by the seismogenic fault, 

which is considered permanent when considering a finite and not-too-long time of 

reference. Because they typically have the greatest amplitudes at the surface, 

surface waves (Love and Rayleigh) carry the largest dynamic stresses. They are 

characterized by much longer periods than the body waves. Because their energy 

decays much less rapidly than the body waves', surface waves can thus travel and 

be effective at much longer distances. Love waves are mainly SH surface waves, 

while Rayleigh are a combination of P and SV. We can thus dominantly see the 

former in the tangential component and the latter in the radial and vertical ones 

(Stein and Wysession, 2003). Therefore, we concentrate our analysis of dynamic 

stress changes to those that are due to surface waves rather than body waves'.  

As with the static stress change, the effectiveness of the dynamic stress change is 

dependent on the magnitude of the earthquake that generated them. However, 

dynamic stress change influence can be seen at much larger distances and it decays 

as 1/r1.66 (Manga and Brodsky, 2006; Delle Donne et al., 2010). The spatial limit of 

their real effectiveness upon triggering volcanic events, even if not quite yet 

understood, can possibly be associated once again with the empirical limits found 

by Linde and Sacks (1998) and Delle Donne et al. (2010)(Eq. 3) explained in Section 

5. Time-wise, the waves effect is only temporary and thus mechanisms are required 

to maintain this change in stress (Manga and Brodsky, 2006). Many authors have 
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proposed several models to explain this process (Manga and Brodsky, 2006), some 

of these will be explained in the next sub-section.  

Compared to the static stress change at the same distance from the epicenter, 

dynamic induced change in stress is usually bigger, but typical values are similarly in 

the range of 10-2 - 10-1 MPa (Manga and Brodsky, 2006). As for the static stress 

change, this means that possibly the volcano effected needs to be already in a 

critical status in order to be triggered (Manga and Brodsky, 2006). Since dynamic 

stress change is related to the propagation of seismic waves, its effect is 

determined by characteristics of the seismic source, such as directivity and 

radiation pattern (Manga and Brodsky, 2006).            

 

6.2. Use of dynamic stress change in the context of the work 

 

Since about half of the volcanoes in analysis are located at more than a fault-length 

away from the earthquake epicenter, and thus can be described as intermediate or 

far-field entities, it was necessary to calculate the change in stress caused by the 

Mw 7.6 Nicoya earthquake also from a dynamic point of view. To assess the dynamic 

stress change experienced by our 27 volcanoes, we proceeded to analyze the 

waveforms that passed under the 27 volcanoes following the earthquake. As 

explained later in a more detailed way, the major interesting feature obtainable by 

these computed waveforms is their amplitude, and thus their peak-to-peak 

acceleration. This latter, with some assumptions and simplifications, can be easily 

transformed in units of stress that can give us a rough idea about the amount of 

increased pressure that the volcanoes experienced. All these processes are further 

explained in the methodology section.  
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The overpressure caused by dynamic stress change is, however, temporary. This 

requires that a mechanism exist to maintain this gained pressure and thus, if the 

overpressure is big enough, to lead the volcano to eruption. Many different models 

have been proposed and continue to be debated (Hill, Pollitz et al. 2002, Manga and 

Bodsky 2006, Watt, Pyle et al. 2009). The most accepted ones are rectified 

diffusion, advective overpressure, the creation of new bubbles and the falling of 

crystal mush roofs (Manga and Brodsky, 2006 and reference therein; Ichihara and 

Brodsky, 2006).  

Rectified diffusion is based on the principle that while seismic waves are passing 

through the magma chamber of a volcano, the bubbles there present experience 

cycles of expansion and contraction. This causes, in both cases, a net flux of 

volatiles between the magma and the bubbles. The bubble will lose gases when 

squeezed and gain them when stretched. However, the bubble will experience a net 

gain of volatiles due to the bigger surface area of the bubbles when stretched. 

Bigger bubbles are more buoyant and this, step by step, can lead to an eruption 

(Manga and Brodsky, 2006 and reference therein; Ichihara and Brodsky, 2006).  

Advective overpressure simply models that, following the passage of seismic waves, 

more and more bubbles are freed from the chamber walls and surfaces and thus 

are able to rise, coalesce and generate further overpressure (Manga and Brodsky, 

2006 and reference therein).  

Another model assesses that even a slight overpressure originated by the passing of 

seismic waves can provide the supersaturation pressure required to start the 

nucleation of bubbles (Manga and Brodsky, 2006 and reference therein).  

Finally, the falling roof model expects passing seismic waves to shake loose and 

break the bonds between magma chamber roofs and crystal mush, this latter would 
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then sink into the magma body creating a vertical convection in the chamber. 

Nucleation of bubbles would start in the rising melt and further overpressure would 

be generated in the magma chamber (Manga and Brodsky, 2006 and reference 

therein).  

The first two models are thought to create overpressure that are probably 

insignificant and way too weak to lead to an eruption. The last two can possibly lead 

to more significant changes but would also required many more ideal conditions to 

be effective. Another limitation of all these models is that they generally 

oversimplify the whole magma chamber structure, not taking into account many 

important features, such as its rigidity, level of saturation and so on (Manga and 

Brodsky, 2006 and reference therein).             

 

6.3. Synthetic seismograms 

 

Synthetic seismograms are computed waveforms that approximate and simulate 

the waveform originated by a given earthquake, and recorded at an arbitrary 

position. Since there were not real seismograms available for the 27 volcanoes, we 

computed synthetic seismograms using the CPS program. The program needs 

several inputs. To model the Earth structure, we used the model AK135-F (Kennett 

B.L.N. et al., 1995), which is an isotropic, spherical earth, one dimension and 

constant velocity layered model. For every layer, the model provides information 

about its thickness, seismic velocities, density and Q values (attenuation quality 

factor). The program then needs the characteristics of the source mechanism, 

which are the focal mechanism, depth and moment magnitude of the earthquake in 

analysis. This information will influence the radiation pattern of the seismic waves 
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generated at the earthquake. It finally requires the sampling interval, number of 

samples and the distance and azimuth from the earthquake epicenter of the 

location you want to compute the synthetic seismogram at. All this information is 

used to create body and surface waves phase velocity dispersion curves, their 

eigenfunctions and finally the Green's functions needed to calculate the synthetics 

seismograms. The program goes then through a last step filtering the Green's 

functions, giving as output a three-component time histories related to a particular 

source mechanism as recorded at a given distance and azimuth. The unit measure 

of the amplitude of the waves used in the output of this program is cm/s. Due to 

some program limitations, we had to simplify the AK135-F Earth model deleting 

those layers below 2800 kilometers of depth, which represents the outer and inner 

core of the Earth. The program thus permit to obtain a simplified version of the 

original waveform passing at given locations. The major limitation of this program is 

due to the oversimplification of the Earth model used and to the fact that it's 

impossible to take into account local heterogeneities and structures of the crust. All 

the data, once the computation on the software was finished, has been further 

processed with the help of the software MATLAB R2013a (The MathWorks Inc., 

Natick, MA, 2013). 

 

6.3.1. Finite fault effects (directivity) 

 

While for every of the 27 volcanoes we computed synthetic seismograms 

characterized by a single point source, for the ten volcanoes (except Tenorio and 

Irazú) that showed signs of activity after the Mw. 7.6 Costa Rica earthquake, we 

also computed synthetic seismograms using the 80-patch finite-fault model 

released by the USGS. A finite-fault model takes into account that a seismogenic 
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fault doesn't rupture instantly along all its length but that different parts rupture at 

different times, with different amounts of slip, and with possibly different 

geometries. These sub-faults also release different amounts of energy (Motazedian 

and Atkinson, 2005). Due to these facts, the earthquake as a whole may produce a 

strong directivity, depending mainly on the style and direction of the rupture 

process.  

As explained in Chapter 2, directivity happens when the energy of the seismic 

waves pile up towards a single direction following the single or dominant direction 

of rupture of the seismogenic fault (Somerville, 2003). Thus, depending where the 

point of interest is located, a given location may experience either forward or 

backward directivity, which results in, respectively, an enhancement or decrease of 

seismic waves amplitude. For dip-slip faulting, the effects of directivity are mainly 

focused on regions located updip from the hypocenter, assuming the fault ruptures 

updip (Somerville, 2003). The Mw 7.6 Costa Rica earthquake was generated by a 

reverse fault. The motion of the hanging wall was directed toward the Pacific Ocean 

and from Fig 2.4 we can see that the rupture of the fault doesn't seem to have a 

dominant direction. However, the largest slip occurred updip from the hypocenter, 

meaning directivity effects may be significant. We tested the effects of its possible 

directivity by computing synthetic seismograms for two points orthogonal to the 

strike of the seismogenic fault, but located in opposite directions. The two points 

were roughly at the same distance from the epicenter (60 kilometers). The resulting 

synthetic waveforms (Fig 6.1), calculated this time only for the vertical component, 

show a drastic difference. The amplitudes at the oceanward location (with an 

azimuth of 220° from the epicenter) are much greater than the one at the landward 

point (30° of azimuth from the epicenter). For comparison, the peak-to-peak 

amplitude is 9.22 cm/s for the former location and 3.80 cm/s for the latter. This 

suggests a significant directivity effect. The directivity effect can also be seen on the 
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duration of the computed waveforms. In Fig. 6.1, we can clearly see how the 

duration of the landward waveform (on the right) is longer, while the oceanward 

one is much more compressed. These differences may be important when assessing 

the mechanisms for triggering volcanoes.  

 

Figure 6.1 - Synthetic seismograms computed to test the effect of directivity. At the 

oceanward location (left) surface waves show much greater amplitude than at the 

landward one (right).  The duration of the signal is also different.  
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6.3.2. Synthetic seismogram testing 

 

We tested the codes by making synthetic seismograms for the Mw 7.6 Costa Rica 

earthquake at the location of five real seismic stations, taken from the Incorporated 

Research Institutions for Seismology (IRIS) Data Management Center 

(http://www.iris.edu). The stations were chosen to be far enough from the 

earthquake epicenter to show distinct and clear waveforms, they also needed to 

sample different azimuth. The closest five stations to answer to this need were 

located in Jamaica (MTDJ station, CU network), Cuba (GTBY, CU), Galapagos Islands 

and Otavalo in Ecuador (PAYG and OTAV, IU) and Mexico (TEIG, IU). These locations 

are showed in the map of Fig 6.2.  

 

Figure 6.2 - Location of the seismic stations chosen to test the synthetic seismograms computed with 
Computer Program in Seismology (Herrmann, 2003). Map Data: Google, SIO, NOAA, U.S. Navy, NGA, 
GEBCO. See Appendix H for documentation of permission to republish this material. 
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In Fig 6.3, the synthetic seismograms are compared to the original seismograms to 

evaluate the level of accuracy of the program used. First, we deconvolved the 

instrument response from the real seismograms, giving ground velocity in cm/s to 

allow for comparison with the synthetics. We also filtered both real and synthetic 

seismograms with a low pass filter (upper cut-off frequency 0.2 Hz), to ensure that 

we could clearly see and compare their surface waves, which comprise the part of 

the waveform we are most interested in. In Fig. 6.3 we can see how the three 

seismograms change in amplitude and duration. The change in amplitude is 

probably due to improperly modeled characteristics of the Earth's structure. Since 

the seismograms pass through two different Earth's models (one being the real 

Earth, the other the simplified one-dimensional AK135-F model) and our result is 

within one order of magnitude of difference, we consider our results to be a good 

approximation. 

 The simplified Earth model we used is also responsible for the very different 

duration of the coda. However, the main bodies of the waveforms, where the 

greatest amplitudes are found, are similar. Since for this work the most important 

parameter is the peak-to-peak acceleration, the synthetic seismograms we 

computed approximate the real waveforms, even if the two don't match perfectly.    
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Figure 6.3 - Synthetic seismograms (blue and green) compared with the original seismogram (red) 
recorded by TEIG station of the Global Seismograph Network. The station is 1159 kilometers away 
from the Mw. 7.6 Costa Rica earthquake epicenter. 

 

6.3.3. Synthetic seismograms for the 27 volcanoes 

 

Once we made sure the synthetic seismograms were similar enough to their 

hypothetical real counterparts, we computed north, east, and vertical component 

synthetic seismograms for each of the 27 volcanoes chosen for this work (Fig. 6.4). 

Using the event-to-volcano azimuth parameters to rotate the north and east traces, 

we then derived the radial and tangential components.  
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Figure 6.4 - Synthetic seismograms representing the Z component of three volcanoes in analysis. 

 

Using the Fourier transform, we computed the spectra of the waveforms, to 

investigate their peak frequencies. We used the peak frequencies to verify that the 

greatest amplitude was released under the form of surface waves, to do this we 

simply calculate their equivalent period to verify this was roughly between 20 and 

50 seconds. This is the range of periods that characterize the highest amplitude 

surface waves at regional to teleseismic distances (e.g., Hill et al., 2007). From the 

synthetic waveforms we were able to obtain the peak-to-peak amplitude (cm/s) of 
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the surface waves. This was then used to calculate the Peak Dynamic Stress, in MPa. 

To do this we follow the approach used by Velasco et al. (2004): 

PDS = ν*(μ/β)   (4) 

where ν is the peak particle velocity of the waveform (thus the peak-to-peak 

velocity), μ is an average rigidity of the Earth's crust and β is the shear wave 

velocity. When the last two parameters are taken as μ = 3.3*1011 dynes cm2 and β = 

3.5*105 cm/sec, as in Velasco et al. (2004), Equation (4) becomes:  

PDS = ν*0.1   (5) 

While this approximation is more reliable for shear waves (and by extension Love 

waves) we also used it for Rayleigh waves which result from interaction of shear 

and primary waves. We used equation (5) directly with the peak velocities of the 

single components, focusing on the radial and tangential. 

 

6.3.4. Synthetic seismograms from finite fault model 

 

For the ten volcanoes (except Tenorio and Irazú) that showed signs of unrest after 

the Mw 7.6 Costa Rica earthquake, we also computed synthetic seismograms 

starting from the 80-patches finite fault model released by the USGS website 

(http://comcat.cr.usgs.gov/earthquakes/eventpage/pde20120905144207800_35). 

Every patch has its own distance and azimuth to the location of the volcano in 

analysis, its own fault geometry, magnitude, duration and time delay with respect 

to the seismogenic patch that slipped first. Using the CPS software, we thus 

computed three components seismograms for every sub-fault. The obtained data 

was then summed together in MATLAB, taking into account the time delay related 
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to every sub-fault. We thus obtained five seismograms (one for every component: 

N, E, Z, plus radial and tangential) that take into account an important effect such as 

directivity. From these new waveforms, we calculated once again the peak 

frequencies, peak-to-peak velocities and Peak Dynamic Stresses (Fig 6.5 and 6.6). 

Finally, we calculated the duration, in seconds, of the seismic wave cycles that 

exceed an amplitude of ± 0.5 cm/s and ± 1 cm/s. This was done subtracting the 

timing of the seismic wave first passage across the amplitude value limit (0.5 or 1 

cm/s) to the timing of the seismic wave last passage across that same limit  (Fig 6.7). 

While these values are arbitrary, they provide a means for comparing the relative 

durations of strong shaking at the different volcanoes. For the obtained duration, 

the volcanoes experienced oscillations with pressures above or equal 0.05 and 0.1 

MPa. To calculate the duration of the application of this overpressure is important 

because the change in stress caused by dynamic processes is not permanent. 

Mechanisms, such as rectified diffusion, that are able to convert this stress into 

permanent stress change are often related to the number of seismic wave cycles 

passing through the magma chamber of the volcano (Manga and Brodsky, 2006).        
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Figure 6.5 - Synthetic seismograms of the Radial, Tangential and Vertical component of San Cristobal 
volcano. These seismograms were computed starting from the finite fault model released by USGS. 
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Figure 6.6 - Stack spectra from the radial, tangential and vertical component synthetic finite fault 
model seismograms of San Cristobal volcano.  
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Figure 6.7 - Calculating the duration of the seismic wave cycles with amplitude equal or above ± 0.5 
cm/s (golden lines and dashed arrows) and ± 1 cm/s (red lines and solid arrows). Example from the 
tangential component of Rincon de la Vieja. 
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6.4. Results 

6.4.1. Single point source model 

 

The results obtained through the synthetic seismograms computed starting with a 

single point source model are summarized in Table 6.1, while a more detailed result 

table is located in Appendix E. 

 

Table 6.1 - Peak Dynamic Stress related to the Radial and Tangential components. Those volcanoes 
that showed signs of activity following the earthquake are underlined. 

 

Volcano 
Radial component Tangential component 

Peak dynamic stress 
[MPa] 

Peak dynamic stress 
[MPa] 

Tenorio 0.440 0.250 

Miravalles 0.481 0.201 

Arenal 0.335 0.357 

Rincon de la Veja 0.462 0.263 

Orosi 0.383 0.239 

Platanar 0.278 0.231 

Poas 0.233 0.173 

Barva 0.192 0.134 

Maderas 0.211 0.136 

Irazu' 0.161 0.074 

Concepcion 0.178 0.133 

Turrialba 0.154 0.068 

Zapatera 0.153 0.120 

Mombacho 0.143 0.117 

Granada 0.142 0.113 

Masaya 0.130 0.110 

Nejapa-Miraflores 0.125 0.117 

Apoyeque 0.126 0.112 

Momotombo 0.118 0.105 
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Las Pilas 0.113 0.101 

Cerro Negro 0.113 0.100 

Volcan Azul 0.117 0.087 

Rota 0.112 0.096 

Telica 0.109 0.093 

Baru' 0.109 0.024 

San Cristobal 0.105 0.112 

Cosiguina 0.096 0.065 
 

Fig. 6.8 shows that also the values of Peak Dynamic Stress decrease while increasing 

the distance between the earthquake epicenter and the volcano. We can also see 

how the values associated with the radial component are generally higher than the 

ones associated with the tangential one. The PDS of the radial component 

experienced at almost all the volcanoes in analysis is above 0.1 MPa. Still following 

the terms used to describe the change in stress by Bonali et al. (2013), these values 

would, with the exception of Cosiguina, all be considerated "moderate". 

The PDS calculated from the tangential component is below 0.1 MPa for 7 out of 27 

volcanoes. This change of stress could probably be classified as "minor" or between 

"minor" and "moderate". Due to the way the PDS has been calculated (Eq. 5), the 

PDS from the tangential component are more accurate.    
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Figure 6.8 - PDS (MPa) from the radial (blue diamond dots) and tangential (orange square dots) 
components for the 27 volcanoes in analysis. The blue arrows indicates those volcanoes that showed 
signs of activity following the earthquake, the explosion marks those that actually erupted. 
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6.4.2. Finite-fault model results 

 

The results obtained for those ten volcanoes (except Tenorio and Irazú) that 

showed signs of activity following the earthquake are summarized in Table 6.2. For 

these volcanoes the synthetic seismograms have been computed using the 80-

patches finite-fault model released by the USGS. A more detailed result table is 

located in Appendix F 

Table 6.2 - Peak Dynamic Stress related to the Radial and Tangential component. 

Volcano 
Distance 

(km) 
Azimuth 

(°) 

Radial component Tangential component 
Peak dynamic 
stress [MPa] 

Peak dynamic stress 
[MPa] 

Arenal 77.82 57.57 0.431 0.368 

Rincon de la Vieja 82.19 358.47 0.287 0.343 

Poas 117.98 84.04 0.310 0.301 

Turrialba 168.36 92.41 0.173 0.131 

Apoyeque 263.68 334.76 0.123 0.139 

Cerro Negro 307.15 330.37 0.088 0.093 

Telica 324.36 329.07 0.073 0.077 

San Cristobal 343.24 327.64 0.068 0.060 
 

 

Fig. 6.9 shows that for the volcanoes that synthetic seismograms have been 

computed from the finite-fault model the radial and tangential PDS is much more 

similar, when compared to the point-source model. All the volcanoes closer than 

Cerro Negro volcano, both values are above 0.1 MPa. Cerro Negro, Telica and San 

Cristobal experience instead PDS values below this limit. Always borrowing the 

classification from Bonali et al. (2013), these values can be seen as "moderate" and 

"minor" change in stress. 
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Figure 6.9 - PDS (MPa) from the Radial (blue diamond dots) and Tangential (orange square dots) 
components for the ten volcanoes (except Tenorio and Irazú) that showed signs of activity following 
the eruption. The volcanoes that actually erupted following the earthquake are marked by the red 
and yellow explosion mark. 

 

Table 6.3 shows the durations in seconds of seismic waves cycles that exceeded ± 

0.5 and ± 1 cm/s. The values represent, respectively, 0.05 and 0.1 MPa. We can see 

how the duration of the cycles decreases while increasing the distance between the 

epicenter and the analyzed volcano. For the three volcanoes farthest away, the 

amplitude of the seismic wave is always below the 0.5 cm/s limit, while for the 

closest ones the duration of the seismic wave cycles crossing the 0.5 cm/s limit 

reaches tens of seconds. The longest durations are found at Arenal volcano, where 

the tangential component had cycles crossing the 0.5 cm/s amplitude limit for 34.5 

seconds and the 1 cm/s one for 21 seconds. 
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Table 6.3 - Durations in seconds of seismic waves cycles that exceeded ± 0.5 and ± 1 cm/s at the 8 
volcanoes. 

Volca
no 

Radial Tangential 
Duration (s) of 

signal greater than 
±0.5 cm/s (0.05 

MPa) 

Duration (s) of 
signal greater than 
±1 cm/s (0.1 MPa) 

Duration (s) of 
signal greater than 

±0.5 cm/s (0.05 
MPa) 

Duration (s) of 
signal greater than 
±1 cm/s (0.1 MPa) 

Arena
l 

19.9 16.4 34.5 21 

Rinco
n de 

la 
Vieja 

26.7 16.7 23.8 12 

Poas 24.9 11.7 33.6 10 
Turria

lba 
14.7 0 29.2 0 

Apoye
que 

1.2 0 2.8 0 

Cerro 
Negro 

0 0 0 0 

Telica 0 0 0 0 
San 

Cristo
bal 

0 0 0 0 
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7. Statistical Analysis 

7.1 Introduction 

 

Volcanic activity in the days immediately following an earthquake event is 

instinctively regarded as a strong sign of correlation between the two phenomena. 

This correlation becomes weaker while time passes and it can become very difficult 

to establish if the activity has been triggered or is just part of the normal 

background activity of the volcano (Linde and Sacks, 1998; Manga and Brodsky, 

2006; Avouris, 2011). A statistical analysis taking into account the history of the 

volcano and its average recurrence period for eruptions can give important insights 

on this subject.  

 

7.2 Methodology     

 

For the three volcanoes that actually had eruptions following the earthquake (Poas, 

Telica and San Cristobal) we proceeded to do a simple statistical analysis to 

evaluate the probabilities for the volcano to have an eruption following the 

earthquake event if not triggering had occured. Starting with the data collected 

from the catalog of the Smithsonian Institution Global Volcanism Program 

(http://www.volcano.si.edu/), we calculated the time-independent Poisson 

probability and two time-dependent probabilities.  

The Poisson probability calculated the chance of having an eruption in some time 

period based on the average time between eruptions. In our case, the time period 

of interest is the time between the Nicoya earthquake and the volcano first 
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following eruption. This model, which does not take into account theabsolute times 

of the events in the eruption catalog, can be expressed as follows: 

                     (6), 

where p is the probability of having at least one event, t is the time window 

considered and τ is the mean recurrence time among the events in the catalog.  

The time-dependent probabilities, on the other hand, take into account the date of 

the last eruptive event before the earthquake. They thus may be appropriate for 

models where a recharge period between eruptive events is required. The first 

calculation represents the probability of the volcano erupting in the time period 

that spans between the earthquake and the following eruption. The second, the 

probability of an eruption within one year after the earthquake. These values were 

calculated as: 

          
 

    
    

  

 
 
   

 
 
 

    (7) 

where p is the probability, t is the time window considered, τ is the mean 

recurrence time among the events in the catalog and σ the standard deviation. In 

this approach we assume that the recurrence of eruptive events follows the normal 

distribution. An obvious drawback to this work is a lack of a complete catalog of 

activity and a relatively short time window of activity on which to compute 

recurrence intervals. For comparison, we also calculated probability an event 

occurring within one year of the Nicoya earthquake for two other volcanoes 

(Conception and Masaya) that, as of 05/15/2014, didn't show any signs of activity 

following the earthquake. All the data used in these calculations can be seen in 

Appendix G. 
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7.3   Results 

 

The results of the statistical analysis are listed in Table 7.1.  We can see that the 

probabilities are very low for San Cristobal volcano and Telica, low to medium for 

Poas. The fact that activity occured despite the low probabilities, further suggests a 

strong correlation between the Mw 7.6 Costa Rica earthquake and the ensuing 

eruptive activity at the surrounding volcanoes. We found low to medium-low 

probabilities of an eruption within one year of the earthquake event also for the 

volcanoes that did not have an eruption following the earthquake.  

 

Table 7.1 - Results of the statistical analysis. 

Volcano 
Poisson 

prob. (%) 
Time-dep. prob. occurring in 

interval (%) 
Time-dep. prob. occurring within 

1 year (%) 
San 

Cristobal 
0.75 0.09 7.75 

Poas 29.94 11.33 55.75 

Telica 1.44 0.35 20.27 
Concepti

on 
N/A N/A 0.31 

Masaya N/A N/A 8 

  



60 
 

8. Discussion 

 

Interactions between earthquake events and volcanic phenomena is now widely 

accepted. Many authors have shown how static and dynamic stress released by 

moderate to large earthquake can influence the activity of volcanoes, both in the 

near-field and at teleseismic distances (Linde and Sacks, 1998; Manga and Brodsky, 

2006). The correlation seems to be stronger when volcanoes show signs of activity 

in the few days following the earthquake events (Avouris, 2011), but studies have 

suggested that the latter can influence volcanic systems up to decades after the 

event (Eggert and Walter, 2009; Marzocchi, 2002). In this study, ten volcanoes 

showed signs of activity after the event considered. Four of them (Apoyeque, Irazú, 

Telica and San Cristobal) in the very next few days, Poas around 53 days after, 

Turrialba and Cerro Negro 9 months after, and finally, Arenal around 1 year after 

the event. Among these ten volcanoes, only Poas, San Cristobal and Telica actually 

erupted. The other showed minor signs of activity and unrest.  

There have been some attempts to classify the response of volcanoes based on 

their geochemistry and the characteristics of their conduit (e.g. Bonali et al., 2013; 

Avouris, 2011). All the volcanoes here presented that had activity following the 

earthquake, except Apoyeque, are basaltic. However, so too are, nearly all the 

other 19 volcanoes considered in this study. The values of static and dynamic stress 

change we obtained are all on the order of 10-1 and 10-2 MPa, with the dynamic 

stress change values predominantly in the former order of magnitude and the static 

stress change ones in the latter. These values can be considered from "moderate" 

to "minor", but even very small values of stress change can trigger an eruption, 

assuming that the volcano system considered is already in a critical state (Bonali et 

al., 2013; Manga and Brodsky, 2006). In their paper, Manga and Brodsky (2006), 
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suggest that in normal cases the change in stress is naturally so small that, although 

its effect is significant, the overpressure in the volcanic system must be already 

"within 99%-99.9% of the maximum overpressure for the earthquake to initiate an 

eruption" (Manga and Brodsky, 2006).  

Another important factor is to find a way to distinguish induced activity from the 

normal background activity of the volcano. This can be done with statistical analysis 

of the eruptive history of the volcano. The statistical analysis that we computed 

show that, despite the small amount of stress change experienced by the volcanoes 

that erupted, the probability of a volcanic event in the time interval between the 

earthquake and the first eruption at Poas, Telica and San Cristobal was very low to 

low. This is suggestive of a strong correlation between the two phenomena. San 

Cristobal, for example, experienced an insignificant amount of normal static stress 

change (0.0005 MPa) and a low amount of dynamic stress change, with only 0.06 

MPa as Peak Dynamic Stress. However, the statistical analysis indicates that the 

probability of not having an eruption in the time period between the 5 and 8 

September 2012 (date of the earthquake and the eruption at San Cristobal volcano, 

respectively) was of 99.91%. Despite having less than 0.1% of probability of 

erupting, San Cristobal manifested a vulcanian eruption.  

The same can be said for Poas and Telica. Our conclusions are also supported by the 

significant increase of seismicity throughout Costa Rica, and especially at some 

volcanoes, recorded by the Costa Rica seismic network (Red Seismological Nacional 

http://www.rsn.ucr.ac.cr/index.php/es/).  

On 27 August 2012, a previous megathrust earthquake of Mw 7.3 struck off the 

coast of El Salvador. It is important to mention its existence, but we argue that, 

being of similar magnitude and characteristics, also its values of static stress change 

would have been not very significant. The sum of the static stress change of the two 
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earthquakes wouldn't thus show a lot of differences from our calculations. We 

speculate that also the Peak Dynamic Stress values from that previous earthquake 

would have probably be of the same order of magnitude of the values we obtained.  

9 Conclusion 

 

In our study, we quantified the static and dynamic stress changes experienced at 27 

volcanoes of the Central American Volcanic Arc following the Mw 7.6 Costa Rica 

earthquake of 5 September 2012. The aim of the study was to contribute to the 

understanding of this complicated phenomena of earthquake-volcano interaction, 

giving an insight linked to this particular Central American case. Our results indicate 

that the change in stress experienced by the volcanoes following the earthquake 

has been very small, in the order of 10-1 - 10-2 MPa. Even so, the statistical analysis, 

computed for those three volcanoes that actually erupted following the 

earthquake, indicates a strong relationship between the two phenomena. We thus 

suggest that, given the limitations we had to embrace, the volcanic activity 

recorded following the earthquake has indeed been triggered. If this is the case, this 

study shows more than ever how the status of the magmatic system at the time of 

the earthquake event plays an extremely important role, since it appears than even 

a very small amount of change in stress can lead to an eruption. 

Future work should include steps to minimize the simplification necessary in the 

computation of the synthetic seismograms, should consider in a more detailed way 

the geometry, geochemistry and characteristic of the magmatic system of the 

volcanoes involved in the study and, finally, should try to use a more complete 

catalog, when analyzing the eruptive history of the volcanoes. It would also be 

beneficial to focus on a smaller number of volcanoes, in order to be able to spend 

more time in a more detailed characterization of fewer cases.        
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Appendix A 

Table A.1 - Physical and petrological parameters for the 27 volcanoes taken into account during this 
study. N/A = not available, unkn = unknown. Sources: (1) Smithsonian Institution Global Volcanism 
Program, (2) Carr et al., 2003 

Volcano 
Lat/lo

ng (°) 

Distan

ce 

from 

epicen

ter 

(km) 

Azimu

th 

from 

epicen

ter (°) 

Type (1) 

Volu

me 

(kmᶟ) 
(2) 

Domina

nt rock 

type (1) 

Last 

erupti

on (1) 

Countr

y 

Cosigüin

a 

 

12.98

/ 

-

87.57 

404.5

3 

322.4

7 

Stratovol

cano 
33 

Basaltic 

andesite 
1859 

Nicara

gua 

San 

Cristóbal 

12.70

/ 

-

87.00 

343.2

4 

327.6

4 

Stratovol

cano 
65 Basalt 2013 

Nicara

gua 

Telica 

12.60

/ 

-

86.85 

324.3

6 

329.0

7 

Stratovol

cano 
28 Basalt 2011 

Nicara

gua 

Rota 

12.55

/ 

-

86.75 

314.4

5 

330.1

1 

Stratovol

cano 
12 

Basaltic 

andesite 
unkn 

Nicara

gua 

Volcan 12.53 311.1 29.7 Cinder N/A Trachyb unkn Nicara
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Azul / 

-

83.87 

2 cones asalt gua 

Cerro 

Negro 

12.50

/ 

-

86.70 

307.1

5 

330.3

7 

Cinder 

cones 
<1 Basalt 1999 

Nicara

gua 

Las Pilas 

12.50

/ 

-

86.68 

305.8

8 
330.8 Complex 14 

Basaltic 

andesite 
1954 

NIcara

gua 

Momoto

mbo 

12.42

/ 

-

86.53 

290.1

3 

332.5

9 

Stratovol

cano 
18 Basalt 1905 

Nicara

gua 

Apoyequ

e 

12.25

/ 

-

86.33 

263.6

8 

334.7

6 

Pyroclasti

c shield 
6 Dacite 50 BC 

Nicara

gua 

Nejapa-

Miraflore

s 

12.11

/ 

-

86.32 

249.8

4 

333.9

3 

Fissure 

vents 
3 Basalt 1060 

Nicara

gua 

Masaya 

11.98

/ 

-

86.15 

229.3

8 

335.9

5 
Caldera 168 Basalt 2008 

Nicara

gua 
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Granada 

11.88

/ 

-

86.00 

215.6

8 

339.8

4 

Fissure 

vents 
1 Basalt unkn 

Nicara

gua 

Mombac

ho 

11.83

/ 

-

85.98 

204.6

8 

339.4

4 

Stratovol

cano 
19 

Basaltic 

andesite 
unkn 

Nicara

gua 

Zapatera 

11.74

/ 

-

85.84 

189.9

4 

342.9

1 
Shield 5 

Basaltic 

andesite 
unkn 

Nicara

gua 

Concepti

ón 

11.53

/ 

-

85.62 

164.0

6 

347.7

6 

Stratovol

cano 
19 

Basaltic 

andesite 
2011 

Nicara

gua 

Maderas 

11.42

/ 

-

85.50 

164.0

6 

351.3

2 

Stratovol

cano 
22 

Basaltic 

andesite 
unkn 

Nicara

gua 

Rincón 

de la 

Vieja 

10.83

/ 

-

85.33 

82.19 
358.4

7 
Complex 201 

Basaltic 

andesite 
2012 

Costa 

Rica 

Miravalle

s 

10.75

/ 

-

74.91 12.61 
Stratovol

cano 
132 

Basaltic 

andesite 
1946 

Costa 

Rica 
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85.15 

Tenorio 

10.67

/ 

-

85.02 

72.16 25.87 
Stratovol

cano 
95 

Basaltic 

andesite 
unkn 

Costa 

Rica 

Arenal 

10.47

/ 

-

84.73 

77.82 57.57 
Stratovol

cano 
13 

Basaltic 

andesite 
2010 

Costa 

Rica 

Platanar 

10.30

/ 

-

84.37 

105.4

3 
77.21 

Stratovol

cano 
32 

Basaltic 

andesite 
unkn 

Costa 

Rica 

Poás 

10.20

/ 

-

84.22 

117.9

8 
84.04 

Stratovol

cano 
168 

Basaltic 

andesite 
2013 

Costa 

Rica 

Barva 

10.13

/ 

-

84.08 

131.9

2 
87.69 Complex 326 

Basaltic 

andesite 

6050 

BC 

Costa 

Rica 

Turrialba 

10.03

/ 

-

83.77 

168.3

6 
92.41 

Stratovol

cano 
151 

Basaltic 

andesite 
2013 

Costa 

Rica 

Irazú 
9.98/ 

-

159.1

6 
94.32 

Stratovol

cano 
227 

Basaltic 

andesite 
1994 Costa 
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83.85 Rica 

Barú 

8.80/ 

-

82.54 

334.5

9 

115.0

1 

Stratovol

cano 
N/A 

Basaltic 

andesite 
1550 

Panam

a 
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Appendix B 

Table B.1 - Signs of activity after the Mw 7.6 Nicoya earthquake of 5th September 2012 at the 27 
volcanoes analyzed. All the information are taken from the Smithsonian Institution Global Volcanism 
Program. Information updated at 05/15/2014.  

Volcano 
Signs of 
unrest 

Type of unrest (if present) 

Dates 
of 

unrest 
(if 

present
) 

Last date 
of unrest 

before 
earthquak

e of 
09/05/201

2 

Tenorio Yes Seismicity 
Sept. 
2012 

unkn 

Miravalles NA 
 

 unkn 

Arenal Yes 
Non-eruptive volcanic 

activity 

4-10 
Sept. 
2013 

August 
2011 

Rincón de la 
Vieja 

Yes 
Non-eruptive volcanic 

activity 

27 Feb. 
- 5 Mar. 

2013 
April 2012 

Orosí NA 
 

 unkn 

Platanar NA 
 

 unkn 

Poás Yes Eruption 

24-30 
Oct. 
2012 

29 May 
- 4 Jun. 
2013 

26 Feb. 
- 4 Mar. 

2014 
26 Mar. 
- 1 Apr. 

2014 

June 2012 

Barva No/NA 
 

 unkn 

Maderas No/NA 
 

 unkn 

Irazú Yes Seismicity  unkn 

Concepción No 
 

 
March 
2010 
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Turrialba Yes 
Non-eruptive volcanic 

activity 

29 May 
- 4 June 

2013 
17-23 
July 

2013 

February 
2012 

Zapatera NA 
 

 unkn 

Mombacho NA 
 

 unkn 

Granada NA 
 

 unkn 

Masaya No 
 

 
December 

2008 

Nejapa-
Miraflores 

NA 
 

 unkn 

Apoyeque Yes Seismicity 
05-11 
Sept. 
2012 

unkn 

Momotombo NA 
 

 unkn 

Las Pilas NA 
 

 unkn 

Cerro Negro Yes Seismicity 
5-11 
June 
2013 

unkn 

Volcan Azul NA 
 

 unkn 

Rota NA 
 

 unkn 

Telica Yes Eruption 
12-18 
Sept. 
2012 

May 2011 

Barú NA 
 

 unkn 

San Cristóbal Yes Eruption 

12-18 
Sept. 
2012 

19 Dec. 
2012 - 
01 Jan. 
2013 
05-11 
Jun. 
2013 
5-11 
Feb. 
2014 

August 
2011 



76 
 

09-15 
Apr. 
2014 

Cosigüina NA 
 

 unkn 
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Appendix C 

Table C.1 - Numerical results for the static stress change analysis. In the sixth column are listed the 
values of change in normal stress (in MPa) for the 10 values of strike for each volcano. All the 
calculations have been done at 3 km of depth. The values highlighted in the table are those relative 
to the minimum value of change in normal stress and their relative strike (bold), the maximum 
changes in stress and their values (italics) and the values of change in stress relative to the strike 
parallel and orthogonal to the direction of the Middle American Trench (underlined). The volcanoes 
are listed in increasing distance from the earthquake epicenter. 

Volcano 
Distance 

(km) 

Receiving fault geometry Normal 
Static 
Stress 

Change 
(MPa) 

Rake (°) Strike (°) Dip (°) 

Tenorio 72.16 -90 

22.5 

90 

-0.0352 

45 -0.0238 

67.5 0.003 

90 0.0296 

112.5 0.0402 

135 0.0288 

157.5 0.002 

180 -0.0245 

125 0.0365 

35 -0.0314 

Miravalles 74.91 -90 

22.5 

90 

-0.0325 

45 -0.0094 

67.5 0.0196 

90 0.0374 

112.5 0.0337 

135 0.0106 

157.5 -0.0184 

180 -0.0362 

125 0.0226 

35 -0.0214 

Arenal 77.82 -90 

22.5 

90 

-0.0097 

45 -0.0334 

67.5 -0.0382 

90 -0.0213 

112.5 0.0074 

135 0.031 
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157.5 0.0359 

180 0.019 

125 0.0222 

35 -0.0245 

Rincón de la Vieja 82.19 -90 

22.5 

90 

-0.0181 

45 0.0104 

67.5 0.0329 

90 0.0362 

112.5 0.0184 

135 -0.0101 

157.5 -0.0326 

180 -0.0359 

125 0.0029 

35 -0.0026 

Orosí 100.37 -90 

22.5 

90 

0.0041 

45 0.0253 

67.5 0.0347 

90 0.0269 

112.5 0.0064 

135 -0.0147 

157.5 -0.0241 

180 -0.0163 

125 -0.0061 

35 0.0167 

Platanar 105.43 -90 

22.5 

90 

0.0245 

45 0.004 

67.5 -0.017 

90 -0.026 

112.5 -0.0178 

135 0.0028 

157.5 0.0237 

180 0.0327 

125 -0.0072 

35 0.0139 

Poás 117.98 -90 

22.5 

90 

0.0242 

45 0.0139 

67.5 -0.0024 

90 -0.0153 



79 
 

112.5 -0.0171 

135 -0.0069 

157.5 0.0094 

180 0.0223 

125 -0.0127 

35 0.0197 

Barva 131.92 -90 

22.5 

90 

0.0169 

45 0.0129 

67.5 0.0025 

90 -0.008 

112.5 -0.0127 

135 -0.0087 

157.5 0.0016 

180 0.0122 

125 -0.0115 

35 0.0157 

Maderas 152.05 -90 

22.5 

90 

0.0044 

45 0.0144 

67.5 0.0191 

90 0.0157 

112.5 0.0062 

135 -0.0038 

157.5 -0.0085 

180 -0.0051 

125 0.0003 

35 0.0104 

Irazú 159.16 -90 

22.5 

90 

0.0049 

45 0.0058 

67.5 0.0029 

90 -0.0021 

112.5 -0.0063 

135 -0.0072 

157.5 -0.0043 

180 0.0007 

125 -0.0073 

35 0.0059 

Concepción 164.06 -90 
22.5 

90 
0.0054 

45 0.0123 
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67.5 0.0142 

90 0.0102 

112.5 0.0027 

135 -0.0043 

157.5 -0.0063 

180 -0.0023 

125 -0.0017 

35 0.0096 

Turrialba 168.36 -90 

22.5 

90 

0.0056 

45 0.0055 

67.5 0.0021 

90 -0.0025 

112.5 -0.0058 

135 -0.0057 

157.5 -0.0023 

180 0.0023 

125 -0.0062 

35 0.006 

Zapatera 189.94 -90 

22.5 

90 

0.0044 

45 0.0075 

67.5 0.0074 

90 0.0042 

112.5 -0.0002 

135 -0.0033 

157.5 -0.0033 

180 -0.0001 

125 -0.0023 

35 0.0064 

Mombacho 204.68 -90 

22.5 

90 

0.0035 

45 0.0052 

67.5 0.0046 

90 0.0021 

112.5 -0.001 

135 -0.0028 

157.5 -0.0022 

180 0.0004 

125 -0.0022 

35 0.0047 
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Granada 215.68 -90 

22.5 

90 

0.003 

45 0.0047 

67.5 0.0044 

90 0.0021 

112.5 -0.0006 

135 -0.0023 

157.5 -0.002 

180 0.0003 

125 -0.0018 

35 0.0042 

Masaya 229.38 -90 

22.5 

90 

0.0023 

45 0.0031 

67.5 0.0025 

90 0.0007 

112.5 -0.0011 

135 -0.002 

157.5 -0.0013 

180 0.0004 

125 -0.0018 

35 0.0029 

Nejapa-Miraflores 249.84 -90 

22.5 

90 

0.0016 

45 0.0021 

67.5 0.0015 

90 0.0002 

112.5 -0.001 

135 -0.0015 

157.5 -0.0009 

180 0.0004 

125 -0.0014 

35 0.002 

Apoyeque 263.68 -90 

22.5 

90 

0.0014 

45 0.002 

67.5 0.0015 

90 0.0004 

112.5 -0.0008 

135 -0.0013 

157.5 -0.0009 

180 0.0003 
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125 -0.0012 

35 0.0018 

Momotombo 290.13 -90 

22.5 

90 

0.001 

45 0.0013 

67.5 0.0009 

90 0.0001 

112.5 -0.0007 

135 -0.0009 

157.5 -0.0006 

180 0.0002 

125 -0.0009 

35 0.0012 

Las Pilas 305.88 -90 

22.5 

90 

0.0007 

45 0.0009 

67.5 0.0006 

90 -0.0001 

112.5 -0.0006 

135 -0.0008 

157.5 -0.0005 

180 0.0002 

125 -0.0008 

35 0.0009 

Cerro Negro 307.15 -90 

22.5 

90 

0.0007 

45 0.0009 

67.5 0.0006 

90 -0.0001 

112.5 -0.0006 

135 -0.0008 

157.5 -0.0005 

180 0.0002 

125 -0.0008 

35 0.0009 

Volcan Azul 311.12 -90 

22.5 

90 

-0.0004 

45 -0.0002 

67.5 0.0014 

90 0.0034 

112.5 0.0046 

135 0.0043 
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157.5 0.0028 

180 0.0008 

125 0.0047 

35 -0.0005 

Rota 314.45 -90 

22.5 

90 

0.0007 

45 0.0008 

67.5 0.0005 

90 -0.0001 

112.5 -0.0006 

135 -0.0007 

157.5 -0.0004 

180 0.0002 

125 -0.0007 

35 0.0008 

Telica 324.36 -90 

22.5 

90 

0.0006 

45 0.0007 

67.5 0.0004 

90 -0.0001 

112.5 -0.0006 

135 -0.0007 

157.5 -0.0004 

180 0.0001 

125 -0.0007 

35 0.0007 

Barú 334.59 -90 

22.5 

90 

-0.0006 

45 -0.0004 

67.5 -0.0003 

90 -0.0003 

112.5 -0.0004 

135 -0.0006 

157.5 -0.0007 

180 -0.0007 

125 -0.0005 

35 -0.0005 

San Cristóbal 343.24 -90 

22.5 

90 

0.0004 

45 0.0005 

67.5 0.0002 

90 -0.0002 
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112.5 -0.0005 

135 -0.0006 

157.5 -0.0003 

180 0.0001 

125 -0.0006 

35 0.0005 

Cosigüina 404.53 -90 

22.5 

90 

0.0002 

45 0.0001 

67.5 0 

90 -0.0002 

112.5 -0.0003 

135 -0.0003 

157.5 -0.0002 

180 0 

125 -0.0004 

35 0.0002 
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Appendix D 

Table D.1 - Strike values and their number of appearances as strike of max negative and positive 
change in normal stress. 

Strik
e 

valu
es 

#appearances as strike of 
Max POSITIVE (clamping) 

stress change 

#appearances as strike of 
Max NEGATIVE 

(unclamping) stress change 
Note 

22.5 1 3 
 

45 0 11 
Strike almost 
orthogonal to 

M.A.Trench strike 

67.5 0 3 
 

90 1 3 
 

112.
5 

2 1 
 

135 10 0 
Strike almost 

parallel to 
M.A.Trench strike 

157.
5 

4 1 
 

180 3 1 
 

125 8 1 
Strike Parallel to 

M.A.Trench strike 

35 1 5 
Strike Orthogonal 

to M.A.Trench 
strike 
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Appendix E 

Table E.1 - Results from the dynamic stress change analysis. The data is obtained from synthetic 
seismograms computed with the single point source model. 

Volc
ano 

Di
st
a
n
c
e 
(k
m
) 

Radial comp Tangential comp 

Peak to 
peak 

amplitu
de 

[cm/s] 

Peak 
dynam

ic 
stress 
[Mpa] 

Peak 
freq
uenc

y 
[Hz] 

P
er
io
d 
[s
] 

Peak 
frequen

cy 
amplitu

de 
[cm/s] 

Peak to 
peak 

amplitu
de 

[cm/s] 

Peak 
dynam

ic 
stress 
[Mpa] 

Peak 
freq
uenc

y 
[Hz] 

P
er
io
d 
[s
] 

Peak 
frequen

cy 
amplitu

de 
[cm/s] 

Ten
orio 

7
2 

4.40 0.440 0.04 
2
5 

37.5 2.50 0.250 0.03 
3
3 

21.2 

Mir
avall

es 

7
5 

4.81 0.481 0.03 
3
3 

41.9 2.01 0.201 0.03 
3
3 

15.4 

Are
nal 

7
8 

3.35 0.335 0.03 
3
3 

28.8 3.57 0.357 0.03 
3
3 

32.5 

Rinc
on 
de 
la 

Veja 

8
2 

4.62 0.462 0.03 
3
3 

41.0 2.63 0.263 0.03 
3
3 

19.1 

Oro
si 

1
0
0 

3.83 0.383 0.03 
3
3 

35.6 2.39 0.239 0.03 
3
3 

19.1 

Plat
anar 

1
0
5 

2.78 0.278 0.02 
5
0 

25.7 2.31 0.231 0.03 
3
3 

21.9 

Poa
s 

1
1
8 

2.33 0.233 0.02 
5
0 

22.3 1.73 0.173 0.03 
3
3 

16.7 

Barv
a 

1
3
2 

1.92 0.192 0.02 
5
0 

18.7 1.34 0.134 0.03 
3
3 

13.4 

Mad
eras 

1
5
2 

2.11 0.211 0.03 
3
3 

23.3 1.36 0.136 0.03 
3
3 

10.9 
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Iraz
u' 

1
5
9 

1.61 0.161 0.02 
5
0 

13.1 0.74 0.074 0.03 
3
3 

7.8 

Con
cepc
ion 

1
6
4 

1.78 0.178 0.03 
3
3 

19.2 1.33 0.133 0.03 
3
3 

11.2 

Turr
ialb

a 

1
6
8 

1.54 0.154 0.03 
3
3 

12.4 0.68 0.068 0.03 
3
3 

7.8 

Zap
ater

a 

1
9
0 

1.53 0.153 0.02 
5
0 

13.4 1.20 0.120 0.03 
3
3 

11.1 

Mo
mba
cho 

2
0
5 

1.43 0.143 0.04 
2
5 

12.1 1.17 0.117 0.03 
3
3 

11.0 

Gra
nad

a 

2
1
6 

1.42 0.142 0.04 
2
5 

13.0 1.13 0.113 0.03 
3
3 

10.4 

Mas
aya 

2
2
9 

1.30 0.130 0.04 
2
5 

11.2 1.10 0.110 0.04 
2
5 

9.8 

Neja
pa-
Mir
aflo
res 

2
5
0 

1.25 0.125 0.04 
2
5 

13.0 1.17 0.117 0.03 
3
3 

8.8 

Apo
yeq
ue 

2
6
4 

1.26 0.126 0.04 
2
5 

13.6 1.12 0.112 0.04 
2
5 

8.2 

Mo
mot
omb

o 

2
9
0 

1.18 0.118 0.04 
2
5 

13.2 1.05 0.105 0.04 
2
5 

9.2 

Las 
Pilas 

3
0
6 

1.13 0.113 0.04 
2
5 

12.4 1.01 0.101 0.04 
2
5 

9.7 

Cerr
o 

Neg
ro 

3
0
7 

1.13 0.113 0.04 
2
5 

12.3 1.00 0.100 0.04 
2
5 

9.8 
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Volc
an 

Azul 

3
1
1 

1.17 0.117 0.04 
2
5 

14.9 0.87 0.087 0.04 
2
5 

11.2 

Rota 
3
1
4 

1.12 0.112 0.04 
2
5 

12.1 0.96 0.096 0.04 
2
5 

10.0 

Telic
a 

3
2
4 

1.09 0.109 0.04 
2
5 

11.7 0.93 0.093 0.04 
2
5 

10.1 

Bar
u' 

3
3
5 

1.09 0.109 0.03 
3
3 

11.0 0.24 0.024 0.02 
5
0 

2.6 

San 
Crist
obal 

3
4
3 

1.05 0.105 0.03 
3
3 

11.0 1.12 0.112 0.03 
3
3 

10.1 

Cosi
guin

a 

4
0
5 

0.96 0.096 0.04 
2
5 

9.3 0.65 0.065 0.03 
3
3 

9.7 
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Appendix F 

Table F.1 - Results from the dynamic stress change analysis. The data is obtained from synthetic 
seismograms computed with the finite fault model. These eight volcanoes showed signs of activity 
following the earthquake. 

Volcano 
Dist
ance 
(km) 

Radial comp - Rayleigh waves Tangential comp - Love waves 

Peak 
to 

peak 
ampli
tude 
[cm/s

] 

Peak 
dyna
mic 

stres
s 

[Mp
a] 

Peak 
frequ
ency 
[Hz] 

Per
iod 
[s] 

Peak 
frequ
ency 
ampli
tude 
[cm/s

] 

Peak 
to 

peak 
ampli
tude 
[cm/s

] 

Peak 
dyna
mic 

stres
s 

[Mp
a] 

Peak 
frequ
ency 
[Hz] 

Per
iod 
[s] 

Peak 
frequ
ency 
ampli
tude 
[cm/s

] 

Arenal 78 4.31 
0.43

1 
0.28 4 47.7 3.68 

0.36
8 

0.05 20 85.0 

Rincon de 
la Vieja 

82 2.87 
0.28

7 
0.04 23 74.5 3.43 

0.34
3 

0.05 22 72.5 

Poas 118 3.10 
0.31

0 
0.04 23 68.7 3.01 

0.30
1 

0.03 34 51.5 

Turrialba 168 1.73 
0.17

3 
0.04 26 32.2 1.31 

0.13
1 

0.04 26 31.8 

Apoyeque 264 1.23 
0.12

3 
0.05 22 41.6 1.39 

0.13
9 

0.05 21 19.5 

Cerro 
Negro 

307 0.88 
0.08

8 
0.04 24 34.6 0.93 

0.09
3 

0.04 23 20.6 

Telica 324 0.73 
0.07

3 
0.04 24 32.6 0.77 

0.07
7 

0.04 25 18.9 

San 
Cristobal 

343 0.68 
0.06

8 
0.04 26 28.5 0.60 

0.06
0 

0.04 26 21.0 
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Appendix G 

Table G.1 - Parameters used in the statistical analysis. 

San Cristobal Poas Telica Conception Masaya 

Date of 
eruptio

n 
(d/m/y

) 

Days 
betwee

n 2 
followin

g 
events 

Date of 
eruptio

n 
(d/m/y

) 

Days 
betwee

n 2 
followin

g 
events 

Date of 
eruptio

n 
(d/m/y

) 

Days 
betwee

n 2 
followin

g 
events 

Date of 
eruptio

n 
(d/m/y

) 

Days 
betwee

n 2 
followin

g 
events 

Date of 
eruptio

n 
(d/m/y

) 

Days 
betwee

n 2 
followin

g 
events 

21/6/0
1  

24/3/0
6  

9/1/0
7  

28/7/0
5  

23/04/
2001  

6/3/06 1719 
26/9/0

6 
186 

15/2/
07 

37 
29/7/0

5 
1 

24/04/
2001 

1 

26/4/0
6 

51 
25/10/

06 
29 

14/5/
11 

1549 7/2/07 558 
25/04/
2001 

1 

22/6/0
8 

788 
13/1/0

8 
445 

18/5/
11 

4 
10/2/0

7 
3 

23/05/
2001 

28 

11/7/0
8 

19 
25/12/

09 
712 

20/5/
11 

2 8/4/07 57 
18/06/
2008 

2583 

19/11/
08 

131 
23/2/1

0 
60 

11/9/
12 

480 
22/4/0

7 
14 

  

2/9/09 287 
15/9/1

0 
204 

  
10/7/0

7 
79 

  

8/9/12 1102 
15/11/

10 
61 

  
20/12/

07 
163 

  
11/9/1

2 
3 2/2/11 79 

  
11/12/

09 
722 

  
25/12/

12 
105 

15/4/1
1 

72 
  

12/3/1
0 

91 
  

26/12/
12 

1 
25/5/1

1 
40 

      
7/6/13 163 6/5/12 347 

      

  
15/5/1

2 
9 

      

  
20/5/1

2 
5 

      

  
26/5/1

2 
6 

      

  
27/10/

12 
154 

      

  
28/10/ 1 
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12 

  
1/5/13 185 

      

  
28/5/1

3 
27 

      

  
25/2/1

4 
273 

      

  
30/3/1

4 
33 

      
San Cristobal Poas Telica Conception Masaya 

Mean 
recurre

nce 
time 

(years) 

Standar
d 

deviatio
n 

(years) 

Mean 
recurre

nce 
time 

(years) 

Standar
d 

deviatio
n 

(years) 

Mean 
recurre

nce 
time 

(years) 

Standar
d 

deviatio
n 

(years) 

Mean 
recurre

nce 
time 

(years) 

Standar
d 

deviatio
n 

(years) 

Mean 
recurre

nce 
time 

(years) 

Standar
d 

deviatio
n 

(years) 
1.09 1.55 0.40 0.50 1.13 1.82 0.51 0.72 1.79 3.52 
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Appendix H 

Credit and copyright policies of material used in this thesis: 

 

Images from the USGS website: 

http://www.usgs.gov/visual-id/credit_usgs.html 

 

Images and maps from Google Earth Pro: 

http://www.google.com/permissions/geoguidelines/attr-guide.html 
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