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Abstract 

The Big Manistee River was one of the most well known Michigan rivers to 

historically support a population of Arctic grayling (Thymallus arcticus). 

Overfishing, competition with introduced fish, and habitat loss due to logging are 

believed to have caused their decline and ultimate extirpation from the Big 

Manistee River around 1900 and from the State of Michigan by 1936. Grayling 

are a species of great cultural importance to Little River Band of Ottawa Indian 

tribal heritage and although past attempts to reintroduce Arctic grayling have 

been unsuccessful, a continued interest in their return led to the assessment of 

environmental conditions of tributaries within a 21 kilometer section of the Big 

Manistee River to determine if suitable habitat exists. Although data describing 

historical conditions in the Big Manistee River is limited, we reviewed the 

literature to determine abiotic conditions prior to Arctic grayling disappearance 

and the habitat conditions in rivers in western and northwestern North America 

where they currently exist. We assessed abiotic habitat metrics from 23 sites 

distributed across 8 tributaries within the Manistee River watershed. Data 

collected included basic water parameters, streambed substrate composition, 

channel profile and areal measurements of channel geomorphic unit, and stream 

velocity and discharge measurements. These environmental condition values 

were compared to literature values, habitat suitability thresholds, and current 

conditions of rivers with Arctic grayling populations to assess the feasibility of the 

abiotic habitat in Big Manistee River tributaries to support Arctic grayling. 
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Although the historic grayling habitat in the region was disturbed during the era of 

major logging around the turn of the 20th century, our results indicate that some 

important abiotic conditions within Big Manistee River tributaries are within the 

range of conditions that support current and past populations of Arctic grayling. 

Seven tributaries contained between 20-30% pools by area, used by grayling for 

refuge. All but two tributaries were composed primarily of pebbles, with the 

remaining two dominated by fine substrates (sand, silt, clay). Basic water 

parameters and channel depth were within the ranges of those found for 

populations of Arctic grayling persisting in Montana, Alaska, and Canada for all 

tributaries. Based on the metrics analyzed in this study, suitable abiotic grayling 

habitat does exist in Big Manistee River tributaries.  



 

 10 

Chapter 1 – The Decline of Michigan Grayling, Historical 

Conditions of the Big Manistee River, and Habitat Requirements 

of Arctic Grayling1  

 

Introduction 

The Arctic grayling (Thymallus arcticus) was once abundant in the state of 

Michigan (Creaser & Creaser 1935) where populations ranged as far south as 

the White River (Newaygo, Oceana and Muskegon counties) and the Riffle River 

(Ogemaw and Arenac counties) for the western and eastern Lower Peninsula, 

respectively, and in the Otter River (Houghton and Baraga Counties) where the 

only verified Upper Peninsula grayling population existed (Whitaker 1886). It has 

been hypothesized that heavy fishing pressure, habitat loss due to logging, and 

the competition with introduced non-native fish species caused these glacial relict 

populations to decline near the turn of the 20th century (Whitaker 1886, Bissell 

1890, Mershon 1923, Creaser and Creaser 1935, Leonard 1949, Fukano et al. 

1964), and become extirpated from Michigan by the middle 1930s (Vincent 1962, 

McAllister and Harington 1969). Despite past attempts by the State of Michigan 

that were not successful at re-establishing self-sustaining populations of grayling 

in the state, recent research (Tingley 2010) and a continued interest in this goal 

for tribal cultural value has supported the question of whether Arctic grayling 

                                            
1 The material in this chapter is planned for submission. 
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populations could once again be viable in Michigan waters. This literature review 

was conducted to gather information about the history of grayling in Michigan, the 

historical conditions of the Big Manistee River where they previously flourished, 

and the habitat conditions where contemporary populations of Arctic grayling 

persist, to examine the feasibility of the potential reintroduction of Arctic grayling 

to the Big Manistee River, Michigan. Along with species such as Lake Sturgeon 

(Acipenser fulvescens) and Elk (Cervus canadensis), the Arctic grayling was 

historically, and continues to be a significant part of Aníšhinaábek (Native 

American population of the Great Lakes region) culture. Throughout tribal history 

grayling were harvested from the Big Manistee River as a source of sustenance, 

and as a cultural indicator species the Little River Band of Ottawa Indians believe 

reintroduction to the Big Manistee River would strengthen the tribal community’s 

bond with their ancestral heritage. Additionally, this project was developed to 

foster collaboration with land managers such as the US Fish and Wildlife Service, 

US Environmental Protection Agency, US Forest Service, and educational 

institutions such as Michigan Technological University. 

Presently, Arctic grayling populations are found throughout Alaska (Fleming 

1998, Deegan et al. 1999), northwest Canada (Cowie and Blackman 2003, 

Clarke et al. 2007), and a limited area of the Big Hole River drainage in the 

western contiguous United States (Magee 2002). Populations in the Big Hole 

River drainage occupy a small fraction of their historic range (Lamothe and 

Magee 2004a) and conservation efforts in Montana as well as some grayling 
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rivers in Canada have provided critical data regarding the habitat characteristics 

for existing populations (Northcote 1993, Magee 2002, Lamothe and Magee 

2004a) since grayling have been absent from the Big Manistee River for over 100 

years (Vincent 1962). This ongoing management strategy combined with grayling 

research of the 20th century and accounts of the Michigan grayling from the mid-

19th to early 20th century has given a glimpse of what conditions existed and may 

be required in order for grayling to successfully return as a member of Michigan’s 

native fish community. 

 

Decline of the Michigan Grayling 

Prior to the introduction of the brown trout (Salmo trutta) and rainbow trout 

(Oncorhynchus mykiss), and the southward expansion of brook trout (Salvelinus 

fontinalis), the Arctic grayling was the dominant Salmonidae in Michigan’s Lower 

Peninsula rivers (Leonard 1949). Records of Arctic grayling in Michigan date 

back to the mid 19th century (Bissell 1890, Metcalf 1961). In Michigan’s Lower 

Peninsula, populations were notable in the Manistee and Au Sable Rivers, and 

were bounded to the south by the White and Riffle Rivers (Whitaker 1886, 

Babbitt 1900) (Figure 1.1). Despite their broad distribution in the Lower Peninsula 

of Michigan, the only Upper Peninsula river confirmed to have a population of 

grayling was the Otter River in Houghton County (Creaser and Creaser 1935); 

and although there are recorded accounts of grayling in the eastern branch of the 

Ontonagon River (Bissell 1890, Babbitt 1900) as well as the Little Carp River 
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(Ruthven 1906) it has been suggested that these may have been incorrectly 

identified (Vincent 1962). In addition to being admired for their physical 

appearance the grayling was known to be abundant and easily caught (Northrup 

1880, Norris 1883, Bissell 1890, Creaser and Creaser 1935, Leonard 1949). 

Written accounts describe a day’s worth of fishing resulting in hundreds of 

grayling (Mather 1874, Whitaker 1886, Bissell 1890, Hinsdale 1932), and as a 

result of this reputation anglers flocked to Michigan rivers in order to take 

advantage of the grayling’s availability. Concerns regarding the declining 

numbers of grayling were made publically as early as 1886 (Whitaker 1886) as 

populations continued to decline through the early 1900s when by around 1936 

the last remaining grayling population in the Otter River was considered extinct 

(Vincent 1962, McAllister and Harington 1969). In the Big Manistee River, 

grayling likely disappeared around the turn of the 20th century. As late as 1901 

there was debate on where and in what abundance the grayling existed in the 

Manistee River watershed; A Mr. Sullivan Cook of Hartford, Michigan wrote the 

editor of Forest and Stream Magazine in September 1901 claiming that grayling 

were found “plentiful” in the Pine River. However, two weeks later an individual 

with the initials N.F. wrote in stating that grayling had been absent from the Pine 

River since approximately 1895, and that the few grayling left in the Big Manistee 

River were further upstream in Kalkaska County. This sentiment was shared by 

Harris (1905) when discussing a five day guided fishing trip along the Manistee in 

1902 that resulted is many trout, but only two grayling.  
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Overfishing 

The exploitation of grayling in Michigan has been hypothesized as one of the 

reasons for their extirpation (Mershon 1923, Creaser and Creaser 1935, Vincent 

1962). Historical accounts describe grayling as being an easily caught fish 

(Whitaker 1886) which resulted in large numbers of individuals taken during 

many fishing expeditions. Norris (1883) recounted killing 54 kg of grayling in one 

day of fishing on the Au Sable River and 227 kg in five days on the Big Manistee 

River. Hinsdale (1932) describes how catching over 1300 kg of grayling between 

four people in two weeks was not uncommon. He further cites H. B. Roney from 

an 1878 article in Michigan Sportsman’s Association for the Protection of Fish, 

Game, and Birds where Roney recalls 5000 fish caught in four weeks by a group 

from Chicago. In the western United States commercial fisheries were 

established in the late 1800s to provide trout (which likely consisted of grayling 

among other species) to local mining operations (Vincent 1962). Similarly, Arctic 

grayling where exported from Michigan to Milwaukee and Chicago fish markets 

until 1885 (Vincent 1962). These endeavors however, were not sustained as 

catch numbers declined throughout the late 19th and early 20th century (Vincent 

1962). Vincent (1962) makes the case that because logging did not peak until 

after 1880 and brook trout was not abundant in the lower peninsula of Michigan 

until after 1890, that overfishing, beginning sometime in the early 1870s was 

likely the first major impact on grayling populations and initiated their decline.  
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Logging 

Logging efforts in the state of Michigan began in 1835 and increased throughout 

the second half of the 19th century for the state, and took place during a 20 year 

period starting in the mid 1870s for much of the middle and northern Lower 

Peninsula (Spalding 1899, Vincent 1962). Within this timeframe, logging of the 

upper Big Manistee River occurred around 1885 and continued through the turn 

of the century when the harvest of Michigan white pine (Pinus strobus) was all 

but exhausted (Maybee 1960). Based on records from the Manistee Boom 

Company, Vincent (1962) hypothesized an inverse relationship between the 

volume of lumber floated down the Manistee and Au Sable Rivers and the 

decline in the number of grayling being caught in these rivers. Vincent, however, 

believed that due to logging practices calling for harvesting only the largest trees, 

the cutting of forests did not significantly affect instream habitat or the ability of 

rainfall to infiltrate the soil and become the groundwater feeding rivers such as 

the Manistee. There seems to be little evidence that sustainable logging 

practices were used while harvesting lumber in the Manistee River watershed 

(Maybee 1960), and aside from the channel scour caused by floating lumber 

down rivers, entire stand removal would have increased storm water runoff, 

which in turn would have decreased the retention of rainwater to recharge 

groundwater inputs. Although grayling may have been in decline prior to logging 
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in the Manistee River watershed, the impacts of logging, both the cutting and the 

transport of lumber, would have further harmed the already stressed grayling. 

 

By combining these written accounts with historical maps we are provided with a 

view of the conditions and physical disturbances that may have existed around 

the time of the grayling extirpation from the Big Manistee River.  The Manistee 

County Historical Museum maintains hand-drawn survey maps that allowed us to 

visualize the Big Manistee River during the late 1800s and early 1900s. One map 

of the Big Manistee River from the early 1880s indicated at least 36 logjams 

(courtesy of the Little River Band of Ottawa Indians and U.S. Forest Service) 

while another specified the approximate location of 10 rollways in the Manistee 

mainstem between the headwaters and Lake Michigan (courtesy of the Manistee 

County Historical Museum). Rollways were clear-cut areas along riverbanks that 

were used to transport harvested timber to the banks of a river, and these 

rollways would have created erosion and sources for sediments to enter the 

channel. Decreased rainwater infiltration in rollways would have likely increased 

the volume and velocity of surface runoff, which in turn could have created local 

scour where water plunged into the channel. These rollways and log floats 

caused large amounts of scour, sediment deposition, and habitat alteration 

throughout the Manistee and Au Sable Rivers (Rozich 1998). Some accounts 

offer a glimpse of what conditions may have existed prior to the logging (Page 
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1882, Norris 1883), but unfortunately there is little river survey data available to 

confirm what these systems looked like in the 19th century.   

 

Interspecific Competition 

Although there is little argument over the impacts of logging and fishing pressure 

on grayling, there are questions regarding how grayling interact with other 

Salmonids, specifically with brook trout. In the Otter River, grayling were known 

to be present with brook trout for some time (Creaser and Creaser 1935, Taylor 

1954), first documented in 1884 (East 1930 as cited in Vincent 1962). However, 

the length of time brook trout and grayling would have been found together and 

whether the two species actually coexisted is unknown. Additionally, the native 

southern distribution of brook trout populations in Michigan is uncertain. Early 

accounts mention that brook trout were absent from waters south of the Straits of 

Mackinaw (Hubbard 1887) while others indicate they were found in some 

northern Lower Peninsula rivers (Strang 1855, Clark et al. 1875, Whitaker 1886). 

A letter to the editor of Forest and Stream Magazine by an individual with the 

initials S.H.S of Toledo, OH dated April 29, 1874 (prior to the introduction of 

rainbow or brown trout) stated that a trout and grayling were caught together in 

the Jordan River, Michigan, weighing approximately 0.6 kg and 0.5 kg, 

respectively. Based on historical reports, Vincent (1962) hypothesized that brook 

trout migrated naturally to the Lower Peninsula sometime before 1850 and 

therefore may have found their way to the Big Manistee River. A report of brook 
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trout in the Pine River, which empties into the Big Manistee River near the 

current location of Tippy Dam, was made in an 1869 edition of the Manistee 

Times: 

“Our piscatorial friends around Manistee will be surprised to learn that 

there are speckled brook trout within a few miles of Manistee. On Friday 

last Mr. Ruggles with other gentlemen camped at Pine Creek and thought 

they would like some fish for supper. The first fish caught was a speckled 

brook trout and being elated with their success they kept on fishing and 

soon had enough for a good mess. It had been the general opinion of our 

people and tourists that if they wanted speckled thought they would have 

to go to the neighborhood of Traverse City to catch them. Pine Creek is 18 

miles from Manistee so let us patronize home institutions and catch 

speckled trout in our own creeks.” 

-Manistee Times, September 11, 1869 (Vol. 5 No. 27). 

 

However, two weeks later it was noted that speckled (brook) trout were a recent 

member of the Big Manistee River: 

“Trout – The appearance of speckled trout in the creeks around Manistee, 

where they have never been found until recently has caused much 

speculation among the older settlers here. R. Risdon, Esq., informs us that 
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the streams were formerly well stocked with pickerel, and that pickerel 

probably destroyed trout. Therefore the disappearance of pickerel 

undoubtedly accounts for the presence of trout, and they are now quite 

plenty in most of our streams. Speckled trout are frequently caught in 

goodly numbers by our fishermen in Lake Michigan.”   

-Manistee Times, September 18, 1869 (Vol. 5 No. 28) 

  

There seems to be little doubt that brook trout were appearing in the Big 

Manistee River throughout the latter half of the 19th century. There is debate, 

however, as to how far back in time the brook trout existed in the Big Manistee 

River and whether it was introduced by humans or migrated naturally (Mershon 

1923). Vincent (1962) stated that brook trout were not found in the upper reaches 

of the Big Manistee River until after 1890 by way of stocking rather than 

migration from where they were found in the Lower reaches of the Big Manistee 

River. Hubbard Jr. (1901) recalled the absence of brook trout from the Big 

Manistee River (approximately 10 km from Kalkaska) as late as 1890. These 

support claims of a decrease in the quality of grayling fishing shortly after brook 

and rainbow trout numbers increased. Vincent (1962) noted that grayling 

populations were declining in some rivers prior to the arrival of brook trout. 

However, Metcalf (1961) recalled “swarms” of brook trout and grayling caught 

together in many streams during an 1880 expedition along the Grand Rapids and 
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Indian Railroad which ran through western Michigan from the Straits of Mackinac 

to southeastern Indiana. 

 

A more recent study suggests that although Arctic grayling and brook trout are 

believed to prefer similar habitats they do not actively compete at the 

microhabitat (pool) level (Byorth and Magee 1998). In the present, Arctic grayling 

are found in the western United States along with other Salmonidae, including 

brook trout and mountain whitefish (Prosopium williamsoni) (Lamothe and Magee 

2003). Despite what has been observed in the west, Vincent (1962) illustrated 

that as brook trout abundance increased, Arctic grayling numbers continued to 

decline in the Manistee as well as in the Jordan, Boyne, and Au Sable Rivers. 

Whether brook trout actively competed with the Arctic grayling for resources, or 

was filling the position of the deteriorating grayling population is undetermined, 

what is known is that as grayling numbers continued to decline throughout the 

late 1800s, brook trout abundance increased.  

 

Stocking Attempts/ Recent Research 

Records regarding Arctic grayling stocking in Michigan date back to 1877 when 

300 grayling from the Big Manistee River were transplanted into other southern 

Michigan waters (Fukano et al. 1964), and state records indicate that between 

1900 and 1933 more than three million fry were transplanted from Montana to 
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Michigan (Nuhfer 1992). Numerous stockings took place throughout the 20th 

century with the most recent attempt between 1987 and 1991. Despite efforts to 

restore grayling populations there have been no indications of sustained success 

(Leonard 1949, Nuhfer 1992). During this recent attempt grayling were planted 

into lakes and streams throughout the state with stocking location based on 

isolation, the ability of waters to support trout, and minimal suspected competition 

with other fish species (Nuhfer 1992). It has been hypothesized that survival of 

lake stocked grayling was hindered by larger predatory fish (largemouth bass, 

Micropterus salmoides), competition for food, loss of vision caused by the 

parasitic Ornithodiplostomum species, illegal harvest by anglers, and water 

quality issues such low pH for some Upper Peninsula lakes (Nuhfer 1992). 

Additionally, Nuhfer (1992) suggested many factors attributed to the failure of 

grayling stocked into rivers, including genetically driven downstream migration, 

water temperature, and competition with other Salmonids in Lower Peninsula 

rivers, and to a lesser extent, river size, mortality due to hooking and harvest, 

and a bacterial infection (furunculosis) in 1987-1988 stockings. More recently, 

Tingley (2010) used a combination of landscape data and instream sampling to 

develop a scoring system in order to identify the suitability of Michigan rivers as 

Arctic grayling habitat. A total of six streams in the state were determined to 

contain suitable grayling habitat based on variables considered at multiple spatial 

scales, two of which, the Pine and Little Manistee Rivers, are within the Manistee 

River watershed, however only the Pine was within our study area. 
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Big Manistee River Historical Conditions 

The Big Manistee River has been known historically for its stable flow (Page 

1882, Norris 1883) with a maximum discharge less than twice the minimum 

discharge (Wisler and Brater 1959), akin to being a mostly spring-fed waterway 

(Harris 1892). Prior to damming of the river it was said to be mostly immune to 

drought, freezing, and flooding due to the vast number of springs feeding into the 

channel; which were said to be spaced approximately every 10 meters (Page 

1882). The Big Manistee River was historically cold and described by Harris 

(1892) as having water the temperature of “a rock-gushing spring”. The water of 

the Manistee was fast moving in some areas, reaching velocities of 2.7 m/s, and 

the streambed was marked with “islands” of aquatic vegetation scattered about a 

mostly sandy landscape (Harris 1884, 1892).  

 

One of the more detailed accounts of conditions along the upper portion of the 

Big Manistee River can be found in an 1869 survey by A. S. Wordsworth of the 

River Improvement Company (Page 1882). Wordsworth writes of beginning their 

journey in the headwaters of the Big Manistee River (Section 18, Township 28 

north, Range 4 west) where the landscape was dominated by hardwood forests 

that gave way to mostly red pine (Pinus resinosa) near the southern end of 

Township 29. At the west end of range 6, section 6, township 25, a straight-line 

distance of 32 km from their starting point, Wordsworth and company 

encountered the first large log jam on the Big Manistee River, stretching 20 rods 
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(100 meters) along the length of the channel (Page 1882). Continuing 

downstream they encountered the second large jam, this one 90 meters in 

length, followed by a dense white pine forest. As the company worked their way 

through the next nine jams they eventually met the last of the large log jams, 

number eleven, which was 151 meters in length. It should be noted that aside 

from jam two all the jams were between 20-30 rods in length (100-151 meters).  

 

At this point Wordsworth and the River Improvement Company reached the 

future location of the Hodenpyl Dam Pond. A map of the Big Manistee River 

obtained by the Little River Band of Ottawa Indians and the U.S. Forest Service 

(Unknown 1872-1874) indicates that at one point there existed a not quite 

disconnected oxbow lake that created a distinct circular channel feature where 

the current dam pond resides (Figure 1.2). Wordsworth notes that approximately 

1.6 km downstream of this area began the rollways which were a prominent 

feature of the landscape as they continued towards the town of Manistee, and 

3.2 km further downstream a “saw log” jam stretching nearly 2.5 km in length 

(Page 1882). Here, approximately at the current location of Red Bridge is where 

Wordsworth declared to be the furthest downstream that one might see an Arctic 

grayling (Page 1882). Based on their size alone, most of the large jams in the 

upper Big Manistee River encountered had likely been there for many years. 

Wordsworth’s account describes jam #3: 
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“ On Section 6, Township 24 north, Range 8, west is jam No. 3, at 

crossing of the Ah-go-sah trail; twenty rods in extent… These jams date 

back in buried centuries. As evidence, we find deep-worn trails around 

them, where Indians have dragged their canoes, and packed their trophies 

on the chase and war path; also soil accumulations from fallen leaves and 

freshet of the stream, with forest growth. Cutting to the heart of a cedar 

twenty inches in diameter, growing over the center, I counted 160 years’ 

growth.” 

- A. S. Wordswroth (1869) in H. R. Page & Co. 

(1882) History of Manistee County, Michigan 

It is difficult to say that the cedar described by Wordsworth started as a sapling, 

however it can be inferred that the tree had existed on the jam long enough to 

take root. Similar accounts were made by Norris (1883) where in the book Sport 

with Gun and Rod in American Woods and Waters he recounts the numerous 

downed trees and sweepers (cedars that have fallen into the channel oriented 

perpendicular to the flow) to maneuver through as they worked their way down 

the Big Manistee River. Additionally, Wheeler (1903) echoed this experience for 

a man by the name of B. W. Hall, who is said to be the first settler of Wexford 

County, Michigan. Hall came across a number of large jams along the Big 

Manistee River, including one such dam named the “Pony Dam” due to Native 

American’s use of it for crossing the channel on horseback (Wheeler 1903). The 

drastic change in landscape features of the watershed were noted by Wheeler: 
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“These “jams” were made of the trunks of trees which had been torn from 

the banks by the ever-changing channel of the river and carried 

downstream until arrested by some projecting point of land… To see the 

Manistee river today one would almost think this statement was a fairy 

tale, but it is nevertheless true, as a number of people yet living in 

Wexford county can testify from actual and personal knowledge.” 

-Wheeler (1903) in History of Wexford County, 

Michigan 

 

Another hand drawn map of the Big Manistee River obtained by the Manistee 

County Historical Museum indicates a total of ten rollways starting approximately 

1.5 kilometers downstream of where Cedar Creek empties into the Big Manistee 

River mainstem, extending to approximately 34 kilometers downstream to the 

current High Bridge Road crossing. The approximate locations of these rollways, 

along with the accounts of large log jams by Wordsworth (Page 1882) were 

transposed onto the 1872-1874 map of the Big Manistee River (Figure 1.2).  

 

Contemporary Arctic Grayling Habitat 

Very little information is available regarding what habitat conditions existed while 

grayling persisted in the Big Manistee River, and any future attempts at 
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identifying habitat needs for reintroducing grayling would likely rely on existing 

North American populations, possibly from the Big Hole River, MT; therefore it is 

important to consider what abiotic conditions are observed where graying 

currently exist. Based on available literature, we have gathered such data, and 

on conditions needed for Michigan grayling.   

 

Thermal Conditions 

The Arctic grayling is a cold water fish of the family Salmonidae found throughout 

northwestern North America in Alaska and Canada; although relict populations 

existed further south in Montana and Michigan (since extirpated). Water 

temperatures within grayling habitat appear to vary depending on geographic 

location, therefore some populations may be adapted to elevated water 

temperatures while others may be restricted to cooler temperatures. An 

experiment conducted on Alaskan Arctic grayling measured the thermal 

tolerance for four size classes of fish acclimated to 4.0 - 8.5oC (±1oC) and found 

median thermal tolerances (50% survival) of 20.0 – 24.5oC for adult grayling 

(LaPerriere and Carlson 1973). Additionally, Lohr et al. (1996) considered a 

similar metric for Montana grayling as compared to summer temperatures in the 

Big Hole River, MT. Fish were acclimated to 8.4, 16.0, and 20.0oC and exposed 

to elevated temperatures in order to determine their upper incipient lethal 

temperature (UILT), the temperature at which a minimum of 50% of test subjects 

survive for at least one week. UILT was 23.0oC for acclimation temperatures of 
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8.4oC and 16.0oC, while UILT for grayling acclimated to 20.0oC was 25.0oC. Lohr 

et al. (1996) also concluded that grayling persisted in the Big Hole River even 

though mainstem temperatures were observed to exceed 25oC during summer 

months.  Similarly, Magee (2002) and Lamothe & Peterson (2007) measured 

summer temperatures in the Big Hole River above 21oC and a maximum 

temperature greater than 25oC in 2000 and 2001, and 2006, respectively. 

Despite the measured temperatures, it is very likely that when temperatures 

reach stressful levels for grayling they will seek out cooler-water refuge in 

tributaries as observed by Magee (2002).  

 

Although grayling show survival at temperatures above 20oC, Alaska populations 

have been observed to display signs of stress at temperatures approaching 17oC 

(Wojcik 1953). In August 1960, Schallock (1966) observed grayling in the 

Chatanika River, AK migrating upstream after water temperatures reached 

approximately 18oC. More generally grayling tend to reside in water temperatures 

ranging from 7-18oC depending on location (Hallock 1873 as cited by Vincent 

1962, Harris 1884, Henshall 1900 as cited by Vincent 1962). In addition to what 

has been reported for Michigan grayling and what has been found for Alaskan 

grayling, Hubert et al. (1985) developed a habitat suitability index for fluvial Arctic 

grayling based on a literature review of data and determined the ideal average 

annual maximum water temperature for adults to be between  8-16oC based on 

grayling found in Odell Lake, Montana and the Chena River, Alaska. 
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Channel Characteristics  

Historically, detections of grayling in Michigan were most often in the riffles of 

rivers (Mershon 1923, Smedley 1938), potentially due to their proximity to 

feeding location (Hubert et al. 1985, Hughes 1998). Typically, grayling inhabit 

pools and utilize riffles for feeding and spawning (Krueger 1981, Hubert et al. 

1985, Hughes 1992). The usage of pools as habitat by grayling has been well 

established in a number of studies in Alaska, Montana, and Canadian rivers 

(Tack 1972, Liknes and Gould 1987, Hughes and Dill 1990, Byorth and Magee 

1998, Lamothe and Magee 2003, 2004a, Blackman 2004). 

 

Grayling have been found to utilize a range of substrate sizes depending on life 

stage. In tributaries to the Williston Reservoir and the Table and Anzac Rivers, 

British Columbia, Canada, grayling fry have been detected in sites dominated by 

cobble/gravel, and fines/gravel (Cowie and Blackman 2003, Blackman 2004). 

Young-of-the-year (also known as age-0) and adult grayling more often are found 

occupying and spawning on (in the case for adults) gravel/cobble substrates with 

low embeddedness by fine particles (Nelson 1954, Shepard and Oswald 1989, 

Lucko 1992 as cited by Northcote 1993, Barndt and Kaya 2000, Blackman 2004). 

In Michigan it has been hypothesized that grayling streams were dominated by a 

mixture of fine gravel and course sand and had finer substrates than their 

counterparts in the western United States (Vincent 1962). More broadly, Hubert 

et al. (1985) determined that a minimum of 20% gravel/pebble substrate was 
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considered optimal for grayling spawning sites based on studies in Canada, 

Alaska, and Montana. 

 

Although Arctic grayling habitat does compare to that of other Salmonids, their 

association with woody debris does not parallel that of brook, brown, and rainbow 

trout. It has been shown that some Salmonids utilize woody debris as habitat 

(Inoue and Nakano 1998), and though Blackman (2004) observed a strong 

association between grayling fry and woody debris this was not the case for adult 

grayling. Nonetheless, the ability of woody debris to create pools (Fausch and 

Northcote 1992, Dolloff and Warren Jr. 2003) ultimately attributes it as a 

component to grayling habitat. Grayling streams tend to be low gradient, both in 

the west (Liknes and Gould 1987, Northcote 1993, Barndt and Kaya 2000, 

Lamothe and Magee 2004) and what is known historically for Michigan (Vincent 

1962). Vincent (1962) considered a typical Michigan grayling stream have a 

gradient between 0.10 - 0.28% and in the Big Hole River, Liknes and Gould 

(1987) and McMichael (1990) found the greatest abundance of grayling where 

gradient was between 0.25 - 0.29%. Grayling are also found in a range of stream 

velocities. Mean velocity has been measured between 0.2-0.3m/s for the Upper 

Big Hole River (Liknes and Gould 1987) and Sunnyslope Canal (Barndt and 

Kaya 2000), Montana, and for an Alaskan population (Elliott 1980). More 

generally, Vincent (1962) stated that “typical” grayling habitat ranged from 0.3-

0.6m/s. 
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Migration and Spawning  

Arctic grayling migrate during the spring and fall for spawning and overwintering 

habitat use. Spring spawning migration happens between April and May, 

although Whitaker (1886) stated that the 1878 spawning period in the Big 

Manistee River occurred prior to March 30th. Migration happens when water 

temperatures are between 0-4oC (Wojcik 1955, Tack 1972, Krueger 1981, 

Shepard and Oswald 1989, Northcote 1993) and when water becomes more 

navigable following ice-out (Tack 1980, Krueger 1981). The distance of migration 

is variable and can reach over 100 km for some populations (Tack 1980, West et 

al. 1992). Henshall (1907) observed grayling migrating approximately 23 km to 

spawn in Red Rock Lake, Montana. More recently, Lamothe and Magee (2003) 

tracked grayling (n=15) in the Big Hole River with radio transmitters from April to 

August of 2002 and found an average distance traveled of 8 km. Migration of 

Michigan grayling was likely dependent on river conditions and it was quite 

possible that some systems offered suitable habitat throughout the year, thus 

negating the need for seasonal migration (Vincent 1962).  

 

Arctic grayling will spawn in the mainstem and tributaries to rivers, as well as 

near the boundary of rivers and lakes (Vincent 1962, Tack 1980). Spawning 

occurs in spring when water temperatures are between 2-11oC (Bishop 1971, 

Krueger 1981, Hubert et al. 1985) although a mountain lake population in 

Eastern Washington was observed to spawn between June and August which 
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may be related to the timing of ice-out and warming (Tack 1980, Beauchamp 

1990). Spawning location characteristics vary, but appear to be dominated by 

sand to gravel sized particles and within or near riffle habitat (Henshall 1907, 

Nelson 1954, Tack 1980, Krueger 1981, Shepard and Oswald 1989, Beauchamp 

1990, Barndt and Kaya 2000) where grayling broadcast their adhesive eggs 

rather than build redds such as with other Salmonids (Tack 1980). Velocity in 

spawning sites has been measured between 0.3m/s and 1.4m/s for locations in 

Montana and Alaska (Krueger 1981, Barndt and Kaya 2000). Male grayling move 

into spawning sites and establish their territory, which is heavily guarded 

throughout the spawning process (Kruse 1959). In contrast, females briefly enter 

spawning locations to lay their eggs, which may be fertilized by multiple males 

(Barndt and Kaya 2000) before moving from the spawning sites to pool habitat 

(Tack 1980). The spawning period can last several weeks (Kratt and Smith 

1977), but factors such as water temperature (Krueger 1981) and climate seem 

to determine the timing and duration (Northcote 1993). Egg development and 

hatching time for grayling is believed to be temperature dependent (Hubert et al. 

1985) and research has shown hatching time to range between 8-21 days with 

water temperatures between 3-16oC (Henshall 1907, Nelson 1954, Kruse 1959, 

Krueger 1981). Newly hatched grayling will spend up to ten days sheltered in the 

spawning substrate before emerging (Nelson 1954, Kratt and Smith 1977), and 

will occupy areas with low/moderate water velocity (Elliott 1980, Krueger 1981) 

remaining near spawning locations until fall migration (Craig and Poulin 1975, 
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Tack 1980). In some cases these grayling fry will return to these same streams 

the following year as juveniles (Craig and Poulin 1975). 

 

After spawning, adult grayling have been observed relocating to summer habitat 

(Craig and Poulin 1975, Tack 1980), however if conditions are ideal migration 

may not occur (Wojcik 1955, Vincent 1962). Although not as extensive as 

spawning and overwintering migration, movement into summer holding habitat 

can take place upstream or downstream of spawning locations. Additionally, if 

spawning takes place in smaller tributaries, grayling may move to other rivers 

were resources such as food and usable habitat are more abundant (Hubert et 

al. 1985). As water temperatures approach 0oC grayling begin migrating to 

overwintering habitat, usually to larger rivers and into the deep pools of 

groundwater or spring fed rivers where the water column stays at least partially 

ice free throughout the winter (Vincent 1962, West et al. 1992). 

 

Discussion 

Although much is known regarding the apparent habitat requirements of Arctic 

grayling in western and northwestern North America, the timing of their 

disappearance from Michigan’s waters makes it difficult to determine what 

comprised grayling habitat prior to their decline. The earliest accounts of 

Michigan grayling only go back as far as the mid 1800s, after logging in the state 
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had begun (Spalding 1899). Even with these early fishing journals, little is 

mentioned regarding the habitat conditions of the rivers, and most only account 

for a specific time of the year. Despite this lack of data, some documents give a 

general view of what existed during this period, and with available literature we 

were able to approximate some of the abiotic conditions that existed in the Big 

Manistee River prior to the extirpation of grayling. Combining past and 

contemporary literature values shown to represent conditions where Arctic 

grayling exist, ranges for abiotic conditions, such as temperature, substrate, and 

water quality (dissolved oxygen, pH) are summarized for Arctic grayling (Table 

1.1).   

The untimely disappearance of Michigan graying was likely due to the 

compounding effects of logging, over fishing, and competition with other 

Salmonids; all of which on their own may not have been enough to push local 

populations to extinction. This may support why grayling were observed in 

decline prior to logging and the introduction of brook and the nonnative rainbow 

trout (Vincent 1962).  
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Figures 

 
Figure 1.1: Purported historical distribution of Arctic grayling in Michigan Rivers. 
1Voucher specimens are part of a collection at the Museum of Zoology at the University 
of Michigan. 2Rivers as reported by Vincent (1962) to historically support grayling. 3Rivers 
believed to be misreported to have Arctic grayling (Vincent 1962). Map data from USGS, 
NOAA, and MiGDL.
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Tables 

Table 1.1: Range in observed abiotic characteristics of Arctic grayling habitat 
Data based on literature review and represents values observed in systems that 
support grayling 

 

Habitat Metric Range in Observed 
Literature Values Data Source 

Spawning Temperature (oC) 2.0 – 10.0 9 
Summer Temperature (oC) 4.7 – 18.3 3,10,17 
Spawning Velocity (m/s) 0.34 – 1.46 9,15 
Adult Summer Velocity (m/s) 0.21 – 0.61 1,3,9,10,17,19 
Y.O.Y Habitat Velocity (m/s) 0.04 – 0.78 11,19 
Adult Mean Water Depth (m) 0.26 – 1.50 3,10,13,17,19 
Channel Width (m) 4.0 – 15.0 1,2,10,16 
Y.O.Y Water Depth (m) 0.10 – 0.40 12,17 
Spawning Substrates Gravel – Pebble 1,9,11,15 
Adult Spawning Substrates Course Sand – Pebble 7,17 
Fry Habitat Substrates Fines – Pebble 3,11 
Adult Median Sediment Size 
(mm) 4.0 – 89.0 20 

Pool : Riffle Ratio 0.27 – 1.51 10 
Dissolved Oxygen (mg/L) 1.7 – 11.2 5,10 
pH 7.0 – 8.2 9,15 
Stream Gradient (%) 0.075 – 0.29 3,9,10,12 
Summer Habitat Deep Pools 3,9,19 

Winter Habitat Large streams and deep 
pools in small streams 3,7,9.17 

Feeding Location Drift feed in riffles/pools 4,7,9,17 
 
1) Nelson (1954) 2) Taylor (1954) 3) Vincent (1962) 4) Scott & Crossman (1973) 5) Bendock (1980) 6) 
Elliot (1980) 7) Kruger (1981) 8) Kruse (1981) 9) Hubert et al. (1985) 10) Liknes & Gould (1987) 11) 
Shepard & Oswald (1989) 12) McMichael (1990) 13) Hughes & Dill (1990) 14) Hughes (1992) 15) Bruce 
and Star (1985) as cited by Northcote (1995) 16) Byorth & Magee (1998) 17) Barndt & Kaya (2000) 18) 
Cowe & Blackman (2003) 19) Blackman (2004) 20) Lamothe & Magee (2007) 
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Chapter 2 – Contemporary Fluvial Habitat Conditions in Big 

Manistee River Tributaries2  

 

Introduction 

Arctic grayling (Thymallus arcticus) is a species native to Michigan that has been 

regionally extinct since approximately 1936 (McAllister and Harington 1969). 

Although past attempts at reintroduction have been unsuccessful, recent 

research has revived interest in reestablishing Arctic grayling in the Big Manistee 

River, Manistee County. The Manistee River watershed is a major natural feature 

within the lands of the Little River Band of Ottawa Indians (LRBOI) and they have 

tribal goals to bring back culturally significant, native species such as grayling.  

This restoration goal is a driving force behind this research. Successful 

reintroduction and establishment of Arctic grayling in the Big Manistee River will 

depend on availability of suitable habitat and biotic conditions.  While both are 

critical in the sustainability of grayling populations, in this work we initially focus 

on the abiotic components, including temperature, physical stream habitat (e.g., 

channel morphology, instream structure, and substrate) and water quality.  

 

                                            
2 The Material in this chapter is planned for submission. 
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As with other fish of the family Salmonidae, Arctic grayling are a cold-water 

species indicating their optimal thermal condition occurs in cold to cool water. 

Sensitivity to warmer temperatures has been documented (Nelson 1954, 

Schallock 1966), and can become lethal above a certain threshold (LaPerriere 

and Carlson 1973, Lohr et al. 1996), which appears to be dependent on factors 

such as geography, acclimation and local adaptation (Nelson 1954, Schallock 

1966, LaPerriere and Carlson 1973, Lohr et al. 1996). Because warmer water 

temperature can be limiting to the physical condition of Arctic grayling it is 

important to assess the thermal conditions within the Manistee River watershed, 

and if warm conditions exist, determine whether cold-water microhabitat exists 

within the river and its tributaries. This refuge habitat can be formed by the 

cooling effects of groundwater inputs and/or by the confluence with cooler 

tributaries. The life history of grayling also dictates the need for certain attributes 

of their environment. Spawning by grayling takes places after ice-out when water 

temperatures reach approximately 4oC, which has been purported as early as 

late March in the Big Manistee River (Whitaker 1886), and occurs in habitat that 

is generally characterized by substrates with abundant interstitial spaces (Nelson 

1954, Bishop 1971). Following spawning and throughout the summer months, 

Arctic grayling spend much of their time in deep pools while drift feeding along 

the margins between pools and riffles (Krueger 1981, Hughes 1992). In the fall, 

fluvial grayling migrate to overwinter areas where water continues to flow 

throughout the winter months, which is more often the case for the mainstem Big 
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Manistee River. Though regionally variable and ultimately dictated by the 

distance between habitats, this spring and fall migration has been known to take 

place over 150km for some populations of grayling (Nelson 1954). 

 

Guided by the life-history of Arctic grayling and their habitat needs, in this project 

we conducted an extensive survey of the current habitat conditions of the Big 

Manistee River and its major tributaries to assess their suitability for the 

reestablishment of Arctic grayling. 

 

Methods 

Study Sites 

The Big Manistee River stretches from the southwest corner of Otsego Co., 

Michigan, approximately 20km from the town of Gaylord, to the town of Manistee 

where it empties into Manistee Lake and finally Lake Michigan (Figure 2.1). The 

watershed has an area approximately 5076 km2, making it one of the largest in 

the state (Rozich 1998). Much like the neighboring Au Sable River, the Manistee 

is known to have some of the most stable flow throughout the year due to the 

abundance of groundwater inputs that account for over 90% of base flow in some 

parts of the watershed (Holtschlag and Nicholas 1998). Current abiotic conditions 

in the Big Manistee River watershed were assessed along a 21 km stretch of the 
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Big Manistee River in eastern Manistee County, MI between Hodenpyl and Tippy 

Dams (Figure 2.2). Eight tributary streams and the mainstem of the Big Manistee 

River were selected due to records indicating they support Salmonid populations 

and because they represent a range of biotic and abiotic conditions within the 

watershed (Table 2.1). Abiotic conditions in each tributary were measured 

between May and August for three years starting in 2011. Within all but one 

tributary we designated an upstream, a midstream, and a downstream sampling 

location. Sand Creek was sampled at the midstream site in 2011, and the 

midstream and upstream sites in 2012.  Due to accessibility and near backwater 

conditions, the downstream site was not sampled during this study. Sample site 

length was set at 40x the mean wetted width (Kaufmann et al. 1999) and ranged 

from 120 meters to 325 meters. Data was also collected along the mainstem of 

the Big Manistee River between Hodenpyl Dam and Tippy Dam pond. 

 

Water Temperature 

Starting in 2009, water temperature loggers (Onset® HOBO v2, accuracy: 

±0.21oC) and in 2011 HOBO U20 Water Lever Data Loggers (Onset® HOBO 

U20, accuracy: ±0.37oC) were deployed in into each of the study tributaries and 

the Big Manistee River mainstem. Loggers were secured to log jams and roots 

wads and configured to collect temperature (0.1oC) hourly. Data was retrieved 

and loggers were redeployed once in the summer and fall before being left to 

collect data throughout the winter months. Temperature logger data was used to 
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consider July temperatures, which was determined to be one of the warmest 

months of the year. The approximate location of each temperature logger was 

recorded using a handheld GPS unit and visual descriptions of the anchor points. 

One temperature logger was located in the downstream sites of Arquilla and 

Cedar Creek and in the midstream site of Sand Creek. Slagle Creek contained 

temperature loggers in the downstream and midstream sites while the remaining 

tributaries, Eddington, Hinton, Peterson, and Woodpecker each contained a 

logger in the downstream, middle, and upstream sites. Not all loggers were in the 

tributaries from 2009-2013 (Table 2.2) and therefore Peterson Creek, Slagle 

Creek, and Woodpecker Creek are the only tributaries for which we obtained five 

years of data.  

 

Although much of this study was focused on conditions in the tributaries it was 

important to assess water temperature in the mainstem, as grayling would likely 

use the larger Big Manistee River during parts of their life history (Nelson 1954, 

Tack 1974, Craig and Poulin 1975). In 2011 two large pools in the mainstem 

were utilized to determine the extent to which water temperature varied between 

upstream and downstream locations as well as whether the selected pools 

exhibited a thermal gradient (e.g. cooler temperatures at the bottom). Tethered 

temperature loggers (one at the bottom and one at mid water column) were 

secured to a weight and positioned in the deepest part of each of the two pools. 

Additionally, temperature data has been collected for the Big Manistee River near 
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the Hodenpyl Dam (USGS gaging station #04124200) and further downstream at 

the Red Bridge River Access Site (Figure 2.2). All the loggers deployed were 

programed to collect temperature in one-hour intervals throughout the summer 

months (May-August).  Temperature data collected was compared to rivers and 

streams where grayling historically and/or currently exist. 

 

To determine any cooling effects of tributaries on mainstem temperatures and 

identify potential thermal refugia in the mainstem, during June of 2013 

temperature loggers were deployed in the Big Manistee River at locations around 

the confluences of Woodpecker and Slagle Creeks. Loggers were secured to a 

log jam or root wad within the mainstem channel upstream, 33 meters 

downstream, and 66 meters downstream of each confluence. The loggers 

recorded water temperature on five-minute intervals throughout the month of July 

and were retrieved during the second week of August. The approximate location 

of each temperature logger was recorded using a handheld GPS unit (typical 

accuracy: ± 2-5 meter) and a visual description (Figure 2.3).  

 

To capture the longitudinal surface temperature profile at the confluence of each 

tributary and the mainstem, a tethered temperature logger was drifted down the 

channel through each confluence excluding Slagle and Peterson Creek. Slagle 

Creek was excluded due to limited access and we did not detect flow at the 
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mouth of Peterson Creek, potentially because it empties into the Big Manistee 

River where it is backed up by Tippy Dam Pond. The logger was configured to 

record temperature every second and attached to a float in order to measure 

surface temperature as it naturally drift from just upstream of tributary 

confluences to a maximum distance of 91 meters downstream. Duration of each 

float ranged from 2 - >14 minutes depending on river current and whether the 

temperature logger became trapped in bank vegetation or eddy current. 

 

Substrate 

Tributary substrate composition was assessed by conducting pebble counts 

based on a modified Wolman method (Wolman 1954) and estimating percent 

fines (250µm–2mm) from bulk sediment samples collected in riffles and runs 

(glides) (Hames et al. 1996). Pebble counts were based on 100 substrate 

particles measured from each of the 23 study sites in 2011 and 2012. Within 

each site a particle was withdrawn arbitrarily from a point in the channel 

determined by a randomly generated percentage across the wetted width of the 

channel (i.e. 0 to 100% from the left bank). In addition to measuring the diameter 

along the intermediate axis of each pebble, the water depth and type of channel 

geomorphic unit mesohabitat (i.e., pool, riffle, or run) of each point was recorded. 

Pebble count measurements for each tributary were used to calculate the median 

substrate diameter (D50) as well as characterize the substrate composition. 
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In 2012, additional substrate measurements were made using the shovel-based 

method to assess the percentage of fine particles (0.25 – 2mm) in a bulk 

substrate sample collected with a number 2 round point shovel (Hames et al. 

1996). In each study site, samples were collected within each channel 

geomorphic unit (CGU) at the downstream, middle, and upstream regions (or 

middle if the CGU was too short to collect 3 samples) of each defined riffle and 

run. A portable stilling well (see Hames et al. 1996) was placed at the upstream 

of each sample point to divert stream current and minimize loss of particles from 

the sample. Volume of each bulk sample was measured as the displacement 

after being placed into a measuring bucket containing a known volume of water 

(3.0L). The percent fine material (250µm-2mm) in the substrate was then 

calculated as the ratio of volume of fine materials (collected after rinsing the bulk 

sample through 2mm and 250µm sieves) and total initial bulk volume *100. 

 

Basic Water Chemistry 

Basic water chemistry data (i.e., dissolved oxygen, pH, and turbidity) were 

collected multiple times throughout the 2011, 2012, and 2013 field season at the 

upper, middle, and lower locations in each study site (Hydrolab DS5 

Multiparameter Sonde, Hach-Hydromet®). Accuracy for dissolved oxygen, pH, 

and turbidity sensors were ±0.1-0.2 mg/L, ±0.2 units, and ±1%, respectively. All 

sites were sampled in June and July of 2011, while in 2012 sampling occurred in 

June, July and August. For the 2013 field season only Hinton Creek (all sites) 
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and Woodpecker Creek (downstream and midstream sites) were sampled in 

June, July, and August. Dissolved oxygen data for the mainstem was taken from 

the United States Geological Society (USGS) website for the Big Manistee River 

USGS gaging station near Mesick (USGS #04124200). For this analysis we used 

data from May-July of 2011, 2012 and 2013 so that it could be compared to data 

collected at the tributary sample sites. 

 

Stream Velocity/Discharge 

Stream discharge was estimated at an upstream, midstream, and a downstream 

transect across each study sites within tributaries.  We measured water velocity 

at 60% of total depth (Marsh-McBirney Flo-Mate, Hach®, accuracy: ±2%) and 

depth at 10 points evenly distributed along each transect (Rantz 1982). 

Discharge for each site on a given sampling date was estimated as the mean of 

three discharge measurements.  

 

Channel Morphology 

Profile: Transects every two meters up the river during the 2012 field season 

provided wetted widths and the total site length used to estimate the area of each 

of the 23 study sites. At each transect we measured the water depth at 0, 20, 40, 

60, 80, and 100% across the stream.  
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Channel Geomorphic Unit:  As a way to quantify habitat within the tributaries 

and compare to what is reported in the literature, a longitudinal profile map for 

channel geomorphic units (CGU) was developed for each site using Arcmap 10.1 

(ESRI®) and physical measurements. CGU classifications were standardized 

based on Hawkins et al. (1993). In the 2011 field season, starting at the 

downstream end of each site and following the midpoint of the channel to the 

upstream end, a hip chain (Forestry Suppliers Inc., accuracy: within ±0.2%) was 

used to record the longitudinal length of each CGU to the nearest 0.1m. In June 

2012 CGUs were measured in a similar manner using a handheld GPS unit to 

mark a waypoint at the downstream end of each classified CGU transition.  

 

Results and Discussion 

Temperature 

Across all tributaries in this part of the Manistee River watershed, mean July 

temperatures ranged from 9-15oC between 2009 and 2013 (Table 2.3). Peterson 

Creek was the warmest stream overall during July 2012 (15.0oC ±1.5, mean ± 

standard deviation) while Eddington Creek was the coolest during July 2013 

(9.0oC ±1.0) (Figure 2.4). From 2009-2013 all tributaries have mean July 

temperatures below the upper incipient lethal temperature of 25oC for Arctic 

grayling (Lohr et al. 1996) and 18.3oC, which was observed to prompt an Alaska 
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population of Arctic grayling to migrate to cooler water (Schallock 1966) (Figure 

2.4). 

 

Temperatures measured in mainstem Big Manistee River pools indicate a little 

change with increasing depth, and overall minimal difference between upstream 

and downstream location mean temperatures (Table 2.3). Difference in mean 

July temperatures (± standard deviation) at the stream bottom and middle of the 

water column of the upstream and downstream pools were 0.4oC (±2.2) and 

1.0oC (±2.3), respectively, while the difference in mean temperature between the 

two pool locations was 0.2oC (±2.3). Further downstream, Red Bridge mean July 

temperature for 2012 was 22.7oC (±0.9). Temperature data acquired from the 

USGS gaging station at Hodenpyl Dam spanning from 2009 to 2013 indicates 

mean July temperature ranged from 18.8oC (±0.3) in 2009 to 23.2oC (±0.5) in 

2012. 

 

Temperature data from above and below the confluence of Slagle Creek 

indicated that the tributary created a plume of cool water detectable at greater 

than 33 meters downstream of the confluence (Figure 2.5). The mean difference 

between mainstem temperature above Slagle Creek and 33 meters downstream 

the confluence was approximately 8.0oC (±1.2) and dropped to less than 1.0oC 

(±0.2) difference 66 meters downstream (Table 2.4). The differences between 
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water temperature upstream and downstream of Woodpecker Creek was smaller 

than that of Slagle Creek (Table 2.4). 

 

The decrease in Big Manistee River mainstem surface water temperature at the 

mouths of tributaries was the greatest at Eddington, Hinton, Arquilla, and 

Woodpecker Creeks, and less strong at Sand and Cedar Creeks (Figure 2.6). 

Maximum temperature differential was measured at Woodpecker (7.1oC) and 

Eddington (6.8oC), and the minimum at Sand Creek (0.6oC). Distance traveled by 

the temperature logger also varied between tributaries (Figure 2.3). Eddington 

Creek and Cedar Creek each drifted approximately 91 meters while Hinton Creek 

and Woodpecker Creek traveled approximately 65 and 62 meters, respectively. 

The Arquilla Creek logger drifted into vegetation along the bank at 24 meters and 

Sand Creek traveled between 3-5 meters before getting caught in an eddy pool.  

 

Substrate 

All tributaries had similar relative abundances of pebbles and gravels (4mm-

250mm) and finer material (i.e. sand, silt, clay) in the streambed substrates in 

2011 and 2012. In 2011, all tributaries excluding Sand Creek contained greater 

than 20% pebble/gravel, which is the minimum percent thought to be important 

for spawning habitat (Hubert et al. 1985), Percentage of pebble and gravel 

ranged from 4% in Sand Creek to 61% in Arquilla Creek (Figure 2.7). In 2012, 
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similar results were observed in all tributaries with Sand Creek having the lowest 

relative abundance of pebble and gravel. Woodpecker Creek, was the only 

tributary that had the same approximate percentage of sand, silt, clay in both 

2011 and 2012. 

 

Comparison of substrate median diameter to minimum (4.0mm) and maximum 

(89.0mm) observed for grayling habitat in the Big Hole River, MT revealed that all 

tributaries except Peterson Creek and Sand Creek had median substrate 

diameters within the range for what has been measured in pool and riffle habitat 

in the Big Hole River, Montana by Lamothe and Peterson (2007) (Figure 2.8). 

Median pebble size ranged from 22mm in Arquilla Creek to 2mm in Sand and 

Peterson Creeks. 

 

Across all tributaries, percent fine composition (250µm - 2mm) of the substrates 

was greater in runs than in riffle habitat  (p < 0.001, one-tailed t-test, Figure 2.9). 

Woodpecker Creek samples contained the lowest average percentage of fines in 

runs at 47% while Arquilla Creek had the lowest in riffles at 29%. Percentage of 

fines peaked in runs at 82% for Sand Creek and 48% in riffles. Percent fines in 

all tributary riffles were below the suboptimal level of ≥50% for spawning habitat 

as determined by Hubert et al. (1985). 
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Basic Water Quality 

Turbidity, pH, and dissolved oxygen measurements in sample sites of tributaries 

across the three years of field data indicate that water quality is similar 

throughout this part of the watershed (Figure 2.11). Tributaries tended to be 

slightly alkaline, with average pH ranging from 7.9 (±0.3) for Woodpecker to 8.2 

(±0.4) for Peterson. All tributaries were within the range of pH values where 

grayling have been observed (pH = 7.0-8.2). Mean turbidity in this part of the 

watershed was relatively low and was peaked in Peterson Creek at 4.0NTU 

(±4.2). Slagle Creek water had the lowest turbidity of all the tributaries with a 

mean of 1.4NTU (±1.3). All sites were well below the reported maximum turbidity 

(30.8NTU) for reference conditions for this sub-Ecoregion by the EPA (EPA 

2001). Dissolved oxygen (DO) levels were similar across all tributaries with mean 

DO ranging from 8.8ppm (±1.6) in Sand Creek to 10.4ppm (±0.6) in Eddington 

Creek, while the mainstem Big Manistee River’s mean dissolved oxygen was 

detected at 8.4ppm (±0.8) (Figure 2.10). Grayling have been observed in water 

with dissolved oxygen as high as 11.6ppm (Liknes and Gould 1987) and as low 

as 1.7ppm (Bendock 1980) and all Big Manistee River tributary samples were 

above the lower limit. 

 

Velocity/Discharge 

Velocity measurements taken in early, middle, and late summer 2012 were 

variable temporally as well across tributaries (Figure 2.11). For each sampling 
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date, Slagle Creek had the largest mean velocity, of which the middle summer 

measurement was highest (0.38m/s ± 0.1) and Sand Creek the lowest in middle 

summer (0.07m/s ±0.0). All measured tributary velocities were near or within the 

range for mean velocity in present-day Arctic grayling habitat (Nelson 1954, 

Hubert et al. 1985, Liknes and Gould 1987, Shepard and Oswald 1989, Barndt 

and Kaya 2000, Blackman 2004) except for the mid summer measurement in 

Sand and Peterson Creeks. Calculated discharge ranged from 0.01 m3/s (±0.0) 

to 0.54 m3/s (±0.4) for the eight Big Manistee River tributaries (Figure 2.12). 

Slagle Creek followed by Peterson Creek were the tributaries with highest 

discharge estimates while Sand Creek and Eddington Creek were the lowest 

(Table 2.5).  

 

Channel Morphology 

Based on 2012 measurements, mean wetted width ranged from 1.8m (± 0.6) in 

Sand Creek to 7.5m (± 2.3) in Slagle Creek, and mean depth ranged from 0.11m 

(± 0.1) in Eddington and Sand Creek to 0.26m (± 0.2) in Slagle Creek (Table 

2.1). Boxplots of depth measurements indicate that although Arquilla and Hinton 

Creeks had lower mean depths, there were some pools measuring more than 0.5 

meters deep (Figure 2.14). In 2011 areal percentage of pools ranged from 31.5% 

in Peterson Creek to 80.7% in Sand Creek, while riffles ranged from 2.3% in 

Sand Creek to 56.7% in Eddington Creek (Figure 2.10). Runs (also known as 

glides) were the lowest percentage of tributaries, with a mean areal percent of 
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19.6% (± 6.8) and a range from 13.4% in Cedar Creek to 31.7% in Slagle Creek. 

Channel geomorphic unit estimates based on longitudinal GPS mapping for 2012 

revealed that between 16% and 39% of tributary study sites were comprised of 

pool habitat, while riffles made up less of the area (mean = 16.8% ± 11.5) (Figure 

2.14). Sand Creek and Eddington Creek had the lowest percent riffles at 0.0% 

and 5.5%, respectively, while Peterson Creek had the highest at 30.5% of the 

total area. The dominant CGU was ‘run’ and ranged from 36.2% to 72.7%. Areal 

pool to riffle ratios between the reported literature values of 0.27 – 1.51 were 

observed in Cedar, Peterson, and Slagle Creek while remaining tributaries were 

either above this range as in the case for Arquilla, Eddington, Hinton, and 

Woodpecker Creek, or did not contain riffle habitat, such as for Sand Creek 

(Figure 2.15).  

 

Which Tributaries Best Match Arctic Grayling Habitat Conditions? 

To determine whether the Manistee River watershed is suitable for Arctic grayling 

reintroduction it is informative to characterize the state of abiotic conditions in 

Michigan waters prior to their extirpation (Chapter 1) as well as define the 

conditions where Arctic grayling continue to persist (especially in the western 

United States) and what conditions currently exist in Big Manistee River 

tributaries. Using the data collected in this study we scored each tributary based 

on whether the abiotic conditions fell within the ranges found for historical and 

existing conditions where grayling were/are found. We did not rank the different 
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environmental attributes so weighting was not assigned to a given category, 

although it should be noted that some conditions might be biologically more 

important to grayling than others (e.g. stream temperature verses areal pool: riffle 

ratio).  

 

Slagle, Arquilla, and Woodpecker Creeks received the highest score with 

fourteen (Arquilla and Woodpecker) and fifteen (Slagle) of sixteen abiotic 

conditions being met (Table 2.6). Cedar, Eddington, and Hinton Creeks met 

thirteen conditions, while Peterson Creek met twelve conditions. Sand Creek met 

the fewest conditions with six (Table 2.6). The one condition not considered in 

this study was winter habitat availability due to the timing of our sampling. It 

would be difficult to conclude winter conditions based on summer sampling, 

however, year round temperature logger data does suggest most tributary sites 

reached freezing temperatures during winter 2010/2011 (Table 2.7). Not all 

temperature loggers were located in deep pools that would potentially be used by 

grayling during winter months, but these data raise the question of whether these 

tributaries could act as winter habitat, and this warrants further investigation into 

conditions that exist from November to May. 

 

It is also important to discuss the reality that Big Manistee River tributaries may 

play different rolls for the various life stages of grayling. Slagle Creek, for 
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example, is the largest tributary in terms of mean width, depth, and velocity 

(Table 2.1), and may be one of the most suitable streams for adult Arctic grayling 

based on its size and depth. In contrast to Slagle Creek, all other tributaries are 

smaller and might be more suitable for the early Arctic grayling life stages. 

 

Overall, based on the habitat criteria and literature values used to quantify Arctic 

grayling habitat, it appears that Arquilla, Slagle, and Woodpecker Creeks may be 

the most suitable tributaries in this part of the watershed. Sand Creek is the 

tributary least predicted to support grayling (Table 2.6). 

 

Discussion and Further Considerations 

Based on the abiotic habitat assessment conducted, our study portion of the 

Manistee River watershed is within parametric ranges for where grayling are 

presently established in Alaska, Montana, and Canada (see chapter one Table 

1.1). We were able to assess the abiotic conditions of eight tributaries to the Big 

Manistee River between Hodenpyl and Tippy dams and compare those to 

conditions where grayling historically and currently exist. Once coupled with 

biotic conditions (food sources/abundance, competition with Salmonids) this 

glimpse of habitat observed during the three summers between 2011 and 2013 

will assist managers in determining if Arctic grayling reintroduction is appropriate.  
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One of the challenges in assessing the potential for Arctic grayling reintroduction 

is considering the most critical abiotic habitat components. In regards to this 

study, it is evident that water temperature in Big Manistee River tributaries during 

summer months is within the reported ranges for Arctic grayling (Figure 2.4), and 

likely would not be a limiting factor in the suitability of tributaries as habitat. 

However, this was not always the case for the mainstem, where temperatures 

were recorded at levels documented to cause avoidance in Arctic grayling 

(Wojcik 1955, Schallock 1966). Although Big Manistee River mainstem 

temperatures did not reach lethal levels as defined by Lohr et al. (1996), as water 

temperature exceeds 18-20oC there is an increased chance of physiological 

stress to grayling (Wojcik 1955, Tack 1980, Hubert et al. 1985, Lamothe and 

Peterson 2007). Despite this, we demonstrated that Big Manistee River 

tributaries create cool water microhabitat within the mainstem, lowering the 

temperature by as much as 8oC (Table 2.4). Coupling the cooling effects we 

observed near tributaries with available groundwater inputs within the Big 

Manistee River mainstem would allow for an approximation of the cool-water 

refugia that is potentially available to Arctic grayling during the warmest times of 

the year. The ability of fish to locate and utilize cool water microhabitat was 

illustrate by Baird and Krueger (2003) for Salmonids implanted with temperature 

sensors where the internal body temperature of brook and rainbow trout in the 

south branch of the Moose River, New York, averaged 2.3 and 4.0oC cooler, 
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respectively, than water temperatures measured ≥20oC. A similar situation is 

conceivable for grayling in the mainstem Big Manistee River during times when 

summer temperatures peak. 

 

Based on the results of this study I believe the availability of suitable spawning 

substrates will be the most limiting abiotic habitat components in Big Manistee 

River tributaries. As illustrated by McMichael (1990) and Suttle et al. (2004), 

increased substrate embeddedness can negatively impact spawning, and the 

survival of early life stage Salmonidae. Mean percent fines (0.25-2mm) in Big 

Manistee River tributary riffles ranged from 29-48% (Figure 2.9), which although 

below the limit for suitability (50%) as defined by Hubert et al. (1985), was above 

the optimal percentage (10%). It should be noted, however, that our study 

characterized entire tributary suitability rather than identifying specific habitat for 

reestablishment. Therefore it is plausible that spawning and rearing locations 

with optimal embeddedness (~10%) do exist within Big Manistee River 

tributaries.  

 

One of the many difficulties in research is capturing the temporal variability in a 

natural system, which is especially true for fluvial systems. We were able to 

characterize eight Big Manistee River tributaries as a snapshot of the conditions 

that can occur between seasons and years, and therefore care was taken in 
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interpreting results so as not to assume that the conditions we observed were 

fixed. This was particularly the situation for variables such as water 

velocity/discharge and quality (dissolved oxygen, pH, turbidity), which are 

strongly associated with changes in weather (e.g. rainfall events). With these 

challenges in mind this study was able to report what abiotic conditions were 

present and how they related to historical and contemporary Arctic grayling 

habitat. 

 

The implications of this research could be far reaching if used as a springboard 

towards bringing Arctic grayling back to the Manistee River watershed. 

Reintroduction as part of a Tribal Native Species Restoration Plan could 

strengthen and preserve the culture of the Little River Band of Ottawa Indians as 

well as foster a personal philosophy of conservation in tribal and non-tribal 

members. Additionally, anglers with a fondness for native species would be 

catching a fish more closely aligned with the natural state of the watershed than 

current non-native Salmonids. Efforts aimed at restoring and reintroducing 

populations of Arctic grayling in Montana have shown signs of success using 

remote site incubators to rear stocked Arctic grayling (Lamothe and Magee 

2004b, Magee et al. 2012). Similarly in the Pacific Northwest, there has been 

success at reintroducing spring Chinook salmon (Oncorhynchus tshawytscha) to 

Lookingglass Creek, part of the Snake River Watershed, through hatchery and 

captive broodstocks (Boe et al. 2010). Using studies such as the aforementioned 
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along with the body of literature available regarding successful reestablishment, 

reintroduction, and restoration of native fish species will help to ensure that the 

methods used in a potential reintroduction of Arctic grayling are suitable and offer 

the greatest chance of success. 

 

Along with supporting the goals of a native species restoration plan this research 

has collected data that could eventually become part of a watershed scale 

assessment. Since data for tributaries in this part of the watershed is limited, 

tribal, state, and federal government agencies can use this information as part of 

a management plan or monitoring program. Assessments of this unique 

landscape could foster future research related to potential effects of regional and 

global climate change or anthropogenic stressors (i.e. deforestation, watershed 

development) when compared to the current conditions.  

 

Many factors will dictate the future of grayling in the Manistee River watershed. 

Combing the results of this study with data for the biotic component (food 

sources, potential interacting species) will ultimately determine the likelihood of 

an attempt to reintroduce Arctic grayling to this part of the Manistee River 

watershed.  
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Figures 

 
Figure 2.1: Big Manistee River and Manistee River Watershed, Michigan. Location of 
watershed and river within the State of Michigan relative to other Lower Peninsula 
watersheds. Map layers sources: MiGDL and NOAA.  
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Figure 2.2: Manistee River watershed, Michigan study area. Study region and tributary sites 
(red lines) for (2011-2013) sampling. Map layers sources: MiGDL, USGS.
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Figure 2.3: Manistee River watershed, Michigan 2009-2013 temperature logger 
locations. Red and yellow marks represent temperature loggers located in tributaries 
and Big Manistee River mainstem, respectively. Map layers source: MiGDL.
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Figure 2.4: Big Manistee River, Michigan tributary and mainstem mean July temperature for 
2009-2013. Data is mean + stdev. The line at 18oC represents temperature at which Arctic 
grayling were observed to ‘avoid’ (Schallock 1966). The line at 25oC signifies temperature at 
which 50% survival of grayling acclimated to 20oC (Lohr et al 1996). Blue labels represent Big 
Manistee River tributaries, green labels represent Big Manistee River locations, and orange 
labels represent western systems that currently support grayling. MANISTEE-HOD and BIG 
HOLE RIVER, MT data from USGS gaging stations. PARSNIP,BC data from Water Survey of 
Canada. 
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Figure 2.5: July 2013 water temperatures above and below Slagle Creek, Wexford Co, Michigan. 
Data for mainstem temperature loggers located above, 33m below, and 66m below the confluence 
of Slagle Creek.

Slagle Creek

Date

07/01  07/08  07/15  07/22  07/29  

Te
m

pe
ra

tu
re

 (o C
)

10

15

20

25

Mainstem above confluence
Mainstem downstream confluence 33m
Mainstem downstream confluence 66m



 

 

64
 

 

 

Fi
gu

re
 2

.6
: L

on
gi

tu
di

na
l s

ur
fa

ce
 te

m
pe

ra
tu

re
 o

f B
ig

 M
an

is
te

e 
R

iv
er

, M
ic

hi
ga

n 
ac

ro
ss

 tr
ib

ut
ar

y 
co

nf
lu

en
ce

s.
 In

 J
ul

y 
20

13
 te

m
pe

ra
tu

re
 lo

gg
er

 w
as

 re
le

as
ed

 u
ps

tre
am

 e
ac

h 
co

nf
lu

en
ce

 a
nd

 a
llo

w
ed

 to
 

dr
ift

 d
ow

ns
tre

am
.



 

 

65
 

 

 
Fi

gu
re

 2
.7

: B
ig

 M
an

is
te

e 
R

iv
er

, M
ic

hi
ga

n 
tri

bu
ta

ry
 s

ub
st

ra
te

 c
om

po
si

tio
n 

D
at

a 
ba

se
d 

on
 m

od
ifi

ed
 W

ol
m

an
 p

eb
bl

e 
co

un
ts

 c
on

du
ct

ed
 in

 2
01

1 
an

d 
20

12
. B

la
ck

 li
ne

 re
pr

es
en

ts
 w

ha
t i

s 
be

lie
ve

d 
to

 b
e 

th
e 

op
tim

al
 p

er
ce

nt
ag

e 
of

 s
pa

w
ni

ng
 

si
te

s 
as

 g
ra

ve
l/p

eb
bl

e 
(H

ub
er

t e
t a

l 1
98

5)
. L

ik
ne

s 
an

d 
G

ou
ld

 (1
98

7)
 d

et
er

m
in

ed
 d

om
in

an
t s

ub
st

ra
te

 in
 ty

pi
ca

l g
ra

yl
in

g 
ha

bi
ta

t t
o 

be
 g

ra
ve

l/p
eb

bl
e.

  
 

 
 



 

 66  

 

 

Figure 2.8: Median pebble diameter (D50) within Big Manistee River, Michigan 
tributaries. Based on modified Wolman Pebble Counts from 2011 and 2012. Sand Cree
2012 included an additional upstream site that was not sampled in 2011. Gray like 
represents the minimum and maximum observed median pebble size in the Big Hole 
River, MT by Lamothe and Peterson (2007). 
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Figure 2.9: Percent fine substrate (0.25mm-2mm) in riffles and runs. Based on bulk 
shovel samples in 2012. Data represents mean plus standard deviation from bulk shovel 
samples of Big Manistee River tributaries. Hubert et al. (1985) determined less than 50% 
fines within spawning sites was optimal for newly emerged grayling (gray line). 
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Figure 2.10: Big Manistee River, Michigan tributary basic water quality. All 
values represent mean plus standard deviation for data collected in 2011 and 
2012. Gray line for turbidity is the EPA maximum based on reference sites in 
sub-ecoregion VIII. Gray lines for pH and dissolved oxygen represent the range 
of values in literature where grayling are found. 
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Figure 2.11: Big Manistee River, Michigan tributary mean velocities Data represents 2012 
mean and standard deviation in early (May-June), middle (June-July), and late (July-
August) summer. Lower line represents velocity measured in site supporting grayling by 
Liknes and Gould (1987). Upper line is the velocity that Vincent (1962) believed to be the 
maximum typical velocity that would be observed in a grayling river. 
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Figure 2.12: Big Manistee River, Michigan tributary mean discharges. Data represents 2012 
mean and standard deviation for early (May-June), middle (June-July), and late (July-August) 
summer. 
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Figure 2.13: Big Manistee River, Michigan tributary boxplot of measured channel depths. 
Data from 2012 site transects. Boxplots represent 25th, 50th, 75th percentile with 10th and 
90th percentile as whiskers. Measurements outside of 10-90th percentile marked as black 
dots. Gray line represents the mean depth (solid) and standard deviation (dashed) for Big 
Hole River, MT sites containing grayling (Liknes and Gould 1987).
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Figure 2.15: Big Manistee River, Michigan tributary areal pool to riffle ratio. Data from 2012 

areal 

channel geomorphic unit measurements. Gray lines represent the range for grayling habitat in Big 
Hole River (Liknes and Gould 1987).
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Table 2.5: Big Manistee River, Michigan 2012 tributary discharges. Data represents (mean + 
standard deviation) for early (May-June), middle (June-July), and Late (July-August) summer.

 

 

Tributary Early Discharge (m3/s) Middle Discharge (m3/s) Late Discharge (m3/s)

Arquilla Creek 0.09 (0.03) 0.07 (0.03) 0.09 (0.03)
Cedar Creek 0.05 (0.03) 0.03 (0.02) 0.04 (0.02)
Eddington Creek 0.03 (0.01) 0.03 (0.01) 0.04 (0.00)
Hinton Creek 0.11 (0.06) 0.06 (0.03) 0.09 (0.06)
Peterson Creek 0.17 (0.12) 0.09 (0.05) 0.13 (0.07)
Sand Creek 0.01 (0.00) 0.01 (0.00) 0.01 (0.00)
Slagle Creek 0.54 (0.35) 0.52 (0.29) 0.52 (0.31)
Woodpecker Creek 0.09 (0.03) 0.07 (0.02) 0.10 (0.03)
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Table 2.7: Big Manistee River, Michigan tributaries minimum 
recorded temperature for winter 2011/2012. No data was 
available for Cedar Creek and Slagle Creek. 

 

 

 

Temperature Logger Location 2010/2011 Minimum 
Temperature (oC)

Arquilla Creek 0.5
Cedar Creek -
Eddington Creek 0.0
Hinton Creek -0.1
Peterson Creek -0.1
Sand Creek 0.0
Slagle Creek -
Woodpecker Creek 0.5
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