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plate was used to compensate for the birefringence of coherent component of the 

idler photon.  

Figure 5.2. Experiment setup for measuring CAR and two-photon interference of the 
signal photon in a normal channel and the idler photon experiencing multiple 
scattering events.  FC (fiber-to-free space collimators); PBS (polarization beam 
splitter); HWP and QWP (half- and quarter-wave plates); DWDM (dense wavelength 
division multiplexer); APD (Avalanche photodiode). 

 

We first prepared and measured the purity of polarization-

correlated/polarization-entangled photon-pair with attenuation in idler channel. We 

investigated the effect of standard loss on the photon-pair. In addition, we 

investigated the propagation of polarization-correlated/polarization-entangled photon 

pair through a multiple scattering random medium. The neutral density filter in idler 

channel was replaced with a random medium sample. Further details for the 

preparation of the polarization-correlated/polarization-entangled have been discussed 

in section 4.6.  
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The scattered photons emerging from the random medium were collected by 

fiber-to-free space collimators (NA=0.25), which were placed closely right after the 

PBS. Considering the effect of the constant loss on the quantum correlation of the 

photon pair, we made sure the attenuation (about 3 dB) of ballistic beam is almost 

similar for all scattering samples. The coupling efficiency of the fiber-to-free space 

collimator was included for attenuation measurement.  

Both signal and idler photons were detected by fiber coupled InGaAs/InP 

avalanche photodiodes operated in gated Geiger mode at room temperature.  

5.7 Results 

5.7.1 Standard Loss 

For the polarization-correlated photon-pair, we measured the Coincidence to 

accidental-coincidence ratio (CAR) with the idler photon propagating through the 

neutral density filter with attenuation of 1dB, 3dB and 5dB. In CAR measurement, 

the polarization analyzer was oriented so that the co-polarized (horizontally) signal 

and idler photons will pass through to APD1 and APD2. The error bars of the plots 

are derived from Poisson statistic error of the single photon detection. The intrinsic 

dark count of single photon detectors and its fluctuation contributed to the size of the 

error bar. 
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At different attenuations, we measured the CAR as a function of average 

pump power as shown in Fig. 5.3. The maximum CAR value for attenuation of 1dB, 

3dB and 5dB at idler channel were equal to 26, 23, and 16 respectively.  

 

Figure 5.3. The Coincidence to accidental coincidence ratio (CAR) versus pump 
power with different attenuations. (Green square = 1dB), (Blue diamond = 3dB) and 
(Red dot = 5dB). 

At higher standard loss, higher pump power was needed to achieve maximum 

CAR value. This is mainly because more photon counts were needed to compensate 

the loss and accumulate significant photon counts above the intrinsic dark count of 

single photon detectors. The predicted visibility of correlated photon pair for 

different standard losses can be calculated from CAR measurement and is given as,  

                                                        ௖ࣰ௢௥ ൌ
஼஼ି஺஼

஼஼ା஺஼
ൌ ஼஺ோ೘ೌೣିଵ

஼஺ோ೘ೌೣାଵ
                              (5.27) 

௖ࣰ௢௥ is the predicted visibility of two photon interference when the correlated photon 

pair was used to generate polarization-entangled state. The ௖ࣰ௢௥ of correlated photon-
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pair for attenuation of 1dB, 3dB and 5dB in idler channel were calculated to be 

92.6%, 91.4% and 88.2% as depicted in Fig. 5.4. The observed decreasing maximum 

CAR value as a function of attenuation is shown in Fig. 5.4. It proves that standard 

loss in transmission channel degrades the quality of correlated photon pair. 

 
Figure 5.4. The measured CAR estimates visibility (Blue box) and maximum CAR 
(Solid circle) as a function of standard loss. 

We then prepared the polarization entangled state |Ψ௘௡௧〉 ൌ
ଵ

√ଶ
ሾ|ܪ௜ܪ௦〉 ൅

| ௜ܸ ௦ܸ〉ሿ  and measured the two-photon interference (TPI) as a function of relative 

analyzer polarization angle of signal-idler photons. A typical two-photon interference 

plot as a function of relative analyzer polarization angle is shown in Fig. 5.5. For 

polarization-entangled photon pair, TPI’s visibility is defined by  

                                            ௘ࣰ௡௧ ൌ
஼஼೘ೌೣି஼஼೘೔೙

஼஼೘ೌೣା஼஼೘೔೙
                                             (5.28) 

where ܥܥ௠௔௫ is maximum coincidence and ܥܥ௠௜௡ is the minimum coincidence in the 

TPI plot.  
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Figure 5.5. Two-photon interference fringes as a function of analyzer relative angle 
for the standard loss of 5 dB with HNLF at 300 K. (Blue dot) and (ii) θ1 = -45° (Red 
dot). The solid lines are the theoretical curve fitting. 
 
 

The measured visibility for polarization entangled photon pair ௘ࣰ௡௧  for 

attenuation of 1dB, 3dB and 5dB were 93.3%, 91.8% and 89.1%, respectively. We 

found that ௘ࣰ௡௧ and  ௖ࣰ௢௥ are in good agreement for each attenuation. This implies 

that quantum correlation and interference for both polarization correlated and 

entangled photon pair are equally sensitive to the standard losses in transmission 

channel. 
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Figure 5.6. The measured two-photon interference visibility ௘ࣰ௡௧ (Red box) and 
predicted visibility ௖ࣰ௢௥	(Solid circle) versus standard losses. 

 

5.7.2 Multiple Scattering Random Media  

We used the photon-pair generated in the HNLF at room temperature for exploring 

depolarization effect on the photon-pair. First, we measured CAR value as a function 

of pump power for different scattering mean free-paths for the horizontal 

polarization-correlated photon-pair with the idler photon scattering through the 

samples.  Results of CAR measurement is shown in Fig.5.7. We obtained maximum 

CAR values of 20.3, 19.8, 18.3 and 16.9 for the mean free-path of path	൫ℓଵ,ଶ,ଷ,ସ	൯ of 

0.019 m, 0.010 m, 0.004 m, and 0.003 respectively. The maximum CAR values 

decreased as the idler photon propagated through a random medium with shorter 

scattering mean free-path and experienced more scattering events. When neutral 

density filter was used at attenuation, we obtained CAR value of about 23 for a 

standard loss of 3dB, which was higher than the CAR values obtained with multiple 

scattering random media. This could be predicted from the Eq. 5.6. The CAR values 
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with random media was lower than the CAR values obtained with standard loss 

(where the L = 0). We plotted the predicted visibility  ௖ࣰ௢௥ as a function of mean free 

path obtained from the CAR measurement in Fig. 5.8. In addition to the detection 

system, the Brownian motion of the random media caused the fluctuation in single 

photon counts and contributed to the size of error bars. 

 

Figure 5.7. The Coincidence to accidental coincidence ratio (CAR) of correlated 
photon pair versus pump power for different scattering mean free path. (Black circle, 
ℓ = 0.010 m)(Green diamond, ℓ = 0.010 m), (Blue dot ℓ =0.004 m) and (Red box ℓ 
=0.004 m).  
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Figure 5.8. The predicted visibility for correlated photon pair,  ௖ࣰ௢௥ as a function of 
scattering mean free path. 

 

Next, we measured two-photon interference of the polarization-entangled 

photon pair with the idler photon scattered by a random medium. The two-photon 

interference plot for the random media of ℓ = 0.019m is shown in Fig.5.10. We fitted 

the two-photon interference fringe with the Eq. 5.20 (shown as the dotted line). Two 

maxima conditions ሼሺθଶ െ θଵሻ ൌ 0°, 180°ሽ  fall within in the error bars of our 

experimental data. We then obtained the ௘ࣰ௡௧, or the average visibility as discussed 

in Eq. 5.26. We repeated the measurement of two-photon interference for all samples 

and plot the visibility as a function of scattering mean free-path in Fig.5.10. Similar 

to the ௖ࣰ௢௥, it was observed that ௘ࣰ௡௧ was increasing with the scattering mean free 

path of the random media.  
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Figure 5.9. The ௘ࣰ௡௧ (Red dot) versus scattering mean free path. 

 
Figure 5.10. Two-photon interference fringes (Blue square) as a function of relative 

polarization angle, the dotted red line are curve fitting. Coincidence counts was 

accumulated for 68 seconds. 
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5.7.3 Influence of Raman photons in Fiber Source 

In order to identify and separate the Raman photon from the noise photon induced by 

depolarization of the idler photon, we reduced the Raman photon by cooling the 

HNLF to 77 K. To identify and separate the Raman photon, we analyzed CAR 

measurement for the standard loss of 3dB and the scattering medium (ℓ = 0.019 m, ߶ 

= 0.5 μm) with the HNLF source at 300 K and 77 K. In this experiment, similar 

average pump power of 0.5 mW was used. 

For the standard loss of 3dB and average pump power of 0.5 mW, the 

CAR3dB values were 14.1 (300 K) and 56.5 (77 K). For the scattering medium (ℓ = 

0.019 m, ߶  = 0.5μm), the CARRM values were 12.8 (300 K) and 48.4 (77 K) 

respectively. Comparing the CAR values obtained for the 3dB standard loss and 

scattering medium (ℓ = 0.019 m, ߶ 1 = 0.5 μm) with HNLF at 300 K, the CAR value 

reduced to, 

ሺܴܣܥଷௗ஻ሻଷ଴଴	௄ െ ሺܴܣܥோெሻଷ଴଴	௄ ൌ 14.1 െ 12.8 

                           ൌ 1.3.           

 The reduction in CAR value in scattering medium is mainly due to 

depolarization noise photon in scattering as amount of Raman photons remain the 

same for both cases.. Similarly, when the HNLF in 77 K the CAR reduced to 

ሺܴܣܥଷௗ஻ሻ଻଻	௄ െ ሺܴܣܥோெሻ଻଻	௄ ൌ 56.5 െ 48.4 
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                                                                      ൌ 8.1 

One can see that the reduction in CAR is about 8.0 with the HNLF at 77 K.  

From the results that were obtained at both temperatures, we investigated the 

contribution of Raman photon and depolarization photon on CAR values in more 

detail. We denote the contribution of Raman noise photon by substitute “1” and 

denote the contribution of the depolarization photon as		 ଵࣲ . The reduction of the 

CAR value for the scattering medium compared to standard loss can be written as,  

                                              ሺܴܣܥோெሻ ൌ
ሺ஼஺ோయ೏ಳሻ

ଵାࣲభ
.                                    (5.29) 

From the CAR value measurement with HNLF at 300 K, the Eq. 5.29 is equal 

to  

                 ሺܴܣܥோெሻଷ଴଴	௄ ൌ
ሺ஼஺ோయ೏ಳሻయబబ	಼

ଵାࣲభ
ൌ ଵସ.ଵ

ଵାࣲభ
ൌ 12.8,                         (5.30) 

where we can solve for 		 ଵࣲ ൌ 0.1. The contribution of depolarization noise photon 

was about 10 times smaller than the Raman photon. When the HNLF was cooled to 

77 K, the Raman photons were reduced by a factor of 4 [98, 131]. On the other hand, 

the contribution of depolarization noise photon was expected to remain the same. 

Substituting the CAR results with HNLF at 77 K into Eq. 5.29 one obtains 

                   ሺܴܣܥோெሻ଻଻	௄ ൌ
ሺ஼஺ோయ೏ಳሻళళ	಼

ଵାࣲభ
ᇲ ൌ ହ଺.ହ

ଵାࣲభ
ᇲ ൌ 48.4,                          (5.31) 

where, ଵࣲ
ᇱ ൌ 0.04, which indicates contribution of depolarization photon is reduced 

as well. The presence of Raman noise photon in photon-pair source before entering a 
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random medium enhanced the depolarization effect. Comparing ଵࣲ
ᇱ and 		 ଵࣲ, we can 

calculate the reduction factor of the depolarization photon at 77 K as , 

ଵࣲ

ଵࣲ
ᇱ ൌ 2.4 

Our observation proved that the purity of the photon-pair source plays an important 

role in increasing and decreasing depolarization effect by scattering process.  

5.8 Discussions 

The ௘ࣰ௡௧ and ௖ࣰ௢௥ as a function of mean free path are plotted in Fig. 5.11. 

First, we observed that TPI’s visibility ௘ࣰ௡௧ is better than the visibility ௖ࣰ௢௥ obtained 

from the CAR measurement. Also shown in Fig. 5.11 is TPI’s visibility of 91.8% for 

a standard loss of 3dB, which is higher than both ௖ࣰ௢௥  and ௘ࣰ௡௧ . This is in 

conjunction to the observation in standard loss as shown in Fig. 5.7, where the CAR 

estimate visibility agrees with the measured TPI’s visibility. The fitting curves of the 

visibility ௖ࣰ௢௥  and ௘ࣰ௡௧  are obtained from Eq. 5.17 and Eq. 5.26, respectively. 

Quantum correlation of polarization entangled photon pair was better preserved than 

polarization-correlated photon-pair as one of the photon-pair experiences random 

scattering process in the random medium. From the fitting of Eq. 5.17 and Eq. 5.26, 

we obtained the average of transmission amplitude  ࣮ = 0.77 i.e. ࣮ଶ = 0.6. With the 

approximation 80% of photons were coupled into the fiber, we have 0.8×0.6 = 0.48, 

which is close to 3dB loss that we claimed for all samples. 
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Figure 5.11. The ௘ࣰ௡௧  (Blue square) and ௖ࣰ௢௥ (Red dot) versus mean free path, the 

solid lines are fitting curves for ௘ࣰ௡௧  and 	 ௖ࣰ௢௥ . The dashed line is the visibility 

measured with 3dB standard loss. 

 

With the similar average pump power of 0.5 mW and the HNLF at 300 K, we 

have had the CARRM values of 11.5 (ℓଶ=0.010 m), 11.1 (ℓଷ=0.004 m) and 9.5 (ℓସ 

=0.003 m). Using the standard loss of 3dB with the CAR3dB=14.1 and CARRM for 

ℓଶ,ଷ,ସ, we calculated 	 ଶࣲ,ଷ,ସ	for each sample by using equation 

                                ሺܴܣܥோெሻ ൌ
ሺ஼஺ோయ೏ಳሻ

ଵା ೔ࣲ
, ሺ݅ ൌ 1,2,3,4ሻ.                          (5.32) 

We obtained 	 ଶࣲ ൌ 	0.22, ଷࣲ ൌ 	0.28 and 	 ସࣲ ൌ 	0.48 . 	 ௜ࣲ , the ratio of depolarized 

photon to Raman photon was higher with the sample of shorter mean free path (more 

scattering events). 
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Since all measurements have the contributions from Raman noise photon and 

depolarization noise photon, we denote the experimentally measured noise amplitude 

as		ࣦᇱ,  

                                            ࣦ → ࣦᇱ,                                                           (5.33) 

                                       ࣦᇱଶ ൌ ࣬ଶ ൅ ࣦୢ
ଶ.                                                   (5.34) 

Where ࣬  and ࣦୢ  are the strength of noise amplitudes for Raman photon and 

depolarization photon in the random medium.  Since the ratio of depolarization 

photon to Raman noise photon was obtained in Eq. 5.30. We can express the noise 

amplitude for depolarization photon as 

                                                     	ࣦୢభ ൌ ඥ ଵࣲ࣬,                                                    (5.35) 

and use the Eq.  5.35 to substitute ࣬ in Eq. 5.34 to obtain 

                                               ࣦᇱଶ ൌ ቀ1 ൅ ଵ

ࣲభ
ቁ ࣦୢభ

ଶ .                                                 (5.36) 

From the fitting curves in Fig. 5.12, where ࣦ ൌ 	ࣛᇲ

ℓ
 , we obtained the 

experimentally measured depolarization coefficient	ࣛᇱ ൌ ࣦଵ,ଶ,ଷ,ସ
ᇱ ℓଵ,ଶ,ଷ,ସ ൌ 0.0003	m. 

We then extract the depolarization constant associated with the noise operator		cො, 

which is originated from the multiple scattering for the sample with scatter diameter 

(ℓ = 0.019m, ߶ = 0.5μm) given as  

                                                         	ࣛଵ ൌ 	ࣦୢభℓଵ                                                 (5.37) 
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Substituting 	ࣦୢభin Eq. 5.36 and		ℓଵ ൌ
	ࣛᇲ

ࣦᇲ
, we get 

                                                   	ࣛଵ ൌ
ࣦᇲ

ටଵା
భ
ࣲభ

∙ 	ࣛ
ᇲ

ࣦᇲ
                                          

                                                         ൌ ࣛᇲ

ටଵା
భ
ࣲభ

ൌ 9.0 ൈ 10ିହm                               (5.38) 

Now with the 	ࣛଵ ൌ 9.0 ൈ 10ିହm, we can also calculate 	ࣦୢభ ൌ 0.0047 from Eq. 

5.37.  

Similarly, we can obtain 	ࣛଶ ൌ 12.0 ൈ 10ିହm , ࣛଷ ൌ 14.0 ൈ 10ିହm , and 

ࣛସ ൌ 17.0 ൈ 10ିହm, for the scattering mean free-path ℓଶ,ଷ,ସ corresponding to the 

depolarization amplitude of 	ࣦୢమ ൌ 0.012 , 	ࣦୢయ ൌ 0.035 , and 	ࣦୢర ൌ 0.056 , 

respectively. Our results showed that the idler photon is less depolarized in the 

medium with larger scattering mean free-path (fewer scattering events). 

Table 5.2 Summary of the results for the scattering random media.  

 Sample 1 
(0.5 μm) 

Sample 2 
(0.8 μm) 

Sample 3 
(1.6 μm) 

Sample 4 
(5.0 μm) 

               ℓ		(m) 0.019 0.010 0.004 0.003 

 ௘ࣰ௡௧ (%) 88.4 87.8 81.7 77.9 

௖ࣰ௢௥ (%) 82.2 80.0 75.2 73.1 

Maximum CAR 20.3 19.8 18.3 16.9 

௜ࣲ 0.1 0.22 0.28 0.48 

                 ࣛ୧ (m) 9x10
-5

 1.2x10
-4

 1.4x10
-4

 1.7x10
-4

 

	ࣦୢ೔ 0.0047 0.012 0.035 0.056 
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Chapter  6 

Summary and Outlook 
 

In this dissertation, we have explored quantum correlations of single photons, 

weak coherent states, and polarization-correlated/-entangled photons in macroscopic 

environments. This included: macroscopic mirrors, spatially separated observers, 

noisy photons sources and propagation medium with loss or disturbances. 

 In chapter 2, we proposed a measurement scheme for observing quantum 

correlations and entanglement. The experiment measured spatial properties of two 

macroscopic mirrors using single photons spatial compass states. Two spatial 

versions of compass states were generated by single photons in a simple 

interferometer. The single photons were in single Gaussian mode. Wave-particle 

duality characteristic of the Wigner function was used to characterize spatial compass 

state in phase space. The chessboard pattern of spatial compass states determined the 

sensitivity for measuring the displacement and tilt of the mirrors. The proposed 

imaging system could measure displacement and tilt correlations of two mirrors 

under real experimental condition. A single photon detector and a squarer were 

needed to measure the interference of two spatial compass states, and then obtain the 

propensity	 ௕࣪. One of the compass states operates as detected state and another one 
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as filtering state. Variances in position and momentum of the proposed imaging 

system were calculated. The EPR entanglement regions were visualized in propensity 

plot. In addition, we formulated the discrete-like properties of the 

propensity 	 ௕࣪൫	݀௫, ݀௣൯ , where the correlation spots were identified by a pair of 

discrete numberሺ݉, ݊ሻ. The discrete correlation spots in ௕࣪ሺ݉, ݊ሻ	can be used to 

explore environmental perturbed quantum jumps of the EPR correlations in phase 

space.  

Our results showed that variances in position and momentum are much 

smaller than standard quantum limit when using a Gaussian TEM00 beam [90]. The 

potential application of the proposed imaging system could be quantum-enhanced 

metrology for macroscopic objects, such as the test mass for graviton detection. In 

addition, the proposed imaging system can be used to observe macroscopic 

entanglement. We can cool one mirror and use it as a reference for the other mirror 

that is coupled to ambient environment. Then propensity ௕࣪൫	݀௫, ݀௣൯ measurement 

can be used to determine whether the mirrors correlation satisfies the EPR criterion 

for entanglement. Since the propensity ௕࣪	can be discretized and formulated in finite-

dimensional Hilbert space, correlation spots are potentially useful for demonstrating 

discrete phase-space quantum computing and information processing. 

In chapter 3, we investigated intrinsic quantum correlations of weak coherent 

states. We demonstrated a proof of principle experiment in utilizing intrinsic 

quantum correlations of weak coherent states for quantum communication. In this 

work, we employed a weak local oscillator field to extract intrinsic correlations of 
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weak coherent states between two parties using a balanced homodyne measurement. 

We implemented four types of bipartite correlation functions between two distant 

observers separated by 10 km optical fiber. The bipartite correlations between two 

observers were obtained by the product of interference signals measured by both 

observers. Our results revealed that information of the interference signal will be 

protected by the large quantum phase fluctuation. It is associated with low mean 

photon number fluctuation of weak coherent state. For practical quantum key 

distribution, we demonstrated bits correlations measurement of each bipartite 

correlation at detectors A and B. The lock-in amplifier was used to measure 

quadrature phase of weak coherent state. Then, positive (negative) value of measured 

quadrature signal was encoded as keys/bits ‘1’ (‘0’), respectively. Every bit 

measurement can be the raw quantum key shared by both observers. 

The realization of intrinsic quantum correlation of weak coherent state can be 

a stepping stone toward linear-optics quantum computing with weak coherent states. 

The proposed scheme can be used as a supplement to the existence decoy-state 

Bennett-Brassard 1984 protocol and differential phase-shift quantum key distribution 

(DPS-QKD) protocol. The interference signal of weak coherent states and local 

oscillator was concealed by quantum phase fluctuations. This could add another 

physical layer of security to these protocols. However, intrinsic correlation of weak 

coherent states does not exhibit nonlocality as compared to entangled-photon source. 

Therefore, classical amplification of optical signal using current available technology 

such as optical amplifier can easily extends the range of quantum key transmission 
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[149].  Another important feature of our scheme is that only linear optics was 

required to establish the correlations between two observers. Hence, it is possible to 

implement the proposed scheme with integrated photonics circuit [150].  

In chapter 4, we explored quantum correlation and entanglement of photon-

pairs that exhibit quantum nonlocality. Generation of correlated and polarization-

entangled photon pair at telecom wavelength using highly nonlinear fiber (HNLF) 

was demonstrated. We used counter propagating scheme to generate correlated and 

entangled photon pair in this work. We obtained optimum coincidence to accidental-

coincidence ratio (CAR) with 7x107 photons per pump pulse. We observed CAR of 

29 3 at 300 K and as high as 130 5 at 77 K. For characterization of polarization-

entangled photon source, we prepared the polarization-entangled two photon state

 
sisi VVHH ||

2

1
|  and measured two-photon interference (TPI) visibility. 

When the HNLF was at 300 K (77 K), TPI visibility >92% (>98%) was observed. 

Photon-pair production rate about factor 3(2) higher than using a 300 m dispersion-

shifted fiber was observed. Excellent visibility and high photon pair production rate 

are two crucial factors for the application of quantum key distribution. Later on, we 

proved the non-local behavior of polarization-entangled photon pair by violating 

Clauser-Horne-Shimony-Holt (CHSH) Bell’s inequality. At 300 K, Bell’s inequality 

was violated by close to 5 standard deviations; while violation of Bell’s inequality by 

more than 12 standard deviations was observed when the HNLF was cooled to 77 K.  
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Direct generation of entangled photon-pairs in HNLF has pointed to the great 

potential of global scale entanglement based quantum communication. This is due to 

its inherent compatibility with existing fiber-optics technologies for long-distance 

transmission, storage, and processing. Another interesting experiment to perform 

with HNLF would be the generation of broadband polarization-correlated and 

entangled photon-pair at telecom wavelengths. Our preliminary study showed that 

the 10 m long HNLF has the potential as an ultra broadband entangled photons 

source. The experimental setup to generate broadband entangled photons is similar to 

the setup in Fig. 4.8. However, multiple-pairs of cascaded DWDM filters are needed 

to fully utilize all the photon-pair at different wavelengths. So far, studies on telecom 

wavelengths entangled photon-pair sources are limited to narrowband operation. 

Broadband source of telecom wavelengths entangled photon-pairs for wavelength 

division multiplexing entanglement distribution will be a breakthrough in realizing 

multi-user quantum network. Short HNLF can cover up to 200 nm in wavelength, 

which is better than current available entangled photon source [133]. One of the 

limitation to achieve better performance is Raman scattering in HNLF [130]. We 

propose to investigate the Raman gain of HNLF for small detuning on both Stokes 

and anti-Stokes side of pump wavelength by using photon counting technique. The 

experiment can be carried out by using the CPS scheme that is shown in Fig. 4.8. The 

cascaded DWDM filters of the signal and idler photon being replaced with cascaded 

tunable optical filters. Both co-polarized and cross-polarized Raman gain at small 

detuning will be measured. Raman gain at different temperatures (300 K and 77 K) 

can be measured to study the temperature dependence of Raman scattering at 
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different detuning wavelength. The results from this work will provide information 

on the intrinsic photon noise of the HNLF based entangled photon source. 

In chapter 5, we investigated the quantum correlation and interference of fiber 

based photon-pair (Signal and Idler) at telecom wavelengths. One photon of a photon 

pair experienced standard loss or multiple scattering in a random medium. We 

proposed a semi-empirical model, where the depolarization amplitude 	ࣦ  was 

included in the annihilation operator for idler photon that scattered through random 

medium. We derived the joint probability of two-photon detection ଵ࣪ଶ ൌ

〈: aොଵ
றaොଶ′

ற aොଶ′aොଵ: 〉  for both polarization-correlated/-entangled two-photon state. We 

discussed on how the visibilities, ௘ࣰ௡௧  and ௖ࣰ௢௥  were associated with transmission 

amplitude 	࣮ and depolarization amplitude		ࣦ of scattered photon in random medium. 

In our experiment, we measured joint probability of two-photon by the means of 

coincidence detection. We found that ௘ࣰ௡௧ and  ௖ࣰ௢௥ were decreasing as a function of 

attenuation; this proved that standard loss in transmission channel was degrading 

quantum correlation of the photon pair. As loss is almost inevitable, the development 

of quantum repeater in telecommunication wavelength is likely to hold the key for 

long distance quantum communication [151]. Furthermore, we observed that ௘ࣰ௡௧ 

and ௖ࣰ௢௥ were decreasing with shorter scattering mean free path of the random media. 

Our results also proved that quantum correlation of polarization entangled photon 

pair is better preserved than polarization-correlated photon-pair. Therefore, entangled 

photon pair will be a better candidate for free space long distance quantum key 

distribution compared to correlated photon-pairs. Our results also showed that 
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Raman photon noise will contribute to the depolarization effect in scattering process, 

thus increase the accidental coincidence count. Hence, the purity of two-photon state 

is crucial for entanglement based QKD such as Eckert 91 protocol.  
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Appendix A 

Fourier Transform  

 
 

For two spatially separated TEM00 beam with a distance about 2ܽ between them, the 

wave function can be written as 

                                      ߰ሺݔሻ ∝ exp ቂെ
ሺ௫ା௔ሻమ

ଶఙೌ
మ ቃ ൅ exp ቂെ

ሺ௫ି௔ሻమ

ଶఙೌ
మ ቃ.                          (A.1) 

Given that spatial wave function ߰ሺݔሻ	propagates through a lens with focal length f , 

the ߰ሺݔሻ in spatial domain can be transformed in to spatial frequency domain by, 

                                               ߰ሺ݌ሻ ∝ ׬  (A.2)                                    .	ݔሻ݀ݔሻ߰ሺݔ݌ሺ݅݌ݔ݁

Substituting the ߰ሺݔሻ in Eq. (A.1) into Eq. (A.2), the wave function can be expressed 

in spatial frequency domain as, 

                     ߰ሺ݌ሻ ∝ ׬ ሻݔ݌ሺ݅݌ݔ݁ ቄexp ቂെ
ሺ௫ା௔ሻమ

ଶఙೌ
మ ቃ ൅ exp ቂെ

ሺ௫ି௔ሻమ

ଶఙೌ
మ ቃቅ  (A.3)                .ݔ݀

By using  ݁݌ݔሺ݅ݔ݌ሻ ൌ cosሺݔ݌ሻ ൅ ݅ sinሺݔ݌ሻ and given that the integration involving 

the term ݅ sinሺݔ݌ሻ amounts to zero, we can rewrite the above equation as, 

      ߰ሺ݌ሻ ∝ ׬ cosሺݔ݌ሻ ቄexp ቂെ
ሺ௫ା௔ሻమ

ଶఙೌ
మ ቃቅ ݔ݀ ൅ ׬ cosሺݔ݌ሻ ቄexp ቂെ

ሺ௫ି௔ሻమ

ଶఙೌ
మ ቃቅ  (A.4)       .ݔ݀
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By using the variables transformation, ݔᇱ ൌ ݔ ൅ ܽ and ݔᇱ ൌ ݔ െ ܽ for the first and 

second term in Eq. (A.4) respectively, we rewrite the equation as 

߰ሺ݌ሻ ∝ නcosሺݔ݌ᇱ െ ሻܽ݌ ቊexp ቈെ
ᇱଶݔ

௔ଶߪ2
቉ቋ  ᇱݔ݀

                                          ൅׬cos൫ݔ݌ᇱ െ ሺെܽ݌ሻ൯ ൜exp ൤െ ௫ᇲ
మ

ଶఙೌ
మ൨ൠ ݔ݀

ᇱ.                    (A.5) 

By applying the following trigonometry identities 

                      cosሺݔ݌ᇱ െ ሻܽ݌ ൌ cosሺݔ݌ᇱሻ cosሺܽ݌ሻ ൅ sinሺݔ݌ᇱሻ sinሺܽ݌ሻ,                (A.6) 

             cos൫ݔ݌ᇱ െ ሺെܽ݌ሻ൯ ൌ cosሺݔ݌ᇱሻ cosሺെܽ݌ሻ ൅ sinሺݔ݌ᇱሻ sinሺെܽ݌ሻ,            (A.7) 

                                                  cosሺെܽ݌ሻ ൌ cosሺܽ݌ሻ,                                           (A.8) 

and again considering integrations involving the term sinሺݔ݌ᇱሻ yield to zero, the 

equation Eq. (A.4) can be expressed as, 

߰ሺ݌ሻ ∝ cosሺܽ݌ሻන cosሺݔ݌ᇱሻ ቊexp ቈെ
ᇱଶݔ

௔ଶߪ2
቉ቋ  ᇱݔ݀

                                          ൅cosሺܽ݌ሻ ׬ cosሺݔ݌ᇱሻ ൜exp ൤െ
௫ᇲ

మ

ଶఙೌ
మ൨ൠ ݔ݀

ᇱ.                      (A.9) 

Finally by integrating over the	ݔᇱ, we obtain 

                                                          ߰ሺ݌ሻ ∝ exp ቂെ ௣మఙೌమ

ଶ
ቃ cosሺܽ݌ሻ.                     (A.10)    

By substituting  
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݌ ൌ
ݔ݇
݂
, ௣ܦ ൌ

݇ܽ
݂
, ௕ߪ

ଶ ൌ
݂ଶ

2݇ଶߪ௔ଶ
,where		݇ ൌ

ߨ2
ߣ

 

into Eq. (A.10),  We can express ߰ሺ݌ሻ in spatial coordinate ݔ as, 

                                          ߰ሺݔሻ ∝ exp ൤െ ௫మ

ଶఙ್
మ൨ cos൫ܦݔ௣൯.                                    (A.11) 
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Appendix B 

Relation of Compass States and Beat signal 
 

To enhance the probability of measuring spatial compass states at center of the 

chessboard of propensity, we use an imaging system (L1,L2) for collecting the whole 

spatial compass states ⊙ଵ,ଶ into a single-photon detector. Then, we can selectively 

projecting the position and momentum of the center spot into the detector. The 

detector measures the convolution of these spatial compass states as a function of the 

relative displacement ݀௫ , and momentum or tilt ݌ߜ ൌ
௞ௗ೛
௙

; where ݀௣  is the 

displacement associated with the tilt of the lenses M1 and M2 as depicted in Fig. B.1. 

The interference signal is directly proportional to the convolution (overlap) of 

Wigner distribution for spatial compass states ⊙ଵ,ଶ at the input lens L1,L2 of imaging 

system. The amplitude of  ஻ܸ can be determined by the spatial overlap of the ⊙ଵ,ଶ at 

the detector plane ܼ ൌ ऊ஽, which is given as, 

                  						 ஻ܸ ∝ ᇱݔ݀׬ ⊙ଶ ሺݔᇱ, ऊ஽ሻ ⊙ଵ
∗ ሺݔᇱ, ऊ஽ሻ.                                (B.1) 

Where ݔᇱ  is the transverse position in detector plane. Translating the M2 by a 

distance		݀௫, the compass state has shifted accordingly to give, 

                  ஻ܸ ∝ ׬ ᇱݔ݀ ⊙ଶ
∗ ሺݔᇱ െ ݀௫, ऊ஽ሻ ⊙ଵ ሺݔᇱ, ऊ஽ሻ.                            (B.2) 
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Fig. B.1 The proposed experimental setup for measuring the propensity of two spatial 
compass states and spatial properties of two mirrors. (SMF=single mode fiber, 
BS=Beam splitter, L=lense, M= mirror, SPD=single photon detector) 

 As shown in Fig. B.1, each spatial compass state passes through the lenses 

(L1,L2) and picks up the quadrature-phase term 	exp ቂെ݅ ௞௫
మ

ଶ௙
ቃ . From paraxial 

approximation of the compass states ⊙ଵ,ଶ	at the input plane ܼ ൌ 0 after the lenses 

can be described as, 

                 ⊙ଵሺ௅భሻ ሺݔ, ܼ ൌ 0ሻ ൌ exp ቂെ݅ ௞௫
మ

ଶ௙
ቃ ⊙ଵ ሺݔ, ܼ ൌ 0ሻ,                      (B.3) 

        ⊙ଶሺ௅మሻ ሺݔ െ ݀௫, ܼ ൌ 0ሻ ൌ exp ቂെ݅ ௞௫
మ

ଶ௙
ቃ ⊙ଶ ሺݔ െ ݀௫, ܼ ൌ 0ሻ.            (B.4) 

When the lens L1 is scanned by a distance ݀௣, the spatially varying phase acquired by 

the ⊙ଵሺ௅భሻ shifted and expression for ⊙ଵሺ௅భሻ in (B.3) is given as, 
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                      ⊙ଵሺ௅భሻ ሺݔ, ܼ ൌ 0ሻ ൌ exp ቂെ݅ ௞

ଶ௙
൫ݔ െ ݀௣൯

ଶ
ቃ ⊙ଵ ሺݔ, ܼ ൌ 0ሻ.             (B.5) 

After the lenses, each compass state ⊙ଵ,ଶ  propagates a distance of ݂ to reach the 

single photon detector. The compass state ⊙ଵ,ଶ  at detector plane ܼ ൌ ऊ஽ , can be 

obtained using Fresnel’s diffraction integral as, 

                                 ⊙ଵ ሺݔᇱ, ऊ஽ሻ ൌ ට
௞

௜ଶగ௙
׬ ݌ݔ݁	ݔ݀ ቂ݅

௞

ଶ௙
ሺݔ െ  ᇱሻଶቃݔ

                                                      ൈ ݌ݔ݁	 ቂെ݅ ௞

ଶ௙
ሺݔ െ ݀௣ሻଶቃ ⊙ଵ ሺݔ, ܼ ൌ 0ሻ,          (B.6) 

                       ⊙ଶ ሺݔᇱ െ ݀௫, ऊ஽ሻ ൌ ට
௞

௜ଶగ௙
׬ ݌ݔ݁	ݔ݀ ቂ݅

௞

ଶ௙
ሺݔ െ  ᇱሻଶቃݔ

                                                    ൈ ݌ݔ݁	 ቂെ݅ ௞

ଶ௙
ଶቃݔ ⊙ଶ ሺݔ െ ݀௫, ܼ ൌ 0ሻ,               (B.7) 

As detector plane is coincides with the focal planes of the lenses (L1,L2), the 

quadratic phases involving ݔଶ cancel in these equations above and simplified as, 

                                 ⊙ଵ ሺݔᇱ, ऊ஽ሻ ൌ ට
௞

௜ଶగ௙
׬ ݌ݔ݁	ݔ݀ ቂ݅

௞

ଶ௙
ሺݔᇱଶ െ ݀௣

ଶሻቃ 

                                                      ൈ ݌ݔ݁	 ቂെ݅ ௞
௙
ᇱݔሺݔ െ ݀௣ሻቃ ⊙ଵ ሺݔ, ܼ ൌ 0ሻ,          (B.8) 

                         ⊙ଶ ሺݔᇱ െ ݀௫, ऊ஽ሻ ൌ ට
௞

௜ଶగ௙
׬ ݌ݔ݁	ݔ݀ ቂ݅

௞

ଶ௙
 ᇱଶቃݔ

                                                      ൈ ݌ݔ݁	 ቂെ݅ ௞
௙
ᇱቃݔݔ ⊙ଶ ሺݔ െ ݀௫, ܼ ൌ 0ሻ,             (B.9) 
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By substituting the equations above into Eq. (B.2), quadratic phases involving ݔᇱଶ 

vanish and we obtain the interference amplitude as  

஻ܸ൫݀௫, ݀௣൯ ൌ
݇
݂ߨ2

݌ݔ݁ ൬െ݅
k
2݂

݀௣ଶ൰න݀ݔᇱ	න݀ݔଵ	݁݌ݔ ൤െ݅
݇
݂
ᇱ൨ݔݔ ⊙ଶ ሺݔଵ െ ݀௫, ܼ ൌ 0ሻ 

                             ൈ	׬ ݌ݔ2݁ݔ݀ ቂെ݅
௞

௙
ᇱݔ2ሺݔ െ ݀௣ሻቃ ⊙ଵ ሺ2ݔ, ܼ ൌ 0ሻ.                        (B.10) 

The integrating over ݔᇱ yields a delta function as  

݌ݔ݁′ݔ݀׬                                        ቂെ݅ ݇
݂
ଵݔሺ′ݔ െ ଶሻቃݔ ൌ ଵݔሺߜߨ2 െ  ଶሻ.                        (B.11)ݔ

 .ଶ are dummy variables for integration involving the compass states ⊙ଶ and ⊙ଵݔ ଵ andݔ

Then, we rewrite the Eq.(B.10) as  

஻ܸ൫݀௫, ݀௣൯ ൌ
݇
݂
݌ݔ݁ ൬െ݅

k
2݂

݀௣ଶ൰	න݀ݔଶ݁݌ݔ ቈെ݅
݇
݂
ଶ݀௣቉⊙1ݔ ሺݔଶ, ܼ ൌ 0ሻ																								 

                      	ൈ ׬ ଵݔ݀ 	⊙ଶ ሺݔଵ െ ݀௫, ܼ ൌ 0ሻߜሺݔଵ െ  ଶሻ.                                          (B.12)ݔ

Now, integrating over	ݔଵ, the Eq.(B.12) becomes, 

஻ܸ൫݀௫, ݀௣൯ ൌ
݇
݂
݌ݔ݁ ൬െ݅

k
2݂

݀௣ଶ൰න݀ݔଶ݁݌ݔ ൤െ݅
݇
݂
ଶ݀௣൨ݔ ⊙ଶ ሺݔଶ െ ݀௫, ݖ ൌ 0ሻ ⊙ଵ ሺݔଶ, ܼ ൌ 0ሻ. 

                                                                                                                                (B.13) 

By changing the variable ݔଶ by ݔ and dropping the	ܼ ൌ 0, the mean square amplitude is 

given as, 

              		ห ஻ܸ൫݀௫, ݀௣൯ห
ଶ
∝ ቚ׬ ݔ݀ ⊙ଶ ሺݔ െ ݀௫ሻ ⊙ଵ ሺݔሻ݁݌ݔ ቂെ݅

௞ௗ೛
௙
ቃቚݔ

ଶ
.             (B.14) 
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We can rewrite the above equation as, 

        							ห ஻ܸ൫݀௫, ݀௣൯ห
ଶ
∝ ݔ݀׬ ⊙ଶ

∗ ሺݔ െ ݀௫ሻ ⊙ଵ ሺݔሻ݁݌ݔ ቂെ݅
௞ௗ೛
௙
              ቃݔ

                                      ൈ ᇱݔ݀׬ ⊙ଶ ሺݔᇱ െ ݀௫ሻ ⊙ଵ
∗ ሺݔᇱሻ݁݌ݔ ቂ݅

௞ௗ೛
௙
 ᇱቃ.                (B.15)ݔ

By using the variables transformation,  

ݔ ൌ ௢ݔ ൅
ߟ
2
, 

ᇱݔ ൌ ௢ݔ െ
ߟ
2
, 

and since the Jacobian of this transformation is 1. The Eq.(B.15) can be written in 

term of these variables as, 

							ห ஻ܸ൫݀௫, ݀௣൯ห
ଶ
∝ ௢ݔ݀׬ ׬ ߟ݀ ⊙ଶ

∗ ቀݔ௢ ൅
ఎ

ଶ
െ ݀௫ቁ⊙ଶ ቀݔ௢ െ

ఎ

ଶ
െ ݀௫ቁ              

                                      ൈ⊙ଵ ቀݔ௢ ൅
ఎ

ଶ
ቁ⊙ଵ

∗ ቀݔ௢ െ
ఎ

ଶ
ቁ ݌ݔ݁ ቂെ݅

௞ௗ೛
௙
 ቃ.                 (B.16)ߟ

From the definition of the Wigner function, 

                               ࣱሺݔ, ሻ݌ ൌ ଵ

ଶగ
׬ ௜ఌ௣ି݁ߝ݀
ஶ
ିஶ ߰∗ ቀݔ ൅ ఌ

ଶ
ቁ߰ ቀݔ െ ఌ

ଶ
ቁ,               (B.17) 

where its inverse transform is given by, 

                                    ߰∗ ቀݔ ൅ ఌ

ଶ
ቁ߰ ቀݔ െ ఌ

ଶ
ቁ ൌ ׬ ௜ఌ௣ି݁݌݀

ஶ
ିஶ ࣱሺݔ,  ሻ.               (B.18)݌

Then, we can write  
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⊙ଵ ቀݔ௢ ൅
ߟ
2
ቁ⊙ଵ

∗ ቀݔ௢ െ
ߟ
2
ቁ ൌ න ௜ఎ௣ି݁݌݀

ஶ

ିஶ
ࣱሺݔ,  ,ሻ⊙భ݌

and obtain Eq. (B.16) as 

							ห ஻ܸ൫݀௫, ݀௣൯ห
ଶ
∝ ௢ݔ݀׬ ׬ ߟ݀ ⊙ଶ

∗ ቀݔ௢ ൅
ఎ

ଶ
െ ݀௫ቁ⊙ଶ ቀݔ௢ െ

ఎ

ଶ
െ ݀௫ቁ              

                                      ൈ ݌ݔ݁݌݀׬ ቂെ݅
௞ௗ೛
௙
ቃߟ ,ݔሿࣱሺ݌ߟሾെ݅݌ݔ݁  ሻ⊙భ.                 (B.19)݌

Again, by the definition of the Wigner function we can write, 

         ࣱቀݔ െ ݀௫, ݌ ൅
௞ௗ೛
௙
ቁ
⊙మ

ൌ ׬
ௗఎ

ଶగ
݌ݔ݁ ቂെ݅ ቀ݌ ൅

௞ௗ೛
௙
ቁ  ቃߟ

                                              ൈ 	⊙ଶ
∗ ቀݔ௢ ൅

ఎ

ଶ
െ ݀௫ቁ⊙ଶ ቀݔ௢ െ

ఎ

ଶ
െ ݀௫ቁ.               (B.20) 

Substituting Eq.(B.20) in Eq.(B.19), the mean square interference signal amplitude 

can be expressed as 

                 ห ஻ܸ൫݀௫, ݀௣൯ห
ଶ
∝ ࣱ݌݀ݔ݀׬ ቀݔ െ ݀௫, ݌ ൅

௞ௗ೛
௙
ቁ
⊙మ

ࣱሺݔ, ሻ⊙భ݌
.             (B.21) 

Where ࣱሺݔ, ሻ⊙భ݌
is the Wigner distribution of the compass states ⊙ଵ in the input 

plane of the L1 and ࣱቀݔ െ ݀௫, ݌ ൅
௞ௗ೛
௙
ቁ
⊙మ

 is the Wigner distribution of the compass 

states ⊙ଶ in the input plane of the L2. 
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Appendix C 

Wigner distribution of Spatial 
Compass state 

 

The spatial compass states ⊙ଵ and ⊙ଶ can be expressed in position coordinates in a 

identical form as  

                         ⊙ଵ,ଶ	∝ ߰ଵ,ଶ
௧ ሺݔሻ ൅ ߰ଵ,ଶ

௥ ሺݔሻ,                                                              (C.1) 

                                  ∝ exp ቂെ
ሺ௫ା௔ሻమ

ଶఙೌ
మ ቃ ൅ exp ቂെ

ሺ௫ି௔ሻమ

ଶఙೌ
మ ቃ ൅ exp	ሾ ௫

మ

ଶఙ್
మሿ cosሺܦݔ௣ሻ.    (C.2) 

Where the first and second terms are corresponding to ߰ଵ,ଶ
௧ ሺݔሻ; the third term is 

corresponding to		߰ଵ,ଶ
௥ ሺݔሻ. According to the definition given in Eq. 3.1, the Wigner 

function of the spatial compass states ⊙ଵ is given as  

                         ࣱሺݔ, ሻଵ݌ ∝ ׬ ௜ఌ௣ି݁ߝ݀
ஶ
ିஶ ⊙ଵ

∗ ቀݔ ൅ ఌ

ଶ
ቁ⊙ଵ ቀݔ െ

ఌ

ଶ
ቁ.                      (C.3) 

By substituting ⊙ଵ in Eq. (C.1) to Eq. (C.3), we obtain the Wigner function as, 

                                ࣱሺݔ, ሻଵ݌ ∝ ׬ ௜ఌ௣ି݁ߝ݀
ஶ
ିஶ 	߰ଵ

∗௧ ቀݔ ൅ ఌ

ଶ
ቁ߰ଵ

௧ ቀݔ െ ఌ

ଶ
ቁ                  (C.4) 

                                                  ൅׬ ௜ఌ௣ି݁ߝ݀
ஶ
ିஶ ߰ଵ

∗௥ ቀݔ ൅ ఌ

ଶ
ቁ߰ଵ

௥ ቀݔ െ ఌ

ଶ
ቁ                  (C.5) 
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                                                  ൅׬ ௜ఌ௣ି݁ߝ݀
ஶ
ିஶ ߰ଵ

∗௧ ቀݔ ൅ ఌ

ଶ
ቁ߰ଵ

௥ ቀݔ െ ఌ

ଶ
ቁ                  (C.6) 

                                                  ൅׬ ௜ఌ௣ି݁ߝ݀
ஶ
ିஶ ߰ଵ

∗௥ ቀݔ ൅ ఌ

ଶ
ቁ߰ଵ

௧ ቀݔ െ ఌ

ଶ
ቁ.                 (C.7) 

Chessboard pattern  

The chessboard pattern of the Wigner function is contributed from the 

components	߰ଵ
∗௧ ቀݔ ൅ ఌ

ଶ
ቁ߰ଵ

௧ ቀݔ െ ఌ

ଶ
ቁ and ߰ଵ

∗௥ ቀݔ ൅ ఌ

ଶ
ቁ߰ଵ

௥ ቀݔ െ ఌ

ଶ
ቁ in Eq. (C.4) and Eq. 

(C.5). The Wigner function of the first component is given by 

                               ࣱሺݔ, ሻ௧௧݌ ∝ ׬ 	߰ଵ
௧∗ ቀݔ ൅ ఌ

ଶ
ቁ߰ଵ

௧ ቀݔ െ ఌ

ଶ
ቁ ௜ఌ௣ି݁ߝ݀

ஶ
ିஶ ,                  (C.8) 

From Eq. (C.2), we can rewrite the above equation as 

ࣱሺݔ, ሻ௧௧݌ ∝ ׬ ቆexp ቈെ
ቀ௫ା௔ାഄ

మ
ቁ
మ

ଶఙೌ
మ ቉ ൅ exp ቈെ

ቀ௫ି௔ାഄ
మ
ቁ
మ

ଶఙೌ
మ ቉ቇ

ஶ
ିஶ   

                                                  ቆexp ቈെ
ቀ௫ା௔ାഄ

మ
ቁ
మ

ଶఙೌ
మ ቉ ൅ exp ቈെ

ቀ௫ି௔ାഄ
మ
ቁ
మ

ଶఙೌ
మ ቉ቇ  ௜ఌ௣,  (C.9)ି݁ߝ݀

                   ∝ ׬ ቆexp ቈെ
ଶሺ௫ା௔ሻమାഄ

మ

మ

ଶఙೌ
మ ቉ ൅ exp ቈെ

ଶ௫మାଶቀ௔ାഄ
మ
ቁ
మ

ଶఙೌ
మ ቉

ஶ
ିஶ   

                                     ൅exp ቈെ
ଶ௫మାଶቀ௔ିഄ

మ
ቁ
మ

ଶఙೌ
మ ቉ ൅ exp ቈെ

ଶሺ௫ି௔ሻమାഄ
మ

మ

ଶఙೌ
మ ቉ቇ  ௜ఌ௣.    (C.10)ି݁ߝ݀

Integrating the first term in Eq. (C.10), we obtain 
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׬        exp ቈെ
ଶሺ௫ା௔ሻమାഄ

మ

మ

ଶఙೌ
మ ቉

ஶ
ିஶ ௜ఌ௣ି݁ߝ݀ ൌ exp ቂെ ଶሺ௫ା௔ሻమ

ଶఙೌ
మ ቃ ׬ exp ቈെ

ഄమ

మ

ଶఙೌ
మ ቉

ஶ
ିஶ    .௜ఌ௣ି݁ߝ݀

By using  ݁݌ݔሺ݅݌ߝሻ ൌ cosሺ݌ߝሻ ൅ ݅ sinሺ݌ߝሻ and the integration involving the term 

݅ sinሺ݌ߝሻ  amounts to zero, we can rewrite the above equation as,                                    

׬ exp ቈെ
ଶሺ௫ା௔ሻమାഄ

మ

మ

ଶఙೌ
మ ቉

ஶ
ିஶ ௜ఌ௣ି݁ߝ݀ ൌ exp ቂെ ଶሺ௫ା௔ሻమ

ଶఙೌ
మ ቃ ׬ exp ቈെ

ഄమ

మ

ଶఙೌ
మ ቉

ஶ
ିஶ

ሺcosሺ݌ߝሻሻ݀ߝ,   

                                                  ∝ exp ቂെ ଶሺ௫ା௔ሻమ

ଶఙೌ
మ ቃ expሾെ݌ଶߪ௔ଶሿ.                           (C.11) 

By similar fashion, we can obtain the Wigner function for the fourth term in Eq. 

(C.10) as 

׬                 exp ቈെ
ଶሺ௫ି௔ሻమାഄ

మ

మ

ଶఙೌ
మ ቉

ஶ
ିஶ ௜ఌ௣ି݁ߝ݀ ∝ exp ቂെ ଶሺ௫ି௔ሻమ

ଶఙೌ
మ ቃ expሾെ݌ଶߪ௔ଶሿ.           (C.12) 

On the other hand, the Wigner function for the second term in Eq. (C.10) is given as 

׬ exp ቈെ
ଶ௫మାଶቀ௔ାഄ

మ
ቁ
మ

ଶఙೌ
మ ቉

ஶ
ିஶ ௜ఌ௣ି݁ߝ݀ ൌ exp ቂെ ௫మ

ఙೌ
మቃ ׬ exp ቈെ

ቀ௔ିഄ
మ
ቁ
మ

ఙೌ
మ ቉

ஶ
ିஶ   ௜ఌ௣ି݁ߝ݀

                                                    ൌ exp ቂെ ௫మ

ఙೌ
మቃ ׬ exp ቈെ

ቀ௔ିഄ
మ
ቁ
మ

ఙೌ
మ ቉

ஶ
ିஶ

ሺcosሺ݌ߝሻሻ݀ߝ.  (C.13) 

By using the variables transformation,  

ᇱߝ

2
ൌ ܽ െ

ߝ
2
, 

The Eq.(C.13) can be written in term of ߝᇱ as, 
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                           ∝ exp ቂെ ௫మ

ఙೌ
మቃ ׬ exp ൥െ

ቀఌ
ᇲ
ଶൗ ቁ

మ

ఙೌ
మ ൩

ஶ
ିஶ

ሺcosሺߝ݌ᇱ െ  (C.14)              .ߝሻሻ݀ܽ݌2

By applying the following trigonometry identities 

               cosሺߝ݌ᇱ െ ሻܽ݌2 ൌ cosሺߝ݌ᇱሻ cosሺെܽ݌ሻ ൅ sinሺߝ݌ᇱሻ sinሺെܽ݌ሻ,              (C.15) 

                                                  cosሺെܽ݌ሻ ൌ cosሺܽ݌ሻ,                                          (C.16) 

and considering integration involving the term sinሺߝ݌ᇱሻ yield to zero, the Eq. (C.14) 

can be expressed as, 

                           ∝ exp ቂെ ௫మ

ఙೌ
మቃ cosሺ2ܽ݌ሻ ׬ exp ൥െ

ቀఌ
ᇲ
ଶൗ ቁ

మ

ఙೌ
మ ൩

ஶ
ିஶ

ሺcos   ,ߝᇱሻ݀ߝ݌

                          ∝ exp ቂെ ௫మ

ఙೌ
మቃ expሾെ݌

ଶߪ௔ଶሿ cosሺ2ܽ݌ሻ,                                           (C.17) 

Similarly, we can obtain the Wigner function for the 3rd term in Eq. (C.10) as 

                                         ∝ exp ቂെ ௫మ

ఙೌ
మቃ expሾെ݌

ଶߪ௔ଶሿ cosሺ2ܽ݌ሻ.                            (C.18) 

Finally the summation of Wigner functions for all four terms in Eq. (C.10) yields, 

                     ࣱሺݔ, ሻ௧௧݌ 	∝ exp ቂെ
ሺ௫ା௔ሻమ

ఙೌ
మ െ ௔ଶቃߪଶ݌ ൅ exp ቂെ

ሺ௫ି௔ሻమ

ఙೌ
మ െ   ௔ଶቃߪଶ݌

                                          ൅2exp ቂെ ௫మ

ఙೌ
మ െ ௔ଶቃߪଶ݌ cosሺ2ܽ݌ሻ.                                 (C.19) 

The Wigner function of the ߰ଵ
∗௥ ቀݔ ൅ ఌ

ଶ
ቁ߰ଵ

௥ ቀݔ െ ఌ

ଶ
ቁ is given by 
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                               ࣱሺݔ, ሻ௥௥݌ ∝ ׬ 	߰ଵ
௥∗ ቀݔ ൅ ఌ

ଶ
ቁ߰ଵ

௥ ቀݔ െ ఌ

ଶ
ቁ .௜ఌ௣ି݁ߝ݀

ஶ
ିஶ                (C.20) 

From Eq. (C.2), we can rewrite the Eq. (C.20) as 

                     ࣱሺݔ, ሻ௥௥݌ ∝ ׬ ቈexp	ሾ
ቀ௫ାഄ

మ
ቁ
మ

ଶఙ್
మ ሿ cosሺቀݔ ൅ ఌ

ଶ
ቁܦ௣ሻ቉

ஶ
ିஶ   

                                                ቈexp	ሾ
ቀ௫ିഄ

మ
ቁ
మ

ଶఙ್
మ ሿ cosሺቀݔ െ ఌ

ଶ
ቁܦ௣ሻ቉  ,௜ఌ௣ି݁ߝ݀

                                       ∝ ׬ ቈexp	ሾ
ቀ௫ାഄ

మ
ቁ
మ

ଶఙ್
మ ሿexp	ሾ

ቀ௫ିഄ
మ
ቁ
మ

ଶఙ್
మ ሿ቉

ஶ
ିஶ   

                                            ቂcosሺቀݔ ൅ ఌ

ଶ
ቁܦ௣ሻ cosሺቀݔ െ

ఌ

ଶ
ቁܦ௣ሻቃ  ௜ఌ௣.            (C.21)ି݁ߝ݀

By simplifying the exponential terms and applying the trigonometric identity  

cosሺቀݔ ൅ ఌ

ଶ
ቁܦ௣ሻ cosሺቀݔ െ

ఌ

ଶ
ቁܦ௣ሻ ൌ

ଵ

ଶ
ቄcos ൬ቀݔ ൅

ఌ

ଶ
ቁܦ௣ െ ቀݔ െ ఌ

ଶ
ቁܦ௣൰  

                                                            ൅cos ൬ቀݔ ൅
ఌ

ଶ
ቁܦ௣ ൅ ቀݔ െ ఌ

ଶ
ቁܦ௣൰ቅ,            (C.22) 

we can rewrite Eq. (C.20) as  

∝ exp	ሾെ
ଶݔ

௕ߪ
ଶሿ cosሺܦݔ௣ሻන exp	ሾെ

ଶߝ

௕ߪ4
ଶሿ

ஶ

ିஶ
 ௜ఌ௣ି݁ߝ݀	

                             ൅exp ൤െ ௫మ

ఙ್
మ൨ ׬ cos൫ܦߝ௣൯ exp ൤െ

ఌమ

ସఙ್
మ൨

ஶ
ିஶ     ௜ఌ௣.                    (C.23)ି݁ߝ݀	
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By using  ݁ି௜ఌ௣ ൌ cosሺ݌ߝሻ ൅ ݅ sinሺ݌ߝሻ  and the integration involving the term 

݅ sinሺ݌ߝሻ amounts to zero, we can rewrite the above equation as,     

                             ∝ exp	ሾെ ௫మ

ఙ್
మሿ cosሺܦݔ௣ሻ ׬ exp	ሾെ ఌమ

ସఙ್
మሿ

ஶ
ିஶ cosሺ݌ߝሻ  ߝ݀	

                             ൅exp ൤െ ௫మ

ఙ್
మ൨ ׬ exp ൤െ ఌమ

ସఙ್
మ൨ cos൫ܦߝ௣൯

ஶ
ିஶ 	cosሺ݌ߝሻ     (C.24)               .ߝ݀

Again, we expand the equation above using trigonometric identity to obtain 

∝ exp	ሾെ
ଶݔ

௕ߪ
ଶሿ cosሺܦݔ௣ሻන exp	ሾെ

ଶߝ

௕ߪ4
ଶሿ

ஶ

ିஶ
cosሺ݌ߝሻ  ߝ݀	

                             ൅ଵ

ଶ
exp	ሾെ ௫మ

ఙ್
మሿ ׬ cosሺߝ൫݌ ൅ ௣൯ሻܦ exp	ሾെ

ఌమ

ସఙ್
మሿ

ஶ
ିஶ           ߝ݀	

                              ൅ଵ

ଶ
exp ൤െ ௫మ

ఙ್
మ൨ ׬ cos ቀߝ൫݌ െ ௣൯ቁܦ exp ൤െ

ఌమ

ସఙ್
మ൨

ஶ
ିஶ     (C.25)              .ߝ݀	

Integrating over ߝ	for all three terms in Eq. (C.25), we can obtain 

             ࣱሺݔ, ሻ௥௥݌ ∝ exp ൤െ
ሺ௫ሻమ

ఙ್
మ െ ൫݌ ൅ ௣൯ܦ

ଶ
௕ߪ
ଶ൨ ൅ exp ൤െ

ሺ௫ሻమ

ఙ್
మ െ ൫݌ െ ௣൯ܦ

ଶ
௕ߪ
ଶ൨  

                              ൅2exp ൤െ
ሺ௫ሻమ

ఙ್
మ െ ௕ߪଶ݌

ଶ൨ cosሺ2ܦݔ௣ሻ.                                         (C.26)  

The chessboard pattern in the Wigner function arises from the summation of the 

interference terms exp ቂെ ௫మ

ఙೌ
మ െ ௔ଶቃߪଶ݌ cosሺ2ܽ݌ሻ  and exp ൤െ

ሺ௫ሻమ

ఙ್
మ െ ௕ߪଶ݌

ଶ൨ cosሺ2ܦݔ௣ሻ 

in Eq. (C.19) and Eq. (C.26). 
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Appendix D 

Propensity ௕ ௫ ௣   

 

The propensity is the mean-square interference signal that measured after the squarer, 

X2. Direct measurement of the propensity measures the orthogonality of the compass 

states ⊙ଵand ⊙ଶ. By using the imaging system, we can project the center of the 

chessboard for the maximum beat of ௕࣪൫݀௫, ݀௣൯ at around ݀௫~0 and ݀௣~0. The 

spatial coordinates of the chessboard pattern in the propensity exactly correspond to 

the coordinate system of the imaging system. 

The interference signal as a function of ݀௫ and ݀௣ is given by  

						 ஻ܸ൫݀௫, ݀௣൯ ∝
௞

௙
exp ቀ݅

୩ௗ೛మ

ଶ௙
ቁ ׬ ᇱݔ݀

ஶ
ିஶ exp ቀെ݅

୩௫ᇲௗ೛
௙
ቁ⊙ଶ

∗ ሺݔᇱ െ ݀௫ሻ ⊙ଵ ሺݔᇱሻ.   (D.1) 

Where  

           ⊙ଵ ሺݔᇱሻ ∝ exp ൤െ
൫௫ᇲା௔൯

మ

ଶఙೌ
మ ൨ ൅ exp ൤െ

൫௫ᇲି௔൯
మ

ଶఙೌ
మ ൨ ൅ exp	ሾെ ௫ᇲ

మ

ଶఙ್
మሿ cosሺݔᇱܦ௣ሻ     

                         ∝	⊙ଵ۷൅⊙ଵ۷۷൅⊙ଵ۷۷۷ ,                                                                 (D.2) 

              ⊙ଶ
∗ ሺݔᇱ െ ݀௫ሻ ∝ exp ൤െ

൫௫ᇲିௗೣା௔൯
మ

ଶఙೌ
మ ൨ ൅ exp ൤െ

൫௫ᇲିௗೣି௔൯
మ

ଶఙೌ
మ ൨  
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                                       ൅exp	ሾെ
൫௫ᇲିௗೣ൯

మ

ଶఙ್
మ ሿ cosሺሺݔᇱ െ ݀௫ሻܦ௣ሻ                                 

                                    ∝	⊙ଶ۷
∗൅⊙ଶ۷۷

∗൅⊙ଶ۷۷۷
∗,                                                      (D.3) 

As the interference signal ஻ܸ൫݀௫, ݀௣൯  is directly proportional to the spatial 

overlapping of the compass states ⊙ଵ and ⊙ଶ
∗ . The product terms in Eq. (D.1) that 

will contribute to the interference signal ஻ܸ൫݀௫, ݀௣൯ are ⊙ଶ۷
∗⊙ଵ۷, ⊙ଶ۷۷

∗⊙ଵ۷۷, and 

⊙ଶ۷۷۷
∗⊙ଵ۷۷۷ .  

The contribution from  ⊙ଶ۷
∗⊙ଵ۷ can be expressed as  

           ஻ܸ۷൫݀௫, ݀௣൯ ∝ ׬ ᇱݔ݀
ஶ
ିஶ exp ቀെ݅

୩௫ᇲௗ೛
௙
ቁ exp ൤െ

൫௫ᇲିௗೣା௔൯
మ

ଶఙೌ
మ ൨ exp ൤െ

൫௫ᇲା௔൯
మ

ଶఙೌ
మ ൨ . 

(D.4) 

By using the variable transformation,  

ݑ ൌ ᇱݔ ൅ ܽ, 

we rewrite Eq. (D.4) as  

        ஻ܸ۷൫݀௫, ݀௣൯ ∝ exp ቀ݅
௔୩ௗ೛
௙
ቁ exp ቂെ ௗೣ

మ

ଶఙೌ
మቃ ׬ ݑ݀

ஶ
ିஶ exp ቂെ ଵ

ఙೌ
మ ሺݑ

ଶ ൅  ሻቃ           (D.5)ܤݑ

                ∝ exp ቀ݅
௔୩ௗ೛
௙
ቁ exp ቂെ ௗೣ

మ

ଶఙೌ
మቃ exp ቂെ

஻మఙೌమ

ସ
ቃ ׬ ݑ݀

ஶ
ିஶ exp ൤െ ଵ

ఙೌ
మ ቀݑ ൅

஻

ଶ
ቁ
ଶ
൨   

               ∝ ඥߪ௔ଶߨexp ቀ݅
௔୩ௗ೛
௙
ቁ exp ቂെ ௗೣ

మ

ଶఙೌ
మቃ exp ቂെ

஻మఙೌమ

ସ
ቃ .                                        

(D.6) 
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where ܤ ൌ െ݀௫ ൅ ݅
୩ௗ೛ఙೌమ

௙
. 

Similarly, the contribution from  ⊙ଶ۷۷
∗⊙ଵ۷۷ is given as  

       ஻ܸ۷۷൫݀௫, ݀௣൯ ∝ ׬ ᇱݔ݀
ஶ
ିஶ exp ቀെ݅

୩௫ᇲௗ೛
௙
ቁ exp ൤െ

൫௫ᇲିௗೣି௔൯
మ

ଶఙೌ
మ ൨ exp ൤െ

൫௫ᇲି௔൯
మ

ଶఙೌ
మ ൨ .    (D.7) 

By using the variables transformation,  

ݑ ൌ ᇱݔ െ ܽ, 

we rewrite Eq. (D.7) as  

        ஻ܸ۷۷൫݀௫, ݀௣൯ ∝ exp ቀെ݅
௔୩ௗ೛
௙
ቁ exp ቂെ ௗೣ

మ

ଶఙೌ
మቃ ׬ ݑ݀

ஶ
ିஶ exp ቂെ ଵ

ఙೌ
మ ሺݑ

ଶ ൅         ሻቃܤݑ

(D.8) 

                ∝ exp ቀെ݅
௔୩ௗ೛
௙
ቁ exp ቂെ ௗೣ

మ

ଶఙೌ
మቃ exp ቂെ

஻మఙೌమ

ସ
ቃ ׬ ݑ݀

ஶ
ିஶ exp ൤െ ଵ

ఙೌ
మ ቀݑ ൅

஻

ଶ
ቁ
ଶ
൨   

               ∝ ඥߪ௔ଶߨexp ቀെ݅
௔୩ௗ೛
௙
ቁ exp ቂെ ௗೣ

మ

ଶఙೌ
మቃ exp ቂെ

஻మఙೌమ

ସ
ቃ .                                     

(D.9) 

where ൌ െ݀௫ ൅ ݅
୩ௗ೛ఙೌమ

௙
 . 

Furthermore the contribution from  ⊙ଶ۷۷۷
∗⊙ଵ۷۷۷ is given as 

஻ܸ۷۷۷൫݀௫, ݀௣൯ ∝ ׬ exp ቀെ݅
୩௫ᇲௗ೛
௙
ቁ exp	ሾെ

൫௫ᇲିௗೣ൯
మ

ଶఙ್
మ ሿexp	ሾെ ௫ᇲ

మ

ଶఙ್
మሿ

ஶ
ିஶ      

                             cos ቀሺݔᇱ െ ݀௫ሻܦ௣ቁ cosሺݔᇱܦ௣ሻ  ᇱ,                                           (D.10)ݔ݀
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                     ∝ exp	ሾെ ௗೣ
మ

ଶఙ್
మሿ ׬ exp	ሾെ

ቀ௫ᇲ
మ
ା௏௫ᇲቁ

ఙ್
మ ሿ

ஶ
ିஶ     

                             ൛cos൫2ݔᇱܦ௣ െ ݀௫ܦ௣൯ ൅ cosሺെ݀௫ܦ௣ሻൟ݀ݔᇱ.                              (D.11) 

Where ܸ ൌ െ݀௫ ൅ ݅
୩ௗ೛ఙ್

మ

௙
. Then, we rearrange Eq. (D.11) as  

    ஻ܸ۷۷۷൫݀௫, ݀௣൯ ∝ exp	ሾെ ௗೣ
మ

ଶఙ್
మሿexp	ሾ

௏మ

ସఙ್
మሿ ׬ exp	ሾെ

ቀ௫ᇲାೇ
మ
ቁ
మ

ఙ್
మ ሿ

ஶ
ିஶ cos൫2ݔᇱܦ௣ െ ݀௫ܦ௣൯݀ݔᇱ    

                          ൅exp ൤െ ௗೣ
మ

ଶఙ್
మ൨ exp ൤

௏మ

ସఙ್
మ൨ cos൫െ݀௫ܦ௣൯ ׬ exp ൥െ

ቀ௫ᇲାೇ
మ
ቁ
మ

ఙ್
మ ൩

ஶ
ିஶ  ᇱ.   (D.12)ݔ݀

By using the variables transformation,  

ᇱݔ ൌ ݔ ൅
ܸ
2
	, 

We obtain the first term in Eq. (D.12) as  

       ∝ exp ൤െ ௗೣ
మ

ଶఙ್
మ൨ exp ൤

௏మ

ସఙ್
మ൨ ׬ exp ൤െ ௫మ

ఙ್
మ൨

ஶ
ିஶ cos൫2ܦݔ௣ െ ሺܸ ൅ ݀௫ሻܦ௣൯݀ݔ.          (D.13) 

By applying the following trigonometry identities 

cos൫2ܦݔ௣ െ ሺܸ ൅ ݀௫ሻܦ௣൯ ൌ cos൫2ܦݔ௣൯ cos൫െሺܸ ൅ ݀௫ሻܦ௣൯ ൅ sin൫2ܦݔ௣൯ sin൫െሺܸ ൅ ݀௫ሻܦ௣൯, (D.14) 

                                      cos൫െሺܸ ൅ ݀௫ሻܦ௣൯ ൌ cos ቀሺܸ ൅ ݀௫ሻܦ௣ቁ .                           (D.15) 

We can rewrite Eq. (D.13) as  

     ∝ exp	ሾെ ௗೣ
మ

ଶఙ್
మሿexp	ሾ

௏మ

ସఙ್
మሿ cos ቀሺܸ ൅ ݀௫ሻܦ௣ቁ ׬ exp	ሾെ ௫మ

ఙ್
మሿ

ஶ
ିஶ cos൫2ܦݔ௣൯݀ݔ.      (D.16) 
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By integrating over x and using ܸ ൅ ݀௫ ൌ ݅
୩ௗ೛ఙ್

మ

௙
, we obtain Eq. (D.16) as 

                               ∝ exp ൤െ ௗೣ
మ

ଶఙ್
మ൨ exp ൤

௏మ

ସఙ್
మ൨ expൣെܦ௣

ଶߪ௕
ଶ൧ cos ൬݅

୩ௗ೛ఙ್
మ

௙
      ௣൰.        (D.17)ܦ

∝ exp ൤െ
ௗೣ

మ

ଶఙ್
మ൨ exp ൦

ቆെ݀ݔ൅݅
kܾ݀ߪ݌

2

݂ ቇ

2

ସఙ್
మ ൪ expൣെܦ௣

ଶߪ௕
ଶ൧ ൬exp ൤

୩ௗ೛ఙ್
మ

௙
௣൨ܦ ൅ exp ൤െ

୩ௗ೛ఙ್
మ

௙
 ௣൨൰.(D.18)ܦ

For the second term in Eq. (D.12), integrating over ݔᇱ we obtain 

                           ∝ ඥߪ௕
ଶߨ exp ൤െ ௗೣ

మ

ଶఙ್
మ൨ exp ൦

ቆିௗೣା௜
ౡ೏೛഑್

మ

೑
ቇ
మ

ସఙ್
మ ൪ cos൫݀௫ܦ௣൯.                (D.19) 

By summation of e Eq. (D.18) and (D.19),	 ஻ܸ۷۷۷൫݀௫, ݀௣൯ is obtained as	

            ∝ exp ൤െ
ௗೣ

మ

ଶఙ್
మ൨ exp ൤

௏మ

ସఙ್
మ൨ expൣെܦ௣

ଶߪ௕
ଶ൧ ൬exp ൤

୩ௗ೛ఙ್
మ

௙
௣൨ܦ ൅ exp ൤െ

୩ௗ೛ఙ್
మ

௙
      ௣൨൰ܦ

																									൅ටܾߪ
expߨ2 ൤െ ݔ݀

2

ܾߪ2
2൨ exp ൤

௏2

ܾߪ4
2൨ cos൫݀݌ܦݔ൯.                                           (D.20) 

However, the first term in above equation vanishes to zero leaving  

                 					 ஻ܸ۷۷۷൫݀௫, ݀௣൯ ∝ ඥߪ௕
ଶߨexp	ሾെ ௗೣ

మ

ଶఙ್
మሿexp	ሾ

௏మ

ସఙ್
మሿ cos൫݀௫ܦ௣൯.                  (D.21) 

Summation of Eq. (D.6), Eq. (D.9) and Eq. (D.21) leads to the interference 

signal, 	 ஻ܸ൫݀௫, ݀௣൯ . Then, we can obtain propensity which is the mean-square 

interference signal interference signal as 

        ห ஻ܸ൫݀௫, ݀௣൯ห
ଶ
∝ ห ஻ܸ۷൫݀௫, ݀௣൯ ൅ ஻ܸ۷۷൫݀௫, ݀௣൯ ൅ ஻ܸ۷۷۷൫݀௫, ݀௣൯ห

ଶ
,                   (D.22) 
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                               ∝ ቚቄexp ቀ݅
௔୩ௗ೛
௙
ቁ ൅ exp ቀെ݅

௔୩ௗ೛
௙
ቁቅ exp ቂെ ௗೣ

మ

ଶఙೌ
మቃ exp ቂെ

஻మఙೌమ

ସ
ቃ  

                                              ൅exp	ሾെ ௗೣ
మ

ଶఙ್
మሿexp	ሾ

௏మ

ସఙ್
మሿ cosሺ݀௫ܦ௣ሻฬ

ଶ

.                      (D.23) 

Substituting ܤ ൌ െ݀௫ ൅ ݅
୩ௗ೛ఙೌమ

௙
 , ܸ ൌ ݅

୩ௗ೛ఙ್
మ

௙
െ ݀௫ ௣ߜ , ൌ

୩ௗ೛
௙

 and applying the  

trigonometry identity exp൫݅ܽߜ௣൯ ൅ exp൫݅ܽߜ௣൯ ൌ cos൫ܽߜ௣൯, we obtain 

  ห ஻ܸ൫݀௫, ݀௣൯ห
ଶ
∝ ฬexp ൤ ଵ

ସఙ್
మ ൫݀௫ଶ െ ௕ߪ௣ଶߜ

ସ െ 2݅݀௫ߜ௣ߪ௕
ଶ൯൨ cos൫݀௫ܦ௣൯ 

                             ൅exp ቂ ଵ

ସఙೌ
మ ൫݀௫

ଶ െ ௔ସߪ௣ଶߜ െ 2݅݀௫ߜ௣ߪ௔ଶ൯ቃ cos൫ܽߜ௣൯ቚ
ଶ
 

                                           ~หcos൫݀௫ܦ௣൯ ൅ cos൫ܽߜ௣൯ห
ଶ
.                                      (D.24) 
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Appendix E 

Variances of Position and Momentum 

 

The variances of position ሺ∆ߕሻଶ and momentum ሺ∆ܲሻଶ of the EPR correlations can 

be obtained later through the evaluation of  ௕࣪ሺ	ܺ, ܲሻ, which is given by 

                                               ௕࣪ሺ	ܺ, ܲሻ ∝ | ஻ܸሺ	ܺ, ܲሻ|ଶ,                                          (E.1) 

                                                                 ~หcos൫ܦߕ௣൯ ൅ cos൫ߜߏ௣൯ห
ଶ
.                    (E.2) 

The variance for position is expressed as 

                                              ሺ∆ߕሻଶ ൌ 〈ଶߕ〉 െ  ଶ,                                                (E.3)〈ߕ〉

where 〈ߕଶ〉	 is expectation value for ߕଶ  and 〈ܺ〉	 is expectation value for ܺ . 

Expectation value for ߕଶ is given as, 

〈ଶߕ〉                                         ൌ
஽೛
ଶగ
׬ ܺଶ

ഏ
ವ೛
షഏ
ವ೛

| ஻ܸሺ	ܺሻ|ଶ݀ܺ,                                     

                                                ൌ
஽೛
ଶగ
׬ ܺଶ

ഏ
ವ೛
షഏ
ವ೛

หcos൫ܦߕ௣൯ห
ଶ
݀ܺ,                                   (E.4) 
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                                              ൌ
஽೛
ଶగ
ቊଵ
ଶ
׬ ܺଶ

ഏ
ವ೛
షഏ
ವ೛

݀ܺ ൅ ଵ

ଶ
׬ ܺଶ

ഏ
ವ೛
షഏ
ವ೛

cos൫2ܦߕ௣൯ ݀ܺቋ,         (E.5) 

                                           ൌ
஽೛
ଶగ
ቊ గయ

ଷ஽೛
య ൅

ଵ

ଶ
׬ ܺଶ

ഏ
ವ೛
షഏ
ವ೛

cos൫2ܦߕ௣൯ ݀ܺቋ.                        (E.6) 

Solving the second term using integration by part, leaving 

ଵ

ଶ
׬ ܺଶ

ഏ
ವ೛
షഏ
ವ೛

cos൫2ܦߕ௣൯ ݀ܺ ൌ ଵ

ଶ
൤
௑మ ୱ୧୬ ଶఄ஽೛

ଶ஽೛
൨
షഏ
ವ೛

ഏ
ವ೛ െ ଵ

ଶ
׬

ୱ୧୬൫ଶఄ஽೛൯ଶ௑

ଶ஽೛
݀ܺ,

ഏ
ವ೛
షഏ
ವ೛

  

                                       ൌ 0 െ ଵ

ଶ
׬

ୱ୧୬൫ଶఄ஽೛൯ଶ௑

ଶ஽೛
݀ܺ.

ഏ
ವ೛
షഏ
ವ೛

                                               (E.7) 

Again, solving by integration by parts to obtain 

െ ଵ

ଶ஽೛
׬ sin൫2ܦߕ௣൯ܺ ݀ܺ

ഏ
ವ೛
షഏ
ವ೛

ൌ െ ଵ

ଶ஽೛
ቐ൤

ି௑ ୡ୭ୱ൫ଶఄ஽೛൯

ଶ஽೛
൨
షഏ
ವ೛

ഏ
ವ೛ ൅ ׬ െ

ഏ
ವ೛
షഏ
ವ೛

ୡ୭ୱ൫ଶఄ஽೛൯

ଶ஽೛
݀ܺቑ,   

                                         ൌ െ ଵ

ଶ஽೛
ቐ൤

ି௑ ୡ୭ୱ൫ଶఄ஽೛൯

ଶ஽೛
൨
షഏ
ವ೛

ഏ
ವ೛ ൅ ଵ

ଶ஽೛
൤
ୱ୧୬ ଶఄ஽೛
ଶ஽೛

൨
షഏ
ವ೛

ഏ
ವ೛ቑ,   

                                                    ൌ ଵ

ଶ஽೛
൜ గ

஽೛
మൠ.                                                           (E.8) 

Finally, we obtain 

〈ଶߕ〉                                ൌ 1
ߨ2
ቆ ߨ

݌ܦ2
2 	൅

3ߨ

݌ܦ3
2ቇ                                                (E.9) 

Similar, expectation value for ܺ is given as, 
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                     〈ܺ〉 ൌ
஽೛
ଶగ
׬ ܺ
ವ೛
ഏ

షವ೛
ഏ

| ஻ܸሺ	ܺሻ|ଶ݀ܺ ൌ
஽೛
ଶగ
׬ ܺ
షഏ
ವ೛
షഏ
ವ೛

หcos൫ܦߕ௣൯ห
ଶ
݀ܺ                (E.10) 

ൌ
஽೛
ଶగ
ቊଵ
ଶ
׬ ܺ

ഏ
ವ೛
షഏ
ವ೛

݀ܺ ൅ ଵ

ଶ
׬ ܺ

ഏ
ವ೛
షഏ
ವ೛

cos൫2ܦߕ௣൯ ݀ܺቋ,  

                                  ൌ
஽೛
ଶగ
ቊ0 ൅ ଵ

ଶ
׬ ܺ

ഏ
ವ೛
షഏ
ವ೛

cos൫2ܦߕ௣൯ ݀ܺቋ,                                     (E.11) 

Solving using integration by parts, we obtain 

ଵ

ଶ

஽೛
ଶగ
׬ ܺ

ഏ
ವ೛
షഏ
ವ೛

cos൫2ܦߕ௣൯ ݀ܺ ൌ ଵ

ଶ

஽೛
ଶగ
ቐ൤

ି௑ ୱ୧୬൫ଶఄ஽೛൯

ଶ஽೛
൨
షഏ
ವ೛

ഏ
ವ೛ െ ׬

ୡ୭ୱ൫ଶఄ஽೛൯

ଶ஽೛
݀ܺ

ഏ
ವ೛
షഏ
ವ೛

ቑ,  

                                            ൌ ଵ

ଶ

஽೛
ଶగ
ቐ݋ െ

ଵ

ଶ஽೛
൤
ିୱ୧୬൫ଶఄ஽೛൯

ଶ஽೛
൨
షഏ
ವ೛

ഏ
ವ೛ቑ ൌ 0.                        (E.12) 

The variance for position as 

                                              ሺ∆ߕሻଶ ൌ 〈ଶߕ〉 െ                  ,ଶ〈ߕ〉

                                                 ൌ
ଵ

ଶ
൬

ଵ

ଶ஽೛
మ 	൅

గమ

ଷ஽೛
మ൰.                                    (E.13)  

In a similar fashion, variance for momentum can be calculated as,  

ሺ∆ܲሻଶ ൌ 〈ܲଶ〉 െ 〈ܲ〉ଶ, 

                                                     ൌ
ଵ

ଶ
ቀ

ଵ

ଶ௔మ
	൅

గమ

ଷ௔మ
ቁ.                              (E.14) 



 

187 
 

 
 

Appendix F 

Properties of Highly Non-linear fiber 
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