


plate was used to compensate for the birefringence of coherent component of the

idler photon.

Figure 5.2. Experiment setup for measuring CAR and two-photon interference of the
signal photon in a normal channel and the idler photon experiencing multiple
scattering events. FC (fiber-to-free space collimators); PBS (polarization beam
splitter); HWP and QWP (half- and quarter-wave plates); DWDM (dense wavelength
division multiplexer); APD (Avalanche photodiode).

We first prepared and measured the purity of polarization-
correlated/polarization-entangled photon-pair with attenuation in idler channel. We
investigated the effect of standard loss on the photon-pair. In addition, we
investigated the propagation of polarization-correlated/polarization-entangled photon
pair through a multiple scattering random medium. The neutral density filter in idler
channel was replaced with a random medium sample. Further details for the
preparation of the polarization-correlated/polarization-entangled have been discussed

in section 4.6.
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The scattered photons emerging from the random medium were collected by
fiber-to-free space collimators (NA=0.25), which were placed closely right after the
PBS. Considering the effect of the constant loss on the quantum correlation of the
photon pair, we made sure the attenuation (about 3 dB) of ballistic beam is almost
similar for all scattering samples. The coupling efficiency of the fiber-to-free space

collimator was included for attenuation measurement.

Both signal and idler photons were detected by fiber coupled InGaAs/InP

avalanche photodiodes operated in gated Geiger mode at room temperature.

5.7 Results

5.7.1 Standard Loss

For the polarization-correlated photon-pair, we measured the Coincidence to
accidental-coincidence ratio (CAR) with the idler photon propagating through the
neutral density filter with attenuation of 1dB, 3dB and 5dB. In CAR measurement,
the polarization analyzer was oriented so that the co-polarized (horizontally) signal
and idler photons will pass through to APD1 and APD2. The error bars of the plots
are derived from Poisson statistic error of the single photon detection. The intrinsic
dark count of single photon detectors and its fluctuation contributed to the size of the

error bar.
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At different attenuations, we measured the CAR as a function of average
pump power as shown in Fig. 5.3. The maximum CAR value for attenuation of 1dB,

3dB and 5dB at idler channel were equal to 26, 23, and 16 respectively.

25
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Figure 5.3. The Coincidence to accidental coincidence ratio (CAR) versus pump

power with different attenuations. (Green square = 1dB), (Blue diamond = 3dB) and
(Red dot = 5dB).

At higher standard loss, higher pump power was needed to achieve maximum
CAR value. This is mainly because more photon counts were needed to compensate
the loss and accumulate significant photon counts above the intrinsic dark count of
single photon detectors. The predicted visibility of correlated photon pair for

different standard losses can be calculated from CAR measurement and is given as,

Y. = CCAC _ CARmax—1
COT  CC+AC  CARpmgx+1

(5.27)

V.or 1s the predicted visibility of two photon interference when the correlated photon

pair was used to generate polarization-entangled state. The V., of correlated photon-
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pair for attenuation of 1dB, 3dB and 5dB in idler channel were calculated to be
92.6%, 91.4% and 88.2% as depicted in Fig. 5.4. The observed decreasing maximum
CAR value as a function of attenuation is shown in Fig. 5.4. It proves that standard

loss in transmission channel degrades the quality of correlated photon pair.
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Figure 5.4. The measured CAR estimates visibility (Blue box) and maximum CAR
(Solid circle) as a function of standard loss.

We then prepared the polarization entangled state |W,,.) = L[IHL-HS) +
V2

|V;V;)] and measured the two-photon interference (TPI) as a function of relative
analyzer polarization angle of signal-idler photons. A typical two-photon interference
plot as a function of relative analyzer polarization angle is shown in Fig. 5.5. For

polarization-entangled photon pair, TPI’s visibility is defined by

CCmax—CCmi
Vene = —mo—m (5.28)
CCmax+CCmin

where CC,,,, 1s maximum coincidence and CC,,;, is the minimum coincidence in the
TPI plot.
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Figure 5.5. Two-photon interference fringes as a function of analyzer relative angle
for the standard loss of 5 dB with HNLF at 300 K. (Blue dot) and (ii) 8; = -45° (Red
dot). The solid lines are the theoretical curve fitting.

The measured visibility for polarization entangled photon pair V,,, for
attenuation of 1dB, 3dB and 5dB were 93.3%, 91.8% and 89.1%, respectively. We
found that V,,; and V,,, are in good agreement for each attenuation. This implies
that quantum correlation and interference for both polarization correlated and
entangled photon pair are equally sensitive to the standard losses in transmission

channel.
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Figure 5.6. The measured two-photon interference visibility V,,,; (Red box) and
predicted visibility V,,,- (Solid circle) versus standard losses.

5.7.2 Multiple Scattering Random Media

We used the photon-pair generated in the HNLF at room temperature for exploring
depolarization effect on the photon-pair. First, we measured CAR value as a function
of pump power for different scattering mean free-paths for the horizontal
polarization-correlated photon-pair with the idler photon scattering through the
samples. Results of CAR measurement is shown in Fig.5.7. We obtained maximum
CAR values of 20.3, 19.8, 18.3 and 16.9 for the mean free-path of path (£1.2,3,4) of
0.019 m, 0.010 m, 0.004 m, and 0.003 respectively. The maximum CAR values
decreased as the idler photon propagated through a random medium with shorter
scattering mean free-path and experienced more scattering events. When neutral
density filter was used at attenuation, we obtained CAR value of about 23 for a
standard loss of 3dB, which was higher than the CAR values obtained with multiple

scattering random media. This could be predicted from the Eq. 5.6. The CAR values
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with random media was lower than the CAR values obtained with standard loss
(where the L = 0). We plotted the predicted visibility V,,, as a function of mean free
path obtained from the CAR measurement in Fig. 5.8. In addition to the detection
system, the Brownian motion of the random media caused the fluctuation in single

photon counts and contributed to the size of error bars.
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Figure 5.7. The Coincidence to accidental coincidence ratio (CAR) of correlated
photon pair versus pump power for different scattering mean free path. (Black circle,
£ =0.010 m)(Green diamond, £ = 0.010 m), (Blue dot £ =0.004 m) and (Red box ¢
=0.004 m).
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Figure 5.8. The predicted visibility for correlated photon pair, V,,, as a function of
scattering mean free path.

Next, we measured two-photon interference of the polarization-entangled
photon pair with the idler photon scattered by a random medium. The two-photon
interference plot for the random media of £ = 0.019m is shown in Fig.5.10. We fitted
the two-photon interference fringe with the Eq. 5.20 (shown as the dotted line). Two
maxima conditions {(6, — 0;) = 0°,180°} fall within in the error bars of our
experimental data. We then obtained the V,,;, or the average visibility as discussed
in Eq. 5.26. We repeated the measurement of two-photon interference for all samples
and plot the visibility as a function of scattering mean free-path in Fig.5.10. Similar
to the V,,,, it was observed that V,,; was increasing with the scattering mean free

path of the random media.
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Figure 5.9. The V,,,; (Red dot) versus scattering mean free path.
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Figure 5.10. Two-photon interference fringes (Blue square) as a function of relative

polarization angle, the dotted red line are curve fitting. Coincidence counts was

accumulated for 68 seconds.
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5.7.3 Influence of Raman photons in Fiber Source

In order to identify and separate the Raman photon from the noise photon induced by
depolarization of the idler photon, we reduced the Raman photon by cooling the
HNLF to 77 K. To identify and separate the Raman photon, we analyzed CAR
measurement for the standard loss of 3dB and the scattering medium (£ = 0.019 m, ¢
= 0.5 wm) with the HNLF source at 300 K and 77 K. In this experiment, similar

average pump power of 0.5 mW was used.

For the standard loss of 3dB and average pump power of 0.5 mW, the
CARsds values were 14.1 (300 K) and 56.5 (77 K). For the scattering medium (€ =
0.019 m, ¢ = 0.5um), the CARrM values were 12.8 (300 K) and 48.4 (77 K)
respectively. Comparing the CAR values obtained for the 3dB standard loss and
scattering medium (£ =0.019 m, ¢ 1 = 0.5 um) with HNLF at 300 K, the CAR value

reduced to,
(CAR348)300k — (CARRp)300x = 141 —12.8
= 1.3.

The reduction in CAR value in scattering medium is mainly due to
depolarization noise photon in scattering as amount of Raman photons remain the

same for both cases.. Similarly, when the HNLF in 77 K the CAR reduced to

(CAR34p)77k — (CARRy) 77k = 56.5 — 48.4
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=8.1
One can see that the reduction in CAR is about 8.0 with the HNLF at 77 K.

From the results that were obtained at both temperatures, we investigated the
contribution of Raman photon and depolarization photon on CAR values in more
detail. We denote the contribution of Raman noise photon by substitute “1” and
denote the contribution of the depolarization photon as X;. The reduction of the

CAR value for the scattering medium compared to standard loss can be written as,

CAR
(CARpy) = % (5.29)

From the CAR value measurement with HNLF at 300 K, the Eq. 5.29 is equal

to

(CAR345) 14.1
(CARgm)300k = 134‘:38(13001( EETE 12.8, (5.30)

where we can solve for X; = 0.1. The contribution of depolarization noise photon
was about 10 times smaller than the Raman photon. When the HNLF was cooled to
77 K, the Raman photons were reduced by a factor of 4 [98, 131]. On the other hand,
the contribution of depolarization noise photon was expected to remain the same.

Substituting the CAR results with HNLF at 77 K into Eq. 5.29 one obtains

(CARpyy) s x = CARsdprk _ 565 _ 494 (5.31)

1+X! 1+x]

where, X{ = 0.04, which indicates contribution of depolarization photon is reduced

as well. The presence of Raman noise photon in photon-pair source before entering a
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random medium enhanced the depolarization effect. Comparing X{ and X, we can

calculate the reduction factor of the depolarization photon at 77 K as ,

% o4
x;
Our observation proved that the purity of the photon-pair source plays an important

role in increasing and decreasing depolarization effect by scattering process.

5.8 Discussions

The V,,; and V,,, as a function of mean free path are plotted in Fig. 5.11.
First, we observed that TPI’s visibility V,,,; is better than the visibility V,,,.- obtained
from the CAR measurement. Also shown in Fig. 5.11 is TPI’s visibility of 91.8% for
a standard loss of 3dB, which is higher than both V., and V,,,. This is in
conjunction to the observation in standard loss as shown in Fig. 5.7, where the CAR
estimate visibility agrees with the measured TPI’s visibility. The fitting curves of the
visibility V., and V,,,, are obtained from Eq. 5.17 and Eq. 5.26, respectively.
Quantum correlation of polarization entangled photon pair was better preserved than
polarization-correlated photon-pair as one of the photon-pair experiences random
scattering process in the random medium. From the fitting of Eq. 5.17 and Eq. 5.26,
we obtained the average of transmission amplitude T = 0.77 i.e. T2 = 0.6. With the
approximation 80% of photons were coupled into the fiber, we have 0.8x0.6 = 0.48,

which is close to 3dB loss that we claimed for all samples.
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Figure 5.11. The V,,,; (Blue square) and V,,, (Red dot) versus mean free path, the
solid lines are fitting curves for V,,; and V,,,. The dashed line is the visibility

measured with 3dB standard loss.

With the similar average pump power of 0.5 mW and the HNLF at 300 K, we
have had the CARrMm values of 11.5 (£,=0.010 m), 11.1 (£3=0.004 m) and 9.5 (¥,
=0.003 m). Using the standard loss of 3dB with the CAR34s=14.1 and CARrmM for

334, we calculated X 34 for each sample by using equation

24B) (; = 1,2,3,4). (5.32)

__(CAR
(CARgy) = 1122

We obtained X, = 0.22, X3 = 0.28 and X, = 0.48. X, the ratio of depolarized
photon to Raman photon was higher with the sample of shorter mean free path (more

scattering events).
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Since all measurements have the contributions from Raman noise photon and
depolarization noise photon, we denote the experimentally measured noise amplitude

as L',
L L (5.33)
L'? = R? + L3, (5.34)

Where R and L are the strength of noise amplitudes for Raman photon and
depolarization photon in the random medium. Since the ratio of depolarization
photon to Raman noise photon was obtained in Eq. 5.30. We can express the noise

amplitude for depolarization photon as
Ly, =X R, (5.35)
and use the Eq. 5.35 to substitute R in Eq. 5.34 to obtain
12 _ 1 2
£2=(1 +x—1)1:d1. (5.36)

From the fitting curves in Fig. 5.12, where £ =%, we obtained the

experimentally measured depolarization coefficient A’ = L] 53 4%1 234 = 0.0003 m.
We then extract the depolarization constant associated with the noise operator €,

which is originated from the multiple scattering for the sample with scatter diameter

(£=10.019m, ¢ = 0.5um) given as

c/ql = Ldl’gl (5.37)
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vq’

Substituting L4 in Eq. 5.36 and ¢ = —» e get

L' A’
T o

=4 —=9.0x10°m

1+x—1

(5.38)

Now with the A; = 9.0 X 10™>m, we can also calculate Ly, = 0.0047 from Eq.

5.37.

Similarly, we can obtain A, = 12.0 X 107°m, A3 = 14.0 X 10~>m, and

A, =17.0 X 107>m, for the scattering mean free-path £, 5 , corresponding to the

depolarization amplitude of Ly, =0.012, Ly, =0.035, and L4, = 0.056,

respectively. Our results showed that the idler photon is less depolarized in the

medium with larger scattering mean free-path (fewer scattering events).

Table 5.2 Summary of the results for the scattering random media.

Sample 1 Sample 2 Sample 3 Sample 4

(0.5 um) (0.8 um) (1.6 pm) (5.0 pm)
£ (m) 0.019 0.010 0.004 0.003
Vene (%) 88.4 87.8 81.7 77.9
Veor (%) 82.2 80.0 75.2 73.1
Maximum CAR 20.3 19.8 18.3 16.9
Xi 0.1 0.22 0.28 0.48

3 3 3 3
As (m) 9x10 1.2x10 1.4x10 1.7x10
Ly, 0.0047 0.012 0.035 0.056
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Chapter 6

Summary and Outlook

In this dissertation, we have explored quantum correlations of single photons,
weak coherent states, and polarization-correlated/-entangled photons in macroscopic
environments. This included: macroscopic mirrors, spatially separated observers,

noisy photons sources and propagation medium with loss or disturbances.

In chapter 2, we proposed a measurement scheme for observing quantum
correlations and entanglement. The experiment measured spatial properties of two
macroscopic mirrors using single photons spatial compass states. Two spatial
versions of compass states were generated by single photons in a simple
interferometer. The single photons were in single Gaussian mode. Wave-particle
duality characteristic of the Wigner function was used to characterize spatial compass
state in phase space. The chessboard pattern of spatial compass states determined the
sensitivity for measuring the displacement and tilt of the mirrors. The proposed
imaging system could measure displacement and tilt correlations of two mirrors
under real experimental condition. A single photon detector and a squarer were
needed to measure the interference of two spatial compass states, and then obtain the

propensity P;,. One of the compass states operates as detected state and another one
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as filtering state. Variances in position and momentum of the proposed imaging
system were calculated. The EPR entanglement regions were visualized in propensity
plot. In addition, we formulated the discrete-like properties of the
propensity ?b(dx, dp), where the correlation spots were identified by a pair of

discrete number(m,n). The discrete correlation spots in P, (m,n) can be used to
explore environmental perturbed quantum jumps of the EPR correlations in phase

space.

Our results showed that variances in position and momentum are much
smaller than standard quantum limit when using a Gaussian TEMoo beam [90]. The
potential application of the proposed imaging system could be quantum-enhanced
metrology for macroscopic objects, such as the test mass for graviton detection. In
addition, the proposed imaging system can be used to observe macroscopic
entanglement. We can cool one mirror and use it as a reference for the other mirror
that is coupled to ambient environment. Then propensity ?b( dy, dp) measurement
can be used to determine whether the mirrors correlation satisfies the EPR criterion
for entanglement. Since the propensity P}, can be discretized and formulated in finite-
dimensional Hilbert space, correlation spots are potentially useful for demonstrating

discrete phase-space quantum computing and information processing.

In chapter 3, we investigated intrinsic quantum correlations of weak coherent
states. We demonstrated a proof of principle experiment in utilizing intrinsic
quantum correlations of weak coherent states for quantum communication. In this

work, we employed a weak local oscillator field to extract intrinsic correlations of
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weak coherent states between two parties using a balanced homodyne measurement.
We implemented four types of bipartite correlation functions between two distant
observers separated by 10 km optical fiber. The bipartite correlations between two
observers were obtained by the product of interference signals measured by both
observers. Our results revealed that information of the interference signal will be
protected by the large quantum phase fluctuation. It is associated with low mean
photon number fluctuation of weak coherent state. For practical quantum key
distribution, we demonstrated bits correlations measurement of each bipartite
correlation at detectors A and B. The lock-in amplifier was used to measure
quadrature phase of weak coherent state. Then, positive (negative) value of measured
quadrature signal was encoded as keys/bits ‘1’ (‘0’), respectively. Every bit

measurement can be the raw quantum key shared by both observers.

The realization of intrinsic quantum correlation of weak coherent state can be
a stepping stone toward linear-optics quantum computing with weak coherent states.
The proposed scheme can be used as a supplement to the existence decoy-state
Bennett-Brassard 1984 protocol and differential phase-shift quantum key distribution
(DPS-QKD) protocol. The interference signal of weak coherent states and local
oscillator was concealed by quantum phase fluctuations. This could add another
physical layer of security to these protocols. However, intrinsic correlation of weak
coherent states does not exhibit nonlocality as compared to entangled-photon source.
Therefore, classical amplification of optical signal using current available technology

such as optical amplifier can easily extends the range of quantum key transmission
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[149]. Another important feature of our scheme is that only linear optics was
required to establish the correlations between two observers. Hence, it is possible to

implement the proposed scheme with integrated photonics circuit [150].

In chapter 4, we explored quantum correlation and entanglement of photon-
pairs that exhibit quantum nonlocality. Generation of correlated and polarization-
entangled photon pair at telecom wavelength using highly nonlinear fiber (HNLF)
was demonstrated. We used counter propagating scheme to generate correlated and
entangled photon pair in this work. We obtained optimum coincidence to accidental-
coincidence ratio (CAR) with 7x107 photons per pump pulse. We observed CAR of
29+ 3 at 300 K and as high as 130+ 5 at 77 K. For characterization of polarization-

entangled photon source, we prepared the polarization-entangled two photon state

€

¥ = ﬁ(lHiHs>+|ViVs>) and measured two-photon interference (TPI) visibility.

When the HNLF was at 300 K (77 K), TPI visibility >92% (>98%) was observed.
Photon-pair production rate about factor 3(2) higher than using a 300 m dispersion-
shifted fiber was observed. Excellent visibility and high photon pair production rate
are two crucial factors for the application of quantum key distribution. Later on, we
proved the non-local behavior of polarization-entangled photon pair by violating
Clauser-Horne-Shimony-Holt (CHSH) Bell’s inequality. At 300 K, Bell’s inequality
was violated by close to 5 standard deviations; while violation of Bell’s inequality by

more than 12 standard deviations was observed when the HNLF was cooled to 77 K.
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Direct generation of entangled photon-pairs in HNLF has pointed to the great
potential of global scale entanglement based quantum communication. This is due to
its inherent compatibility with existing fiber-optics technologies for long-distance
transmission, storage, and processing. Another interesting experiment to perform
with HNLF would be the generation of broadband polarization-correlated and
entangled photon-pair at telecom wavelengths. Our preliminary study showed that
the 10 m long HNLF has the potential as an ultra broadband entangled photons
source. The experimental setup to generate broadband entangled photons is similar to
the setup in Fig. 4.8. However, multiple-pairs of cascaded DWDM filters are needed
to fully utilize all the photon-pair at different wavelengths. So far, studies on telecom
wavelengths entangled photon-pair sources are limited to narrowband operation.
Broadband source of telecom wavelengths entangled photon-pairs for wavelength
division multiplexing entanglement distribution will be a breakthrough in realizing
multi-user quantum network. Short HNLF can cover up to 200 nm in wavelength,
which is better than current available entangled photon source [133]. One of the
limitation to achieve better performance is Raman scattering in HNLF [130]. We
propose to investigate the Raman gain of HNLF for small detuning on both Stokes
and anti-Stokes side of pump wavelength by using photon counting technique. The
experiment can be carried out by using the CPS scheme that is shown in Fig. 4.8. The
cascaded DWDM filters of the signal and idler photon being replaced with cascaded
tunable optical filters. Both co-polarized and cross-polarized Raman gain at small
detuning will be measured. Raman gain at different temperatures (300 K and 77 K)

can be measured to study the temperature dependence of Raman scattering at
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different detuning wavelength. The results from this work will provide information

on the intrinsic photon noise of the HNLF based entangled photon source.

In chapter 5, we investigated the quantum correlation and interference of fiber
based photon-pair (Signal and Idler) at telecom wavelengths. One photon of a photon
pair experienced standard loss or multiple scattering in a random medium. We
proposed a semi-empirical model, where the depolarization amplitude £ was
included in the annihilation operator for idler photon that scattered through random
medium. We derived the joint probability of two-photon detection P, =
(: 5153,32,51:) for both polarization-correlated/-entangled two-photon state. We
discussed on how the visibilities, V,,; and V,,,- were associated with transmission
amplitude T and depolarization amplitude L of scattered photon in random medium.
In our experiment, we measured joint probability of two-photon by the means of
coincidence detection. We found that V,,,; and V,,, were decreasing as a function of
attenuation; this proved that standard loss in transmission channel was degrading
quantum correlation of the photon pair. As loss is almost inevitable, the development
of quantum repeater in telecommunication wavelength is likely to hold the key for
long distance quantum communication [151]. Furthermore, we observed that V,,;
and V,,,- were decreasing with shorter scattering mean free path of the random media.
Our results also proved that quantum correlation of polarization entangled photon
pair is better preserved than polarization-correlated photon-pair. Therefore, entangled
photon pair will be a better candidate for free space long distance quantum key

distribution compared to correlated photon-pairs. Our results also showed that
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Raman photon noise will contribute to the depolarization effect in scattering process,
thus increase the accidental coincidence count. Hence, the purity of two-photon state

is crucial for entanglement based QKD such as Eckert 91 protocol.
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Appendix A

Fourier Transform

For two spatially separated TEMoo beam with a distance about 2a between them, the

wave function can be written as

Y(x) o< exp[ (x+a) ] +e p[ & Ga)z]. (A.1)

a

Given that spatial wave function Y (x) propagates through a lens with focal length 1,

the ¥ (x) in spatial domain can be transformed in to spatial frequency domain by,

P(p) x [ exp(ipx)p(x)dx . (A2)

Substituting the 1 (x) in Eq. (A.1) into Eq. (A.2), the wave function can be expressed

in spatial frequency domain as,
2 —n)2
() o [ exp(ipx) {exp [~ 55| + exp [~ 5| dx. (A3)

By using exp(ipx) = cos(px) + i sin(px) and given that the integration involving

the term i sin(px) amounts to zero, we can rewrite the above equation as,

}dx + [ cos(px) {exp[ (= a) ]} dx. (A.4)

P(p) o [ cos(px) {
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By using the variables transformation, x’ = x 4+ a and x" = x — a for the first and

second term in Eq. (A.4) respectively, we rewrite the equation as

12
ot -]

a

+ [ cos(px’ — (—pa)) {exp [— %]} dx’'. (A.5)

By applying the following trigonometry identities

cos(px’ — pa) = cos(px') cos(pa) + sin(px") sin(pa), (A.6)
cos(px’ — (—pa)) = cos(px") cos(—pa) + sin(px') sin(—pa), (A.7)
cos(—pa) = cos(pa), (A.8)

and again considering integrations involving the term sin(px") yield to zero, the

equation Eq. (A.4) can be expressed as,

[2
X
Y (p) « cos(pa) j cos(px") {exp l— zl}dx’
204
x'?
+ cos(pa) [ cos(px") {exp [— ﬁ]} dx'. (A.9)
Finally by integrating over the x', we obtain

Y(p) x exp [— @] cos(pa). (A.10)

By substituting
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kx ka 5 f? 2m
D, =— ab=—wherek=7

2k%02’

into Eq. (A.10), We can express Y (p) in spatial coordinate x as,

Y(x) < exp [— %] cos(xDp). (A.11)
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Appendix B

Relation of Compass States and Beat signal

To enhance the probability of measuring spatial compass states at center of the
chessboard of propensity, we use an imaging system (L1,L2) for collecting the whole
spatial compass states (O, , into a single-photon detector. Then, we can selectively
projecting the position and momentum of the center spot into the detector. The
detector measures the convolution of these spatial compass states as a function of the

. . . kd .
relative displacement d, , and momentum or tilt ép = Tp; where d, is the

displacement associated with the tilt of the lenses M1 and M- as depicted in Fig. B.1.

The interference signal is directly proportional to the convolution (overlap) of
Wigner distribution for spatial compass states (9, , at the input lens L1,L2 of imaging
system. The amplitude of Vp can be determined by the spatial overlap of the O, , at

the detector plane Z = zp, which is given as,
Vg o« [dx' O, (x',2p) O (x', zp). (B.1)

Where x" is the transverse position in detector plane. Translating the M: by a

distance d,, the compass state has shifted accordingly to give,

Vg fdx’ Oy (x' = dy, 3p) O1 (x', 2p). (B.2)
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Fig. B.1 The proposed experimental setup for measuring the propensity of two spatial
compass states and spatial properties of two mirrors. (SMF=single mode fiber,
BS=Beam splitter, L=lense, M= mirror, SPD=single photon detector)

As shown in Fig. B.1, each spatial compass state passes through the lenses
2
(L1,L2) and picks up the quadrature-phase term exp [—ikzif] . From paraxial

approximation of the compass states (O , at the input plane Z = 0 after the lenses

can be described as,
. kx?
Oiay (62 =0) = exp|~i%-| O1 (12 = 0), (B.3)

Ou(ty) (= dZ = 0) = exp[~12] @, (x = d 2 = 0), (B.4)

When the lens L1 is scanned by a distance d,,, the spatially varying phase acquired by

the (4(.,) shifted and expression for (O4(.,) in (B.3) is given as,
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Oy (6,2 = 0) = exp [—i%(x ~d,)’| 01 (2 =0). (B.5)

After the lenses, each compass state (O, propagates a distance of f to reach the
single photon detector. The compass state (O, at detector plane Z = zp, can be

obtained using Fresnel’s diffraction integral as,

O, (x',zp) = /%f dx exp [i%(x — x’)z]
X exp [—i%(x ~d,)?| 01 (1,2 = 0), (B.6)
O, (x' —dy, zp) = /#f dx exp [i%(x - x’)z]

X exp [—i%xz] O, (x—d,,Z=0), (B.7)

As detector plane is coincides with the focal planes of the lenses (Li,L2), the

uadratic phases involving x? cancel in these equations above and simplified as,
q p g q p

O; (x',2p) = /%fdx exp [ig(xlz - dpz)]

X exp [—i?x(x’ — dp)] O (x,Z =0), (B.8)

O, (x"'—dy,zp) = ’%f dx exp [i%x’z]

X exp [—i;‘—cxx’] O, x—-d,Z=0), (B.9)
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By substituting the equations above into Eq. (B.2), quadratic phases involving x'?

vanish and we obtain the interference amplitude as
VB(dx,dp) 5 fexp( l—d2 fdx fdxl exp[ L—xx]Oz (xy —dy,Z=0)

k ,
X [ dx,exp [—l?xz(x — dp)] O (x5, Z =0). (B.10)
The integrating over X’ yields a delta function as
[ dx'exp [—i]éx’(x1 — x3)| = 2m8(x; — x,). (B.11)

x, and x, are dummy variables for integration involving the compass states O, and ;.

Then, we rewrite the Eq.(B.10) as

k
VB(dx,dp) —exp( l—dz)jdxzexp x2 ]Ol (x5, Z=0)

2f
X [dx; Oy (% —dy, Z = 0)8(x; — x3). (B.12)

Now, integrating over x4, the Eq.(B.12) becomes,

Vs(dy, dp) exp( l—fd2>fdx2exp[ i—x,d ] Oz (x —dy,z=0) O (x5, Z =0).

(B.13)

By changing the variable x, by x and dropping the Z = 0, the mean square amplitude is

given as,

2
Vs (ds, dp)|2 o |fdx O, (x —dy) O1 (x)exp [—ik}ﬂx” . (B.14)
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We can rewrite the above equation as,
2 .  kd
[Vs(dy, dp)|” o [ dx O3 (x — dy) Oy (x)exp [—LT’”x]
! ! * ! . kdp !
X [dx' O, (x' —dy) OF (x)exp [LTx ] (B.15)

By using the variables transformation,

and since the Jacobian of this transformation is 1. The Eq.(B.15) can be written in

term of these variables as,
Ve (dx )| o< [ dix, J dn ©3 (%o +2 = dy) O (%, — 2 - d)
xO1 (% +2) O (o — L) exp [—i"}ﬂn]. (B.16)
From the definition of the Wigner function,

W(x,p) = if_oooo dee P ) (x + g) P (x - g) (B.17)

where its inverse transform is given by,

P (x +§)¢(x —2) = |7 dpe~P W(x,p). (B.18)
Then, we can write
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1 (%0 +3) O3 (v, =) = f dee-fﬂpwm Po,,
and obtain Eq. (B.16) as
Ve (dsdp)|” o [ dxo [ dn O (%o +2 = d,) @z (% — 2 - d)
x [ dpexp [— n] exp[—inp] W(x, p)o,. (B.19)
Again, by the definition of the Wigner function we can write,

W (= dup+ ) = nexp|=i(p+T2)n)

x O3 (% + 2= dy) O (%o — 2 - dy). (B.20)

Substituting Eq.(B.20) in Eq.(B.19), the mean square interference signal amplitude

can be expressed as
[Vz(d,, dp)|2 x [ dxdp W (x —d,,p+ k}ﬂ)@ W(x,p)o,- (B.21)
2

Where W (x, p) o, is the Wigner distribution of the compass states (O, in the input

plane of the L1 and W (x —dyp+ k}i) is the Wigner distribution of the compass

O2

states (), in the input plane of the Lo.
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Appendix C

Wigner distribution of Spatial
Compass state

The spatial compass states (D, and (O, can be expressed in position coordinates in a

identical form as

O12 X Y1, (x) + Y7, (), (C.1)
2 —n)2 2
X exp [— %] + exp [— (xzjg ] + exp[;Tg] cos(xD,). (C.2)

Where the first and second terms are corresponding to 13 ,(x); the third term is
corresponding to 7 ,(x). According to the definition given in Eq. 3.1, the Wigner

function of the spatial compass states (), is given as
oo _i * & &
Wx,p)y [, dee™® O, (x +2) O (x - 2). (C.3)
By substituting (O in Eq. (C.1) to Eq. (C.3), we obtain the Wigner function as,
o —i *t & t &
W(x,p)y « [__ dee P ] (x + E) Pt (x - 5) (C.4)

+ 7 dee”iEP ;T (x + 2) Yr (x - 2) (C.5)
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+[% deeiep st (x + g) T (x - g) (C.6)
+ %, dee=pir (x +5) ik (x - 2). (C.7)

Chessboard pattern

The chessboard pattern of the Wigner function is contributed from the
components ;" (x + E) Pl (x — 2) and ;" (x + 2) (A (x — 2) in Eq. (C.4) and Eq.

(C.5). The Wigner function of the first component is given by
W0 p)ee o [0, Wi (x +5) pt (x = 5) deei, (C8)
From Eq. (C.2), we can rewrite the above equation as

2
(x+a+f)

W(x,p)er & fjooo <exp [— 2022 l + exp [_ (x_z‘:;g) D

<exp I_ ("*a?) l +exp l_ MD dee~ieP, (C.9)

204 205

202 202

I 2(x+a)2+EE 2x2+2(a+f)2
o [__|exp|——=—2|+exp|-——2

£2

2 _£ z —)2 .
+ exp [_ Ml + exp [_ %D dee™P.  (C.10)

202 202

Integrating the first term in Eq. (C.10), we obtain
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2

1) 2(x+a)?+ 2 %) £ .
[ exp I— %l dee P = exp [ 2(’”;‘) ] [ exp I— 22] dee P,
—oo0 202 —oo 202

204

By using exp(iep) = cos(ep) + isin(ep) and the integration involving the term
isin(ep) amounts to zero, we can rewrite the above equation as,

2(x+a)?+

g2
fjoooEXI) [_Tl dee™ P = exp [ 2(x+a)2]f expl

a)2

o exp [— ]exp[ —p?0?]. (C.11)

By similar fashion, we can obtain the Wigner function for the fourth term in Eq.
(C.10) as

2(x—a)?+

2
JZ exp I— Tl dee P o exp [

(x a)2

7| expl-p202l.  (C12)

On the other hand, the Wigner function for the second term in Eq. (C.10) is given as

2 £)? _&y?

= exp [— Z_Z] f_oooo exp l— @l (cos(ep))de. (C.13)

By using the variables transformation,

The Eq.(C.13) can be written in term of &’ as,
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x exp[ ]f exp[ ¢/ ) ](cos(ps 2pa))de. (C.14)

By applying the following trigonometry identities
cos(pe’ — 2pa) = cos(pe’) cos(—pa) + sin(pe’) sin(—pa), (C.15)
cos(—pa) = cos(pa), (C.16)

and considering integration involving the term sin(pe") yield to zero, the Eq. (C.14)

can be expressed as,

x? ) (8,/2)2 ,
o« exp [— G—é] cos(2pa) [__exp|— p (cospe')de,

2
o exp [— ;C_g] exp[—p?0?2] cos(2pa), (C.17)
Similarly, we can obtain the Wigner function for the 3rd term in Eq. (C.10) as

o« exp [——] exp[—p?02] cos(2pa). (C.18)

Finally the summation of Wigner functions for all four terms in Eq. (C.10) yields,

o]

W(x,p)ee * exp|—
+2exp [— =-p aa] cos(2pa). (C.19)
. . . £ r &Y. .
The Wigner function of the 1] (x + E) Y (x - E) is given by
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W, p)rr o 2, W1 (x+5) 9 (x = ) dee'. (C.20)

From Eq. (C.2), we can rewrite the Eq. (C.20) as

(J;sz) | cos((x + 2) Dp)l

b

W, p)pr o« [ [exp[

&€

[exp[(’;:fz) Jeos((x =) Dp)] dee™,

205 ]l
[cos((x + 2) D,) cos((x — 2) Dp)] dee™i#P, (C.21)

By simplifying the exponential terms and applying the trigonometric identity

cos((x + g) D,) cos((x - g) D,) = %{cos ((x + g) D, — (x - 2) Dp>

&

+cos ((x + g) D, + (x - E) Dp)}, (C.22)

we can rewrite Eq. (C.20) as

x? ® g? .
x exp[— U_bz] cos(xDp)f exp[— r‘g] deeiep

+ exp [— i—;] I cos(eD,) exp [— %] dee P, (C.23)
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By using e %P = cos(ep) + isin(ep) and the integration involving the term

i sin(ep) amounts to zero, we can rewrite the above equation as,

X exp[— —] cos(xDp)f exp[— 22] cos(ep) de

2] oo 2
+exp [— j—g] J_. exp [— ;Tg] cos(eD,) cos(ep) de.

Again, we expand the equation above using trigonometric identity to obtain

x? ® &?
x exp[— 0—5] cos(xDy) exp[— r‘bz] cos(ep) de

+1 exp ]f cos(e(p +Dp)) exp[—%‘zg] de

1 x2 00 &2
+-exp [— U—g] J_,, cos (e(p — Dp)) exp [— E] de.
Integrating over ¢ for all three terms in Eq. (C.25), we can obtain

(x)? (x)?

(C.24)

(C.25)

W(x'p)rr X exp :___( +Dp) O-b] + exp [___ (p _DP)ZO-bZ]

x)?

ap

+2exp [— -p O'b] cos(2xDy).

(C.26)

The chessboard pattern in the Wigner function arises from the summation of the

interference terms exp [— - O'a] cos(2pa) and exp [— —=-p ab] cos(2xDp)

in Eq. (C.19) and Eq. (C.26).
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Appendix D

Propensity P, (dx, dp)

The propensity is the mean-square interference signal that measured after the squarer,
X2. Direct measurement of the propensity measures the orthogonality of the compass
states (O;and (O,. By using the imaging system, we can project the center of the
chessboard for the maximum beat of Pb(dx, dp) at around d,~0 and d,~0. The
spatial coordinates of the chessboard pattern in the propensity exactly correspond to

the coordinate system of the imaging system.

The interference signal as a function of d, and d,, is given by

2 (o] * Vi !
Vs (dy, dp) o< éexp (i%) J_, dx"exp (—lkxfdp) O, (x'—dy) O; (x"). (D.1)

Where
O (x") o ex ( + ex ('=a)" + exp[— ﬁ] cos(x'D,)
1 Pl~ P~ 202 p 20} p
X ®11+®1ll+®1lll s (Dz)

O (4 — x| ot g [ (]

202
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+exp[— ( ) ~——=—]cos((x’" — d,)D,)

x ®21*+®2H*+®2[H*’ (D3)

As the interference signal Vg (dx, dp) is directly proportional to the spatial
overlapping of the compass states ®©; and ©," . The product terms in Eq. (D.1) that

will contribute to the interference signal Vz(d,, d,) are @z, " O1; Oy O1y» and

*
OzIII OlIII ’

The contribution from © 21*011 can be expressed as

’ r_ 2 , 2
Vs, (dy, dp) ffooo dx' exp (—ikxfj) exp [_ (x'-dy+a) exp [_ (x'+a) ] '

2 2
204 204

(D.4)
By using the variable transformation,
u=x"+a,

we rewrite Eq. (D.4) as

Vg, (dy, dp) exp( akdp )exp [— —]f du exp [——(u + uB)] (D.5)

— 2 (u+ )2]

ocexp( l;d )exp[

« ./ o2Texp (i al;ﬂ) exp [— %]
(D.6)
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kdpaa
f

where B = —d, + i

Similarly, the contribution from © 2"*@1" is given as

VBH(dx, dp) x f_oooo dx’ exp( kxf exp[ (x ’_d" a) ]exp[ (<’ a) ] (D.7)

By using the variables transformation,

!

u=x'—a,

we rewrite Eq. (D.7) as

Vg, (dy dp) o exp (—l ) exp [ ] f du exp [——2 (u? + uB)]

(D.8)
X exp (—i al;ﬂ) exp [— %] exp - Uig (u + g)z]
« /o2Texp (—i al;ﬂ) exp [— %] exp [— Bz:‘%] :

(D.9)

kd, o2
where = —d,, + i ——

Furthermore the contribution from @Zm*@lm is given as

72

x
20'5]

oo Ckx'd ’—dx 2
VBm(dx' dp) x f_oo exp (_l xf p) exp[— %]exp[—

cos ((x’ — dx)Dp) cos(x'D,) dx’, (D.10)
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dy?, (oo x4y
« exp[— E] J_ exp[— %]
{cos(Zx’Dp - dep) + cos(—dep)}dx’. (D.11)
kdpaf

Where V = —d, +1i

. Then, we rearrange Eq. (D.11) as

2
Vv
('+3)
2

Op

dxz V2 o I I
VBI"(dx, dp) « exp[— 2Tg]exp[E] f_oo exp[— ] cos(Zx D, — dep)dx

2
4,2 V2 . x'+Z ,
+ exp [— ﬁ] exp [E] Cos(—dep) f_oo exp [— ( 052) ] dx'. (D.12)

By using the variables transformation,

We obtain the first term in Eq. (D.12) as
dy? V2] oo x2
x exp [— 275] exp [E] S exp [— J—g] cos(2xD, — (V + d,)D,,)dx. (D.13)
By applying the following trigonometry identities
cos(2xD, — (V + d,)D,) = cos(2xD,) cos(—(V + d,)D,) + sin(2xD,) sin(—(V + d,)D,),(D.14)
cos(—(V + dx)Dp) = cos ((V + dx)Dp). (D.15)

We can rewrite Eq. (D.13) as

dy? V2 0 x2
« exp[— E] exp[E] cos ((V + dx)Dp) J . exp[— o—g] cos(2xD,)dx.  (D.16)
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2
kde'b

By integrating over x and using V + d,, = i , we obtain Eq. (D.16) as

2 2 2
> exp [_ (2%3] exp [175] exp[—D, 0] cos (i ~o% Dp). (D.17)

2
XTIy kd

d 2 9 »0b kd
x exp ~ %2 exp e exp[—Dp ab] exp 7 Dy|+exp|—

;"5 Dp]).(D.l8)

For the second term in Eq. (D.12), integrating over x’ we obtain

2
kdpog
—dy+i

d’ )
« |/ 0/ T exp [— E] exp 207 cos(d,Dyp). (D.19)

By summation of e Eq. (D.18) and (D.19), VBm(dx, dp) is obtained as

dy? v?2 kd,o? kd,o?2
 exp [— E] exp [475] exp[—D,’ o] (exp [ ; L Dp] + exp [— ; L Dp])

dy? v2
+ |o?mexp [— E] exp [4712)] cos(d,D,). (D.20)
However, the first term in above equation vanishes to zero leaving
d,? V2
Vo (A, dyp) o /oimexp[— E]exp[ﬁ] cos(d,Dp). (D.21)

Summation of Eq. (D.6), Eq. (D.9) and Eq. (D.21) leads to the interference
signal, VB(dx, dp). Then, we can obtain propensity which is the mean-square

interference signal interference signal as

Ve (dz, dp)|2 o |V, (d, dp) + Vi, (dr dp) + Vi (s, dp)lz' (D.22)

182



« |{exp (i @) + exp (—i al;ﬂ)} exp [— %] exp [— BZ:‘%]

2

dy? V2
+ exp[— E]exp[ﬁ] cos(d,Dp)| - (D.23)
2 2
Substituting B = —d,, + ikd;aa , V= § Xdp% _ dy, 6, = k}ﬂ and applying the

trigonometry identity exp(iad,) + exp(iad,) = cos(as, ), we obtain
Vs (ds, dp)|2 x |exp [4%5 (d2 — 6201 — Zidx6pa§)] cos(d,Dp)
1 2
+ exp [P (d2 — 8204 — 2idx6p0§)] cos(adp)|

~|cos(dep) + cos(a6p)|2. (D.24)
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Appendix E

Variances of Position and Momentum

The variances of position (AX)? and momentum (AP)? of the EPR correlations can

be obtained later through the evaluation of P, ( X, P), which is given by
?b(X,P)OC|VB(X,P)|2, (El)
~|cos(XDp) + cos(P6p)|2. (E.2)
The variance for position is expressed as
(AX)? = (X?) = (X)?, (E.3)

where (X?2) is expectation value for X? and (X) is expectation value for X .

Expectation value for X2 is given as,

(x?) =22 [0 X2 |y, (X)X,

Dp

D o 2
=2 fg’ X2 |cos(XD,)| dX, (E.4)

p
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o, [1 By | By
= ﬁ{z f;_,f X*dX + f;_,:’ X? cos(2XD,) dX}, (E.5)
p p

- 3
2m | 3Dy

5 T
=2 {”— + 2 J22 X7 cos(2X D) dX}. (E.6)
bp
Solving the second term using integration by part, leaving

n T
2 . = _ .
X2 sin 2XDy |Dp _lfup sin(2XDp)2X dX
- T ’
2Dy T 2 2Dy

Dp

L J57 X2 cos(2XD,) dX = %[

Dp

<

_o_1 _DESiIl(ZXDp)ZX dx. (E.7)
27" 2Dy
Dp

Again, solving by integration by parts to obtain

—LI_DESin(ZXD )XdX=—L _XL(ZXDP)W_I_ _DE_COS(ZXDp)dX '
2Dp "= p 2D 2D e 2D
P by P p il Dp p
Dp

U3 s
_ 1 [—X cos(2XDp)|Pp 1 [sin zxpp]ﬂ

2D, 2D, - 2Dp| 2Dp |-m
Dp Dp
1 T
= 5 o) (55
Finally, we obtain
n_1( =m 3

Similar, expectation value for X is given as,
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-1

Dp —
Dp r _D D 2
(X) =2 [, X [Vp(X)|?dX = if;_,fx |cos(XD,)| dX
T P

D 1 DL 1 DL
=2 {E fl_)_,f Xdx +- f;_,f X cos(2XD,) dX},
14 P

oo 1qP
=2 {0 + f;_n X cos(2XD,) dX},

p

Solving using integration by parts, we obtain

T T T
1Dy Dp 1D —Xsin(2xDy, ) |Dp Dy, cos(2XD
——pf_,chos(ZXDp) dX === X sin(2xDp)Pp _ _andX )
22m /22 22m 2Dy -r  JZZ 2Dy
Dp b, Dp
P
L
_1Dp 0— L —sin(2xDp)|Pp | _ 0
22m 2Dy 2Dy - '
Dp

The variance for position as

(AX)? = (X?) — (X)?,

1({ 1 2
:5<21) 2 v 3 2)'
14 p

In a similar fashion, variance for momentum can be calculated as,

(8P)? = (P2) = (P)?,
(e +32)
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Appendix F

Properties of Highly Non-linear fiber
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