Dissertations, Master's Theses and Master's Reports - Open

Dissertations, Master's Theses and Master's Reports

2014

Comparison of Computer-Based and Optical Face Recognition **Paradigms**

Abdulaziz A. Alorf Michigan Technological University

Follow this and additional works at: https://digitalcommons.mtu.edu/etds

Part of the Electrical and Computer Engineering Commons, Optics Commons, and the Robotics

Commons

Copyright 2014 Abdulaziz A. Alorf

Recommended Citation

Alorf, Abdulaziz A., "Comparison of Computer-Based and Optical Face Recognition Paradigms", Master's Thesis, Michigan Technological University, 2014.

https://doi.org/10.37099/mtu.dc.etds/743

Follow this and additional works at: https://digitalcommons.mtu.edu/etds

Part of the Electrical and Computer Engineering Commons, Optics Commons, and the Robotics Commons

COMPARISON OF COMPUTER-BASED AND OPTICAL FACE RECOGNITION PARADIGMS

Ву

Abdulaziz A. Alorf

A THESIS

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

In Electrical Engineering

MICHIGAN TECHNOLOGICAL UNIVERSITY

2014

This thesis has been approved in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE in Electrical Engineering.

Department of Electrical and Computer Engineering

Thesis Advisor: Professor, Michael C. Roggemann

Committee Member: Associate Professor, Christopher T. Middlebrook

 ${\bf Committee\ Member:}\quad Assistant\ Professor,\ Timothy\ Havens$

Committee Member: Associate Professor, Aleksandr V. Sergeyev

Department Chair: Professor, Daniel R. Fuhrmann

To my mother, father and wife.

Contents

Contents

Li	st of	Figures xii
Li	st of	Tables
A	cknov	vledgements xix
Αl	bstra	et
1	Intr	oduction
	1.1	Background
		1.1.1 Digital Processing
		1.1.2 Optical Processing
	1.2	Problem Statement
	1.3	Technical Approach
		1.3.1 Digital Model
		1.3.1.1 Introduction
		1.3.1.2 Image Compression
		1.3.1.3 Face Recognition
		1.3.1.4 Image Detection
		1.3.2 Optical Model
		1.3.2.1 Introduction
		1.3.2.2 Face Recognition
		1.3.2.3 Object Detection
	1.4	v ·
	1.5	Organization
2	The	oretical Background
	2.1	Preview
	2.2	Digital Processing
		2.2.1 Introduction

viii Contents

2.2.2	A Princ	ipal Components Analysis (PCA) Algorithm	7
	2.2.2.1	Introduction	7
	2.2.2.2	Analysis of the PCA Algorithm	8
	2.2.2.3	· ·	10
		2.2.2.3.1 Taking All Eigenvectors as Principal Com-	
		ponents for Doing PCA	14
	2.2.2.4	-	15
	2.2.2.5	Reconstruction of the Data Set D of the Example in	
			16
		2.2.2.5.1 Using All Eigenvectors for Reconstructing	
		ŭ ŭ	16
	2.2.2.6		17
	2.2.2.7		20
2.2.3	An Imp		21
	2.2.3.1		21
	2.2.3.2		21
	2.2.3.3	Applying IPCA on the Example in Sub-subsection 2.2.2.3	22
2.2.4	Compar		22
2.2.5	Applica	tions of the PCA and IPCA Algorithms	23
	2.2.5.1	Introduction	23
	2.2.5.2	Image Compression	23
	2.2.5.3	Face Recognition	23
			25
	2.2.5.4	Image Detection	26
2.2.6	Perform	ance Analysis of the PCA and IPCA Algorithms 2	26
	2.2.6.1	Introduction	26
	2.2.6.2	Analysis of Compression Performance	27
		2.2.6.2.1 Introduction	27
		2.2.6.2.2 Speed of Compression and Reconstruction	27
			27
		2.2.6.2.4 Size of Compression	27
		2.2.6.2.4.1 Introduction	27
		2.2.6.2.4.2 Information Rate	27
		2.2.6.2.4.3 Mean Squared Error (MSE) of	
		Compressed Images	28
	2.2.6.3	Analysis of Recognition Performance	31
		2.2.6.3.1 Introduction	31
		2.2.6.3.2 Speed of Recognition	31
		2.2.6.3.3 Error Rate	31
	2.2.6.4	Analysis of Detection Performance	31
		2.2.6.4.1 Introduction	31
		2.2.6.4.2 Speed of Detection	32

Contents

				2.2.6.4.3	Error Rate		32
	2.3	Analog	g Optical	Information	on Processing	· · · · · · · · · · · · · · · · · · ·	32
		2.3.1	Introdu	ction			32
		2.3.2	Coheren	at and Inco	herent Optic	al Image Processing Systems .	32
		2.3.3	Coheren	nt Optical I	information 1	Processing Systems	33
		2.3.4				r (JTC)	35
			2.3.4.1	Sampling	Issues		40
				2.3.4.1.1	Introduction	n	40
				2.3.4.1.2	Sampling of	f the Input Plane $P_1 \ldots \ldots$	40
				2.3.4.1.3	Sampling of	f the Back Focal Plane P_2	41
				2.3.4.1.4	Sampling of	f the Back Focal Plane P_3	43
			2.3.4.2	Applicati	ons of the J	ГС	44
				2.3.4.2.1	Introduction	n	44
				2.3.4.2.2	Face Recog	nition	44
					2.3.4.2.2.1	Setting up a Recognition Thresh-	
						old	45
				2.3.4.2.3		ection	45
			2.3.4.3			ormance	46
				2.3.4.3.1		n	46
				2.3.4.3.2		Recognition Performance	46
					2.3.4.3.2.1	1 8	
				00400		formance	46
				2.3.4.3.3		Detection Performance	47
					2.3.4.3.3.1	1	4 -
						formance	47
3	Mo	delling					49
	3.1						49
		3.1.1		_			49
		3.1.2				thm to Images	49
		3.1.3				ithm to Images	55
		3.1.4	Compar	rison of the	PCA and II	PCA Algorithms	56
		3.1.5	Image (Compression	n		58
		3.1.6	Face Re	cognition			58
		3.1.7	Image I	Detection .			59
	3.2	Optica	al Modell	ing			60
		3.2.1	Introdu	ction			60
		3.2.2	Simulat	ion of the J	JTC		60
		3.2.3	Face Re	cognition			65
		3.2.4	Object 1	Detection			67

x Contents

4	Res	ults of	Performance Analysis	36
	4.1	Perfor	mance Results of the PCA and IPCA Algorithms	69
		4.1.1	Introduction	69
		4.1.2	Results of Compression Performance	69
			4.1.2.1 Speed of Compression and Reconstruction	69
			4.1.2.2 Quality of a Reconstructed Image	69
			4.1.2.3 Size of Compression	72
			4.1.2.3.1 Information Rate	72
			4.1.2.3.2 Mean Squared Error (MSE) of Compressed	
				72
		4.1.3	Results of Recognition Performance	73
			4.1.3.1 Speed of Recognition	73
				73
		4.1.4		74
			4.1.4.1 Speed of Detection	74
			4.1.4.2 Error Rate	75
	4.2	Result		76
		4.2.1		76
				76
		4.2.2	- ×	77
			4.2.2.1 Improvement of Detection Performance	77
5				7 9
	5.1			79
		5.1.1		79
		5.1.2	•	79
				79
			~ ·	79
			<u> </u>	80
				80
	5.2			81
		5.2.1		81
		5.2.2		81
	5.3			82
	5.4	Future	e Work	82
Bi	bliog	graphy		33
$\mathbf{A}_{\mathbf{J}}$	ppen	dix A	A Code for the Digital Model	35
$\mathbf{A}_{\mathbf{J}}$	ppen	dix B	Databases for the Digital and Optical Models 15	56
$\mathbf{A}_{\mathbf{l}}$	ppen	dix C	Results of the Digital Recognition	30

Contents

Appendix D	Results of the Digital Detection
Appendix E	Derivation of $U_2(x_2, y_2)$ for the JTC
Appendix F	A Code for the Optical Model
Appendix G	Results of the Optical Recognition
Appendix H	Results of the Optical Detection
Appendix I	MSEs Plots of Reconstructing Some Training Faces 209
Appendix J	A Code for Optimizing the Optical Model Database 217
Appendix K	Authorizations for Using People Photos

List of Figures xiii

List of Figures

2.1	The plot of the data set D	10
2.2	The plot of the centered data set R	11
2.3	The plot of the centered data set R as well as the orthonormal eigenvectors	13
2.4	The projected centered data by using just the highest correlated eigen-	
2.5	vector v_1	1415
2.6	The reconstructed data by using just the highest correlated eigenvector	
	$oldsymbol{v}_1$	17
2.7	A normalized training face and its normalized corresponding unknown	
	face image	24
2.8	An unnormalized training face and its unnormalized corresponding un-	
	known face image.	25
2.9	The architecture for coherent optical information processing	34
2.10	The joint transform correlator: (a) Recording the filter; and (b) get-	
	ting the filter output	36
2.11	The bandwidths of the patterns of the cross-correlated field in the	
	output plane P_3 along the spatial coordinates x_3 and y_3	39
	The alignment of the input transparencies in the input plane P_1	41
2.13	The alignment of the patterns of the cross-correlated field in the output	
	plane P_3	42
3.1	The database of the training faces	50
3.2	The average histogram for all training faces	50
3.3	The application of the threshold on the training faces	51
3.4	The normalization of all training faces by means of the selected threshold.	52
3.5	The centered training faces	53
3.6	The average training face. Note that, this is a negative image	53

xiv List of Figures

3.7	The centered (with respect to the set of the training faces) training	
	faces. Note that, these are negative images.	54
3.8	The eigenfaces. Note that, these are negative images	56
3.9	A comparison between the biggest calculated eigenvalues by using the	
	PCA and IPCA algorithms as well as the calculated eigenvalues from	
	the covariance matrix for all training faces	57
3.10	Some samples of the tested images	59
3.11	A focused lens	61
3.12	The desired impulse response h	61
3.13	The object g	61
		62
	The incident intensity $I(x_2, y_2)$ on the back focal plane P_2	63
	The cross-correlated field $U_3(x_3, y_3)$ in the back focal plane P_3	64
	The adaptive filtering mask	64
	The filtered cross-correlated field in the back focal plane P_3	65
	The database of the impulses	66
	•	66
0.20	some sumpres of one expected to the terms of	
4.1	The plot of the mean squared errors (MSEs) of reconstructing train-	
	ing face number five for different selected eigenfaces compared with	
	resulted mean squared errors when the PCA and IPCA algorithms are	
	used	70
4.2	The reconstruction of training face number five by using the highest	
	correlated eigenface $(q = 1)$, the PCA eigenfaces $(q = 8)$, the IPCA	
	eigenfaces $(q = 7)$, and all eigenvectors as eigenfaces $(q = 2500)$; along	
	with mean squared errors resulted from reconstructing the training face	
	by using those eigenfaces	71
4.3	The rates of information for different selected eigenfaces compared with	
	resulted information rates when the PCA and IPCA algorithms are used.	73
4.4	The mean squared errors (MSEs) of compression for different selected	
	eigenfaces compared with resulted mean squared errors when the PCA	
	and IPCA algorithms are used	74
4.5	The error rates of recognition for different selected eigenfaces compared	
	with resulted error rates when the PCA and IPCA algorithms are used.	75
4.6	The error rates of detection for different selected eigenfaces compared	
	with resulted error rates when the PCA and IPCA algorithms are used.	76
4.7	The database of the optimal impulses for face recognition	77
4.8	The database of the optimal impulses for object detection	77
	·	
B.1	, 1 v	156
B.2	, 1 0	157
B.3	Images for Mr. Mansour Alshammari, 3^{rd} projection	157

List of Figures xv

B.4 B.5 B.6 B.7 B.8	Images for Mr. Methkir Alharthee, 1^{st} projection	157 158 158 158 159
B.9	Images for Mr. Mohammed Hanafy, 3^{rd} projection	159
I.1	The plot of the mean squared errors (MSEs) of reconstructing training face number one for different selected eigenfaces compared with resulted mean squared errors when the PCA and IPCA algorithms are	000
I.2	used	209
I.3	used	210
I.4	used	211
I.5	used	212
I.6	mean squared errors when the PCA and IPCA algorithms are used The plot of the mean squared errors (MSEs) of reconstructing training face number seven for different selected eigenfaces compared with resulted mean squared errors when the PCA and IPCA algorithms are	213
I.7	used	214
I.8	used	215
	used	216
K.1	The authorization for using the photos of Mr. Mansour Thuwaini Al-Shammari	231
K.2	The authorization for using the photos of Mr. Mathkar Alawi Alharthi	232

xvi List of Figures

 $\mathrm{K.3}$ $\,$ The authorization for using the photos of Mr. Mohamed Elsayed Hanafy.232

List of Tables xvii

List of Tables

2.1	The calculations of the VCR and TVC	12
2.2	The calculations of the IR and AIR	22
3.1	The calculations of the VCR and TVC	55
3.2	The calculations of the IR and AIR	57
3.3	The recognition of the tested images in Figure 3.10	58
3.4	The detection of the tested images in Figure 3.10	60
3.5	The recognition of the objects in Figure 3.20	66
3.6	The detection of the objects in Figure 3.20	67
5.1	The results of image compression	80
5.2	The results of face recognition	80
5.3	The results of face detection	81
5.4	The comparison between the digital and the optical models	82
C.1	The recognition of all 180 tested images by using the PCA algorithm.	160
D.1	The detection of all 180 tested images by using the PCA algorithm. $$.	166
G.1	The recognition of all 108 objects by using the joint transform correlator (JTC)	201
H.1	The detection of all 108 objects by using the joint transform correlator (JTC).	205

Acknowledgements

HERE are a number of people without whom this thesis might not have been written and to whom I am greatly indebted. I would like to take this opportunity to look back and acknowledge people who have helped to shape me into the successful young man I am today.

First of all, I am grateful to the Almighty God for all the blessings that you have bestowed on me.

A very special thank you to my parents who continue to grow, learn and develop; and who have been a source of encouragement and inspiration to me throughout my life.

To my dear wife, Hajar, who remains willing to engage with the struggle and to tolerate my long busyness in research. Thank you so much for your practical and emotional support.

A special note of thanks to my sponsor, Qassim University in Saudi Arabia for granting me this scholarship to pursue my graduate studies. Thank you from the bottom of my heart for supporting me since I was one of your students at the College of Engineering.

I would like to express my deepest appreciation to Prof. Sulaiman A. Al-Yahya, the vice president of Qassim University for planning, development and quality; and Dr. Abdulrahman F. Almarshoud, the dean of Engineering College at Qassim University; for their continuous support. You are a source of encouragement and inspiration for me. Everytime I visit or call, you try your best to push me forward regardless of any difficulty.

My journey here at Michigan Technological University has been challenging. I have enjoyed all of the opportunities that have come my way. I have acquired such an immense wealth of knowledge and experience throughout my time here that I will likely owe most of my future professional success to the four years I have spent up here in the freezing cold. I want to take this opportunity to send my warmest thanks to this institution.

I wish to express my sincere thanks to my advisor Prof. Michael C. Roggemann

for his kindness, expertise, sincerity, valuable guidance and encouragement. You have actively supported me in my determination to find and realize my potential and to make this contribution to our world. I recall that when I faced a problem in my research, I would email you with a description of the problem; then you sometimes replied with "Let's chat about that tomorrow in my office" which means that it is not an easy problem. I want to tell you that I really hate the word "chat" because it means that I have to afford more effort and time. I am really proud that you have directed my thesis.

I would like to say thank you to my friends Mr. Mohamed Elsayed Hanafy, Mr. Mathkar Alawi Alharthi and Mr. Mansour Thuwaini Al-Shammari for providing me with images of their faces to use in my research. It is impossible to forget that when I call you to schedule a session for taking some photos, you were willing to come and offer any time I needed. I really appreciate your cooperation.

I would like to thank Dr. Jeffrey B. Burl for providing me with essential suggestions on different aspects of my research.

I also want to thank Dr. Glen E. Archer for teaching me some powerful research tools. Thank you very much for offering me time and lots of effort.

Thanks with all of my heart to Dr. Imran Aslam and Mr. Ehsan Taheri for indispensable advice, information and support throughout my master's degree.

I take this opportunity to record my sincere thanks to my committee members Dr. Christopher T. Middlebrook, Dr. Timothy Havens and Dr. Aleksandr V. Sergeyev for their willingness to be on the committee and taking the time to work on my thesis.

I am also very grateful to Mr. Jim LaBeske and Ms. Jamie Peryam who knowingly and unknowingly have made my and my family's stay in Houghton a lot easier than we thought it was going to be.

Finally, I also place on record my sense of gratitude to one or all who directly or indirectly have lent their helping hand in this thesis or have supported me.

Abstract xxi

Abstract

HE main objectives of this thesis are to validate an improved principal components analysis (IPCA) algorithm on images; designing and simulating a digital model for image compression, face recognition and image detection by using a principal components analysis (PCA) algorithm and the IPCA algorithm; designing and simulating an optical model for face recognition and object detection by using the joint transform correlator (JTC); establishing detection and recognition thresholds for each model; comparing between the performance of the PCA algorithm and the performance of the IPCA algorithm in compression, recognition and, detection; and comparing between the performance of the digital model and the performance of the optical model in recognition and detection. The MATLAB © software was used for simulating the models.

PCA is a technique used for identifying patterns in data and representing the data in order to highlight any similarities or differences. The identification of patterns in data of high dimensions (more than three dimensions) is too difficult because the graphical representation of data is impossible. Therefore, PCA is a powerful method for analyzing data. IPCA is another statistical tool for identifying patterns in data. It uses the information theory for improving PCA. The joint transform correlator (JTC) is an optical correlator used for synthesizing a frequency plane filter for coherent optical systems.

The IPCA algorithm, in general, behaves better than the PCA algorithm in the most of the applications. It is better than the PCA algorithm in image compression because it obtains higher compression, more accurate reconstruction, and faster processing speed with acceptable errors; in addition, it is better than the PCA algorithm in real-time image detection due to the fact that it achieves the smallest error rate as well as remarkable speed. On the other hand, the PCA algorithm performs better than the IPCA algorithm in face recognition because it offers an acceptable error rate, easy calculation, and a reasonable speed. Finally, in detection and recognition, the performance of the digital model is better than the performance of the optical model.

Introduction

1.1 Background

1.1.1 Digital Processing

Principal components analysis (PCA) [1] and improved principal components analysis (IPCA) [2] are statistical tools frequently used for analyzing data. Their main applications are pattern recognition such as face detection and recognition, and data compression such as image compression.

PCA is a technique used for identifying patterns in data and representing the data in such a way that their similarities and differences are highlighted. The identification of patterns in data of high dimensions (more than three dimensions) is too difficult because the graphical representation of data is impossible. Therefore, PCA is a powerful method for analyzing data. The PCA algorithm starts with the creation of a data set and ends with the projection of the data on the eigenspace. A covariance matrix is computed for the data; in addition, the eigenvectors and eigenvalues of the covariance matrix are obtained. Eigenvectors associated with the biggest eigenvalues of the covariance matrix follow the most significant patterns of the data. Those eigenvectors are called the principle components of the data set. Therefore, the eigenvalues of the covariance matrix work as measures of how much information is contained in each of the principal components. The principal components form a feature vector matrix. In order to select principal components that form the feature vector matrix, the variance contribution rate (VCR) and the total variance contribution rate (TVC) (they are proposed in the IEEE paper presented in Reference [2]) are computed. When the TVC is significantly high then q eigenvectors associated with the biggest q eigenvalues can be selected. The feature vector matrix is used for projecting the data on the eigenspace. Finally, by projecting the data on the eigenspace, the PCA algorithm is completed.

IPCA is another statistical tool for identifying patterns in data. It is similar to PCA except for the way that it selects eigenvectors that form the feature vector matrix. It affords a new accurate method to measure the information content of the principal components based on the information theory for improving PCA. For measuring the degree of information content of the eigenvectors, two new concepts are used; the first is the information rate (IR) and the second is the accumulated information rate (AIR) (they are proposed in the IEEE paper presented in Reference [2]). When the AIR is significantly high then q eigenvectors associated with the biggest q eigenvalues can be selected.

1.1.2 Optical Processing

Spatially coherent light is going to be used in the optical model. Coherent optical systems are linear in complex amplitude; therefore, filtering processes can be performed by direct manipulation of complex amplitude appearing in the back focal plane of a Fourier transforming lens. There are at least two methods for synthesizing the frequency plane filter for coherent optical systems. One of these methods is by using the joint transform correlator (JTC), Reference [3], Section 8.5.

The JTC is an optical correlator used for synthesizing the frequency plane filter for coherent optical systems. This correlator was invented by Weaver and Goodman [4]. The filter is divided into two stages: recording the filter, and getting the filter output. The transparencies of the desired impulse response h and the data g (here it is called the object) to be filtered are aligned simultaneously in the input plane. They are then Fourier transformed together. At that point, a spatial light modulator (SLM) captures the intensity distribution of the transformed field. The intensity is then Fourier transformed again for producing the cross-correlated field in the output plane. The output field is composed of four terms; two terms respectively represent the crosscorrelation of the impulse response h and itself as well as the cross-correlation of the data g and itself; the third and fourth terms represent the cross-correlations of h and q. Lastly, the joint transform correlator has a great feature: its ability to change the filter impulse response quickly. Therefore, it is considered beneficial for real-time systems. On the other hand, its defect is that the input bandwidth of the data is reduced due to the filter impulse response being introduced simultaneously with the data to be filtered.

1.2 Problem Statement

The main objectives of this thesis are to validate the improved principal components analysis (IPCA) algorithm on images; designing and simulating a digital model for image compression, face recognition, and image detection by using the principal components analysis (PCA) algorithm and the IPCA algorithm; designing and simulating

an optical model for face recognition and object detection by using the joint transform correlator (JTC); establishing detection and recognition thresholds for each model; comparing between the performance of the PCA algorithm and the performance of the IPCA algorithm in compression, recognition and detection; and comparing between the performance of the digital model and the performance of the optical model in recognition and detection.

1.3 Technical Approach

1.3.1 Digital Model

1.3.1.1 Introduction

This subsection provides a general overview of technical approaches behind the application of the PCA and IPCA algorithms in image compression, face recognition, and image detection.

Here, the database for each algorithm is composed of some images of faces (training faces). The principal components that form the feature vector matrix are here called eigenfaces.

1.3.1.2 Image Compression

When some of the eigenvectors that are calculated from the covariance matrix for all training faces are selected to form the feature vector matrix then the dimensions of the reconstructed data set will be reduced. This implies that the PCA and IPCA algorithms work as compression. The algorithms are said to be lossy because a decompressed image is not exactly the same as the original one, but is generally worse.

Compression performance for each algorithm as analyzed from three points of view are the speed of compression and reconstruction, the quality of a reconstructed image, and the size of compression. The number of the eigenfaces that is used to compress and reconstruct the training faces mainly controls the processing speed of compression and reconstruction. When a small number of the eigenfaces is used to project and reconstruct the training faces then the processing speed will increase and vice versa. For measuring the quality of a reconstructed image, the mean squared error (MSE) between the image and its reconstruction can be computed. The size of compression can be measured in two ways: these are through the information rate and the mean squared error (MSE) of compressed images. The information rate measures how much information is present after compression compared with information present before compression; in other words, it measures the number of pixels after compression compared to before compression.

1.3.1.3 Face Recognition

The PCA and IPCA algorithms are used to recognize an unknown face image based on the database that contains the training faces. For doing face recognition, an unknown face image is taken. The training faces and the unknown face image are projected on the eigenspace by using the PCA or IPCA feature vector matrix. The Euclidean distance between the projected unknown face image and each projected training face is computed. Then the unknown face image is recognized as a training face, which has the minimum distance from the unknown face image.

Unfortunately, when the unknown face image does not have a similar training face then getting the minimum distance does not always mean that the unknown face image is recognized as a training face that has the minimum distance from the unknown face image. Therefore, a certain threshold must be used to increase the accuracy of recognition. For setting up a recognition threshold, the mean and standard deviation (the average distance from the mean to a point) are established for each training face. Then recognition can be updated as, when the obtained minimum distance between the unknown face image and a training face is less than or equal to the mean plus the standard deviation for the training face and bigger than or equal to the mean minus the standard deviation for the training face. At that point, the unknown face image is recognized as that training face; otherwise, it is an unknown face image.

Recognition performance can be analyzed from two points of view: these are the speed of recognition and the error rate. The number of selected eigenfaces that are used to recognize the unknown face image mainly controls the recognition speed. When the number of the selected eigenfaces decreases, the processing speed increases and vice versa. The error rate computes the percentage of error in recognition.

1.3.1.4 Image Detection

The PCA and IPCA algorithms are used to detect whether or not an unknown image contains a face based on a determined threshold for detection. Hence, in image detection, only a detection threshold is needed.

To obtain the detection threshold, the mean and the standard deviation are established for some images that contain faces. In regards to detection, an unknown image is taken. It is projected on the eigenspace and reconstructed again by using the PCA or IPCA feature vector matrix. Then, detection can be performed as if the Euclidean distance between the unknown image and its reconstruction is less than or equal to the computed mean plus standard deviation and bigger than or equal to the computed mean minus standard deviation then the unknown image is detected as a face image; otherwise, it is not a face image.

Detection performance can be analyzed from two points of view: these are the speed of detection and the error rate. The number of selected eigenfaces that are used to detect the unknown image mainly controls the detection speed. When the

number of selected eigenfaces decreases, the processing speed increases and vice versa. The error rate computes the percentage of error in detection.

1.3.2 Optical Model

1.3.2.1 Introduction

This subsection provides a general overview of technical approaches behind the application of the joint transform correlator (JTC) in face recognition and object detection.

1.3.2.2 Face Recognition

The joint transform correlator (JTC) is used to recognize an unknown face object based on a database of desired impulses. The database is composed of some images of faces (impulses). For face recognition, an unknown face object is picked. The cross-correlated field between the unknown face object and each impulse is obtained. Then, the unknown face object is recognized as an impulse, which has the biggest cross-correlation with the unknown face object among other impulses.

Unfortunately, when the unknown face object does not have a similar impulse response, getting the biggest cross-correlation does not always mean that the unknown face object is recognized as an impulse, which has the biggest cross-correlation with the unknown face object. Therefore, a certain threshold must be used to increase the accuracy of recognition. For setting up a recognition threshold, the mean and standard deviation (the average distance from the mean to a point) are established for each impulse. Then, recognition can be updated, when the biggest cross-correlation with an impulse is less than or equal to the mean plus the standard deviation for the impulse and bigger than or equal to the mean minus the standard deviation for the impulse then the unknown face object is recognized as that impulse response; otherwise, it is an unknown face object.

Recognition performance can be analyzed by calculating an error rate of recognition. The error rate computes the percentage of error in recognition.

1.3.2.3 Object Detection

The joint transform correlator (JTC) is used to detect whether or not an unknown object contains a face based on a determined threshold for detection. Hence, in object detection, only a detection threshold is needed.

To obtain the detection threshold, the mean and the standard deviation are established for some objects that contain faces. For doing detection, an unknown object is taken. The unknown object is cross-correlated with any impulse response. Then, detection can be performed as if the resulted cross-correlation is less than or equal to the computed mean plus standard deviation and bigger than or equal to the com-

puted mean minus standard deviation then the unknown object is detected as a face object; otherwise, it is not a face object.

Detection performance can be analyzed by calculating an error rate of detection. The error rate computes the percentage of error in detection.

1.4 Summary of Key Results

The IPCA algorithm, in general, behaves better than the PCA algorithm in the most of the applications. It is better than the PCA algorithm in image compression because it obtains higher compression, more accurate reconstruction, and faster processing speed with acceptable errors; in addition, it is better than the PCA algorithm in real-time image detection due to the fact that it achieves the smallest error rate as well as remarkable speed. On the other hand, the PCA algorithm performs better than the IPCA algorithm in face recognition because it offers an acceptable error rate, easy calculation, and a reasonable speed. Finally, in detection and recognition, the performance of the digital model is better than the performance of the optical model.

1.5 Organization

The remainder of this thesis is organized as follows:

- Chapter 1: provides a general overview of this thesis.
- Chapter 2: covers theoretical backgrounds behind the PCA and IPCA algorithms, their applications, and their performance in the applications. A comparison between the PCA and IPCA algorithms is also provided in this chapter. Finally, it shows a theoretical background for designing an optical model for object detection and face recognition; and theories behind the joint transform correlator (JTC), its applications, and its performance in the applications.
- Chapter 3: presents the simulations of the PCA and IPCA algorithms by using the MATLAB © software and comparison between the simulations. It also presents the simulations of the PCA and IPCA applications by using the MATLAB © software. Lastly, this chapter provides the simulations of the joint transform correlator (JTC) and its applications by using the MATLAB © software
- Chapter 4: covers the performance results of the PCA and IPCA algorithms in their applications. Also, this chapter provides the results of JTC performance in its applications.
- Chapter 5: presents a conclusion of this thesis.

Theoretical Background

2.1 Preview

Digital and optical image processing are areas used experimentally to establish solutions to given problems. In this chapter, theoretical backgrounds for a couple of digital and optical processing techniques are demonstrated.

2.2 Digital Processing

2.2.1 Introduction

Principal components analysis (PCA) and improved principal components analysis (IPCA) are statistical tools frequently used for analyzing data. Their main applications are pattern recognition such as face detection and recognition, and data compression such as image compression. It is found that IPCA acts better than PCA in the most of applications. The analysis of each one is covered in this section.

2.2.2 A Principal Components Analysis (PCA) Algorithm

2.2.2.1 Introduction

PCA is a technique used for identifying patterns in data and representing the data in such a way as to highlight their similarities and differences. The identification of patterns in data of high dimensions (more than three dimensions) is too difficult because the graphical representation of data is impossible. Therefore, PCA is a powerful method for analyzing data.

This subsection covers the steps that are needed for performing PCA on a set of data and reconstructing the data set along with examples; as well as the steps that are needed for performing PCA on images and reconstructing the images back. How and why the technique works are explained as well as what is happening at each step is demonstrated.

2.2.2.2 Analysis of the PCA Algorithm

The PCA algorithm is built up based on the following steps:

Step 1: getting some data.

Step 2: computing the mean vector \mathbf{m}_D of the data set as in Equation 2.1. Where \mathbf{D}_k is a column vector contains one data item such that $\mathbf{D}_k = \begin{bmatrix} x_k \\ y_k \end{bmatrix}$; and n is the total number of the data items.

$$\boldsymbol{m}_D = \frac{1}{n} \sum_{k=1}^n \boldsymbol{D}_k \tag{2.1}$$

Step 3: subtracting the mean from each of the data dimensions as in Equation 2.2. This produces a data set whose mean is zero which means the data set is centered. This step is really an important step for decreasing the error rate of face recognition.

$$R = [\boldsymbol{D}_1 - \boldsymbol{m}_D, \dots, \boldsymbol{D}_n - \boldsymbol{m}_D] \tag{2.2}$$

Step 4: calculating a covariance matrix as in Equation 2.3. The covariance matrix is real and symmetric. $\frac{1}{n-1}$ can be removed or left because it is just a normalization factor which affects all values by the same amount. The division on n-1 and not n because the data set is a sample of the population. It is found that gives an answer is very close to the answer that will result if the entire population is used. If the covariance matrix is calculated for the entire population then the division must be on n.

$$C = \frac{1}{n-1} \sum_{k=1}^{n} (\boldsymbol{D}_k - \boldsymbol{m}_D) (\boldsymbol{D}_k - \boldsymbol{m}_D)^T = \frac{1}{n-1} \times RR^T$$
 (2.3)

Step 5: obtaining the eigenvectors and eigenvalues of the covariance matrix C as in Equation 2.4 and Equation 2.5 respectively. Where the columns of the matrix A are the eigenvectors of C; the diagonal of the matrix Λ contains the eigenvalues of C; and d is the number of the dimensions of the data set.

$$A = [\boldsymbol{v}_1, \boldsymbol{v}_2, \boldsymbol{v}_3, \dots, \boldsymbol{v}_d] \tag{2.4}$$

$$\Lambda = \begin{bmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_d \end{bmatrix}, \quad \text{where } \lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_d \tag{2.5}$$

Since the covariance matrix C is a real and symmetric (Reference [5]; Pages 207 and 208; Theorems 5.9, 5.10, 5.11 and 5.12) $d \times d$ matrix then its eigenvectors form an orthonormal basis. Therefore, the matrix A is an orthonormal matrix.

Step 6: choosing principal components and forming a feature vector matrix. Eigenvectors associated with the biggest eigenvalues of the covariance matrix C follow the most significant patterns of the data. Those eigenvectors are called the principle components of the data set. Therefore, the eigenvalues of the covariance matrix C work as measures of how much information is contained in the principal components.

The feature vector matrix A_q represented in Equation 2.6 is an $d \times q (q < d)$ matrix that contains only q eigenvectors (principal components) from the matrix of eigenvectors A.

$$A_q = [\boldsymbol{v}_1, \boldsymbol{v}_2, \boldsymbol{v}_3, \dots, \boldsymbol{v}_q] \tag{2.6}$$

In order to select the principal components that form the feature vector matrix A_q , the variance contribution rate (VCR) and the total variance contribution rate (TVC) (they are proposed in the IEEE paper presented in Reference [2]) are computed as in Equation 2.7 and Equation 2.8 respectively. When the TVC is significantly high then q eigenvectors associated with the biggest q eigenvalues can be selected.

$$VCR_k\left(\%\right) = \frac{\lambda_k}{\sum_{k=1}^d \lambda_k} \times 100, \qquad k = 1, \dots, d$$
 (2.7)

$$TVC(\%) = \frac{\sum_{k=1}^{q} \lambda_k}{\sum_{k=1}^{d} \lambda_k} \times 100, \qquad q = 1, \dots, d$$
 (2.8)

Step 7: performing the principal components transform (also called the Hotelling or Karhunen-Loéve transform).

Equation 2.9 is used for projecting the data on the eigenspace. The columns of the matrix Y represent the coordinates of the projected data in the eigenspace.

$$Y = A_q^T R (2.9)$$

The mean of the matrix Y is $\mathbf{m}_Y = E\left[A_q^T R\right] = A_q^T \underbrace{E\left[R\right]}_{\mathbf{0}} = \mathbf{0}$. This has important

meaning in face recognition. In fact, Y gives the original centered data solely in terms of the selected principal components instead of the original axes. It is possible to express data in terms of any two perpendicular axes as shown in Reference [6], Page 167, Theorem 5.7.

Finally, by projecting the centered data on the eigenspace, the PCA algorithm is completely done.

2.2.2.3 An Example of the PCA Algorithm

The example moves simultaneously with the PCA steps illustrated in Sub-subsection 2.2.2.2 until a data set is transformed as follows:

Step 1: the two-dimensional data set D shown in Equation 2.10 is obtained for performing the PCA algorithm. The plot of the data is shown in Figure 2.1.

$$D = \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 2 & 1 & 5 & 2 & 6 & 5 & 10 & 7 & 11 & 8 \end{bmatrix}.$$
 (2.10)

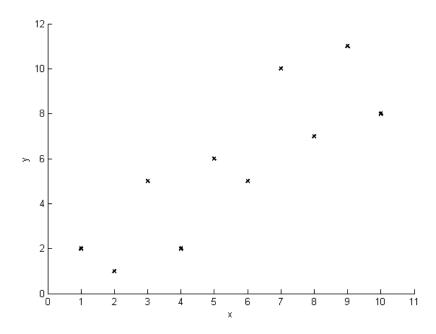


Figure 2.1: The plot of the data set D.

Step 2: the mean vector \mathbf{m}_D of the data set is computed as in Equation 2.11.

$$m_D = \frac{1}{10} \sum_{k=1}^{10} D_k = \begin{bmatrix} 5.50 \\ 5.70 \end{bmatrix}.$$
 (2.11)

Step 3: the mean is subtracted from each of the data dimensions then the centered data set R is obtained as in Equation 2.12. The plot of the centered data is shown in Figure 2.2.

$$R = [\boldsymbol{D}_1 - \boldsymbol{m}_D, \dots, \boldsymbol{D}_{10} - \boldsymbol{m}_D]$$

$$= \begin{bmatrix} -4.50 & -3.50 & -2.50 & -1.50 & -0.50 & 0.50 & 1.50 & 2.50 & 3.50 & 4.50 \\ -3.70 & -4.70 & -0.70 & -3.70 & 0.30 & -0.70 & 4.30 & 1.30 & 5.30 & 2.30 \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix}.$$
 (2.12)

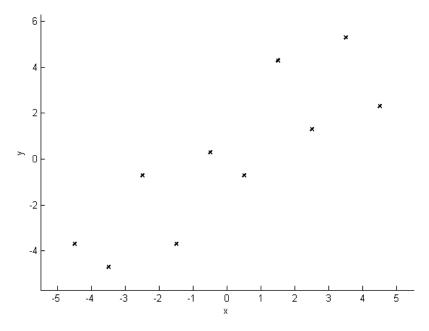


Figure 2.2: The plot of the centered data set R.

Step 4: the covariance matrix C is computed as in Equation 2.13. Since the non-diagonal elements of the covariance matrix are positive then both the x and y variables are expected to increase together.

$$C = \frac{1}{10 - 1} \sum_{k=1}^{10} (\mathbf{D}_k - \mathbf{m}_D) (\mathbf{D}_k - \mathbf{m}_D)^T$$

$$= \frac{1}{10 - 1} \times RR^T$$

$$= \begin{bmatrix} 9.1667 & 8.7222 \\ 8.7222 & 11.5667 \end{bmatrix}.$$
(2.13)

Step 5: the eigenvectors and eigenvalues of the covariance matrix C are computed

respectively as in Equation 2.14 and Equation 2.15.

$$A = [\mathbf{v}_1, \mathbf{v}_2]$$

$$= \begin{bmatrix} 0.6572 & -0.7538 \\ 0.7538 & 0.6572 \end{bmatrix}.$$
(2.14)

$$\Lambda = \left[\begin{array}{cc} \lambda_1 & 0 \\ 0 & \lambda_2 \end{array} \right], \quad \text{where } \lambda_1 \ge \lambda_2$$

$$= \begin{bmatrix} 19.1711 & 0 \\ 0 & 1.5623 \end{bmatrix}. \tag{2.15}$$

The centered data as well as the orthonormal eigenvectors are plotted together in Figure 2.3. Figure 2.3 shows how the data have totally a noticed pattern; and as anticipated from the covariance matrix, the two variables are increasing together. The eigenvectors are plotted as diagonal dotted lines. As expected, they are perpendicular to each other; more importantly they highlight patterns in the data where the highly correlated eigenvector passes through the middle of the points. It divides the points to two sets, like drawing a line of the best fit; and it describes the most significant relationship between the data dimensions. The other eigenvector follows little patterns of the data.

Step 6: for choosing principal components and forming the feature vector matrix A_q , the variance contribution rate (VCR) and the total variance contribution rate (TVC) are calculated in Table 2.1. Based on Table 2.1, the feature vector matrix in Equation 2.16 only contains the eigenvector which is associated with the biggest eigenvalue (the highly correlated eigenvector).

Table 2.1: The calculations of the VCR and TVC.

\overline{k}	λ_k	$VCR_{k}\left(\% ight)$	$TVC\left(\% ight)$
1	19.1711	92.4648	92.4649
2	1.5623	7.5352	100

$$A_q = \left[\begin{array}{c} 0.6576 \\ 0.7538 \end{array} \right]. \tag{2.16}$$

Therefore, by computing the eigenvectors of the covariance matrix C and selecting the highest correlated ones then lines that describe the data are extracted. The rest

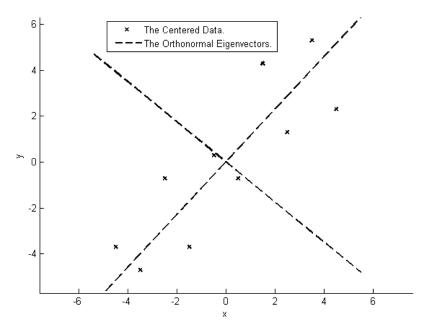


Figure 2.3: The plot of the centered data set R as well as the orthonormal eigenvectors.

of the steps involve transforming the data such that they are expressed in terms of the extracted lines.

Step 7: Equation 2.9 is used for performing the principal components transform; and the coordinates of the projected data in the eigenspace are shown in Equation 2.17.

$$Y^{T} = \begin{bmatrix} \text{Along } \mathbf{v}_{1} \text{ axis} \\ -5.7461 \\ -5.8427 \\ -2.1705 \\ -3.7746 \\ -0.1025 \\ -0.1991 \\ 4.2269 \\ 2.6228 \\ 6.2950 \\ 4.6908 \end{bmatrix}. \tag{2.17}$$

In Equation 2.17, it can be seen that the dimensions of the projected data are reduced because the highest correlated eigenvector is only selected and the lowest one is neglected then some information is lost here. The projected centered data are plotted as in Figure 2.4. As shown in Figure 2.4, the projected centered data represent

a series of data items along the highest correlated eigenvector axis v_1 without any information about the data along the axis of the lowest correlated eigenvector v_2 .

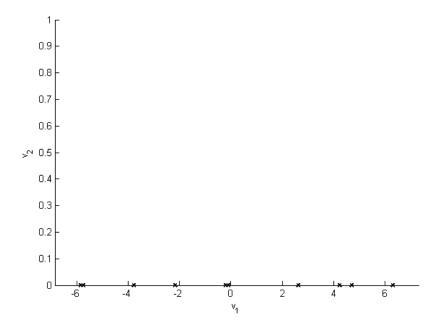


Figure 2.4: The projected centered data by using just the highest correlated eigenvector v_1 .

Therefore, in this step, the data are expressed in terms of the patterns between them where the patterns are the extracted lines that highly characterize the relationships between the data.

2.2.2.3.1 Taking All Eigenvectors as Principal Components for Doing PCA

We want to figure out what happens in the example presented in Sub-subsection 2.2.2.3 when all eigenvectors are selected as principal components?

The coordinates of the projected data in the eigenspace when all eigenvectors are taken to form the feature vector matrix A_q (i.e. $A = A_q$) are shown in Equation 2.18; and they are plotted in Figure 2.5. The projected data in Equation 2.17 is exactly equal to the first dimension of the projected data in Equation 2.18. The plot in Figure 2.5 and the plot of the original centered data in Figure 2.2 are typically the

same except that in Figure 2.5 the eigenvectors are the axes instead of x and y axes.

$$Y^{T} = \begin{bmatrix} \text{Along } \mathbf{v}_{1} \text{ axis} & \text{Along } \mathbf{v}_{2} \text{ axis} \\ -5.7461 & 0.9604 \\ -5.8427 & -0.4505 \\ -2.1705 & 1.4244 \\ -3.7746 & -1.3008 \\ -0.1025 & 0.5740 \\ -0.1991 & -0.8369 \\ 4.2269 & 1.6951 \\ 2.6228 & -1.0301 \\ 6.2950 & 0.8448 \\ 4.6908 & -1.8805 \end{bmatrix} . \tag{2.18}$$

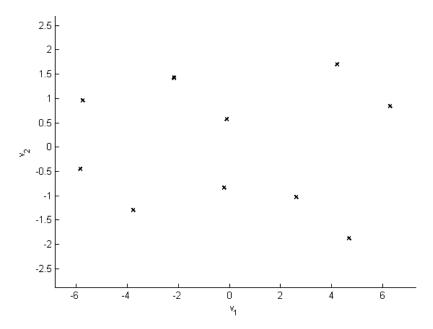


Figure 2.5: The projected centered data when all eigenvectors are used as principal components.

Therefore, there is no loss of information when all eigenvectors are selected as principal components for doing PCA.

2.2.2.4 Reconstruction of the Data Set D

For reconstructing the data set, Equation 2.9 is turned around to get the centered data set R as in Equation 2.19. Then the mean vector \mathbf{m}_D is added again to obtain

the reconstructed data set \widehat{D} as in Equation 2.20.

$$R = \left(A_q^T\right)^{-1} \times Y \tag{2.19}$$

$$\widehat{D} = \left(A_q^T\right)^{-1} \times Y + \left[\boldsymbol{m}_D, \dots, \boldsymbol{m}_D\right]_{d \times n}$$
(2.20)

Since A_q^T in Equation 2.20 is not a square matrix and it has orthonormal (implies orthogonality) column vectors then the left inverse (Reference [6], Page 21, Definition 1.11) can be used to obtain its inverse. Its inverse is found to be $\left(A_q^T\right)^{-1} = \left(A_q^T\right)^T = A_q$. Then Equation 2.20 can be simplified as in Equation 2.21.

$$\widehat{D} = A_q \times Y + [\boldsymbol{m}_D, \dots, \boldsymbol{m}_D]_{d \times n}$$
(2.21)

2.2.2.5 Reconstruction of the Data Set D of the Example in Sub-subsection 2.2.2.3

Equation 2.21 is used to reconstruct the data set D of the example in Sub-subsection 2.2.2.3 as in Equation 2.22. The reconstructed data are plotted in Figure 2.6. As seen in Figure 2.6, some information is lost from the reconstructed data due to some of the eigenvectors are used as principal components in performing PCA transform.

$$\widehat{D} = \begin{bmatrix} \text{Along } \boldsymbol{x} \text{ axis} & \text{Along } \boldsymbol{y} \text{ axis} \\ 1.7239 & 1.3689 \\ 1.6605 & 1.2960 \\ 4.0736 & 4.0640 \\ 3.0195 & 2.8549 \\ 5.4327 & 5.6228 \\ 5.3692 & 5.5500 \\ 8.2777 & 8.8860 \\ 7.2236 & 7.6769 \\ 9.6368 & 10.4449 \\ 8.5826 & 9.2357 \end{bmatrix} . \tag{2.22}$$

2.2.2.5.1 Using All Eigenvectors for Reconstructing the Data Set D

When all eigenvectors are selected as principal components for performing PCA in the example in Sub-subsection 2.2.2.3 then the original data set D will be reconstructed perfectly (i.e. $\widehat{D} = D$) without loss of information.

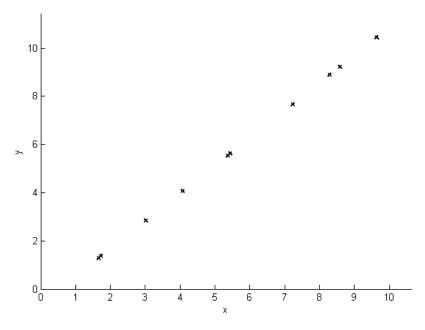


Figure 2.6: The reconstructed data by using just the highest correlated eigenvector v_1 .

2.2.2.6 Application of the PCA Algorithm to Images

The reason beyond performing the PCA algorithm on a simple database is to be able to provide plots of data for showing PCA behavior at each step. After demonstrating the PCA algorithm on a simple database, the idea can be generalized to see how the PCA algorithm works when the data set is composed of images. This idea is based on References [7] and [8]; and Reference [9], Section 12.5. The PCA algorithm can be applied to images as in the following steps:

Step 1: creating a database.

The database is composed of n, $N \times N$ images of faces (training faces) on black backgrounds such that I_k where k = 1, ..., n; and n is the total number of the training faces.

For decreasing the error rates of face detection and recognition, all face projections must be defined in the database; images must have the same size; images must have only faces and they are expanded to the boarders of the images; finally, images must have unified backgrounds in order to discriminate between the pixels occupying the backgrounds and the pixels occupying the faces.

Step 2: normalizing each training face I_k .

This normalization is for removing lighting effects on the training faces. It is very important to increase the accuracy of face recognition but it does not affect face

detection.

The normalization must be done just for the pixels occupying the faces to keep variations among the images just in the faces without the effects of the backgrounds. In order to block the pixels occupying the backgrounds for all training faces, a threshold must be picked to distinguish between the pixels occupying the faces and the pixels occupying the backgrounds. Note that, a number zero can not be taken to be the threshold although the training faces have black backgrounds because the MATLAB © software does not read a black color exactly zero then some error will occur.

According to the definition of an image histogram (Reference [10], Section 3.3), if a training face has a unified background then the biggest histogram of the intensity levels will be for the pixels occupying the backgrounds because pixels that have the same intensity levels are the pixels occupying the backgrounds of the training face. Therefore, the threshold can be selected based on the average histogram for all training faces.

Step 3: centering each training face I_k .

Since operations are performed on two-dimensional images then images must be centered before centering the whole database. This can be done by simply subtracting the mean of the pixels occupying the face for a training face from each pixel on the face as in Equation 2.23 where I_{C_k} is the k^{th} centered training face; and m_{f_k} is the mean of the pixels occupying the face for the k^{th} training face. By doing that the pixels on the face will have zero mean that means the face is centered.

$$I_{C_k} = I_k - m_{f_k}, \quad \text{where } k = 1, \dots, n$$
 (2.23)

Step 4: representing each centered training face I_{C_k} as a column image vector Γ_k . Each $N \times N$ centered training face is represented as an N^2 column image vector by transposing the rows of pixels then stacking them one after another to form a column vector as in Equation 2.24.

$$\Gamma_k = \begin{bmatrix} Row_1^T \\ Row_2^T \\ \vdots \\ Row_N^T \end{bmatrix}$$
(2.24)

Step 5: calculating the average training face vector Ψ as in Equation 2.25.

$$\Psi = \frac{1}{n} \sum_{k=1}^{n} \Gamma_k \tag{2.25}$$

Step 6: centering the set of the training faces.

The set of the training faces is centered by simply subtracting the mean training face vector $\mathbf{\Psi}$ from each centered training face vector $\mathbf{\Gamma}_k$ as in Equation 2.26 where $\mathbf{\Phi}_k$ is the k^{th} centered (with respect to the set of the training faces) training face. By doing

that the set of the training faces will have zero mean which means the database is centered.

$$\Phi_k = \Gamma_k - \Psi, \quad \text{where } k = 1, \dots, n$$
(2.26)

Step 7: calculating a covariance matrix for all training faces as in Equation 2.27 where $R = [\Phi_1, \Phi_2, \dots, \Phi_n]$. The covariance matrix can be equal to RR^T due to $\frac{1}{n}$ can be removed or left because it is just a normalization factor which affects all values by the same amount.

$$C = \frac{1}{n} \sum_{k=1}^{n} \mathbf{\Phi}_k \mathbf{\Phi}_k^T = RR^T$$
 (2.27)

Step 8: computing the eigenvectors and eigenvalues of the covariance matrix C. The covariance matrix C is $N^2 \times N^2$ matrix where N^2 is the total number of pixels along one of its dimensions. The covariance matrix is usually too big which makes the calculation of the eigenvalues and eigenvectors is very difficult if not impossible. Hence, it is not practical to calculate the eigenvalues and eigenvectors for the such matrix but we will calculate them in this work for examining the performance of the PCA and IPCA algorithms.

The dimensions of the covariance matrix can be reduced to the number of the training faces. Let's suppose the $n \times n$ matrix $R^T R$; the eigenvectors and eigenvalues of this matrix are found as in Equation 2.28 where \mathbf{u}_k is the k^{th} eigenvector of the matrix $R^T R$; and μ_k is the k^{th} eigenvalue.

$$R^T R \boldsymbol{u}_k = \mu_k \boldsymbol{u}_k, \quad \text{where } k = 1, \dots, n$$
 (2.28)

The relationship between the eigenvector \boldsymbol{v}_k of the matrix RR^T and the eigenvector \boldsymbol{u}_k of the matrix R^TR can be obtained as in Equation 2.29.

$$R^{T}R\boldsymbol{u}_{k} = \mu_{k}\boldsymbol{u}_{k}$$
 $RR^{T}R\boldsymbol{u}_{k} = \mu_{k}R\boldsymbol{u}_{k}$
 $CR\boldsymbol{u}_{k} = \mu_{k}R\boldsymbol{u}_{k}$
 $C\boldsymbol{v}_{k} = \mu_{k}\boldsymbol{v}_{k}, \quad \text{where } \boldsymbol{v}_{k} = R\boldsymbol{u}_{k}$ (2.29)

Equation 2.29 implies a couple of important notes are RR^T can have up to N^2 eigenvalues and eigenvectors; R^TR can have up to n eigenvalues and eigenvectors; and n eigenvectors of the matrix RR^T associated with the biggest eigenvalues are exactly identical to the eigenvectors of the matrix R^TR and they are related as, $\mathbf{v}_k = R\mathbf{u}_k$.

The generated eigenvectors by using the reduced covariance matrix must be normalized. The normalization can be performed by dividing the vector \mathbf{v}_k by its length such that $\frac{\mathbf{v}_k}{\|\mathbf{v}_k\|}$ then the length of the normalized eigenvector \mathbf{v}_k will be equal to one;

i.e., $||v_k|| = 1$. From now on, the reduced covariance matrix is going to be used for calculating desired eigenvectors and eigenvalues.

Step 9: selecting principal components and forming a feature vector matrix. Here, principal components are called eigenfaces. They constitute the calculated eigenvectors associated with the biggest eigenvalues.

The feature vector matrix A_q represented in Equation 2.30 is an $N^2 \times q$ matrix that contains only q eigenvectors (principal components) such that $q \ll N^2$. Since the number of calculated eigenvectors by using the reduced covariance matrix $R^T R$ is equal to the total number of the training faces then $q \leq n$.

$$A_q = [\boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \boldsymbol{v}_q], \quad \text{where } q \le n$$
 (2.30)

In order to select the eigenfaces that form the feature vector matrix A_q , the variance contribution rate (VCR) and the total variance contribution rate (TVC) (they are proposed in the IEEE paper presented in Reference [2]) are computed as in Equation 2.31 and Equation 2.32 respectively. When the TVC is significantly high then q eigenvectors associated with the biggest q eigenvalues can be selected.

$$VCR_k(\%) = \frac{\lambda_k}{\sum_{k=1}^n \lambda_k} \times 100, \qquad k = 1, \dots, n$$
 (2.31)

$$TVC(\%) = \frac{\sum_{k=1}^{q} \lambda_k}{\sum_{k=1}^{n} \lambda_k} \times 100, \qquad q = 1, \dots, n$$
 (2.32)

Step 10: performing the principal components transform (also called the Hotelling or Karhunen-Loéve transform).

Equation 2.33 is used for projecting the training faces on the eigenspace. The columns of the matrix Y represent the coordinates of the projected training faces in the eigenspace; and Ω^n contains the coordinates of the n^{th} projected training face.

$$Y = A_q^T R = \left[\mathbf{\Omega}^1 \dots \mathbf{\Omega}^n \right], \quad \text{where } \mathbf{\Omega}^n = \begin{bmatrix} w_1^n \\ \vdots \\ w_q^n \end{bmatrix}$$
 (2.33)

Finally, by projecting the training faces on the eigenspace, the PCA algorithm is completely done.

2.2.2.7 Reconstruction of the Original Images

For reconstructing the training faces, Equation 2.33 is turned around to get the centered training faces matrix R as in Equation 2.34. The average training face vector Ψ is added again to obtain the reconstructed centered training faces vectors as in Equation 2.35 where $\hat{\Gamma}_n$ is the n^{th} reconstructed centered training face vector.

Also, the means of the pixels occupying the faces are added to get the reconstructed training faces vectors as in Equation 2.36 where \hat{I}_n is the n^{th} reconstructed training face vector. Finally, \hat{I}_n can be represented in the same manner as in Step 4, Subsubsection 2.2.2.6; to obtain the reconstructed training face \hat{I}_n .

$$R = A_q Y (2.34)$$

$$\left[\widehat{\mathbf{\Gamma}}_{1} \dots \widehat{\mathbf{\Gamma}}_{n}\right] = A_{q} Y + \left[\mathbf{\Psi} \dots \mathbf{\Psi}\right]_{N^{2} \times n}$$
(2.35)

$$\left[\widehat{\boldsymbol{I}}_{1} \dots \widehat{\boldsymbol{I}}_{n}\right] = A_{q} Y + \left[\boldsymbol{\Psi} \dots \boldsymbol{\Psi}\right]_{N^{2} \times n} + \left[m_{f_{1}} \dots m_{f_{n}}\right]$$
(2.36)

2.2.3 An Improved Principal Components Analysis (IPCA) Algorithm

2.2.3.1 Introduction

IPCA is another statistical tool for identifying patterns in data. It is typically like PCA except in the way of selecting eigenvectors that form the feature vector matrix A_q . It affords a new accurate method to measure the information content of principal components based on the information theory for improving PCA. IPCA acts better than PCA in the most of applications.

2.2.3.2 Analysis of the IPCA Algorithm

In order to estimate the degree of information content of eigenvectors, the concepts of Shannon information theory are fully used then two new concepts called the possibility information function (PIF) and the possibility information entropy (PIE) are obtained.

Eigenvalues can be transformed as in Equation 2.37 where d is the number of the dimensions of the data set. In Equation 2.37, it can be seen that $0 \le \rho_k \le 1$, where $k = 1, \ldots, d$. Therefore, ρ_k has the numerical properties of probability. Being similar with the definition of entropy, the PIF and PIE can be defined respectively as in Equation 2.38 and Equation 2.39. In Equation 2.39, H(T) reflects the unevenness of ρ_k . According to the PIF and PIE, it can be obtained that firstly $I(\lambda_k)$ denotes the information content included by λ_k where the bigger λ_k is associated with the bigger $I(\lambda_k)$; Secondly, when all ρ_k are equal (i.e. uniformly distributed) then the PIE reaches its maximum.

$$\rho_k = 1 - \frac{\lambda_k}{\sum_{k=1}^d \lambda_k}, \qquad k = 1, \dots, d$$
(2.37)

$$I(\lambda_k) = -\log_2 \rho_k, \qquad k = 1, \dots, d$$
(2.38)

$$H(T) = H(\rho_1, \dots, \rho_d) = -\sum_{k=1}^{d} \rho_k \log_2 \rho_k$$
 (2.39)

For measuring the degree of information content of eigenvectors, two new concepts are used. The first one is the information rate (IR) shown in Equation 2.40; and the second one is the accumulated information rate (AIR) shown in Equation 2.41. When the AIR is significantly high then q eigenvectors associated with the biggest q eigenvalues can be selected.

$$IR_k\left(\%\right) = \frac{I\left(\lambda_k\right)}{\sum_{k=1}^d I\left(\lambda_k\right)} \times 100, \qquad k = 1, \dots, d$$
 (2.40)

$$AIR(\%) = \frac{\sum_{k=1}^{q} I(\lambda_k)}{\sum_{k=1}^{d} I(\lambda_k)} \times 100, \qquad q = 1, \dots, d$$
 (2.41)

2.2.3.3 Applying IPCA on the Example in Sub-subsection 2.2.2.3

The IR and AIR are computed for the eigenvectors of the covariance matrix C in the example in Sub-subsection 2.2.2.3; and the results are shown in Table 2.2. Based on Table 2.2, the feature vector matrix A_q in Equation 2.42 only contains the eigenvector which is associated with the biggest eigenvalue (the highly correlated eigenvector).

Table 2.2: The calculations of the IR and AIR.

\overline{k}	λ_k	$ ho_k$	$I\left(\lambda_{k} ight)$	$IR_{k}\left(\% ight)$	$AIR\left(\% ight)$
1	19.1711	0.0754	3.7293	97.0616	97.0616
2	1.5623	0.9247	0.1129	2.9384	100

$$A_q = \left[\begin{array}{c} 0.6576 \\ 0.7538 \end{array} \right]. \tag{2.42}$$

2.2.4 Comparison of the PCA and IPCA Algorithms

Comparison between the PCA and IPCA algorithms is based on the values of the TVC and AIR that determine the selected eigenvectors for the feature vector matrix A_q in Sub-subsection 2.2.2.3, Step 6; and in Sub-subsection 2.2.3.3.

The computed TVC and AIR are respectively equal to 92.4649% and 97.0616%. The AIR is big enough but the TVC is slightly small. Then the AIR is providing us with more confidence to pick the eigenvector which is associated with the biggest eigenvalue but the TVC is not. Therefore, the AIR tells us more about information contained in the eigenvectors of the covariance matrix C.

2.2.5 Applications of the PCA and IPCA Algorithms

2.2.5.1 Introduction

PCA and IPCA are applied in many fields. They have acceptable performance in many of them. In this subsection, the applications of the PCA and IPCA algorithms in image compression, face recognition and image detection are covered.

2.2.5.2 Image Compression

When some of the eigenvectors that are calculated from the covariance matrix C for all training faces are selected to form the feature vector matrix A_q then the dimensions of the reconstructed data set will be reduced. This implies that the PCA and IPCA algorithms work as compression. The algorithms are said to be lossy because a decompressed image is not exactly the same as the original one, but is generally worse.

2.2.5.3 Face Recognition

The PCA and IPCA algorithms are used to recognize an unknown face image based on the database which contains the training faces. For doing face recognition, an unknown face image is taken. It must have the same properties of the training faces. Hence, it must have the same size as the training faces; it has the same background; it has a projection as one of the training faces; finally, it has only face and it is expanded to the boarders of the image.

A couple of the operations explained in Sub-subsection 2.2.2.6 are applied to the unknown face image. The pixels occupying the face of the unknown face image are normalized and centered as in Step 2 and Step 3 respectively. The centered unknown face image is represented as a column image vector as in Step 4. The centered unknown image vector is centered in the set of the training faces by simply subtracting the mean training face vector Ψ from it as in Step 6. Then the unknown face image is projected on the eigenspace by using the PCA or IPCA feature vector matrix as in Step 10. The coordinates of the projected unknown face image in the eigenspace are shown in Equation 2.43.

$$\mathbf{\Omega}^{Unknown} = \begin{bmatrix} w_1^{Unknown} \\ \vdots \\ w_q^{Unknown} \end{bmatrix}$$
 (2.43)

The Euclidean distance between the coordinates of the projected unknown face image and the coordinates of each training face is computed as in Equation 2.44. d_k is the distance between the coordinates of the projected unknown face image $\Omega^{Unknown}$ and the coordinates of the k^{th} projected training face Ω^k ; and n is the total number of the training faces. Note that, the distances between the unknown face image and

the training faces are measured along the new axes derived from the PCA algorithm but not along the original axes. It turns out that these axes work much better for recognizing faces because PCA has given us the original training faces in terms of the differences and similarities between them.

$$d_k = \left\| \mathbf{\Omega}^{Unknown} - \mathbf{\Omega}^k \right\|, \quad \text{where } k = 1, \dots, n$$
 (2.44)

Then recognition can be performed by using Condition 2.1 where md_k is the minimum distance between the coordinates of the projected unknown face image $\Omega^{Unknown}$ and the coordinates of the k^{th} projected training face Ω^k .

Condition 2.1. If,

$$md_k = min([d_1, \ldots, d_n]),$$
 where k can be any number between 1 to n

Then the unknown face image is recognized as the k^{th} training face; otherwise, it is an unknown face image.

At this point, it can be answered why the normalization of the training faces as well as the centering of the database and faces increase the accuracy of face recognition. That because when the database and faces are centered, the set of the projected vectors in the eigenspace will have zero mean; that means the vectors begin from the same origin; then the distance between a training face and its corresponding unknown face image will be very small compared with other training faces. Regarding the normalization of the training faces, when a training face and its corresponding unknown face image are normalized (i.e. they have the same length), the distance between them will decrease as shown in Figure 2.7. On the other hand, if they are unnormalized (i.e. they do not have the same length), the distance between them will increase as shown in Figure 2.8.

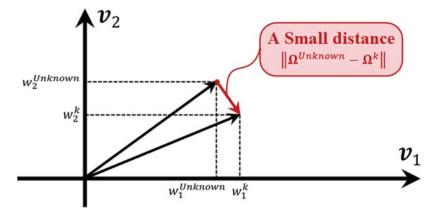


Figure 2.7: A normalized training face and its normalized corresponding unknown face image.

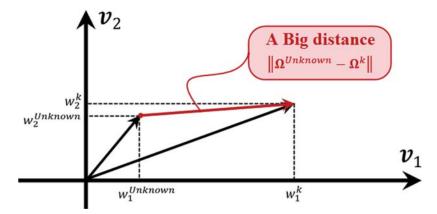


Figure 2.8: An unnormalized training face and its unnormalized corresponding unknown face image.

2.2.5.3.1 Setting up a Recognition Threshold

Unfortunately, when the unknown face image does not have a similar training face then getting the minimum distance md_k does not always mean that the unknown face image is recognized as the k^{th} training face. Therefore, a certain threshold must be used to increase the accuracy of recognition.

For setting up a recognition threshold, some different images are taken for each training face. These images are called tested images. They are known here just for picking the threshold. The distances between each training face and its corresponding tested images are obtained; and they are stacked in the row vectors $T_1, \ldots, T_k, \ldots, T_n$, where T_k contains the smallest expected distances because the k^{th} training face and its corresponding tested images have the same person and the same face projection.

Thereafter, the mean m_k and standard deviation STD_k (the average distance from the mean to a point) are computed for each row vector T_k of the smallest distances. By calculating the means and the standard deviations, a certain threshold is established for each training face.

Then the recognition threshold can be applied to recognize the unknown face image by using Condition 2.2.

Condition 2.2. If,

$$m_k - STD_k \le md_k \le m_k + STD_k$$
, where $k = 1, \dots, n$

Then the unknown face image is recognized as the k^{th} training face; otherwise, it is an unknown face image.

2.2.5.4 Image Detection

The PCA and IPCA algorithms are used to detect if an unknown image contains a face or not based on a determined threshold for detection. Hence, in image detection, only a detection threshold is needed.

To obtain the detection threshold, tested images are generated from the database of the training faces in the same manner as in Sub-sub-subsection 2.2.5.3.1. From Sub-subsection 2.2.2.6, the preprocessing operations illustrated in Step 2, Step 3, Step 4, Step 6 and Step 10 are respectively applied to the tested images. Then the projected centered (with respect to the set of the training faces) tested images are reconstructed again without adding the average training face neither the means of the pixels occupying the faces. Each reconstructed tested image is normalized and multiplied by the biggest intensity from its centered tested image; this is done in order to make each centered tested image and its reconstruction have approximately the same dynamic range.

The Euclidean distance between each centered tested image and its reconstruction is computed as in Equation 2.45 where a_k is the distance between the k^{th} centered tested image $\Phi_k^{Tested\ Im}$ and its reconstruction $\widehat{\Phi}_k^{Tested\ Im}$; as well as t is the total number of the tested images. Thereafter, the computed distances are placed in the row vector S. The mean m_S and the standard deviation STD_S (the average distance from the mean to a point) are calculated for the vector S. By calculating the mean and the standard deviation, the detection threshold is established.

$$a_k = \left\| \mathbf{\Phi}_k^{Tested \, Im} - \widehat{\mathbf{\Phi}}_k^{Tested \, Im} \right\|, \quad \text{where } k = 1, \dots, t$$
 (2.45)

For applying the detection threshold, the unknown image $I^{Unknown}$ is picked for detection. The Euclidean distance $a^{Unknown}$ between the centered unknown image $\Phi^{Unknown}$ and its reconstruction $\widehat{\Phi}^{Unknown}$ is computed. Then the unknown image $I^{Unknown}$ can be detected by means of Condition 2.3.

Condition 2.3. If,

$$m_S - STD_S \le a^{Unknown} \le m_S + STD_S$$

Then the unknown image $I^{Unknown}$ is detected as a face image; otherwise, it is not a face image.

2.2.6 Performance Analysis of the PCA and IPCA Algorithms

2.2.6.1 Introduction

In studying performance, attention is paid to study how each application behaves when the eigenfaces that are generated by using the PCA algorithm are used; the eigenfaces that are generated by using the IPCA algorithm are used; and when different eigenfaces are selected to form the feature vector matrix.

2.2.6.2 Analysis of Compression Performance

2.2.6.2.1 Introduction

Compression performance can be analyzed from three points of view are the speed of compression and reconstruction, the quality of a reconstructed image, and the size of compression. Each one is explained in details in this sub-subsection.

2.2.6.2.2 Speed of Compression and Reconstruction

The number of the eigenfaces that is used to compress and reconstruct the training faces mainly controls the processing speed of compression and reconstruction. When a small number of the eigenfaces is used to project and reconstruct the training faces then the processing speed will increase and vice versa.

2.2.6.2.3 Quality of a Reconstructed Image

For measuring the quality of a reconstructed image, the mean squared error (MSE) is computed as in Equation 2.46 to measure an error between the image I_k and its reconstruction \hat{I}_k ; where N is the number of rows and columns of the image I_k .

$$e_{MSE} = \frac{1}{N^2} \sum_{r=1}^{N} \sum_{c=1}^{N} \left[\hat{I}_k(r,c) - I_k(r,c) \right]^2$$
 (2.46)

2.2.6.2.4 Size of Compression

2.2.6.2.4.1 Introduction

The size of compression can be measured in two ways are an information rate and the mean squared error (MSE) of compressed images.

2.2.6.2.4.2 Information Rate

An information rate measures how much information is after compression compared with information before compression; in other words, it measures the number of pixels after compression compared with before. This can be accomplished as in

Equation 2.47.

Before Compression: After Compression

In Equation 2.47 the rows and columns for the pixels occupying the faces as well as the means of the pixels on the faces are not considered in the overall size after compression because the operation of face centering is not really important in image compression; and it does not have any effect if it is done or not; but it has been done here because it is important for other applications. The normalization is done in Equation 2.47 to make the overall information before compression is equal to 100% all the time in order to make comparison easier.

2.2.6.2.4.3 Mean Squared Error (MSE) of Compressed Images

The mean squared error (MSE) between the exact and approximate reconstruction of the training face vector I_k is calculated as follows,

Equation 2.48 shows the exact reconstruction of the training face vector I_k .

$$\boldsymbol{I}_k = \sum_{i=1}^n w_i^k \boldsymbol{v}_i + \boldsymbol{\Psi} \tag{2.48}$$

And, Equation 2.49 shows the approximate reconstruction of the training face vector I_k .

$$\hat{\boldsymbol{I}}_k = \sum_{i=1}^q w_i^k \boldsymbol{v}_i + \boldsymbol{\Psi} \tag{2.49}$$

The error between I_k and \hat{I}_k can be computed as in Equation 2.50.

$$e = I_k - \hat{I}_k$$

$$= \sum_{i=1}^n w_i^k \mathbf{v}_i + \Psi - \sum_{i=1}^q w_i^k \mathbf{v}_i - \Psi$$

$$= \sum_{i=1}^n w_i^k \mathbf{v}_i - \sum_{i=1}^q w_i^k \mathbf{v}_i$$

$$= \sum_{i=q+1}^n w_i^k \mathbf{v}_i$$
(2.50)

For computing the MSE of the linear estimate \hat{I}_k , Equation 2.51 can be used.

$$E\left[\boldsymbol{e}^{T}\boldsymbol{e}\right] = E\left[\left(\sum_{i=q+1}^{n} w_{i}^{k} \boldsymbol{v}_{i}\right)^{T} \left(\sum_{m=q+1}^{n} w_{m}^{k} \boldsymbol{v}_{m}\right)\right]$$

$$= E\left[\sum_{i=q+1}^{n} w_{i}^{k} \boldsymbol{v}_{i}^{T} \sum_{m=q+1}^{n} w_{m}^{k} \boldsymbol{v}_{m}\right]$$

$$= E\left[\sum_{i=q+1}^{n} \sum_{m=q+1}^{n} w_{i}^{k} w_{m}^{k} \boldsymbol{v}_{i}^{T} \boldsymbol{v}_{m}\right]$$

$$= \sum_{i=q+1}^{n} \sum_{m=q+1}^{n} E\left[w_{i}^{k} w_{m}^{k}\right] \boldsymbol{v}_{i}^{T} \boldsymbol{v}_{m}$$

$$(2.51)$$

To find $E\left[w_i^k w_m^k\right]$, a covariance matrix for the coordinates matrix Y of the projected

training faces must be computed as in Equation 2.52

$$C_Y = YY^T$$

$$= [A^T R] [A^T R]^T$$

$$= [A^T R] [R^T A]$$

$$= A^T \underbrace{RR^T}_C A$$

$$= A^T CA \qquad (2.52)$$

From Reference [3], Page 169, Theorem A.1.30; since C is a real and symmetric matrix as well as A is an orthonormal matrix then C_Y can be written as in Equation 2.53 where I is the identity matrix.

$$C_Y = A^T C A$$

$$= \underbrace{A^T A}_I \Lambda \underbrace{A^T A}_I$$

$$= I \Lambda I$$

$$= \Lambda$$

$$= \begin{bmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & 0 & \lambda_n \end{bmatrix}$$
(2.53)

Hence, from Equation 2.53, it can be concluded that,

$$E\left[w_i^k w_m^k\right] = \begin{cases} \lambda_i & \text{when } i = m\\ 0 & \text{when } i \neq m \end{cases}$$

And,

$$\boldsymbol{v}_i^T \boldsymbol{v}_m = \begin{cases} 1 & \text{when } i = m \\ 0 & \text{when } i \neq m \end{cases}$$
 Because \boldsymbol{v}_i and \boldsymbol{v}_m form an orthonormal basis.

Therefore, when i = m, the MSE between the exact and approximate reconstruction of the training face vector \mathbf{I}_k is obtained as in Equation 2.54.

$$E\left[\boldsymbol{e}^{T}\boldsymbol{e}\right] = \sum_{i=q+1}^{n} \sum_{m=q+1}^{n} E\left[w_{i}^{k} w_{m}^{k}\right] \boldsymbol{v}_{i}^{T} \boldsymbol{v}_{m}$$

$$= \sum_{i=q+1}^{n} E\left[\left(w_{i}^{k}\right)^{2}\right] \cdot 1$$

$$= \sum_{i=q+1}^{n} \lambda_{i}$$

$$(2.54)$$

2.2.6.3 Analysis of Recognition Performance

2.2.6.3.1 Introduction

Recognition performance can be analyzed from two points of view are the speed of recognition and an error rate. Each one is explained in details in this sub-subsection.

2.2.6.3.2 Speed of Recognition

The number of the selected eigenfaces that is used to recognize the unknown face image mainly controls the recognition speed. When the number of the selected eigenfaces decreases, the processing speed increases and vice versa.

2.2.6.3.3 Error Rate

The error rate computes the percentage of error in recognition. It can be computed as in Equation 2.55 where L is the total number of the tested images; SR is the total number of successes in the recognition of the tested images; FR is the total number of failures in the recognition of the tested images; and ER is the error rate.

$$ER\left(\%\right) = \frac{FR}{L} \times 100\tag{2.55}$$

2.2.6.4 Analysis of Detection Performance

2.2.6.4.1 Introduction

Detection performance can be analyzed from two points of view are the speed of detection and an error rate. Each one is explained in details in this sub-subsection.

2.2.6.4.2 Speed of Detection

The number of the selected eigenfaces that is used to detect the unknown image mainly controls the detection speed. When the number of the selected eigenfaces decreases, the processing speed increases and vice versa.

2.2.6.4.3 Error Rate

The error rate computes the percentage of error in detection. It can be computed as in Equation 2.56 where L is the total number of the tested images; SD is the total number of successes in the detection of the tested images; FD is the total number of failures in the detection of the tested images; and ER is the error rate.

$$ER\left(\%\right) = \frac{FD}{L} \times 100\tag{2.56}$$

2.3 Analog Optical Information Processing

2.3.1 Introduction

Analog optical information processing is an important area which recalls the linearity concepts of imaging systems in order to synthesize an optical model that can perform one or multiple functions. The focus of this section is about providing a theoretical background for designing an optical model for object detection and face recognition. Concentration will be limited to coherent optical models for some reasons will be mentioned in the next subsection. This section is based on Reference [3], Chapter 8.

2.3.2 Coherent and Incoherent Optical Image Processing Systems

This subsection shows the difference between the usage of spatially incoherent light and the usage of spatially coherent light in optical information processing. Spatially incoherent light has some big advantages but on the other hand it has severe disadvantages. The advantages of spatially incoherent light are:

- 1. It is free from coherent artifacts such as dust specks on optical components and the speckle phenomenon.
- 2. Data can be introduced to a system by using incoherent light sources such as light-emitting diode (LED) arrays or cathode-ray tube (CRT) displays; but in coherent systems, complicated and costly spatial light modulators (SLMs) are used to introduce data.

3. In general, incoherent systems are easier than coherent systems in physical implementation.

On the other hand, spatially incoherent light has disadvantages that make us prefer to use spatially coherent light in our model. The disadvantages of spatially incoherent light are:

- 1. An incoherent optical system does not have a frequency plane but a coherent optical system has a plane at a distance f from a lens is called a frequency plane or a focal plane. The absence of this plane makes the manipulation of an input spectrum is very difficult rather than just the direct manipulation of a spectrum on a back focal plane.
- 2. Incoherent optical systems are linear in intensity. The manipulation of intensity in optical processing systems is very complex if it is not impossible because intensity is a positive and real physical quantity. For instance, there is no a normal optical method to subtract two intensity patterns; but coherent optical systems are linear in complex amplitude; consequently, if one wants to subtract two complex amplitude patterns then the patterns can be added together with a π radian phase shift between them.
- 3. The spectrum of an incoherent image that is generated from an incoherent optical system always has the biggest spectral component at the origin. This makes a produced incoherent image has low contrast. Therefore, incoherent optical systems need a huge use of electronics in order to enhance an output incoherent image and makes it comparable to an output coherent image.

Due to these serious disadvantages, spatially coherent light is going to be used in our model.

2.3.3 Coherent Optical Information Processing Systems

We now present the coherent optical information processing model used for object detection and face recognition. From the last subsection, it is known that coherent optical systems are linear in complex amplitude; therefore, filtering processes can be performed by direct manipulation of complex amplitude appearing in the back focal plane of a Fourier transforming lens. There are a large number of system architectures that can do frequency domain filtering but a pretty conceptually straightforward system shown in Figure 2.9 is implemented. This model for coherent optical information processing is called 4f model because a distance that separates the input plane P_1 form the output plane P_3 is composed of four separate distances of length f. The length of this model from the point source S until the output plane is 5f.

The collimating lens L_1 is used to collimate light from the point source S. The input transparency is placed in the input plane P_1 against the collimating lens L_1 .

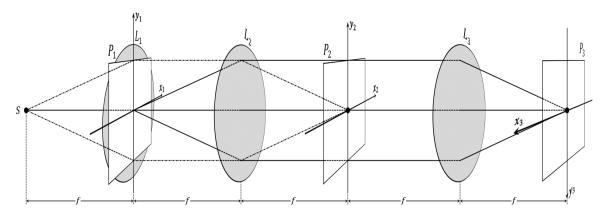


Figure 2.9: The architecture for coherent optical information processing.

The input plane is placed against the collimating lens in order to decrease the total length of the coherent model. The amplitude transmittance of the input transparency is $g(x_1, y_1)$. The input transparency is illuminated by a uniform normally incident plane (or spherical) wave of amplitude A. Then the complex amplitude distribution of the field just behind the input transparency (i.e. the field transmitted by the input transparency) is $U_1(x_1, y_1) = Ag(x_1, y_1)$. The Fourier transforming lens L_2 is Fourier transforming the illuminated input transparency in its back focal plane P_2 . A transparency is inserted in the back focal plane to modulate the amplitude transmittance over that plane. Then the complex amplitude distribution $U_2(x_2, y_2)$ of the Fourier transformed field can be found as in Equation 2.57.

$$U_{2}(x_{2}, y_{2}) = \frac{1}{j\lambda f} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} U_{1}(x_{1}, y_{1}) \exp^{-j\frac{2\pi}{\lambda f}(x_{1}x_{2} + y_{1}y_{2})} dx_{1} dy_{1}$$

$$= \frac{A}{j\lambda f} \underbrace{\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x_{1}, y_{1}) \exp^{-j\frac{2\pi}{\lambda f}(x_{1}x_{2} + y_{1}y_{2})} dx_{1} dy_{1}}_{f_{X} = \frac{x_{2}}{\lambda f} \& f_{Y} = \frac{y_{2}}{\lambda f}}$$

$$= \frac{A}{j\lambda f} G\left(\frac{x_{2}}{\lambda f}, \frac{y_{2}}{\lambda f}\right)$$

$$= k_{1} G\left(\frac{x_{2}}{\lambda f}, \frac{y_{2}}{\lambda f}\right)$$

$$= (2.57)$$

Where k_1 is a complex constant; λ is the light wavelength in meter (m); and $G\left(\frac{x_2}{\lambda f}, \frac{y_2}{\lambda f}\right)$ is the Fourier spectrum of the Fourier transformed field.

A desired filter can be synthesized and placed in the plane P_2 in order to manipulate $G\left(\frac{x_2}{\lambda f}, \frac{y_2}{\lambda f}\right)$. Let the transfer function of a synthesized filter be represented by H then the complex amplitude distribution in the back focal plane of the filter should be as in Equation 2.58 where k_2 is a complex constant.

$$U_f(x_2, y_2) = k_2 H\left(\frac{x_2}{\lambda f}, \frac{y_2}{\lambda f}\right)$$
(2.58)

The spectrum of the field just behind the transparency of the plane P_2 is $G\left(\frac{x_2}{\lambda f}, \frac{y_2}{\lambda f}\right) H\left(\frac{x_2}{\lambda f}, \frac{y_2}{\lambda f}\right)$. The Fourier transforming lens L_3 Fourier transforms the altered spectrum in its back focal plane P_3 . There is no an optical component does inverse Fourier transform; therefore, another Fourier transforming lens is used to produce the final complex amplitude distribution on the output plane P_3 . The usage of the two consecutive Fourier transforming lenses makes the coordinates of the output plane P_3 inverted (Reference [11], Page 25, "Application of the Fourier Transform"). The coordinates inversion problem can be overcome by inverting the coordinates of the output plane P_3 .

This coherent model has a disadvantage that vignetting can happen through performing the first Fourier transform. In order to overcome this problem, the input plane P1 can be placed against the Fourier transforming lens L_2 .

There are at least two methods for synthesizing the frequency plane filter for coherent optical systems. One of these methods is by using the joint transform correlator (JTC). This method is discussed in the next subsection.

2.3.4 The Joint Transform Correlator (JTC)

This correlator is used to synthesize the frequency plane filter in order to manipulate the spectrum on the back focal plane of the Fourier transforming lens L_2 . This method was invented by Weaver and Goodman [4] and called as the joint transform correlator. The filter architecture is shown in Figure 2.10.

The filter is divided to two stages: recording the filter and getting the filter output. In the recording process, the lens L_1 collimates light from the point source S. Two input transparencies are placed in the input plane P_1 . The first transparency is for the desired impulse response h and centered at the coordinate $\left(0, \frac{Y}{2}\right)$. The other transparency is for the data g to be filtered and centered at the coordinate $\left(0, -\frac{Y}{2}\right)$. Hence, their centers are separated by the distance Y. The input transparencies are illuminated by a uniform normally incident plane (or spherical) wave of amplitude A. Then the complex amplitude distribution of the field just behind the input transparencies (i.e. the field transmitted by the input transparencies) is obtained as in Equation 2.59.

$$U_1(x_1, y_1) = A \left[h\left(x_1, y_1 - \frac{Y}{2}\right) + g\left(x_1, y_1 + \frac{Y}{2}\right) \right]$$
 (2.59)

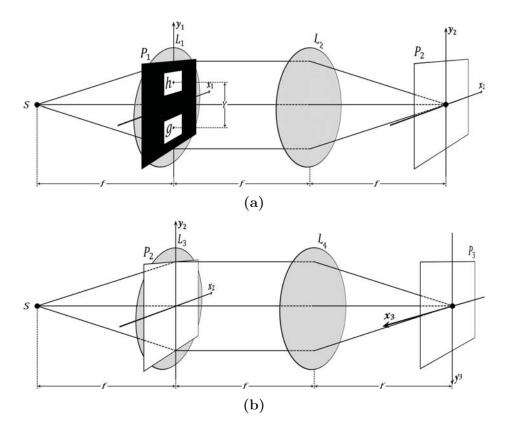


Figure 2.10: The joint transform correlator: (a) Recording the filter; and (b) getting the filter output.

The Fourier transforming lens L_2 is Fourier transforming the field transmitted by the input transparencies in its back focal plane P_2 . The complex amplitude distribution $U_2(x_2, y_2)$ of the Fourier transformed field is obtained as in Equation 2.60. The derivation of $U_2(x_2, y_2)$ is shown in Appendix E.

$$U_2(x_2, y_2) = \frac{A}{j\lambda f} \exp^{-j\frac{\pi Y}{\lambda f}y_2} H\left(\frac{x_2}{\lambda f}, \frac{y_2}{\lambda f}\right) + \frac{A}{j\lambda f} \exp^{j\frac{\pi Y}{\lambda f}y_2} G\left(\frac{x_2}{\lambda f}, \frac{y_2}{\lambda f}\right)$$
(2.60)

From linear algebra, if Z_1 and Z_2 are complex numbers; as well as Z_1^* and Z_2^* are their conjugates respectively then $|Z_1 + Z_2|^2 = |Z_1|^2 + |Z_2|^2 + (Z_1Z_2^* + Z_2Z_1^*)$. Using this operation on complex numbers and another operation is that the conjugate of the exponential function \exp^{jx} is equal to \exp^{-jx} (conversely, the conjugate of the exponential function \exp^{-jx} is equal to \exp^{jx}) then the incident intensity on the back

focal plane of the lens L_2 is computed as in Equation 2.61.

$$I(x_{2}, y_{2}) = \frac{A^{2}}{\lambda^{2} f^{2}} \left[\left| H\left(\frac{x_{2}}{\lambda f}, \frac{y_{2}}{\lambda f}\right) \right|^{2} + \left| G\left(\frac{x_{2}}{\lambda f}, \frac{y_{2}}{\lambda f}\right) \right|^{2} + H\left(\frac{x_{2}}{\lambda f}, \frac{y_{2}}{\lambda f}\right) G^{*}\left(\frac{x_{2}}{\lambda f}, \frac{y_{2}}{\lambda f}\right) \exp^{-j\frac{2\pi Y}{\lambda f}y_{2}} + H^{*}\left(\frac{x_{2}}{\lambda f}, \frac{y_{2}}{\lambda f}\right) G\left(\frac{x_{2}}{\lambda f}, \frac{y_{2}}{\lambda f}\right) \exp^{j\frac{2\pi Y}{\lambda f}y_{2}} \right]$$

$$(2.61)$$

Note that, the recorded transparency in the plane P_2 is supposed to have an amplitude transmittance that is proportional to the intensity $I(x_2, y_2)$. To obtain the output of the filter, the recorded transparency is illuminated by a uniform normally incident plane (or spherical) wave of amplitude B. The complex amplitude distribution of the field just behind the recorded transparency (i.e. the field transmitted by the recorded transparency) is $U_r(x_2, y_2) = BI(x_2, y_2)$. The lens L_4 is Fourier transforming the transmitted field in its back focal plane P_3 . The complex amplitude distribution of the Fourier transformed field in the output plane P_3 is computed in Equation 2.62.

$$U_{3}(x_{3}, y_{3}) = \mathfrak{F}\{U_{r}(x_{2}, y_{2})\}\$$

$$= B \mathfrak{F}\{I(x_{2}, y_{2})\}$$
(2.62)

From linear algebra, if Z_1 is a complex number and Z_1^* is its conjugate then $|Z_1|^2 = Z_1 Z_1^*$. Using this operation on complex numbers; and using another properties and theorems of Fourier transform are the convolution theorem (Reference [12], Page 37, Property 12), the complex conjugation property (Reference [12], Page 28, Property 3), and the property that the Fourier transform of the shifted impulse response $\delta (t - t_o)$ is equal to $\exp^{-j2\pi ft_o}$ where t_o is the amount of the shift; then the field in the back focal plane P_3 is found as in Equation 2.63.

$$U_{3}(x_{3}, y_{3}) = B \frac{A^{2}}{\lambda^{2} f^{2}} \left[h(x_{3}, y_{3}) \otimes h^{*}(-x_{3}, -y_{3}) + g(x_{3}, y_{3}) \otimes g^{*}(-x_{3}, -y_{3}) + h(x_{3}, y_{3}) \otimes g^{*}(-x_{3}, -y_{3}) \otimes \delta(x_{3}, y_{3} - Y) + h^{*}(-x_{3}, -y_{3}) \otimes g(x_{3}, y_{3}) \otimes \delta(x_{3}, y_{3} + Y) \right]$$

$$(2.63)$$

The complex distribution is composed of four terms. The first two terms respectively represent the cross-correlation of the impulse response h and itself as well as the

cross-correlation of the data g and itself. The third and fourth terms represent the cross-correlations of h and g. The third and fourth terms are typically the same except that the third cross-correlation is centered at (0, Y) and the fourth term is centered at (0, -Y). There is not too much thing to do with the first and second terms but the third and fourth terms are of interest. The cross-correlations of h and g can be written as in Equation 2.64 and Equation 2.65.

$$h(x_{3}, y_{3}) \otimes g^{*}(-x_{3}, -y_{3}) \otimes \delta(x_{3}, y_{3} - Y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(\xi, \eta) g^{*}(\xi - x_{3}, \eta - (y_{3} - Y)) d\xi d\eta$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(\xi, \eta) g^{*}(\xi - x_{3}, \eta - y_{3} + Y) d\xi d\eta \qquad (2.64)$$

Note that,

$$h(x_3, y_3) \otimes g^*(-x_3, -y_3) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(\xi, \eta) g^*(\xi - x_3, \eta - y_3) d\xi d\eta$$

Similarly,

$$h^*(-x_3, -y_3) \otimes g(x_3, y_3) \otimes \delta(x_3, y_3 + Y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(\xi, \eta) h^*(\xi - x_3, \eta - y_3 - Y) d\xi d\eta \qquad (2.65)$$

From digital signal processing (DSP), the main difference between cross-correlation and convolution is that in cross-correlation the functions $g^*(-x_3, -y_3)$ and $h^*(-x_3, -y_3)$ are not rotated by 180° before doing the cross-correlation process but in convolution they must be rotated by 180° before doing a convolution process. To get the convolution of the impulse response h and the data g, the input transparency of h or g (just one of them) in the recording stage must be rotated by 180° along the spatial coordinate x_1 as well as along the spatial coordinate y_1 . If the input transparency of the impulse response h is rotated then it will be $h\left(-x_1, -y_1 + \frac{Y}{2}\right)$ instead of $h\left(x_1, y_1 - \frac{Y}{2}\right)$; similarly, if the input transparency of the data g is rotated then it will be $g\left(-x_1, -y_1 - \frac{Y}{2}\right)$ instead of $g\left(x_1, y_1 + \frac{Y}{2}\right)$.

From digital signal processing (DSP), the bandwidth of a resulting function from the convolution, correlation or cross-correlation of two functions is equal to the sum of their bandwidths [13]. For example, if the bandwidths of the functions m(t) and f(t) are three and one respectively; then the bandwidth of their convolution is equal to four. Therefore, the bandwidths of the patterns of the cross-correlated field in the output plane P_3 along the spatial coordinates x_3 and y_3 are illustrated in Figure 2.11.

Obviously from Figure 2.11, in order to prevent overlapping between the patterns of the cross-correlated field that are centered at (0,0), (0,Y) and (0,-Y) (i.e. they are fully separated); the distance between the centers of the input transparencies must satisfy Relation 2.1 where W_g and W_h are the widths of g and h respectively in the

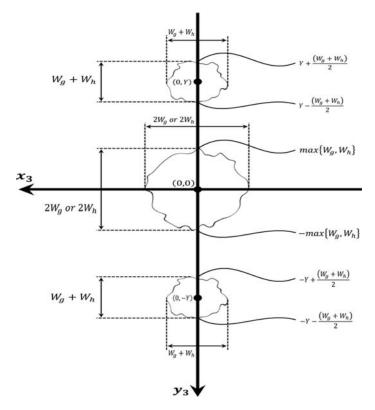


Figure 2.11: The bandwidths of the patterns of the cross-correlated field in the output plane P_3 along the spatial coordinates x_3 and y_3 .

direction of the y-coordinate. It is really important to be noticed that in Figure 2.11, the highest cross-correlation exists in the center of each cross-correlated pattern and decreases by moving away from the center.

Relation 2.1.

$$Y > max\{W_h, W_g\} + \frac{W_g}{2} + \frac{W_h}{2}$$

The constant c is added to the distance Y for realizing Relation 2.1. In order to confine the patterns of the cross-correlations of the impulse response h and the data g in the output plane P_3 , the distance d_1 which is from the horizontal axis x_1 to the top edge of the input plane P_1 shown in Figure 2.12 must be bigger than or equal to the distance D obtained in Equation 2.66 which is from the horizontal axis x_3 in the output plane P_3 to the top edge of the pattern centered at (0, Y) or the bottom edge of the pattern centered at (0, -Y) shown in Figure 2.13; as well as the distance d_2 which is from the horizontal axis x_1 to the bottom edge of the input plane P_1 shown in Figure 2.12 must be bigger than or equal to the distance D. For making d_1 is equal to D, the amount $D - r_1$ has to be added to the distance r_1 ; where the distance r_1 obtained in Equation 2.67 is from the horizontal axis x_1 to the top edge of h as shown

in Figure 2.12. Similarly, to make d_2 is equal to D, the amount $D - r_2$ has to be added to the distance r_2 ; where the distance r_2 obtained in Equation 2.68 is from the horizontal axis x_1 to the bottom edge of g as shown in Figure 2.12. The distances $D - r_1$ and $D - r_2$ are respectively obtained as in Equation 2.69 and Equation 2.70. Finally, the distance d_1 will be equal to the distance D as in Equation 2.71; similarly, the distance d_2 will also be equal to D as in Equation 2.72.

$$D = Y + c + \frac{W_g}{2} + \frac{W_h}{2} = \max\{W_h, W_g\} + W_h + W_g + c$$
 (2.66)

$$r_1 = \frac{Y+c}{2} + \frac{W_h}{2} = \left[\frac{max\{W_h, W_g\}}{2} + \frac{W_h}{4} + \frac{W_g}{4} + \frac{c}{2} \right] + \frac{W_h}{2} = \frac{max\{W_h, W_g\}}{2} + \frac{3}{4}W_h + \frac{1}{4}W_g + \frac{c}{2}$$
 (2.67)

$$r_2 = \frac{Y+c}{2} + \frac{W_g}{2} = \left[\frac{max\{W_h, W_g\}}{2} + \frac{W_h}{4} + \frac{W_g}{4} + \frac{c}{2} \right] + \frac{W_g}{2} = \frac{max\{W_h, W_g\}}{2} + \frac{1}{4}W_h + \frac{3}{4}W_g + \frac{c}{2}$$
 (2.68)

$$D - r_1 = \frac{1}{2} \max\{W_h, W_g\} + \frac{1}{4} W_h + \frac{3}{4} W_g + \frac{c}{2}$$
 (2.69)

$$D - r_2 = \frac{1}{2} \max\{W_h, W_g\} + \frac{3}{4} W_h + \frac{1}{4} W_g + \frac{c}{2}$$
 (2.70)

$$d_1 = r_1 + (D - r_1) = D (2.71)$$

$$d_2 = r_2 + (D - r_2) = D (2.72)$$

Lastly, the joint transform correlator has a great feature is that its ability to change the filter impulse response quickly; therefore, it is considered beneficial for real-time systems. On the other hand, it has a defect is that the input bandwidth of the data is reduced due to the filter impulse response is introduced simultaneously with the data to be filtered.

2.3.4.1 Sampling Issues

2.3.4.1.1 Introduction

Sampling is considered the first important step for simulating optical models. In order to generate the cross-correlated field in the back focal plane P_3 ; then the input plane P_1 , the back focal plane of the lens L_2 and the back focal plane of the lens L_4 must be sampled properly. Sampling for each one of these is completely discussed in this sub-subsection.

2.3.4.1.2 Sampling of the Input Plane P_1

The input plane P_1 is located in a rectangular array has N samples along the spatial space coordinate x_1 and M samples along the spatial space coordinate y_1 . L_{x_1} is the physical side length in meter (m) of the array in the x_1 direction; similarly, L_{y_1} is

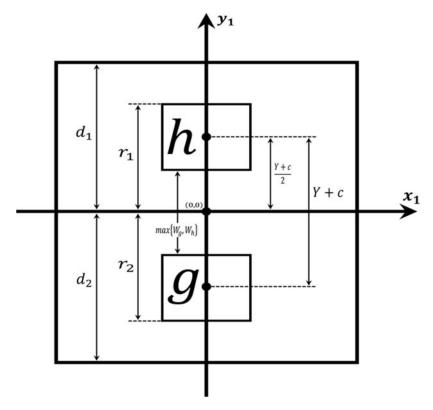


Figure 2.12: The alignment of the input transparencies in the input plane P_1 .

the physical side length in meter of the array in the y_1 direction. Then the sample spacing Δx_1 along the x_1 -coordinate in meter is equal to $\frac{L_{x_1}}{N}$; and the sample spacing Δy_1 along the y_1 -coordinate in meter is equal to $\frac{L_{y_1}}{M}$.

2.3.4.1.3 Sampling of the Back Focal Plane P_2

From Fourier transform, the spatial frequency coordinate f_{X_2} of the back focal plane P_2 in cycles per meter $\left(\frac{cyc}{m}\right)$ is obtained as in Equation 2.73.

$$f_{X_2} = \frac{x_2}{\lambda f} \tag{2.73}$$

By turning around Equation 2.73, the spatial space coordinate x_2 can be expressed as in Equation 2.74.

$$x_2 = \lambda f f_{X_2} \tag{2.74}$$

Note that, x_2 is in meter (m) because the units of the variables in Equation 2.74 can be concluded as $m \times m \times \frac{cyc}{m} = m$. Then the spatial space sampling interval Δx_2 in

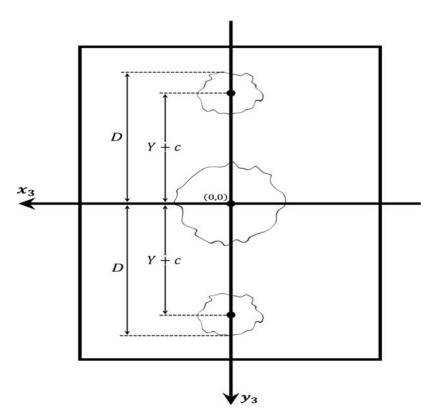


Figure 2.13: The alignment of the patterns of the cross-correlated field in the output plane P_3 .

meter (m) along the spatial space coordinate x_2 is computed as in Equation 2.75.

$$\Delta x_2 = \lambda f \Delta f_{X_2} \tag{2.75}$$

From discrete Fourier transform (DFT), the relationship between the spatial space sampling interval Δx_1 in the input plane and the spatial frequency sampling interval Δf_{X_2} is shown in Equation 2.76.

$$\Delta f_{X_2} = \frac{1}{N\Delta x_1} \tag{2.76}$$

For more information about how the relation in Equation 2.76 is obtained; Reference [14], Subsection 4.4.2 can be consulted. By substitution from Equation 2.76 in Equation 2.75 then the spatial space sampling interval Δx_2 in meter (m) along the spatial space coordinate x_2 is obtained as in Equation 2.77.

$$\Delta x_2 = \frac{\lambda f}{N \Delta x_1} \tag{2.77}$$

Similarly, the spatial space sampling interval Δy_2 in meter (m) along the spatial

space coordinate y_2 can be computed as in Equation 2.78.

$$\Delta y_2 = \frac{\lambda f}{M \Delta y_1} \tag{2.78}$$

2.3.4.1.4 Sampling of the Back Focal Plane P_3

From Fourier transform, the spatial frequency coordinate f_{X_3} of the back focal plane P_3 in cycles per meter $\left(\frac{cyc}{m}\right)$ is obtained as in Equation 2.79.

$$f_{X_3} = \frac{x_3}{\lambda f} \tag{2.79}$$

By turning around Equation 2.79, the spatial space coordinate x_3 can be expressed as in Equation 2.80.

$$x_3 = \lambda f f_{X_3} \tag{2.80}$$

Then the spatial space sampling interval Δx_3 in meter (m) along the spatial space coordinate x_3 is computed as in Equation 2.81.

$$\Delta x_3 = \lambda f \Delta f_{X_3} \tag{2.81}$$

From discrete Fourier transform (DFT), the relationship between the spatial space sampling interval Δx_2 in the back focal plane P_2 and the spatial frequency sampling interval Δf_{X_3} is shown in Equation 2.82.

$$\Delta f_{X_3} = \frac{1}{N\Delta x_2} \tag{2.82}$$

By substitution from Equation 2.82 in Equation 2.81 then the spatial space sampling interval Δx_3 in meter (m) along the spatial space coordinate x_3 is obtained as in Equation 2.83.

$$\Delta x_3 = \frac{\lambda f}{N\Delta x_2} = \Delta x_1 \tag{2.83}$$

Similarly, the spatial space sampling interval Δy_3 in meter (m) along the spatial space coordinate y_3 can be computed as in Equation 2.84.

$$\Delta y_3 = \frac{\lambda f}{M \Delta y_2} = \Delta y_1 \tag{2.84}$$

The spatial space sampling intervals in the input plane P_1 and the back focal plane P_3 are equal because the focal lengths of the lenses L_2 and L_4 are equal; but if the focal lengths are not identical then the sampling intervals will not be equal anymore.

2.3.4.2 Applications of the JTC

2.3.4.2.1 Introduction

The joint transform correlator (JTC) is one of the techniques frequently used in the field of optical pattern identification and classification. It plays an important role in object detection, face recognition, fingerprint recognition, and many other areas. In this sub-subsection, the usage of the JTC for object detection and face recognition is fully covered.

2.3.4.2.2 Face Recognition

The joint transform correlator (JTC) is used to recognize an unknown face object based on a database of desired impulses. The database is composed of $n, N \times N$ images of faces (impulses) on black backgrounds such that I_k where $k = 1, \ldots, n$; and n is the total number of the impulses. For decreasing the error rates of face recognition and object detection, all face projections must be defined in the database; impulses must have the same size; impulses must have only faces and they are expanded to the boarders of the images; finally, impulses must have unified backgrounds to discriminate between the pixels occupying the backgrounds and the pixels on the faces. For doing face recognition, an unknown face object have to be picked. It must have the same properties of the impulses. Hence, it must have the same size as the impulses; it has a black background; it has a projection as one of the impulses; and it has only face that is expanded to the boarders of the image. The pixels occupying the faces of the impulses and the unknown face object are normalized in the same manner as the normalization of the pixels occupying the faces of the training faces in Step 2 in Sub-subsection 2.2.2.6.

The cross-correlated field between the unknown face object and each impulse is obtained. An adaptive filtering mask is used to produce the cross-correlated patterns that are centered at (0, Y). The maximum values of the cross-correlated patterns are computed; such that c_1 is the maximum value of the cross-correlated pattern between the unknown face object and the first impulse; similarly, c_n is the maximum value of the cross-correlated pattern between the unknown face object and the n^{th} impulse.

Then recognition can be performed by using Condition 2.4 where bc_k is the biggest cross-correlation among the maximum values of the cross-correlated patterns between the unknown face object and impulses.

Condition 2.4. If,

$$bc_k = max([c_1, \ldots, c_n]),$$
 where k can be any number between 1 to n

Then the unknown face object is recognized as the k^{th} impulse response; otherwise, it is an unknown face object.

2.3.4.2.2.1 Setting up a Recognition Threshold

Unfortunately, when the unknown face object does not have a similar impulse response then getting the biggest cross-correlation bc_k among the maximum values of the cross-correlated patterns does not always mean that the unknown face object is recognized as the k^{th} impulse response. Therefore, a certain threshold must be used to increase the accuracy of recognition.

For setting up a recognition threshold, some different objects are taken for each impulse; consequently, the objects are known here just for picking the threshold. The cross-correlated patterns that are centered at (0, Y) resulting from the cross-correlations between each impulse and its *corresponding* objects are produced. After that, the maximum values of the cross-correlated patterns between the impulses and their *corresponding* objects are obtained; and they are stacked in the row vectors $T_1, \ldots, T_k, \ldots, T_n$, where T_k contains the biggest expected cross-correlations because the k^{th} impulse response and its *corresponding* objects have the same person and the same face position.

Thereafter, the mean m_k and the standard deviation STD_k (the average distance from the mean to a point) are computed for each row vector \mathbf{T}_k of the biggest cross-correlations. By calculating the means and the standard deviations, a certain threshold is established for each impulse response.

Then the recognition threshold can be applied to recognize the unknown face object by using Condition 2.5.

Condition 2.5. If,

$$m_k - STD_k \le bc_k \le m_k + STD_k$$
, where $k = 1, \dots, n$

Then the unknown face object is recognized as the k^{th} impulse response; otherwise, it is an unknown face object.

2.3.4.2.3 Object Detection

The joint transform correlator (JTC) is used to detect if an unknown object contains a face or not based on a determined threshold for detection. Therefore, in object detection, only a detection threshold is needed.

To obtain the detection threshold, objects are generated from the database of the impulses in the same manner as in Sub-sub-sub-sub-subsection 2.3.4.2.2.1. The cross-correlated patterns that are centered at (0, Y) resulting from the cross-correlations between each impulse and all objects are produced. The maximum values of the cross-correlated patterns between the impulses and all objects are computed and placed in the row vector S. After that, the mean m_S and the standard deviation STD_S (the average distance from the mean to a point) are computed for the vector S. By calculating the mean and the standard deviation, the detection threshold is established.

For applying the detection threshold, the unknown object $I^{Unknown}$ is picked for detection. The maximum value $c^{Unknown}$ of the cross-correlated pattern between the unknown object and any impulse response is computed. Then the unknown object $I^{Unknown}$ can be detected by means of Condition 2.6.

Condition 2.6. If,

$$m_S - STD_S \le c^{Unknown} \le m_S + STD_S$$

Then the unknown object $I^{Unknown}$ is detected as a face object; otherwise, it is not a face object.

2.3.4.3 Analysis of JTC Performance

2.3.4.3.1 Introduction

Joint transform correlator (JTC) performance is analyzed through analyzing the performance of its applications. In order to study the performance of face recognition and object detection, their error rates are computed and analyzed. Hence, in this sub-subsection, attention is paid for calculating the error rates of face recognition and object detection.

2.3.4.3.2 Analysis of Recognition Performance

The error rate computes the percentage of error in recognition. For computing the error rate of face recognition, let L is the total number of objects; SR is the total number of successes in the recognition of the objects; and FR is the total number of failures in the recognition of the objects. Then the error rate can be computed as in Equation 2.85.

$$ER\left(\%\right) = \frac{FR}{L} \times 100\tag{2.85}$$

2.3.4.3.2.1 Improvement of Recognition Performance

The error rate of face recognition is usually big then it has to be improved. One of the techniques for decreasing the error rate is optimizing the database of the impulses. The optimization of the database means trying to find the best combination of impulses that ensures the smallest error rate.

Some different objects are taken for each impulse response; consequently, the objects are known here just for optimizing the database of the impulses. Then this technique can be simulated by trying different combinations out of the generated objects until finding a combination that produces the lowest error rate of face recognition then the combination can be used to form the database of the impulses.

2.3.4.3.3 Analysis of Detection Performance

The error rate computes the percentage of error in detection. For computing the error rate of object detection, let L is the total number of objects; SD is the total number of successes in the detection of the objects; and FD is the total number of failures in the detection of the objects. Then the error rate can be computed as in Equation 2.86.

$$ER\left(\%\right) = \frac{FD}{L} \times 100\tag{2.86}$$

2.3.4.3.3.1 Improvement of Detection Performance

Modelling

3.1 Digital Modelling

3.1.1 Introduction

In this section, PCA and IPCA algorithms are simulated by using the MATLAB © software when the data set is composed of images; as well as comparison between two algorithms is illustrated. The simulation begins from generating the database of the training faces until projecting the training faces on the eigenspace. The applications of the PCA and IPCA algorithms are simulated too. The complete MATLAB © code that had been written to simulate this work is shown in Appendix A.

3.1.2 Application of the PCA Algorithm to Images

The steps for analyzing the PCA algorithm to images presented in Sub-subsection 2.2.2.6 are simulated as follows:

Step 1: the database is created to be composed of nine, 50×50 images of faces (training faces) on black backgrounds such that I_k where k = 1, ..., 9. The training faces are taken for three people where each person has three training faces with different projections as shown in Figure 3.1.

Step 2: the average histogram for all training faces is obtained as in Figure 3.2. From Figure 3.2, it turns out all intensity levels below the threshold represent the backgrounds of images because these levels have the biggest histogram; and all intensity levels above the threshold represent the faces; therefore, the threshold is equal to eight. The threshold is applied on the training faces; Figure 3.3 shows how good the applied threshold is on the training faces. As seen from Figure 3.3, the applied

Figure 3.1: The database of the training faces.

threshold is doing pretty well; and it can be used for normalizing the training faces as in Figure 3.4.

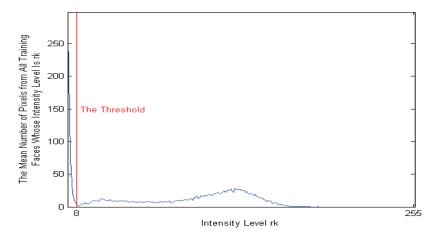


Figure 3.2: The average histogram for all training faces.

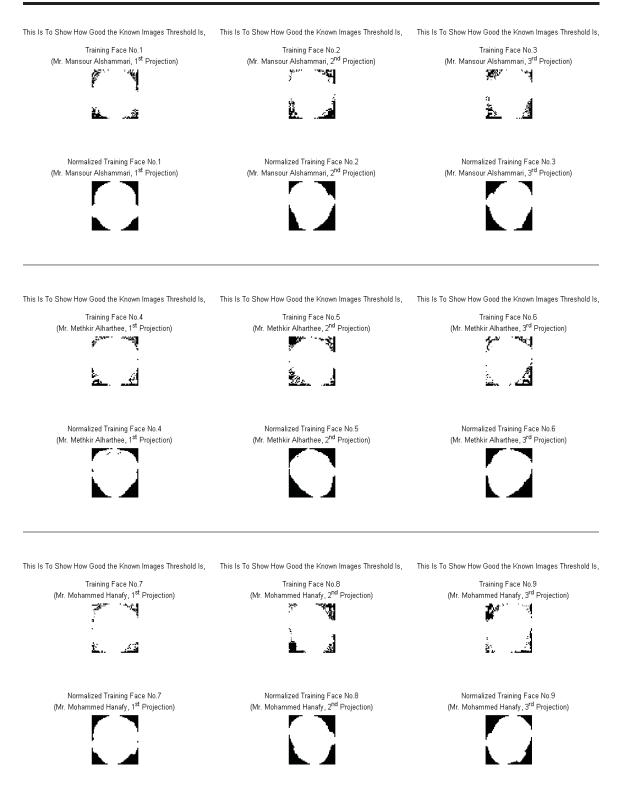


Figure 3.3: The application of the threshold on the training faces.

Training Face No.1 (Mr. Mansour Alshammari, 1st Projection)

Normalized Training Face No.1 (Mr. Mansour Alshammari, 1st Projection)

Training Face No.2 (Mr. Mansour Alshammari, 2nd Projection)

Normalized Training Face No.2 (Mr. Mansour Alshammari, 2nd Projection)

Training Face No.3 (Mr. Mansour Alshammari, 3rd Projection)

Normalized Training Face No.3 (Mr. Mansour Alshammari, 3rd Projection)

Training Face No.4 (Mr. Methkir Alharthee, 1st Projection)

Normalized Training Face No.4 (Mr. Methkir Alharthee, 1st Projection)

Training Face No.5 (Mr. Methkir Alharthee, 2nd Projection)

Normalized Training Face No.5 (Mr. Methkir Alharthee, 2nd Projection)

Training Face No.6 (Mr. Methkir Alharthee, 3rd Projection)

Normalized Training Face No.6 (Mr. Methkir Alharthee, 3rd Projection)

Training Face No.7 (Mr. Mohammed Hanafy, 1st Projection)

Normalized Training Face No.7 (Mr. Mohammed Hanafy, 1st Projection)

Training Face No.8 (Mr. Mohammed Hanafy, 2nd Projection)

Normalized Training Face No.8 (Mr. Mohammed Hanafy, 2nd Projection)

Training Face No.9 (Mr. Mohammed Hanafy, 3rd Projection)

Normalized Training Face No.9 (Mr. Mohammed Hanafy, 3rd Projection)

Figure 3.4: The normalization of all training faces by means of the selected threshold.

Step 3: all training faces are centered as shown in Figure 3.5.

Figure 3.5: The centered training faces.

Step 4: all centered training faces are represented as 50^2 column vectors.

Step 5: The average training face vector Ψ is computed and the average training face is shown in Figure 3.6.

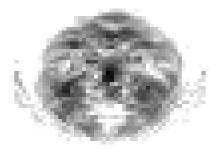


Figure 3.6: The average training face. Note that, this is a negative image.

Step 6: the set of the training faces is centered; and the centered (with respect to the set of the training faces) training faces are presented in Figure 3.7.

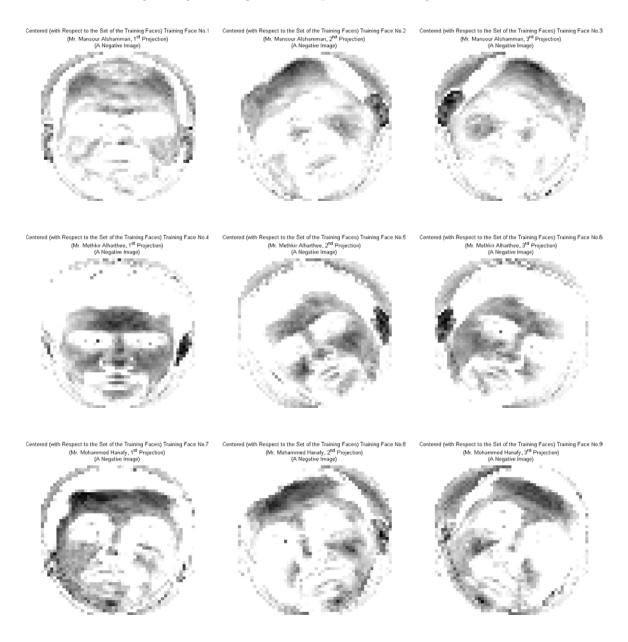


Figure 3.7: The centered (with respect to the set of the training faces) training faces. Note that, these are negative images.

Step 7: a 2500×2500 covariance matrix for all training faces is calculated.

Step 8: the eigenvectors and eigenvalues of the covariance matrix C are computed.

Step 9: for choosing principal components and forming the feature vector matrix A_q , the variance contribution rate (VCR) and the total variance contribution rate (TVC) are computed in Table 3.1. When the TVC is over 95.5% then q eigenvectors associated with the biggest q eigenvalues are selected. Hence, Based on Table 3.1, the biggest eight eigenvectors associated with the biggest eigenvalues are selected to form the feature vector matrix. The selected eigenfaces (the highly correlated eigenvectors) are shown in Figure 3.8.

$k \qquad \lambda_k \qquad VCR_k\left(\% ight) \ T^{\gamma}$	
	$VC\left(\% ight)$
1 9732585.1016 29.0361 2	29.0361
2 6578765.9806 19.6270 4	18.6631
3 4576184.9630 13.6525	52.3157
4 4054857.8169 12.0972 7	74.4129
5 3000248.2414 8.9509	33.3638
6 2204809.6081 6.5778 8	39.9416
7 1816000.6101 5.4178	95.3595
8 1555452.9118 4.6405	100
9 0 0	100

Table 3.1: The calculations of the VCR and TVC.

Step 10: the principal components transform is performed and the training faces are projected on the eigenspace.

3.1.3 Application of the IPCA Algorithm to Images

The IPCA algorithm shown in Sub-subsection 2.2.3.2 is used for calculating the IR and AIR for the computed eigenvectors of the covariance matrix C in Subsection 3.1.2 where d here is equal to the total number of the training faces n; and the results are shown in Table 3.2. When the AIR is over 95.5% then q eigenvectors associated with the biggest q eigenvalues are selected. Hence, Based on Table 3.2, the biggest seven eigenvectors associated with the biggest eigenvalues are selected to form the feature vector matrix A_q . The selected eigenfaces (the highly correlated eigenvectors) are the first seven selected eigenfaces by using the PCA algorithm shown in Figure 3.8.

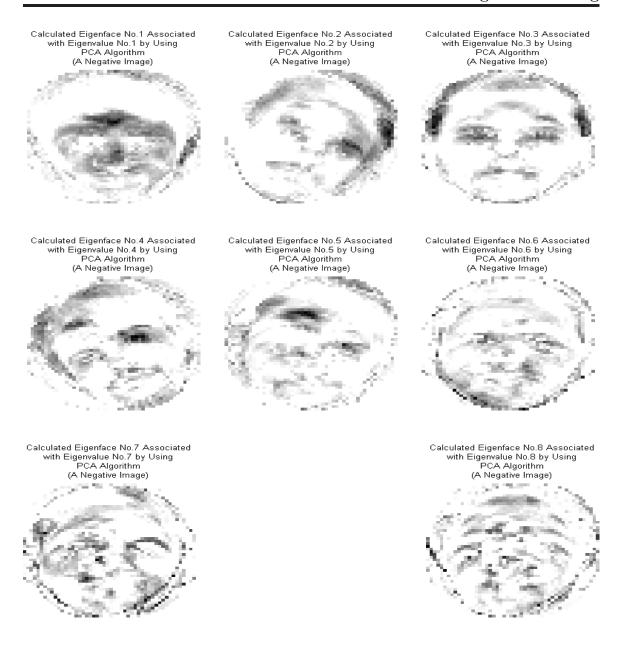


Figure 3.8: The eigenfaces. Note that, these are negative images.

3.1.4 Comparison of the PCA and IPCA Algorithms

Comparison between the PCA and IPCA algorithms is based on the values of the TVC and AIR that determine the selected eigenfaces for the feature vector matrix A_q in Subsection 3.1.2, Step 9 and in Subsection 3.1.3.

When k=7 in Table 3.2, the AIR is equal to 95.6891% which is bigger than 95.5% but the TVC is slightly small; consequently, if the eigenvectors are selected

\overline{k}	λ_k	$ ho_k$	$I\left(\lambda_{k} ight)$	$IR_{k}\left(\% ight)$	$AIR\left(\% ight)$
1	9732585.1016	0.7096	0.4948	31.1180	31.1180
2	6578765.9806	0.8037	0.3152	19.8224	50.9404
3	4576184.9630	0.8635	0.2118	13.3174	64.2578
4	4054857.8169	0.8790	0.1860	11.6978	75.9555
5	3000248.2414	0.9105	0.1353	8.5073	84.4628
6	2204809.6081	0.9342	0.0982	6.1729	90.6357
7	1816000.6101	0.9458	0.0804	5.0534	95.6891
8	1555452.9118	0.9536	0.0686	4.3109	100
9	0	1	0	0	100

Table 3.2: The calculations of the IR and AIR.

based on the TVC then the first eight eigenvectors must be taken in order to make sure that the TVC is big enough. Therefore, the AIR tells us more about the information contained in the eigenfaces. Figure 3.9 shows a comparison between the biggest calculated eigenvalues by using the PCA and IPCA algorithms as well as the calculated eigenvalues from the covariance matrix C for all training faces.

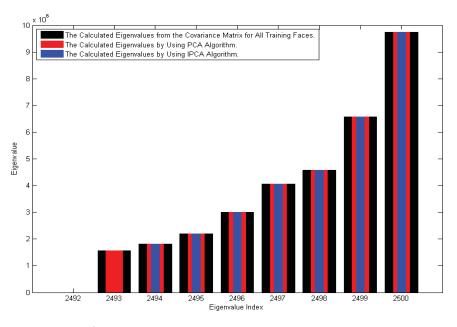


Figure 3.9: A comparison between the biggest calculated eigenvalues by using the PCA and IPCA algorithms as well as the calculated eigenvalues from the covariance matrix for all training faces.

3.1.5 Image Compression

In image compression modelling, the training faces in Figure 3.1 are projected on the eigenspace and recostructed again by using the PCA and IPCA algorithms; as well as by using different selected eigenfaces to form the feature vector matrix A_q .

3.1.6 Face Recognition

The database of the training faces created in Step 1 in Subsection 3.1.2 is used for recognition. Some tested images are taken out of the database for setting up a recognition threshold. Thirty-six tested images are taken for the first projection of each person; twelve tested images are taken for the second projection of each person; and twelve tested images are taken for third projection of each person; therefore, the total number of the tested images is equal to 180. Some samples of the tested images are shown in Figure 3.10; the full database of the tested images is shown in Appendix B.

By using the PCA algorithm, a recognition threshold is specified for each training face by means of the method explained in Sub-sub-subsection 2.2.5.3.1. The tested images are processed as unknown images of faces as illustrated in Sub-subsection 2.2.5.3. Then Condition 2.2 is used for recognizing the tested images. The recognition results of the tested images in Figure 3.10 by using the PCA algorithm are presented in Table 3.3. The recognition of all 180 tested images by using the PCA algorithm is shown in Appendix C. Finally, the tested images can be recognized in the same way when the IPCA algorithm is used; or different eigenfaces are selected to form the feature vector matrix.

Tested Image No.	Input Face	Recognized Output Face	Status
4	Mr. Mansour Alshammari	Mr. Mansour Alshammari	Success
15	Mr. Mansour Alshammari	Mr. Mansour Alshammari	Success
38	Mr. Mansour Alshammari	Unknown Image	Failure
62	Mr. Methkir Alharthee	Unknown Image	Failure
72	Mr. Methkir Alharthee	Mr. Methkir Alharthee	Success
120	Mr. Methkir Alharthee	Mr. Methkir Alharthee	Success
124	Mr. Mohammed Hanafy	Mr. Mohammed Hanafy	Success
160	Mr. Mohammed Hanafy	Mr. Mohammed Hanafy	Success
179	Mr. Mohammed Hanafy	Mr. Mohammed Hanafy	Success

Table 3.3: The recognition of the tested images in Figure 3.10.

Figure 3.10: Some samples of the tested images.

3.1.7 Image Detection

The generated database of the tested images in Subsection 3.1.6 is used for detection. By using the PCA algorithm, a detection threshold is specified by means of the method explained in Sub-subsection 2.2.5.4. Then Condition 2.3 is used for detecting

the tested images. The detection results of the tested images in Figure 3.10 by using the PCA algorithm are presented in Table 3.4. The detection of all 180 tested images by using the PCA algorithm is shown in Appendix D. Finally, the tested images can be detected in the same way when the IPCA algorithm is used; or different eigenfaces are selected to form the feature vector matrix.

Tested Image No.	Input Image	Detected Output Image	Status
4	a face	a face	Success
15	a face	a face	Success
38	a face	not a face	Failure
62	a face	a face	Success
72	a face	a face	Success
120	a face	not a face	Failure
124	a face	a face	Success
160	a face	a face	Success
179	a face	a face	Success

Table 3.4: The detection of the tested images in Figure 3.10.

3.2 Optical Modelling

3.2.1 Introduction

In this section, the joint transform correlator (JTC) is fully simulated by using the MATLAB © software. The simulation begins from scratch until generating the desired pattern of the cross-correlated field in the back focal plane P_3 by using an adaptive filtering mask designed for that. The JTC applications are simulated too. The complete MATLAB © code that had been written to simulate this work is shown in Appendix F.

In the simulation, lenses are assumed to be ideally focused (i.e. the model is an aberration-free system) as in Figure 3.11; where f in the figure is the focal length.

3.2.2 Simulation of the JTC

We are at level that we can start in simulating the joint transform correlator (JTC). The desired impulse response h and the data g (here it is called the object) are 100×100 images of faces for two people. They are respectively shown in Figure 3.12 and Figure 3.13. The impulse response and the object are normalized in order to remove lighting effects on them then increasing the accuracy of cross-correlation. To

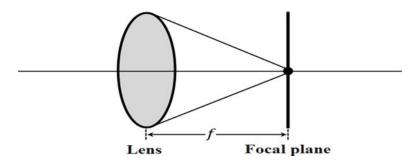


Figure 3.11: A focused lens.

keep variations among them just in the faces without the effects of the backgrounds, the normalization is performed on the pixels occupying the faces in the same manner as the normalization of the pixels on the faces of the training faces in Step 2 in Sub-subsection 2.2.2.6.

Figure 3.12: The desired impulse response h.

Figure 3.13: The object g.

The transparencies of the impulse response h and the object g are located in a square array in the input plane P_1 . The width W_g of g in the direction of the y-coordinate is 100 pixels; the width W_h of h in the direction of the y-coordinate is 100

pixels; then the distance Y that separates the centers of h and g is equal to 200 pixels. The constant c is selected to be 10 pixels then Relation 2.1 is satisfied. The distance D obtained in Equation 2.66 is 130 pixels; the distance r_1 obtained in Equation 2.67 is 155 pixels; the distance r_2 obtained in Equation 2.68 is 155 pixels; $D - r_1$ and $D - r_2$ are respectively equal to 155 pixels and 155 pixels; then the distances d_1 and d_2 obtained respectively in Equation 2.71 and Equation 2.72 are respectively equal to 310 pixels and 310 pixels. Since the distance d_1 is equal to the distance D as well as the distance d_2 is also equal to the distance D then the input transparencies of D and D are aligned properly in the input plane D1.

The number of samples N along the spatial space coordinate x_1 in the input plane P_1 is 630; and the number of samples M along the spatial space coordinate y_1 is 630. The physical side length L_{x_1} of the array in the x_1 direction is 10 (m); and the physical side length L_{y_1} of the array in the y_1 direction is 10 (m). Then the sample spacing Δx_1 along the x_1 -coordinate is equal to $\frac{10}{630} = 0.0159 (m)$; and the sample spacing Δy_1 along the y_1 -coordinate is equal to $\frac{10}{630} = 0.0159 (m)$. The transmitted field $U_1(x_1, y_1)$ from the input plane P_1 is shown in Figure 3.14.

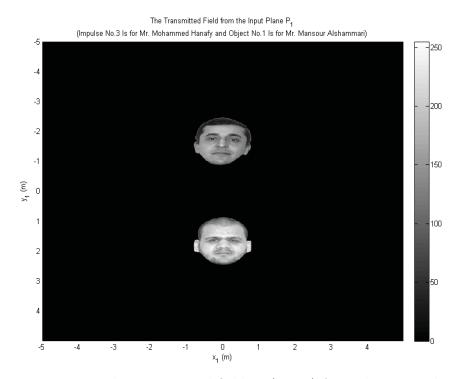


Figure 3.14: The transmitted field $U_1(x_1, y_1)$ from the input plane P_1 .

The light wavelength λ is 550×10^{-9} (m); and the focal length f is 0.055 (m). Then the spatial space sampling interval Δx_2 along the spatial space coordinate x_2 is equal to $\frac{\lambda f}{N\Delta x_1} = \frac{550 \times 10^{-9} \times 0.055}{630 \times 0.0159} = 3.0250 \times 10^{-9}$ (m); similarly, the spatial space sampling

interval Δy_2 along the spatial space coordinate y_2 is equal to $\frac{\lambda f}{M\Delta y_1} = \frac{550\times 10^{-9}\times 0.055}{630\times 0.0159} = 3.0250\times 10^{-9} \,(m)$. The incident intensity $I\left(x_2,y_2\right)$ on the back focal plane P_2 is shown in Figure 3.15.

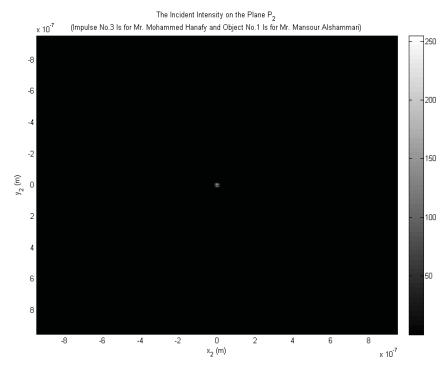


Figure 3.15: The incident intensity $I(x_2, y_2)$ on the back focal plane P_2 .

Since the focal lengths of the lenses L_2 and L_4 are equal, the spatial space sampling intervals Δx_3 and Δy_3 in the back focal plane P_3 are respectively equal to the spatial space sampling intervals Δx_1 and Δy_1 in the input plane P_1 . The cross-correlated field $U_3(x_3, y_3)$ in the back focal plane P_3 is obtained as in Figure 3.16 by calculating the inverse Fourier transform for the incident intensity $I(x_2, y_2)$ on the back focal plane P_2 .

Figure 3.17 shows the designed adaptive mask for obtaining the desired pattern of the cross-correlations of the impulse response h and the object g in the back focal plane P_3 . The mask produces the cross-correlated pattern that is centered at (0, Y). It is multiplied by the cross-correlated field in the plane P_3 in order to obtain the filtered filed as in Figure 3.18.

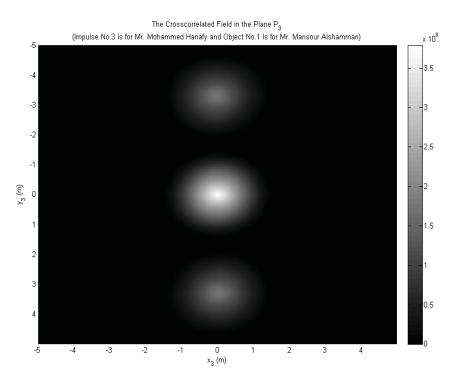


Figure 3.16: The cross-correlated field $U_3(x_3, y_3)$ in the back focal plane P_3 .

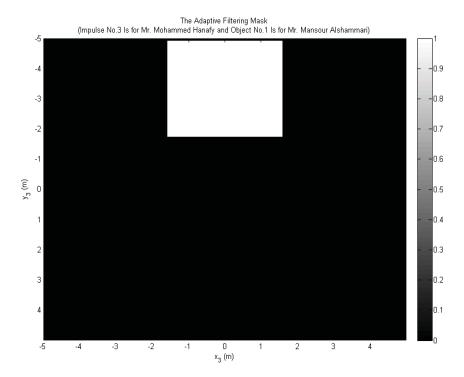


Figure 3.17: The adaptive filtering mask.

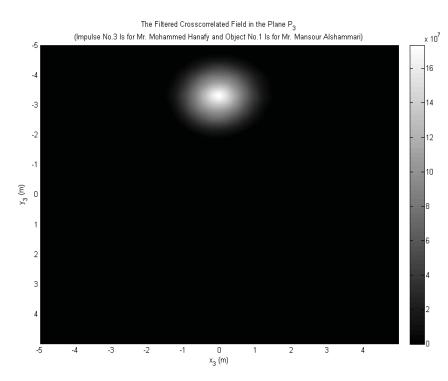


Figure 3.18: The filtered cross-correlated field in the back focal plane P_3 .

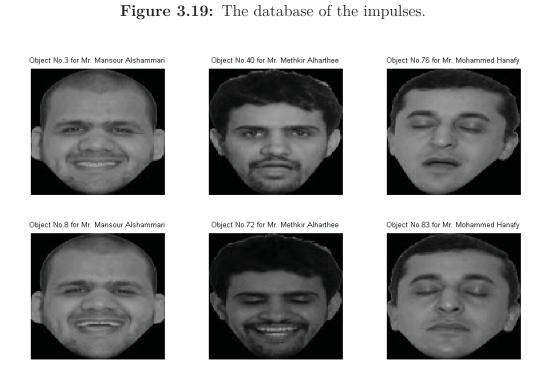
3.2.3 Face Recognition

The database of the impulses for face recognition is picked to contain three, 100×100 impulses (images of faces) on black backgrounds. The impulses are taken for vertical faces to people's shoulders where oblique faces are ignored as shown in Figure 3.19. Taking just vertical faces will simplify the optimization of the database of the impulses. Some objects are taken out of the database for setting up a recognition threshold. Thirty-six objects are taken for each impulse then the total number of the objects is equal to 108. Some samples of the objects are shown in Figure 3.20; the full database of the objects is shown in Appendix A.

A recognition threshold is specified for each impulse by means of the method explained in Sub-sub-sub-subsection 2.3.4.2.2.1. The objects are processed as unknown images of faces as illustrated in Sub-sub-subsection 2.3.4.2.2. Then Condition 2.5 is used for recognizing the objects. The recognition results of the objects in Figure 3.20 are presented in Table 3.5. The recognition of all 108 objects is shown in Appendix G.

Impulse Response No.3 for Mr. Mohammed Hanafy

Impulse Response No.1 for Mr. Mansour Alshammari



Impulse Response No.2 for Mr. Methkir Alharthee

Table 3.5: The recognition of the objects in Figure 3.20.

Figure 3.20: Some samples of the objects.

Object No.	Input Face	Recognized Output Face	Status
3	Mr. Mansour Alshammari	Unknown Object	Failure
8	Mr. Mansour Alshammari	Mr. Mohammed Hanafy	Failure
40	Mr. Methkir Alharthee	Unknown Object	Failure
72	Mr. Methkir Alharthee	Unknown Object	Failure
76	Mr. Mohammed Hanafy	Mr. Mohammed Hanafy	Success
83	Mr. Mohammed Hanafy	Mr. Mohammed Hanafy	Success

3.2.4 Object Detection

The database of the generated objects in Subsection 3.2.3 is used for detection. A detection threshold is specified by means of the method explained in Sub-sub-subsection 2.3.4.2.3. Then Condition 2.6 is used for detecting the objects. The detection results of the objects in Figure 3.20 are presented in Table 3.6. The detection of all 108 objects is shown in Appendix H.

Table 3.6: The detection of the objects in Figure 3.20.

Object No.	Input Object	Detected Output Object	Status
3	a face	not a face	Failure
8	a face	not a face	Failure
40	a face	a face	Success
72	a face	not a face	Failure
76	a face	a face	Success
83	a face	not a face	Failure

Results of Performance Analysis

4.1 Performance Results of the PCA and IPCA Algorithms

4.1.1 Introduction

After modelling the applications of the PCA and IPCA algorithms, the performance results for each application are obtained in this subsection. The results show the behavior of each application when the eigenfaces that are generated by using the PCA algorithm are used; the eigenfaces that are generated by using the IPCA algorithm are used; and when different eigenfaces are selected to form the feature vector matrix.

4.1.2 Results of Compression Performance

4.1.2.1 Speed of Compression and Reconstruction

When a small number of the eigenfaces is used to project and reconstruct the training faces then the processing speed will increase and vice versa. Therefore, the IPCA algorithm is the fastest one; then the PCA algorithm comes second; finally, the smallest processing speed occurs when all calculated eigenvectors from the covariance matrix for all training faces are used as eigenfaces.

4.1.2.2 Quality of a Reconstructed Image

When a small number of the eigenfaces is used to project and reconstruct the training faces then the training faces will have bad quality. Therefore, the highest error in reconstruction occurs when the IPCA algorithm is used; then the PCA algorithm

comes second; finally, the usage of all eigenvectors as eigenfaces produces the samllest reconstruction error.

For measuring the quality of the reconstructed training faces, Equation 2.46 is used for computing the mean squared errors (MSEs) between the training faces and their reconstructions. Figure 4.1 shows the plot of the MSEs of reconstructing training face number five for different selected eigenfaces compared with resulted mean squared errors when the PCA and IPCA algorithms are used. The plots of the MSEs of reconstructing other training faces are shown in Appendix I. Figure 4.2 shows the reconstruction of training face number five by using the highest correlated eigenface (q=1), the PCA eigenfaces (q=8), the IPCA eigenfaces (q=7), and all eigenvectors as eigenfaces (q = 2500); along with mean squared errors resulted from reconstructing the training face by using those eigenfaces.

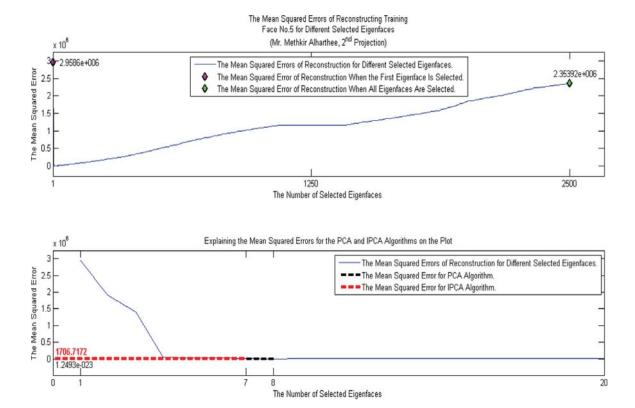


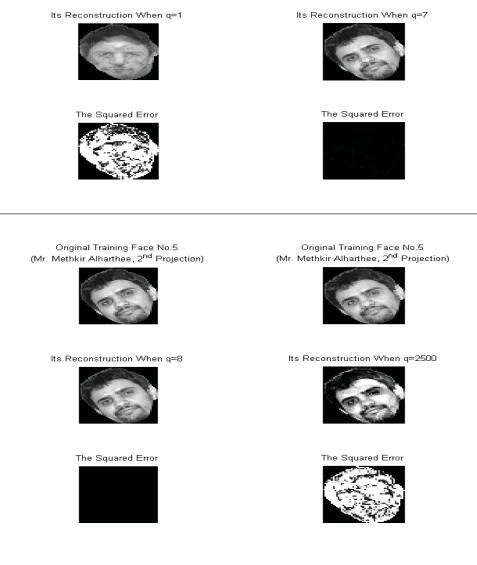
Figure 4.1: The plot of the mean squared errors (MSEs) of reconstructing training face number five for different selected eigenfaces compared with resulted mean squared errors when the PCA and IPCA algorithms are used.

Original Training Face No.5

(Mr. Methkir Alharthee, 2nd Projection)

Original Training Face No.5

(Mr. Methkir Alharthee, 2nd Projection)



From Figure 4.1 and Figure 4.2, it can be noticed that when all eigenvectors

Figure 4.2: The reconstruction of training face number five by using the highest correlated eigenface (q = 1), the PCA eigenfaces (q = 8), the IPCA eigenfaces (q = 7), and all eigenvectors as eigenfaces (q = 2500); along with mean squared errors resulted from re-

constructing the training face by using those eigenfaces.

are used as eigenfaces then the reconstructed training faces have the worst resolution; that because the covariance matrix is too big then the calculation of 2500 eigenvectors by using the MATLAB \odot software leads to some round-off errors in the eigenvectors associated with the smallest eigenvalues. Hence, it is not recommended to select the lowest correlated eigenvectors for reconstructing training faces due to they add some noise to the reconstructed training faces. In addition, due to round-off error, the MATLAB \odot software makes the smallest eigenvalues negative while they must be positive because they are calculated from a positive definite covariance matrix. Those negative eigenvectors must be set to zero.

4.1.2.3 Size of Compression

4.1.2.3.1 Information Rate

Obviously, from Equation 2.47, an information rate depends on the number of the selected eigenfaces q. Note that, when all eigenvectors are picked to form the feature vector matrix then there will not be any compression; and the overall size when there is no any compression method is used will be the optimum one. Consequently, when the number of the selected eigenfaces decreases then an information rate will decrease (i.e. compression will increase) and vice versa. Therefore, the IPCA algorithm offers the highest compression with the highest loss of information; after that, when the PCA algorithm is used, there will not be information lost (i.e. there is no compression); lastly, the usage of all eigenvectors as eigenfaces add some information (i.e. there is no compression).

For measuring how much information is after compression compared with information before compression, Equation 2.47 is used. Figure 4.3 shows the rates of information for different selected eigenfaces compared with resulted information rates when the PCA and IPCA algorithms are used.

4.1.2.3.2 Mean Squared Error (MSE) of Compressed Images

Lost information increases when a small number of eigenfaces is picked and vice versa. Therefore, the IPCA algorithm offers the highest compression with the highest error; then the PCA algorithm comes second; lastly, the usage of all eigenvectors as eigenfaces produce the lowest compression with the lowest error.

Equation 2.54 is used for computing the mean squared error (MSE) of compression. Figure 4.4 shows the mean squared errors (MSEs) of compression for different selected eigenfaces compared with resulted mean squared errors when the PCA and IPCA algorithms are used.

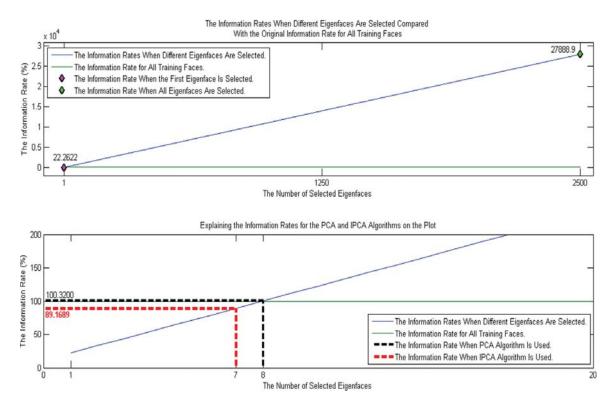


Figure 4.3: The rates of information for different selected eigenfaces compared with resulted information rates when the PCA and IPCA algorithms are used.

4.1.3 Results of Recognition Performance

4.1.3.1 Speed of Recognition

When the number of the selected eigenfaces decreases, the processing speed increases and vice versa. Therefore, the usage of all calculated eigenvectors as eigenfaces leads to the biggest processing time; then the usage of the calculated eigenfaces by using the PCA algorithm comes second; finally, the usage of the calculated eigenfaces by using the IPCA algorithm leads to the smallest processing time.

4.1.3.2 Error Rate

When the number of the selected eigenfaces increases, the error rate decreases; that because the unknown face image will be projected precisely next to its corresponding training face. On the other hand, when the selected eigenfaces decreases, the error rate increases. Therefore, the usage of all calculated eigenvectors as eigenfaces leads to the smallest error rate; then the usage of the calculated eigenfaces by using the PCA algorithm comes second; finally, the usage of the calculated eigenfaces by using

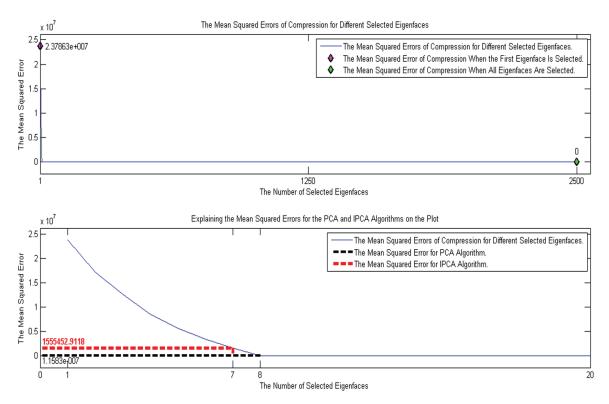


Figure 4.4: The mean squared errors (MSEs) of compression for different selected eigenfaces compared with resulted mean squared errors when the PCA and IPCA algorithms are used.

the IPCA algorithm leads to the biggest error rate.

In the recognition of all 180 tested images in Subsection 3.1.6, L=180; SR=133; and FR=47. Then by using Equation 2.55, the error rate $ER\left(\%\right)$ is equal to $\frac{47}{180}\times100=26.1111\%$. Figure 4.5 shows the error rates of recognition for different selected eigenfaces compared with resulted error rates when the PCA and IPCA algorithms are used.

4.1.4 Results of Detection Performance

4.1.4.1 Speed of Detection

When the number of the selected eigenfaces decreases, the processing speed increases and vice versa. Therefore, the IPCA algorithm is the fastest one; then the PCA algorithm comes second; finally, the smallest processing speed occurs when all calculated eigenvectors from the covariance matrix for all training faces are used as eigenfaces.

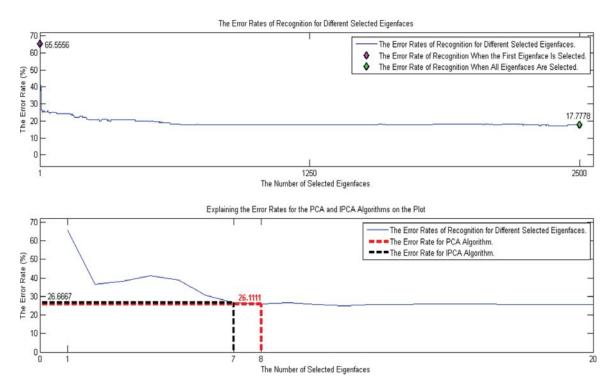


Figure 4.5: The error rates of recognition for different selected eigenfaces compared with resulted error rates when the PCA and IPCA algorithms are used.

4.1.4.2 Error Rate

When the eigenfaces that contain the most significant patterns from the correlated training faces (highly correlated eigenvectors) are only selected then the accuracy of face detection increases. That because in face detection, distance calculation is between the centered unknown image and its reconstruction; consequently, if the unknown image is not a face then the distance will be big; therefore, the unknown image will not be detected as a face image. As a result of that, the usage of the calculated eigenfaces by using the IPCA algorithm produces the smallest error rate; then the usage of the calculated eigenfaces by using the PCA algorithm comes second; finally, the usage of all calculated eigenvectors as eigenfaces obtains the biggest error rate.

In the detection of all 180 tested images in Subsection 3.1.7, L=180; SD=147; and FD=33. Then by using Equation 2.56, the error rate ER(%) is equal to $\frac{33}{180}\times 100=18.3333\%$. Figure 4.6 shows the error rates of detection for different selected eigenfaces compared with resulted error rates when the PCA and IPCA algorithms are used.

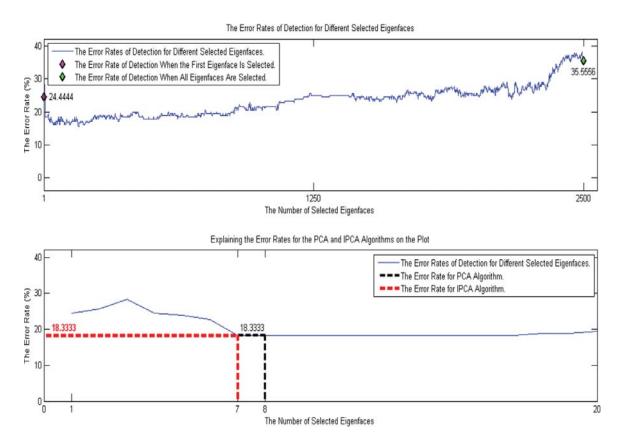


Figure 4.6: The error rates of detection for different selected eigenfaces compared with resulted error rates when the PCA and IPCA algorithms are used.

4.2 Results of JTC Performance

4.2.1 Results of Recognition Performance

In the recognition of all 108 objects in Subsection 3.2.3, L=108; SR=20; and FR=88. Then by using Equation 2.85, the error rate $ER\left(\%\right)$ is equal to $\frac{88}{108}\times100=81.4815\%$.

4.2.1.1 Improvement of Recognition Performance

For finding the optimal combination out of the 108 objects in Subsection 3.2.3, $46656 (36 \times 36 \times 36)$ iterations are performed until the database of the optimal impulses for face recognition is obtained as in Figure 4.7. The complete MATLAB © code that had been written to optimize the database of the impulses for face recognition is shown in Appendix J. When the database of the optimal impulses is used for recognizing all 108 objects then the total number of successes SR becomes 71;

and the total number of failures FR becomes 37. Therefore, the error rate ER (%) is equal to $\frac{37}{108} \times 100 = 34.2593\%$ which is much less than the resulted error rate when the database of the impulses is not optimized.

Figure 4.7: The database of the optimal impulses for face recognition.

4.2.2 Results of Detection Performance

In the detection of all 108 objects in Subsection 3.2.4, L=108; SD=58; and FD=50. Then by using Equation 2.86, the error rate $ER\left(\%\right)$ is equal to $\frac{50}{108}\times100=46.2963\%$.

4.2.2.1 Improvement of Detection Performance

For finding the optimal combination out of the 108 objects in Subsection 3.2.4, $46656 (36 \times 36 \times 36)$ iterations are performed until the database of the optimal impulses for object detection is obtained as in Figure 4.8. The complete MATLAB © code that had been written to optimize the database of the impulses for object detection is shown in Appendix J. When the database of the optimal impulses is used for detecting all 108 objects then the total number of successes SD becomes 79; and the total number of failures FD becomes 29. Therefore, the error rate ER (%) is equal to $\frac{29}{108} \times 100 = 26.8519\%$ which is much less than the resulted error rate when the database of the impulses is not optimized.

Figure 4.8: The database of the optimal impulses for object detection.

Conclusion

5.1 Discussion of Results

5.1.1 Introduction

In fact, the results of the joint transform correlator (JTC) applications are obviously shown in Section 4.2; but the results of the PCA and IPCA applications are not summarized yet. Hence, in this section, these results are fully discussed and summarized.

5.1.2 Comparison of the PCA and IPCA Algorithms

5.1.2.1 Introduction

In this sub-subsection, it is determined which algorithm behaves better in each application. It concludes that the IPCA algorithm, in general, behaves better than the PCA algorithm in the most of the applications.

It is very important to be noticed that the calculation of all eigenvectors from the covariance matrix for all training faces is too difficult because the covariance matrix is too big as explained in Step 8 in Sub-subsection 2.2.2.6. Therefore, it is impractical to use all eigenvectors as eigenfaces; but they are computed for comparison purposes with the PCA and IPCA algorithms.

5.1.2.2 Results of Image Compression

The results of image compression are summarized in Table 5.1. From Table 5.1, the IPCA algorithm behaves better than any other algorithm or technique. It offers wonderful compression, reconstruction and processing speed with acceptable errors.

		The Mean Squared Error	An information rate (%)		
		(MSE) of Reconstructing Training Face No. 5	Before Compression : After Compression	The MSE of Compression	Processing Speed
	q = 1	2.96 × 10 ⁶	100:22.26	2.38×10^{7}	The fastest
	$q=7 \ \mathrm{(IPCA} \ \mathrm{Algorithm)}$	1706.72	100:89.17	1.56×10^6	Second
The Number of Selected Eigenfaces q	$q=8 \ \mathrm{(PCA)} \ \mathrm{Algorithm}$	1.25×10^{-23}	100:100.32	1.16×10^{-7}	Third
	$q=2500 \ m (All \ Eigenvectors)$	2.35×10^{6}	100 : 27888.9	0	The slowest

Table 5.1: The results of image compression.

5.1.2.3 Results of Face Recognition

The results of face recognition are summarized in Table 5.2. From Table 5.2, the PCA algorithm behaves better than any other algorithm or technique. It offers an acceptable error rate, easy calculation and the speed is not bad.

		An Error Rate (%)	Processing Speed
	q = 1	65.56	The fastest
The Number of	q = 7 (IPCA Algorithm)	26.67	Second
$egin{array}{c} ext{Selected} \ ext{Eigenfaces} \ q \end{array}$	q = 8 (PCA Algorithm)	26.11	Third
	$q=2500 \ m (All \ Eigenvectors)$	17.78	The slowest

Table 5.2: The results of face recognition.

5.1.2.4 Results of Face Detection

The results of face detection are summarized in Table 5.3. From Table 5.3, the IPCA algorithm behaves better than any other algorithm or technique. It offers the smallest error rate as well as remarkable speed.

		An Error Rate (%)	Processing Speed
	q = 1	24.44	The fastest
The Number of Selected	q = 7 (IPCA Algorithm)	18.33	Second
Eigenfaces q	q = 8 (PCA Algorithm)	18.33	Third
	$q=2500 \ m (All \ Eigenvectors)$	35.56	The slowest

Table 5.3: The results of face detection.

5.2 Methods to Improve the Digital and the Optical Models

5.2.1 Introduction

In fact, the discussed models are not in their final stage where they can be optimized. Some ideas are presented in this section for each model that are going to help in enhancing their performance.

5.2.2 Improvement of the Digital and the Optical Models

The performance of face recognition and image detection of the digital model can be improved by increasing the size of the training faces and the detected or recognized unknown image. Also, increasing the size of the impulses and the detected or recognized unknown object of the optical model improves its performance in detection and recognition.

The performance of digital and optical recognition can be improved by obtaining a good way for blocking the pixels occupying the background of a face especially if the background is not black. If it is not black such as white, the error rate of recognition will increase because the intensities on the face will be close to 255 (i.e. they will be close to the intensities on the background) then discrimination between the intensities occupying the background and the intensities occupying the face becomes too hard.

The models performance can be improved by using another technique for enhancing the optimization speed of the databases. This technique measures information contained in the 180 tested images (or in the 108 objects) then picking the tested images (or the objects) that contain the highest information than the others to form the database of the training faces (or the database of the impulses).

Finally, the models performance can be improved by trying different detection and recognition thresholds such as thresholds generated by receiver operating characteristics (ROC).

5.3 The Digital Model Versus the Optical Model

In this section, we are going to compare between the digital model and the optical model in detection and recognition based on a couple of criteria. The comparison is summarized in Table 5.4.

Table 5.4: The comparison between the digital and the optical models.

A Comparison Criterion	The Digital Model	The Optical Model
The Database	It is not necessarily to be optimized	It must be optimized
Implementation	Easier	Harder
Speed	Slower	Faster because it uses the speed of light
Detection and Recognition Performance	Better	Good

5.4 Future Work

For developing this work in future, the proposed ideas for improving the digital and the optical models presented in Section 5.2 are going to be achieved. Also, there is another idea that is considered to be performed in future is testing the models performance under various types of noises.

Bibliography 83

Bibliography

- [1] L. I. Smith, "A tutorial on principal components analysis." http://www.cs.otago.ac.nz/cosc453/student_tutorials/principal_components.pdf, February 2002. 1
- [2] S.-F. Ding, Z.-Z. Shi, Y. Liang, and F.-X. Jin, "Information feature analysis and improved algorithm of pca," in *Machine Learning and Cybernetics*, 2005. Proceedings of 2005 International Conference on, vol. 3, pp. 1756–1761 Vol. 3, Aug 2005. doi: 10.1109/ICMLC.2005.1527229. 1, 2, 9, 20
- [3] J. Goodman, Introduction to Fourier Optics. McGraw-Hill physical and quantum electronics series, Roberts & Company, 2005. http://books.google.com/books?id=ow5xs_Rtt9AC, lccn: 2004023213, isbn: 9780974707723. 2, 30, 32
- [4] C. S. Weaver and J. W. Goodman, "A technique for optically convolving two functions," *Appl. Opt.*, vol. 5, pp. 1248–1249, Jul 1966. publisher: OSA, http://ao.osa.org/abstract.cfm?URI=ao-5-7-1248, number: 7, doi: 10.1364/AO.5.001248. 2, 35
- [5] Matrix Methods and Vector Spaces in Physics. Prentice-Hall Of India Pvt. Limited. http://books.google.com/books?id=jF-08gk-BcsC, isbn: 9788120338661. 9
- [6] J. Kwak and S. Hong, Linear Algebra. Birkhäuser Boston, 2004. http://books.google.com/books?id=27zJ7zJCiAIC, isbn: 9780817642945, lccn: 2004043751. 9, 16
- [7] M. Turk and A. Pentland, "Face recognition using eigenfaces," in Computer Vision and Pattern Recognition, 1991. Proceedings CVPR '91., IEEE Computer Society Conference on, pp. 586–591, Jun 1991. doi: 10.1109/CVPR.1991.139758, ISSN: 1063-6919. 17

84 Bibliography

[8] M. Turk and A. Pentland, "Eigenfaces for recognition," J. Cognitive Neuroscience, vol. 3, pp. 71–86, Jan. 1991. publisher: MIT Press, address: Cambridge, MA, USA, http://dx.doi.org/10.1162/jocn.1991.3.1.71, number: 1, numpages: 16, acmid: 1326894, doi: 10.1162/jocn.1991.3.1.71, issn: 0898-929X. 17

- [9] R. Gonzalez, R. Woods, and S. Eddins, *Digital Image Processing Using MAT-LAB*. Gatesmark, LLC, 2009. http://www.imageprocessingplace.com/DIPUM-2E/dipum2e_main_page.htm, isbn: 978-0-9820854-0-0. 17
- [10] M. Fiedler, *Matrices and Graphs in Geometry*. Encyclopedia of Mathematics and its Applications, Cambridge University Press, 2011. http://books.google.com/books?id=otbzeAqL63kC, lccn: 2010046601, isbn: 9780521461931. 18
- [11] B. Buttkus, Spectral Analysis and Filter Theory in Applied Geophysics: With 23 Tables. Springer Berlin Heidelberg, 2000. http://books.google.com/books?id=n6a6BjoGzwwC, lcen: 00026538, isbn: 9783540626749. 35
- [12] S. Haykin and M. Moher, "Properties of the fourier transform," in An Introduction to Analog and Digital Communications, 2nd Edition, Wiley Global Education, 2006. http://books.google.com/books?id=2RUcAAAAQBAJ, isbn: 9781118313107. 37
- [13] A. Kumar, Signals and Systems. PHI Learning Pvt. Ltd. http://books.google.com/books?id=FGGa6BXhy3kC, isbn: 9788120343108. 38
- [14] R. Gonzalez and R. Woods, Digital Image Processing. Pearson/Prentice Hall, 2008. http://books.google.com/books?id=8uGOnjRGEzoC, lccn: 2009289249, isbn: 9780131687288. 42

A Code for the Digital Model

HIS code is for testing face reconstruction, detection and recognition processes as well as the process of image compression by using principal components analysis (PCA) and improved principal components analysis (IPCA) algorithms. In addition to that this code is for setting up recognition and detection thresholds.

```
% This Code Is for Testing Face Reconstruction, Detection and
  % Recognition Processes as Well as the Process of Image Compression
  % by Using Principal Components Analysis (PCA) and Improved
  % Principal Components Analysis (IPCA) Algorithms. In Addition to
  % That This Code Is for Setting up Recognition and Detection
    Thresholds.
  clc
  clear all
  close all
  format long
  % Faces images are NxN images.
  N=size(imread('Mr. Mansour Alshammari.jpg'),1); % This N is the
                                                   % number of pixels.
18
  % Training faces.
  Total_No_of_Known_Im=9; % The total number of the training faces.
  All_Known_Im_V=zeros(N*N,Total_No_of_Known_Im); % An N^2xP, 2D
                                                   % matrix where P is
                                                   % the total number
26
```

```
27
                                                    % of the training
                                                    % faces. Each
28
                                                    % training face is
29
                                                    % vectorized and
30
                                                    % placed in one of
31
                                                    % the columns of
32
                                                    % the 2D matrix.
33
                                                    % The size of each
34
                                                    % training face
35
                                                    % vector is N^2.
36
37
  Known_Images_Folder=....
38
       [cd '/The Known Images of Black Backgrounds']; % The folder of
39
                                                       % the black
40
                                                       % background
41
42
                                                       % training
                                                       % faces.
43
    Known_Images_Folder=.....
         [cd '/The Known Images of White Backgrounds']; % The folder
45
                                                         % of the white
46
                                                         % background
47
48
                                                         % training
                                                         % faces.
49
50
  if isdir(Known_Images_Folder) == 0
51
      Error Message=sprintf(.....
52
           'Error: The following folder does not exist\n%s', ......
53
           Known Images Folder);
54
      warndlg(Error_Message);
55
  end
56
57
  Known_Images=dir(fullfile(Known_Images_Folder,'*.jpg'));
58
  for k=1:length(Known_Images)
      Known_Image=Known_Images(k).name;
60
      Known_Image_Location=fullfile(Known_Images_Folder,Known_Image);
      All_Known_Im_V(:,k)=.....
62
63
           reshape (double (rgb2gray (imread (Known_Image_Location))).....
           N*N,1);
64
65
         figure('units', 'centimeters', 'position', [16 7 7.5 8.5])
66
         subplot(1,1,1)
         imshow(uint8(reshape(All_Known_Im_V(:,k),N,N)))
68
69
         if k==1
  응
             title({['Training Face No.' num2str(k)];......
70
71
                 ['(' Known_Image(1:length(Known_Image)-6) ......
                 ', 1^{st} Projection)']})
72
        elseif k==2
  응
73
            title({['Training Face No.' num2str(k)];......
74 %
75 °€
                 ['(' Known_Image(1:length(Known_Image)-6) ......
76 %
                 ', 2^{nd} Projection)']})
```

```
elseif k==3
             title({['Training Face No.' num2str(k)];.....
                 ['(' Known_Image(1:length(Known_Image)-6) ......
                  ', 3^{rd} Projection)']})
 80
         elseif k==4
             title({['Training Face No.' num2str(k)];.....
                  ['(' Known_Image(1:length(Known_Image)-6) .....
                  ', 1^{st} Projection)']})
         elseif k==5
             title({['Training Face No.' num2str(k)];......
                 ['(' Known_Image(1:length(Known_Image)-6) .....
                  ', 2^{nd} Projection)']})
         elseif k==6
             title({['Training Face No.' num2str(k)];.....
                  ['(' Known Image(1:length(Known Image)-6) .....
                  ', 3^{rd} Projection)']})
         elseif k==7
 93
             title({['Training Face No.' num2str(k)];......
                  ['(' Known_Image(1:length(Known_Image)-6) .....
95
                  ', 1^{st} Projection)']})
         elseif k==8
             title({['Training Face No.' num2str(k)];......
                  ['(' Known_Image(1:length(Known_Image)-6) .....
                  ', 2^{nd} Projection)']})
         elseif k==9
101 %
             title({['Training Face No.' num2str(k)];......
102
                 ['(' Known_Image(1:length(Known_Image)-6) .....
103 %
104
                  ', 3^{rd} Projection)']})
   9
105
         end
         disp(['Please, press any keyboard button to explore '.....
106
             'the remaining training faces >>>>>'])
107
108
         pause
109 %
         close all
110 %
         clc
111 end
112 All_Known_Im_V;
114 % Imhist for setting up a threshold to work on just the pixels of a
115 % face and throwing the background pixels. Imhist calculates the
116 % number of pixels in an image that have the same intensity levels.
117 % So, if a training face has a unified background then the biggest
118 % histogram of the intensity levels will be for the backgroubd
   % pixels because the total number of pixels that have the same
120 % intensity levels are the background pixels of the training face.
121 % Note that, the histogram of a digital image is defined as the
122 % discrete function, h(rk)=nk, where rk is the kth intensity level
123 % and nk is the number of pixels in the image whose intensity level
124 % is rk.
125 hist_Known_Im=zeros(Total_No_of_Known_Im, 256);
126 for A=1:Total_No_of_Known_Im
```

```
127
       % Note that, a training face has to be scaled between 0 to 255
       % before using imhist. For doing that, uint8 can be used for
128
       % converting the training face class form double to uint8.
       130
           imhist(uint8(reshape(All_Known_Im_V(:,A),N,N)));
131
132
         Known_Image=Known_Images(A).name;
133
         plot(hist_Known_Im(A,:))
134
         if A==1
135
             title({['The Histogram of Training Face No.' ......
136
137
                  num2str(A)];.....
                  ['(' Known_Image(1:length(Known_Image)-6) ......
138
                  ', 1^{st} Projection)']})
139
         elseif A==2
             title({['The Histogram of Training Face No.' .....
141
142
                  num2str(A)];.....
143
                  ['(' Known_Image(1:length(Known_Image)-6) ......
                  ', 2^{nd} Projection)']})
         elseif A==3
145
             title({['The Histogram of Training Face No.' .....
146
                  num2str(A)];.....
147
148
                  ['(' Known_Image(1:length(Known_Image)-6) ......
                  ', 3^{rd} Projection)']})
149
         elseif A==4
150
             title({['The Histogram of Training Face No.' .....
151
                  num2str(A)];.....
152
                  ['(' Known_Image(1:length(Known_Image)-6) .....
153
                  ', 1^{st} Projection)']})
154
         elseif A==5
             title({['The Histogram of Training Face No.' ......
156
157
                  num2str(A)];.....
                  ['(' Known_Image(1:length(Known_Image)-6) .....
158
                  ', 2^{nd} Projection)']})
159
         elseif A==6
160
             title({['The Histogram of Training Face No.' .....
161
                  num2str(A)];....
162
                  ['(' Known_Image(1:length(Known_Image)-6) .....
                  ', 3^{rd} Projection)']})
164
165
         elseif A==7
             title({['The Histogram of Training Face No.' .....
166
                  num2str(A)];....
167
                  ['(' Known_Image(1:length(Known_Image)-6) .....
168
                  ', 1^{st} Projection)']})
169
         elseif A==8
170
             title({['The Histogram of Training Face No.' .....
171
                  num2str(A)];....
172
                  ['(' Known_Image(1:length(Known_Image)-6) .....
173
                  ', 2^{nd} Projection)']})
174 %
175 %
         elseif A==9
176 %
             title({['The Histogram of Training Face No.' ....
```

```
177
                  num2str(A)];.....
                  ['(' Known_Image(1:length(Known_Image)-6) .....
178
                  ', 3^{rd} Projection)']})
180
         end
         xlabel('Intensity Level rk')
181
         ylabel({'The Number of Pixels in the Training Face'.....
182
              ' Whose Intensity Level Is rk Where h(rk)=nk'})
         axis tight
184
         disp(['Please, press any keyboard button to explore '.....
              'the remaining histograms >>>>>'])
186
187
         pause
         clc
188
189 end
190 hist Known Im;
191
192
   Mean_hist_Known_Im=sum(hist_Known_Im, 1) / . . . . .
193
       Total_No_of_Known_Im; % The average histogram
                               % for all training faces.
   Threshold_Known_Im=8; % The picked threshold is based on the
195
                          % average histogram for all training faces
196
                          % when the training faces have black
197
198
                          % backgrounds. Note that, all intesity levels
                          % below the threshold represent the images
199
                          % backgrounds because these levels have the
200
                          % biggest histogram.
201
     Threshold Known Im=180; % The Picked threshold is based on the
202
203
                               % average histogram for all training
                               % faces when the training faces have
204
                               % white backgrounds. Note that, all
205
                               % intesity levels above the threshold
206
                               % represent the images backgrounds
207
                               % because these levels have the biggest
208
                               % histogram.
209
210 % plot (Mean_hist_Known_Im)
   % line([Threshold_Known_Im Threshold_Known_Im],.....
          [0 max(Mean_hist_Known_Im)],'Color','r')
   % text(Threshold_Known_Im+0.5, max(Mean_hist_Known_Im)/2,....
          '{\color{red} The Threshold}')
  % title('The Mean Histogram of All Training Faces')
216 % xlabel('Intensity Level rk')
217 % set(gca, 'XTick', [O Threshold_Known_Im 255])
218 % ylabel({'The Mean Number of Pixels from All Training' ......
          'Faces Whose Intensity Level Is rk' })
220 % axis tight
   % pause
  % Normalizing all training faces for removing the lightening
224 % effects on them and to increase the resolution of face detection
225 % and recognition. Note that, the normalization will be done just
226 % for face pixels for keeping the variations among the images just
```

```
% in the faces without the backgrounds effects.
   Threshold_Known_Image=.....
       zeros(N,N,Total_No_of_Known_Im); % The training faces after
                                           % applying the threshold.
230
   Normalized_Known_Im_V=....
231
        zeros(N*N,Total_No_of_Known_Im); % An N^2xP, 2D matrix where
232
                                           % each column represents a
233
                                           % normalized training face
234
                                           % vector.
235
   for M=1:Total_No_of_Known_Im
236
       t=reshape(All Known Im V(:,M),N,N);
237
       T=t>Threshold_Known_Im; % The pixels bigger than the threshold
238
                                  % are of interest because they
239
                                  % represent the pixels of a face.
240
          T=t<Threshold Known Im; % The pixels smaller than the
241
                                    % threshold are of interest because
242
243
                                    % they represent the pixels of
                                    % a face.
244
       for R=1:N
245
            for C=1:N
246
                if T(R,C) ==1
247
                    Threshold_Known_Image (R, C, M) = \dots
248
                         floor(255*(double(t(R,C))/....
249
                         max(max(double(t))))); % The normalization of a
250
                                                  % training face. This is
251
                                                  % done to increase the
252
                                                  % dynamic range of the
253
                                                  % training face for
254
                                                  % visualization by
255
                                                  % scaling the
256
                                                  % intensities of the
257
                                                  % training face from 0
258
                                                  % to 255.
259
                end;
260
            end;
261
       end;
262
       Normalized_Known_Im_V(:, M) = . . . . . . . .
            reshape(Threshold_Known_Image(:,:,M),N*N,1);
264
265
          Known_Image=Known_Images (M) .name;
266
          figure
          subplot(2,1,1)
268
269
          imshow(t)
          if M==1
270
271
              title({['This Is To Show How Good the Known '.....
                  'Images Threshold Is,'];....
272
                  blanks(1);['Training Face No.' num2str(M)];
273
                  ['(' Known_Image(1:length(Known_Image)-6) .....
274
   응
                  ', 1^{st} Projection)']})
275
         elseif M==2
276 %
```

```
title({['This Is To Show How Good the Known '.....
277
                  'Images Threshold Is,'];.....
278
                  blanks(1);['Training Face No.' num2str(M)];
                  ['(' Known_Image(1:length(Known_Image)-6) .....
280
                  ', 2^{nd} Projection)']})
281
         elseif M==3
282
              title({['This Is To Show How Good the Known '.....
                  'Images Threshold Is,'];....
284
                  blanks(1);['Training Face No.' num2str(M)];
285
                  ['(' Known_Image(1:length(Known_Image)-6) .....
286
287
                  ', 3^{rd} Projection)']})
         elseif M==4
288
              title({['This Is To Show How Good the Known '.....
289
                  'Images Threshold Is,'];....
290
                  blanks(1);['Training Face No.' num2str(M)];
291
                  ['(' Known_Image(1:length(Known_Image)-6) ....
292
                  ', 1^{st} Projection)']})
293
          elseif M==5
294
              title({['This Is To Show How Good the Known '.....
295
                  'Images Threshold Is,'];....
                  blanks(1);['Training Face No.' num2str(M)];
297
                  ['(' Known_Image(1:length(Known_Image)-6) .....
                  ', 2^{nd} Projection)']})
299
          elseif M==6
              title({['This Is To Show How Good the Known '.....
301
                  'Images Threshold Is,'];....
302
                  blanks(1);['Training Face No.' num2str(M)];
303
                  ['(' Known_Image(1:length(Known_Image)-6) .....
304
                  ', 3^{rd} Projection)']})
305
          elseif M==7
306
              title({['This Is To Show How Good the Known '.....
307
                  'Images Threshold Is,'];....
308
                  blanks(1);['Training Face No.' num2str(M)];
309
                  ['(' Known_Image(1:length(Known_Image)-6) .....
310 %
                  ', 1^{st} Projection)']})
311
          elseif M==8
312
              title({['This Is To Show How Good the Known '.....
                  'Images Threshold Is,'];....
314
                  blanks(1);['Training Face No.' num2str(M)];
                  ['(' Known_Image(1:length(Known_Image)-6) ....
316
                  ', 2^{nd} Projection)']})
         elseif M==9
318
              title({['This Is To Show How Good the Known '.....
                  'Images Threshold Is,'];....
320
                  blanks(1); ['Training Face No.' num2str(M)];
                  ['(' Known_Image(1:length(Known_Image)-6) .....
322
                  ', 3^{rd} Projection)']})
323
324
          end
          subplot(2,1,2)
325
326 %
          imshow(reshape(Normalized_Known_Im_V(:, M), N, N))
```

```
327
          if M==1
              title({['Normalized Training Face No.' num2str(M)];....
328
                  ['(' Known_Image(1:length(Known_Image)-6) ......
                  ', 1^{st} Projection)']})
330
          elseif M==2
331
              title({['Normalized Training Face No.' num2str(M)];....
332
                  ['(' Known_Image(1:length(Known_Image)-6) .....
333
                  ', 2^{nd} Projection)']})
334
          elseif M==3
335
              title({['Normalized Training Face No.' num2str(M)];....
336
337
                  ['(' Known Image(1:length(Known Image)-6) .....
                  ', 3^{rd} Projection)']})
338
          elseif M==4
339
              title({['Normalized Training Face No.' num2str(M)];....
340
                  ['(' Known Image(1:length(Known Image)-6) .....
341
                  ', 1^{st} Projection)']})
342
          elseif M==5
343
              title({['Normalized Training Face No.' num2str(M)];....
                  ['(' Known_Image(1:length(Known_Image)-6) .....
345
                   ', 2^{nd} Projection)']})
346
          elseif M==6
347
              title({['Normalized Training Face No.' num2str(M)];....
348
                  ['(' Known_Image(1:length(Known_Image)-6) .....
349
                  ', 3^{rd} Projection)']})
350
          elseif M==7
   응
351
              title({['Normalized Training Face No.' num2str(M)];....
352
                  ['(' Known_Image(1:length(Known_Image)-6) .....
353
                  ', 1^{st} Projection)']})
354
          elseif M==8
355
              title({['Normalized Training Face No.' num2str(M)];....
356
                  ['(' Known_Image(1:length(Known_Image)-6) ......
357
                  ', 2^{nd} Projection)']})
358
          elseif M==9
359
              title({['Normalized Training Face No.' num2str(M)];....
360
                  ['(' Known_Image(1:length(Known_Image)-6) ......
361
                  ', 3^{rd} Projection)']})
362
363
          disp(['Please, press any keyboard button to see how '.....
364
365
              'good the applied'])
          disp('threshold on the normalized training faces is >>>>>')
366
          pause
          close all
368
369
          clc
   응
370
          figure
371
          subplot(2,1,1)
372
          imshow(uint8(t))
373
          if M==1
374
   응
375 %
              title({['Training Face No.' num2str(M)];......
376 %
                  ['(' Known_Image(1:length(Known_Image)-6) .....
```

```
377
                  ', 1^{st} Projection)']})
          elseif M==2
378
              title({['Training Face No.' num2str(M)];.....
                  ['(' Known_Image(1:length(Known_Image)-6) .....
380
                  ', 2^{nd} Projection)']})
381
          elseif M==3
382
              title({['Training Face No.' num2str(M)];.....
                  ['(' Known_Image(1:length(Known_Image)-6) .....
384
                  ', 3^{rd} Projection)']})
385
         elseif M==4
386
387
              title({['Training Face No.' num2str(M)];......
                  ['(' Known_Image(1:length(Known_Image)-6) .....
388
                  ', 1^{st} Projection)']})
389
          elseif M==5
390
              title({['Training Face No.' num2str(M)];......
391
                  ['(' Known_Image(1:length(Known_Image)-6) .....
392
                  ', 2^{nd} Projection)']})
393
          elseif M==6
              title({['Training Face No.' num2str(M)];.....
395
                  ['(' Known_Image(1:length(Known_Image)-6) .....
                  ', 3^{rd} Projection)']})
397
          elseif M==7
              title({['Training Face No.' num2str(M)];.....
399
                  ['(' Known_Image(1:length(Known_Image)-6) ......
                  ', 1^{st} Projection)']})
401
          elseif M==8
402
              title({['Training Face No.' num2str(M)];.....
403
404
                  ['(' Known Image(1:length(Known Image)-6) .....
                  ', 2^{nd} Projection)']})
405
          elseif M==9
406
              title({['Training Face No.' num2str(M)];.....
407
                  ['(' Known_Image(1:length(Known_Image)-6) ......
408
                  ', 3^{rd} Projection)']})
409
410 %
          end
          subplot(2,1,2)
411
          imshow(uint8(reshape(Normalized_Known_Im_V(:, M), N, N)))
412
          if M==1
              title({['Normalized Training Face No.' num2str(M)];....
414
415
                  ['(' Known_Image(1:length(Known_Image)-6) .....
                  ', 1^{st} Projection)']})
416
          elseif M==2
              title({['Normalized Training Face No.' num2str(M)];....
418
419
                  ['(' Known Image(1:length(Known Image)-6) .....
                  ', 2^{nd} Projection)']})
420
          elseif M==3
              title({['Normalized Training Face No.' num2str(M)];....
422
                  ['(' Known_Image(1:length(Known_Image)-6) ......
423
                  ', 3^{rd} Projection)']})
424
425 %
          elseif M==4
426 %
              title({['Normalized Training Face No.' num2str(M)];....
```

```
427
                  ['(' Known_Image(1:length(Known_Image)-6) .....
                  ', 1^{st} Projection)']})
428
         elseif M==5
              title({['Normalized Training Face No.' num2str(M)];....
430
                  ['(' Known_Image(1:length(Known_Image)-6) .....
431
                  ', 2^{nd} Projection)']})
   9
432
         elseif M==6
              title({['Normalized Training Face No.' num2str(M)];....
434
                  ['(' Known Image(1:length(Known Image)-6) ......
435
                  ', 3^{rd} Projection)']})
436
437
         elseif M==7
              title({['Normalized Training Face No.' num2str(M)];....
438
                  ['(' Known_Image(1:length(Known_Image)-6) .....
439
                  ', 1^{st} Projection)']})
440
         elseif M==8
441
              title({['Normalized Training Face No.' num2str(M)];....
442
                  ['(' Known_Image(1:length(Known_Image)-6) .....
443
                  ', 2^{nd} Projection)']})
         elseif M==9
445
              title({['Normalized Training Face No.' num2str(M)];....
446
                  ['(' Known_Image(1:length(Known_Image)-6) ......
447
448
                  ', 3^{rd} Projection)']})
449
         disp(['Please, press any keyboard button to explore '.....
450
              'the remaining normalized training faces >>>>>'])
451
452
         pause
453
         close all
         clc
454
   end;
455
   Normalized_Known_Im_V;
456
   % Centering each face by simply subtracting the mean of the face
458
   % pixels from each pixel in the face. By doing that the new face
   % pixels will have zero mean that means the face is centered.
   Rows_Columns=zeros(1,1,.....
       Total_No_of_Known_Im); % The rows and columns for the pixels
462
                               % of the faces. Note that, the training
463
                               % faces are not similar so the rows and
464
465
                               % columns of the faces pixels will not
                               % be equal. Therefore, MATLAB will add
466
                               % zero rows and columns to make the
467
                               % matrices of the rows and columns of
468
469
                               % the faces pixels are equal.
   Means=zeros(1,Total_No_of_Known_Im); % The means of the
470
                                          % faces pixels.
471
   Centered_Known_Im=zeros(N*N,.....
472
       Total_No_of_Known_Im); % An N^2xP, 2D matrix where each
473
474
                               % column represents a training
                               % face vector with a centered
475
                               % face.
476
```

```
Centered_Known_Image=zeros(N, N, .....
478
       Total_No_of_Known_Im); % The training faces after
                                 % centering the faces.
479
   for j=1:Total_No_of_Known_Im
480
       x=reshape(Normalized_Known_Im_V(:,j),N,N);
481
        [rr\ cc]=find(x>0); % The pixels bigger than zero are of
482
                            % interest because they represent the
483
                            % pixels of a face.
484
       Rows Columns (1, 1: size(rr, 1), j) = rr.';
485
       Rows_Columns(2,1:size(rr,1),j)=cc.';
486
       Sum=0;
487
       No=0;
488
        for RR=1:size(rr,1)
489
            Sum=Sum+x(rr(RR),cc(RR));
490
            No=No+1;
491
492
       end
       Means (1, j) = Sum/No;
493
494
        for RR1=1:size(rr,1)
495
            Centered_Known_Image(rr(RR1),cc(RR1),\dot{j})=.....
                x(rr(RR1), cc(RR1))-Means(1,j);
497
498
       end
       Centered_Known_Im(:, j) = . . . . . . .
499
            reshape(Centered_Known_Image(:,:,j),N*N,1);
500
501
          figure('units','centimeters','position',[16 7 7 8.5])
502
          subplot(1,1,1)
503
504
          Known_Image=Known_Images(j).name;
          imshow(uint8(reshape(Centered_Known_Im(:, j), N, N)))
505
          if j==1
506
              title({['Centered Training Face No.' num2str(j)];....
507
                   ['(' Known_Image(1:length(Known_Image)-6) .....
508
                   ', 1^{st} Projection)']})
509
510 %
          elseif j==2
              title({['Centered Training Face No.' num2str(j)];....
511
                   ['(' Known_Image(1:length(Known_Image)-6) .....
512
                   ', 2^{nd} Projection)']})
513
          elseif j==3
514
              title({['Centered Training Face No.' num2str(j)];....
                   ['(' Known_Image(1:length(Known_Image)-6) .....
516
                   ', 3^{rd} Projection)']})
517
          elseif j==4
518
              title({['Centered Training Face No.' num2str(j)];....
                   ['(' Known_Image(1:length(Known_Image)-6) .....
520
521
                   ', 1^{st} Projection)']})
          elseif j==5
522
              title({['Centered Training Face No.' num2str(j)];....
523
                   ['(' Known_Image(1:length(Known_Image)-6) .....
524
                   ', 2^{nd} Projection)']})
525
526 %
          elseif j==6
```

```
title({['Centered Training Face No.' num2str(j)];....
527
                  ['(' Known_Image(1:length(Known_Image)-6) .....
528
                  ', 3^{rd} Projection)']})
          elseif j==7
530
              title({['Centered Training Face No.' num2str(j)];....
531
                  ['(' Known_Image(1:length(Known_Image)-6) .....
532
                  ', 1^{st} Projection)']})
          elseif j==8
534
              title({['Centered Training Face No.' num2str(j)];....
535
                  ['(' Known_Image(1:length(Known_Image)-6) .....
536
                  ', 2^{nd} Projection)']})
537
          elseif j==9
538
              title({['Centered Training Face No.' num2str(j)];....
539
                  ['(' Known_Image(1:length(Known_Image)-6) .....
                  ', 3^{rd} Projection)']})
541
542
          disp(['Please, press any keyboard button to explore '.....
543
              'the remaining centered training faces >>>>>'])
          pause
545
          close all
546
          clc
547
   응
548
   Centered_Known_Im;
549
551
   % Tested images are supposed to be unknown but here multiple
   % images for each training face are taken for testing the face
   % reconstruction, recognition and detection processes as well
   % as selecting a decision threshold for face detection and
   % recognition.
   Total_No_of_Tested_Im=180; % Total number of the
                                % tested images.
558
559
   Im_P=[36 12 12 36 12 12 36 12 12]; % Each element in this vector
560
                                         % represents the total number of
561
                                         % the taken images for each
562
                                         % training face.
564
565
  L1=Im_P(1);
   L2=L1+Im_P(2);
566
   L3=L2+Im_P(3); % L3=60 is the total number of the tested
                   % images for Mr. Mansour Alshammari.
568
569
  L4=L3+Im P(4);
  L5=L4+Im P(5);
571 L6=L5+Im P(6); % L6=120 is the total number of the tested images
                   % for Mr. Methkir Alharthee.
573 L7 = L6 + Im P(7);
574 L8=L7+Im_P(8);
575 \text{ L9}=\text{L8}+\text{Im}_{P}(9); % \text{L9}=180 \text{ is the total number of the tested images}
                   % for Mr. Mohammed Hanafy.
576
```

```
577
   All_Tested_Im_V=zeros(N*N,.....
578
       Total_No_of_Tested_Im); % An N^2xP1, 2D matrix where P1 is the
                                 % total number of the tested images.
580
                                 % Each tested image is vectorized and
581
                                % placed in one of the columns of the
582
                                % 2D matrix. The size of each tested
583
                                 % image vector is N^2.
584
585
   Tested_Images_Folder=.....
586
587
        [cd '/The Tested Images of Black Backgrounds']; % The folder of
                                                          % the black
588
                                                          % background
589
590
                                                          % tested
                                                          % images.
591
592
     Tested_Images_Folder=.....
         [cd '/The Tested Images of White Backgrounds']; % The folder
593
                                                          % of the white
594
                                                          % background
595
                                                          % tested
596
                                                          % images.
597
598
   if isdir(Tested_Images_Folder) == 0
599
       Error_Message1=sprintf(.....
600
            'Error: The following folder does not exist\n%s'......
601
           , Tested Images Folder);
602
       warndlg(Error_Message1);
603
604
   end
605
   Tested_Images=dir(fullfile(Tested_Images_Folder,'*.jpg'));
606
   for k1=1:length(Tested_Images)
607
       Tested_Image_Number=[num2str(k1) '.jpg'];
608
609
       Tested_Image_Location=.....
            fullfile(Tested_Images_Folder, Tested_Image_Number);
610
       All_Tested_Im_V(:,k1)=reshape.....
611
            (double(rgb2gray(imread(Tested_Image_Location))),N*N,1);
612
613
          figure('units','centimeters','position',[16 7 7.5 8.5])
614
615
          subplot(1,1,1)
          imshow(uint8(reshape(All_Tested_Im_V(:,k1),N,N)))
616
         if k1 \le L1
617
              title({['Tested Image No.' num2str(k1)];.....
618
                  '(Mr. Mansour Alshammari, 1^{st} Projection)'})
   응
         elseif k1>L1 && k1<=L2
620
621
             title({['Tested Image No.' num2str(k1)];......
                  '(Mr. Mansour Alshammari, 2^{nd} Projection)'})
622
         elseif k1>L2 && k1<=L3
623
              title({['Tested Image No.' num2str(k1)];......
624 %
625
                  '(Mr. Mansour Alshammari, 3^{rd} Projection)'})
626 %
          elseif k1>L3 \&\& k1<=L4
```

```
627
             title({['Tested Image No.' num2str(k1)];......
                  '(Mr. Methkir Alharthee, 1^{st} Projection)'})
628
         elseif k1>L4 && k1<=L5
             title({['Tested Image No.' num2str(k1)];......
630
                  '(Mr. Methkir Alharthee, 2^{nd} Projection)'})
631
         elseif k1>L5 && k1<=L6
632
             title({['Tested Image No.' num2str(k1)];......
633
                  '(Mr. Methkir Alharthee, 3^{rd} Projection)'})
634
         elseif k1>L6 && k1<=L7
635
             title({['Tested Image No.' num2str(k1)];......
636
637
                  '(Mr. Mohammed Hanafy, 1^{st} Projection)'})
         elseif k1>L7 \&\& k1<=L8
638
             title({['Tested Image No.' num2str(k1)];......
639
                  '(Mr. Mohammed Hanafy, 2^{nd} Projection)'))
640
         elseif k1>L8 && k1<=L9
641
             title({['Tested Image No.' num2str(k1)];.....
642
                  '(Mr. Mohammed Hanafy, 3^{rd} Projection)'})
643
         end
         disp(['Please, press any keyboard button to explore '.....
645
             'the remaining tested images >>>>>'])
646
647
         pause
         close all
648
         clc
649
   end
650
651 All_Tested_Im_V;
   % Imhist for setting up a threshold to work on just the pixels of a
   % face and throwing the background pixels. Imhist calculates the
   % number of pixels in an image that have the same intensity levels.
   % So, if a tested image has a unified background then the biggest
   % histogram of the intensity levels will be for the background
   % pixels because the total number of pixels that have the same
   % intensity levels are the background pixels of the tested image.
   % Note that, the histogram of a digital image is defined as the
   % discrete function, h(rk)=nk, where rk is the kth intensity level
   % and nk is the number of pixels in the image whose intensity level
   % is rk.
  hist_Tested_Im=zeros(Total_No_of_Tested_Im, 256);
   for A1=1:Total_No_of_Tested_Im
665
       % Note that, a tested image has to be scaled between 0 to 255
666
       % before using imhist. For doing that, uint8 can be used for
667
       % converting the tested image class form double to uint8.
668
       hist Tested Im(A1,:) = \dots
669
           imhist(uint8(reshape(All_Tested_Im_V(:,A1),N,N)));
670
671
         plot(hist_Tested_Im(A1,:))
672
         if A1<=L1
673
            title({['The Histogram of Training Face No.'
674 %
675 %
                 num2str(A1)];.....
                  '(Mr. Mansour Alshammari, 1^{st} Projection)'})
676
```

```
elseif A1>L1 && A1<=L2
677
              title({['The Histogram of Training Face No.' .....
678
                  num2str(A1)];.....
                  '(Mr. Mansour Alshammari, 2^{nd} Projection)'})
680
          elseif A1>L2 && A1<=L3
681
              title({['The Histogram of Training Face No.' ......
682
                  num2str(A1)];.....
                  '(Mr. Mansour Alshammari, 3^{rd} Projection)'})
684
          elseif A1>L3 && A1<=L4
685
686
              title({['The Histogram of Training Face No.' .....
687
                  num2str(A1)];.....
                  '(Mr. Methkir Alharthee, 1^{st} Projection)'})
688
          elseif A1>L4 && A1<=L5
689
              title({['The Histogram of Training Face No.' .....
690
                  num2str(A1)];.....
691
                  '(Mr. Methkir Alharthee, 2^{nd} Projection)'})
692
         elseif A1>L5 && A1<=L6
693
              title({['The Histogram of Training Face No.' .....
                  num2str(A1)];.....
695
                  '(Mr. Methkir Alharthee, 3^{rd} Projection)'})
          elseif A1>L6 && A1<=L7
697
              title({['The Histogram of Training Face No.' .....
                  num2str(A1)];.....
699
                  '(Mr. Mohammed Hanafy, 1^{st} Projection)'})
700
         elseif A1>L7 && A1<=L8
701
              title({['The Histogram of Training Face No.' .....
702
703
                  num2str(A1)];.....
704
                  '(Mr. Mohammed Hanafy, 2^{nd} Projection)'})
          elseif A1>L8 && A1<=L9
705
              title({['The Histogram of Training Face No.' .....
706
                  num2str(A1)];.....
707
                  '(Mr. Mohammed Hanafy, 3^{rd} Projection)'))
708
709
         end
710 %
         xlabel('Intensity Level rk')
         ylabel({'The Number of Pixels in the Tested Image' ......
711
   응
              ' Whose Intensity Level Is rk Where h(rk)=nk'})
712
713
          axis tight
         disp(['Please, press any keyboard button to explore '.....
714
              'the remaining histograms >>>>>'])
716 %
         pause
717 %
          clc
718 end
719 hist Tested Im;
720
   Mean hist Tested Im=.....
721
       sum(hist_Tested_Im,1)/Total_No_of_Tested_Im; % The average
722
                                                      % histogram for
723
                                                      % all tested
724
                                                      % images.
725
726 Threshold_Tested_Im=8; % The picked threshold is based on the
```

```
% average histogram for all tested images
727
                           % when the tested images have black
728
                           % backgrounds. Note that, all intesity
                           % levels below the threshold represent the
730
                           % images backgrounds because these levels
731
                           % have the biggest histogram.
732
     Threshold_Tested_Im=180; % The picked threshold is based on the
                               % average histogram for all tested
734
                               % images when the tested images have
735
                               % white backgrounds. Note that, all
736
737
                               % intesity levels above the threshold
                               % represent the images backgrounds
738
                               % because these levels have the biggest
739
                               % histogram.
   % plot (Mean hist Tested Im)
741
   % line([Threshold_Tested_Im Threshold_Tested_Im],.....
         [0 max(Mean_hist_Tested_Im)],'Color','r')
  % text(Threshold_Tested_Im+0.5, max(Mean_hist_Tested_Im)/2,.....
         '{\color{red} The Threshold}')
  % title('The Mean Histogram of All Tested Images')
  % xlabel('Intensity Level rk')
  % set(gca, 'XTick', [0 Threshold_Tested_Im 255])
  % ylabel({'The Mean Number of Pixels from All Tested'.....
         'Images Whose Intensity Level Is rk' })
751 % axis tight
  % pause
753
   % Normalizing all the tested images for removing the lightening
  % effects on them and to increase the resolution of face detection
  % and recognition. Note that, the normalization will be done just
   % for face pixels for keeping the variations among the images just
   % in the faces without the backgrounds effects.
   Threshold_Tested_Image=.....
       zeros(N,N,Total_No_of_Tested_Im); % The tested images after
760
                                          % applying the threshold.
   Normalized_Tested_Im_V=zeros(N*N,.....
762
       Total_No_of_Tested_Im); % An N^2xP1, 2D matrix where each
                                % column represents a normalized
764
765
                                % tested image vector.
   for M1=1:Total_No_of_Tested_Im
766
       t1=reshape(All_Tested_Im_V(:,M1),N,N);
       T1=t1>Threshold_Tested_Im; % The pixels bigger than the
768
                                   % threshold are of interest because
769
                                   % they represent the pixels of
770
                                   % a face.
771
         T1=t1<Threshold_Tested_Im; % The pixels smaller than the
772
                                     % threshold are of interest
773
774
                                     % because they represent the
                                     % pixels of a face.
775
       for R1=1:N
776
```

```
for C1=1:N
777
                if T1(R1,C1) == 1
778
                    Threshold_Tested_Image(R1,C1,M1) = . . . . . . . . .
779
                        floor(255*(double(t1(R1,C1))/.....
780
                        max(max(double(t1))))); % The normalization of
781
                                                  % a tested image. This
782
                                                 % is done to increase
783
                                                 % the dynamic range of
784
                                                 % the tested image for
785
                                                 % visualization by
786
                                                 % scaling the
787
                                                 % intensities of the
788
                                                 % tested image from 0
789
                                                 % to 255.
790
                end;
791
792
           end;
       end;
793
       794
           reshape(Threshold_Tested_Image(:,:,M1),N*N,1);
795
796
         figure
797
         subplot(2,1,1)
         imshow(t1)
799
         if M1<=L1
              title({['This Is To Show How Good the Tested '....
801
                  'Images Threshold Is,'];....
802
                  blanks(1);['Tested Image No.' num2str(M1)];....
803
804
                  '(Mr. Mansour Alshammari, 1^{st} Projection)'})
         elseif M1>L1 && M1<=L2
805
              title({['This Is To Show How Good the Tested '....
806
                  'Images Threshold Is,'];....
807
                  blanks(1);['Tested Image No.' num2str(M1)];....
808
809
                  '(Mr. Mansour Alshammari, 2^{nd} Projection)'})
810 %
         elseif M1>L2 && M1<=L3
              title({['This Is To Show How Good the Tested '....
811
                  'Images Threshold Is,'];.....
812
                  blanks(1);['Tested Image No.' num2str(M1)];....
                  '(Mr. Mansour Alshammari, 3^{rd} Projection)'})
814
         elseif M1>L3 && M1<=L4
              title({['This Is To Show How Good the Tested '.....
816
                  'Images Threshold Is,'];....
817
                  blanks(1);['Tested Image No.' num2str(M1)];....
818
                  '(Mr. Methkir Alharthee, 1^{st} Projection)'})
819
         elseif M1>L4 && M1<=L5
820
821
              title({['This Is To Show How Good the Tested '....
                  'Images Threshold Is,'];....
822
                  blanks(1);['Tested Image No.' num2str(M1)];....
823
                  '(Mr. Methkir Alharthee, 2^{nd} Projection)'})
824
         elseif M1>L5 && M1<=L6
825
              title({['This Is To Show How Good the Tested '.....
826
```

```
'Images Threshold Is,'];.....
827
                  blanks(1);['Tested Image No.' num2str(M1)];.....
828
                  '(Mr. Methkir Alharthee, 3^{rd} Projection)'})
         elseif M1>L6 && M1<=L7
830
              title({['This Is To Show How Good the Tested '....
831
                  'Images Threshold Is,'];.....
832
                  blanks(1); ['Tested Image No.' num2str(M1)];....
833
                  '(Mr. Mohammed Hanafy, 1^{st} Projection)'})
834
         elseif M1>L7 && M1<=L8
835
              title({['This Is To Show How Good the Tested '.....
836
837
                  'Images Threshold Is,'];....
                  blanks(1); ['Tested Image No.' num2str(M1)];.....
838
                  '(Mr. Mohammed Hanafy, 2^{nd} Projection)'})
839
         elseif M1>L8 && M1<=L9
840
              title({['This Is To Show How Good the Tested '....
841
                  'Images Threshold Is,'];....
842
                  blanks(1);['Tested Image No.' num2str(M1)];.....
843
                  '(Mr. Mohammed Hanafy, 3^{rd} Projection)'})
         end
845
         subplot(2,1,2)
846
         imshow(reshape(Normalized_Tested_Im_V(:,M1),N,N))
847
         if M1<=L1
848
              title({['Normalized Tested Image No.' num2str(M1)];....
849
                  '(Mr. Mansour Alshammari, 1^{st} Projection)'})
850
         elseif M1>L1 && M1<=L2
   응
851
              title({['Normalized Tested Image No.' num2str(M1)];....
852
                  '(Mr. Mansour Alshammari, 2^{nd} Projection)'})
853
         elseif M1>L2 && M1<=L3
854
              title({['Normalized Tested Image No.' num2str(M1)];....
855
                  '(Mr. Mansour Alshammari, 3^{rd} Projection)'})
856
         elseif M1>L3 && M1<=L4
857
              title({['Normalized Tested Image No.' num2str(M1)];....
858
                  '(Mr. Methkir Alharthee, 1^{st} Projection)'})
859
         elseif M1>L4 && M1<=L5
860
              title({['Normalized Tested Image No.' num2str(M1)];....
861
                  '(Mr. Methkir Alharthee, 2^{nd} Projection)'})
862
         elseif M1>L5 && M1<=L6
863
              title({['Normalized Tested Image No.' num2str(M1)];....
864
                  '(Mr. Methkir Alharthee, 3^{rd} Projection)'})
865
         elseif M1>L6 && M1<=L7
866
              title({['Normalized Tested Image No.' num2str(M1)];....
867
                  '(Mr. Mohammed Hanafy, 1^{st} Projection)'})
868
         elseif M1>L7 && M1<=L8
869
              title({['Normalized Tested Image No.' num2str(M1)];....
870
                  '(Mr. Mohammed Hanafy, 2^{nd} Projection)'})
871
         elseif M1>L8 && M1<=L9
872
              title({['Normalized Tested Image No.' num2str(M1)];....
873
                  '(Mr. Mohammed Hanafy, 3^{rd} Projection)'})
   응
874
875
         disp(['Please, press any keyboard button to '.....
876
```

```
877
              'see how good the applied'])
         disp('threshold on the normalized tested images is >>>>>'
878
         pause
         close all
880
          clc
881
882
          figure
          subplot(2,1,1)
884
          imshow(uint8(t1))
885
          if M1<=L1
886
887
              title({['Tested Image No.' num2str(M1)];......
                  '(Mr. Mansour Alshammari, 1^{st} Projection)'})
888
          elseif M1>L1 && M1<=L2
889
              title({['Tested Image No.' num2str(M1)];......
890
                  '(Mr. Mansour Alshammari, 2^{nd} Projection)'})
891
892
          elseif M1>L2 && M1<=L3
              title({['Tested Image No.' num2str(M1)];.....
893
                  '(Mr. Mansour Alshammari, 3^{rd} Projection)'})
          elseif M1>L3 && M1<=L4
895
              title({['Tested Image No.' num2str(M1)];......
                  '(Mr. Methkir Alharthee, 1^{st} Projection)'})
897
898
          elseif M1>L4 && M1<=L5
              title({['Tested Image No.' num2str(M1)];.....
899
                  '(Mr. Methkir Alharthee, 2^{nd} Projection)'})
900
          elseif M1>L5 && M1<=L6
901
              title({['Tested Image No.' num2str(M1)];....
902
                  '(Mr. Methkir Alharthee, 3^{rd} Projection)'})
903
          elseif M1>L6 && M1<=L7
904
              title({['Tested Image No.' num2str(M1)];......
905
                  '(Mr. Mohammed Hanafy, 1^{st} Projection)'})
906
          elseif M1>L7 && M1<=L8
907
              title({['Tested Image No.' num2str(M1)];....
908
                  '(Mr. Mohammed Hanafy, 2^{nd} Projection)'))
909
          elseif M1>L8 && M1<=L9
910
              title({['Tested Image No.' num2str(M1)];.....
911
                  '(Mr. Mohammed Hanafy, 3^{rd} Projection)'})
912
913
          subplot(2,1,2)
914
915
          imshow(uint8(reshape(Normalized_Tested_Im_V(:,M1),N,N)))
          if M1<=L1
916
              title({['Normalized Tested Image No.' num2str(M1)];....
                  '(Mr. Mansour Alshammari, 1^{st} Projection)'})
918
          elseif M1>L1 && M1<=L2
919
              title({['Normalized Tested Image No.' num2str(M1)];....
920
921
                  '(Mr. Mansour Alshammari, 2^{nd} Projection)'})
          elseif M1>L2 && M1<=L3
922
              title({['Normalized Tested Image No.' num2str(M1)];....
923
                  '(Mr. Mansour Alshammari, 3^{rd} Projection)'})
924
          elseif M1>L3 && M1<=L4
925
              title({['Normalized Tested Image No.' num2str(M1)];....
926
```

```
927
                  '(Mr. Methkir Alharthee, 1^{st} Projection)'})
         elseif M1>L4 && M1<=L5
928
             title({['Normalized Tested Image No.' num2str(M1)];....
                  '(Mr. Methkir Alharthee, 2^{nd} Projection)'})
930
         elseif M1>L5 && M1<=L6
931
             title({['Normalized Tested Image No.' num2str(M1)];....
932
                  '(Mr. Methkir Alharthee, 3^{rd} Projection)'})
         elseif M1>L6 && M1<=L7
934
             title({['Normalized Tested Image No.' num2str(M1)];....
935
                  '(Mr. Mohammed Hanafy, 1^{st} Projection)'})
936
937
         elseif M1>L7 && M1<=L8
             title({['Normalized Tested Image No.' num2str(M1)];....
938
                  '(Mr. Mohammed Hanafy, 2^{nd} Projection)'})
939
         elseif M1>L8 && M1<=L9
940
             title({['Normalized Tested Image No.' num2str(M1)];....
941
                  '(Mr. Mohammed Hanafy, 3^{rd} Projection)'})
942
         end
943
         disp(['Please, press any keyboard button to explore '....
              'the remaining normalized tested images >>>>>'])
945
         pause
946
         close all
947
948
         clc
949
   Normalized_Tested_Im_V;
950
   % Centering each face by simply subtracting the mean of the face
   % pixels from each pixel in the face. By doing that the new face
   % pixels will have zero mean that means the face is centered.
   Rows_Columns1=zeros(1,1,.....
       Total No of Tested Im); % The rows and columns for the
956
                                 % pixels of the faces. Note that,
957
                                 % the tested images are not similar
958
                                 % so the rows and columns of the
959
                                 % faces pixels will not be equal.
960
                                 % Therefore, MATLAB will add zero
961
                                 % rows and columns to make the
962
                                 % matrices of the rows and columns
                                 % of the faces pixels are equal.
964
   Means1=zeros(1, Total_No_of_Tested_Im);
965
   Centered_Tested_Im=.....
966
       zeros(N*N,Total_No_of_Tested_Im); % An N^2xP1, 2D matrix where
                                           % each column represents a
968
969
                                           % tested image vector with a
970
                                           % centered face.
   Centered Tested Image=.....
971
       zeros(N,N,Total_No_of_Tested_Im); % The tested images after
972
                                           % centering the faces.
973
   for j1=1:Total_No_of_Tested_Im
       x1=reshape(Normalized_Tested_Im_V(:,j1),N,N);
975
       [rr1 cc1] = find(x1>0); % The pixels bigger than zero are of
976
```

```
977
                                % interest because they represent the
                                % pixels of the faces.
978
        Rows_Columns1(1,1:size(rr1,1),j1)=rr1.';
979
        Rows_Columns1(2,1:size(rr1,1),j1)=cc1.';
980
        Sum1=0;
981
        No1=0;
982
        for RR2=1:size(rr1,1)
983
             Sum1=Sum1+x1(rr1(RR2),cc1(RR2));
984
            No1=No1+1;
985
986
        end
987
        Means1(1, j1)=Sum1/No1;
        for RR3=1:size(rr1,1)
989
            Centered Tested Image(rr1(RR3),cc1(RR3),j1)=.....
990
                 x1(rr1(RR3), cc1(RR3)) - Means1(1, 11);
991
        end
        Centered_Tested_Im(:, j1) = . . . . . . . . .
993
             reshape(Centered_Tested_Image(:,:,j1),N*N,1);
994
995
          figure ('units', 'centimeters', 'position', [16 7 7 8.5])
996
          subplot (1,1,1)
997
998
          imshow(uint8(reshape(Centered_Tested_Im(:, j1), N, N)))
          if j1<=L1
999
               title({['Centered Tested Image No.' num2str(j1)];....
1000
                   '(Mr. Mansour Alshammari, 1^{st} Projection)'})
1001
          elseif j1>L1 && j1<=L2
1002
               title({['Centered Tested Image No.' num2str(j1)];.....
1003
1004
                   '(Mr. Mansour Alshammari, 2^{nd} Projection)'})
          elseif j1>L2 && j1<=L3
1005
               title({['Centered Tested Image No.' num2str(j1)];....
1006
                   '(Mr. Mansour Alshammari, 3^{rd} Projection)'})
1007
1008
          elseif j1>L3 && j1<=L4
               title({['Centered Tested Image No.' num2str(j1)];....
1009 %
                   '(Mr. Methkir Alharthee, 1^{st} Projection)'})
1010 %
          elseif j1>L4 && j1<=L5
1011
               title({['Centered Tested Image No.' num2str(j1)];....
1012
                   '(Mr. Methkir Alharthee, 2^{nd} Projection)'})
1013
1014 %
          elseif j1>L5 && j1<=L6
1015
               title({['Centered Tested Image No.' num2str(j1)];....
                   '(Mr. Methkir Alharthee, 3^{rd} Projection)'})
1016 %
          elseif j1>L6 && j1<=L7
1017 %
               title({['Centered Tested Image No.' num2str(j1)];.....
1018 %
1019
                   '(Mr. Mohammed Hanafy, 1^{st} Projection)'})
          elseif j1>L7 && j1<=L8
1020
1021
               title({['Centered Tested Image No.' num2str(j1)];....
                   '(Mr. Mohammed Hanafy, 2^{nd} Projection)'})
1022 %
          elseif j1>L8 && j1<=L9
1023
               title({['Centered Tested Image No.' num2str(j1)];....
1024 %
1025 %
                   '(Mr. Mohammed Hanafy, 3^{rd} Projection)'))
1026 %
          end
```

```
1027
          disp(['Please, press any keyboard button to explore '.....
               'the remaining centered tested images >>>>>'])
1028
          pause
1029
          close all
1030
    응
          clc
1032 end
   Centered_Tested_Im;
1034
   % Centering the set of the training faces by simply subtracting the
1036
   % mean training face from each training face in the set. By doing
   % that the new set of the training faces will have zero mean which
1039 % means the set is centered.
1040 Av_Image=sum(Centered_Known_Im,2)./.....
        Total No of Known Im; % The average training face.
1041
   % figure('units','centimeters','position',[12 4 12.5 13])
1042
1043
   % subplot (1,1,1)
1044 % Reshaped_Av_Image=reshape(Av_Image, N, N);
   % Negative_Av_Image=255*ones(N,N)-255*(Reshaped_Av_Image/....
          max(max(Reshaped_Av_Image))); % Obtaining a negative image
    양
                                          % for the mean training face
1047
1048
                                          % in order to enhance its
                                          % appearance.
1049
   % imshow(uint8(Negative_Av_Image))
1051 % title('The Average Training Face')
1052 % pause
1053 % close all
1054
   Known_Im_Subt_Mean=....
1055
        zeros(N*N, Total_No_of_Known_Im); % An N^2xP, 2D matrix where
1056
                                           % each column represents a
1057
                                           % centered (with respect to
1058
                                           % the set of the training
1059
1060
                                           % faces) training face vector.
    for J=1:Total_No_of_Known_Im
1061
        Known_Im_Subt_Mean(:, J) = Centered_Known_Im(:, J) - Av_Image;
1062
1063
        Reshaped_Known_Im_Subt_Mean=....
1064
            reshape(Known_Im_Subt_Mean(:, J), N, N);
1065
        Negative_Known_Im_Subt_Mean=255*ones(N,N)-....
            255*(Reshaped_Known_Im_Subt_Mean/max(max(.....
1066
            Reshaped_Known_Im_Subt_Mean))); % Obtaining a negative
1067
                                              % image for the centered
1068
                                              % training face in order
                                              % to enhance its
1070
1071
                                              % appearance.
1072
        Known_Image=Known_Images(J).name;
1073
          figure('units','centimeters','position',[12 4 12.5 14])
1074
1075 %
          subplot(1,1,1)
1076 %
          imshow(uint8(Negative_Known_Im_Subt_Mean))
```

```
1077 %
          if J==1
1078
              title({['Centered (with Respect to the Set of the '.....
                   'Training Faces) Training Face No.' num2str(J)];....
1079
                   ['(' Known_Image(1:length(Known_Image)-6) ......
1080 %
                   ', 1^{st} Projection)'];'(A Negative Image)'})
1081
          elseif J==2
1082
              title({['Centered (with Respect to the Set of the '....
                   'Training Faces) Training Face No.' num2str(J)];....
1084
                   ['(' Known Image(1:length(Known Image)-6) ......
1085
1086 %
                   ', 2^{nd} Projection)'];'(A Negative Image)'})
1087 %
          elseif J==3
              title({['Centered (with Respect to the Set of the '.....
1088
                   'Training Faces) Training Face No.' num2str(J)];....
1089
                   ['(' Known_Image(1:length(Known_Image)-6) .....
1090
                   ', 3^{rd} Projection)'];'(A Negative Image)'})
1091
          elseif J==4
1092
              title({['Centered (with Respect to the Set of the '....
1093
                   'Training Faces) Training Face No.' num2str(J)];....
1094 %
                   ['(' Known_Image(1:length(Known_Image)-6) ......
1095 %
                   ', 1^{st} Projection)'];'(A Negative Image)'})
1096
          elseif J==5
1097
              title({['Centered (with Respect to the Set of the '.....
                   'Training Faces) Training Face No.' num2str(J)];....
1099
                   ['(' Known_Image(1:length(Known_Image)-6) .....
1100
                   ', 2^{nd} Projection)'];'(A Negative Image)'})
1101 %
          elseif J==6
1102 %
              title({['Centered (with Respect to the Set of the '.....
1103 %
1104
                   'Training Faces) Training Face No.' num2str(J)];....
                   ['(' Known_Image(1:length(Known_Image)-6) ......
1105
                   ', 3^{rd} Projection)'];'(A Negative Image)'})
1106 %
          elseif J==7
1107 %
              title({['Centered (with Respect to the Set of the '.....
1108
1109 %
                   'Training Faces) Training Face No.' num2str(J)];....
1110 %
                   ['(' Known_Image(1:length(Known_Image)-6) .....
                   ', 1^{st} Projection)'];'(A Negative Image)'})
1111 %
1112 %
          elseif J==8
              title({['Centered (with Respect to the Set of the '.....
1113
1114 %
                   'Training Faces) Training Face No.' num2str(J)];....
1115
                   ['(' Known_Image(1:length(Known_Image)-6) ......
1116 %
                   ', 2^{nd} Projection)'];'(A Negative Image)'})
          elseif J==9
1117 %
              title({['Centered (with Respect to the Set of the '.....
1118 %
                   'Training Faces) Training Face No.' num2str(J)];....
1119
   9
                   ['(' Known_Image(1:length(Known_Image)-6) ......
1120
1121
                   ', 3^{rd} Projection)'];'(A Negative Image)'})
1122 %
          disp(['Please, press any keyboard button to explore '.....
1123 %
              'the remaining centered training faces >>>>>'])
1124 %
1125 %
          pause
          close all
1126 %
```

```
1127 %
          clc
1128 end
1129 Known_Im_Subt_Mean;
1130
1131
    Tested_Im_Subt_Mean=.....
1132
        zeros(N*N, Total_No_of_Tested_Im); % An N^2xP1, 2D matrix where
                                            % each column represents a
1134
                                            % tested image vector after
1135
                                            % subtracting the average
1136
                                            % training face.
1137
1138
    for J1=1:Total_No_of_Tested_Im
        Tested_Im_Subt_Mean(:,J1)=Centered_Tested_Im(:,J1)-Av_Image;
1139
        Reshaped_Tested_Im_Subt_Mean=.....
1140
1141
            reshape(Tested_Im_Subt_Mean(:, J1), N, N);
1142
        Negative_Tested_Im_Subt_Mean=255*ones(N,N)-255*.....
1143
             (Reshaped_Tested_Im_Subt_Mean/max(max(.....
            Reshaped_Tested_Im_Subt_Mean))); % Obtaining a negative
1144
1145
                                               % image for the tested
1146
                                                % image in order to
                                                % enhance its appearance.
1147
1148
1149
          figure('units','centimeters','position',[12 4 12.5 14])
          subplot(1,1,1)
1150
          imshow(uint8(Negative_Tested_Im_Subt_Mean))
1151
          if J1<=L1
              title({['Tested Image No.' num2str(J1) ......
1153 %
1154
                   ' (Mr. Mansour Alshammari, '....
                   '1^{st} Projection)'];......
1155
                   'After Subtracting the Average Training Face';....
1156
                   '(A Negative Image)'})
1157
          elseif J1>L1 && J1<=L2
1158
              title({['Tested Image No.' num2str(J1) ......
1159
1160
                   ' (Mr. Mansour Alshammari, '....
                   '2^{nd} Projection)'];.....
1161
                   'After Subtracting the Average Training Face';.....
1162
                   '(A Negative Image)'})
1163
1164
          elseif J1>L2 && J1<=L3
              title({['Tested Image No.' num2str(J1) .....
1165
                   ' (Mr. Mansour Alshammari, '....
1166
                   '3^{rd} Projection)'];.....
1167
1168
                   'After Subtracting the Average Training Face';....
1169
                   '(A Negative Image)'})
1170 %
          elseif J1>L3 && J1<=L4
1171 %
              title({['Tested Image No.' num2str(J1) .....
                   ' (Mr. Methkir Alharthee, '.....
1172 %
                   '1^{st} Projection)'];.....
1173 %
1174 %
                   'After Subtracting the Average Training Face';....
1175 %
                   '(A Negative Image)'})
1176 %
          elseif J1>L4 && J1<=L5
```

```
title({['Tested Image No.' num2str(J1) .....
1177 %
                   ' (Mr. Methkir Alharthee, '.....
1178 %
                   '2^{nd} Projection)'];.....
1179 %
1180 %
                   'After Subtracting the Average Training Face';....
1181 %
                   '(A Negative Image)'))
          elseif J1>L5 && J1<=L6
1182 %
              title({['Tested Image No.' num2str(J1) .....
                   ' (Mr. Methkir Alharthee, '.....
1184 %
                   '3^{rd} Projection)'];....
1185
1186 %
                   'After Subtracting the Average Training Face';....
                   '(A Negative Image)'})
1187 %
          elseif J1>L6 && J1<=L7
1188 %
              title({['Tested Image No.' num2str(J1) .....
1189 %
                   ' (Mr. Mohammed Hanafy, '.....
1190 %
1191 %
                   '1^{st} Projection)'];.....
                   'After Subtracting the Average Training Face';....
1192 %
1193 %
                   '(A Negative Image)'})
          elseif J1>L7 && J1<=L8
1194 %
1195 %
              title({['Tested Image No.' num2str(J1) .....
                   ' (Mr. Mohammed Hanafy, '.....
1196 %
                   '2^{nd} Projection)'];.....
1197 %
1198
                   'After Subtracting the Average Training Face';.....
1199 %
                   '(A Negative Image)'})
          elseif J1>L8 && J1<=L9
1200 %
              title({['Tested Image No.' num2str(J1) .....
1201 %
                  ' (Mr. Mohammed Hanafy, '.....
1202 %
                   '3^{rd} Projection)'];.....
1203 %
1204 %
                   'After Subtracting the Average Training Face';....
                   '(A Negative Image)'})
1205 %
1206 %
          disp(['Please, press any keyboard button to explore '.....
1207 %
               'the remaining tested images'])
1208 %
1209 %
          disp(['after subtracting the average training face '.....
1210 %
               'from them >>>>>'l)
1211 %
          pause
1212 %
          close all
1213 %
          clc
1214 end
1215 Tested_Im_Subt_Mean;
1216
1217
1218 % The calculation of a covariance matrix for all training faces.
1219 Cov Matrix=Known Im Subt Mean*.....
        transpose(Known_Im_Subt_Mean); % The covariance matrix
1220
1221
                                         % for all training faces.
1222
1223 % Another way for calculating the covariance matrix for all
1224 % training faces.
1225 % m=zeros(N*N,N*N);
1226 % for i=1:Total_No_of_Known_Im
```

```
C=Known_Im_Subt_Mean(:,i) *transpose(Known_Im_Subt_Mean(:,i));
1228 %
          m=m+C;
1229 % end
   % Cov_Matrix=(1/Total_No_of_Known_Im) *m; % The covariance matrix
                                                % for all training faces.
1232
1233
   % The calculation of eigenvalues and eigenvectors for the
1234
    % covariance matrix.
    [Eigenvectors Eigenvalues] = .....
1237
        eig(Cov Matrix); % Note that, The calculated covariance
                          % matrix is usually too big which makes
1238
                          % the calculation of eigenvalues and
1239
                          % eigenvectors is very difficult if not
1240
                          % impossible. So, it is not practical to
1241
                          % calculate the eigenvalues and eigenvectors
1242
1243
                          % for the such matrix. The dimensions of the
                          % covariance matrix can be reduced to the
1244
                          % number of the training faces as will be
1245
                          % proved shortly.
1247 Eigenvalues=(diag(Eigenvalues)).';
   % Eigenvectors must be positive because the covariance matrix is
1249
   % positive definite. Due to round-off error, MATLAB makes the
1251 % smallest eigenvectors negative. Then those negative eigenvectors
1252 % must be set to zero.
1253 for jjj=1:length(Eigenvalues)
1254
        if Eigenvalues(1, jjj)<0
            Eigenvalues (1, jjj) = 0;
1255
1256
        end
   end
1257
1258
1259
    % The calculation of a more practical covariance matrix.
    New_Cov_Matrix=transpose(Known_Im_Subt_Mean) *Known_Im_Subt_Mean;
1261
1262
    [Eigvect Eigval] = eig(New_Cov_Matrix); % The calculation of
1264
1265
                                            % eigenvalues and
                                            % eigenvectors for the
1266
                                            % reduced covariance matrix.
1267
1268
1269 Eigval Reduced Cov=(diag(Eigval)).';
   Eigvect_Reduced_Cov=Known_Im_Subt_Mean*....
1270
1271
        Eigvect; % The columns of this matrix represent unnormalized
                  % eigenvectors that are calculated based on the more
1272
                  % practical covariance matrix.
1273
1274
1275 % Ordering the calculated eigenvalues from the reduced covariance
1276 % matrix along with their eigenvectors in descending order as well
```

```
1277 % as normalizing the eigenvectors.
1278 Eigenvalues_Reduced_Cov=sort(Eigval_Reduced_Cov,'descend');
1279 Eigenvectors_Reduced_Cov=zeros(size(Eigvect_Reduced_Cov,1),.....
        size(Eigvect_Reduced_Cov, 2));
1280
   for ii=1:length(Eigenvalues_Reduced_Cov)
1281
        for pp=1:length(Eigval_Reduced_Cov)
1282
            if Eigenvalues_Reduced_Cov(1,ii) == Eigval_Reduced_Cov(1,pp)
1283
                Eigenvectors_Reduced_Cov(:,ii) = .....
1284
                    Eigvect Reduced Cov(:,pp)/....
1285
                    norm(Eigvect_Reduced_Cov(:,pp));
1286
1287
            end
1288
        end
1289
1290
   end
1291
1292
1293 % PCA and IPCA algoritms for calculating a feature vector matrix.
1294 % A feature vector matrix is a matrix that is composed of a couple
1295 % of eigenvectors that follow the most significant patterns of the
1296 % correlated faces. These eigenvectors are called eigenfaces. In
1297 % fact, the eigenvalues associated with those eigenfaces are
1298 % corresponding to the biggest calculated eigenvalues. Note that,
1299 % the PCA is approximately similar to the IPCA. The main difference
   % between them is that the way of selecting eigenvectors which form
1301 % the feature vector matrix.
1303 fid=fopen('PCA vs. IPCA.txt','w'); % A text file for typing the
1304
                                         % required results to select the
                                         % desired eigenvectors for the
1305
                                        % feature vector matrix.
1306
   fprintf(fid,['\n ***** The Results of PCA and IPCA Used to'....
1307
       ' Select the Desired Eigenvectors ****\r\n']);
1308
1309 fprintf(fid,['
                      **** for the Feature Vector'.....
        ' Matrix. These Results Are Obtained from *****\r\n']);
1310
1311 fprintf(fid,['\t ***** the PCA and IPCA Code for Testing '.....
1312
        'and Setting up Thresholds ****\r\n\n']);
1313 fprintf(fid, '\t\t\t
                                Transformed\r\n');
1314 fprintf(fid,['No.
                         Eigenvalues
                                         Eigenvalues
                                                        PIF'....
1315
                IR (%%) \t
                            AIR (%%)
                                         VCR (%%)
                                                     TVC(%%)\r\n']);
1316 fprintf(fid,['====
                                         _____
                          =========
            _____
                      =======
                                  ======
                                            ======\r\n']);
1317
1318
1319 % The calculation of the transformed eigenvalues.
1320 ro=zeros(1,length(Eigenvalues_Reduced_Cov));
   for v=1:length(Eigenvalues Reduced Cov)
        ro(1, v) = 1 - (Eigenvalues\_Reduced\_Cov(1, v) / .....
1322
            sum(Eigenvalues_Reduced_Cov));
1323
1324 end
1325
_{
m 1326} % The calculation of the possibility information function (PIF).
```

```
1327 PIF=zeros(1,length(Eigenvalues_Reduced_Cov));
1328 for nn=1:length(Eigenvalues_Reduced_Cov)
        PIF(1, nn) = -log2(ro(1, nn));
1330 end
1332 % The calculation of the possibility information entropy (PIE).
   for n1=1:length(Eigenvalues_Reduced_Cov)
        PIE=PIE-ro(1, n1) *log2(ro(1, n1));
1336 end
1337 PIE;
1338
1339 % The calculation of the information rate (IR) and accumulated
1340 % information rate (AIR).
1341 IR=zeros(1,length(Eigenvalues Reduced Cov));
1342 AIR=zeros(1,length(Eigenvalues_Reduced_Cov));
1343 PIF1=0;
1344 for u=1:length(Eigenvalues_Reduced_Cov);
        IR(1,u) = PIF(1,u) / sum(PIF);
1345
        PIF1=PIF(1,u)+PIF1;
1347
        AIR(1, u) = PIF1 / sum(PIF);
1348 end
1349
   % The calculation of the variance contribution rate (VCR) and total
1351 % variance contribution rate (TVC).
1352 VCR=zeros(1,length(Eigenvalues Reduced Cov));
1353 TVC=zeros(1,length(Eigenvalues_Reduced_Cov));
   TVC1=0;
   for Q=1:length(Eigenvalues_Reduced_Cov);
1355
        VCR(1,Q) = Eigenvalues_Reduced_Cov(1,Q)/.....
1356
            sum(Eigenvalues_Reduced_Cov);
1357
        TVC1=Eigenvalues_Reduced_Cov(1,Q)+TVC1;
1358
        TVC(1,Q)=TVC1/sum(Eigenvalues_Reduced_Cov);
1359
        fprintf(fid,['%-4.0f
                               %-12.4f
                                        %-6.4f\t
                                                     %-7.4f
1360
                               %-7.4f
            '%-7.4f
                      %-8.4f
                                        %-8.4f \r\n\n'],Q,....
1361
            Eigenvalues_Reduced_Cov(1,Q),ro(1,Q),PIF(1,Q),....
1362
            IR(1,Q)*100,AIR(1,Q)*100,VCR(1,Q)*100,TVC(1,Q)*100);
1364
1365
   fprintf(fid,['=======:::....
1366
        '=======\r\n']);
   fprintf(fid,['** Notice that, in IPCA we can take the first '....
1368
1369
        'seven eigenvectors associated with the\r\n']);
   fprintf(fid,[' biggest eigenvalues to form the feature '.....
1370
        'vector matrix but in PCA we must take the\r\n']);
1371
   fprintf(fid,['
                   first eight eigenvectors. That because when '....
1372
        'm=7, the AIR=95.6891% which is good\r\n']);
1373
                   enough but the TVC is slightly small. So, '....
1374
   fprintf(fid,['
        'if we want to pick the eigenvectors\r\n']);
                    based on the TVC then we have to take the '.....
1376 fprintf(fid,['
```

```
1377
        'first eight eigenvectors in order to\r\n']);
   fprintf(fid,['
                     make sure that the TVC is big enough. '.....
1378
        'Therefore, the AIR tells us more about the r\n']);
1380 fprintf(fid,['
                     information contained in the eigenfaces. '....
        '\r\n\n\n']);
1381
1382 fclose(fid);
   disp(['Please see the documented results of PCA and IPCA in '....
1384
        'the open text file. Then select the'])
1385
   disp(['number of the eigenvectors for each algorithm required '....
        'to form the feature vector matrix.'])
1387
    disp(['After that, press any keyboard button to resume the '....
1388
        'code >>>>>>'])
1389
1390 Text='PCA vs. IPCA.txt';
1391 open (Text) % Opening the text file which contains
               % the PCA and IPCA results.
1392
1393 pause
1394 clc
open('PCA_IPCA_Testing_and_Setting_up_Thresholds.m')
1396
    % Customizing and fixing the number of eigenfaces for PCA and IPCA.
    Prompt={['1 to m, enter the value of m for PCA, where m is '....
        'the lower bound of eigenfaces. It can take up to '
1399
        num2str(length(Eigenvalues_Reduced_Cov)) ':'],....
1400
        ['1 to m, enter the value of m for IPCA, where m is the '.....
1401
        'lower bound of eigenfaces. It can take up to ' ......
1402
        num2str(length(Eigenvalues_Reduced_Cov)) ':']};
1403
1404 Dlg Title='The Lower Bound of Eigenfaces for PCA and IPCA';
1405 Num_Lines=1;
1406 Def={'8','7'};
1407 L=inputdlg(Prompt,Dlg_Title,Num_Lines,Def,'on');
1408 V=str2num(char(L));
1409 for xx=1:2
1410
        if xx==1
            if V(xx)<1 || V(xx)>length(Eigenvalues_Reduced_Cov) || ....
1411
                     mod(V(xx), 1) \sim= 0 \mid \mid V(xx) <= V(2)
1412
1413
                 if V(xx) < 1
1414
                     W=errordlg(['m for PCA Is Invalid Because It '.....
1415
                         'Is Less Than One'], 'An Error Dialog');
1416
                     return
                 elseif V(xx)>length(Eigenvalues_Reduced_Cov)
1417
                     W=errordlg(['m for PCA Is Invalid Because It '....
1418
                          'Is Bigger Than the Upper Bound of '.....
1419
                         'Eigenfaces'], 'An Error Dialog');
1420
1421
                     return
                 elseif mod(V(xx), 1) \sim = 0
1422
                     W=errordlg(['m for PCA Is Invalid Because It '....
1423
                         'Is Not an Integer'], 'An Error Dialog');
1424
1425
                     return
                elseif V(xx) \le V(2)
1426
```

```
W=errordlg(['m for PCA Is Invalid Because It '....
1427
                          'Must Be Bigger Than IPCA']);
1428
                      return
1429
1430
                 end
             end
1431
        else
1432
             if V(xx) < 1 \mid | mod(V(xx), 1) \sim = 0
                 if V(xx) < 1
1434
                     W=errordlq(['m for IPCA Is Invalid Because It '....
1435
                          'Is Less Than One'], 'An Error Dialog');
1436
1437
                      return
                 elseif mod(V(xx), 1) \sim = 0
1438
                      W=errordlg(['m for IPCA Is Invalid Because It '....
1439
                          'Is Not an Integer'], 'An Error Dialog');
1440
                      return
1441
                 end
1442
1443
             end
1444
        end
1445
    end
1446
    Best_Eigenvalues_PCA=Eigenvalues_Reduced_Cov(1,1:V(1));
1447
    Best_Eigenvectors_PCA=....
        Eigenvectors_Reduced_Cov(:,1:V(1)); % The columns of this
1449
1450
                                                % matrix represent the
                                                % eigenfaces that are
1451
                                                % calculated based on
1452
1453
                                                % PCA algorithm.
1454
    Best_Eigenvalues_IPCA=Eigenvalues_Reduced_Cov(1,1:V(2));
    Best_Eigenvectors_IPCA=....
        Eigenvectors_Reduced_Cov(:,1:V(2)); % The columns of this
1456
                                                % matrix represent the
1457
                                                % eigenfaces that are
1458
                                                % calculated based on
1459
1460
                                                % IPCA algorithm.
1461
1462
    % Plotting the eigenvalues for each explained algorithm compared
    % with the calculated eigenvalues from the covariance matrix for
    % all training faces.
    Threshold=0.1; % This threshold is for picking
1466
                    % up the biggest eigenvalues.
1467
    [WW LL]=find(Eigenvalues>Threshold);
1468
   Flipped Eigenvalues Reduced Cov=fliplr(Eigenvalues Reduced Cov);
    if length(LL) <length(Flipped_Eigenvalues_Reduced_Cov)</pre>
1470
1471
        LL1=LL;
        LL=[LL(1)-ones(1,length(Flipped_Eigenvalues_Reduced_Cov)-...
1472
1473
             length(LL)) LL];
1474 end
1475 figure('units','centimeters','position',[6 1.2 25 16.9])
1476 subplot (1,1,1)
```

```
1477 bar(LL,[zeros(length(LL)-length(LL1)) Eigenvalues(LL1)],......
        0.8, 'FaceColor', 'k', 'EdgeColor', 'k')
1478
1479 hold on
1480 bar(LL,[zeros(1,length(LL)-length(Best_Eigenvalues_PCA)) ......
        fliplr(Best_Eigenvalues_PCA)], 0.8/2, 'FaceColor', .....
        'r','EdgeColor','r')
1482
1484 bar(LL, [zeros(1,length(LL)-length(Best_Eigenvalues_IPCA)) ......
        fliplr(Best Eigenvalues IPCA)], 0.8/4,.....
1485
        'FaceColor', 'b', 'EdgeColor', 'b')
1486
1488 title({['The Calculated Eigenvalues for Each Proposed '.....
         'Algorithm Compared '];['with the Calculated Eigenvalues '....
1489
        'form the Covariance Matrix for All Training Faces']})
1490
1491 xlabel('Eigenvalue Index')
1492 ylabel('Eigenvalue')
1493 legend(['The Calculated Eigenvalues from the Covariance '.....
        'Matrix for All Training Faces.'], ['The Calculated '.....
1494
        'Eigenvalues by Using PCA Algorithm.'], ['The Calculated '.....
1495
        'Eigenvalues by Using IPCA Algorithm.'], 'Location', 'NorthWest')
1497 disp('Please, press any keyboard button to resume the code >>>>')
1498 pause
1499 ClC
1500 close all
1501
1502
    % Displaying the calculated eigenfaces from the covariance matrix
1503
    % for all training faces.
    for I=1:length(LL1)
        Eigenvalues1=fliplr(LL1);
1506
        Eigenvectors1=....
1507
            flipdim(Eigenvectors(:,LL1),2); % This flipping just
1508
                                               % to make the highest
1509
1510
                                               % correlated eigenface
                                               % is associated with the
1511
                                               % first eigenvalue and
1512
                                               % so on. This is done to
1513
                                               % be compatable with the
1514
1515
                                               % generated document
                                               % "PCA vs. IPCA".
1516
        X=floor(255*(double(Eigenvectors1(:,I))/.....
1517
            max(max(Eigenvectors1(:,I))))); % Normalized eigenface.
1518
1519
                                               % This is done to increase
                                               % the dynamic range of the
1520
1521
                                               % eigenface for
                                               % visualization by scaling
1522
                                               % the intensities of the
1523
                                               % eigenface from 0 to 255.
1524
1525
        Eigenface=reshape(X,N,N);
        Negative_Eigenface=255*ones(N,N)-255*....
1526
```

```
1527
             (Eigenface/max(max(Eigenface))); % Obtaining a negative
1528
                                                % image for the eigenface
                                                % in order to enhance its
1529
                                                % appearance.
1530
1531
        figure('units','centimeters','position',[15.5 5.5 9 11.5])
1532
        subplot(1,1,1)
1533
        imshow(uint8(Negative_Eigenface))
1534
        title({['Eigenface No.' num2str(I) ......
             ' Associated with Eigenvalue No.'....
1536
1537
            num2str(Eigenvalues1(I)) '.'];.....
            ['It Is Calculated from the '.....
1538
             'Covariance Matrix']; 'for All Training Faces.'; .....
1539
            '(A Negative Image)'})
1540
1541
        disp(['Please, press any keyboard button to explore '.....
1542
1543
             'the remaining calculated eigenfaces'])
        disp(['from the covariance matrix for all training '.....
1544
             'faces >>>>>'l)
1545
1546
        pause
        clc
1547
1548
        close all
    end
1549
1550
    % Displaying the calculated eigenfaces by using PCA algorithm.
1551
    for I=1:length(Best Eigenvalues PCA)
        X=floor(255*(double(Best_Eigenvectors_PCA(:,I))/max(max(.....
1553
1554
            Best Eigenvectors PCA(:,I)))); % Normalized eigenface.
                                               % This is done to increase
1555
                                               % the dynamic range of the
1556
                                               % eigenface for
1557
                                               % visualization by scaling
1558
                                               % the intensities of the
1559
1560
                                               % eigenface from 0 to 255.
        Eigenface=reshape(X,N,N);
1561
        Negative_Eigenface=255*ones(N,N)-255*....
1562
             (Eigenface/max(max(Eigenface))); % Obtaining a negative
1563
1564
                                                % image for the eigenface
1565
                                                % in order to enhance its
                                                % appearance.
1566
1567
        figure ('units', 'centimeters', 'position', [15.5 5.5 8 10.5])
1568
1569
        subplot(1,1,1)
        imshow(uint8(Negative_Eigenface))
1570
1571
        title({['Calculated Eigenface No.' num2str(I) ......
             ' Associated']; ['with Eigenvalue No.' num2str(I) .....
1572
             ' by Using']; 'PCA Algorithm'; '(A Negative Image)'})
1573
1574
1575
        disp(['Please, press any keyboard button to explore the '....
             'remaining calculated'])
1576
```

```
1577
        disp('eigenfaces by using PCA algorithm >>>>>')
1578
        pause
        clc
1579
        close all
1580
    end
1581
1582
    % Displaying the calculated eigenfaces by using IPCA algorithm.
    for I=1:length(Best_Eigenvalues_IPCA)
        X=floor(255*(double(Best Eigenvectors IPCA(:,I))/max(max(.....
1585
             Best_Eigenvectors_IPCA(:,I))))); % Normalized eigenface.
1586
                                                 % This is done to increase
1587
                                                 % the dynamic range of the
1588
                                                 % eigenface for
1589
                                                 % visualization by scaling
1590
                                                 % the intensities of the
1591
                                                 % eigenface from 0 to 255.
1592
1593
        Eigenface=reshape(X,N,N);
        Negative_Eigenface=255*ones(N,N)-255*....
1594
             (Eigenface/max(max(Eigenface))); % Obtaining a negative
1595
                                                 % image for the eigenface
1596
                                                 % in order to enhance its
1597
1598
                                                 % appearance.
1599
        figure('units','centimeters','position',[15.5 5.5 8 10.5])
1600
        subplot(1,1,1)
1601
        imshow(uint8(Negative Eigenface))
1602
        title({['Calculated Eigenface No.' num2str(I) ......
1603
1604
             ' Associated']; ['with Eigenvalue No.' num2str(I)
             ' by Using'];'IPCA Algorithm';'(A Negative Image)'})
1605
1606
        disp(['Please, press any keyboard button to explore the '....
1607
             'remaining calculated'])
1608
        disp('eigenfaces by using IPCA algorithm >>>>>')
1609
1610
        pause
        clc
1611
        close all
1612
1613
    end
1614
1615
1616 save ('Eigenvectors', 'Eigenvectors')
1617 save('Best_Eigenvectors_PCA', 'Best_Eigenvectors_PCA')
1618 save('Best_Eigenvectors_IPCA', 'Best_Eigenvectors_IPCA')
1619 break
1620
1621
1622
   %%%%% The Compression and Reconstruction of the Training Faces %%%%
1623
1624
1625
1626 ClC
```

```
1627 close all
1628
1629
1630 %%%%% When a small number of eigenfaces is used to compress and
   %%%% reconstruct the training faces then the processing speed
1632 %%%% will increase so the IPCA algorithm is the fastest one then
1633 %%%%% PCA algorithm finally the smallest processing speed occurs
1634 %%%% when all calculated eigenvectors from the covariance matrix
1635 %%%% for all training faces are used as eigenfaces. When a small
1636 %%%% number of the eigenfaces is used to project and reconstruct
1637 %%%%% the training faces then the training faces will have bad
1638 %%%% quality. Therefore, the highest error in reconstruction
   %%%% occurs when the IPCA algorithm is used; then the PCA
1640 %%%%% algorithm comes second; finally, the usage of all
1641 %%%% eigenvectors as eigenfaces produces the samllest
   %%%% reconstruction error.
1642
1643
   % Best_Eigenvectors=Eigenvectors; % Just try it to see how affects
                                       % on the reconstructed training
1645
                                       % faces.
1646
   % Best_Eigenvectors=Best_Eigenvectors_PCA; % Just try it to see how
1647
1648
                                                % affects on the
                                                % reconstructed training
1649
                                                % faces.
1650
   Best_Eigenvectors=Best_Eigenvectors_IPCA; % Just try it to see how
1651
                                               % affects on the
1653
                                               % reconstructed training
1654
                                               % faces.
1655
1656
   % Projecting each training face on the eigenspace. It is just
   % expressing each training face in terms of the eigenfaces. This is
1658
   % called principal components transform (also called the Hotelling
1660 % or Karhunen-Loéve transform)
   All_Known_Transformed_Im=.....
        zeros(size(Best_Eigenvectors, 2), ......
1662
        Total_No_of_Known_Im); % A 2D matrix where each column
                                % represents the coordinates of a
1664
                                % projected training face in the
1665
                                % eigenspace.
1666
   for r=1:Total_No_of_Known_Im
        All_Known_Transformed_Im(:,r)=Best_Eigenvectors.'*.....
1668
1669
            Known Im Subt Mean(:,r);
1670
   end
   All Known Transformed Im;
1671
1672
1673
1674 % The reconstruction of the projected training faces.
1675 All_Known_Reconstructed_Im_V=....
        zeros (N*N, Total_No_of_Known_Im); % An N^2xP, 2D matrix where
1676
```

```
1677
                                            % each column represents a
1678
                                            % reconstructed training face
1679
                                            % vector.
    All_Known_Reconstructed_Im=zeros(N,N,Total_No_of_Known_Im);
1680
    for a=1:Total_No_of_Known_Im
1681
        Pre=reshape (Best_Eigenvectors*....
1682
             All_Known_Transformed_Im(:,a),N,N)+.....
1683
             reshape (Av_Image, N, N); % Adding the average training face.
1684
1685
        RC1=Rows_Columns(:,:,a);
1686
1687
        F=RC1(1,:);
        F1=RC1(2,:);
1688
        D=F(F>0);
1689
        D1=F1(F1>0);
1690
        RC=[D;D1]; % The rows and columns for the pixels of a face
1691
                    % after removing the added zero rows and columns.
1692
1693
                    % The added zero rows and columns are added by
                    % MATLAB for making the matrices of the rows and
1694
                    % columns of the faces pixels are equal.
1695
        for QQ=1:size(RC,2)
1696
             All_Known_Reconstructed_Im(RC(1,QQ),RC(2,QQ),a)=.....
1697
1698
                 Pre(RC(1,QQ),RC(2,QQ)) + Means(1,a); % Adding the mean
                                                       % of the pixels of
1699
                                                       % a face.
1700
        end
1701
1702
        Y=All_Known_Reconstructed_Im(:,:,a); % Removing any pixel less
1703
1704
                                                 % than zero in a training
                                                 % face because the image
1705
                                                 % can not be negative.
1706
         [UU NN]=find(Y<0);
1707
        for CC=1:size(UU,1)
1708
             Y(UU(CC), NN(CC)) = 0;
1709
1710
        end
1711
1712
        All_Known_Reconstructed_Im_V(:,a)=reshape(Y,N*N,1);
1713
1714
        Known_Image=Known_Images(a).name;
1715
        figure ('units', 'centimeters', 'position', [16 7 7.5 8.5])
        subplot(1,1,1)
1716
        imshow(uint8(reshape(All_Known_Reconstructed_Im_V(:,a),N,N)))
1717
1718
             title({['Reconstructed Training Face No.' num2str(a)];....
1719
                 ['(' Known_Image(1:length(Known_Image)-6) ......
1720
1721
                 ', 1^{st} Projection)']})
        elseif a==2
1722
             title({['Reconstructed Training Face No.' num2str(a)];....
1723
                 ['(' Known_Image(1:length(Known_Image)-6) ......
1724
1725
                 ', 2^{nd} Projection)']})
        elseif a==3
1726
```

```
title({['Reconstructed Training Face No.' num2str(a)];....
1727
1728
                 ['(' Known_Image(1:length(Known_Image)-6) ......
                 ', 3^{rd} Projection)']})
1729
        elseif a==4
1730
1731
            title({['Reconstructed Training Face No.' num2str(a)];....
                 ['(' Known_Image(1:length(Known_Image)-6) .....
1732
                 ', 1^{st} Projection)']})
1733
1734
        elseif a==5
            title({['Reconstructed Training Face No.' num2str(a)];....
1735
                 ['(' Known_Image(1:length(Known_Image)-6) .....
1736
1737
                 ', 2^{nd} Projection)']})
1738
        elseif a==6
            title({['Reconstructed Training Face No.' num2str(a)];....
1739
                 ['(' Known Image(1:length(Known Image)-6) .....
1740
                 ', 3^{rd} Projection)']})
1741
        elseif a==7
1742
1743
            title({['Reconstructed Training Face No.' num2str(a)];....
                 ['(' Known_Image(1:length(Known_Image)-6) .....
1744
                 ', 1^{st} Projection)']})
1745
        elseif a==8
1746
            title({['Reconstructed Training Face No.' num2str(a)];....
1747
1748
                 ['(' Known_Image(1:length(Known_Image)-6) .....
1749
                 ', 2^{nd} Projection)']})
        elseif a==9
1750
            title({['Reconstructed Training Face No.' num2str(a)];....
1751
                 ['(' Known Image(1:length(Known Image)-6) .....
1752
                 ', 3^{rd} Projection)']})
1753
1754
        disp(['Please, press any keyboard button to explore '.....
1755
             'the remaining'])
1756
        disp('reconstructed training faces >>>>>')
1757
        pause
1758
        close all
1759
1760
        clc
1761
    All_Known_Reconstructed_Im_V;
1762
1763
1764
   %%%%%%% The Calculation of Compression and Reconstruction %%%%%%%%
1766
                                                                   응응응응응응응
   응응응응응응응
1767
                                   Performance
1768
1769 ClC
1770 close all
1771
1772
   After_Compression_Normalization=zeros(1,.....
1773
        length(Eigenvalues)); % Measuring an information rate after
1774
1775
                                % compression. The elements of this
                                % vector represent the information
1776
```

```
1777
                                % rates after compression with respect
1778
                                % to the information rates before
                                % compression.
1779
1780
    MSE_Compression=....
        zeros(1, length(Eigenvalues)); % Measuring compression
1781
                                         % performance or how much
1782
                                         % compressed information is.
1783
                                         % The elements of this vector
1784
                                         % represent the mean squared
1785
                                         % errors in compression when
1786
                                         % different eigenfaces are
1787
1788
                                         % selected.
    MSE_Reconstruction=zeros(length(Eigenvalues),.....
1789
        Total No of Known Im); % Measuring reconstruction performance
1790
                                 % or the quality of a reconstructed
1791
                                 % training face. The elements of each
1792
1793
                                 % column of this matrix represent the
                                 % mean squared errors between a
1794
                                 % projected training face and its
1795
                                 % reconstruction when different
1796
1797
                                 % eigenfaces are selected.
    Eigenvalues1=fliplr(Eigenvalues);
    Eigenvectors1=flipdim(Eigenvectors, 2); % This flipping just to make
1799
                                              % the highest correlated
1800
                                              % eigenface is associated
1801
                                              % with the first eigenvalue
1802
                                              % and so on. This is done to
1803
1804
                                              % be compatable with the
                                              % generated document
1805
                                              % "PCA vs. IPCA".
1806
    for kk=1:length(Eigenvalues)
1807
        ['Iteration No.: ' num2str(kk) ' Out of ' .........
1808
             num2str(length(Eigenvalues))]
1809
        Selected_Eigenvectors=Eigenvectors1(:,1:kk);
1810
1811
        % Projecting each training face on the eigenspace. It is just
1812
        % expressing each training face in terms of the eigenfaces.
1813
1814
        % This is called principal components transform (also called
1815
        % the Hotelling or Karhunen-Loéve transform)
        All_Known_Transformed_Im=.....
1816
            zeros (size (Selected_Eigenvectors, 2), ......
1817
            Total_No_of_Known_Im); % A 2D matrix where each column
1818
                                     % represents the coordinates of a
1819
                                     % projected training face in the
1820
1821
                                     % eigenspace.
        for r=1:Total_No_of_Known_Im
1822
            All_Known_Transformed_Im(:,r) = Selected_Eigenvectors.' *....
1823
1824
                 Known_Im_Subt_Mean(:,r);
1825
        All_Known_Transformed_Im;
1826
```

```
1827
        % The calculation of an information ratio before and after
1828
        % compression.
1829
        Before_Compression=Total_No_of_Known_Im*....
1830
            N*N; % The overall information when there is
1831
                 % no any compression technique is used.
1832
        After_Compression=N*N*kk+kk*Total_No_of_Known_Im+.....
1833
            N*N; % The overall information when a compression technique
1834
                 % is used. The overall information here is controlled
1835
                 % by the selected number of eigenvectors. When the
1836
                 % selected number is small then the information will
1837
                 % be samll and vice versa. It is very important to
1838
                 % notice that when all eigenvectors are used then
1839
                 % there will not be any compression and the overall
1840
                 % information when there is no any compression
1841
                 % technique is used will be the optimum one. Also, it
1842
1843
                 % is really important to notice that the rows and
                 % columns for the pixels of each face as well as the
1844
                 % means of the faces pixels are not added to the
1845
                 % overall information after compression that because
1846
                 % the face centering operation is not really important
1847
1848
                 % for the image compression process and will not have
                 % any effect if it is done or not but it has been done
1849
                 % here because it is important for other processes.
1850
        Before_Compression_Normalization=(Before_Compression/.....
1851
            Before Compression) *100; % Note that, the normalization is
1852
                                       % done to make the overall
1853
1854
                                      % information before compression
                                      % is equal to 100 all the time
1855
                                      % in order to make comparison
1856
                                       % easier.
1857
        After_Compression_Normalization(1,kk) = (After_Compression/....
1858
            Before_Compression) *100; % Note that, the normalization is
1859
1860
                                      % done to make the overall
                                       % information before compression
1861
                                      % is equal to 100 all the time
1862
                                      % in order to make comparison
1863
                                      % easier.
1864
          The_Information_Ratio=[......
1865
              num2str(Before_Compression_Normalization) ......
1866
              '% (Before Compression) : ' ......
              num2str(After_Compression_Normalization(1,kk))....
1868
              '% (After Compression)'] % This is just to make the
1869
    응
                                         % information ratio is readable
1870
1871
                                        % on the command window.
1872
        % The reconstruction of the projected training faces.
1873
        All_Known_Reconstructed_Im=zeros(N,N,Total_No_of_Known_Im);
1874
1875
        for a=1:Total_No_of_Known_Im
            Pre=reshape (Selected_Eigenvectors*.....
1876
```

```
1877
                 All_Known_Transformed_Im(:,a),N,N)+.....
                 reshape(Av_Image, N, N); % Adding the average
1878
1879
                                          % training face.
1880
             RC1=Rows_Columns(:,:,a);
1881
             F=RC1(1,:);
1882
             F1=RC1(2,:);
1883
             D=F(F>0);
1884
             D1=F1(F1>0);
1885
             RC=[D;D1]; % The rows and columns for the pixels of a
1886
1887
                         % face after removing the added zero rows and
                         % columns. The added zero rows and columns are
1888
                         % added by MATLAB for making the matrices of
1889
                         % the rows and columns of the faces pixels
1890
                         % are equal.
1891
1892
             for QQ=1:size(RC,2)
1893
                 All_Known_Reconstructed_Im(RC(1,QQ),RC(2,QQ),a)=.....
                     Pre(RC(1,QQ),RC(2,QQ))+.....
1894
                     Means (1, a); % Adding the mean of the
1895
                                   % pixels of a face.
1896
             end
1897
1898
             Y=All_Known_Reconstructed_Im(:,:,a); % Removing any pixel
1899
                                                     % less than zero in
1900
                                                     % a training face
1901
                                                     % because the image
1902
1903
                                                     % can not be negative.
1904
             [UU NN]=find(Y<0);
             for CC=1:size(UU,1)
1905
                 Y(UU(CC), NN(CC)) = 0;
1906
1907
             end
1908
            MSE\_Compression(1,kk) = sum(Eigenvalues1(1,kk+1:end));
1909
            MSE_Reconstruction(kk,a)=.....
1910
1911
                 sum(sum(.....
                 (reshape(Normalized_Known_Im_V(:,a),N,N)-Y).^2))/N*N;
1912
1913
1914
               % Displaying the effect of the selected eigenvectors on
1915
               % the reconstructed training faces.
1916 %
               Known_Image=Known_Images(a).name;
               figure ('units', 'centimeters', 'position', [16 7 7.5 8.5])
1917
1918
               subplot(3,1,1)
1919
               imshow(uint8(reshape(Normalized Known Im V(:,a),N,N)))
               if a==1
1920
1921
                   title({['Original Training Face No.' num2str(a)];....
                        ['(' Known_Image(1:length(Known_Image)-6) .....
1922 %
                        ', 1^{st} Projection)']})
1923
               elseif a==2
1924 %
1925 %
                   title({['Original Training Face No.' num2str(a)];....
1926 %
                        ['(' Known_Image(1:length(Known_Image)-6) ....
```

```
1927
                       ', 2^{nd} Projection)']})
              elseif a==3
1928
                   title({['Original Training Face No.' num2str(a)];....
                       ['(' Known_Image(1:length(Known_Image)-6) .....
1930
                       ', 3^{rd} Projection)']})
1931
              elseif a==4
1932
                   title({['Original Training Face No.' num2str(a)];....
                       ['(' Known_Image(1:length(Known_Image)-6) .....
1934
                       ', 1^{st} Projection)'|})
1935
              elseif a==5
1936
1937
                   title({['Original Training Face No.' num2str(a)];....
                       ['(' Known_Image(1:length(Known_Image)-6) .....
1938
                       ', 2^{nd} Projection)']})
1939
              elseif a==6
1940
                   title({['Original Training Face No.' num2str(a)];....
1941
                       ['(' Known_Image(1:length(Known_Image)-6) .....
1942
1943
                       ', 3^{rd} Projection)']})
              elseif a==7
1944
                   title({['Original Training Face No.' num2str(a)];....
1945
                       ['(' Known_Image(1:length(Known_Image)-6) .....
1946
                       ', 1^{st} Projection)']})
1947
              elseif a==8
                   title({['Original Training Face No.' num2str(a)];....
1949
                       ['(' Known_Image(1:length(Known_Image)-6) .....
1950
                       ', 2^{nd} Projection)']})
1951
              elseif a==9
                   title({['Original Training Face No.' num2str(a)];....
1953
                       ['(' Known_Image(1:length(Known_Image)-6) .....
1954
                       ', 3^{rd} Projection)']})
1955
1956
              end
              subplot(3,1,2)
1957
              imshow(uint8(Y))
1958
              if a==1
1959
1960
                   title(['Its Reconstruction When q=' num2str(kk)])
              elseif a==2
1961
                   title(['Its Reconstruction When q=' num2str(kk)])
1962
              elseif a==3
                   title(['Its Reconstruction When q=' num2str(kk)])
1964
1965
              elseif a==4
                   title(['Its Reconstruction When q=' num2str(kk)])
1966
              elseif a==5
                   title(['Its Reconstruction When q=' num2str(kk)])
1968
1969
              elseif a==6
                   title(['Its Reconstruction When q=' num2str(kk)])
1970
1971
                   title(['Its Reconstruction When q=' num2str(kk)])
1972 %
1973
              elseif a==8
1974 %
                   title(['Its Reconstruction When q=' num2str(kk)])
1975 %
              elseif a==9
1976 %
                   title(['Its Reconstruction When q=' num2str(kk)])
```

```
1977 %
               end
1978 %
               subplot(3,1,3)
               imshow(uint8(.....
                   (reshape(Normalized_Known_Im_V(:,a),N,N)-Y).^2))
1980 %
               if a==1
1981
                   title('The Squared Error')
1982
               elseif a==2
                   title('The Squared Error')
1984 %
               elseif a==3
1985
1986 %
                   title('The Squared Error')
1987 %
               elseif a==4
1988 %
                   title('The Squared Error')
               elseif a==5
1989 %
                   title('The Squared Error')
1990
1991 %
               elseif a==6
1992 %
                   title('The Squared Error')
1993 %
               elseif a==7
                  title('The Squared Error')
1994 %
               elseif a==8
1995 %
                   title ('The Squared Error')
1996
               elseif a==9
1997
1998
                   title ('The Squared Error')
               end
1999
2000
2001 %
               kk
               pause
2002
2003
               close all
2004
        end
2005 end
2006
2007
2008 % Plotting the information rates when different eigenfaces are
2009 % selected compared with the original information rate for all
2010 % training faces and explaining the information rates for the PCA
2011 % and IPCA algorithms on the plot.
2012 ClC
2013 figure('units','centimeters','position',[0.15 1.2 35.8 16.9])
2014 subplot (2, 1, 1)
2015 Leg1=plot(1:length(Eigenvalues), After_Compression_Normalization);
2016 Leg2=line([0 length(Eigenvalues)],[100 100], 'Color',[0 102/255 0]);
2017 hold on
2018 Leg3=plot(1, After_Compression_Normalization(1), 'kd',....
         'LineWidth',1.5,'MarkerEdgeColor','k','MarkerFaceColor',.....
2019
        'm','MarkerSize',8);
2020
   text(-50,After\_Compression\_Normalization(1)+3650,....
2021
        {'\fontsize{10} \color{black}' ......
2022
        After_Compression_Normalization(1)})
2023
2024 hold on
2025 Leg4=plot(length(Eigenvalues),.....
        After_Compression_Normalization(length(Eigenvalues)),'kd',....
2026
```

```
'LineWidth',1.5,'MarkerEdgeColor','k','MarkerFaceColor',.....
2027
        'g', 'MarkerSize', 8);
2028
    text(length(Eigenvalues)-140,.....
        After_Compression_Normalization(length(Eigenvalues))+2350,....
2030
        {'\fontsize{10} \color{black}' ......
2031
        After_Compression_Normalization(length(Eigenvalues))})
2032
    hold off
2033
    axis([-100 length(Eigenvalues)+(length(Eigenvalues)/40) -2000 .....
2034
        max(After Compression Normalization)+.....
2035
        (max(After_Compression_Normalization)/10)])
2036
2037
    set(gca,'XTick',[1 length(Eigenvalues)/2 length(Eigenvalues)])
    title({['The Information Rates When Different Eigenfaces '.....
2038
        'Are Selected Compared '];.....
2039
        'With the Original Information Rate for All Training Faces' })
2040
    xlabel('The Number of Selected Eigenfaces')
2041
    ylabel('The Information Rate (%)')
2042
    legend([Leg1 Leg2 Leg3 Leg4],['The Information Rates When '.....
2043
        'Different Eigenfaces Are Selected.'], ['The Information '.....
2044
        'Rate for All Training Faces.'], ['The Information Rate '.....
2045
        'When the First Eigenface Is Selected.'], ['The '......
2046
        'Information Rate When All Eigenfaces Are Selected.'],....
2047
2048
        'Location', 'NorthWest');
    subplot(2,1,2)
2049
    Leg1=plot(1:length(Eigenvalues), After_Compression_Normalization);
    axis([0 20 0 200])
2051
    Leg2=line([0 length(Eigenvalues)],[100 100],'Color',[0 102/255 0]);
    Leg3=line([length(Best_Eigenvalues_PCA) .....
2053
2054
        length(Best Eigenvalues PCA)],[0 .....
        After_Compression_Normalization(length(.....
2055
        Best_Eigenvalues_PCA))],'LineStyle','--','Color','k',....
2056
        'LineWidth', 3);
2057
    line([0 length(Best_Eigenvalues_PCA)],....
2058
        [After_Compression_Normalization(.....
2059
        length(Best_Eigenvalues_PCA)) .....
2060
        After_Compression_Normalization(.....
2061
        length(Best_Eigenvalues_PCA))],.....
2062
        'LineStyle','---','Color','k','LineWidth',3)
    text(0.1, After_Compression_Normalization(......
2064
2065
        length (Best_Eigenvalues_PCA))+16,....
        {'\fontsize{10} \color{black}' .....
2066
        num2str(After_Compression_Normalization(.....
2067
        length(Best_Eigenvalues_PCA)),'%6.4f')})
2068
2069
    Leg4=line([length(Best Eigenvalues IPCA) ......
        length(Best_Eigenvalues_IPCA)],[0 ......
2070
2071
        After Compression Normalization (.....
        length(Best_Eigenvalues_IPCA))],'LineStyle','--','Color',....
2072
        'r', 'LineWidth', 4);
2073
    line([0 length(Best_Eigenvalues_IPCA)],.....
2074
2075
        [After Compression Normalization(....
        length(Best_Eigenvalues_IPCA)) .....
2076
```

```
2077
        After_Compression_Normalization(.....
        length(Best_Eigenvalues_IPCA))],'LineStyle','--','Color',...
2078
        'r', 'LineWidth', 4)
    text(0.08, After_Compression_Normalization(....
2080
        length(Best_Eigenvalues_IPCA))-1.7,...
2081
        {'\fontsize{10} \color{red} \bf' .....
2082
        num2str(After_Compression_Normalization(....
2083
        length(Best_Eigenvalues_IPCA)),'%6.4f')})
2084
    vv=[length(Best Eigenvalues IPCA) length(Best Eigenvalues PCA)];
2085
    if vv(1) == 1 | | vv(2) == 1
2086
2087
        set(gca,'XTick',[0 sort(vv) 20])
    else set(gca,'XTick',[0 1 sort(vv) 20])
2088
    end
2089
   title(['Explaining the Information Rates for the PCA and '.....
        'IPCA Algorithms on the Plot'])
2091
    xlabel('The Number of Selected Eigenfaces')
    ylabel('The Information Rate (%)')
    legend([Leg1 Leg2 Leg3 Leg4],['The Information Rates When '....
        'Different Eigenfaces Are Selected.'],['The Information '....
2095
        'Rate for All Training Faces.'], ['The Information Rate '.....
2096
        'When PCA Algorithm Is Used.'], ['The Information '.....
2097
        'Rate When IPCA Algorithm Is Used.'], 'Location', 'SouthEast');
2099 disp('Please, press any keyboard button to resume the code >>>>')
   pause
2100
2101 clc
2102 close all
2103
2104
2105 % Plotting the mean squared errors of compression for different
2106 % selected eigenfaces compared with the mean squared errors for
2107 % the PCA and IPCA algorithms.
2108 figure ('units', 'centimeters', 'position', [0.15 1.2 35.8 16.9])
2109 subplot (2,1,1)
2110 Leg1=plot(1:length(Eigenvalues), MSE_Compression);
2111 hold on
2112 Leg2=plot(1, MSE_Compression(1), 'kd', 'LineWidth', 1.5, .....
        'MarkerEdgeColor', 'k', 'MarkerFaceColor', 'm', 'MarkerSize',8);
2114 text (25, MSE_Compression(1) + (10^7/11), .....
2115
        {'\fontsize{10} \color{black}' MSE_Compression(1)})
2116 hold on
2117 Leg3=plot(length(Eigenvalues),.....
        MSE_Compression(length(Eigenvalues)),'kd','LineWidth',1.5,....
2118
        'MarkerEdgeColor', 'k', 'MarkerFaceColor', 'g', 'MarkerSize',8);
2119
2120 text(length(Eigenvalues)-8,.....
2121
        MSE Compression(length(Eigenvalues))+10^7/3.2,.....
        {'\fontsize{10} \color{black}' .....
2122
        MSE_Compression(length(Eigenvalues))))
2123
2124 hold off
2125 axis([0 length(Eigenvalues)+(length(Eigenvalues)/40) .....
2126
        -max (MSE_Compression) / 10 .....
```

```
2127
        max (MSE_Compression) + (max (MSE_Compression) / 10) ])
2128
   set(gca,'XTick',[1 length(Eigenvalues)/2 length(Eigenvalues)])
    title(['The Mean Squared Errors of Compression for Different '....
2130
        'Selected Eigenfaces'])
   xlabel('The Number of Selected Eigenfaces')
2131
    ylabel('The Mean Squared Error')
    legend([Leg1 Leg2 Leg3],['The Mean Squared Errors of '....
        'Compression for Different Selected Eigenfaces.'],....
2134
        ['The Mean Squared Error of Compression When the First
2135
        'Eigenface Is Selected.'],['The Mean Squared Error of '.....
2136
2137
        'Compression When All Eigenfaces Are Selected.'],.....
        'Location', 'NorthEast');
2138
   subplot(2,1,2)
2139
   Leg1=plot(1:length(Eigenvalues), MSE Compression);
    axis([0\ 20\ -10^7/4\ max(MSE\_Compression) + (10^7/4)])
2141
2142
    Leg2=line([length(Best_Eigenvalues_PCA) ......
2143
        length(Best_Eigenvalues_PCA)],.....
        [0 MSE_Compression(length(Best_Eigenvalues_PCA))],....
2144
2145
        'LineStyle','---','Color','k','LineWidth',3);
    line([0 length(Best_Eigenvalues_PCA)],.....
2146
        [MSE_Compression(length(Best_Eigenvalues_PCA)) .....
2147
2148
        MSE_Compression(length(Best_Eigenvalues_PCA))],.....
        'LineStyle','---','Color','k','LineWidth',3)
2149
    text(0.08, MSE_Compression(length(Best_Eigenvalues_PCA))+....
2150
        (-0.008*10^7), {'\fontsize{10} \color{black}' .....
2151
        num2str(MSE Compression(length(Best Eigenvalues PCA)))})
2152
    Leg3=line([length(Best_Eigenvalues_IPCA) ......
2153
2154
        length(Best_Eigenvalues_IPCA)],[0 .....
        MSE_Compression(length(Best_Eigenvalues_IPCA))],....
2155
        'LineStyle','--','Color','r','LineWidth',4);
2156
    line([0 length(Best_Eigenvalues_IPCA)],....
2157
        [MSE_Compression(length(Best_Eigenvalues_IPCA)) .....
2158
        MSE_Compression(length(Best_Eigenvalues_IPCA))],....
2159
        'LineStyle','---','Color','r','LineWidth',4)
2160
    text(0.08, MSE_Compression(length(Best_Eigenvalues_IPCA))+....
2161
        0.24*10^7, {'\fontsize{10} \color{red} \bf' ......
2162
        num2str(MSE_Compression(length(Best_Eigenvalues_IPCA)))})
2164
    if vv(1) == 1 | vv(2) == 1
        set(gca,'XTick',[0 sort(vv) 20])
2165
   else set(gca,'XTick',[0 1 sort(vv) 20])
2166
    title(['Explaining the Mean Squared Errors for the PCA and '....
2168
2169
        'IPCA Algorithms on the Plot'])
2170 xlabel('The Number of Selected Eigenfaces')
    ylabel('The Mean Squared Error')
    legend([Leg1 Leg2 Leg3],['The Mean Squared Errors of '....
2172
        'Compression for Different Selected Eigenfaces.'],....
2173
        'The Mean Squared Error for PCA Algorithm.',....
2174
2175
        'The Mean Squared Error for IPCA Algorithm.',....
        'Location', 'NorthEast');
2176
```

```
2177 disp('Please, press any keyboard button to resume the code >>>>')
2178 pause
2179 ClC
2180 close all
2181
2182
    % Plotting the mean squared errors between each training face and
2184 % its reconstruction for different selected eigenfaces compared
    % with the mean squared errors between each training face and its
2186 % reconstruction for the PCA and IPCA Algorithms.
   figure('units','centimeters','position',[0.15 1.2 35.8 16.9])
2188
    for jj=1:Total_No_of_Known_Im
        subplot(2,1,1)
2189
        Leg1=plot(1:length(Eigenvalues), (MSE Reconstruction(:, jj)).');
2190
2191
        Leg2=plot(1,MSE_Reconstruction(1,jj),'kd','LineWidth',1.5,....
2192
2193
             'MarkerEdgeColor', 'k', 'MarkerFaceColor', 'm', .....
             'MarkerSize',8);
2194
        text(35,MSE_Reconstruction(1,jj)+.....
2195
            max(MSE_Reconstruction(:, jj))/22,....
2196
             {'\fontsize{10} \color{black}' MSE_Reconstruction(1, jj)})
2197
2198
        hold on
        Leg3=plot(length(Eigenvalues),.....
2199
            MSE_Reconstruction(length(Eigenvalues), jj), 'kd',....
2200
             'LineWidth', 1.5, 'MarkerEdgeColor', 'k', .....
2201
             'MarkerFaceColor', 'q', 'MarkerSize', 8);
2202
        text (length (Eigenvalues) -75, .....
2203
            MSE Reconstruction (length (Eigenvalues), jj) + ....
2204
            max(MSE_Reconstruction(:,jj))/7,.....
2205
             {'\fontsize{10} \color{black}' .....
2206
            MSE_Reconstruction(length(Eigenvalues),jj)})
2207
        hold off
2208
        axis([0 length(Eigenvalues)+(length(Eigenvalues)/15) .....
2209
            -max(MSE_Reconstruction(:,jj))/10 .....
2210
            max(MSE_Reconstruction(:,jj))+.....
2211
             (max(MSE_Reconstruction(:,jj))/10)])
2212
        set(gca,'XTick',[1 length(Eigenvalues)/2 length(Eigenvalues)])
2213
        Known_Image=Known_Images(jj).name;
2214
2215
        if jj==1
            title({['The Mean Squared Errors of Reconstructing '....
2216
                 'Training']; ['Face No.' num2str(jj) .....
2217
                 ' for Different Selected Eigenfaces']; .....
2218
2219
                 ['(' Known Image(1:length(Known Image)-6) ....
2220
                 ', 1^{st} Projection)']})
2221
        elseif jj==2
            title({['The Mean Squared Errors of Reconstructing '....
2222
                 'Training']; ['Face No.' num2str(jj) .....
2223
                 ' for Different Selected Eigenfaces']; .....
2224
                 ['(' Known_Image(1:length(Known_Image)-6) .....
2225
                 ', 2^{nd} Projection)']})
2226
```

```
elseif jj==3
2227
2228
             title({['The Mean Squared Errors of Reconstructing '.....
                 'Training']; ['Face No.' num2str(jj) .....
2229
                 ' for Different Selected Eigenfaces']; .....
2230
                 ['(' Known_Image(1:length(Known_Image)-6) .....
2231
                 ', 3^{rd} Projection)']})
2232
        elseif jj==4
2233
             title({['The Mean Squared Errors of Reconstructing '.....
2234
                 'Training']; ['Face No.' num2str(jj) .....
2235
                 ' for Different Selected Eigenfaces']; .....
2236
                 ['(' Known Image(1:length(Known Image)-6) ....
2237
                 ', 1^{st} Projection)']})
2238
        elseif jj==5
2239
             title({['The Mean Squared Errors of Reconstructing '.....
2240
                 'Training']; ['Face No.' num2str(jj) .....
2241
                 ' for Different Selected Eigenfaces']; ....
2242
2243
                 ['(' Known_Image(1:length(Known_Image)-6) ....
                 ', 2^{nd} Projection)']})
2244
        elseif jj==6
2245
             title({['The Mean Squared Errors of Reconstructing '.....
2246
                 'Training']; ['Face No.' num2str(jj) ....
2247
2248
                 ' for Different Selected Eigenfaces']; ....
                 ['(' Known_Image(1:length(Known_Image)-6) ....
2249
                 ', 3^{rd} Projection)']})
2250
        elseif jj==7
2251
             title({['The Mean Squared Errors of Reconstructing '....
2252
                 'Training']; ['Face No.' num2str(jj) .....
2253
2254
                 ' for Different Selected Eigenfaces']; ....
                 ['(' Known_Image(1:length(Known_Image)-6) .....
2255
                 ', 1^{st} Projection)']})
2256
        elseif jj==8
2257
             title({['The Mean Squared Errors of Reconstructing '....
2258
                 'Training']; ['Face No.' num2str(jj) ....
2259
                 ' for Different Selected Eigenfaces']; .....
2260
                 ['(' Known_Image(1:length(Known_Image)-6) .....
2261
                 ', 2^{nd} Projection)']})
2262
2263
        elseif jj==9
             title({['The Mean Squared Errors of Reconstructing '....
2264
                 'Training']; ['Face No.' num2str(jj) ....
2265
                 ' for Different Selected Eigenfaces'];....
2266
                 ['(' Known_Image(1:length(Known_Image)-6) .....
2267
                 ', 3^{rd} Projection)']})
2268
2269
        end
        xlabel('The Number of Selected Eigenfaces')
2270
2271
        ylabel('The Mean Squared Error')
        Leg=legend([Leg1 Leg2 Leg3],['The Mean Squared Errors of '....
2272
             'Reconstruction for Different Selected Eigenfaces.'],....
2273
             ['The Mean Squared Error of Reconstruction When the '.....
2274
2275
             'First Eigenface Is Selected.'], ['The Mean Squared '.....
             'Error of Reconstruction When All Eigenfaces '.....
2276
```

```
2277
             'Are Selected.'], 'Location', 'North');
        subplot(2,1,2)
2278
        MSE_Recons=(MSE_Reconstruction(:, jj)).';
2279
        Leg1=plot(1:length(Eigenvalues), MSE_Recons);
2280
        axis([0 20 -max(MSE_Recons)/6 .....
2281
             max (MSE_Recons) + (max (MSE_Recons) / 10) ])
2282
        Leg2=line([length(Best_Eigenvalues_PCA) .....
2283
             length(Best_Eigenvalues_PCA)],[0 .....
2284
             MSE Recons (length (Best Eigenvalues PCA))], ....
2285
             'LineStyle','--','Color','k','LineWidth',3);
2286
        line([0 length(Best Eigenvalues PCA)],....
2287
             [MSE_Recons (length (Best_Eigenvalues_PCA)) .....
2288
             MSE_Recons (length (Best_Eigenvalues_PCA))], .....
2289
             'LineStyle','--','Color','k','LineWidth',3)
2290
        text(0.1, MSE_Recons(length(Best_Eigenvalues_PCA)).....
2291
             -(max(MSE_Recons)/88),{'\fontsize{10} \color{black}
2292
             num2str(MSE_Recons(length(Best_Eigenvalues_PCA)))))
2293
        Leg3=line([length(Best_Eigenvalues_IPCA) .....
2294
             length(Best_Eigenvalues_IPCA)],....
2295
             [O MSE_Recons(length(Best_Eigenvalues_IPCA))],....
2296
             'LineStyle','---','Color','r','LineWidth',4);
2297
2298
        line([0 length(Best_Eigenvalues_IPCA)],....
             [MSE_Recons(length(Best_Eigenvalues_IPCA)) .....
2299
             MSE_Recons(length(Best_Eigenvalues_IPCA))],....
2300
             'LineStyle','---','Color','r','LineWidth',4)
2301
        text(0.1, MSE Recons(length(Best Eigenvalues IPCA)).....
2302
             + (max (MSE_Recons) /8), { '\fontsize {10} \color {red} \bf'
2303
             num2str(MSE_Recons(length(Best_Eigenvalues_IPCA)))})
2304
        if vv(1) == 1 | | vv(2) == 1
2305
             set(gca,'XTick',[0 sort(vv) 20])
2306
        else set(gca,'XTick',[0 1 sort(vv) 20])
2307
2308
        end
        title(['Explaining the Mean Squared Errors for the '.....
2309
             'PCA and IPCA Algorithms on the Plot'])
2310
        xlabel('The Number of Selected Eigenfaces')
2311
        ylabel ('The Mean Squared Error')
2312
        Leg=legend([Leg1 Leg2 Leg3],['The Mean Squared Errors of '.....
2313
             'Reconstruction for Different Selected Eigenfaces.'],....
2314
             'The Mean Squared Error for PCA Algorithm.',....
2315
             'The Mean Squared Error for IPCA Algorithm.',....
2316
             'Location', 'NorthEast');
2317
2318
2319
        disp(['Please, press any keyboard button to explore '....
             'the remaining mean'])
2320
2321
        disp(['squared errors for other reconstructed training '....
             'faces >>>>>'])
2322
        pause
2323
2324
        clc
2325 end
2326 close all
```

```
2327
2328
2329
   2330
2331
2332
   clc
2333
2334 close all
2335
2336
2337 %%%% When the coordinates number of the projected training faces
2338 %%%% in the eigenspace increases, the error rate will decrease and
   %%%% vice versa as well as when the number decreases, the
2340 %%%% processing speed will increase and vice versa. So, the usage
2341 %%%%% of all calculated eigenvectors as eigenfaces will lead to the
2342 %%%%% smallest error rate and biggest processing time then the
2343 %%%%% usage of the calculated eigenfaces by using PCA algorithm
2344 %%%%% finally the usage of the calculated eigenfaces by using IPCA
2345 %%%% algorithm will lead to the biggest error rate and smallest
   %%%% processing time. It is very important to notice that the
2347 %%%%% calculation of all eigenvectors from the covariance matrix
   %%%%% for all training faces is too difficult because the
   %%%% covariance matrix is too big as explained before so it is
   %%%% impractical to use all eigenvectors as eigenfaces.
2351
   % Best Eigenvectors=Eigenvectors; % Just try it to see how affects
2352
                                      % on the results of face
2353
2354
                                      % recognition.
   Best_Eigenvectors=Best_Eigenvectors_PCA; % Just try it to see how
2355
2356
                                             % affects on the results
                                             % of face recognition.
2357
    % Best Eigenvectors=Best_Eigenvectors_IPCA; % Just try it to see
2358
                                                % how affects on the
2359
2360
                                                % results of face
                                                % recognition.
2361
2362
2364
   % Projecting each training face on the eigenspace. It is just
   % expressing each training face in terms of the eigenfaces. This is
   % called principal components transform (also called the Hotelling
   % or Karhunen-Loéve transform)
   All_Known_Transformed_Im=.....
2368
2369
        zeros (size (Best Eigenvectors, 2), .....
        Total_No_of_Known_Im); % A 2D matrix where each
2370
2371
                               % column represents the
                               % coordinates of a
2372
                               % projected training
2373
2374
                               % face in the eigenspace.
2375
   for r=1:Total_No_of_Known_Im
        All_Known_Transformed_Im(:,r)=Best_Eigenvectors.'*.....
2376
```

```
2377
            Known_Im_Subt_Mean(:,r);
2378 end
2379 All_Known_Transformed_Im;
2380
2381
   % Projecting each tested image on the eigenspace. It is just
   % expressing each tested image in terms of the eigenfaces. This is
2384 % called principal components transform (also called the Hotelling
   % or Karhunen-Loéve transform)
2386 All_Tested_Transformed_Im=....
2387
        zeros (size (Best Eigenvectors, 2), ....
        Total_No_of_Tested_Im); % A 2D matrix where each
2388
                                % column represents the
2389
                                % coordinates of a
2390
                                % projected tested image
2391
2392
                                % in the eigenspace.
   for r1=1:Total_No_of_Tested_Im
2393
        All_Tested_Transformed_Im(:,r1) = Best_Eigenvectors.' * . . . . . .
2394
            Tested_Im_Subt_Mean(:,r1);
2395
   end
2396
   All_Tested_Transformed_Im;
2397
2398
2399
   fid=fopen('Face Recognition Results for Testing.txt',....
2400
        'w'); % A text file for typing
2401
              % the results of face
2402
2403
              % recognition.
2404
    fprintf(fid,['\n\t ***** The Results of Face Recognition '......
        'Obtained from the PCA and IPCA ****\r\n']);
2405
   fprintf(fid,['\t\t\***** Code for Testing and Setting up '.....
2406
        'Thresholds ****\r\n\n']);
2407
    fprintf(fid,['Image No.
2408
                                  The Image Is Originally for
        'The Image Is Recognized as
                                      The Status\r\n']);
2409
   2410
        '-----
                                     ======\r\n']);
2411
2412
   Distances_Vector=....
        zeros(Total_No_of_Tested_Im,....
2414
2415
        Total_No_of_Known_Im); % A 2D matrix where each row
                               % represents the distances
2416
                               % between the weights of each
2417
                               % training face and the
2418
2419
                               % weights of one of the
                               % tested images.
2420
2422 % The distances between the weights of a training face and the
2423 % weights of each corresponding tested image. Note that, here the
2424 % training face and tested images have the same face and projection
2425 % so these distances must be the smallest. The distances are
2426 % extracted form the Distances_Vector matrix.
```

```
2427 Distances_Vector_P1=zeros(1,Im_P(1));
2428 Distances_Vector_P2=zeros(1,Im_P(2));
2429 Distances_Vector_P3=zeros(1, Im_P(3));
2430 Distances_Vector_P4=zeros(1,Im_P(4));
2431 Distances_Vector_P5=zeros(1, Im_P(5));
2432 Distances_Vector_P6=zeros(1,Im_P(6));
2433 Distances_Vector_P7=zeros(1,Im_P(7));
2434 Distances_Vector_P8=zeros(1,Im_P(8));
   Distances_Vector_P9=zeros(1, Im_P(9));
2435
2436
    for p=1:Total_No_of_Tested_Im
2437
        for q=1:Total_No_of_Known_Im
2438
             Distances_Vector (p,q) = \dots
2439
                 norm(All Tested Transformed Im(:,p)-....
2440
                 All_Known_Transformed_Im(:,q));
2441
2442
        end
2443
        if p \le L1
2444
2445
            Distances_Vector_P1(1,p) = Distances_Vector(p,1);
        elseif p>L1 && p<=L2
2446
            Distances_Vector_P2(1,p-L1) = Distances_Vector(p,2);
2447
2448
        elseif p>L2 && p<=L3
            Distances_Vector_P3(1,p-L2) = Distances_Vector(p, 3);
2449
        elseif p>L3 && p<=L4
2450
            Distances_Vector_P4(1,p-L3) = Distances_Vector(p,4);
2451
        elseif p>L4 && p<=L5
2452
            Distances_Vector_P5(1,p-L4) = Distances_Vector(p,5);
2453
        elseif p>L5 && p<=L6
2454
            Distances_Vector_P6(1,p-L5) = Distances_Vector(p,6);
2455
        elseif p>L6 && p<=L7
2456
            Distances_Vector_P7(1,p-L6) = Distances_Vector(p,7);
2457
2458
        elseif p>L7 && p<=L8
            Distances_Vector_P8(1,p-L7) = Distances_Vector(p,8);
2459
        elseif p>L8 && p<=L9
2460
2461
             Distances_Vector_P9(1,p-L8) = Distances_Vector(p,9);
2462
        end
2463 end
2464 d1=Distances_Vector_P1;
2465 d2=Distances_Vector_P2;
2466 d3=Distances_Vector_P3;
2467 d4=Distances_Vector_P4;
2468 d5=Distances_Vector_P5;
2469 d6=Distances Vector P6;
2470 d7=Distances_Vector_P7;
2471 d8=Distances Vector P8;
2472 d9=Distances_Vector_P9;
2473
2474 % The calculation of the mean and standard deviation for each
2475 % vector of the minimum distances and stacking them in a vector for
2476 % the means and another for the standard deviations. This is done
```

```
2477 % for setting up a threshold for face recognition because when a
2478 % distance between a training face and a tested image is the
2479 % smallest with respect to the other training faces, that does not
2480 % mean the tested image is recognized as the training face due to
   % the tested image can be different than the training face and has
   % the smallest distance in the same time. So, a certain threshold
   % must be used to increase the accuracy of recognition.
P_{mean} = [mean(d1); mean(d2); mean(d3); mean(d4); mean(d5); mean(d6); ....
        mean(d7); mean(d8); mean(d9)];
2485
2486 P_STD=[std(d1);std(d2);std(d3);std(d4);std(d5);std(d6);std(d7);....
        std(d8);std(d9)];
2487
    % save(['Means for Face Recognition When All Eigenvectors '....
2488
          'Are Used as Eigenfaces'], 'P_Mean')
2489
    % save(['STDs for Face Recognition When All Eigenvectors '.....
          'Are Used as Eigenfaces'], 'P_STD')
2491
    save(['Means for Face Recognition When the Eigenfaces '....
2492
2493
        'Computed by Using PCA Algorithm Are Used'], 'P_Mean')
    save(['STDs for Face Recognition When the Eigenfaces '....
        'Computed by Using PCA Algorithm Are Used'], 'P_STD')
2495
    % save(['Means for Face Recognition When the Eigenfaces '....
2496
          'Computed by Using IPCA Algorithm Are Used'], 'P_Mean')
2497
    % save(['STDs for Face Recognition When the Eigenfaces '.....
          'Computed by Using IPCA Algorithm Are Used'], 'P_STD')
2499
2500
    Failures_Vector=zeros(1,.....
2501
        Total No of Tested Im); % A vector for counting the number of
2502
2503
                                  % failures in the face recognition
2504
                                  % process.
2505
    Latex_Matrix=cell(Total_No_of_Tested_Im, 4); % This matrix is used
2506
                                                   % for creating a table
2507
                                                   % in Latex.
2508
    for w=1:Total_No_of_Tested_Im
2509
        % The face recognition process.
2510
        for h=1:Total_No_of_Known_Im
2511
            if min(Distances_Vector(w,:)) == .....
2512
2513
                     Distances_Vector(w,h) && .....
                     min(Distances_Vector(w,:))>=.....
2514
                     (P_Mean(h,1)-P_STD(h,1)) & ....
2515
                     min(Distances_Vector(w,:)) <= .....</pre>
2516
                     (P_Mean(h, 1) + P_STD(h, 1))
2517
                 s=transpose(struct2cell(Known_Images));
2518
2519
                 c=sortrows(s,1);
                 z=c(:,1);
2520
2521
                Recognized As=char(z(h,1));
                Recognized_Image_Location=....
2522
                     fullfile(Known_Images_Folder, Recognized_As);
2523
2524
                Recognized_image=im2double(rgb2gray(.....
                     imread(Recognized_Image_Location)));
2525
                break;
2526
```

```
else
2527
                 Recognized_As='Unknown Image';
2528
                 Recognized_image=imread('Unknown_Face.jpg');
             end
2530
        end
2531
2532
         % Defining the face.
        if w \le L3
2534
             n='Mr. Mansour Alshammari';
2535
        elseif L3<w && w<=L6
2536
2537
             n='Mr. Methkir Alharthee';
        else n='Mr. Mohammed Hanafy';
2538
        end
2539
2540
        y1=strcmp(Recognized As(1:length(Recognized As)-6),....
2541
             'Mr. Mansour Alshammari');
2542
2543
        y2=strcmp(Recognized_As(1:length(Recognized_As)-6),....
             'Mr. Methkir Alharthee');
2544
        y3=strcmp(Recognized_As(1:length(Recognized_As)-6),....
2545
             'Mr. Mohammed Hanafy');
2546
        f='Success';
2547
2548
        if w \le L3 \&\& y1 == 0;
             f='Failure';
2549
             Failures_Vector(1, w) =1;
        elseif w>L3 && w<=L6 && y2==0;
2551
             f='Failure';
2552
             Failures_Vector(1, w) =1;
2553
2554
        elseif w > L6 \&\& w <= L9 \&\& y3 == 0;
             f='Failure';
2555
             Failures_Vector(1,w)=1;
2556
        end
2557
2558
           Tested_Im_Number=[num2str(w) '.jpg'];
2559
2560
           Tested_Im_Location=....
               fullfile(Tested_Images_Folder,Tested_Im_Number);
2561
           Tested_Im=im2double(rgb2gray(imread(Tested_Im_Location)));
2562
2563
           subplot(2,1,1)
           imshow (Tested Im)
2564
           title({['Image No.' num2str(w) ' Is Originally for'];n})
2565
           subplot(2,1,2)
2566
           imshow(Recognized_image)
           if y1==1 || y2==1 || y3==1
2568
2569
               title({ 'The Image Is Recognized As'; ......
                    Recognized_As(1:length(Recognized_As)-6)})
2570
2571
           else title({'The Image Is Recognized As' .....
                    ['an' blanks(1) Recognized_As]})
2572
2573
           end
2574
2575
        if y1==1 || y2==1 || y3==1
             fprintf(fid,['%0.3d\t\t\t
                                            %-22s\t
                                                            %-22s\t
2576
```

```
2577
                 '%s \r\n\n'],w,n,.....
                Recognized_As (1:length(Recognized_As)-6), f);
2578
            Latex_Matrix (w, 1:4) = \{num2str(w) n \dots
2579
                Recognized_As(1:length(Recognized_As)-6) f};
2580
        else fprintf(fid,.....
2581
                 '%0.3d\t\t\t
                                               %-22s\t
                                 %-22s\t
                                                         %s \r\n\n',....
2582
                w, n, Recognized_As, f);
2583
            Latex_Matrix(w,1:4) = {num2str(w) n Recognized_As f};
2584
        end
2585
2586
          disp(['Please, press Any keyboard button to see another '....
2587
              'face and its recognition....'])
2588
          pause
2589
          clc
2590
   end
2591
2592
    Total_Number_of_Failures=sum(Failures_Vector); % The total number
                                                     % of failures in
2593
                                                     % the face
2594
                                                     % recognition
2595
                                                     % process.
2596
2597
2598
    fprintf(fid,['=======:::....
        '=======\r\n']);
2599
    fprintf(fid,['** The Total Number of Successes: %0.3d out of '....
2600
        '%0.3d (%3.4f%%) \r\n\n'], Total_No_of_Tested_Im-....
2601
        Total Number of Failures, Total No of Tested Im, ....
2602
        ((Total_No_of_Tested_Im-Total_Number_of_Failures)/....
2603
        Total_No_of_Tested_Im) *100);
2604
    fprintf(fid,['** The Total Number of Failures: %0.3d out of '.....
2605
        '%0.3d (%3.4f%%) \r\n\n'],....
2606
        Total_Number_of_Failures, Total_No_of_Tested_Im, ......
2607
        (Total_Number_of_Failures/Total_No_of_Tested_Im) *100);
2608
    fclose(fid);
2609
2610
   close all
2611
2612
   clc
2613
   disp(['Please, see the documented results of face recognition '....
2614
2615
        'in the open'])
   disp(['text file then press any keyboard button to resume the '....
2616
        'code >>>>'])
2617
    Text='Face Recognition Results for Testing.txt';
2618
2619
    open (Text) % Opening the text file which contains
               % the results of face recognition.
2620
2621 pause
2622 ClC
   open('PCA_IPCA_Testing_and_Setting_up_Thresholds.m')
2623
2624
2625
2626 응응
```

```
%%%%%%%% The Computation of Face Recognition Performance %%%%%%%%%%
2628
2629
   clc
2630
    close all
2631
2632
2633
    Error_Rate_Recognition=.....
2634
        zeros(1,length(Eigenvalues)); % Measuring recognition
2635
                                         % performance. The elements
2636
2637
                                         % of this vector represent
                                         % the error rates in recognition
2638
                                         % when different eigenfaces are
2639
                                         % selected.
2640
    Eigenvalues1=fliplr(Eigenvalues);
2641
    Eigenvectors1=flipdim(Eigenvectors,2); % This flipping just to make
2642
2643
                                              % the highest correlated
                                              % eigenface is associated
2644
                                              % with the first eigenvalue
2645
                                              % and so on. This is done
2646
                                              % to be compatable with the
2647
2648
                                              % generated document
                                              % "PCA vs. IPCA".
2649
    for kk=1:length(Eigenvalues)
2650
        ['Iteration No.: ' num2str(kk) ' Out of ' ......
2651
             num2str(length(Eigenvalues))]
2652
        Selected_Eigenvectors=Eigenvectors1(:,1:kk);
2653
2654
2655
        % Projecting each training face on the eigenspace. It is just
2656
        % expressing each training face in terms of the eigenfaces.
2657
        % This is called principal components transform (also called
2658
        % the Hotelling or Karhunen—Loéve transform)
2659
2660
        All Known Transformed Im=.....
             zeros(size(Selected_Eigenvectors, 2), .....
2661
             Total_No_of_Known_Im); % A 2D matrix where each column
2662
                                      % represents the coordinates of
2663
                                      % a projected training face in
2664
2665
                                      % the eigenspace.
        for r=1:Total_No_of_Known_Im
2666
             All_Known_Transformed_Im(:,r)=Selected_Eigenvectors.' *....
2667
                 Known_Im_Subt_Mean(:,r);
2668
2669
        end
        All_Known_Transformed_Im;
2670
2671
2672
        % Projecting each tested image on the eigenspace. It is just
2673
        % expressing each tested image in terms of the eigenfaces. This
2674
2675
        % is called principal components transform (also called the
        % Hotelling or Karhunen-Loéve transform)
2676
```

```
2677
        All_Tested_Transformed_Im=.....
            zeros (size (Selected_Eigenvectors, 2), .....
2678
            Total_No_of_Tested_Im); % A 2D matrix where each column
2679
                                     % represents the coordinates of
2680
                                     % a projected tested image in
2681
                                     % the eigenspace.
2682
        for r1=1:Total_No_of_Tested_Im
2683
            All_Tested_Transformed_Im(:,r1)=.....
2684
                Selected_Eigenvectors.'*Tested_Im_Subt_Mean(:,r1);
2685
2686
        end
2687
        All_Tested_Transformed_Im;
2688
2689
        fid=fopen(['.\Face Recognition Performance\Recognition '....
2690
            'Results for Different Eigenfaces\Results for Testing '....
2691
            'When q=' num2str(kk) '.txt'], 'w'); % A text file for
2692
                                                  % typing the results
2693
                                                  % of face recognition.
2694
        fprintf(fid,['\n\t ***** The Results of Face Recognition '....
2695
            'When q=' num2str(kk) ' Obtained from the ****\r\n']);
2696
        fprintf(fid,['\t
                            **** PCA and IPCA Code for Testing '....
2697
2698
            'and Setting up Thresholds ****\r\n\n']);
        fprintf(fid,['Image No.
                                       The Image Is Originally '.....
2699
            'for
                   The Image Is Recognized as
                                                  The Status\r\n']);
2700
        fprintf(fid,['==========
                                       2701
                                               ======\r\n']);
                _____
2702
2703
2704
        Distances Vector=.....
            zeros(Total_No_of_Tested_Im, .....
2705
            Total No of Known Im); % A 2D matrix where
2706
                                    % each row represents
2707
                                    % the distances between
2708
                                    % the weights of each
2709
                                    % training face and the
2710
                                    % weights of one of the
2711
2712
                                    % tested images.
2713
        % The distances between the weights of a training face and the
2714
2715
        % weights of each corresponding tested image. Note that, here
        % the training face and tested images have the same face and
2716
        % projection so these distances must be the smallest. The
2717
        % distances are extracted form the Distances_Vector matrix.
2718
2719
        Distances Vector P1=zeros(1, Im P(1));
        Distances_Vector_P2=zeros(1, Im_P(2));
2720
2721
        Distances Vector P3=zeros(1, Im P(3));
        Distances_Vector_P4=zeros(1, Im_P(4));
2722
        Distances_Vector_P5=zeros(1, Im_P(5));
2723
        Distances_Vector_P6=zeros(1, Im_P(6));
2724
        Distances_Vector_P7=zeros(1, Im_P(7));
2725
        Distances_Vector_P8=zeros(1, Im_P(8));
2726
```

```
2727
        Distances_Vector_P9=zeros(1, Im_P(9));
2728
2729
        for p=1:Total_No_of_Tested_Im
             for q=1:Total_No_of_Known_Im
2730
                 Distances_Vector (p,q) = \dots
2731
                      norm(All_Tested_Transformed_Im(:,p)-....
2732
                     All_Known_Transformed_Im(:,q));
2733
2734
             end
2735
             if p \le L1
2736
2737
                 Distances_Vector_P1(1,p) = Distances_Vector(p,1);
             elseif p>L1 && p<=L2
2738
                 Distances_Vector_P2(1,p-L1) = Distances_Vector(p,2);
2739
             elseif p>L2 && p<=L3
2740
                 Distances_Vector_P3(1,p-L2) = Distances_Vector(p, 3);
2741
2742
             elseif p>L3 && p<=L4
2743
                 Distances_Vector_P4(1,p-L3) = Distances_Vector(p, 4);
             elseif p>L4 && p<=L5
2744
                 Distances_Vector_P5(1,p-L4) = Distances_Vector(p,5);
2745
             elseif p>L5 && p<=L6
2746
                 Distances_Vector_P6(1,p-L5) = Distances_Vector(p,6);
2747
2748
             elseif p>L6 && p<=L7
                 Distances_Vector_P7(1,p-L6) = Distances_Vector(p,7);
2749
             elseif p>L7 && p<=L8
2750
                 Distances_Vector_P8(1,p-L7) = Distances_Vector(p,8);
2751
             elseif p>L8 && p<=L9
2752
2753
                 Distances_Vector_P9(1,p-L8) = Distances_Vector(p,9);
2754
             end
2755
        end
        d1=Distances Vector P1;
2756
        d2=Distances_Vector_P2;
2757
2758
        d3=Distances_Vector_P3;
        d4=Distances_Vector_P4;
2759
        d5=Distances_Vector_P5;
2760
        d6=Distances_Vector_P6;
2761
        d7=Distances_Vector_P7;
2762
2763
        d8=Distances_Vector_P8;
        d9=Distances_Vector_P9;
2764
2765
        % The calculation of the mean and standard deviation for each
2766
        % vector of the minimum distances and stacking them in a vector
        % for the means and another for the standard deviations. This
2768
2769
        % is done for setting up a threshold for face recognition
        % because when a distance between a training face and a tested
2770
2771
        % image is the smallest with respect to the other training
        % faces, that does not mean the tested image is recognized as
2772
        % the training face due to the tested image can be different
2773
        % than the training face and has the smallest distance in the
2774
2775
        % same time. So, a certain threshold must be used to increase
        % the accuracy of recognition.
2776
```

```
2777
        P_{mean} = [mean(d1); mean(d2); mean(d3); mean(d4); mean(d5); ....
             mean(d6); mean(d7); mean(d8); mean(d9)];
2778
        P_STD = [std(d1); std(d2); std(d3); std(d4); std(d5); std(d6); ....
2779
             std(d7); std(d8); std(d9)];
2780
        save([cd '\Face Recognition Performance\Means and STDs '....
2781
             'for Different Eigenfaces\Means for Face Recognition '.....
2782
             'When q=' num2str(kk)], 'P_Mean')
2783
        save([cd '\Face Recognition Performance\Means and STDs '....
2784
             'for Different Eigenfaces\STDs for Face Recognition '.....
2785
             'When q=' num2str(kk)], 'P_STD')
2786
2787
        Failures_Vector=zeros(1,.....
2788
             Total_No_of_Tested_Im); % A vector for counting the
2789
                                        % number of failures in the
2790
                                        % face recognition process.
2791
        for w=1:Total_No_of_Tested_Im
2792
             % The face recognition process.
2793
             for h=1:Total_No_of_Known_Im
2794
                  if min(Distances_Vector(w,:)) == .....
2795
                           Distances_Vector(w,h) && .....
2796
                          min(Distances_Vector(w,:))>=....
2797
2798
                           (P\_Mean(h, 1) - P\_STD(h, 1)) & \& . . . . .
                          min(Distances_Vector(w,:)) <= ....</pre>
2799
                           (P_Mean(h, 1) + P_STD(h, 1))
2800
                      s=transpose(struct2cell(Known_Images));
2801
                      c=sortrows(s,1);
2802
2803
                      z=c(:,1);
2804
                      Recognized As=char(z(h,1));
                      Recognized_Image_Location=....
2805
                           fullfile(Known_Images_Folder, Recognized_As);
2806
                      Recognized image=im2double(rgb2gray(.....
2807
                           imread(Recognized_Image_Location)));
2808
2809
                      break;
                  else
2810
                      Recognized_As='Unknown Image';
2811
                      Recognized_image=imread('Unknown_Face.jpg');
2812
2813
                  end
             end
2814
2815
             % Defining the face.
2816
             if w \le L3
2817
                 n='Mr. Mansour Alshammari';
2818
2819
             elseif L3<w && w<=L6
                 n='Mr. Methkir Alharthee';
2820
2821
             else n='Mr. Mohammed Hanafy';
             end
2822
2823
             y1=strcmp(Recognized_As(1:length(Recognized_As)-6),....
2824
2825
                  'Mr. Mansour Alshammari');
             y2=strcmp(Recognized_As(1:length(Recognized_As)-6),....
2826
```

```
'Mr. Methkir Alharthee');
2827
             y3=strcmp(Recognized_As(1:length(Recognized_As)-6),....
2828
                 'Mr. Mohammed Hanafy');
             f='Success';
2830
             if w<=L3 && y1==0;
2831
                 f='Failure';
2832
                 Failures_Vector(1,w)=1;
2833
             elseif w>L3 && w<=L6 && y2==0;
2834
                 f='Failure';
2835
                 Failures_Vector(1, w) =1;
2836
2837
             elseif w>L6 && w<=L9 && y3==0;
                 f='Failure';
2838
                 Failures_Vector(1,w)=1;
2839
2840
             end
2841
2842
               clc
               Tested_Im_Number=[num2str(w) '.jpg'];
2843
               Tested_Im_Location=....
2844
                   fullfile(Tested_Images_Folder, Tested_Im_Number);
2845
               Tested_Im=....
                   im2double(rgb2gray(imread(Tested_Im_Location)));
2847
2848
               subplot(2,1,1)
               imshow(Tested_Im)
2849
               title({['Image No.' num2str(w) ' Is Originally for'];n})
               subplot(2,1,2)
2851
               imshow (Recognized image)
2852
               if y1==1 || y2==1 || y3==1
2853
2854
                   title({'The Image Is Recognized As';.....
                        Recognized_As(1:length(Recognized_As)-6);....
2855
                        ['When q=' num2str(kk)]})
2856
               else title({'The Image Is Recognized As';.....
2857
                        ['an' blanks(1) Recognized_As];....
2858
                        ['When q=' num2str(kk)]})
2859
2860
               end
2861
             if y1==1 || y2==1 || y3==1
2862
                 fprintf(fid,['%0.3d\t\t\t
                                                %-22s\t
2863
                      '%-22s\t
                                 %s \r\n\n'],.....
2864
2865
                     w, n, Recognized_As (1:length (Recognized_As)-6), f);
             else fprintf(fid,['%0.3d\t\t\t
                                                 %-22s\t
2866
                      '%-22s\t
                                 %s \r\n\n'],....
                     w,n,Recognized_As,f);
2868
2869
             end
2870
2871
               disp(['Please, press Any keyboard button to see '.....
                    'another face and its recognition when q=1 .....
2872
                   num2str(kk) ' .....'])
2873
2874
               pause
2875
               clc
2876
        end
```

```
2877
        Total_Number_of_Failures=.....
            sum(Failures_Vector); % The total number of failures in
2878
                                  % the face recognition process.
2879
2880
        Error_Rate_Recognition(1,kk) = (Total_Number_of_Failures/.....
2881
            Total_No_of_Tested_Im) *100;
2882
2883
        2884
            '----\r\n'l);
2885
        fprintf(fid,['** The Total Number of Successes: %0.3d out '....
2886
2887
            'of %0.3d (%3.4f%%) \r\n\n'],.....
            Total_No_of_Tested_Im-Total_Number_of_Failures,....
2888
            Total_No_of_Tested_Im, .....
2889
            ((Total_No_of_Tested_Im-Total_Number_of_Failures)/....
2890
            Total No of Tested Im) *100);
2891
        fprintf(fid, ['** The Total Number of Failures: %0.3d out '....
2892
            'of %0.3d (%3.4f%%) \r\n\n'], Total_Number_of_Failures,....
2893
            Total_No_of_Tested_Im, (Total_Number_of_Failures/....
2894
            Total_No_of_Tested_Im) *100);
2895
        fclose (fid);
2896
2897
2898
          close all
          clc
2899
2900
          disp(['Please, see the documented results of face '......
2901 %
              'recognition when g=' num2str(kk) ' in the open'])
2902
          disp(['text file then press any keyboard button to '.....
2903 %
2904
              'resume the code >>>>'])
          Text=['.\Face Recognition Performance\Testing Face '....
2905
              'Recognition Results for Different Eigenfaces\Face ' ....
2906
              'Recognition Results for Testing When q=1.....
2907
              num2str(kk) '.txt'];
2908
2909 %
          open (Text) % Opening the text file which contains
2910 %
                     % the results of face recognition.
2911
          pause
2912 %
          clc
2913
          open('PCA_IPCA_Testing_and_Setting_up_Thresholds.m')
2914 end
2915
2916
2917 % Plotting the error rates of face recognition for different
2918 % selected eigenfaces compared with the error rates for PCA and
2919 % IPCA algorithms.
2920 ClC
2921 figure('units','centimeters','position',[0.15 1.2 35.8 16.9])
2922 subplot (2,1,1)
2923 Leg1=plot(1:length(Eigenvalues), Error_Rate_Recognition);
2924 hold on
2925 Leg2=plot(1,Error_Rate_Recognition(1),'kd','LineWidth',1.5,....
        'MarkerEdgeColor', 'k', 'MarkerFaceColor', 'm', 'MarkerSize', 8);
2926
```

```
text(25, Error_Rate_Recognition(1)+2, {......
        '\fontsize{10} \color{black}' Error_Rate_Recognition(1)})
2928
   hold on
   Leg3=plot(length(Eigenvalues),.....
2930
        Error_Rate_Recognition(length(Eigenvalues)),'kd',....
2931
        'LineWidth', 1.5, 'MarkerEdgeColor', 'k', 'MarkerFaceColor', .....
2932
        'g', 'MarkerSize', 8);
2933
    text(length(Eigenvalues)-60,.....
2934
        Error Rate Recognition (length (Eigenvalues)) +8,....
2935
        {'\fontsize{10} \color{black}' .....
2936
        Error Rate Recognition(length(Eigenvalues))})
2937
   hold off
2938
    axis([0 length(Eigenvalues)+(length(Eigenvalues)/40) .....
2939
        -max(Error Rate Recognition)/10 .....
2940
        max(Error Rate Recognition) + (max(Error Rate Recognition) / 10) ])
2941
    set(gca,'XTick',[1 length(Eigenvalues)/2 length(Eigenvalues)])
2942
    title(['The Error Rates of Recognition for Different '.....
2943
        'Selected Eigenfaces'])
2944
   xlabel('The Number of Selected Eigenfaces')
2945
   ylabel('The Error Rate (%)')
    legend([Leg1 Leg2 Leg3],['The Error Rates of Recognition for '....
2947
2948
        'Different Selected Eigenfaces.'],.....
        ['The Error Rate of Recognition When the First Eigenface '....
2949
        'Is Selected.'],['The Error Rate of Recognition When All
2950
        'Eigenfaces Are Selected.'], 'Location', 'NorthEast');
2951
    subplot(2,1,2)
2952
   Leg1=plot(1:length(Eigenvalues), Error_Rate_Recognition);
2953
    axis([0 20 0 .....
2954
        max(Error_Rate_Recognition) + (max(Error_Rate_Recognition) / 10)])
2955
    Leg2=line([length(Best_Eigenvalues_PCA)
2956
        length(Best Eigenvalues PCA)],...
2957
        [O Error_Rate_Recognition(length(Best_Eigenvalues_PCA))],....
2958
        'LineStyle','--','Color','r','LineWidth',4);
2959
    line([0 length(Best_Eigenvalues_PCA)],....
2960
        [Error_Rate_Recognition(length(Best_Eigenvalues_PCA)) .....
2961
        Error_Rate_Recognition(length(Best_Eigenvalues_PCA))],....
2962
        'LineStyle','---','Color','r','LineWidth',4)
    text(length(Best_Eigenvalues_PCA)-0.8,....
2964
2965
        Error_Rate_Recognition(length(Best_Eigenvalues_PCA))+5.7,....
        {'\fontsize{10} \color{red} \bf' .....
2966
        num2str(Error_Rate_Recognition(length(Best_Eigenvalues_PCA)))})
2967
    Leg3=line([length(Best_Eigenvalues_IPCA) .....
2968
2969
        length (Best Eigenvalues IPCA) ], .....
        [0 Error_Rate_Recognition(length(Best_Eigenvalues_IPCA))],....
2970
2971
        'LineStyle','--','Color','k','LineWidth',3);
    line([0 length(Best_Eigenvalues_IPCA)],....
2972
        [Error_Rate_Recognition(length(Best_Eigenvalues_IPCA)) ....
2973
2974
        Error_Rate_Recognition(length(Best_Eigenvalues_IPCA))],....
2975
        'LineStyle','---','Color','k','LineWidth',3)
2976 text(0.3,....
```

```
2977
        Error_Rate_Recognition(length(Best_Eigenvalues_IPCA))+6,....
        {'\fontsize{10} \color{black}' .....
2978
        num2str(....
2979
        Error_Rate_Recognition(length(Best_Eigenvalues_IPCA)))})
2980
   vv=[length(Best_Eigenvalues_IPCA) length(Best_Eigenvalues_PCA)];
2981
   if vv(1) == 1 \mid \mid vv(2) == 1
        set(gca,'XTick',[0 sort(vv) 20])
   else set(gca, 'XTick', [0 1 sort(vv) 20])
2984
2985
2986 title(['Explaining the Error Rates for the PCA and IPCA '.....
        'Algorithms on the Plot'])
2987
   xlabel('The Number of Selected Eigenfaces')
2988
   ylabel('The Error Rate (%)')
   legend([Leg1 Leg2 Leg3],['The Error Rates of Recognition for '....
        'Different Selected Eigenfaces.'],....
2991
        'The Error Rate for PCA Algorithm.',....
2992
2993
        'The Error Rate for IPCA Algorithm.','Location','NorthEast');
2994
2995
    2997
2999
   clc
3000
3001 close all
3002
3003
3004 %%%% When we only select the eigenfaces which contain the most
   %%%% significant patterns from the correlated training faces then
3006 %%%% the accuracy of face detection and processing speed will
3007 %%%% increase. That because in face detection, distance
3008 %%%% calculation will be between a pre-processed unknown image and
3009 %%%% its reconstruction so if a reconstructed image is not a face
3010 %%%%% then it will have a big distance hence it will not be
3011 %%%%% detected as a face image. As a result of that, the usage of
3012 %%%%% the calculated eigenfaces by using IPCA algorithm will
3013 %%%%% produce the smallest error rate and processing time then the
3014 %%%% usage of the calculated eigenfaces by using PCA algorithm
3015 %%%%% comes second finally the usage of all calculated eigenvectors
3016 %%%% as eigenfaces will produce the biggest error rate and
3017 %%%%% processing time. It is very important to notice that the
3018 %%%% calculation of all eigenvectors from the covariance matrix
   %%%% for all training faces is too difficult because the
3020 %%%% covariance matrix is too big as explained before so it is
   %%%% impractical to use all eigenvectors as eigenfaces.
3022
   % Best Eigenvectors=Eigenvectors; % Just try it to see how
3023
                                      % affects on the results
3024
3025
                                      % of face detection.
3026 % Best_Eigenvectors=Best_Eigenvectors_PCA; % Just try it to see how
```

```
% affects on the results
3027
                                                  % of face detection.
3028
    Best_Eigenvectors=Best_Eigenvectors_IPCA; % Just try it to see how
                                                 % affects on the results
3030
                                                 % of face detection.
3031
3032
3033
    % Projecting each training face on the eigenspace. It is just
3034
    % expressing each training face in terms of the eigenfaces. This is
   % called principal components transform (also called the Hotelling
   % or Karhunen-Loéve transform)
   All_Known_Transformed_Im=.....
3038
        zeros(size(Best_Eigenvectors, 2), .....
3039
        Total No of Known Im); % A 2D matrix where each column
3040
                                 % represents the coordinates of
3041
                                 % a projected training face in
3042
                                 % the eigenspace.
3043
    for r=1:Total_No_of_Known_Im
        All_Known_Transformed_Im(:,r) = Best_Eigenvectors.' * . . . . . . .
3045
            Known_Im_Subt_Mean(:,r);
3046
3047
   end
3048
   All_Known_Transformed_Im;
3049
3050
   % Projecting each tested image on the eigenspace. It is just
3051
   % expressing each tested image in terms of the eigenfaces. This is
   % called principal components transform (also called the Hotelling
   % or Karhunen-Loéve transform)
   All_Tested_Transformed_Im=.....
        zeros(size(Best_Eigenvectors, 2), .....
3056
        Total_No_of_Tested_Im); % A 2D matrix where each column
3057
                                  % represents the coordinates of
3058
                                  % a projected tested image in
3059
                                  % the eigenspace.
3060
    for r1=1:Total_No_of_Tested_Im
3061
        All_Tested_Transformed_Im(:,r1) = Best_Eigenvectors.' * . . . . . .
3062
3063
            Tested_Im_Subt_Mean(:,r1);
3064
    end
3065
    All_Tested_Transformed_Im;
3066
3067
    fid=fopen('Face Detection Results for Testing.txt',.....
3068
3069
        'w'); % A text file for typing the
              % results of face detection.
3070
    fprintf(fid,['\n\t ***** The Results of Face Detection '.....
3071
        'Obtained from the PCA and IPCA ****\r\n']);
3072
    fprintf(fid,['\t\t\t***** Code for Testing and Setting '......
3073
        'up Thresholds ****\r\n\n']);
3074
   fprintf(fid,['Image No.\t
3075
                                 The Image Originally Is\t
        'The Detected Image Is\t The Status\r\n']);
3076
```

```
3077 fprintf(fid,['========\t ========\t
        '======\\t.
                                     ======\r\n']);
3078
3079
   % Note that, the tested images must be unknown whether they are
3080
    % face images or not but they are known here to be face images just
    \ensuremath{\$} for testing the face detection process and for setting up a
   % detection threshold.
   Distances_Vector1=zeros(1, .....
3084
        Total No of Tested Im); % A vector contains the distances
3085
                                 % between each pre-processed tested
3086
3087
                                 % image and its reconstruction.
    for i=1:Total_No_of_Tested_Im
3088
        g=Best_Eigenvectors*All_Tested_Transformed_Im(:,i);
3089
        Reconstructed Tested Im=max(Tested Im Subt Mean(:,i))*.....
3090
            (double(g)/max(max(g))); % This is for making each
3091
3092
                                      % pre-processed tested image
3093
                                      % and its reconstruction have
                                      % approximately the same
3094
                                      % dynamic range.
3095
3096
        Distances_Vector1(1,i) = norm(Tested_Im_Subt_Mean(:,i) - . . . .
3097
3098
            Reconstructed_Tested_Im); % Note that, a calculated
                                       % distance must be between
3099
                                       % a pre-processed tested
3100
                                       % image and its reconstruction
3101
                                       % but it is not between an
3102
                                       % original tested image and
3103
3104
                                       % its reconstruction.
3105 end
3106
   % The calculation of the mean and standard deviation for the
3108 % calculated distances between each pre-processed tested image and
3109 % its reconstruction. This is done for setting up a threshold for
3110 % face detection.
3111 Mean=mean(Distances_Vector1);
3112 Std=std(Distances_Vector1);
3113 % save(['Computed Mean for Face Detection When All '....
3114 %
          'Eigenvectors Are Used as Eigenfaces'], 'Mean')
3115 % save(['Computed STD for Face Detection When All '.....
          'Eigenvectors Are Used as Eigenfaces'], 'Std')
3117 % save(['Computed Mean for Face Detection When the Eigenfaces '....
          'Computed by Using PCA Algorithm Are Used'], 'Mean')
3118 %
   % save(['Computed STD for Face Detection When the Eigenfaces '....
          'Computed by Using PCA Algorithm Are Used'], 'Std')
   save(['Computed Mean for Face Detection When the Eigenfaces '....
        'Computed by Using IPCA Algorithm Are Used'], 'Mean')
3123 save(['Computed STD for Face Detection When the Eigenfaces '.....
        'Computed by Using IPCA Algorithm Are Used'], 'Std')
3124
3125
3126 Failures_Vector1=zeros(1,....
```

```
3127
        Total_No_of_Tested_Im); % A vector for counting the
3128
                                   % number of failures in the
                                   % face detection process.
3129
3130
    Latex_Matrix=cell(Total_No_of_Tested_Im, 4); % This matrix is used
3131
                                                    % for creating a table
3132
                                                    % in Latex.
3133
    for w1=1:Total_No_of_Tested_Im
3134
        % The face detection process.
3135
        if Distances_Vector1(1,w1)>=(Mean-Std) && .....
3136
3137
                 Distances Vector1(1,w1) <= (Mean+Std)
            Detected_As='a face';
3138
            Detected_Image=imread('A_Face.jpg');
3139
3140
        else
            Detected As='not a face';
3141
3142
             Detected_Image=imread('Not_a_Face.jpg');
3143
        end
3144
        b='a face'; % Defining an original tested image.
3145
3146
        f1='Success';
3147
3148
        e=strcmp(Detected_As, 'a face');
        if w1<=L9 && e==0
3149
             f1='Failure';
3150
             Failures_Vector1(1,w1)=1;
3151
3152
3153
3154
          Tested_Im_Number1=[num2str(w1) '.jpg'];
          Tested_Im_Location1=fullfile(Tested_Images_Folder,....
3155
               Tested Im Number1);
3156
          Tested Im1=im2double(rqb2qray(imread(Tested Im Location1)));
3157
          subplot(2,1,1)
3158
          imshow(Tested_Im1)
3159
3160
          title(['Image No.' num2str(w1) ' Originally Is'])
          subplot(2,1,2)
3161
    응
          imshow(Detected_Image)
3162
          title('It Is Detected As')
3163
3164
3165
        if e==1
            fprintf(fid,['%0.3d\t\t\t\t %s\t\t\t\t\t\t....
3166
                      %s \r\n\n'], w1, b, Detected_As, f1);
3168
            Latex_Matrix(w1,1:4) = {num2str(w1) b Detected_As f1};
3169
        else fprintf(fid,['%0.3d\t\t\t\t %s\t\t\t\t\t\t\" %s\t\t\t\t\".....
                      %s \r\n\n'],w1,b,Detected_As,f1);
3170
3171
             Latex_Matrix(w1,1:4) = {num2str(w1) b Detected_As f1};
        end
3172
3173
          disp(['Please, press any keyboard button to see another '....
3174 %
3175 %
               'image and its detection....'])
3176 %
          pause
```

```
3177 %
         clc
3178 end
3179 Total_Number_of_Failures1=.....
       sum(Failures_Vector1); % The total number of failures
3180
3181
                              % in the face detection process.
3182
   fprintf(fid,['-----'....
3183
        '======\r\n']);
3184
   fprintf(fid, ['** The Total Number of Successes: %0.3d out of '....
3185
       '%0.3d (%3.4f%%) \r\n\n'], Total_No_of_Tested_Im-....
3186
3187
       Total_Number_of_Failures1, Total_No_of_Tested_Im, .....
        ((Total_No_of_Tested_Im-Total_Number_of_Failures1)/....
3188
       Total_No_of_Tested_Im) *100);
3189
3190 fprintf(fid,['** The Total Number of Failures: %0.3d out '.....
        'of %0.3d (%3.4f%%) \r\n\n'], Total_Number_of_Failures1,.....
3191
3192
       Total_No_of_Tested_Im, .....
3193
        (Total_Number_of_Failures1/Total_No_of_Tested_Im) *100);
   fclose(fid);
3194
3195
3196 close all
3197 ClC
3198
   disp(['Please, see the documented results of face detection '.....
3199
       'in the open'])
3201 disp(['text file then press any keyboard button to resume '.....
        'the code >>>>'])
3203 Text='Face Detection Results for Testing.txt';
3204 open(Text) % Opening the text file which contains
              % the results of face detection.
3205
3206 pause
3207 ClC
3208 open ('PCA_IPCA_Testing_and_Setting_up_Thresholds.m')
3209
3210
3211 응응
3213
3214
3215 ClC
3216 close all
3217
3218
3219 Error Rate Detection=.....
       zeros(1,length(Eigenvalues)); % Measuring detection
3220
3221
                                     % performance. The elements
                                     % of this vector represent
3222
                                     % the error rates in detection
3223
                                     % when different eigenfaces are
3224
3225
                                     % selected.
3226 Eigenvalues1=fliplr(Eigenvalues);
```

```
Eigenvectors1=flipdim(Eigenvectors, 2); % This flipping just to make
                                              % the highest correlated
3228
                                              % eigenface is associated
3229
                                              % with the first eigenvalue
3230
                                              % and so on. This is done to
3231
                                              % be compatable with the
3232
                                              % generated document
3233
                                              % "PCA vs. IPCA".
3234
    for kk=1:length(Eigenvalues)
3235
        ['Iteration No.: ' num2str(kk) ' Out of ' .....
3236
             num2str(length(Eigenvalues))]
3237
        Selected_Eigenvectors=Eigenvectors1(:,1:kk);
3238
3239
3240
        % Projecting each training face on the eigenspace. It is just
3241
        % expressing each training face in terms of the eigenfaces.
3242
3243
        % This is called principal components transform (also called
        % the Hotelling or Karhunen—Loéve transform)
3244
        All_Known_Transformed_Im=.....
3245
             zeros(size(Selected_Eigenvectors, 2), ......
3246
             Total_No_of_Known_Im); % A 2D matrix where each column
3247
3248
                                      % represents the coordinates of a
                                     % projected training face in the
3249
                                     % eigenspace.
3250
        for r=1:Total_No_of_Known_Im
3251
             All Known Transformed Im(:,r)=Selected Eigenvectors.' *....
3252
3253
                 Known_Im_Subt_Mean(:,r);
3254
        All_Known_Transformed_Im;
3255
3256
3257
        % Projecting each tested image on the eigenspace. It is just
3258
        % expressing each tested image in terms of the eigenfaces. This
3259
        % is called principal components transform (also called the
3260
        % Hotelling or Karhunen-Loéve transform)
3261
        All_Tested_Transformed_Im=.....
3262
             zeros(size(Selected_Eigenvectors, 2),.....
3263
             Total_No_of_Tested_Im); % A 2D matrix where each column
3264
3265
                                       % represents the coordinates of a
                                       % projected tested image in the
3266
                                       % eigenspace.
3267
        for r1=1:Total_No_of_Tested_Im
3268
3269
             All Tested Transformed Im(:, r1) = ....
                 Selected_Eigenvectors.'*Tested_Im_Subt_Mean(:,r1);
3270
3271
        end
        All_Tested_Transformed_Im;
3272
3273
3274
3275
        fid=fopen(['.\Face Detection Performance\Detection '....
             'Results for Different Eigenfaces\Results for Testing '....
3276
```

```
'When q=' num2str(kk) '.txt'], 'w'); % A text file for
3277
                                                  % typing the results of
3278
                                                  % face Detection.
3279
        fprintf(fid,['\n ***** The Results of Face Detection '.....
3280
            'When q=' num2str(kk) .....
3281
            ' Obtained from the PCA and ****\r\n']);
3282
        fprintf(fid,['\t\t
                              ***** IPCA Code for Testing and '.....
3283
            'Setting up Thresholds ****\r\n\n']);
3284
        fprintf(fid,['Image No.\t
                                        The Image Originally '....
3285
            'Is\t The Detected Image Is\t
                                                The Status\r\n']);
3286
3287
        fprintf(fid,['=======\t =======\t
            '=======\t
                                          ======\r\n']);
3288
3289
        % Note that, the tested images must be unknown whether they are
3290
        % face images or not but they are known here to be face images
3291
        % just for testing the face detection process and for setting
3292
3293
        % up a detection threshold.
        Distances_Vector1=zeros(1,.....
3294
            Total_No_of_Tested_Im); % A vector contains the distances
3295
                                      % between each pre-processed tested
3296
                                      % image and its reconstruction.
3297
3298
        for i=1:Total_No_of_Tested_Im
            g=Selected_Eigenvectors*All_Tested_Transformed_Im(:,i);
3299
            Reconstructed_Tested_Im=max(Tested_Im_Subt_Mean(:,i))*....
3300
                 (double(g)/max(max(g))); % This is for making each
3301
                                           % pre-processed tested image
3302
                                           % and its reconstruction have
3303
3304
                                           % approximately the same
                                           % dynamic range.
3305
3306
            Distances_Vector1(1,i)=norm(Tested_Im_Subt_Mean(:,i)-....
3307
                Reconstructed Tested Im); % Note that, a calculated
3308
                                            % distance must be between a
3309
                                            % pre-processed tested image
3310
                                            % and its reconstruction but
3311
                                            % it is not between an
3312
                                            % original tested image and
3313
                                            % its reconstruction.
3314
3315
        end
3316
        % The calculation of the mean and standard deviation for the
3317
        % calculated distances between each pre-processed tested image
3318
        % and its reconstruction. This is done for setting up a
3319
        % threshold for face detection.
3320
3321
        Mean=mean (Distances Vector1);
        Std=std(Distances_Vector1);
3322
        save([cd '\Face Detection Performance\Means and STDs for '....
3323
            'Different Eigenfaces\Mean for Face Detection When q='
3324
3325
            num2str(kk)],'Mean')
        save([cd '\Face Detection Performance\Means and STDs for '....
3326
```

```
3327
             'Different Eigenfaces\STD for Face Detection When q=1 .....
             num2str(kk)],'Std')
3328
3329
        Failures_Vector1=zeros(1,....
3330
             Total_No_of_Tested_Im); % A vector for counting the
3331
                                       % number of failures in the
3332
                                       % face detection process.
3333
        for w1=1:Total_No_of_Tested_Im
3334
             % The face detection process.
3335
             if Distances_Vector1(1,w1)>=(Mean-Std) && .....
3336
3337
                     Distances Vector1(1,w1) <= (Mean+Std)
                 Detected_As='a face';
3338
                 Detected_Image=imread('A_Face.jpg');
3339
3340
             else
                 Detected_As='not a face';
3341
                 Detected_Image=imread('Not_a_Face.jpg');
3342
3343
             end
3344
            b='a face'; % Defining an original tested image.
3345
3346
             f1='Success';
3347
3348
             e=strcmp(Detected_As, 'a face');
             if w1<=L9 && e==0
3349
                 f1='Failure';
                 Failures_Vector1(1,w1)=1;
3351
             end
3352
3353
3354
               clc
               Tested_Im_Number1=[num2str(w1) '.jpg'];
3355
               Tested_Im_Location1=fullfile(Tested_Images_Folder,....
3356
                   Tested_Im_Number1);
3357
               Tested Im1=im2double(.....
3358
                   rgb2gray(imread(Tested_Im_Location1)));
3359
3360
               subplot(2,1,1)
               imshow(Tested_Im1)
3361
               title(['Image No.' num2str(w1) ' Originally Is'])
3362
               subplot(2,1,2)
3364
               imshow(Detected_Image)
               title({'It Is Detected As';['(When q=' num2str(kk) ')']})
3365
3366
             if e==1
                 fprintf(fid,['%0.3d\t\t\t\t %s\t\t\t\t\
3368
3369
                     '%s\t\t\t\ %s \r\n\n'],w1,b,Detected_As,f1);
             else fprintf(fid,['%0.3d\t\t\t\t %s\t\t\t\t\t\".....
3370
3371
                                 %s \r\n\n'], w1, b, Detected_As, f1);
             end
3372
3373
3374 %
               disp(['Please, press any keyboard button to see '.....
3375 %
                   'another image and its detection when q=' .....
3376 %
                   num2str(kk) ' .....'])
```

```
3377
              pause
3378
              clc
        end
3379
        Total_Number_of_Failures1=.....
3380
            sum(Failures_Vector1); % The total number of failures
3381
                                     % in the face detection process.
3382
3383
        Error_Rate_Detection(1,kk) = . . . . . . . .
3384
             (Total Number of Failures1/Total No of Tested Im) *100;
3385
3386
3387
        fprintf(fid,['=======:::....
             '======\r\n']);
3388
        fprintf(fid,['** The Total Number of Successes: %0.3d '....
3389
             'out of 0.3d (3.4f) \r\n\n'],...
3390
            Total_No_of_Tested_Im-Total_Number_of_Failures1,....
3391
3392
            Total_No_of_Tested_Im, .....
             \label{lem:condition} \mbox{((Total\_No\_of\_Tested\_Im-Total\_Number\_of\_Failures1)/....}
3393
            Total_No_of_Tested_Im) *100);
3394
        fprintf(fid,['** The Total Number of Failures: %0.3d '....
3395
             'out of %0.3d (%3.4f%%) \r\n\n'],....
3396
            Total_Number_of_Failures1, Total_No_of_Tested_Im, .....
3397
3398
             (Total_Number_of_Failures1/Total_No_of_Tested_Im) *100);
        fclose(fid);
3399
3400
          close all
3401
          clc
3402
3403
3404
          disp(['Please, see the documented results of face '.....
               'detection when q=' num2str(kk) ' in the open'])
3405
          disp(['text file then press any keyboard button to '.....
3406
               'resume the code >>>>'])
3407
          Text=['.\Face Detection Performance\Testing Face '....
3408
3409 %
               'Detection Results for Different Eigenfaces\Face '.....
               'Detection Results for Testing When q=' .....
3410 %
               num2str(kk) '.txt'];
3411
3412
          open(Text) % Opening the text file which contains
   응
                      % the results of face detection.
3413
3414 %
          pause
3415
3416 %
          open('PCA_IPCA_Testing_and_Setting_up_Thresholds.m')
3417 end
3418
3419
3420 % Plotting the error rates of face detection for different selected
3421 % eigenfaces compared with the error rates for the PCA and IPCA
3422 % algorithms.
3423 ClC
3424 figure('units','centimeters','position',[0.15 1.2 35.8 16.9])
3425 subplot (2,1,1)
3426 Leg1=plot(1:length(Eigenvalues),Error_Rate_Detection);
```

```
3427 hold on
3428 Leg2=plot(1,Error_Rate_Detection(1),'kd','LineWidth',1.5,....
        'MarkerEdgeColor', 'k', 'MarkerFaceColor', 'm', 'MarkerSize',8);
   text(24.8, Error_Rate_Detection(1)+1.8,....
3430
        {'\fontsize{10} \color{black}' Error_Rate_Detection(1)})
3431
   hold on
3432
    Leg3=plot(length(Eigenvalues),.....
3433
        Error_Rate_Detection(length(Eigenvalues)),'kd',....
3434
        'LineWidth', 1.5, 'MarkerEdgeColor', 'k', ....
3435
        'MarkerFaceColor', 'g', 'MarkerSize', 8);
3436
    text(length(Eigenvalues)-55,....
3437
        Error_Rate_Detection(length(Eigenvalues))-1.8,....
3438
        {'\fontsize{10} \color{black}' .....
3439
        Error Rate Detection(length(Eigenvalues))})
3440
3441 hold off
3442
    axis([0 length(Eigenvalues)+(length(Eigenvalues)/40) .....
3443
        -max(Error_Rate_Detection)/10 .....
        max(Error_Rate_Detection) + (max(Error_Rate_Detection) / 10) ])
3445
   set(gca,'XTick',[1 length(Eigenvalues)/2 length(Eigenvalues)])
    title(['The Error Rates of Detection for Different '.....
3446
3447
        'Selected Eigenfaces'])
3448
   xlabel('The Number of Selected Eigenfaces')
    ylabel('The Error Rate (%)')
3449
    legend([Leg1 Leg2 Leg3],['The Error Rates of Detection for '....
3450
        'Different Selected Eigenfaces.'], ['The Error Rate of '....
3451
        'Detection When the First Eigenface Is Selected.' ],....
3452
        ['The Error Rate of Detection When All Eigenfaces Are '....
3453
3454
        'Selected.'], 'Location', 'NorthWest');
    subplot(2,1,2)
3455
    Leg1=plot(1:length(Eigenvalues), Error_Rate_Detection);
3456
    axis([0 20 0 ......
3457
        max(Error_Rate_Detection) + (max(Error_Rate_Detection) / 10) ])
3458
    Leg2=line([length(Best_Eigenvalues_PCA) .....
3459
        length(Best_Eigenvalues_PCA)],....
3460
        [O Error_Rate_Detection(length(Best_Eigenvalues_PCA))],....
3461
        'LineStyle','—','Color','k','LineWidth',3);
3462
3463
    line([0 length(Best_Eigenvalues_PCA)],.....
3464
        [Error_Rate_Detection(length(Best_Eigenvalues_PCA)) .....
3465
        Error_Rate_Detection(length(Best_Eigenvalues_PCA))],....
        'LineStyle','---','Color','k','LineWidth',3)
3466
    text(length(Best_Eigenvalues_PCA)-0.9,.....
3467
        Error_Rate_Detection(length(Best_Eigenvalues_PCA))+3.6,....
3468
3469
        {'\fontsize{10} \color{black}' ......
        num2str(Error_Rate_Detection(length(Best_Eigenvalues_PCA)))})
3470
    Leg3=line([length(Best_Eigenvalues_IPCA) .....
3471
        length(Best_Eigenvalues_IPCA)],.....
3472
        [0 Error_Rate_Detection(length(Best_Eigenvalues_IPCA))],....
3473
        'LineStyle','--','Color','r','LineWidth',4);
3474
3475
    line([0 length(Best_Eigenvalues_IPCA)],.....
        [Error_Rate_Detection(length(Best_Eigenvalues_IPCA)) .....
3476
```

```
Error_Rate_Detection(length(Best_Eigenvalues_IPCA))],....
3477
        'LineStyle','---','Color','r','LineWidth',4)
3478
   text(0.3,....
        Error_Rate_Detection(length(Best_Eigenvalues_IPCA))+3.6,....
3480
        {'\fontsize{10} \color{red} \bf' ....
3481
        num2str(Error_Rate_Detection(length(Best_Eigenvalues_IPCA)))})
3482
   vv=[length(Best_Eigenvalues_IPCA) length(Best_Eigenvalues_PCA)];
   if vv(1) == 1 | | vv(2) == 1
3484
        set(gca,'XTick',[0 sort(vv) 20])
3485
3486 else set(gca, 'XTick', [0 1 sort(vv) 20])
3487 end
3488 title(['Explaining the Error Rates for the PCA and IPCA '.....
        'Algorithms on the Plot'])
3489
3490 xlabel('The Number of Selected Eigenfaces')
3491 ylabel('The Error Rate (%)')
   legend([Leg1 Leg2 Leg3],['The Error Rates of Detection for '....
3492
3493
        'Different Selected Eigenfaces.'],.....
        'The Error Rate for PCA Algorithm.',....
3494
        'The Error Rate for IPCA Algorithm.', 'Location', 'NorthEast');
3495
```

 $_{\scriptscriptstyle{\mathsf{Appendix}}} \mathsf{B}$

Databases for the Digital and Optical Models

All images in Figure B.1, Figure B.2, Figure B.3, Figure B.4, Figure B.5, Figure B.6, Figure B.7, Figure B.8, and Figure B.9 form the database of the tested images. The database of the objects consists of images that have vertical faces to people's shoulders shown in Figure B.1, Figure B.4, and Figure B.7.

Figure B.1: Images for Mr. Mansour Alshammari, 1^{st} projection.

Figure B.2: Images for Mr. Mansour Alshammari, 2^{nd} projection.

Figure B.3: Images for Mr. Mansour Alshammari, 3^{rd} projection.

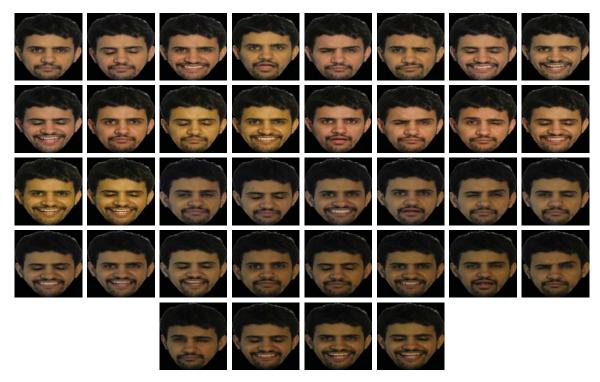


Figure B.4: Images for Mr. Methkir Alharthee, 1^{st} projection.

Figure B.5: Images for Mr. Methkir Alharthee, 2^{nd} projection.

Figure B.6: Images for Mr. Methkir Alharthee, 3^{rd} projection.

Figure B.7: Images for Mr. Mohammed Hanafy, 1^{st} projection.

Figure B.8: Images for Mr. Mohammed Hanafy, 2^{nd} projection.

Figure B.9: Images for Mr. Mohammed Hanafy, 3^{rd} projection.



Results of the Digital Recognition

Table C.1: The recognition of all 180 tested images by using the PCA algorithm.

Tested Image No.	Input Face	Recognized Output Face	Status
1	Mr. Mansour Alshammari	Unknown Image	Failure
2	Mr. Mansour Alshammari	Unknown Image	Failure
3	Mr. Mansour Alshammari	Mr. Mansour Alshammari	Success
4	Mr. Mansour Alshammari	Mr. Mansour Alshammari	Success
5	Mr. Mansour Alshammari	Mr. Mansour Alshammari	Success
6	Mr. Mansour Alshammari	Mr. Mansour Alshammari	Success
7	Mr. Mansour Alshammari	Mr. Mansour Alshammari	Success
8	Mr. Mansour Alshammari	Mr. Mansour Alshammari	Success
9	Mr. Mansour Alshammari	Mr. Mansour Alshammari	Success
10	Mr. Mansour Alshammari	Mr. Mansour Alshammari	Success
11	Mr. Mansour Alshammari	Mr. Mansour Alshammari	Success
12	Mr. Mansour Alshammari	Mr. Mansour Alshammari	Success
13	Mr. Mansour Alshammari	Mr. Mansour Alshammari	Success
14	Mr. Mansour Alshammari	Mr. Mansour Alshammari	Success
15	Mr. Mansour Alshammari	Mr. Mansour Alshammari	Success
16	Mr. Mansour Alshammari	Mr. Mansour Alshammari	Success
17	Mr. Mansour Alshammari	Mr. Mansour Alshammari	Success
18	Mr. Mansour Alshammari	Mr. Mansour Alshammari	Success
19	Mr. Mansour Alshammari	Unknown Image	Failure
20	Mr. Mansour Alshammari	Mr. Mansour Alshammari	Success
21	Mr. Mansour Alshammari	Mr. Mansour Alshammari	Success
		Continued on the next	page

Tested Image No.	Input Face	Recognized Output Face	Status
22	Mr. Mansour Alshammari	Unknown Image	Failure
23	Mr. Mansour Alshammari	Mr. Mansour Alshammari	Success
24	Mr. Mansour Alshammari	Mr. Mansour Alshammari	Success
25	Mr. Mansour Alshammari	Mr. Mansour Alshammari	Success
26	Mr. Mansour Alshammari	Unknown Image	Failure
27	Mr. Mansour Alshammari	Unknown Image	Failure
28	Mr. Mansour Alshammari	Mr. Mansour Alshammari	Success
29	Mr. Mansour Alshammari	Mr. Mansour Alshammari	Success
30	Mr. Mansour Alshammari	Mr. Mansour Alshammari	Success
31	Mr. Mansour Alshammari	Unknown Image	Failure
32	Mr. Mansour Alshammari	Mr. Mansour Alshammari	Success
33	Mr. Mansour Alshammari	Mr. Mansour Alshammari	Success
34	Mr. Mansour Alshammari	Mr. Mansour Alshammari	Success
35	Mr. Mansour Alshammari	Unknown Image	Failure
36	Mr. Mansour Alshammari	Unknown Image	Failure
37	Mr. Mansour Alshammari	Unknown Image	Failure
38	Mr. Mansour Alshammari	Unknown Image	Failure
39	Mr. Mansour Alshammari	Unknown Image	Failure
40	Mr. Mansour Alshammari	Mr. Mansour Alshammari	Success
41	Mr. Mansour Alshammari	Mr. Mansour Alshammari	Success
42	Mr. Mansour Alshammari	Mr. Mansour Alshammari	Success
43	Mr. Mansour Alshammari	Mr. Mansour Alshammari	Success
44	Mr. Mansour Alshammari	Mr. Mansour Alshammari	Success
45	Mr. Mansour Alshammari	Mr. Mansour Alshammari	Success
46	Mr. Mansour Alshammari	Mr. Mansour Alshammari	Success
47	Mr. Mansour Alshammari	Mr. Mansour Alshammari	Success
48	Mr. Mansour Alshammari	Mr. Mansour Alshammari	Success
49	Mr. Mansour Alshammari	Unknown Image	Failure
50	Mr. Mansour Alshammari	Mr. Mansour Alshammari	Success
51	Mr. Mansour Alshammari	Mr. Mansour Alshammari	Success
52	Mr. Mansour Alshammari	Mr. Mansour Alshammari	Success
53	Mr. Mansour Alshammari	Mr. Mansour Alshammari	Success
54	Mr. Mansour Alshammari	Mr. Mansour Alshammari	Success
55	Mr. Mansour Alshammari	Unknown Image	Failure
56	Mr. Mansour Alshammari	Mr. Mansour Alshammari	Success
57	Mr. Mansour Alshammari	Unknown Image	Failure
58	Mr. Mansour Alshammari	Mr. Mansour Alshammari	Success
59	Mr. Mansour Alshammari	Mr. Mansour Alshammari	Success
		Continued on the next	page

Tested Image No.	Input Face	Recognized Output Face	Status
60	Mr. Mansour Alshammari	Mr. Mansour Alshammari	Success
61	Mr. Methkir Alharthee	Unknown Image	Failure
62	Mr. Methkir Alharthee	Unknown Image	Failure
63	Mr. Methkir Alharthee	Mr. Methkir Alharthee	Success
64	Mr. Methkir Alharthee	Mr. Methkir Alharthee	Success
65	Mr. Methkir Alharthee	Unknown Image	Failure
66	Mr. Methkir Alharthee	Unknown Image	Failure
67	Mr. Methkir Alharthee	Mr. Methkir Alharthee	Success
68	Mr. Methkir Alharthee	Mr. Methkir Alharthee	Success
69	Mr. Methkir Alharthee	Mr. Methkir Alharthee	Success
70	Mr. Methkir Alharthee	Mr. Methkir Alharthee	Success
71	Mr. Methkir Alharthee	Mr. Methkir Alharthee	Success
72	Mr. Methkir Alharthee	Mr. Methkir Alharthee	Success
73	Mr. Methkir Alharthee	Mr. Methkir Alharthee	Success
74	Mr. Methkir Alharthee	Unknown Image	Failure
75	Mr. Methkir Alharthee	Unknown Image	Failure
76	Mr. Methkir Alharthee	Mr. Methkir Alharthee	Success
77	Mr. Methkir Alharthee	Mr. Methkir Alharthee	Success
78	Mr. Methkir Alharthee	Mr. Methkir Alharthee	Success
79	Mr. Methkir Alharthee	Mr. Methkir Alharthee	Success
80	Mr. Methkir Alharthee	Unknown Image	Failure
81	Mr. Methkir Alharthee	Unknown Image	Failure
82	Mr. Methkir Alharthee	Mr. Methkir Alharthee	Success
83	Mr. Methkir Alharthee	Mr. Methkir Alharthee	Success
84	Mr. Methkir Alharthee	Mr. Methkir Alharthee	Success
85	Mr. Methkir Alharthee	Mr. Methkir Alharthee	Success
86	Mr. Methkir Alharthee	Unknown Image	Failure
87	Mr. Methkir Alharthee	Unknown Image	Failure
88	Mr. Methkir Alharthee	Mr. Methkir Alharthee	Success
89	Mr. Methkir Alharthee	Mr. Methkir Alharthee	Success
90	Mr. Methkir Alharthee	Unknown Image	Failure
91	Mr. Methkir Alharthee	Mr. Methkir Alharthee	Success
92	Mr. Methkir Alharthee	Mr. Methkir Alharthee	Success
93	Mr. Methkir Alharthee	Mr. Methkir Alharthee	Success
94	Mr. Methkir Alharthee	Unknown Image	Failure
95	Mr. Methkir Alharthee	Unknown Image	Failure
96	Mr. Methkir Alharthee	Unknown Image	Failure
97	Mr. Methkir Alharthee	Unknown Image	Failure
		Continued on the next	page

Tested Image No.	Input Face	Recognized Output Face	Status
	Mr. Methkir Alharthee	M. M. H. H. H. All and L.	C
98	Mr. Methkir Alharthee	Mr. Methkir Alharthee Mr. Methkir Alharthee	Success
99	Mr. Methkir Alharthee		Success Failure
100 101	Mr. Methkir Alharthee	Unknown Image Mr. Methkir Alharthee	Success
	Mr. Methkir Alharthee	Mr. Methkir Alharthee	
102	Mr. Methkir Alharthee	Mr. Methkir Alharthee	Success
103	Mr. Methkir Alharthee		Success
104	Mr. Methkir Alharthee	Unknown Image	Failure
105		Unknown Image	Failure
106	Mr. Methkir Alharthee	Mr. Methkir Alharthee	Success
107	Mr. Methkir Alharthee	Mr. Methkir Alharthee	Success
108	Mr. Methkir Alharthee	Mr. Methkir Alharthee	Success
109	Mr. Methkir Alharthee	Unknown Image	Failure
110	Mr. Methkir Alharthee	Mr. Methkir Alharthee	Success
111	Mr. Methkir Alharthee	Mr. Methkir Alharthee	Success
112	Mr. Methkir Alharthee	Mr. Methkir Alharthee	Success
113	Mr. Methkir Alharthee	Mr. Methkir Alharthee	Success
114	Mr. Methkir Alharthee	Mr. Methkir Alharthee	Success
115	Mr. Methkir Alharthee	Mr. Methkir Alharthee	Success
116	Mr. Methkir Alharthee	Unknown Image	Failure
117	Mr. Methkir Alharthee	Mr. Methkir Alharthee	Success
118	Mr. Methkir Alharthee	Mr. Methkir Alharthee	Success
119	Mr. Methkir Alharthee	Mr. Methkir Alharthee	Success
120	Mr. Methkir Alharthee	Mr. Methkir Alharthee	Success
121	Mr. Mohammed Hanafy	Unknown Image	Failure
122	Mr. Mohammed Hanafy	Mr. Mohammed Hanafy	Success
123	Mr. Mohammed Hanafy	Mr. Mohammed Hanafy	Success
124	Mr. Mohammed Hanafy	Mr. Mohammed Hanafy	Success
125	Mr. Mohammed Hanafy	Mr. Mohammed Hanafy	Success
126	Mr. Mohammed Hanafy	Mr. Mohammed Hanafy	Success
127	Mr. Mohammed Hanafy	Mr. Mohammed Hanafy	Success
128	Mr. Mohammed Hanafy	Mr. Mohammed Hanafy	Success
129	Mr. Mohammed Hanafy	Mr. Mohammed Hanafy	Success
130	Mr. Mohammed Hanafy	Unknown Image	Failure
131	Mr. Mohammed Hanafy	Unknown Image	Failure
132	Mr. Mohammed Hanafy	Mr. Mohammed Hanafy	Success
133	Mr. Mohammed Hanafy	Mr. Mohammed Hanafy	Success
134	Mr. Mohammed Hanafy	Mr. Mohammed Hanafy	Success
135	Mr. Mohammed Hanafy	Mr. Mohammed Hanafy	Success
	J	Continued on the next	

Tested	Input Face	Pagagnized Output Face	Status
Image No.	Input Face	Recognized Output Face	Status
136	Mr. Mohammed Hanafy	Mr. Mohammed Hanafy	Success
137	Mr. Mohammed Hanafy	Unknown Image	Failure
138	Mr. Mohammed Hanafy	Mr. Mohammed Hanafy	Success
139	Mr. Mohammed Hanafy	Mr. Mohammed Hanafy	Success
140	Mr. Mohammed Hanafy	Unknown Image	Failure
141	Mr. Mohammed Hanafy	Mr. Mohammed Hanafy	Success
142	Mr. Mohammed Hanafy	Mr. Mohammed Hanafy	Success
143	Mr. Mohammed Hanafy	Unknown Image	Failure
144	Mr. Mohammed Hanafy	Mr. Mohammed Hanafy	Success
145	Mr. Mohammed Hanafy	Mr. Mohammed Hanafy	Success
146	Mr. Mohammed Hanafy	Mr. Mohammed Hanafy	Success
147	Mr. Mohammed Hanafy	Mr. Mohammed Hanafy	Success
148	Mr. Mohammed Hanafy	Unknown Image	Failure
149	Mr. Mohammed Hanafy	Unknown Image	Failure
150	Mr. Mohammed Hanafy	Mr. Mohammed Hanafy	Success
151	Mr. Mohammed Hanafy	Mr. Mohammed Hanafy	Success
152	Mr. Mohammed Hanafy	Unknown Image	Failure
153	Mr. Mohammed Hanafy	Mr. Mohammed Hanafy	Success
154	Mr. Mohammed Hanafy	Mr. Mohammed Hanafy	Success
155	Mr. Mohammed Hanafy	Mr. Mohammed Hanafy	Success
156	Mr. Mohammed Hanafy	Mr. Mohammed Hanafy	Success
157	Mr. Mohammed Hanafy	Unknown Image	Failure
158	Mr. Mohammed Hanafy	Mr. Mohammed Hanafy	Success
159	Mr. Mohammed Hanafy	Mr. Mohammed Hanafy	Success
160	Mr. Mohammed Hanafy	Mr. Mohammed Hanafy	Success
161	Mr. Mohammed Hanafy	Mr. Mohammed Hanafy	Success
162	Mr. Mohammed Hanafy	Mr. Mohammed Hanafy	Success
163	Mr. Mohammed Hanafy	Mr. Mansour Alshammari	Failure
164	Mr. Mohammed Hanafy	Mr. Mohammed Hanafy	Success
165	Mr. Mohammed Hanafy	Mr. Mohammed Hanafy	Success
166	Mr. Mohammed Hanafy	Mr. Mohammed Hanafy	Success
167	Mr. Mohammed Hanafy	Mr. Mohammed Hanafy	Success
168	Mr. Mohammed Hanafy	Mr. Mohammed Hanafy	Success
169	Mr. Mohammed Hanafy	Unknown Image	Failure
170	Mr. Mohammed Hanafy	Mr. Mohammed Hanafy	Success
171	Mr. Mohammed Hanafy	Mr. Mohammed Hanafy	Success
172	Mr. Mohammed Hanafy	Mr. Mohammed Hanafy	Success
173	Mr. Mohammed Hanafy	Mr. Mohammed Hanafy	Success
		Continued on the next	page

Tested Image No.	Input Face	Recognized Output Face	Status
174	Mr. Mohammed Hanafy	Mr. Mohammed Hanafy	Success
175	Mr. Mohammed Hanafy	Mr. Mohammed Hanafy	Success
176	Mr. Mohammed Hanafy	Mr. Mohammed Hanafy	Success
177	Mr. Mohammed Hanafy	Mr. Mohammed Hanafy	Success
178	Mr. Mohammed Hanafy	Mr. Mohammed Hanafy	Success
179	Mr. Mohammed Hanafy	Mr. Mohammed Hanafy	Success
180	Mr. Mohammed Hanafy	Mr. Mohammed Hanafy	Success

The table end.

Results of the Digital Detection

Table D.1: The detection of all 180 tested images by using the PCA algorithm.

Tested Image No.	Input Image	Detected Output Image	Status
1	a face	not a face	Failure
2	a face	not a face	Failure
3	a face	a face	Success
4	a face	a face	Success
5	a face	a face	Success
6	a face	a face	Success
7	a face	a face	Success
8	a face	a face	Success
9	a face	a face	Success
10	a face	a face	Success
11	a face	a face	Success
12	a face	a face	Success
13	a face	a face	Success
14	a face	a face	Success
15	a face	a face	Success
16	a face	a face	Success
17	a face	a face	Success
18	a face	a face	Success
19	a face	a face	Success
20	a face	a face	Success
21	a face	a face	Success

Continued on the next page ...

Tested Image No.	Input Image	Detected Output Image	Status
22	a face	a face	Success
23	a face	a face	Success
24	a face	a face	Success
25	a face	a face	Success
26	a face	a face	Success
27	a face	a face	Success
28	a face	a face	Success
29	a face	a face	Success
30	a face	a face	Success
31	a face	a face	Success
32	a face	a face	Success
33	a face	a face	Success
34	a face	not a face	Failure
35	a face	a face	Success
36	a face	a face	Success
37	a face	not a face	Failure
38	a face	not a face	Failure
39	a face	not a face	Failure
40	a face	a face	Success
41	a face	a face	Success
42	a face	a face	Success
43	a face	a face	Success
44	a face	a face	Success
45	a face	a face	Success
46	a face	a face	Success
47	a face	a face	Success
48	a face	a face	Success
49	a face	not a face	Failure
50	a face	not a face	Failure
51	a face	not a face	Failure
52	a face	a face	Success
53	a face	a face	Success
54	a face	a face	Success
55	a face	a face	Success
56	a face	a face	Success
57	a face	a face	Success
58	a face	a face	Success
59	a face	a face	Success
		Continued on the next	page

Tested Image No.	Input Image	Detected Output Image	Status
60	a face	a face	Success
61	a face	not a face	Failure
62	a face	a face	Success
63	a face	a face	Success
64	a face	a face	Success
65	a face	not a face	Failure
66	a face	a face	Success
67	a face	a face	Success
68	a face	a face	Success
69	a face	a face	Success
70	a face	a face	Success
71	a face	a face	Success
72	a face	a face	Success
73	a face	a face	Success
74	a face	a face	Success
75	a face	a face	Success
76	a face	a face	Success
77	a face	a face	Success
78	a face	a face	Success
79	a face	a face	Success
80	a face	a face	Success
81	a face	a face	Success
82	a face	a face	Success
83	a face	a face	Success
84	a face	a face	Success
85	a face	a face	Success
86	a face	not a face	Failure
87	a face	a face	Success
88	a face	a face	Success
89	a face	a face	Success
90	a face	a face	Success
91	a face	not a face	Failure
92	a face	a face	Success
93	a face	not a face	Failure
94	a face	a face	Success
95	a face	not a face	Failure
96	a face	not a face	Failure
97	a face	not a face	Failure
		Continued on the next	page

Tested Image No.	Input Image	Detected Output Image	Status
98	a face	a face	Success
99	a face	a face	Success
100	a face	a face	Success
101	a face	a face	Success
102	a face	a face	Success
103	a face	not a face	Failure
104	a face	a face	Success
105	a face	a face	Success
106	a face	a face	Success
107	a face	a face	Success
108	a face	not a face	Failure
109	a face	not a face	Failure
110	a face	a face	Success
111	a face	a face	Success
112	a face	a face	Success
113	a face	a face	Success
114	a face	a face	Success
115	a face	not a face	Failure
116	a face	not a face	Failure
117	a face	a face	Success
118	a face	not a face	Failure
119	a face	a face	Success
120	a face	not a face	Failure
121	a face	not a face	Failure
122	a face	a face	Success
123	a face	a face	Success
124	a face	a face	Success
125	a face	a face	Success
126	a face	a face	Success
127	a face	a face	Success
128	a face	a face	Success
129	a face	a face	Success
130	a face	a face	Success
131	a face	a face	Success
132	a face	a face	Success
133	a face	a face	Success
134	a face	a face	Success
135	a face	a face	Success
		Continued on the next	nago

Continued on the next page \dots

Tested Image No.	Input Image	Detected Output Image	Status
136	a face	a face	Success
137	a face	a face	Success
138	a face	a face	Success
139	a face	a face	Success
140	a face	a face	Success
141	a face	a face	Success
142	a face	a face	Success
143	a face	a face	Success
144	a face	a face	Success
145	a face	a face	Success
146	a face	a face	Success
147	a face	a face	Success
148	a face	not a face	Failure
149	a face	a face	Success
150	a face	not a face	Failure
151	a face	a face	Success
152	a face	not a face	Failure
153	a face	a face	Success
154	a face	not a face	Failure
155	a face	a face	Success
156	a face	not a face	Failure
157	a face	not a face	Failure
158	a face	a face	Success
159	a face	a face	Success
160	a face	a face	Success
161	a face	a face	Success
162	a face	a face	Success
163	a face	a face	Success
164	a face	a face	Success
165	a face	a face	Success
166	a face	a face	Success
167	a face	a face	Success
168	a face	a face	Success
169	a face	not a face	Failure
170	a face	not a face	Failure
171	a face	a face	Success
172	a face	a face	Success
173	a face	a face	Success
		Continued on the next	page

Tested Image No.	Input Image	Detected Output Image	Status
174	a face	a face	Success
175	a face	a face	Success
176	a face	a face	Success
177	a face	a face	Success
178	a face	a face	Success
179	a face	a face	Success
180	a face	a face	Success

The table end.

Derivation of $U_2(x_2, y_2)$ for the JTC

In the joint transform correlator (JTC), the derivation of the complex amplitude distribution $U_2(x_2, y_2)$ of the Fourier transformed field in the back focal plane P_2 can be found as follows,

$$U_{2}(x_{2}, y_{2}) = \frac{1}{j\lambda f} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} U_{1}(x_{1}, y_{1}) \exp^{-j\frac{2\pi}{\lambda f}(x_{1}x_{2} + y_{1}y_{2})} dx_{1} dy_{1}$$

$$= \frac{A}{j\lambda f} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h\left(x_{1}, y_{1} - \frac{Y}{2}\right) \exp^{-j\frac{2\pi}{\lambda f}(x_{1}x_{2} + y_{1}y_{2})} dx_{1} dy_{1} + \frac{A}{j\lambda f} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g\left(x_{1}, y_{1} + \frac{Y}{2}\right) \exp^{-j\frac{2\pi}{\lambda f}(x_{1}x_{2} + y_{1}y_{2})} dx_{1} dy_{1}$$

Changing variables:
$$y_1 - \frac{Y}{2} \to a, dy_1 \to da \& y_1 + \frac{Y}{2} \to b, dy_1 \to db$$

$$U_{2}(x_{2}, y_{2}) = \frac{A}{j\lambda f} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(x_{1}, a) \exp^{-j\frac{2\pi}{\lambda f}(x_{1}x_{2} + (a + \frac{Y}{2})y_{2})} dx_{1} da +$$

$$+ \frac{A}{j\lambda f} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x_{1}, b) \exp^{-j\frac{2\pi}{\lambda f}(x_{1}x_{2} + (b - \frac{Y}{2})y_{2})} dx_{1} db$$

$$= \frac{A}{j\lambda f} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(x_{1}, a) \exp^{-j\frac{2\pi}{\lambda f}(x_{1}x_{2} + ay_{2}) - j\frac{2\pi}{\lambda f} \frac{Y}{2}y_{2}} dx_{1} da +$$

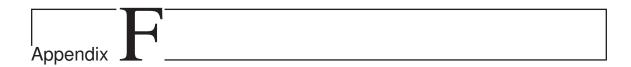
$$+ \frac{A}{j\lambda f} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x_{1}, b) \exp^{-j\frac{2\pi}{\lambda f}(x_{1}x_{2} + by_{2}) + j\frac{2\pi}{\lambda f} \frac{Y}{2}y_{2}} dx_{1} db$$

$$= \frac{A}{j\lambda f} \exp^{-j\frac{\pi Y}{\lambda f}y_{2}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(x_{1}, a) \exp^{-j\frac{2\pi}{\lambda f}(x_{1}x_{2} + ay_{2})} dx_{1} da +$$

$$+ \frac{A}{j\lambda f} \exp^{j\frac{\pi Y}{\lambda f}y_{2}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x_{1}, b) \exp^{-j\frac{2\pi}{\lambda f}(x_{1}x_{2} + by_{2})} dx_{1} db$$

Therefore,

$$U_2(x_2, y_2) = \frac{A}{j\lambda f} \exp^{-j\frac{\pi Y}{\lambda f}y_2} H\left(\frac{x_2}{\lambda f}, \frac{y_2}{\lambda f}\right) + \frac{A}{j\lambda f} \exp^{j\frac{\pi Y}{\lambda f}y_2} G\left(\frac{x_2}{\lambda f}, \frac{y_2}{\lambda f}\right)$$



A Code for the Optical Model

This appendix presents the joint transform correlator (JTC) code for object detection and face recognition.

```
2 % Testing the Joint Transform Correlator (JTC) for Object Detection
  % and Recognition. Note That, Objects Here Are Known for Us in
  % Order to Use Them for Testing Object Detection and Recognition
  % Processes as Well as Setting up Recognition and Detection
  % Thresholds.
  clc
  clear all
  close all
13
  Impulses_Folder=[cd .....
      '\The Black Background Impulses']; % The folder of the black
15
                                          % background impulses.
  % Impulses_Folder=[cd .....
17
        '\The White Background Impulses']; % The folder of the white
                                          % background impulses.
  if isdir(Impulses_Folder) == 0
      Error_Message=sprintf(['Error: The following folder does '....
21
           'not exist\n%s'], Impulses_Folder);
      warndlg(Error_Message);
      break
25
  Impulses=dir(fullfile(Impulses_Folder,'*.jpg')); % Listing the
                                                     % folder of the
28
                                                     % black or white
29
```

```
30
                                                     % background
                                                     % impulses.
31
  Total_No_of_Impulses=length(Impulses); % The total number
                                           % of the impulses.
34
35
  % Imhist for setting up a threshold to work on just the pixels of a
  % face and throwing the background pixels. Imhist calculates the
  % number of pixels in an impulse that have the same intensity
  % levels. So, if an impulse has a unified background then the
  % biggest histogram of the intensity levels will be for the
  % background pixels because the total number of pixels that have
  % the same intensity levels are the background pixels of the
  % impulse. Note that, the histogram of a digital image is defined
  % as the discrete function, h(rk)=nk, where rk is the kth intensity
  % level and nk is the number of pixels in the image whose intensity
  % level is rk.
  hist_Impulses=zeros(Total_No_of_Impulses, 256);
  for A=1:Total_No_of_Impulses
51
      One_Impulse=Impulses(A).name;
      Impulse_Location=fullfile(Impulses_Folder,One_Impulse);
52
       Impulse=double(rgb2gray(.....
           imread(Impulse_Location))); % The impulse response.
54
      hist Impulses (A, :) = \dots
55
           imhist(uint8(Impulse)); % Note that, each impulse must be
                                   % scaled between 0 to 255 before
57
                                   % using imhist. For doing that,
                                   % uint8 can be used for converting
59
                                   % the impulse class form double to
60
                                   % uint8.
61
        plot(hist_Impulses(A,:))
63
         if A==1
             title(['The Histogram of The First Impulse for '.....
                 'Mr. Mansour Alshammari'])
         elseif A==2
             title(['The Histogram of The Second Impulse for '.....
                 'Mr. Methkir Alharthee'])
         elseif A==3
             title(['The Histogram of The Third Impulse for '.....
71
                 'Mr. Mohammed Hanafy'])
  응
         end
        xlabel('Intensity Level r {k}')
         ylabel({'The Number of Pixels in the Impulse Whose '.....
             'Intensity Level Is r_{k} Where h(r_{k})=n_{k}')
         axis tight
78
         disp(['Please, press any keyboard button to explore '.....
79
```

```
'the remaining histograms >>>>>'])
         pause
81
   은
         clc
83
   end
84
   Mean_hist_Impulses=sum(hist_Impulses,1)/.....
       Total_No_of_Impulses; % The average histogram
                              % for all impulses.
87
   % plot (Mean hist Impulses)
   % title('The Mean Histogram of All Impulses')
  % xlabel('Intensity Level r {k}')
   % ylabel({'The Mean Number of Pixels from All Impulses Whose';.....
         'Intensity Level Is r_{k}'})
  % axis tight
  % pause
96
   % Setting up a threshold in order to work on just the pixels of the
97 % faces and blocking the pixels of the backgrounds.
   Impulses_Threshold=8; % The picked threshold is based on the
                          % average histogram for all impulses when the
                          % impulses have black backgrounds. Note that,
100
101
                          % all intesity levels below the threshold
                          % represent the impulses backgrounds because
102
                          % these levels have the biggest histogram.
    Impulses_Threshold=180; % The Picked threshold is based on the
104
                              % average histogram for all impulses when
                              % the impulses have white backgrounds.
106
                              % Note that, all intesity levels above
107
                              % the threshold represent the impulses
108
                              % backgrounds because these levels have
109
                              % the biggest histogram.
110
111
112
113 Objects_Folder=[cd .....
       '\The Black Background Tested Objects']; % The folder of the
114
                                                  % black background
115
                                                  % tested objects.
   % Objects_Folder=[cd ......
117
118
        '\The White Background Tested Objects']; % The folder of the
                                                  % white background
119
                                                  % tested objects.
   if isdir(Objects_Folder) == 0
121
       Error Message=sprintf(['Error: The following folder does '....
122
            'not exist\n%s'],Objects_Folder);
123
       warndlg(Error Message);
124
       break
125
126
128 Objects=dir(fullfile(Objects_Folder, '*.jpg')); % Listing the folder
                                                    % of the black or
129
```

```
130
                                                     % white background
                                                     % objects.
131
132
   Total_No_of_Objects=length(Objects); % The total number
133
                                          % of the objects.
134
135
   Objs=[36 36 36]; % Each element in this vector represents
136
                     % the total number of the objects that
137
                     % are taken for each impulse.
138
139
140
   L1=Objs(1); % L1=60 is the total number of the
                % objects for Mr. Mansour Alshammari.
141
   L2=L1+Objs(2); % L2=120 is the total number of the
142
                   % objects for Mr. Methkir Alharthee.
143
   L3=L2+Objs(3); % L3=180 is the total number of the
144
                   % objects for Mr. Mohammed Hanafy.
145
146
147
  % Imhist for setting up a threshold to work on just the pixels of a
148
   % face and throwing the background pixels. Imhist calculates the
   % number of pixels in an object that have the same intensity
   % levels. So, if an object has a unified background then the
   % biggest histogram of the intensity levels will be for the
   % background pixels because the total number of pixels that have
154 % the same intensity levels are the background pixels of the
  % object. Note that, the histogram of a digital image is defined as
   % the discrete function, h(rk)=nk, where rk is the kth intensity
   % level and nk is the number of pixels in the image whose intensity
   % level is rk.
hist_Objects=zeros(Total_No_of_Objects, 256);
   for A1=1:Total_No_of_Objects
161
       Object_Number=[num2str(A1) '.jpg'];
162
       Object_Location=fullfile(Objects_Folder,Object_Number);
163
       Object=double(rgb2gray(imread(Object_Location))); % The object.
164
       hist_Objects(A1,:)=imhist(uint8(Object)); % Note that, each
165
                                                    % object must be
                                                   % scaled between 0 to
167
168
                                                    % 255 before using
                                                   % imhist. For doing
169
                                                    % that, uint8 can be
170
                                                    % used for converting
171
                                                   % the object class
172
                                                    % form double to
173
174
                                                    % uint8.
175
         plot(hist_Objects(A1,:))
176
         if A1<=L1
177
             title(['The Histogram of Object No.' num2str(A1) ....
178
                  ' for Mr. Mansour Alshammari'])
179
```

```
elseif A1>L1 && A1<=L2
180
             title(['The Histogram of Object No.' num2str(A1) .....
181
                  ' for Mr. Methkir Alharthee'])
         elseif A1>L2 && A1<=L3
183
             title(['The Histogram of Object No.' num2str(A1) ....
184
                  ' for Mr. Mohammed Hanafy'])
185
186
         xlabel('Intensity Level r_{k}')
187
         ylabel({'The Number of Pixels in the Object Whose '....
188
             'Intensity Level Is r_{k} Where h(r_{k})=n_{k}')
189
   응
190
         axis tight
191
         disp(['Please, press any keyboard button to explore '.....
192
              'the remaining histograms >>>>>'])
         pause
194
         clc
195
196
   Mean_hist_Objects=sum(hist_Objects,1)/....
198
       Total_No_of_Objects; % The average histogram
199
                             % for all objects.
200
   % plot (Mean_hist_Objects)
   % title('The Mean Histogram of All Objects')
   % xlabel('Intensity Level r_{k}')
  % ylabel({'The Mean Number of Pixels from All Objects Whose';....
         'Intensity Level Is r {k}'})
   % axis tight
   % pause
207
   % Setting up a threshold in order to work on just the pixels of the
   % faces and blocking the pixels of the backgrounds.
   Objects_Threshold=8; % The picked threshold is based on the average
211
                         % histogram for all objects when the objects
212
                         % have black backgrounds. Note that, all
213
                         % intesity levels below the threshold
214
                         % represent the objects backgrounds because
215
                         % these levels have the biggest histogram.
   % Objects_Threshold=180; % The Picked threshold is based on the
217
                             % average histogram for all objects when
218
                             % the objects have white backgrounds. Note
219
                             % that, all intesity levels above the
                             % threshold represent the objects
221
                             % backgrounds because these levels have
222
                             % the biggest histogram.
223
224
225
226 Max_Desired_Cross_Fields=zeros(Total_No_of_Objects,....
       Total_No_of_Impulses); % Each element of each row in this
227
                               % matrix represents the maximum value
228
                               % of the desired crosscorrelated field
229
```

```
230
                                 % between an object and one of the
                                 % impulses.
231
232
233
   for n=1:Total_No_of_Objects
234
235
        % Normalizing all the objects for removing lightening effects
236
        % on them then increasing the resolution of object detection
237
        % and recognition. Note that, the normalization will be done
238
        % just for the faces pixels for keeping variations among the
239
240
        % objects and impulses just in the faces without the
        % backgrounds effects.
241
        Object_Number=[num2str(n) '.jpg'];
242
        Object_Location=fullfile(Objects_Folder,Object_Number);
243
        Object1=....
244
            double(rgb2gray(imread(Object_Location))); % The object.
245
246
        T=Object1>Objects_Threshold; % The pixels bigger than the
247
                                       % threshold are of interest
248
                                       % because they represent the
249
                                       % pixels of a face.
250
251
          T=Object1<Objects_Threshold; % The pixels smaller than the
                                         % threshold are of interest
252
                                         % because they represent the
                                         % pixels of a face.
254
        Object=zeros(size(T,1), size(T,2)); % The normalized object.
255
        for R2=1:size(T,1)
256
            for C2=1:size(T,2)
257
                if T(R2,C2) == 1
258
                     Object(R2,C2) = ceil(255 * (Object1(R2,C2)/.....
259
                         max(max(Object1)))); % The normalization of the
260
                                                % object. This is done to
261
                                                % increase the dynamic
262
                                                % range of the object for
263
                                                % visualization by scaling
264
                                                % the intensities from 0
265
                                                % to 255.
                end
267
268
            end
        end
269
        [r c]=size(Object);
271
          figure
273
274
          subplot(2,1,1)
          imshow(Object1)
275
          if n \le L1
276
              title({['This Is To Show How Good the Objects '.....
277
278
                   'Threshold Is,']; blanks(1); ['Object No.' ....
                  num2str(n) ' for Mr. Mansour Alshammari']})
279
```

```
elseif n>L1 \&\& n<=L2
280
              title({['This Is To Show How Good the Objects '....
281
                   'Threshold Is, ']; blanks (1); ['Object No.' .....
                   num2str(n) ' for Mr. Methkir Alharthee']})
283
          elseif n>L2 \&\& n<=L3
284
              title({['This Is To Show How Good the Objects '.....
285
                   'Threshold Is,']; blanks(1); ['Object No.' ....
286
                   num2str(n) ' for Mr. Mohammed Hanafy']})
287
          end
288
          subplot(2,1,2)
289
290
          imshow(Object)
          if n \le L1
291
              title(['Normalized Object No.' num2str(n) ....
292
                   ' for Mr. Mansour Alshammari'])
          elseif n>L1 && n<=L2
294
              title(['Normalized Object No.' num2str(n) .....
295
                   ' for Mr. Methkir Alharthee'])
296
          elseif n>L2 \&\& n<=L3
297
              title(['Normalized Object No.' num2str(n) ....
298
                   ' for Mr. Mohammed Hanafy'])
299
300
          end
301
          figure
302
          subplot(2,1,1)
303
          imshow(uint8(Object1))
   응
304
          if n \le L1
305
              title(['Object No.' num2str(n) .....
306
                   ' for Mr. Mansour Alshammari'])
307
          elseif n>L1 && n<=L2
308
              title(['Object No.' num2str(n) .....
309
                   ' for Mr. Methkir Alharthee'])
310
          elseif n>L2 && n<=L3
311
              title(['Object No.' num2str(n) ....
312
                   ' for Mr. Mohammed Hanafy'])
313
          end
314
          subplot(2,1,2)
315
         imshow(uint8(Object))
          if n \le L1
317
              title(['Normalized Object No.' num2str(n) .....
318
                   ' for Mr. Mansour Alshammari'])
319
          elseif n>L1 \&\& n<=L2
320
              title(['Normalized Object No.' num2str(n) ....
321
                   ' for Mr. Methkir Alharthee'])
322
          elseif n>L2 \&\& n<=L3
323
              title(['Normalized Object No.' num2str(n) .....
324
                   ' for Mr. Mohammed Hanafy'])
325
          end
326
327
       for m=1:Total_No_of_Impulses
328
329
```

```
% Normalizing all the impulses for removing lightening
330
            % effects on them then increasing the resolution of object
331
            % detection and recognition. Note that, the normalization
            % will be done just for the faces pixels for keeping
333
            % variations among the objects and impulses just in the
334
            % faces without the backgrounds effects.
335
            One_Impulse=Impulses(m).name;
            Impulse_Location=fullfile(Impulses_Folder,One_Impulse);
337
            Impulse1=double(rgb2gray(.....
338
                imread(Impulse_Location))); % The impulse response.
339
340
            T1=Impulse1>Impulses_Threshold; % The pixels bigger than
341
                                               % the threshold are of
342
                                               % interest because they
343
                                               % represent the pixels of
344
345
                                               % a face.
346
              T1=Impulse1<Impulses_Threshold; % The pixels smaller than
                                                 % the threshold are of
347
                                                 % interest because they
348
                                                 % represent the pixels
                                                 % of a face.
350
351
            Impulse=zeros(size(T1,1), size(T1,2)); % The normalized
                                                     % impulse response.
352
            for R1=1:size(T1,1)
                for C1=1:size(T1,2)
354
                     if T1(R1,C1) == 1
355
                         Impulse (R1, C1) = ceil(255*(Impulse1(R1, C1)/....)
356
                             max(max(Impulse1)))); % The normalization
357
                                                      % of the impulse
358
                                                     % response. This is
359
                                                     % done to increase
360
                                                      % the dynamic range
361
                                                      % of the impulse for
362
                                                      % visualization by
363
                                                      % scaling the
364
                                                     % intensities from
365
                                                     % 0 to 255.
                     end
367
368
                end
            end
369
            [p q]=size(Impulse);
371
372
            % Equalizing the width of the impulse response with the
373
374
            % width of the object in order to collimate them on the
            % input transparencies.
375
            if q>c
376
377
                if mod(q-c, 2) == 0
                     Object=[zeros(r, (q-c)/2) Object zeros(r, (q-c)/2)];
378
                elseif mod(q-c, 2) == 1
379
```

```
Object=[zeros(r,floor((q-c)/2)) Object ....
380
                         zeros (r, floor((q-c)/2)+1);
381
                end
382
            elseif q<c
383
                 if mod(c-q, 2) == 0
384
                     Impulse=[zeros(p,(c-q)/2)] Impulse .....
385
                         zeros (p, (c-q)/2);
386
                elseif mod(c-q, 2) == 1
387
                     Impulse=[zeros(p,floor((c-q)/2))] Impulse .....
388
                         zeros (p, floor ((c-q)/2)+1)];
389
390
                 end
            end
391
392
            % Collimating the impulse response and the object on the
393
            % input transparencies. Note that, the separation between
394
            % the impulse response and object must be bigger than
395
            % max{Wh,Wg}+Wg/2+Wh/2 in order to make the output
396
            % crosscorrelations of the impulse response and object are
397
            % completely separated without any overlapping.
398
            Wh=size(Impulse,1); % The width of the impulse response in
                                  % the direction of the y1-coordinate.
400
401
            Wg=size(Object,1); % The width of the object in the
                                 % direction of the y1-coordinate.
402
            Y=max(Wh,Wg)+((Wh+Wg)/2); % The separation between the
403
                                         % centers of the impulse response
404
                                         % and object.
405
            dis=10; % This distance in order to make the separation
406
                     % between the centers of the impulse response and
407
                     % object bigger than max{Wh, Wg}+Wg/2+Wh/2.
408
            Impulse Object=[.....
409
                 zeros (ceil (max (Wh, Wg) /2+Wh/4+3/4*Wg) +ceil (dis/2),....
410
                 size(Impulse, 2)); Impulse; .....
411
                 zeros (max (Wh, Wg) +dis, size (Impulse, 2)); Object; .....
412
                 zeros (ceil (max (Wh, Wg) /2+3/4*Wh+Wg/4) +ceil (dis/2),....
413
                 size(Object,2))];
414
415
            % Equalizing the dimensions of the input plane P1 by
416
            % padding it with zeros.
417
            [R C] = size (Impulse_Object);
418
            if R>C
419
                if mod(R-C, 2) == 0
420
                     Impulse_Object=[.....
421
422
                         zeros (size (Impulse Object, 1), (R-C)/2) .....
                         Impulse_Object .....
423
                         zeros(size(Impulse_Object, 1), (R-C)/2)];
424
                elseif mod(R-C, 2) == 1
425
                     Impulse_Object=[.....
426
427
                         zeros(size(Impulse_Object,1),....
                         floor((R-C)/2)) Impulse_Object .....
428
                         zeros(size(Impulse_Object,1),.....
429
```

```
430
                         floor((R-C)/2)+1)];
                end
431
            elseif R<C
                if mod(C-R, 2) == 0
433
                     Impulse_Object=[.....
434
                         zeros((C-R)/2, size(Impulse_Object, 2));....
435
                         Impulse_Object;....
436
                         zeros((C-R)/2, size(Impulse_Object, 2))];
437
                elseif mod(C-R, 2) == 1
438
                     Impulse_Object=[zeros(floor((C-R)/2),.....
439
                         size(Impulse_Object, 2)); Impulse_Object; .....
440
                         zeros(floor((C-R)/2)+1,.....
441
                         size(Impulse_Object, 2))];
442
                end
443
            end
444
445
446
            U1=Impulse_Object; % The transmitted field from
447
                                 % the input plane P1.
448
            [M N] = size(U1);
450
451
            L=10; % The physical side length of the
                   % array which holds the input
452
                   % plane P1 in meters (m).
            dx1_Input=L/N; % The sample spacing in the input plane
454
                            % array in the direction of the spatial
455
                            % space coordinate x1 in meters (m).
456
            dy1_Input=L/M; % The sample spacing in the input plane
457
                             % array in the direction of the spatial
458
                            % space coordinate y1 in meters (m).
459
            x1_Axis_Input=-floor(N/2)*dx1_Input:dx1_Input:.....
460
                ceil(N/2) *dx1_Input-dx1_Input; % Sampling the input
461
462
                                                  % plane P1 in the
                                                  % direction of the
463
                                                  % spatial space
464
                                                  % coordinate x1.
465
            y1_Axis_Input=-floor(M/2)*dy1_Input:dy1_Input:....
                ceil(M/2)*dy1_Input-dy1_Input; % Sampling the input
467
468
                                                  % plane P1 in the
                                                  % direction of the
469
                                                  % spatial space
                                                  % coordinate y1.
471
472
473
474
            U2=fftshift(fft2(fftshift(U1))); % The Fourier transform of
                                                % the transmitted field in
475
                                                % the back focal plane of
476
                                                % the lens L2.
477
            I=(abs(U2)).^2; % The intensity of the Fourier transformed
478
                              % field in the plane P2.
479
```

```
480
            lambda=550e-9; % The wavelength in meters (m).
481
            f=0.055; % The focal length in meters (m).
            dx2=(lambda*f)/(N*dx1_Input); % The sample spacing in the
483
                                            % plane P2 in the direction
484
                                            % of the spatial space
485
                                            % coordinate x2 in meters
486
                                            유 (m).
487
            dy2=(lambda*f)/(M*dy1 Input); % The sample spacing in the
488
                                            % plane P2 in the direction
489
490
                                            % of the spatial space
                                            % coordinate y2 in meters
491
                                            % (m).
492
            x2_Axis=-floor(N/2) *dx2:dx2:.....
493
                ceil(N/2) *dx2-dx2; % Sampling the plane P2 in the
494
                                     % direction of the spatial space
495
                                     % coordinate x2.
496
            y2_Axis=-floor(M/2)*dy2:dy2:....
497
                ceil(M/2) *dy2-dy2; % Sampling the plane P2 in the
498
                                     % direction of the spatial space
499
                                     % coordinate y2.
500
501
502
            U3=ifftshift(ifft2(ifftshift(I))); % The crosscorrelated
503
                                                  % field in the back
504
                                                  % focal plane of the
505
                                                  % lens L4.
506
507
            dx3=(lambda*f)/(N*dx2); % The sample spacing in the plane
508
                                      % P3 in the direction of the
509
                                      % spatial space coordinate x3 in
510
                                      % meters (m).
511
            dy3=(lambda*f)/(M*dy2); % The sample spacing in the plane
512
                                      % P3 in the direction of the
513
                                      % spatial space coordinate y3 in
514
                                      % meters (m).
515
            x3_Axis=-floor(N/2)*dx3:dx3:....
516
                ceil(N/2) *dx3-dx3; % Sampling the plane P3 in the
517
                                     % direction of the spatial space
518
                                     % coordinate x3.
519
            y3_Axis=-floor(M/2)*dy3:dy3:.....
520
                ceil(M/2) *dy3-dy3; % Sampling the plane P3 in the
521
                                     % direction of the spatial space
522
                                     % coordinate v3.
523
524
525
            % Synthesizing a desired filtering mask then filtering the
526
            % crosscorrelated field in the plane P3.
527
            Cen=floor(M/2)+1; % The center of the filtering mask.
528
            Cen1=Cen-(Y+dis); % The center of the desired
529
```

```
% crosscorrelated field.
530
            Wh1=q; % The width of the impulse response in
531
                   % the direction of the x1-coordinate.
            Wg1=c; % The width of the object in the
533
                    % direction of the x1-coordinate.
534
535
            Mask=zeros(M,N);
536
            for P=Cen1-floor((Wh+Wg)/2):Cen1+ceil((Wh+Wg)/2)
537
                for Q=Cen-floor((Wh1+Wq1)/2):Cen+ceil((Wh1+Wq1)/2)
538
                    Mask(P,Q)=1;
539
540
                end
            end
541
542
            Cross Field=Mask.*U3; % The filtered crosscorrelated
543
                                    % field in the plane P3.
544
545
546
            % For simplicity, instead of processing the entire image of
            % the filtered crosscorrelated field, we select only the
548
            % crosscorrelated field of interest.
            P=Cen1-floor((Wh+Wg)/2):Cen1+ceil((Wh+Wg)/2);
550
551
            Q=Cen-floor((Wh1+Wg1)/2):Cen+ceil((Wh1+Wg1)/2);
            Desired_Cross_Field=U3(P,Q);
552
554
            Max Desired Cross Fields (n, m) = \dots
555
                max(max(Desired_Cross_Field));
556
557
558
559
              figure
560
              subplot(2,1,1)
561
              imshow(Impulse1)
562
              if m==1
563
                  title({['This Is To Show How Good the Impulses '.....
                       'Threshold Is,']; blanks(1);.....
565
                       ['Impulse Response No.' num2str(m) .....
                       ' for Mr. Mansour Alshammari']})
567
              elseif m==2
                  title({['This Is To Show How Good the Impulses '.....
569
                       'Threshold Is,'];blanks(1);.....
                       ['Impulse Response No.' num2str(m) .....
571
                       ' for Mr. Methkir Alharthee']})
              elseif m==3
573
574
                  title({['This Is To Show How Good the Impulses '....
                       'Threshold Is, ']; blanks (1); ....
575
                       ['Impulse Response No.' num2str(m) .....
576
                       ' for Mr. Mohammed Hanafy'] })
577
              end
578
              subplot(2,1,2)
579
```

```
580
              imshow(Impulse)
              if m==1
581
                  title({['Normalized Impulse Response No.' ....
                       num2str(m) ' for Mr. Mansour Alshammari']})
583
              elseif m==2
584
                  title({['Normalized Impulse Response No.' .....
585
                       num2str(m) ' for Mr. Methkir Alharthee']})
586
              elseif m==3
587
                  title({['Normalized Impulse Response No.' .....
588
                      num2str(m) ' for Mr. Mohammed Hanafy']})
589
590
              end
591
              figure
592
              subplot(2,1,1)
              imshow(uint8(Impulse1))
594
              if m==1
595
                  title(['Impulse Response No.' num2str(m) .....
596
                       ' for Mr. Mansour Alshammari'])
              elseif m==2
598
                  title(['Impulse Response No.' num2str(m) ....
                       ' for Mr. Methkir Alharthee'l)
600
601
              elseif m==3
                  title(['Impulse Response No.' num2str(m) .....
602
                       ' for Mr. Mohammed Hanafy'])
603
              end
604
              subplot(2,1,2)
605
              imshow(uint8(Impulse))
606
              if m==1
607
                  title(['Normalized Impulse Response No.' .....
608
                      num2str(m) ' for Mr. Mansour Alshammari'])
609
              elseif m==2
610
                  title(['Normalized Impulse Response No.' .....
611
                       num2str(m) ' for Mr. Methkir Alharthee'])
612
              elseif m==3
613
                  title(['Normalized Impulse Response No.' ....
614
                       num2str(m) ' for Mr. Mohammed Hanafy'])
615
616
              end
617
              figure('units','centimeters','position',[7 1.2 25 16.9])
618
              imagesc(x1_Axis_Input,y1_Axis_Input,U1)
619
              colorbar
620
              if n \le L1
621
                  if m==1
622
                       title({['The Transmitted Field from the '....
623
                           'Input Plane P_1']; ['(Impulse No.1 Is '....
624
                           'for Mr. Mansour Alshammari as Well '....
625
                           'as Object No.' num2str(n) .....
626
                           ' Is for Him)']})
627
                  elseif m==2
628
                       title({['The Transmitted Field from the '....
629
```

```
'Input Plane P_1'];['(Impulse No.2 Is '....
630
                           'for Mr. Methkir Alharthee and Object '....
631
                           'No.' num2str(n) .....
632
                           ' Is for Mr. Mansour Alshammari)']})
633
                  else
                      title({['The Transmitted Field from the '....
635
                           'Input Plane P_1'];['(Impulse No.3 Is '....
                           'for Mr. Mohammed Hanafy and Object '....
637
                           'No.' num2str(n) .....
                           ' Is for Mr. Mansour Alshammari)'|})
639
640
              elseif n>L1 \&\& n<=L2
641
                  if m==1
642
                      title({['The Transmitted Field from the '....
643
                           'Input Plane P 1']; ['(Impulse No.1 Is '....
644
                           'for Mr. Mansour Alshammari and Object '....
645
646
                           'No.' num2str(n) .....
                           ' Is for Mr. Methkir Alharthee)']})
647
                  elseif m==2
648
                      title({['The Transmitted Field from the '....
                           'Input Plane P_1'];['(Impulse No.2 Is '....
650
                           'for Mr. Methkir Alharthee as Well as '....
                           'Object No.' num2str(n) ' Is for Him)']})
652
                  else
                      title({['The Transmitted Field from the '....
654
                           'Input Plane P 1']; ['(Impulse No.3 Is '....
655
                           'for Mr. Mohammed Hanafy and Object No.'....
656
657
                           num2str(n) .....
                           ' Is for Mr. Methkir Alharthee)']})
658
                  end
659
              elseif n>L2 \&\& n<=L3
660
                  if m==1
661
                      title({['The Transmitted Field from the '....
662
                           'Input Plane P_1']; ['(Impulse No.1 Is '....
663
                           'for Mr. Mansour Alshammari and Object '....
664
                           'No.' num2str(n) .....
665
                           ' Is for Mr. Mohammed Hanafy)']})
                  elseif m==2
667
                      title({['The Transmitted Field from the '....
                           'Input Plane P_1'];['(Impulse No.2 Is '....
669
                           'for Mr. Methkir Alharthee and '....
                           'Object No.' num2str(n) .....
671
                           ' Is for Mr. Mohammed Hanafy)']})
                  else
673
674
                      title({['The Transmitted Field from the '....
                           'Input Plane P_1'];['(Impulse No.3 Is '....
675
                           'for Mr. Mohammed Hanafy as Well as '.....
676
                           'Object No.' num2str(n) ' Is for Him)']})
677
                  end
678
679
              end
```

```
680
              colormap('gray')
              xlabel('x_1 (m)')
681
              ylabel('y_1 (m)')
683
              figure('units','centimeters','position',[7 1.2 25 16.9])
684
              imagesc(x2\_Axis, y2\_Axis, 255*(I/max(max(I))))
685
              colorbar
              if n \le L1
687
                  if m==1
688
                      title({['The Incident Intensity on the '....
689
690
                           'Plane P 2']; ['(Impulse No.1 Is for '....
                           'Mr. Mansour Alshammari as Well as '....
691
                           'Object No.' num2str(n) ' Is for Him)']})
692
                  elseif m==2
                      title({['The Incident Intensity on the '....
694
                           'Plane P_2'];['(Impulse No.2 Is for '....
695
                           'Mr. Methkir Alharthee and Object No.'....
696
                           num2str(n) ......
                           ' Is for Mr. Mansour Alshammari)']})
698
                  else
                      title({['The Incident Intensity on the '....
700
                           'Plane P_2'];['(Impulse No.3 Is for '....
                           'Mr. Mohammed Hanafy and Object No.' ....
702
                           num2str(n) .....
703
                           ' Is for Mr. Mansour Alshammari)']})
704
                  end
705
              elseif n>L1 \&\& n<=L2
706
                  if m==1
707
                      title({['The Incident Intensity on the '....
                           'Plane P_2'];['(Impulse No.1 Is for '.....
709
                           'Mr. Mansour Alshammari and Object No.'....
710
                           num2str(n) .....
711
                           ' Is for Mr. Methkir Alharthee)']})
712
                  elseif m==2
713
                      title({['The Incident Intensity on the '....
714
                           'Plane P_2'];['(Impulse No.2 Is for '.....
715
                           'Mr. Methkir Alharthee as Well as '.....
717
                           'Object No.' num2str(n) ' Is for Him)']})
718
                  else
                      title({['The Incident Intensity on the '....
719
                           'Plane P_2'];['(Impulse No.3 Is for '....
                           'Mr. Mohammed Hanafy and '.....
721
                           'Object No.' num2str(n) .....
722
                           ' Is for Mr. Methkir Alharthee)']})
723
                  end
724
              elseif n>L2 \&\& n<=L3
725
                  if m==1
726
                      title({['The Incident Intensity on the '....
727
                           'Plane P_2']; ['(Impulse No.1 Is for '.....
728
                           'Mr. Mansour Alshammari and '.....
729
```

```
730
                           'Object No.' num2str(n) .....
                           ' Is for Mr. Mohammed Hanafy)']})
731
                  elseif m==2
                      title({['The Incident Intensity on the '....
733
                           'Plane P_2']; ['(Impulse No.2 Is for '....
                           'Mr. Methkir Alharthee and '....
735
                           'Object No.' num2str(n) .....
                           ' Is for Mr. Mohammed Hanafy)']})
737
                  else
                      title({['The Incident Intensity on the '....
739
740
                           'Plane P_2'];['(Impulse No.3 Is for '....
                           'Mr. Mohammed Hanafy as Well as '....
741
                           'Object No.' num2str(n) ' Is for Him)']})
742
743
                  end
              end
744
              colormap('gray')
745
746
              xlabel('x_2 (m)')
              ylabel('y_2 (m)')
747
748
              figure ('units', 'centimeters', 'position', [7 1.2 25 16.9])
              imagesc(x3_Axis,y3_Axis,U3)
750
              colorbar
              if n \le L1
752
                  if m==1
                      title({['The Crosscorrelated Field in '....
754
                           'the Plane P 3']; ['(Impulse No.1 Is '.....
755
                           'for Mr. Mansour Alshammari as Well as '....
756
757
                           'Object No.' num2str(n) ' Is for Him)']})
                  elseif m==2
758
                      title({['The Crosscorrelated Field in '....
759
                           'the Plane P_3'];['(Impulse No.2 Is '....
760
                           'for Mr. Methkir Alharthee and '....
761
                           'Object No.' num2str(n) .....
762
                           ' Is for Mr. Mansour Alshammari)']})
763
764
                  else
                      title({['The Crosscorrelated Field in '....
765
                           'the Plane P_3']; ['(Impulse No.3 Is '.....
                           'for Mr. Mohammed Hanafy and '....
767
                           'Object No.' num2str(n) .....
                           ' Is for Mr. Mansour Alshammari)']})
769
                  end
              elseif n>L1 \&\& n<=L2
771
                  if m==1
                      title({['The Crosscorrelated Field in '....
773
774
                           'the Plane P 3']; ['(Impulse No.1 Is '....
                           'for Mr. Mansour Alshammari and '....
775
                           'Object No.' num2str(n) .....
776
                           ' Is for Mr. Methkir Alharthee)']})
777
                  elseif m==2
778
                      title({['The Crosscorrelated Field in '....
779
```

```
'the Plane P_3'];['(Impulse No.2 Is '.....
780
                           'for Mr. Methkir Alharthee as Well as '....
781
                           'Object No.' num2str(n) ' Is for Him)']})
                  else
783
                      title({['The Crosscorrelated Field in '....
784
                           'the Plane P_3'];['(Impulse No.3 Is '....
785
                           'for Mr. Mohammed Hanafy and '....
                           'Object No.' num2str(n) .....
787
                           ' Is for Mr. Methkir Alharthee)'|})
788
                  end
789
790
              elseif n>L2 \&\& n<=L3
                  if m==1
791
                       title({['The Crosscorrelated Field in '.....
792
                           'the Plane P_3'];['(Impulse No.1 Is '....
                           'for Mr. Mansour Alshammari and '....
794
                           'Object No.' num2str(n) ....
795
                           ' Is for Mr. Mohammed Hanafy)']})
796
                  elseif m==2
                       title({['The Crosscorrelated Field in '....
798
                           'the Plane P_3'];['(Impulse No.2 Is '....
                           'for Mr. Methkir Alharthee and '.....
800
                           'Object No.' num2str(n) .....
801
                           ' Is for Mr. Mohammed Hanafy)']})
802
                  else
803
                      title({['The Crosscorrelated Field in '....
804
                           'the Plane P 3']; ['(Impulse No.3 Is '.....
805
                           'for Mr. Mohammed Hanafy as Well as '.....
806
                           'Object No.' num2str(n) ' Is for Him)']})
807
                  end
808
              end
809
              colormap('gray')
810
              xlabel('x_3 (m)')
811
              ylabel('y_3 (m)')
812
813
              figure('units','centimeters','position',[7 1.2 25 16.9])
814
              imagesc(x3_Axis, y3_Axis, Mask)
815
              colorbar
              if n \le L1
817
818
                  if m==1
                      title({'The Adaptive Filtering Mask';....
819
                           ['(Impulse No.1 Is for Mr. Mansour '.....
820
                           'Alshammari as Well as Object No.' ....
821
                           num2str(n) ' Is for Him)']})
822
                  elseif m==2
823
                      title({ 'The Adaptive Filtering Mask'; .....
824
                           ['(Impulse No.2 Is for Mr. Methkir '....
825
                           'Alharthee and Object No.' num2str(n) ....
826
                           ' Is for Mr. Mansour Alshammari)']})
827
828
                      title({'The Adaptive Filtering Mask';....
829
```

```
['(Impulse No.3 Is for Mr. Mohammed '....
830
                           'Hanafy and Object No.' num2str(n) .....
831
                           ' Is for Mr. Mansour Alshammari)']})
                  end
833
              elseif n>L1 \&\& n<=L2
                  if m==1
835
                      title({'The Adaptive Filtering Mask';....
                           ['(Impulse No.1 Is for Mr. Mansour '.....
837
                           'Alshammari and Object No.' num2str(n) ....
                           ' Is for Mr. Methkir Alharthee)']})
839
840
                  elseif m==2
                      title({'The Adaptive Filtering Mask';....
841
                           ['(Impulse No.2 Is for Mr. Methkir '.....
842
                           'Alharthee as Well as Object No.' .....
843
                           num2str(n) ' Is for Him)']})
844
845
                  else
846
                      title({'The Adaptive Filtering Mask';....
                           ['(Impulse No.3 Is for Mr. Mohammed '....
                           'Hanafy and Object No.' num2str(n) .....
848
                           ' Is for Mr. Methkir Alharthee)']})
850
                  end
              elseif n>L2 && n<=L3
                  if m==1
852
                      title({'The Adaptive Filtering Mask';....
                           ['(Impulse No.1 Is for Mr. Mansour '.....
854
                           'Alshammari and Object No.' num2str(n) ....
855
                           ' Is for Mr. Mohammed Hanafy)']})
856
                  elseif m==2
857
                      title({'The Adaptive Filtering Mask';....
858
                           ['(Impulse No.2 Is for Mr. Methkir '.....
859
                           'Alharthee and Object No.' num2str(n) ....
860
                           ' Is for Mr. Mohammed Hanafy)']})
861
                  else
862
                      title({'The Adaptive Filtering Mask';....
863
                           ['(Impulse No.3 Is for Mr. Mohammed '....
                           'Hanafy as Well as Object No.' .....
865
                           num2str(n) ' Is for Him)']})
                  end
867
              end
              colormap('gray')
869
              xlabel('x_3 (m)')
              ylabel('y_3 (m)')
871
              figure('units','centimeters','position',[7 1.2 25 16.9])
873
              imagesc(x3_Axis, y3_Axis, Cross_Field)
              colorbar
875
              if n \le L1
876
                 if m==1
                      title({['The Filtered Crosscorrelated '....
878
                           'Field in the Plane P_3'];['(Impulse '....
879
```

```
'No.1 Is for Mr. Mansour Alshammari '....
880
                           'as Well as Object No.' num2str(n) ....
881
                           ' Is for Him)'|})
                  elseif m==2
883
                      title({['The Filtered Crosscorrelated '....
884
                           'Field in the Plane P_3'];['(Impulse '....
885
                           'No.2 Is for Mr. Methkir Alharthee '.....
886
                           'and Object No.' num2str(n) .....
887
                           ' Is for Mr. Mansour Alshammari)'|})
888
                  else
889
                      title({['The Filtered Crosscorrelated '....
890
                           'Field in the Plane P_3'];['(Impulse '....
891
                           'No.3 Is for Mr. Mohammed Hanafy and '....
892
                           'Object No.' num2str(n) .....
                           ' Is for Mr. Mansour Alshammari)'|})
894
895
                  end
              elseif n>L1 && n<=L2
896
                  if m==1
                      title({['The Filtered Crosscorrelated '....
898
                           'Field in the Plane P_3'];['(Impulse '....
                           'No.1 Is for Mr. Mansour Alshammari '.....
900
901
                           'and Object No.' num2str(n) .....
                           ' Is for Mr. Methkir Alharthee)']})
902
                  elseif m==2
903
                      title({['The Filtered Crosscorrelated '....
904
                           'Field in the Plane P 3']; ['(Impulse '....
905
                           'No.2 Is for Mr. Methkir Alharthee '....
906
                           'as Well as Object No.' num2str(n) .....
907
                           ' Is for Him)']})
                  else
909
                      title({['The Filtered Crosscorrelated '....
910
                           'Field in the Plane P_3'];['(Impulse '....
911
                           'No.3 Is for Mr. Mohammed Hanafy and '....
912
                           'Object No.' num2str(n) .....
913
                           ' Is for Mr. Methkir Alharthee)']})
914
                  end
915
              elseif n>L2 \&\& n<=L3
                  if m==1
917
918
                      title({['The Filtered Crosscorrelated '....
                           'Field in the Plane P_3'];['(Impulse '....
919
                           'No.1 Is for Mr. Mansour Alshammari '....
920
                           'and Object No.' num2str(n) .....
921
                           ' Is for Mr. Mohammed Hanafy)']})
922
                  elseif m==2
923
                      title({['The Filtered Crosscorrelated '....
924
                           'Field in the Plane P_3'];['(Impulse '....
925
                           'No.2 Is for Mr. Methkir Alharthee '.....
926
                           'and Object No.' num2str(n) .....
927
                           ' Is for Mr. Mohammed Hanafy)']})
928
                  else
929
```

```
title({['The Filtered Crosscorrelated '.....
930
                           'Field in the Plane P_3'];['(Impulse '....
931
                           'No.3 Is for Mr. Mohammed Hanafy as '....
                           'Well as Object No.' num2str(n) .....
933
                           ' Is for Him)']})
934
                  end
935
              end
              colormap('gray')
937
              xlabel('x 3 (m)')
938
              ylabel('y_3 (m)')
939
940
              figure('units','centimeters','position',[7 1.2 25 16.9])
941
              imagesc(x3_Axis,y3_Axis,Desired_Cross_Field)
942
              colorbar
943
              if n \le L1
944
                  if m==1
945
946
                      title({['The Crosscorrelated Field of '....
                           'Interest in the Plane P_3'];.....
947
                           ['(Impulse No.1 Is for Mr. Mansour '....
948
                           'Alshammari as Well as Object No.' ....
                           num2str(n) ' Is for Him)']})
950
                  elseif m==2
                      title({['The Crosscorrelated Field of '....
952
                           'Interest in the Plane P_3'];['(Impulse'....
                           ' No.2 Is for Mr. Methkir Alharthee '.....
954
                           'and Object No.' num2str(n) .....
955
                           ' Is for Mr. Mansour Alshammari)'|})
956
                  else
957
                      title({['The Crosscorrelated Field of '....
958
                           'Interest in the Plane P_3'];['(Impulse'....
959
                           ' No.3 Is for Mr. Mohammed Hanafy and '....
960
                           'Object No.' num2str(n) .....
961
                           ' Is for Mr. Mansour Alshammari)']})
962
                  end
963
              elseif n>L1 \&\& n<=L2
                  if m==1
965
                      title({['The Crosscorrelated Field of '.....
                           'Interest in the Plane P_3'];['(Impulse'....
967
                           ' No.1 Is for Mr. Mansour Alshammari '....
968
                           'and Object No.' num2str(n) .....
969
                           ' Is for Mr. Methkir Alharthee)']})
                  elseif m==2
971
                      title({['The Crosscorrelated Field of '.....
                           'Interest in the Plane P_3'];['(Impulse'....
973
974
                           ' No.2 Is for Mr. Methkir Alharthee '.....
                           'as Well as Object No.' num2str(n) .....
975
                           ' Is for Him)']})
976
977
                  else
                      title({['The Crosscorrelated Field of '....
978
                           'Interest in the Plane P_3'];['(Impulse'....
979
```

```
' No.3 Is for Mr. Mohammed Hanafy and '....
980
                            'Object No.' num2str(n) .....
981
                            ' Is for Mr. Methkir Alharthee)']})
                   end
983
               elseif n>L2 \&\& n<=L3
984
                   if m==1
985
                       title({['The Crosscorrelated Field of '.....
986
                            'Interest in the Plane P_3'];['(Impulse'....
987
                            ' No.1 Is for Mr. Mansour Alshammari '....
988
                            'and Object No.' num2str(n) .....
989
990
                            ' Is for Mr. Mohammed Hanafy)']})
                   elseif m==2
991
                       title({['The Crosscorrelated Field of '.....
992
                            'Interest in the Plane P_3'];['(Impulse'....
                            ' No.2 Is for Mr. Methkir Alharthee '....
994
                            'and Object No.' num2str(n) .....
995
                            ' Is for Mr. Mohammed Hanafy)']})
996
                   else
                       title({['The Crosscorrelated Field of '....
998
                            'Interest in the Plane P_3'];['(Impulse'....
                            ' No.3 Is for Mr. Mohammed Hanafy '.....
1000
1001
                            'as Well as Object No.' .....
                           num2str(n) ' Is for Him)']})
1002
                   end
1003
              end
1004
              colormap('gray')
              xlabel('x_3 (m)')
1006
1007
              ylabel('y_3 (m)')
1008
1009
1010
               %%%% Note that, "imshow" is better to be used instead
1011
               %%%% of "imagesc" during designing the adaptive mask
1012 응
1013
               %%%% because "imshow" dispalays the cross-correlations
               %%%% in the plane P3 clearer than "imagesc"!!
1014
1015
1017
1018
              disp(['Please, press any keyboard button to explore '....
                   'the remaining crosscorrelated fields >>>>>'])
1019
              pause
               clc
1021 %
1022
               close all
        end
1023
1024
1025
1026
1027 % Testing the process of object recognition.
1028 % Note that, the objects here are known for us in order to use them
1029 % for testing the object recognition process as well as setting up
```

```
1030 % a recognition threshold.
1031
1032 % The elements in each of the following vectors represent the
1033 % maximum values of the desired crosscorrelated fields between the
1034 % objects and their corresponding impulse. Note that, each impulse
_{1035} % and its corresponding objects have a same face so the vectors
1036 % will include the biggest crosscorrelations.
1037 V1=(Max_Desired_Cross_Fields(1:L1,1)).';
1038 V2=(Max Desired Cross Fields(L1+1:L2,2)).';
1039 V3=(Max_Desired_Cross_Fields(L2+1:L3,3)).';
1040
1041 % The calculation of the mean and the standard deviation for each
1042 % vector of the biggest crosscorrelations and stacking them in a
1043 % vector for the means and another for the standard deviations.
1044 % This is done for setting up a threshold for object recognition.
V_{\text{mean}} = [\text{mean}(V1); \text{mean}(V2); \text{mean}(V3)];
1046 V_STD=[std(V1);std(V2);std(V3)];
1047 save ('Computed Means for Object Recognition', 'V_Mean')
1048 save ('Computed STDs for Object Recognition', 'V_STD')
1049
1050 fid=fopen('Object Recognition Results for Testing.txt',....
        'w'); % A text file for typing
              % the object recognition
1052
              % results for testing.
1053
1054 fprintf(fid,['\n ***** The Object Recognition Results '.....
        'for Testing Obtained from the Code of the ****\r\n']);
                   **** Joint Transform Correlator (JTC) for '....
1056 fprintf(fid,['
1057
        'Testing and Setting up Thresholds ****\r\n\n']);
   fprintf(fid,['The Object No. The Object Is Originally for'.....
1058
        ' The Object Is Recognized as The Status\r\n']);
1059
   fprintf(fid,['================::....
1060
                                           ======\r\n']);
            _____
1061
1062
1063 Failures_Vector=zeros(1, Total_No_of_Objects); % A vector for
                                                    % counting the number
1064
                                                    % of failures in the
1065
1066
                                                    % object recognition
                                                    % process.
1067
1068
   Latex_Matrix=cell(Total_No_of_Objects,4); % This matrix is used
1069
                                                % for creating a table
1070
                                                % in Latex.
1071
1072 for w=1:Total No of Objects
        % The object recognition process.
1073
1074
        for ii=1:Total No of Impulses
            if max(Max_Desired_Cross_Fields(w,:)) == .....
1075
                    Max_Desired_Cross_Fields(w,ii) && .....
1076
1077
                    max (Max_Desired_Cross_Fields(w,:))>=....
1078
                    (V_Mean(ii,1)-V_STD(ii,1)) && .....
                    max (Max_Desired_Cross_Fields(w,:)) <= ....</pre>
1079
```

```
1080
                      (V_Mean(ii,1)+V_STD(ii,1))
                 S=transpose(struct2cell(Impulses));
1081
                 d=sortrows(S,1);
1083
                 z=d(:,1);
                 Recognized_As=char(z(ii,1));
1084
                 Recognized_Object_Location=.....
1085
                      fullfile (Impulses_Folder, Recognized_As);
                 Recognized_Object=im2double(rgb2gray(....
1087
                      imread(Recognized Object Location)));
1088
                 break
1089
1090
             else
                 Recognized_As='Unknown Object';
1091
                 Recognized_Object=imread('Unknown_Object.jpg');
1092
1093
             end
        end
1094
1095
1096
         % Defining the object.
         if w \le L1
1097
             name='Mr. Mansour Alshammari';
1098
        elseif L1 < w \&\& w <= L2
1099
             name='Mr. Methkir Alharthee';
1100
1101
        else name='Mr. Mohammed Hanafy';
1102
        end
1103
        Str1=strcmp(Recognized_As(1:length(Recognized_As)-6),....
1104
             'Mr. Mansour Alshammari');
1106
        Str2=strcmp(Recognized_As(1:length(Recognized_As)-6),....
1107
             'Mr. Methkir Alharthee');
        Str3=strcmp(Recognized_As(1:length(Recognized_As)-6),....
1108
             'Mr. Mohammed Hanafy');
1109
        F='Success';
1110
        if w<=L1 && Str1==0;
1111
             F='Failure';
1112
1113
             Failures_Vector(1, w) =1;
        elseif w>L1 && w<=L2 && Str2==0;
1114
             F='Failure';
1115
             Failures_Vector(1, w) =1;
1116
1117
        elseif w>L2 && w<=L3 && Str3==0;
1118
             F='Failure';
             Failures_Vector(1,w)=1;
1119
1120
        end
1121
           Object_Number=[num2str(w) '.jpg'];
1122
           Object_Location=fullfile(Objects_Folder,Object_Number);
1123
           Object=im2double(rgb2gray(imread(Object_Location)));
1125 %
           subplot(2,1,1)
          imshow(Object)
1126 %
          title({['Object No.' num2str(w) ' Is Originally for']; name})
1127 %
           subplot(2,1,2)
1128 %
1129 %
           imshow(Recognized_Object)
```

```
if Str1==1 || Str2==1 || Str3==1
1130 %
1131 %
              title({'The Object Is Recognized As';.....
1132 %
                  Recognized_As(1:length(Recognized_As)-6)})
1133 %
          else title({'The Object Is Recognized As' .....
1134 %
                  ['an' blanks(1) Recognized_As]})
1135 %
          end
1136
        if Str1==1 || Str2==1 || Str3==1
1137
            fprintf(fid,['%0.3d\t\t\t
                                           %-23s\t
1138
                '%-24s\t %s \r\n\n'], w, name, .....
1139
1140
                Recognized_As (1: length (Recognized_As) - 6), F);
            Latex_Matrix(w, 1:4) = {num2str(w) name .....
1141
                Recognized_As(1:length(Recognized_As)-6) F};
1142
        else fprintf(fid,['%0.3d\t\t\t
                                           %-23s\t %-24s\t'....
1143
                ' %s \r\n\n'], w, name, Recognized_As, F);
1144
1145
            Latex_Matrix(w,1:4) = {num2str(w) name Recognized_As F};
1146
        end
1147
1148 %
          disp(['Please, press Enter button to see another '.....
              'object and its recognition....'])
1149 %
1150 %
          pause
1151 %
          clc
1152 end
1153
1154 Total_Number_of_Failures=sum(Failures_Vector); % The total number
                                                    % of failures in the
1155
1156
                                                    % object recognition
1157
                                                    % process.
1158
    fprintf(fid,['======:::...
1159
        '======\r\n']);
1160
    fprintf(fid,['** The Total Number of Successes: %0.3d out '.....
1161
        'of %0.3d (%3.4f%%) \r\n\n'], Total_No_of_Objects-.....
1162
1163
        Total_Number_of_Failures, Total_No_of_Objects, .....
        ((Total_No_of_Objects-Total_Number_of_Failures)/....
1164
1165
        Total_No_of_Objects) *100);
   fprintf(fid,['** The Total Number of Failures: %0.3d out'....
1167
        ' of %0.3d (%3.4f%%) \r\n\n'],....
        Total_Number_of_Failures, Total_No_of_Objects, .....
1168
        (Total_Number_of_Failures/Total_No_of_Objects) *100);
1169
1170 fclose(fid);
1171
1172 close all
1173 clc
1174
1175 disp(['Please, see the documented results of object '.....
        'recognition in the open'])
1176
1177 disp(['text file then press any keyboard button to '.....
        'resume the code >>>>'])
1179 Text='Object Recognition Results for Testing.txt';
```

```
1180 open(Text) % Opening the text file which contains
               % the results of object recognition.
1181
1182 pause
1183 clc
1184 open('The_JTC_Testing_and_Setting_up_Thresholds.m')
1185
1187 % Testing the process of object detection.
1188 % Note that, the objects here are known for us in order to use them
1189 % for testing the object detection process as well as setting up a
1190 % detection threshold.
1191
1192 % The calculation of the mean and standard deviation for the
1193 % crosscorrelations between the objects and each impulse response.
1194 % This is done for setting up a threshold for object detection.
1195 Vectorization=reshape(Max_Desired_Cross_Fields,1,....
1196
        size (Max_Desired_Cross_Fields, 1) * . . . .
        size(Max_Desired_Cross_Fields, 2));
1197
1198 Mean=mean (Vectorization);
1199 STD=std(Vectorization);
1200 save ('Computed Mean for Object Detection', 'Mean')
1201 save ('Computed STD for Object Detection', 'STD')
1202
   fid=fopen('Object Detection Results for Testing.txt',....
       'w'); % A text file for typing
1204
              % the object detection
              % results for testing.
1206
1207 fprintf(fid,['\n ***** The Object Detection Results '......
        'for Testing Obtained from the Code of the ****\r\n']);
1208
   fprintf(fid,[' **** Joint Transform Correlator (JTC) for '....
1209
       'Testing and Setting up Thresholds ****\r\n\n']);
1211 fprintf(fid,['The Object No. The Object Originally '......
       'Is
               The Detected Object Is
                                          The Status\r\n']);
1212
1213 fprintf(fid,['=======================::....
             _____
                                        ======\r\n']);
1214
1215
1216 Failures_Vector1=zeros(1,.....
1217
        Total_No_of_Objects); % A vector for counting the number
1218
                              % of failures in the object detection
                               % process.
1219
1221 Latex_Matrix=cell(Total_No_of_Objects,4); % This matrix is used
1222
                                               % for creating a table
                                               % in Latex.
1223
1224 for w=1:Total No of Objects
        % The object detection process.
1225
        if max(Max_Desired_Cross_Fields(w,:))>=(Mean-STD) && .....
1226
                max(Max_Desired_Cross_Fields(w,:)) <= (Mean+STD)</pre>
1227
1228
            Detected_As='a face';
            Detected_Object=imread('A_Face.jpg');
1229
```

```
1230
        else
            Detected_As='not a face';
1231
1232
            Detected_Object=imread('Not_a_Face.jpg');
1233
        end
1234
        b='a face'; % The object originally is a face.
1235
1236
        Str=strcmp(Detected_As, 'a face');
1237
        F='Success';
1238
        if w<=L3 && Str==0;
1239
            F='Failure';
1240
            Failures_Vector1(1,w)=1;
1241
1242
        end
1243
1244 %
          Object_Number=[num2str(w) '.jpg'];
          Object_Location=fullfile(Objects_Folder,Object_Number);
1245
1246
          Object=im2double(rgb2gray(imread(Object_Location)));
1247
          subplot(2,1,1)
          imshow(Object)
1248 %
          title(['Object No.' num2str(w) ' Originally Is'])
1249
          subplot(2,1,2)
1250
   응
1251
          imshow(Detected_Object)
          title('It Is Detected As')
1252
1253
        if Str==1
1254
            fprintf(fid,['%0.3d\t\t\t
                                             %-23s\t
                                                        %-22s\t'....
1255
1256
                ' %s \r\n\n'], w, b, Detected_As, F);
1257
            Latex_Matrix(w,1:4) = {num2str(w) b Detected_As F};
        else fprintf(fid,['%0.3d\t\t\t
                                                         %-22s\t'....
                                              %-23s\t
1258
                    %s \r\n\n'], w, b, Detected_As, F);
1259
            Latex_Matrix(w,1:4) = {num2str(w) b Detected_As F};
1260
1261
        end
1262
1263 %
          disp(['Please, press Enter button to see another '.....
              'object and its detection....'])
1264
1265
          pause
1266
   00
          clc
   end
1267
1268
   Total_Number_of_Failures1=sum(Failures_Vector1); % The total number
1269
                                                       % of failures in
1270
                                                       % the object
1271
1272
                                                       % detection
                                                       % process.
1273
1274
   1275
1276
        '=======\r\n']);
   fprintf(fid,['** The Total Number of Successes: %0.3d out '....
1277
1278
        'of %0.3d (%3.4f%%) \r\n\n'], Total_No_of_Objects-....
1279
        Total_Number_of_Failures1, Total_No_of_Objects, .....
```

```
((Total_No_of_Objects-Total_Number_of_Failures1)/....
1280
        Total_No_of_Objects) *100);
1281
   fprintf(fid,['** The Total Number of Failures: %0.3d '.....
        'out of %0.3d (%3.4f%%) \r\n\n'], Total_Number_of_Failures1,....
1283
        Total_No_of_Objects,.....
1284
        (Total_Number_of_Failures1/Total_No_of_Objects) *100);
1285
   fclose(fid);
1287
   close all
1288
   clc
1289
1290
1291 disp(['Please, see the documented results of object '.....
        'detection in the open'])
1292
1293 disp(['text file then press any keyboard button to '.....
        'resume the code >>>>'])
1294
1295 Text='Object Detection Results for Testing.txt';
1296 open(Text) % Opening the text file which contains
               % the results of object detection.
1298 pause
1299 ClC
1300 open('The_JTC_Testing_and_Setting_up_Thresholds.m')
```


Results of the Optical Recognition

Table G.1: The recognition of all 108 objects by using the joint transform correlator (JTC).

Object No.	Input Face	Recognized Output Face	Status
1	Mr. Mansour Alshammari	Unknown Object	Failure
2	Mr. Mansour Alshammari	Unknown Object	Failure
3	Mr. Mansour Alshammari	Unknown Object	Failure
4	Mr. Mansour Alshammari	Unknown Object	Failure
5	Mr. Mansour Alshammari	Unknown Object	Failure
6	Mr. Mansour Alshammari	Unknown Object	Failure
7	Mr. Mansour Alshammari	Unknown Object	Failure
8	Mr. Mansour Alshammari	Mr. Mohammed Hanafy	Failure
9	Mr. Mansour Alshammari	Mr. Mohammed Hanafy	Failure
10	Mr. Mansour Alshammari	Unknown Object	Failure
11	Mr. Mansour Alshammari	Unknown Object	Failure
12	Mr. Mansour Alshammari	Unknown Object	Failure
13	Mr. Mansour Alshammari	Unknown Object	Failure
14	Mr. Mansour Alshammari	Unknown Object	Failure
15	Mr. Mansour Alshammari	Unknown Object	Failure
16	Mr. Mansour Alshammari	Unknown Object	Failure
17	Mr. Mansour Alshammari	Unknown Object	Failure
18	Mr. Mansour Alshammari	Unknown Object	Failure
19	Mr. Mansour Alshammari	Unknown Object	Failure
20	Mr. Mansour Alshammari	Unknown Object	Failure
21	Mr. Mansour Alshammari	Mr. Mohammed Hanafy	Failure
22	Mr. Mansour Alshammari	Unknown Object	Failure
		Continued on the next	page

Object No.	Input Face	Recognized Output Face	Status
23	Mr. Mansour Alshammari	Unknown Object	Failure
24	Mr. Mansour Alshammari	Unknown Object	Failure
25	Mr. Mansour Alshammari	Mr. Mohammed Hanafy	Failure
26	Mr. Mansour Alshammari	Mr. Mohammed Hanafy	Failure
27	Mr. Mansour Alshammari	Mr. Mohammed Hanafy	Failure
28	Mr. Mansour Alshammari	Unknown Object	Failure
29	Mr. Mansour Alshammari	Mr. Mohammed Hanafy	Failure
30	Mr. Mansour Alshammari	Unknown Object	Failure
31	Mr. Mansour Alshammari	Mr. Mohammed Hanafy	Failure
32	Mr. Mansour Alshammari	Mr. Mohammed Hanafy	Failure
33	Mr. Mansour Alshammari	Mr. Mohammed Hanafy	Failure
34	Mr. Mansour Alshammari	Unknown Object	Failure
35	Mr. Mansour Alshammari	Mr. Mohammed Hanafy	Failure
36	Mr. Mansour Alshammari	Mr. Mohammed Hanafy	Failure
37	Mr. Methkir Alharthee	Unknown Object	Failure
38	Mr. Methkir Alharthee	Unknown Object	Failure
39	Mr. Methkir Alharthee	Unknown Object	Failure
40	Mr. Methkir Alharthee	Unknown Object	Failure
41	Mr. Methkir Alharthee	Unknown Object	Failure
42	Mr. Methkir Alharthee	Unknown Object	Failure
43	Mr. Methkir Alharthee	Unknown Object	Failure
44	Mr. Methkir Alharthee	Unknown Object	Failure
45	Mr. Methkir Alharthee	Unknown Object	Failure
46	Mr. Methkir Alharthee	Unknown Object	Failure
47	Mr. Methkir Alharthee	Unknown Object	Failure
48	Mr. Methkir Alharthee	Unknown Object	Failure
49	Mr. Methkir Alharthee	Unknown Object	Failure
50	Mr. Methkir Alharthee	Unknown Object	Failure
51	Mr. Methkir Alharthee	Unknown Object	Failure
52	Mr. Methkir Alharthee	Unknown Object	Failure
53	Mr. Methkir Alharthee	Unknown Object	Failure
54	Mr. Methkir Alharthee	Unknown Object	Failure
55	Mr. Methkir Alharthee	Unknown Object	Failure
56	Mr. Methkir Alharthee	Unknown Object	Failure
57	Mr. Methkir Alharthee	Unknown Object	Failure
58	Mr. Methkir Alharthee	Unknown Object	Failure
59	Mr. Methkir Alharthee	Unknown Object	Failure
60	Mr. Methkir Alharthee	Unknown Object	Failure
61	Mr. Methkir Alharthee	Unknown Object	Failure
		Continued on the next	page

Object No.	Input Face	Recognized Output Face	Status
62	Mr. Methkir Alharthee	Unknown Object	Failure
63	Mr. Methkir Alharthee	Unknown Object	Failure
64	Mr. Methkir Alharthee	Unknown Object	Failure
65	Mr. Methkir Alharthee	Unknown Object	Failure
66	Mr. Methkir Alharthee	Unknown Object	Failure
67	Mr. Methkir Alharthee	Unknown Object	Failure
68	Mr. Methkir Alharthee	Unknown Object	Failure
69	Mr. Methkir Alharthee	Unknown Object	Failure
70	Mr. Methkir Alharthee	Unknown Object	Failure
71	Mr. Methkir Alharthee	Unknown Object	Failure
72	Mr. Methkir Alharthee	Unknown Object	Failure
73	Mr. Mohammed Hanafy	Unknown Object	Failure
74	Mr. Mohammed Hanafy	Unknown Object	Failure
75	Mr. Mohammed Hanafy	Unknown Object	Failure
76	Mr. Mohammed Hanafy	Mr. Mohammed Hanafy	Success
77	Mr. Mohammed Hanafy	Unknown Object	Failure
78	Mr. Mohammed Hanafy	Mr. Mohammed Hanafy	Success
79	Mr. Mohammed Hanafy	Mr. Mohammed Hanafy	Success
80	Mr. Mohammed Hanafy	Mr. Mohammed Hanafy	Success
81	Mr. Mohammed Hanafy	Mr. Mohammed Hanafy	Success
82	Mr. Mohammed Hanafy	Mr. Mohammed Hanafy	Success
83	Mr. Mohammed Hanafy	Mr. Mohammed Hanafy	Success
84	Mr. Mohammed Hanafy	Unknown Object	Failure
85	Mr. Mohammed Hanafy	Mr. Mohammed Hanafy	Success
86	Mr. Mohammed Hanafy	Mr. Mohammed Hanafy	Success
87	Mr. Mohammed Hanafy	Mr. Mohammed Hanafy	Success
88	Mr. Mohammed Hanafy	Mr. Mohammed Hanafy	Success
89	Mr. Mohammed Hanafy	Mr. Mohammed Hanafy	Success
90	Mr. Mohammed Hanafy	Mr. Mohammed Hanafy	Success
91	Mr. Mohammed Hanafy	Mr. Mohammed Hanafy	Success
92	Mr. Mohammed Hanafy	Mr. Mohammed Hanafy	Success
93	Mr. Mohammed Hanafy	Unknown Object	Failure
94	Mr. Mohammed Hanafy	Unknown Object	Failure
95	Mr. Mohammed Hanafy	Unknown Object	Failure
96	Mr. Mohammed Hanafy	Unknown Object	Failure
97	Mr. Mohammed Hanafy	Mr. Mohammed Hanafy	Success
98	Mr. Mohammed Hanafy	Unknown Object	Failure
99	Mr. Mohammed Hanafy	Mr. Mohammed Hanafy	Success
100	Mr. Mohammed Hanafy	Unknown Object	Failure
		Continued on the next	page

Object No.	Input Face	Recognized Output Face	Status
101	Mr. Mohammed Hanafy	Unknown Object	Failure
102	Mr. Mohammed Hanafy	Unknown Object	Failure
103	Mr. Mohammed Hanafy	Mr. Mohammed Hanafy	Success
104	Mr. Mohammed Hanafy	Mr. Mohammed Hanafy	Success
105	Mr. Mohammed Hanafy	Mr. Mohammed Hanafy	Success
106	Mr. Mohammed Hanafy	Unknown Object	Failure
107	Mr. Mohammed Hanafy	Unknown Object	Failure
108	Mr. Mohammed Hanafy	Unknown Object	Failure

The table end.

Results of the Optical Detection

Table H.1: The detection of all 108 objects by using the joint transform correlator (JTC).

Object No.	Input Object	Detected Output Object	Status
1	a face	not a face	Failure
2	a face	not a face	Failure
3	a face	not a face	Failure
4	a face	not a face	Failure
5	a face	not a face	Failure
6	a face	not a face	Failure
7	a face	not a face	Failure
8	a face	not a face	Failure
9	a face	a face	Success
10	a face	not a face	Failure
11	a face	not a face	Failure
12	a face	not a face	Failure
13	a face	not a face	Failure
14	a face	not a face	Failure
15	a face	not a face	Failure
16	a face	not a face	Failure
17	a face	not a face	Failure
18	a face	not a face	Failure
19	a face	not a face	Failure
20	a face	not a face	Failure
21	a face	a face	Success
22	a face	not a face	Failure
		Continued on the next	nago

Continued on the next page ...

Object No.	Input Object	Detected Output Object	Status
23	a face	not a face	Failure
24	a face	not a face	Failure
25	a face	not a face	Failure
26	a face	a face	Success
27	a face	a face	Success
28	a face	not a face	Failure
29	a face	not a face	Failure
30	a face	a face	Success
31	a face	not a face	Failure
32	a face	not a face	Failure
33	a face	a face	Success
34	a face	a face	Success
35	a face	not a face	Failure
36	a face	a face	Success
37	a face	a face	Success
38	a face	a face	Success
39	a face	a face	Success
40	a face	a face	Success
41	a face	a face	Success
42	a face	a face	Success
43	a face	a face	Success
44	a face	a face	Success
45	a face	a face	Success
46	a face	a face	Success
47	a face	a face	Success
48	a face	a face	Success
49	a face	a face	Success
50	a face	a face	Success
51	a face	a face	Success
52	a face	a face	Success
53	a face	a face	Success
54	a face	a face	Success
55	a face	a face	Success
56	a face	a face	Success
57	a face	not a face	Failure
58	a face	a face	Success
59	a face	a face	Success
60	a face	a face	Success
61	a face	a face	Success
		Continued on the next	nago

Continued on the next page \dots

-			
Object No.	Input Object	Detected Output Object	Status
62	a face	a face	Success
63	a face	a face	Success
64	a face	a face	Success
65	a face	a face	Success
66	a face	a face	Success
67	a face	a face	Success
68	a face	a face	Success
69	a face	a face	Success
70	a face	not a face	Failure
71	a face	not a face	Failure
72	a face	not a face	Failure
73	a face	a face	Success
74	a face	not a face	Failure
75	a face	not a face	Failure
76	a face	a face	Success
77	a face	not a face	Failure
78	a face	not a face	Failure
79	a face	not a face	Failure
80	a face	not a face	Failure
81	a face	not a face	Failure
82	a face	a face	Success
83	a face	not a face	Failure
84	a face	a face	Success
85	a face	not a face	Failure
86	a face	a face	Success
87	a face	not a face	Failure
88	a face	a face	Success
89	a face	a face	Success
90	a face	a face	Success
91	a face	a face	Success
92	a face	not a face	Failure
93	a face	a face	Success
94	a face	not a face	Failure
95	a face	not a face	Failure
96	a face	not a face	Failure
97	a face	not a face	Failure
98	a face	a face	Success
99	a face	not a face	Failure
100	a face	a face	Success
		Continued on the next	

Continued on the next page \dots

Object No.	Input Object	Detected Output Object	Status
101	a face	a face	Success
102	a face	a face	Success
103	a face	not a face	Failure
104	a face	a face	Success
105	a face	not a face	Failure
106	a face	a face	Success
107	a face	a face	Success
108	a face	a face	Success

The table end.



MSEs Plots of Reconstructing Some Training Faces

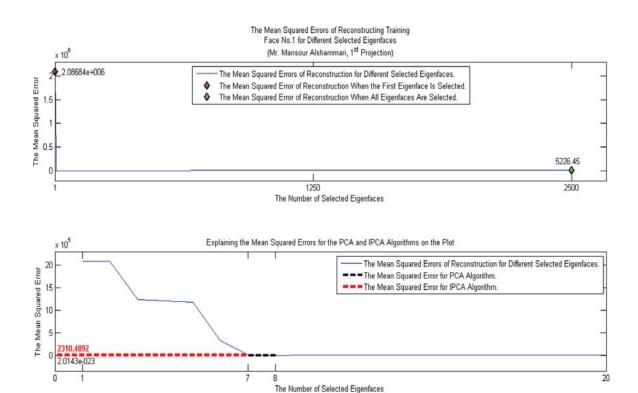
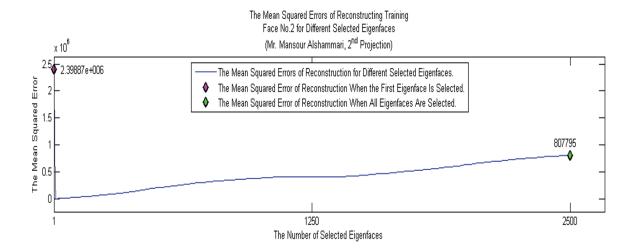


Figure I.1: The plot of the mean squared errors (MSEs) of reconstructing training face number one for different selected eigenfaces compared with resulted mean squared errors when the PCA and IPCA algorithms are used.



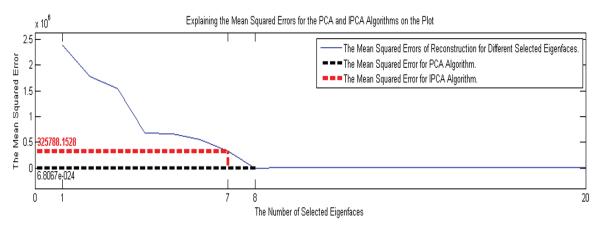


Figure I.2: The plot of the mean squared errors (MSEs) of reconstructing training face number two for different selected eigenfaces compared with resulted mean squared errors when the PCA and IPCA algorithms are used.

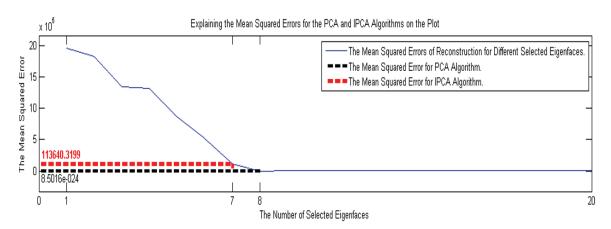
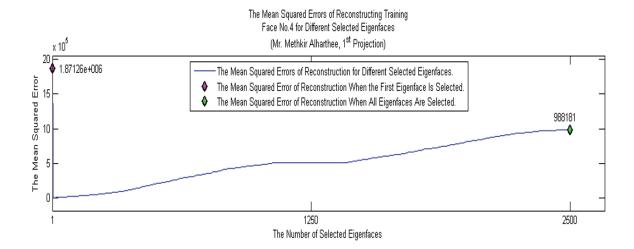


Figure I.3: The plot of the mean squared errors (MSEs) of reconstructing training face number three for different selected eigenfaces compared with resulted mean squared errors when the PCA and IPCA algorithms are used.



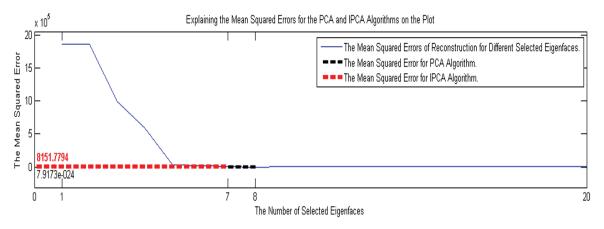
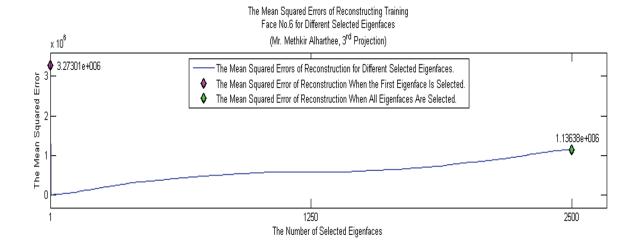


Figure I.4: The plot of the mean squared errors (MSEs) of reconstructing training face number four for different selected eigenfaces compared with resulted mean squared errors when the PCA and IPCA algorithms are used.



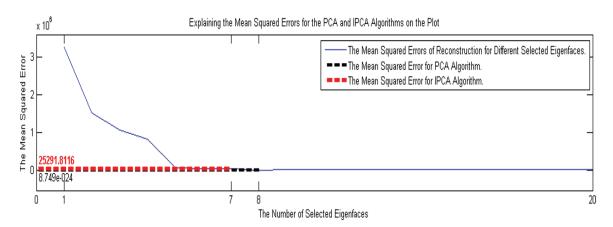
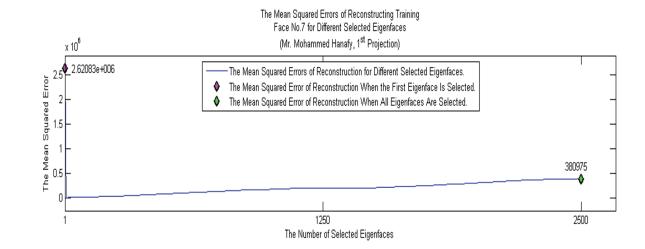


Figure I.5: The plot of the mean squared errors (MSEs) of reconstructing training face number six for different selected eigenfaces compared with resulted mean squared errors when the PCA and IPCA algorithms are used.



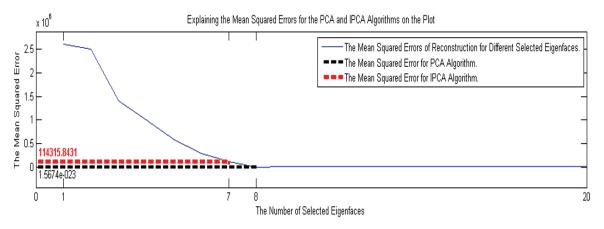


Figure I.6: The plot of the mean squared errors (MSEs) of reconstructing training face number seven for different selected eigenfaces compared with resulted mean squared errors when the PCA and IPCA algorithms are used.

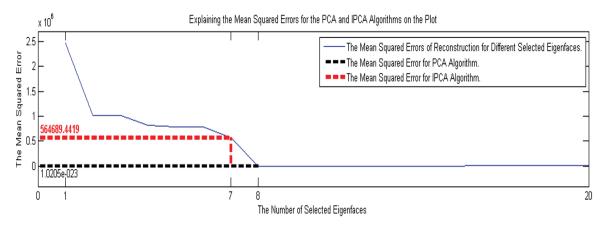
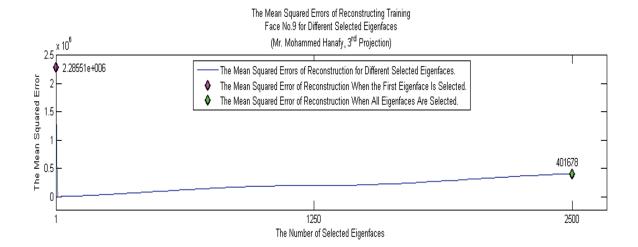


Figure I.7: The plot of the mean squared errors (MSEs) of reconstructing training face number eight for different selected eigenfaces compared with resulted mean squared errors when the PCA and IPCA algorithms are used.



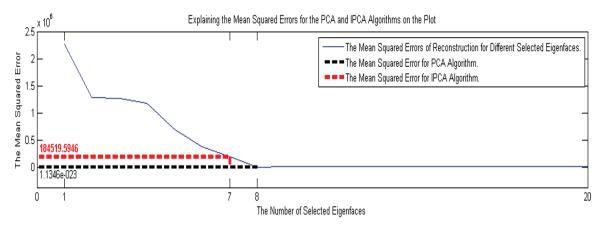


Figure I.8: The plot of the mean squared errors (MSEs) of reconstructing training face number nine for different selected eigenfaces compared with resulted mean squared errors when the PCA and IPCA algorithms are used.

A Code for Optimizing the Optical Model Database

This code is for optimizing the impulses database of the joint transform correlator (JTC) for object detection and face recognition.

```
% Optimizing the Impulses' Database of the Joint Transform
  % Correlator (JTC) for Object Detection and Face Recognition.
  clc
  clear all
  close all
  Total_No_of_Impulses=3; % The total number of the impulses.
12
  Objects_Folder=[cd ......
14
       '\The Black Background Tested Objects']; % The folder of the
16
                                                % black background
                                                % tested objects.
  % Objects_Folder=[cd ......
        '\The White Background Tested Objects']; % The folder of the
                                                % white background
                                                % tested objects.
  if isdir(Objects_Folder) == 0
22
      Error_Message=sprintf(.....
          'Error: The following folder does not exist\n%s',....
          Objects_Folder);
    warndlg(Error_Message);
```

```
break
  end
28
29
  Objects=....
30
       dir(fullfile(Objects_Folder,'*.jpg')); % Listing the folder of
31
                                               % the black or white
32
                                               % background objects.
33
34
   Total No of Objects=length(Objects); % The total number
35
                                         % of the objects.
36
37
  Objs=[36 36 36]; % Each element in this vector represents
38
                    % the total number of the objects that
39
                    % are taken for each impulse.
40
41
  L1=Objs(1); % L1=60 is the total number of the
42
               % objects for Mr. Mansour Alshammari.
43
  L2=L1+Objs(2); % L2=120 is the total number of the
                  % objects for Mr. Methkir Alharthee.
45
  L3=L2+Objs(3); % L3=180 is the total number of the
                  % objects for Mr. Mohammed Hanafy.
47
48
  % Imhist for setting up a threshold to work on just the pixels of
_{51} % a face and throwing the background pixels. Imhist calculates the
  % number of pixels in an object that have the same intensity
  % levels. So, if an object has a unified background then the
  % biggest histogram of the intensity levels will be for the
  % backgroubd pixels because the total number of pixels that have
56 % the same intensity levels are the background pixels of the
  % object. Note that, the histogram of a digital image is defined as
  % the discrete function, h(rk)=nk, where rk is the kth intensity
  % level and nk is the number of pixels in the image whose intensity
  % level is rk.
  hist_Objects=zeros(Total_No_of_Objects, 256);
  for A1=1:Total_No_of_Objects
      Object_Number=[num2str(A1) '.jpg'];
64
65
      Object_Location=fullfile(Objects_Folder,Object_Number);
      Object=double(rgb2gray(imread(Object_Location))); % The object.
66
      hist_Objects(A1,:)=....
67
           imhist(uint8(Object)); % Note that, each object must be
68
                                   % scaled between 0 to 255 before
69
                                   % using imhist. For doing that,
70
                                   % uint8 can be used for converting
71
                                   % the object class form double to
72
                                   % uint8.
73
74
         plot(hist_Objects(A1,:))
75
         if A1<=L1
76
```

```
title(['The Histogram of Object No.' num2str(A1) ....
                  ' for Mr. Mansour Alshammari'])
         elseif A1>L1 && A1<=L2
             title(['The Histogram of Object No.' num2str(A1) .....
                  ' for Mr. Methkir Alharthee'])
         elseif A1>L2 && A1<=L3
             title(['The Histogram of Object No.' num2str(A1) .....
                  ' for Mr. Mohammed Hanafy'])
         xlabel('Intensity Level r_{k}')
         ylabel({'The Number of Pixels in the Object Whose '....
              'Intensity Level Is r_{k} Where h(r_{k})=n_{k}'
         axis tight
         disp(['Please, press any keyboard button to explore '....
              'the remaining histograms >>>>>'])
         pause
         clc
  end
95
  Mean_hist_Objects=sum(hist_Objects,1)/.....
       Total_No_of_Objects; % The average histogram
                             % for all objects.
   % plot (Mean_hist_Objects)
101 % title('The Mean Histogram of All Objects')
102 % xlabel('Intensity Level r {k}')
103 % ylabel({'The Mean Number of Pixels from All Objects Whose';....
         'Intensity Level Is r_{k}'})
105 % axis tight
106 % pause
107
   % Setting up a threshold in order to work on just the pixels of the
109 % faces and blocking the pixels of the backgrounds.
110 Objects_Threshold=8; % The picked threshold is based on the average
                         % histogram for all objects when the objects
111
                         % have black backgrounds. Note that, all
112
                         % intesity levels below the threshold
113
                         % represent the objects backgrounds because
114
                         % these levels have the biggest histogram.
116 % Objects_Threshold=180; % The Picked threshold is based on the
                             % average histogram for all objects when
117
                             % the objects have white backgrounds. Note
118
                             % that, all intesity levels above the
                             % threshold represent the objects
120
                             % backgrounds because these levels have
                             % the biggest histogram.
122
123
124
125 Max_Desired_Cross_Fields=zeros(Total_No_of_Objects,....
       Total_No_of_Impulses); % Each element of each row in this
126
```

```
127
                                % matrix represents the maximum value
                                % of the desired crosscorrelated field
128
                                % between an object and one of the
129
                                % impulses.
130
131
132
   Recognition_Combinations=zeros(L1*(L2-L1)*(L3-L2),....
133
       Total_No_of_Impulses+1); % The first three columns of this
134
                                   % matrix contain different
135
                                   % combinations of impulses and the
136
137
                                   % third column represents the error
                                   % rates of recognition associated with
138
                                   % those combinations.
139
140
141
   Detection_Combinations=zeros(L1*(L2-L1)*(L3-L2),.....
142
       Total_No_of_Impulses+1); % The first three columns of this
143
                                   % matrix contain different
                                   % combinations of impulses and the
145
                                   % third column represents the error
146
                                   % rates of detection associated with
147
148
                                   % those combinations.
149
150
   i=0;
151
152
153
154
   for Im1=1:L1
        for Im2=L1+1:L2
155
            for Im3=L2+1:L3
156
157
                Impulses=[Im1 Im2 Im3]; % The selected impulses.
158
159
                for n=1:Total_No_of_Objects
160
161
                     % Normalizing all the objects for removing
162
                    % lightening effects on them then increasing the
163
                     % resolution of object detection and recognition.
164
                     % Note that, the normalization will be done just
165
                     % for the faces pixels for keeping variations among
166
                    % the objects and impulses just in the faces
167
                     % without the backgrounds effects.
168
169
                    Object_Number=[num2str(n) '.jpg'];
                    Object Location = ....
170
171
                         fullfile(Objects_Folder,Object_Number);
                    Object1=double(rgb2gray(....
172
                         imread(Object_Location))); % The object.
173
174
                    T=Object1>Objects_Threshold; % The pixels bigger
175
                                                    % than the threshold
176
```

```
% are of interest
177
                                                     % because they
178
                                                     % represent the pixels
179
                                                     % of a face.
180
                       T=Object1<Objects_Threshold; % The pixels smaller
181
                                                        % than the threshold
182
                                                       % are of interest
183
                                                       % because they
184
                                                       % represent the
185
                                                       % pixels of a face.
186
187
                     Object=zeros(size(T,1), size(T,2)); % The normalized
                                                            % object.
188
                     for R2=1:size(T,1)
189
                         for C2=1:size(T,2)
190
                              if T(R2,C2) == 1
191
192
                                  Object (R2,C2) = \dots
                                       ceil(255*(Object1(R2,C2)/max(....
193
                                       max(Object1)))); % The
194
                                                          % normalization
195
                                                          % of the object.
196
                                                          % This is done to
197
198
                                                          % increase the
                                                          % dynamic range of
199
                                                          % the object for
                                                          % visualization by
201
                                                          % scaling the
202
                                                          % intensities from
203
204
                                                          % 0 to 255.
                              end
205
                         end
206
                     end
207
                     [r c]=size(Object);
208
209
                     for m=1:Total_No_of_Impulses
210
211
                         % Normalizing all the impulses for removing
212
                         % lightening effects on them then increasing
213
                         % the resolution of object detection and
214
                         % recognition. Note that, the normalization
215
                         % will be done just for the faces pixels for
216
                         % keeping variations among the objects and
217
                         % impulses just in the faces without the
218
                         % backgrounds effects.
219
                         Impulse_Number=[num2str(Impulses(m)) '.jpg'];
220
221
                         Impulse Location = .....
                              fullfile(Objects_Folder, Impulse_Number);
222
                         Impulse1=double(rgb2gray(.....
223
                              imread(Impulse_Location))); % The impulse
224
225
                                                             % response.
226
```

```
227
                         T1=Impulse1>.....
                              Objects_Threshold; % The pixels bigger than
228
                                                   % the threshold are of
                                                   % interest because they
230
                                                   % represent the pixels
231
                                                   % of a face.
232
                            T1=Impulse1<....
233
                                Objects_Threshold; % The pixels smaller
234
                                                      % than the threshold
235
                                                      % are of interest
236
237
                                                      % because they
                                                      % represent the
238
                                                      % pixels of a face.
239
                          Impulse=zeros(size(T1,1),....
240
                              size(T1,2)); % The normalized
241
                                             % impulse response.
242
                          for R1=1:size(T1,1)
243
                              for C1=1:size(T1,2)
244
                                   if T1(R1,C1) == 1
245
                                       Impulse (R1,C1) = \dots
246
                                           ceil(255*(Impulse1(R1,C1)/....
247
248
                                           max(max(Impulse1))))....
                                            ; % The normalization of the
249
                                              % impulse response. This is
250
                                              % done to increase the
251
                                              % dynamic range of the
252
                                              % impulse for visualization
253
                                              % by scaling the intensities
254
                                              % from 0 to 255.
255
                                   end
256
                              end
257
                         end
258
                          [p q]=size(Impulse);
259
260
261
                          % Equalizing the width of the impulse response
262
                          % with the width of the object in order to
                          % collimate them on the input transparencies.
264
265
                         if q>c
                              if mod(q-c, 2) == 0
266
                                   Object=[zeros(r,(q-c)/2)] Object .....
267
                                       zeros(r,(q-c)/2)];
268
                              elseif mod(q-c, 2) == 1
269
                                  Object=[zeros(r,floor((q-c)/2)) \dots]
270
271
                                       Object zeros(r, floor((q-c)/2)+1)];
                              end
272
                         elseif q<c
273
274
                              if mod(c-q, 2) == 0
                                   Impulse=[zeros(p,(c-q)/2)] Impulse ....
275
                                       zeros (p, (c-q)/2);
276
```

```
277
                              elseif mod(c-q, 2) == 1
                                  Impulse=[zeros(p,floor((c-q)/2)) \dots
278
                                       Impulse zeros(p, floor((c-q)/2)+1)];
279
                              end
280
                         end
281
282
                         % Collimating the impulse response and the
                         % object on the input transparencies. Note
284
                         % that, the separation between the impulse
285
                         % response and object must be bigger than
286
287
                         % max{Wh, Wq}+Wq/2+Wh/2 in order to make the
                         % output crosscorrelations of the impulse
288
                         % response and object are completely separated
289
                         % without any overlapping.
290
                         Wh=size(Impulse,1); % The width of the impulse
291
292
                                               % response in the direction
                                               % of the y1-coordinate.
293
                         Wg=size(Object,1); % The width of the object in
294
                                              % the direction of the
295
                                              % y1-coordinate.
                         Y=max(Wh,Wg)+((Wh+Wg)/2); % The separation
297
298
                                                      % between the centers
                                                      % of the impulse
299
                                                      % response and
                                                      % object.
301
                         dis=10; % This distance in order to make the
302
                                  % separation between the centers of the
303
                                  % impulse response and object bigger
304
                                  % than max\{Wh, Wg\}+Wg/2+Wh/2.
305
                         Impulse_Object=[.....
306
                              zeros(ceil(max(Wh, Wg)/2+Wh/4+3/4*Wg)+....
307
                              dis, size (Impulse, 2)); Impulse; ....
308
                              zeros (max (Wh, Wg) + dis, size (Impulse, 2)); ....
309
                              Object; zeros (ceil (max (Wh, Wg) /2+....
310
                              3/4*Wh+Wg/4)+dis, size(Object, 2));
311
312
                         % Equalizing the dimensions of the input plane
313
                         % P1 by padding it with zeros.
314
315
                         [R C]=size(Impulse_Object);
                         if R>C
316
                              if mod(R-C, 2) == 0
                                  Impulse_Object=[....
318
319
                                       zeros(size(Impulse Object, 1), ....
                                       (R-C)/2) Impulse_Object ....
320
321
                                      zeros(size(Impulse_Object, 1), ....
                                       (R-C)/2);
322
                              elseif mod(R-C, 2) == 1
323
                                  Impulse_Object=[....
324
                                      zeros(size(Impulse_Object, 1),....
325
                                      floor((R-C)/2)) Impulse_Object ....
326
```

```
327
                                      zeros(size(Impulse_Object,1),....
                                      floor((R-C)/2)+1)];
328
                              end
                         elseif R<C
330
                              if mod(C-R, 2) == 0
331
                                  Impulse_Object=[zeros((C-R)/2,....
332
                                      size(Impulse_Object, 2));....
333
                                      Impulse_Object; zeros((C-R)/2,....
334
                                      size(Impulse Object, 2));
335
                              elseif mod(C-R, 2) == 1
336
                                  Impulse Object=[....
337
                                      zeros(floor((C-R)/2),....
338
                                      size(Impulse_Object, 2));....
339
                                      Impulse Object; .....
340
                                      zeros(floor((C-R)/2)+1,....
341
                                      size(Impulse_Object, 2))];
342
                              end
343
                         end
344
345
346
                         U1=Impulse_Object; % The transmitted field from
347
348
                                              % the input plane P1.
                         [M N] = size(U1);
349
350
                         L=10; % The physical side length of the array
351
                                % which holds the input plane P1 in
352
                                % meters (m).
353
                         dx1 Input=L/N; % The sample spacing in the
354
                                          % input plane array in the
355
                                          % direction of the spatial space
356
                                          % coordinate x1 in meters (m).
357
                         dy1_Input=L/M; % The sample spacing in the
358
                                          % input plane array in the
359
                                          % direction of the spatial space
360
                                          % coordinate y1 in meters (m).
361
                         x1_Axis_Input=-floor(N/2)*dx1_Input:....
362
                              dx1_Input:ceil(N/2)*dx1_Input-....
                              dx1_Input; % Sampling the input plane P1 in
364
                                          % the direction of the spatial
365
                                          % space coordinate x1.
366
                         y1_Axis_Input=-floor(M/2)*dy1_Input:....
                              dy1_Input:ceil(M/2)*dy1_Input-....
368
                              dyl Input; % Sampling the input plane Pl in
369
                                          % the direction of the spatial
370
371
                                          % space coordinate v1.
372
373
                         U2=fftshift(fft2(fftshift(....
374
                             U1))); % The Fourier transform of the
375
                                     % transmitted field in the back
376
```

```
% focal plane of the lens L2.
377
                         I=(abs(U2)).^2; % The intensity of the Fourier
378
                                          % transformed field in the
379
                                          % plane P2.
380
381
                         lambda=550e-9; % The wavelength in meters (m).
382
                         f=0.055; % The focal length in meters (m).
                         dx2=(lambda*f)/...
384
                              (N*dx1 Input); % The sample spacing in the
385
                                             % plane P2 in the direction
386
387
                                              % of the spatial space
                                              % coordinate x2 in meters
388
                                              % (m).
389
                         dy2=(lambda*f)/...
390
                              (M*dy1_Input); % The sample spacing in the
391
                                              % plane P2 in the direction
392
                                              % of the spatial space
393
                                              % coordinate y2 in meters
394
                                              % (m).
395
                         x2_Axis=-floor(N/2) *dx2:dx2:ceil(N/2) *dx2-...
                             dx2; % Sampling the plane P2 in the
397
398
                                   % direction of the spatial space
                                   % coordinate x2.
399
                         y2_Axis=-floor(M/2)*dy2:dy2:ceil(M/2)*dy2-...
                             dy2; % Sampling the plane P2 in the
401
                                   % direction of the spatial space
402
403
                                   % coordinate y2.
404
405
                         U3=ifftshift(ifft2(ifftshift(.....
406
                             I))); % The crosscorrelated field in the
407
                                    % back focal plane of the lens L4.
408
409
                         dx3=(lambda*f)/(N*dx2); % The sample spacing in
410
                                                   % the plane P3 in the
411
                                                   % direction of the
412
                                                   % spatial space
413
                                                   % coordinate x3 in
414
415
                                                   % meters (m).
                         dy3=(lambda*f)/(M*dy2); % The sample spacing in
416
                                                   % the plane P3 in the
417
                                                   % direction of the
418
419
                                                   % spatial space
                                                   % coordinate y3 in
420
421
                                                   % meters (m).
                         x3_Axis=-floor(N/2)*dx3:dx3:ceil(N/2)*dx3-....
422
                             dx3; % Sampling the plane P3 in the
423
                                   % direction of the spatial space
424
                                   % coordinate x3.
425
                         y3_Axis=-floor(M/2)*dy3:dy3:ceil(M/2)*dy3-...
426
```

```
dy3; % Sampling the plane P3 in the
427
                                   % direction of the spatial space
428
                                   % coordinate y3.
430
431
                         % Synthesizing a desired filtering mask then
432
                         % filtering the crosscorrelated field in the
433
                         % plane P3.
434
                         Cen=floor(M/2)+1; % The center of the filtering
435
                                            % mask.
436
437
                         Cen1=Cen-(Y+dis); % The center of the desired
                                            % crosscorrelated field.
438
                         Wh1=q; % The width of the impulse response in
439
                                 % the direction of the x1-coordinate.
440
                         Wq1=c; % The width of the object in the
441
                                 % direction of the x1-coordinate.
442
443
                         Mask=zeros(M,N);
444
                         for P=Cen1-floor((Wh+Wg)/2):Cen1+....
445
                                  ceil((Wh+Wg)/2)
446
                             for Q=Cen-floor((Wh1+Wq1)/2):Cen+....
447
448
                                      ceil((Wh1+Wq1)/2)
                                 Mask(P,Q)=1;
449
                             end
450
                         end
451
452
                         Cross_Field=Mask.*U3; % The filtered
453
454
                                                 % crosscorrelated field
                                                 % in the plane P3.
455
456
457
                         % For simplicity, instead of processing the
458
                         % entire image of the filtered crosscorrelated
459
                         % field, we select only the crosscorrelated
460
                         % field of interest.
461
                         P=Cen1-floor((Wh+Wg)/2):Cen1+ceil((Wh+Wg)/2);
462
                         Q=Cen-floor((Wh1+Wq1)/2):Cen+ceil((Wh1+Wq1)/2);
463
                         Desired_Cross_Field=U3(P,Q);
464
465
466
                         Max_Desired_Cross_Fields(n,m)=....
467
                             max(max(Desired_Cross_Field));
468
469
                     end
470
                end
471
472
473
                % Testing the process of object recognition.
474
                % Note that, the objects here are known for us in
475
                % order to use them for testing the object recognition
476
```

```
477
                 % process as well as setting up a recognition
                % threshold.
478
479
                % The elements in each of the following vectors
480
                % represent the maximum values of the desired
481
                % crosscorrelated fields between the objects and their
482
                % corresponding impulse. Note that, each impulse and
                % its corresponding objects have a same face so the
484
                % vectors will include the biggest crosscorrelations.
485
                V1=(Max_Desired_Cross_Fields(1:L1,1)).';
486
487
                V2=(Max Desired Cross Fields(L1+1:L2,2)).';
                V3=(Max_Desired_Cross_Fields(L2+1:L3,3)).';
488
489
                % The calculation of the mean and the standard
490
                % deviation for each vector of the biggest
491
                % crosscorrelations and stacking them in a vector for
492
                % the means and another for the standard deviations.
493
                % This is done for setting up a threshold for object
494
                % recognition.
495
                V_{mean} = [mean (V1); mean (V2); mean (V3)];
                V_STD=[std(V1); std(V2); std(V3)];
497
498
                Failures_Vector=zeros(1, .....
499
                     Total_No_of_Objects); % A vector for counting the
                                             % number of failures in the
501
                                             % object recognition process.
502
503
                for w=1:Total_No_of_Objects
504
                     % The object recognition process.
505
                     for ii=1:Total_No_of_Impulses
506
                         if max(Max_Desired_Cross_Fields(w,:)) == ....
507
                                  Max_Desired_Cross_Fields(w,ii) && ....
508
                                  max (Max_Desired_Cross_Fields(w,:))>=...
509
                                  (V_Mean(ii,1)-V_STD(ii,1)) && ....
510
                                  max (Max_Desired_Cross_Fields(w,:)) <=...</pre>
511
                                  (V_Mean(ii,1)+V_STD(ii,1))
512
513
                              z={'Mr. Mansour Alshammari';....
                                  'Mr. Methkir Alharthee'; .....
514
515
                                  'Mr. Mohammed Hanafy'};
                              Recognized_As=char(z(ii,1));
516
                             break
517
                         else
518
519
                              Recognized As='Unknown Object';
                         end
520
521
                     end
522
                     % Defining the object.
523
524
                     if w \le L1
                         name='Mr. Mansour Alshammari';
525
                     elseif L1 < w \&\& w <= L2
526
```

```
527
                         name='Mr. Methkir Alharthee';
                    else name='Mr. Mohammed Hanafy';
528
530
                    Str1=strcmp(Recognized_As,....
531
                         'Mr. Mansour Alshammari');
532
                    Str2=strcmp(Recognized_As,'Mr. Methkir Alharthee');
533
                    Str3=strcmp(Recognized_As,'Mr. Mohammed Hanafy');
534
                    F='Success';
535
                    if w<=L1 && Str1==0;
536
537
                         F='Failure';
                         Failures_Vector(1, w)=1;
538
                    elseif w>L1 && w<=L2 && Str2==0;
539
                         F='Failure';
540
                         Failures Vector (1, w) = 1;
541
                    elseif w>L2 && w<=L3 && Str3==0;
542
                         F='Failure';
543
                         Failures_Vector(1,w)=1;
                    end
545
                end
546
547
                Total_Number_of_Failures=....
548
                     sum(Failures_Vector); % The total number of
549
                                            % failures in the object
550
                                            % recognition process.
551
552
                Recognition_Error_Rate=(Total_Number_of_Failures/....
553
                    Total No of Objects) *100; % The error rate
554
                                                 % of recognition.
555
556
                % Testing the process of object detection.
558
                % Note that, the objects here are known for us in order
559
                % to use them for testing the object detection process
560
                % as well as setting up a detection threshold.
562
                % The calculation of the mean and standard deviation
563
                % for the crosscorrelations between the objects and
564
                % each impulse response. This is done for setting up a
565
                % threshold for object detection.
566
                Vectorization=reshape (Max_Desired_Cross_Fields, 1, .....
567
                     size(Max_Desired_Cross_Fields,1)*....
568
                     size (Max Desired Cross Fields, 2));
569
                Mean=mean(Vectorization);
570
                STD=std(Vectorization);
571
572
                Failures_Vector1=zeros(1,....
573
574
                    Total_No_of_Objects); % A vector for counting the
                                            % number of failures in the
575
                                            % object detection process.
576
```

```
577
                 for w=1:Total_No_of_Objects
578
                     % The object detection process.
                     if max(Max_Desired_Cross_Fields(w,:))>=....
580
                              (Mean-STD) && .....
581
                              max(Max_Desired_Cross_Fields(w,:))<=....</pre>
582
                              (Mean+STD)
                         Detected_As='a face';
584
                     else
585
                         Detected_As='not a face';
586
587
                     end
588
                     b='a face'; % The object originally is a face.
589
590
                     Str=strcmp(Detected_As, 'a face');
591
                     F='Success';
592
                     if w<=L3 && Str==0;
593
                         F='Failure';
594
                         Failures_Vector1(1,w)=1;
595
                     end
                 end
597
598
                 Total_Number_of_Failures1=....
599
                     sum(Failures_Vector1); % The total number of
                                              % failures in the object
601
                                               % detection process.
602
603
604
                 Detection_Error_Rate=(Total_Number_of_Failures1/....
                     Total_No_of_Objects) *100; % The error rate
605
                                                  % of detection.
606
607
608
                 Recognition_Combinations((Im3-L2)+i,:)=....
609
                     [Impulses Recognition_Error_Rate];
610
611
612
                 Detection_Combinations((Im3-L2)+i,:)=....
                     [Impulses Detection_Error_Rate];
614
615
            end
616
            i=i+(Im3-L2);
617
        end
618
619
        Im1
   end
620
621
622
   save ('Impulses Combinations for Recognition', ....
623
        'Recognition_Combinations')
   save ('Impulses Combinations for Detection', ....
625
        'Detection_Combinations')
626
```

```
627
628
   % Finding the optimal combination of impulses which obtain the
   % lowest error rate of recognition.
   Optimal_Combination_Recognition=0; % The optimal combination of
631
                                         % impulses for recognition.
632
   Optimal_Error_Rate_Recognition=0; % The lowest error rate of
633
                                       % recognition that is produced
634
                                       % when the optimal combination
635
                                       % of impulses for recognition
636
637
   for j=1:size(Recognition_Combinations, 1)
638
       if Recognition_Combinations(j, Total_No_of_Impulses+1) == .....
639
                min(Recognition_Combinations(:,Total_No_of_Impulses+1))
            Optimal Combination Recognition = .....
641
642
                Recognition_Combinations(j,1:Total_No_of_Impulses);
            Optimal_Error_Rate_Recognition=....
643
                Recognition_Combinations(j, Total_No_of_Impulses+1);
       end
645
   end
646
647
648
   % Finding the optimal combination of impulses which obtain the
649
   % lowest error rate of detection.
650
   Optimal_Combination_Detection=0; % The optimal combination of
651
                                       % impulses for detection.
652
653
   Optimal_Error_Rate_Detection=0; % The lowest error rate of
                                      % detection that is produced when
654
                                     % the optimal combination of
655
                                     % impulses for detection is used.
656
   for j=1:size(Detection_Combinations, 1)
657
       if Detection_Combinations(j, Total_No_of_Impulses+1) == .....
658
                min(Detection_Combinations(:, Total_No_of_Impulses+1))
659
            Optimal_Combination_Detection=....
660
                Detection_Combinations(j,1:Total_No_of_Impulses);
661
            Optimal_Error_Rate_Detection=....
662
663
                Detection_Combinations(j, Total_No_of_Impulses+1);
664
       end
665
   end
```


Authorizations for Using People Photos

Figure K.1, Figure K.2 and Figure K.3 show respectively the authorizations for using the photos of Mr. Mansour Thuwaini Al-Shammari, Mr. Mathkar Alawi Alharthi and Mr. Mohamed Elsayed Hanafy.

I am Mansour Thuwaini Al-Shammari. I give Abdulaziz Abdullah Alorf full authorization to use the images of my face in his researches.

Signature,

Figure K.1: The authorization for using the photos of Mr. Mansour Thuwaini Al-Shammari.

I am Mathkar Alawi Alharthi. I give Abdulaziz Abdullah Alorf full authorization to use the images of my face in his researches.

Figure K.2: The authorization for using the photos of Mr. Mathkar Alawi Alharthi.

I am Mr. Mohamed Elsayed Hanafy. I give Abdulaziz Abdullah Alorf full authorization to use the images of my face in his researches.

Signature,

Figure K.3: The authorization for using the photos of Mr. Mohamed Elsayed Hanafy.