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Abstract

THE main objectives of this thesis are to validate an improved principal components
analysis (IPCA) algorithm on images; designing and simulating a digital model for
image compression, face recognition and image detection by using a principal compo-
nents analysis (PCA) algorithm and the IPCA algorithm; designing and simulating
an optical model for face recognition and object detection by using the joint transform
correlator (JTC); establishing detection and recognition thresholds for each model;
comparing between the performance of the PCA algorithm and the performance of
the IPCA algorithm in compression, recognition and, detection; and comparing be-
tween the performance of the digital model and the performance of the optical model
in recognition and detection. The MATLAB © software was used for simulating the
models.

PCA is a technique used for identifying patterns in data and representing the data
in order to highlight any similarities or differences. The identification of patterns in
data of high dimensions (more than three dimensions) is too difficult because the
graphical representation of data is impossible. Therefore, PCA is a powerful method
for analyzing data. IPCA is another statistical tool for identifying patterns in data. It
uses the information theory for improving PCA. The joint transform correlator (JTC)
is an optical correlator used for synthesizing a frequency plane filter for coherent
optical systems.

The IPCA algorithm, in general, behaves better than the PCA algorithm in the
most of the applications. It is better than the PCA algorithm in image compression
because it obtains higher compression, more accurate reconstruction, and faster pro-
cessing speed with acceptable errors; in addition, it is better than the PCA algorithm
in real-time image detection due to the fact that it achieves the smallest error rate
as well as remarkable speed. On the other hand, the PCA algorithm performs better
than the IPCA algorithm in face recognition because it offers an acceptable error rate,
easy calculation, and a reasonable speed. Finally, in detection and recognition, the
performance of the digital model is better than the performance of the optical model.






Chapter 1. Introduction 1

Chapter

Introduction

1.1 Background

1.1.1 Digital Processing

PRINCIPAL components analysis (PCA) [1] and improved principal components
analysis (IPCA) [2] are statistical tools frequently used for analyzing data. Their
main applications are pattern recognition such as face detection and recognition, and
data compression such as image compression.

PCA is a technique used for identifying patterns in data and representing the data
in such a way that their similarities and differences are highlighted. The identification
of patterns in data of high dimensions (more than three dimensions) is too difficult
because the graphical representation of data is impossible. Therefore, PCA is a pow-
erful method for analyzing data. The PCA algorithm starts with the creation of a
data set and ends with the projection of the data on the eigenspace. A covariance
matrix is computed for the data; in addition, the eigenvectors and eigenvalues of the
covariance matrix are obtained. Eigenvectors associated with the biggest eigenvalues
of the covariance matrix follow the most significant patterns of the data. Those eigen-
vectors are called the principle components of the data set. Therefore, the eigenvalues
of the covariance matrix work as measures of how much information is contained in
each of the principal components. The principal components form a feature vector
matrix. In order to select principal components that form the feature vector ma-
trix, the variance contribution rate (VCR) and the total variance contribution rate
(TVC) (they are proposed in the IEEE paper presented in Reference [2]) are com-
puted. When the TV (' is significantly high then ¢ eigenvectors associated with the
biggest ¢ eigenvalues can be selected. The feature vector matrix is used for projecting
the data on the eigenspace. Finally, by projecting the data on the eigenspace, the
PCA algorithm is completed.
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IPCA is another statistical tool for identifying patterns in data. It is similar
to PCA except for the way that it selects eigenvectors that form the feature vector
matrix. It affords a new accurate method to measure the information content of
the principal components based on the information theory for improving PCA. For
measuring the degree of information content of the eigenvectors, two new concepts
are used; the first is the information rate (/R) and the second is the accumulated
information rate (AIR) (they are proposed in the IEEE paper presented in Reference
[2]). When the AIR is significantly high then ¢ eigenvectors associated with the
biggest ¢ eigenvalues can be selected.

1.1.2 Optical Processing

Spatially coherent light is going to be used in the optical model. Coherent optical sys-
tems are linear in complex amplitude; therefore, filtering processes can be performed
by direct manipulation of complex amplitude appearing in the back focal plane of a
Fourier transforming lens. There are at least two methods for synthesizing the fre-
quency plane filter for coherent optical systems. One of these methods is by using
the joint transform correlator (JTC), Reference [3], Section 8.5.

The JTC is an optical correlator used for synthesizing the frequency plane filter for
coherent optical systems. This correlator was invented by Weaver and Goodman [4].
The filter is divided into two stages: recording the filter, and getting the filter output.
The transparencies of the desired impulse response h and the data g (here it is called
the object) to be filtered are aligned simultaneously in the input plane. They are
then Fourier transformed together. At that point, a spatial light modulator (SLM)
captures the intensity distribution of the transformed field. The intensity is then
Fourier transformed again for producing the cross-correlated field in the output plane.
The output field is composed of four terms; two terms respectively represent the cross-
correlation of the impulse response h and itself as well as the cross-correlation of the
data g and itself; the third and fourth terms represent the cross-correlations of h and
g. Lastly, the joint transform correlator has a great feature: its ability to change
the filter impulse response quickly. Therefore, it is considered beneficial for real-time
systems. On the other hand, its defect is that the input bandwidth of the data is
reduced due to the filter impulse response being introduced simultaneously with the
data to be filtered.

1.2 Problem Statement

The main objectives of this thesis are to validate the improved principal components
analysis (IPCA) algorithm on images; designing and simulating a digital model for
image compression, face recognition, and image detection by using the principal com-
ponents analysis (PCA) algorithm and the IPCA algorithm; designing and simulating
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an optical model for face recognition and object detection by using the joint transform
correlator (JTC); establishing detection and recognition thresholds for each model;
comparing between the performance of the PCA algorithm and the performance of
the IPCA algorithm in compression, recognition and detection; and comparing be-
tween the performance of the digital model and the performance of the optical model
in recognition and detection.

1.3 Technical Approach

1.3.1 Digital Model

1.3.1.1 Introduction

This subsection provides a general overview of technical approaches behind the ap-
plication of the PCA and IPCA algorithms in image compression, face recognition,
and image detection.

Here, the database for each algorithm is composed of some images of faces (training
faces). The principal components that form the feature vector matrix are here called
eigenfaces.

1.3.1.2 Image Compression

When some of the eigenvectors that are calculated from the covariance matrix for all
training faces are selected to form the feature vector matrix then the dimensions of
the reconstructed data set will be reduced. This implies that the PCA and IPCA
algorithms work as compression. The algorithms are said to be lossy because a
decompressed image is not exactly the same as the original one, but is generally
worse.

Compression performance for each algorithm as analyzed from three points of view
are the speed of compression and reconstruction, the quality of a reconstructed image,
and the size of compression. The number of the eigenfaces that is used to compress
and reconstruct the training faces mainly controls the processing speed of compression
and reconstruction. When a small number of the eigenfaces is used to project and
reconstruct the training faces then the processing speed will increase and vice versa.
For measuring the quality of a reconstructed image, the mean squared error (MSE)
between the image and its reconstruction can be computed. The size of compression
can be measured in two ways: these are through the information rate and the mean
squared error (MSE) of compressed images. The information rate measures how much
information is present after compression compared with information present before
compression; in other words, it measures the number of pixels after compression
compared to before compression.
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1.3.1.3 Face Recognition

The PCA and IPCA algorithms are used to recognize an unknown face image based on
the database that contains the training faces. For doing face recognition, an unknown
face image is taken. The training faces and the unknown face image are projected
on the eigenspace by using the PCA or IPCA feature vector matrix. The Euclidean
distance between the projected unknown face image and each projected training face
is computed. Then the unknown face image is recognized as a training face, which
has the minimum distance from the unknown face image.

Unfortunately, when the unknown face image does not have a similar training
face then getting the minimum distance does not always mean that the unknown
face image is recognized as a training face that has the minimum distance from
the unknown face image. Therefore, a certain threshold must be used to increase
the accuracy of recognition. For setting up a recognition threshold, the mean and
standard deviation (the average distance from the mean to a point) are established for
each training face. Then recognition can be updated as, when the obtained minimum
distance between the unknown face image and a training face is less than or equal to
the mean plus the standard deviation for the training face and bigger than or equal
to the mean minus the standard deviation for the training face. At that point, the
unknown face image is recognized as that training face; otherwise, it is an unknown
face image.

Recognition performance can be analyzed from two points of view: these are the
speed of recognition and the error rate. The number of selected eigenfaces that are
used to recognize the unknown face image mainly controls the recognition speed.
When the number of the selected eigenfaces decreases, the processing speed increases
and vice versa. The error rate computes the percentage of error in recognition.

1.3.1.4 Image Detection

The PCA and IPCA algorithms are used to detect whether or not an unknown image
contains a face based on a determined threshold for detection. Hence, in image
detection, only a detection threshold is needed.

To obtain the detection threshold, the mean and the standard deviation are es-
tablished for some images that contain faces. In regards to detection, an unknown
image is taken. It is projected on the eigenspace and reconstructed again by using
the PCA or IPCA feature vector matrix. Then, detection can be performed as if the
Euclidean distance between the unknown image and its reconstruction is less than or
equal to the computed mean plus standard deviation and bigger than or equal to the
computed mean minus standard deviation then the unknown image is detected as a
face image; otherwise, it is not a face image.

Detection performance can be analyzed from two points of view: these are the
speed of detection and the error rate. The number of selected eigenfaces that are
used to detect the unknown image mainly controls the detection speed. When the
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number of selected eigenfaces decreases, the processing speed increases and vice versa.
The error rate computes the percentage of error in detection.

1.3.2 Optical Model

1.3.2.1 Introduction

This subsection provides a general overview of technical approaches behind the appli-
cation of the joint transform correlator (JTC) in face recognition and object detection.

1.3.2.2 Face Recognition

The joint transform correlator (JTC) is used to recognize an unknown face object
based on a database of desired impulses. The database is composed of some images
of faces (impulses). For face recognition, an unknown face object is picked. The
cross-correlated field between the unknown face object and each impulse is obtained.
Then, the unknown face object is recognized as an impulse, which has the biggest
cross-correlation with the unknown face object among other impulses.

Unfortunately, when the unknown face object does not have a similar impulse
response, getting the biggest cross-correlation does not always mean that the unknown
face object is recognized as an impulse, which has the biggest cross-correlation with
the unknown face object. Therefore, a certain threshold must be used to increase
the accuracy of recognition. For setting up a recognition threshold, the mean and
standard deviation (the average distance from the mean to a point) are established for
each impulse. Then, recognition can be updated, when the biggest cross-correlation
with an impulse is less than or equal to the mean plus the standard deviation for
the impulse and bigger than or equal to the mean minus the standard deviation for
the impulse then the unknown face object is recognized as that impulse response;
otherwise, it is an unknown face object.

Recognition performance can be analyzed by calculating an error rate of recogni-
tion. The error rate computes the percentage of error in recognition.

1.3.2.3 Object Detection

The joint transform correlator (JTC) is used to detect whether or not an unknown
object contains a face based on a determined threshold for detection. Hence, in object
detection, only a detection threshold is needed.

To obtain the detection threshold, the mean and the standard deviation are estab-
lished for some objects that contain faces. For doing detection, an unknown object
is taken. The unknown object is cross-correlated with any impulse response. Then,
detection can be performed as if the resulted cross-correlation is less than or equal
to the computed mean plus standard deviation and bigger than or equal to the com-
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puted mean minus standard deviation then the unknown object is detected as a face
object; otherwise, it is not a face object.

Detection performance can be analyzed by calculating an error rate of detection.
The error rate computes the percentage of error in detection.

1.4 Summary of Key Results

The IPCA algorithm, in general, behaves better than the PCA algorithm in the most
of the applications. It is better than the PCA algorithm in image compression because
it obtains higher compression, more accurate reconstruction, and faster processing
speed with acceptable errors; in addition, it is better than the PCA algorithm in
real-time image detection due to the fact that it achieves the smallest error rate as
well as remarkable speed. On the other hand, the PCA algorithm performs better
than the IPCA algorithm in face recognition because it offers an acceptable error rate,
easy calculation, and a reasonable speed. Finally, in detection and recognition, the
performance of the digital model is better than the performance of the optical model.

1.5 Organization

The remainder of this thesis is organized as follows:
o Chapter 1: provides a general overview of this thesis.

o Chapter 2: covers theoretical backgrounds behind the PCA and IPCA algo-
rithms, their applications, and their performance in the applications. A com-
parison between the PCA and IPCA algorithms is also provided in this chapter.
Finally, it shows a theoretical background for designing an optical model for
object detection and face recognition; and theories behind the joint transform
correlator (JTC), its applications, and its performance in the applications.

o Chapter 3: presents the simulations of the PCA and IPCA algorithms by us-
ing the MATLAB © software and comparison between the simulations. It also
presents the simulations of the PCA and IPCA applications by using the MAT-
LAB © software. Lastly, this chapter provides the simulations of the joint
transform correlator (JTC) and its applications by using the MATLAB © soft-
ware.

o Chapter 4: covers the performance results of the PCA and IPCA algorithms in
their applications. Also, this chapter provides the results of JTC performance
in its applications.

o Chapter 5: presents a conclusion of this thesis.
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Chapter

Theoretical Background

2.1 Preview

DIGITAL and optical image processing are areas used experimentally to establish
solutions to given problems. In this chapter, theoretical backgrounds for a couple of
digital and optical processing techniques are demonstrated.

2.2 Digital Processing

2.2.1 Introduction

Principal components analysis (PCA) and improved principal components analysis
(IPCA) are statistical tools frequently used for analyzing data. Their main applica-
tions are pattern recognition such as face detection and recognition, and data com-
pression such as image compression. It is found that IPCA acts better than PCA in
the most of applications. The analysis of each one is covered in this section.

2.2.2 A Principal Components Analysis (PCA) Algorithm

2.2.2.1 Introduction

PCA is a technique used for identifying patterns in data and representing the data
in such a way as to highlight their similarities and differences. The identification
of patterns in data of high dimensions (more than three dimensions) is too difficult
because the graphical representation of data is impossible. Therefore, PCA is a
powerful method for analyzing data.

This subsection covers the steps that are needed for performing PCA on a set of
data and reconstructing the data set along with examples; as well as the steps that
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are needed for performing PCA on images and reconstructing the images back. How
and why the technique works are explained as well as what is happening at each step
is demonstrated.

2.2.2.2 Analysis of the PCA Algorithm

The PCA algorithm is built up based on the following steps:
Step 1: getting some data.

Step 2: computing the mean vector mp of the data set as in Equation 2.1. Where
D, is a column vector contains one data item such that D, = [ zk ]; and n is the

total number of the data items.
1 n
mp=—Y_ D (2.1)
ny4

Step 3: subtracting the mean from each of the data dimensions as in Equation 2.2.
This produces a data set whose mean is zero which means the data set is centered.
This step is really an important step for decreasing the error rate of face recognition.

R:[Dl—mp,...,Dn—mD] (22)

Step 4: calculating a covariance matrix as in Equation 2.3. The covariance matrix
is real and symmetric. ﬁ can be removed or left because it is just a normalization
factor which affects all values by the same amount. The division on n — 1 and not n
because the data set is a sample of the population. It is found that gives an answer
is very close to the answer that will result if the entire population is used. If the
covariance matrix is calculated for the entire population then the division must be

on n.
1 & 1
Z (Dk — mD) (Dk — mD)T = X RRT (23)

n—1;—7 n—1

C:

Step 5: obtaining the eigenvectors and eigenvalues of the covariance matrix C' as in
Equation 2.4 and Equation 2.5 respectively. Where the columns of the matrix A are
the eigenvectors of C; the diagonal of the matrix A contains the eigenvalues of C'; and
d is the number of the dimensions of the data set.

A = [vy,v9,v3,...,04] (2.4)

AN oo 0
A= 0 1], whee 3> X > >N\ (2.5)
0 - N
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Since the covariance matrix C' is a real and symmetric (Reference [5]; Pages 207
and 208; Theorems 5.9, 5.10, 5.11 and 5.12) d x d matrix then its eigenvectors form
an orthonormal basis. Therefore, the matrix A is an orthonormal matrix.

Step 6: choosing principal components and forming a feature vector matrix. Eigen-
vectors associated with the biggest eigenvalues of the covariance matrix C' follow the
most significant patterns of the data. Those eigenvectors are called the principle
components of the data set. Therefore, the eigenvalues of the covariance matrix C'
work as measures of how much information is contained in the principal components.

The feature vector matrix A, represented in Equation 2.6 is an d x ¢ (¢ < d)
matrix that contains only ¢ eigenvectors (principal components) from the matrix of
eigenvectors A.

Aq = [’Ul,’Ug,’Ug,...,’Uq] (26)

In order to select the principal components that form the feature vector matrix A,
the variance contribution rate (VCR) and the total variance contribution rate (7VC)
(they are proposed in the IEEE paper presented in Reference [2]) are computed as
in Equation 2.7 and Equation 2.8 respectively. When the TV (' is significantly high
then ¢ eigenvectors associated with the biggest ¢ eigenvalues can be selected.

A
VOR, (%) = ——~— %100, k=1,...,d (2.7)
k=1 Ak
q
TVC(%):Z’;;WMOO, q=1,....d (2.8)
Ek:1 k

Step 7: performing the principal components transform (also called the Hotelling or
Karhunen-Loéve transform).

Equation 2.9 is used for projecting the data on the eigenspace. The columns of the
matrix Y represent the coordinates of the projected data in the eigenspace.

Y =AlR (2.9)

The mean of the matrix Y ismy = E [AgR] = Al E[R] = 0. This has important
~——

meaning in face recognition. In fact, Y gives the original gentered data solely in terms
of the selected principal components instead of the original axes. It is possible to
express data in terms of any two perpendicular axes as shown in Reference [6], Page
167, Theorem 5.7.

Finally, by projecting the centered data on the eigenspace, the PCA algorithm is
completely done.
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2.2.2.3 An Example of the PCA Algorithm

The example moves simultaneously with the PCA steps illustrated in Sub-subsection
2.2.2.2 until a data set is transformed as follows:

Step 1: the two-dimensional data set D shown in Equation 2.10 is obtained for
performing the PCA algorithm. The plot of the data is shown in Figure 2.1.

D:lﬂ:[éigggggiﬁ 180 (2.10)

12

0k x ‘

Bl »

=- B x x

| x x

2k ] L]

Wz 3 4 s & 7 8 @ w0
Figure 2.1: The plot of the data set D.

Step 2: the mean vector mp of the data set is computed as in Equation 2.11.
o= Soe 10 -

Step 3: the mean is subtracted from each of the data dimensions then the centered
data set R is obtained as in Equation 2.12. The plot of the centered data is shown
in Figure 2.2.

R:[Dl—mD,...,Dlo—mD]

__ | =450 -3.50 -2.50 -1.50 -0.50 0.50 1.50 2.50 3.50 4.50 | _ | = (2 12)
] =370 —4.70 —0.70 —3.70 0.30 —0.70 4.30 1.30 5.30 2.30 | ’ ’
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Figure 2.2: The plot of the centered data set R.

Step 4: the covariance matrix C' is computed as in Equation 2.13. Since the non-
diagonal elements of the covariance matrix are positive then both the x and y variables
are expected to increase together.

1 10

C = =12 (D —mp) (D), —mp)”

1 T
*10—1XRR

0.1667 8.7222
~ | 8.7222 11.5667 |- (2.13)

Step 5: the eigenvectors and eigenvalues of the covariance matrix C' are computed
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respectively as in Equation 2.14 and Equation 2.15.

A = [’Ul, ’Ug]

[ 0.6572 —0.7538
~ | 07538 0.6572 ] (2.14)
a0
A__O )\2], where A\ > Ay
[ 19.1711 0
—| 0 15623 ] (2.15)

The centered data as well as the orthonormal eigenvectors are plotted together
in Figure 2.3. Figure 2.3 shows how the data have totally a noticed pattern; and
as anticipated from the covariance matrix, the two variables are increasing together.
The eigenvectors are plotted as diagonal dotted lines. As expected, they are perpen-
dicular to each other; more importantly they highlight patterns in the data where
the highly correlated eigenvector passes through the middle of the points. It divides
the points to two sets, like drawing a line of the best fit; and it describes the most
significant relationship between the data dimensions. The other eigenvector follows
little patterns of the data.

Step 6: for choosing principal components and forming the feature vector matrix A,
the variance contribution rate (VCR) and the total variance contribution rate (7VC)
are calculated in Table 2.1. Based on Table 2.1, the feature vector matrix in Equation
2.16 only contains the eigenvector which is associated with the biggest eigenvalue (the
highly correlated eigenvector).

Table 2.1: The calculations of the VCR and TV C.

k X VCR,(%) TVC (%)

1 19.1711 92.4648 92.4649
2  1.5623 7.5352 100
0.6576
L o

Therefore, by computing the eigenvectors of the covariance matrix C' and selecting
the highest correlated ones then lines that describe the data are extracted. The rest
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Figure 2.3: The plot of the centered data set R as well as the
orthonormal eigenvectors.

of the steps involve transforming the data such that they are expressed in terms of
the extracted lines.

Step 7: Equation 2.9 is used for performing the principal components transform; and
the coordinates of the projected data in the eigenspace are shown in Equation 2.17.

[ Along v, axis ]|
—5.7461
—5.8427
—2.1705
—3.7746
Yyt = —0.1025 . (2.17)
—0.1991
4.2269
2.6228
6.2950
4.6908

In Equation 2.17, it can be seen that the dimensions of the projected data are
reduced because the highest correlated eigenvector is only selected and the lowest
one is neglected then some information is lost here. The projected centered data are
plotted as in Figure 2.4. As shown in Figure 2.4, the projected centered data represent
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a series of data items along the highest correlated eigenvector axis v, without any
information about the data along the axis of the lowest correlated eigenvector vs.

0ar
08F
0.7k
06F
=M 05

04F

01F

Figure 2.4: The projected centered data by using just the highest
correlated eigenvector v;.

Therefore, in this step, the data are expressed in terms of the patterns between
them where the patterns are the extracted lines that highly characterize the relation-
ships between the data.

2.2.2.3.1 Taking All Eigenvectors as Principal Components for Doing
PCA

We want to figure out what happens in the example presented in Sub-subsection
2.2.2.3 when all eigenvectors are selected as principal components?

The coordinates of the projected data in the eigenspace when all eigenvectors are
taken to form the feature vector matrix A, (ie. A = A,) are shown in Equation
2.18; and they are plotted in Figure 2.5. The projected data in Equation 2.17 is
exactly equal to the first dimension of the projected data in Equation 2.18. The plot
in Figure 2.5 and the plot of the original centered data in Figure 2.2 are typically the
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same except that in Figure 2.5 the eigenvectors are the axes instead of x and y axes.

[ Along v, axis Along v, axis |
—5.7461 0.9604
—5.8427 —0.4505
—2.1705 1.4244
—3.7746 —1.3008
YT = —0.1025 0.5740 : (2.18)
—0.1991 —0.8369
4.2269 1.6951
2.6228 —1.0301
6.2950 0.8448
i 4.6908 —1.8805 |
25
2 .
151 . )
TF Y x
05+ *
>N D i
o5k %
Tr * Y
5 g
ok *
25}
: 4 ; i 2 4 :

Figure 2.5: The projected centered data when all eigenvectors are
used as principal components.

Therefore, there is no loss of information when all eigenvectors are selected as
principal components for doing PCA.
2.2.2.4 Reconstruction of the Data Set D

For reconstructing the data set, Equation 2.9 is turned around to get the centered
data set R as in Equation 2.19. Then the mean vector mp is added again to obtain
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the reconstructed data set D as in Equation 2.20.

R=(47)"xY (2.19)

(2.20)

— —1
D=(A]) XY +[mp,...,mpl,,

Since AqT in Equation 2.20 is not a square matrix and it has orthonormal (implies
orthogonality) column vectors then the left inverse (Reference [6], Page 21, Definition

-1 T
1.11) can be used to obtain its inverse. Its inverse is found to be (Ag) = (AqT) =
A, Then Equation 2.20 can be simplified as in Equation 2.21.

D=A,xY +[mp,...,mp (2.21)

dxn

2.2.2.5 Reconstruction of the Data Set D of the Example in
Sub-subsection 2.2.2.3

Equation 2.21 is used to reconstruct the data set D of the example in Sub-subsection
2.2.2.3 as in Equation 2.22. The reconstructed data are plotted in Figure 2.6. As
seen in Figure 2.6, some information is lost from the reconstructed data due to some
of the eigenvectors are used as principal components in performing PCA transform.

[ Along x axis Along y axis ]
1.7239 1.3689
1.6605 1.2960
4.0736 4.0640
- 3.0195 2.8549
D = 5.4327 5.6228 . (2.22)
5.3692 5.5500
82777 8.8860
7.2236 7.6769
9.6368 10.4449
| 8.5826 9.2357

2.2.2.5.1 Using All Eigenvectors for Reconstructing the Data Set D

When all eigenvectors are selected as principal components for performing PCA in the
example in Sub-subsection 2.2.2.3 then the original data set D will be reconstructed
perfectly (i.e. D = D) without loss of information.
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Figure 2.6: The reconstructed data by using just the highest cor-
related eigenvector v;.

2.2.2.6 Application of the PCA Algorithm to Images

The reason beyond performing the PCA algorithm on a simple database is to be able
to provide plots of data for showing PCA behavior at each step. After demonstrating
the PCA algorithm on a simple database, the idea can be generalized to see how the
PCA algorithm works when the data set is composed of images. This idea is based
on References [7] and [8]; and Reference [9], Section 12.5. The PCA algorithm can
be applied to images as in the following steps:

Step 1: creating a database.

The database is composed of n, N x N images of faces (training faces) on black
backgrounds such that I, where £ = 1,...,n; and n is the total number of the
training faces.

For decreasing the error rates of face detection and recognition, all face projections
must be defined in the database; images must have the same size; images must have
only faces and they are expanded to the boarders of the images; finally, images must
have unified backgrounds in order to discriminate between the pixels occupying the
backgrounds and the pixels occupying the faces.

Step 2: normalizing each training face .
This normalization is for removing lighting effects on the training faces. It is very
important to increase the accuracy of face recognition but it does not affect face
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detection.

The normalization must be done just for the pixels occupying the faces to keep
variations among the images just in the faces without the effects of the backgrounds.
In order to block the pixels occupying the backgrounds for all training faces, a thresh-
old must be picked to distinguish between the pixels occupying the faces and the pixels
occupying the backgrounds. Note that, a number zero can not be taken to be the
threshold although the training faces have black backgrounds because the MATLAB
© software does not read a black color exactly zero then some error will occur.

According to the definition of an image histogram (Reference [10], Section 3.3), if
a training face has a unified background then the biggest histogram of the intensity
levels will be for the pixels occupying the backgrounds because pixels that have the
same intensity levels are the pixels occupying the backgrounds of the training face.
Therefore, the threshold can be selected based on the average histogram for all train-
ing faces.

Step 3: centering each training face Ij.

Since operations are performed on two-dimensional images then images must be cen-
tered before centering the whole database. This can be done by simply subtracting
the mean of the pixels occupying the face for a training face from each pixel on the
face as in Equation 2.23 where I, is the k™ centered training face; and my, is the
mean of the pixels occupying the face for the k' training face. By doing that the
pixels on the face will have zero mean that means the face is centered.

Ic, = I, — my,, where k=1,...,n (2.23)

Step 4: representing each centered training face I¢, as a column image vector I'.
Each N x N centered training face is represented as an N? column image vector by
transposing the rows of pixels then stacking them one after another to form a column
vector as in Equation 2.24.

RowT

Row?

Iy = ) (2.24)
Row’

Step 5: calculating the average training face vector ¥ as in Equation 2.25.

1 n
U=-—>3T (2.25)
=

Step 6: centering the set of the training faces.

The set of the training faces is centered by simply subtracting the mean training face
vector W from each centered training face vector I', as in Equation 2.26 where ®y, is
the k'™ centered (with respect to the set of the training faces) training face. By doing
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that the set of the training faces will have zero mean which means the database is
centered.
L where k=1,...,n (2.26)
Step 7: calculating a covariance matrix for all training faces as in Equation 2.27 where
R = [®,®,,...,®,]. The covariance matrix can be equal to RRT due to % can be
removed or left because it is just a normalization factor which affects all values by
the same amount. .
o1 > &, 9, = RR" (2.27)
=1
Step 8: computing the eigenvectors and eigenvalues of the covariance matrix C'.
The covariance matrix C' is N? x N? matrix where N2 is the total number of pixels
along one of its dimensions. The covariance matrix is usually too big which makes
the calculation of the eigenvalues and eigenvectors is very difficult if not impossible.
Hence, it is not practical to calculate the eigenvalues and eigenvectors for the such
matrix but we will calculate them in this work for examining the performance of the
PCA and IPCA algorithms.

The dimensions of the covariance matrix can be reduced to the number of the
training faces. Let’s suppose the n x n matrix R” R; the eigenvectors and eigenvalues
of this matrix are found as in Equation 2.28 where wu,, is the k' eigenvector of the
matrix RTR; and py, is the k' eigenvalue.

RTRuy, = s, where k=1,...,n (2.28)

The relationship between the eigenvector v, of the matrix RR? and the eigenvector
uy, of the matrix RT R can be obtained as in Equation 2.29.

R Ruy, = ppuy
RR" Ruy, = ju, Ruy,
CRuk = ukRuk

C’Uk = UEUg, where Uy = Ruk (229)

Equation 2.29 implies a couple of important notes are RRT can have up to N? eigen-
values and eigenvectors; RT R can have up to n eigenvalues and eigenvectors; and n
eigenvectors of the matrix RRT associated with the biggest eigenvalues are exactly
identical to the eigenvectors of the matrix RT R and they are related as, v, = Ruy.
The generated eigenvectors by using the reduced covariance matrix must be nor-
malized. The normalization can be performed by dividing the vector vy, by its length

such that szll then the length of the normalized eigenvector v, will be equal to one;
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i.e., ||vg]| = 1. From now on, the reduced covariance matrix is going to be used for
calculating desired eigenvectors and eigenvalues.

Step 9: selecting principal components and forming a feature vector matrix.
Here, principal components are called eigenfaces. They constitute the calculated
eigenvectors associated with the biggest eigenvalues.

The feature vector matrix A, represented in Equation 2.30 is an N 2 x ¢ matrix
that contains only ¢ eigenvectors (principal components) such that ¢ << N?2. Since
the number of calculated eigenvectors by using the reduced covariance matrix R R
is equal to the total number of the training faces then g < n.

A, = [v1,v9,...,0,], where g < n (2.30)

In order to select the eigenfaces that form the feature vector matrix A,, the vari-
ance contribution rate (VCR) and the total variance contribution rate (T'VC') (they
are proposed in the IEEE paper presented in Reference [2]) are computed as in Equa-
tion 2.31 and Equation 2.32 respectively. When the TV (' is significantly high then ¢
eigenvectors associated with the biggest ¢ eigenvalues can be selected.

A

VCORy (%) = =—— x 100, k=1,....n (2.31)
Zk:1 )\k
%71 A

TVC (%) = ==L 100, ¢=1,...,n (2.32)
Zk:l )\k

Step 10: performing the principal components transform (also called the Hotelling or
Karhunen-Loéve transform).

Equation 2.33 is used for projecting the training faces on the eigenspace. The columns
of the matrix Y represent the coordinates of the projected training faces in the
eigenspace; and Q" contains the coordinates of the n'* projected training face.

w

Y=AIR=Q".. Q"  where Q"= | : (2.33)
q

n
1

w

Finally, by projecting the training faces on the eigenspace, the PCA algorithm is
completely done.

2.2.2.7 Reconstruction of the Original Images

For reconstructing the training faces, Equation 2.33 is turned around to get the
centered training faces matrix R as in Equation 2.34. The average training face
vector ¥ is added again to obtain the reconstructed centered training faces vectors
as in Equation 2.35 where T',, is the n'™ reconstructed centered training face vector.
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Also, the means of the pixels occupying the faces are added to get the reconstructed
training faces vectors as in Equation 2.36 where I, is the n'™ reconstructed training
face vector. Finally, I,, can be represented in the same manner as in Step 4, Sub-
subsection 2.2.2.6; to obtain the reconstructed training face fn

R=AY (2.34)
T T =AY + [0 ¥, (2.35)
I L =AY + (W W]y, omy,] (2.36)

2.2.3 An Improved Principal Components Analysis (IPCA)
Algorithm

2.2.3.1 Introduction

IPCA is another statistical tool for identifying patterns in data. It is typically like
PCA except in the way of selecting eigenvectors that form the feature vector matrix
A,. It affords a new accurate method to measure the information content of principal
components based on the information theory for improving PCA. IPCA acts better
than PCA in the most of applications.

2.2.3.2 Analysis of the IPCA Algorithm

In order to estimate the degree of information content of eigenvectors, the concepts
of Shannon information theory are fully used then two new concepts called the pos-
sibility information function (PIF) and the possibility information entropy (PIE) are
obtained.

Eigenvalues can be transformed as in Equation 2.37 where d is the number of the
dimensions of the data set. In Equation 2.37, it can be seen that 0 < pp < 1, where
k=1,...,d. Therefore, p; has the numerical properties of probability. Being similar
with the definition of entropy, the PIF and PIE can be defined respectively as in
Equation 2.38 and Equation 2.39. In Equation 2.39, H (T") reflects the unevenness
of pg. According to the PIF and PIE, it can be obtained that firstly I (\;) denotes
the information content included by A, where the bigger )\, is associated with the
bigger I (\;); Secondly, when all p, are equal (i.e. uniformly distributed) then the
PIE reaches its maximum.

Ak
pp=1— ———, k=1,...,d 2.37
k Zz:l Ak ( )
]<>\k:> = —10g2 Pk, k= 1, < ,d (238)
d
H(T)=H (p1,...,pa) = — ZPk log, pi (2.39)

k=1
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For measuring the degree of information content of eigenvectors, two new concepts
are used. The first one is the information rate (IR) shown in Equation 2.40; and
the second one is the accumulated information rate (Al R) shown in Equation 2.41.
When the AIR is significantly high then ¢ eigenvectors associated with the biggest ¢
eigenvalues can be selected.

I (M)
IR, (%) = ———— %100, k=1,....d 2.40
ST 2
he1 I (A1)
AIR (%) = =k=1" "%/ + 100, =1,....d 2.41

2.2.3.3 Applying IPCA on the Example in Sub-subsection 2.2.2.3

The IR and AIR are computed for the eigenvectors of the covariance matrix C' in the
example in Sub-subsection 2.2.2.3; and the results are shown in Table 2.2. Based on
Table 2.2, the feature vector matrix A, in Equation 2.42 only contains the eigenvector
which is associated with the biggest eigenvalue (the highly correlated eigenvector).

Table 2.2: The calculations of the IR and AIR.

k Ak pr. I (M) IRy (%) AIR(%)
1 19.1711 0.0754 3.7293  97.0616 97.0616
2 1.5623 0.9247 0.1129 2.9384 100
0.6576
A = [ 0.7538 ] ' (242)

2.2.4 Comparison of the PCA and IPCA Algorithms

Comparison between the PCA and IPCA algorithms is based on the values of the
TV and AIR that determine the selected eigenvectors for the feature vector matrix
A, in Sub-subsection 2.2.2.3, Step 6; and in Sub-subsection 2.2.3.3.

The computed TV C and AIR are respectively equal to 92.4649% and 97.0616%.
The AIR is big enough but the TV (' is slightly small. Then the AIR is providing
us with more confidence to pick the eigenvector which is associated with the biggest
eigenvalue but the TV C is not. Therefore, the AIR tells us more about information
contained in the eigenvectors of the covariance matrix C'.
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2.2.5 Applications of the PCA and IPCA Algorithms

2.2.5.1 Introduction

PCA and IPCA are applied in many fields. They have acceptable performance in
many of them. In this subsection, the applications of the PCA and IPCA algorithms
in image compression, face recognition and image detection are covered.

2.2.5.2 Image Compression

When some of the eigenvectors that are calculated from the covariance matrix C' for
all training faces are selected to form the feature vector matrix A, then the dimensions
of the reconstructed data set will be reduced. This implies that the PCA and IPCA
algorithms work as compression. The algorithms are said to be lossy because a
decompressed image is not exactly the same as the original one, but is generally
worse.

2.2.5.3 Face Recognition

The PCA and IPCA algorithms are used to recognize an unknown face image based
on the database which contains the training faces. For doing face recognition, an
unknown face image is taken. It must have the same properties of the training faces.
Hence, it must have the same size as the training faces; it has the same background; it
has a projection as one of the training faces; finally, it has only face and it is expanded
to the boarders of the image.

A couple of the operations explained in Sub-subsection 2.2.2.6 are applied to
the unknown face image. The pixels occupying the face of the unknown face image
are normalized and centered as in Step 2 and Step 3 respectively. The centered
unknown face image is represented as a column image vector as in Step 4. The
centered unknown image vector is centered in the set of the training faces by simply
subtracting the mean training face vector ¥ from it as in Step 6. Then the unknown
face image is projected on the eigenspace by using the PCA or IPCA feature vector
matrix as in Step 10. The coordinates of the projected unknown face image in the
eigenspace are shown in Equation 2.43.

w:ll]nknoum

= : (2.43)

wg]nknown

QUnknoum

The Euclidean distance between the coordinates of the projected unknown face
image and the coordinates of each training face is computed as in Equation 2.44. dy is
the distance between the coordinates of the projected unknown face image QU7newn
and the coordinates of the k' projected training face QF: and n is the total number
of the training faces. Note that, the distances between the unknown face image and
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the training faces are measured along the new axes derived from the PCA algorithm
but not along the original axes. It turns out that these axes work much better for
recognizing faces because PCA has given us the original training faces in terms of the
differences and similarities between them.

dk — HQUnk:nown . Qk

, where k=1,...,n (2.44)

Then recognition can be performed by using Condition 2.1 where mdy is the
minimum distance between the coordinates of the projected unknown face image
QUnknown and the coordinates of the k' projected training face QF.

Condition 2.1. [f,
mdy = min ([dy, ..., d,]), where k can be any number between 1 to n

Then the unknown face image is recognized as the k' training face; otherwise, it is
an unknown face image.

At this point, it can be answered why the normalization of the training faces as well
as the centering of the database and faces increase the accuracy of face recognition.
That because when the database and faces are centered, the set of the projected
vectors in the eigenspace will have zero mean; that means the vectors begin from
the same origin; then the distance between a training face and its corresponding
unknown face image will be very small compared with other training faces. Regarding
the normalization of the training faces, when a training face and its corresponding
unknown face image are normalized (i.e. they have the same length), the distance
between them will decrease as shown in Figure 2.7. On the other hand, if they are
unnormalized (i.e. they do not have the same length), the distance between them will
increase as shown in Figure 2.8.

AV

A Small distance
”QUr:knowra o nk”

wémknown

L4}
w {!rlkrwwn k )

Wi

Figure 2.7: A normalized training face and its normalized corre-
sponding unknown face image.
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AV

A Big distance
IlQUnknawn - ﬂk”
k
w3 e -
Unknown

wa

w lmaknown w{t

Figure 2.8: An unnormalized training face and its unnormalized
corresponding unknown face image.

2.2.5.3.1 Setting up a Recognition Threshold

Unfortunately, when the unknown face image does not have a similar training face
then getting the minimum distance mdj, does not always mean that the unknown face
image is recognized as the k" training face. Therefore, a certain threshold must be
used to increase the accuracy of recognition.

For setting up a recognition threshold, some different images are taken for each
training face. These images are called tested images. They are known here just
for picking the threshold. The distances between each training face and its cor-
responding tested images are obtained; and they are stacked in the row vectors
T, ....,T,...,T,, where T} contains the smallest expected distances because the
k" training face and its corresponding tested images have the same person and the
same face projection.

Thereafter, the mean my and standard deviation ST Dy (the average distance
from the mean to a point) are computed for each row vector T of the smallest
distances. By calculating the means and the standard deviations, a certain threshold
is established for each training face.

Then the recognition threshold can be applied to recognize the unknown face
image by using Condition 2.2.

Condition 2.2. [f,
my — STD;,, < md, <my + STD,, where k=1,....,n

Then the unknown face image is recognized as the k' training face; otherwise, it is
an unknown face image.
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2.2.5.4 Image Detection

The PCA and IPCA algorithms are used to detect if an unknown image contains a
face or not based on a determined threshold for detection. Hence, in image detection,
only a detection threshold is needed.

To obtain the detection threshold, tested images are generated from the database
of the training faces in the same manner as in Sub-sub-subsection 2.2.5.3.1. From
Sub-subsection 2.2.2.6, the preprocessing operations illustrated in Step 2, Step 3,
Step 4, Step 6 and Step 10 are respectively applied to the tested images. Then the
projected centered (with respect to the set of the training faces) tested images are
reconstructed again without adding the average training face neither the means of
the pixels occupying the faces. Each reconstructed tested image is normalized and
multiplied by the biggest intensity from its centered tested image; this is done in
order to make each centered tested image and its reconstruction have approximately
the same dynamic range.

The Euclidean distance between each centered tested image and its reconstruction

is computed as in Equation 2.45 where a;, is the distance between the k™* centered
= Tested [
tested image ®] /™ and its reconstruction ®, eeie " as well as t is the total

number of the tested images. Thereafter, the computed distances are placed in the
row vector S. The mean mg and the standard deviation ST Dg (the average distance
from the mean to a point) are calculated for the vector S. By calculating the mean
and the standard deviation, the detection threshold is established.

=~ Tested Im
ap = H@gestedlm o (I)k

; where k. =1,...,t (2.45)

For applying the detection threshold, the unknown image IV"*"°%" is picked for

detection. The Euclidean distance aV™m°“" between the centered unknown image
. . = Unknown .
and its reconstruction ® is computed. Then the unknown image

JUnknown can be detected by means of Condition 2.3.

@U nknown

Condition 2.3. [f,
mg — STDg < aV"™ """ < 'mg + ST Dg
Then the unknown image IV™m"" js detected as a face image; otherwise, it is not a

face image.

2.2.6 Performance Analysis of the PCA and IPCA Algo-
rithms

2.2.6.1 Introduction

In studying performance, attention is paid to study how each application behaves
when the eigenfaces that are generated by using the PCA algorithm are used; the
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eigenfaces that are generated by using the IPCA algorithm are used; and when dif-
ferent eigenfaces are selected to form the feature vector matrix.

2.2.6.2 Analysis of Compression Performance
2.2.6.2.1 Introduction

Compression performance can be analyzed from three points of view are the speed of
compression and reconstruction, the quality of a reconstructed image, and the size of
compression. Each one is explained in details in this sub-subsection.

2.2.6.2.2 Speed of Compression and Reconstruction

The number of the eigenfaces that is used to compress and reconstruct the training
faces mainly controls the processing speed of compression and reconstruction. When
a small number of the eigenfaces is used to project and reconstruct the training faces
then the processing speed will increase and vice versa.

2.2.6.2.3 Quality of a Reconstructed Image

For measuring the quality of a reconstructed image, the mean squared error (MSE)
is computed as in Equation 2.46 to measure an error between the image [ and its
reconstruction [Ij; where N is the number of rows and columns of the image .

1 XX - 2
eMsSE = ﬁzlzl [Ik (r,c) — Iy (r,c)} (2.46)
2.2.6.2.4 Size of Compression
2.2.6.2.4.1 Introduction

The size of compression can be measured in two ways are an information rate and
the mean squared error (MSE) of compressed images.

2.2.6.2.4.2 Information Rate

An information rate measures how much information is after compression compared
with information before compression; in other words, it measures the number of
pixels after compression compared with before. This can be accomplished as in
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Equation 2.47.

Before Compression : After Compression

n x N2 N?xq  + gxn + N

~~ ~~ —— —— ~
The total An image The feature The coordinates The average

number of size vector matrix matrix Y of training

the training Ay the projected face vector

faces training faces v

x100 : x100  (2.47)
n x N? nx N2

In Equation 2.47 the rows and columns for the pixels occupying the faces as well
as the means of the pixels on the faces are not considered in the overall size after
compression because the operation of face centering is not really important in image
compression; and it does not have any effect if it is done or not; but it has been
done here because it is important for other applications. The normalization is done
in Equation 2.47 to make the overall information before compression is equal to 100%
all the time in order to make comparison easier.

2.2.6.2.4.3 Mean Squared Error (MSE) of Compressed Images

The mean squared error (MSE) between the exact and approximate reconstruction
of the training face vector I is calculated as follows,

Equation 2.48 shows the exact reconstruction of the training face vector I.

I, =Y wiv,+¥ (2.48)

i=1

And, Equation 2.49 shows the approximate reconstruction of the training face vector
1,.

~ q
I, = wiv,+¥ (2.49)

i=1



Chapter 2. Theoretical Background 29

The error between I, and I, can be computed as in Equation 2.50.

GZIk—IAk

n q
= wafvi + ¥ — wa'vi - ¥
=1 =1
n q
= wa'vz —wavz
=1 i=1

= Y wiv, (2.50)

i=q+1

For computing the MSE of the linear estimate I &, Equation 2.51 can be used.

E{eTe} =L (Zn: wf'vi) (mzn: wfnvm)

| i=q+1 m=q+1

-y Y E [whwf, | ] v, (2.51)

i=q+1 m=q+1

To find £ [wfwm, a covariance matrix for the coordinates matrix Y of the projected
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training faces must be computed as in Equation 2.52

- [R] [rA]"
- [47R] ]

= AT RRT A
C

= ATCA (2.52)

From Reference [3], Page 169, Theorem A.1.30; since C'is a real and symmetric matrix
as well as A is an orthonormal matrix then Cy can be written as in Equation 2.53
where [ is the identity matrix.

Cy = ATCA
= ATANATA
——

I I

= IA]

=A
A oo 0

= (2.53)
0 0 M\,

Hence, from Equation 2.53, it can be concluded that,

A; wheni=m
k. k| __ 7
Blotut] ={ & TheniZm

And,

1 wheni=m .
vgpvm = i Because v; and v,,, form an orthonormal basis.
0 wheni #m
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Therefore, when ¢« = m, the MSE between the exact and approximate reconstruction
of the training face vector I is obtained as in Equation 2.54.

E {eTe} = En: zn: E [wfwm v} vy,

i=q+1 m=q+1

= }Z A (2.54)

2.2.6.3 Analysis of Recognition Performance
2.2.6.3.1 Introduction

Recognition performance can be analyzed from two points of view are the speed of
recognition and an error rate. Each one is explained in details in this sub-subsection.

2.2.6.3.2 Speed of Recognition

The number of the selected eigenfaces that is used to recognize the unknown face
image mainly controls the recognition speed. When the number of the selected eigen-
faces decreases, the processing speed increases and vice versa.

2.2.6.3.3 Error Rate

The error rate computes the percentage of error in recognition. It can be computed
as in Equation 2.55 where L is the total number of the tested images; SR is the total
number of successes in the recognition of the tested images; F'R is the total number
of failures in the recognition of the tested images; and F'R is the error rate.

ER (%) = FLR % 100 (2.55)

2.2.6.4 Analysis of Detection Performance
2.2.6.4.1 Introduction

Detection performance can be analyzed from two points of view are the speed of
detection and an error rate. Each one is explained in details in this sub-subsection.
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2.2.6.4.2 Speed of Detection

The number of the selected eigenfaces that is used to detect the unknown image
mainly controls the detection speed. When the number of the selected eigenfaces
decreases, the processing speed increases and vice versa.

2.2.6.4.3 Error Rate

The error rate computes the percentage of error in detection. It can be computed as
in Equation 2.56 where L is the total number of the tested images; SD is the total
number of successes in the detection of the tested images; F'D is the total number of
failures in the detection of the tested images; and F'R is the error rate.

ER(%) — FLD % 100 (2.56)

2.3 Analog Optical Information Processing

2.3.1 Introduction

Analog optical information processing is an important area which recalls the linearity
concepts of imaging systems in order to synthesize an optical model that can perform
one or multiple functions. The focus of this section is about providing a theoretical
background for designing an optical model for object detection and face recognition.
Concentration will be limited to coherent optical models for some reasons will be
mentioned in the next subsection. This section is based on Reference [3], Chapter 8.

2.3.2 Coherent and Incoherent Optical Image Processing Sys-
tems

This subsection shows the difference between the usage of spatially incoherent light
and the usage of spatially coherent light in optical information processing. Spatially
incoherent light has some big advantages but on the other hand it has severe disad-
vantages. The advantages of spatially incoherent light are:

1. It is free from coherent artifacts such as dust specks on optical components and
the speckle phenomenon.

2. Data can be introduced to a system by using incoherent light sources such as
light-emitting diode (LED) arrays or cathode-ray tube (CRT) displays; but in
coherent systems, complicated and costly spatial light modulators (SLMs) are
used to introduce data.
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3. In general, incoherent systems are easier than coherent systems in physical
implementation.

On the other hand, spatially incoherent light has disadvantages that make us
prefer to use spatially coherent light in our model. The disadvantages of spatially
incoherent light are:

1. An incoherent optical system does not have a frequency plane but a coherent
optical system has a plane at a distance f from a lens is called a frequency
plane or a focal plane. The absence of this plane makes the manipulation of
an input spectrum is very difficult rather than just the direct manipulation of
a spectrum on a back focal plane.

2. Incoherent optical systems are linear in intensity. The manipulation of intensity
in optical processing systems is very complex if it is not impossible because
intensity is a positive and real physical quantity. For instance, there is no a
normal optical method to subtract two intensity patterns; but coherent optical
systems are linear in complex amplitude; consequently, if one wants to subtract
two complex amplitude patterns then the patterns can be added together with
a 7 radian phase shift between them.

3. The spectrum of an incoherent image that is generated from an incoherent
optical system always has the biggest spectral component at the origin. This
makes a produced incoherent image has low contrast. Therefore, incoherent
optical systems need a huge use of electronics in order to enhance an output
incoherent image and makes it comparable to an output coherent image.

Due to these serious disadvantages, spatially coherent light is going to be used in
our model.

2.3.3 Coherent Optical Information Processing Systems

We now present the coherent optical information processing model used for object
detection and face recognition. From the last subsection, it is known that coherent
optical systems are linear in complex amplitude; therefore, filtering processes can be
performed by direct manipulation of complex amplitude appearing in the back focal
plane of a Fourier transforming lens. There are a large number of system architectures
that can do frequency domain filtering but a pretty conceptually straightforward sys-
tem shown in Figure 2.9 is implemented. This model for coherent optical information
processing is called 4f model because a distance that separates the input plane P;
form the output plane P3 is composed of four separate distances of length f. The
length of this model from the point source S until the output plane is 5f.

The collimating lens L; is used to collimate light from the point source S. The
input transparency is placed in the input plane P; against the collimating lens L;.
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)
! V)

Figure 2.9: The architecture for coherent optical information pro-
cessing.

The input plane is placed against the collimating lens in order to decrease the total
length of the coherent model. The amplitude transmittance of the input transparency
is g (z1,91). The input transparency is illuminated by a uniform normally incident
plane (or spherical) wave of amplitude A. Then the complex amplitude distribution
of the field just behind the input transparency (i.e. the field transmitted by the
input transparency) is Uy (z1,y1) = Ag(z1,y1). The Fourier transforming lens L
is Fourier transforming the illuminated input transparency in its back focal plane
P,. A transparency is inserted in the back focal plane to modulate the amplitude
transmittance over that plane. Then the complex amplitude distribution Us (29, ys)
of the Fourier transformed field can be found as in Equation 2.57.

1 0 0 Jon
Us (%;yz) = j)\f/ / Ur (x17y1> eXp_j%f(xwﬁylyQ) dx1dy,

A 0o oo or
- j)\f/ / g (x1,y1) eXP_]%f(xlxﬁylyg) dx1dy

_ A oy
Y <Af’ Af)

L2 Y2
—k Z2 g2 2.
Where £y is a complex constant; A is the light wavelength in meter (m); and G (%, %)
is the Fourier spectrum of the Fourier transformed field.
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A desired filter can be synthesized and placed in the plane P in order to manipulate
G (f\ﬂ—}, f\’—}) Let the transfer function of a synthesized filter be represented by H then
the complex amplitude distribution in the back focal plane of the filter should be as
in Equation 2.58 where k5 is a complex constant.

YAy

The spectrum of the field just behind the transparency of the plane P, is
G (i—;, ;\/—}) H (f\:—;, f\/—}) The Fourier transforming lens L3 Fourier transforms the al-
tered spectrum in its back focal plane P;. There is no an optical component does
inverse Fourier transform; therefore, another Fourier transforming lens is used to pro-
duce the final complex amplitude distribution on the output plane P;. The usage of
the two consecutive Fourier transforming lenses makes the coordinates of the output
plane Py inverted (Reference [11], Page 25, “Application of the Fourier Transform”).
The coordinates inversion problem can be overcome by inverting the coordinates of
the output plane P;.

This coherent model has a disadvantage that vignetting can happen through per-
forming the first Fourier transform. In order to overcome this problem, the input
plane P1 can be placed against the Fourier transforming lens Ls.

There are at least two methods for synthesizing the frequency plane filter for
coherent optical systems. One of these methods is by using the joint transform
correlator (JTC). This method is discussed in the next subsection.

Us (22, y2) = ko H <$2 y2> (2.58)

2.3.4 The Joint Transform Correlator (JTC)

This correlator is used to synthesize the frequency plane filter in order to manipulate
the spectrum on the back focal plane of the Fourier transforming lens L,. This
method was invented by Weaver and Goodman [4] and called as the joint transform
correlator. The filter architecture is shown in Figure 2.10.

The filter is divided to two stages: recording the filter and getting the filter out-
put. In the recording process, the lens L; collimates light from the point source S.
Two input transparencies are placed in the input plane P;. The first transparency is
for the desired impulse response h and centered at the coordinate (O, %) The other

transparency is for the data g to be filtered and centered at the coordinate (O, —%)
Hence, their centers are separated by the distance Y. The input transparencies are
illuminated by a uniform normally incident plane (or spherical) wave of amplitude
A. Then the complex amplitude distribution of the field just behind the input trans-
parencies (i.e. the field transmitted by the input transparencies) is obtained as in

Equation 2.59.

Ui (z1,1n) = A [h (951’91 — }2/) +yg (‘Tluyl + g)} (2.59)
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Y2

T\

Figure 2.10: The joint transform correlator: (a) Recording the
filter; and (b) getting the filter output.

The Fourier transforming lens L, is Fourier transforming the field transmitted by the
input transparencies in its back focal plane P,. The complex amplitude distribution
Us (z2,y2) of the Fourier transformed field is obtained as in Equation 2.60. The
derivation of Us (x2, 1) is shown in Appendix E.

A _.aY X9 y2> A Y (mz y2>
Us (2o, = —exp NV H —, + —exp’ 32 @G —, 2.60
2 (22, 92) g S P </\f Af JAS P AOANS ( )

From linear algebra, if Z; and Z, are complex numbers; as well as Z] and ZJ are
their conjugates respectively then | Zy 4+ Zo|> = |Z1|* + | Zo|* + (2,125 + Z,Z7). Using
this operation on complex numbers and another operation is that the conjugate of
the exponential function exp’® is equal to exp™® (conversely, the conjugate of the
exponential function exp~% is equal to exp’®) then the incident intensity on the back
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focal plane of the lens L, is computed as in Equation 2.61.
2
Ty Y2 T Y2
H|—=, = G|—,—
| (Af’ Af>| *‘ (Af’ Af)
Lo Y2 T2 Y2 _j2mY
HZ= 22 ) o | 22 22 JF Y2
+ (Af’)xf) (Af’Af)eXp +

T T 2wy

+ H* <)\J2f’ %) G <)\;, )‘7{;) eXp“ny] (2.61)

Note that, the recorded transparency in the plane P, is supposed to have an am-

plitude transmittance that is proportional to the intensity I (xs,y2). To obtain the

output of the filter, the recorded transparency is illuminated by a uniform normally

incident plane (or spherical) wave of amplitude B. The complex amplitude distri-

bution of the field just behind the recorded transparency (i.e. the field transmitted

by the recorded transparency) is U, (x2,y2) = BI (x2,32). The lens L, is Fourier

transforming the transmitted field in its back focal plane P;. The complex amplitude

distribution of the Fourier transformed field in the output plane P3 is computed in
Equation 2.62.

2
—+

A2
e 72

I ($2> yz)

Us (73,y3) = ${Us (72,92)}

= B3I {1 (v2,92)} (2.62)

From linear algebra, if Z; is a complex number and Z7 is its conjugate then |Z1|2 =

Z1Z71. Using this operation on complex numbers; and using another properties and
theorems of Fourier transform are the convolution theorem (Reference [12], Page 37,
Property 12), the complex conjugation property (Reference [12], Page 28, Property 3),
and the property that the Fourier transform of the shifted impulse response 0 (t — t,)
is equal to exp7?7ft where t, is the amount of the shift; then the field in the back
focal plane Pj is found as in Equation 2.63.
A2
Us (3, Y3) :B/\ng [h (23, y3) ® h* (=23, —ys) + g (23, y3) ® §" (—x3, —Y3) +

+h(z3,y3) ® 9" (=23, —y3) @6 (z3,93 = Y) +

+h (=23, —y3) ® g (3,¥3) @ 0 (23,43 + V)] (2.63)

The complex distribution is composed of four terms. The first two terms respectively
represent the cross-correlation of the impulse response h and itself as well as the
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cross-correlation of the data g and itself. The third and fourth terms represent the
cross-correlations of h and ¢g. The third and fourth terms are typically the same
except that the third cross-correlation is centered at (0,Y’) and the fourth term is
centered at (0, —Y). There is not too much thing to do with the first and second
terms but the third and fourth terms are of interest. The cross-correlations of h and
g can be written as in Equation 2.64 and Equation 2.65.

b3, 35) © g (~23, ) @ 6 w5 = V)= L S M) g7 (€= 2= (3 -V

= L EN E-rn-wtY )l 2o

Note that,

h(es ) @9 (<oa =) = [ [~ h(€m)g" (€ — maim— o) den

Similarly,

W (=23, ~y3) © g (23, 3) © 0 (23,35 + Y )= f?ooc ffooog(ﬁ,n) ' (f = I3l - Y) dfdn (2.65)

From digital signal processing (DSP), the main difference between cross-correlation
and convolution is that in cross-correlation the functions g¢*(—w3, —y3) and
h* (—x3, —ys3) are not rotated by 180° before doing the cross-correlation process but
in convolution they must be rotated by 180° before doing a convolution process. To
get the convolution of the impulse response h and the data g, the input transparency
of h or g (just one of them) in the recording stage must be rotated by 180° along the
spatial coordinate x, as well as along the spatial coordinate y;. If the input trans-
parency of the impulse response h is rotated then it will be h (—xl, —y1 + %) instead

of h (xl, Y1 — %), similarly, if the input transparency of the data ¢ is rotated then it

will be ¢ (—xl, —y1 — %) instead of ¢ (xl, Y1+ %)

From digital signal processing (DSP), the bandwidth of a resulting function from
the convolution, correlation or cross-correlation of two functions is equal to the sum
of their bandwidths [13]. For example, if the bandwidths of the functions m (¢) and
f (t) are three and one respectively; then the bandwidth of their convolution is equal
to four. Therefore, the bandwidths of the patterns of the cross-correlated field in the
output plane P3 along the spatial coordinates x3 and y3 are illustrated in Figure 2.11.

Obviously from Figure 2.11, in order to prevent overlapping between the patterns of
the cross-correlated field that are centered at (0,0), (0,Y) and (0, —Y) (i.e. they are
fully separated); the distance between the centers of the input transparencies must
satisfy Relation 2.1 where W, and W}, are the widths of g and h respectively in the
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Figure 2.11: The bandwidths of the patterns of the cross-correlated
field in the output plane P; along the spatial coordinates x3 and ys.

direction of the y-coordinate. It is really important to be noticed that in Figure 2.11,
the highest cross-correlation exists in the center of each cross-correlated pattern and
decreases by moving away from the center.

Relation 2.1.
Y > max{Wh,Wg}—sz/g%—MQ/h
The constant ¢ is added to the distance Y for realizing Relation 2.1. In order to
confine the patterns of the cross-correlations of the impulse response h and the data
g in the output plane P, the distance d; which is from the horizontal axis x; to the
top edge of the input plane P, shown in Figure 2.12 must be bigger than or equal to
the distance D obtained in Equation 2.66 which is from the horizontal axis z3 in the
output plane P; to the top edge of the pattern centered at (0,Y") or the bottom edge
of the pattern centered at (0, —Y") shown in Figure 2.13; as well as the distance dy
which is from the horizontal axis x; to the bottom edge of the input plane P; shown
in Figure 2.12 must be bigger than or equal to the distance D. For making d; is equal
to D, the amount D — r; has to be added to the distance rq; where the distance rq
obtained in Equation 2.67 is from the horizontal axis x; to the top edge of h as shown
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in Figure 2.12. Similarly, to make ds is equal to D, the amount D — r5 has to be
added to the distance ro; where the distance ry obtained in Equation 2.68 is from the
horizontal axis x; to the bottom edge of g as shown in Figure 2.12. The distances
D —ry and D — ry are respectively obtained as in Equation 2.69 and Equation 2.70.
Finally, the distance d; will be equal to the distance D as in Equation 2.71; similarly,
the distance dy will also be equal to D as in Equation 2.72.

Wy, W,
D:Y+c+79+7h:max{Wh,Wg}—irWh—ing—i—c (2.66)
Wi, W (W, Wy}
ry=tpeg B = (ol Wy By of 4 B A L0 L4 267)
W, Wi, W W, Wy, Wy}
=iyl m‘”{h nrlA0) Uy B g o] 4 B = WO LA L B4 E e
1 1 3 c
D —ry = —max {Wy, Wy} + -Wy, +-W, + = (2.69)
2 4 4 2
1 3 1 &
D — ro = §max {Wh, Wg} + ZWh + ZWQ + 5 (270)
d1:T1+(D—T1)ID (271)
d2=T2+(D—T2):D (272)

Lastly, the joint transform correlator has a great feature is that its ability to
change the filter impulse response quickly; therefore, it is considered beneficial for
real-time systems. On the other hand, it has a defect is that the input bandwidth of
the data is reduced due to the filter impulse response is introduced simultaneously
with the data to be filtered.

2.3.4.1 Sampling Issues
2.3.4.1.1 Introduction

Sampling is considered the first important step for simulating optical models. In
order to generate the cross-correlated field in the back focal plane Pj; then the input
plane P, the back focal plane of the lens L, and the back focal plane of the lens L,
must be sampled properly. Sampling for each one of these is completely discussed in
this sub-subsection.

2.3.4.1.2 Sampling of the Input Plane P,

The input plane P, is located in a rectangular array has N samples along the spatial
space coordinate z; and M samples along the spatial space coordinate y;. L,, is the
physical side length in meter (m) of the array in the z; direction; similarly, L,, is
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Figure 2.12: The alignment of the input transparencies in the input
plane P;.

the physical side length in meter of the array in the y; direction. Then the sample
spacing Az, along the zi-coordinate in meter is equal to —¢-; and the sample spacing

: . : L
Ay, along the yi-coordinate in meter is equal to <7

2.3.4.1.3 Sampling of the Back Focal Plane P,

From Fourier transform, the spatial frequency coordinate fx, of the back focal plane
P; in cycles per meter (%) is obtained as in Equation 2.73.

X2

Y]

By turning around Equation 2.73, the spatial space coordinate x5 can be expressed
as in Equation 2.74.

fx, (2.73)

T2 =N [x, (2.74)

Note that, =5 is in meter (m) because the units of the variables in Equation 2.74 can
be concluded as m x m x <€ = m. Then the spatial space sampling interval Az in

m
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VY3

Figure 2.13: The alignment of the patterns of the cross-correlated
field in the output plane P;.

meter (m) along the spatial space coordinate x5 is computed as in Equation 2.75.

From discrete Fourier transform (DFT), the relationship between the spatial space
sampling interval Az in the input plane and the spatial frequency sampling interval
Afx, is shown in Equation 2.76.

1
NAI’l

Afx, = (2.76)
For more information about how the relation in Equation 2.76 is obtained; Reference
[14], Subsection 4.4.2 can be consulted. By substitution from Equation 2.76 in Equa-
tion 2.75 then the spatial space sampling interval Az, in meter (m) along the spatial
space coordinate x5 is obtained as in Equation 2.77.

Af
NAZL‘l

Similarly, the spatial space sampling interval Ay, in meter (m) along the spatial
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space coordinate vy, can be computed as in Equation 2.78.

Af
M Ay,

2.3.4.1.4 Sampling of the Back Focal Plane P;

From Fourier transform, the spatial frequency coordinate fx, of the back focal plane
Ps in cycles per meter (%) is obtained as in Equation 2.79.

[xs = ;C;L (2.79)

By turning around Equation 2.79, the spatial space coordinate x3 can be expressed
as in Equation 2.80.

x3 = A fx, (2.80)

Then the spatial space sampling interval Az in meter (m) along the spatial space
coordinate x3 is computed as in Equation 2.81.

From discrete Fourier transform (DFT), the relationship between the spatial space
sampling interval Axs in the back focal plane P, and the spatial frequency sampling
interval Afx, is shown in Equation 2.82.

1
NA.I'Q

Afx, = (2.82)

By substitution from Equation 2.82 in Equation 2.81 then the spatial space sampling
interval Azs in meter (m) along the spatial space coordinate x3 is obtained as in
Equation 2.83.

Similarly, the spatial space sampling interval Ays; in meter (m) along the spatial
space coordinate y3 can be computed as in Equation 2.84.

Ays

— = A 2.84
M Ay, n ( 8)

The spatial space sampling intervals in the input plane P; and the back focal plane
P are equal because the focal lengths of the lenses L, and L4 are equal; but if the
focal lengths are not identical then the sampling intervals will not be equal anymore.
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2.3.4.2 Applications of the JTC
2.3.4.2.1 Introduction

The joint transform correlator (JTC) is one of the techniques frequently used in the
field of optical pattern identification and classification. It plays an important role in
object detection, face recognition, fingerprint recognition, and many other areas. In
this sub-subsection, the usage of the JTC for object detection and face recognition is
fully covered.

2.3.4.2.2 Face Recognition

The joint transform correlator (JTC) is used to recognize an unknown face object
based on a database of desired impulses. The database is composed of n, N x N
images of faces (impulses) on black backgrounds such that I where k = 1,...,n; and
n is the total number of the impulses. For decreasing the error rates of face recognition
and object detection, all face projections must be defined in the database; impulses
must have the same size; impulses must have only faces and they are expanded
to the boarders of the images; finally, impulses must have unified backgrounds to
discriminate between the pixels occupying the backgrounds and the pixels on the
faces. For doing face recognition, an unknown face object have to be picked. It must
have the same properties of the impulses. Hence, it must have the same size as the
impulses; it has a black background; it has a projection as one of the impulses; and
it has only face that is expanded to the boarders of the image. The pixels occupying
the faces of the impulses and the unknown face object are normalized in the same
manner as the normalization of the pixels occupying the faces of the training faces in
Step 2 in Sub-subsection 2.2.2.6.

The cross-correlated field between the unknown face object and each impulse is
obtained. An adaptive filtering mask is used to produce the cross-correlated patterns
that are centered at (0,Y"). The maximum values of the cross-correlated patterns are
computed; such that ¢; is the maximum value of the cross-correlated pattern between
the unknown face object and the first impulse; similarly, ¢, is the maximum value of
the cross-correlated pattern between the unknown face object and the n'* impulse.

Then recognition can be performed by using Condition 2.4 where bcy, is the biggest
cross-correlation among the maximum values of the cross-correlated patterns between
the unknown face object and impulses.

Condition 2.4. [f,
ber, = max ([cq, ..., ¢n)), where k can be any number between 1 to n

Then the unknown face object is recognized as the k' impulse response; otherwise, it
is an unknown face object.
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2.3.4.2.2.1 Setting up a Recognition Threshold

Unfortunately, when the unknown face object does not have a similar impulse response
then getting the biggest cross-correlation bc,, among the maximum values of the cross-
correlated patterns does not always mean that the unknown face object is recognized
as the k' impulse response. Therefore, a certain threshold must be used to increase
the accuracy of recognition.

For setting up a recognition threshold, some different objects are taken for each
impulse; consequently, the objects are known here just for picking the threshold.
The cross-correlated patterns that are centered at (0,Y) resulting from the cross-
correlations between each impulse and its corresponding objects are produced. After
that, the maximum values of the cross-correlated patterns between the impulses and
their corresponding objects are obtained; and they are stacked in the row vectors
T, ...,Ty, ..., T, where T} contains the biggest expected cross-correlations because
the k™ impulse response and its corresponding objects have the same person and the
same face position.

Thereafter, the mean my and the standard deviation ST D) (the average dis-
tance from the mean to a point) are computed for each row vector T of the biggest
cross-correlations. By calculating the means and the standard deviations, a certain
threshold is established for each impulse response.

Then the recognition threshold can be applied to recognize the unknown face
object by using Condition 2.5.

Condition 2.5. [f,
my, — STDy, <bc, <my + STDy, where k=1,....n

Then the unknown face object is recognized as the k' impulse response; otherwise, it
is an unknown face object.

2.3.4.2.3 Object Detection

The joint transform correlator (JTC) is used to detect if an unknown object contains
a face or not based on a determined threshold for detection. Therefore, in object
detection, only a detection threshold is needed.

To obtain the detection threshold, objects are generated from the database of the
impulses in the same manner as in Sub-sub-sub-subsection 2.3.4.2.2.1. The cross-
correlated patterns that are centered at (0,Y") resulting from the cross-correlations
between each impulse and all objects are produced. The maximum values of the
cross-correlated patterns between the impulses and all objects are computed and
placed in the row vector S. After that, the mean mg and the standard deviation
ST Dg (the average distance from the mean to a point) are computed for the vector
S. By calculating the mean and the standard deviation, the detection threshold is
established.
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For applying the detection threshold, the unknown object IY"*mvn ig picked for
detection. The maximum value V™" of the cross-correlated pattern between the
unknown object and any impulse response is computed. Then the unknown object
JUnknown can be detected by means of Condition 2.6.

Condition 2.6. [f,
mg — ST Dg < V™nmown < o+ ST Dg

Then the unknown object IV mown s detected as a face object; otherwise, it is not a
face object.

2.3.4.3 Analysis of JTC Performance
2.3.4.3.1 Introduction

Joint transform correlator (JTC) performance is analyzed through analyzing the per-
formance of its applications. In order to study the performance of face recognition
and object detection, their error rates are computed and analyzed. Hence, in this
sub-subsection, attention is paid for calculating the error rates of face recognition
and object detection.

2.3.4.3.2 Analysis of Recognition Performance

The error rate computes the percentage of error in recognition. For computing the
error rate of face recognition, let L is the total number of objects; SR is the total
number of successes in the recognition of the objects; and F'R is the total number of
failures in the recognition of the objects. Then the error rate can be computed as in

Equation 2.85.

ER(%) — FLR % 100 (2.85)

2.3.4.3.2.1 Improvement of Recognition Performance

The error rate of face recognition is usually big then it has to be improved. One
of the techniques for decreasing the error rate is optimizing the database of the im-
pulses. The optimization of the database means trying to find the best combination
of impulses that ensures the smallest error rate.

Some different objects are taken for each impulse response; consequently, the ob-
jects are known here just for optimizing the database of the impulses. Then this
technique can be simulated by trying different combinations out of the generated ob-
jects until finding a combination that produces the lowest error rate of face recognition
then the combination can be used to form the database of the impulses.
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2.3.4.3.3 Analysis of Detection Performance

The error rate computes the percentage of error in detection. For computing the error
rate of object detection, let L is the total number of objects; SD is the total number
of successes in the detection of the objects; and F'D is the total number of failures
in the detection of the objects. Then the error rate can be computed as in Equation

2.86. 7D

2.3.4.3.3.1 Improvement of Detection Performance

The error rate of object detection is usually big then it has to be improved. The error
rate is improved by optimizing the database of the impulses in the same manner
as the optimization of the error rate of face recognition in Sub-sub-sub-subsection
2.3.4.3.2.1.
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Chapter

Modelling

3.1 Digital Modelling

3.1.1 Introduction

IN this section, PCA and IPCA algorithms are simulated by using the MATLAB ©
software when the data set is composed of images; as well as comparison between two
algorithms is illustrated. The simulation begins from generating the database of the
training faces until projecting the training faces on the eigenspace. The applications
of the PCA and IPCA algorithms are simulated too. The complete MATLAB © code
that had been written to simulate this work is shown in Appendix A.

3.1.2 Application of the PCA Algorithm to Images

The steps for analyzing the PCA algorithm to images presented in Sub-subsection
2.2.2.6 are simulated as follows:

Step 1: the database is created to be composed of nine, 50 x 50 images of faces
(training faces) on black backgrounds such that I}, where k = 1,...,9. The training
faces are taken for three people where each person has three training faces with
different projections as shown in Figure 3.1.

Step 2: the average histogram for all training faces is obtained as in Figure 3.2. From
Figure 3.2, it turns out all intensity levels below the threshold represent the back-
grounds of images because these levels have the biggest histogram; and all intensity
levels above the threshold represent the faces; therefore, the threshold is equal to
eight. The threshold is applied on the training faces; Figure 3.3 shows how good
the applied threshold is on the training faces. As seen from Figure 3.3, the applied
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Training Face No.1 Training Face Mo.2 Training Face Mo.3
(Mr. Mansour Alshammari, 15t Projection) (Mr. Mansour Alshammari, ond Projection) (Mr. Mansour Alshammari, I Projection)
Training Face MNo.4 Training Face MNo.5 Training Face Mo.B
(Mr. Methkir Alharthee, 1=t Projection) (M. Methkir Alharthee, ond Projection) (Mr. Methkir Alharthee, I Projection)
Training Face No.7 Training Face MNo.g Training Face Mo.8
(Mr. Mohammed Hanafy, pst Projection) (Mr. Mohammed Hanafy, ond Projection) (Mr. Mohammed Hanafy, g Projection)

Figure 3.1: The database of the training faces.

threshold is doing pretty well; and it can be used for normalizing the training faces
as in Figure 3.4.
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Figure 3.2: The average histogram for all training faces.
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Figure 3.3: The application of the threshold on the training faces.
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Training Face Mo.1 Training Face Mo.2 Training Face Mo.3
(Mr. Mansour Alshammari, 15t FProjection) (Mr. Mansour Alshammari, ond Frojection) (Mr. Mansour Alshammari, 3 Frojection)

Marmalized Training Face Mool Mormalized Training Face No.2 Maormalized Training Face Mo.3
(MWr. Mansour Alsharmmar, 15t Frojection) (M. Mansour Alsharmmari, 2nd Projection) (Mr. Mansour Alshamrmari, 3 Projection)

Training Face MNo.4 Training Face Mo.5 Training Face Mo.B
(Mr. Methkir Alharthee, 15t Projection) ikAr. Methkir Alharthee, ond Projection) (rr. hethkir Alharthee, 3 Projection)

Mormalized Training Face Mo.4 Mormalized Training Face Mo.5 Mormalized Training Face Mo.B
(Mr. Methkir Alharthee, 1t Frojection) ikAr. Methkir Alharthee, ond Frojection) irr. fethkir Alharthee, 3 Frojection)

Training Face MNo.7 Training Face Mo.& Training Face MNo.9
(tr. Mohammed Hanafy, 15t Projection) (Mr. Mohammed Hanafy, ondl Frojection) (Mr. Mohammed Hanafy, 3rd Frojection)

Mormalized Training Face Mo 7@ Mormalized Training Face MNo.8 Morrmalized Training Face MNo.9
[Mir. Mohammed Hanafy, 5t Praojection) (M. Mohammed Hanafy, 2nd Projection) [MWir. Mohammed Hanafy, 3 FProjection)

Figure 3.4: The normalization of all training faces by means of the
selected threshold.
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Step 3: all training faces are centered as shown in Figure 3.5.

Centared Training Face Na 1 Centered Training Face No.2 Centered Training Face Na3

(Mr. Mansour Alshammari, 1t Projection) (Mr. Mansour Alshammari, ond Projection) (Mr. Mansour Alshammari, I Projection)
Centered Training Face No.4 Centered Training Face No.5 Centered Training Face No.G
(Wir. Methkir Alharthee, 13t Prajection) (Mir. Methkir Alharthee, ond Projection) (Wir. Methkir Alharthee, I Projectian)
Centered Training Face No.7 Centered Training Face MNo.@ Centered Training Face No.9
(Mr. Mohammed Hanafy, 15 Projection) {Mr. Mohammed Hanafy, 2™ Projection) (Mr. Mohammed Hanafy, 3 Projection)

Figure 3.5: The centered training faces.

Step 4: all centered training faces are represented as 502 column vectors.

Step 5: The average training face vector ¥ is computed and the average training face

is shown in Figure 3.6.

Figure 3.6: The average training face. Note that, this is a negative

image.
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Step 6: the set of the training faces is centered; and the centered (with respect to the
set of the training faces) training faces are presented in Figure 3.7.

Cortered (with Respect 10 the Set of the Training Faces) Training Face Mo 1 Contend (with Respect to the Sen of the Training Faces) Training Face ho 2 Contennd (with Respect to the Sen of the Training Faces) Training Face ho 3
(Mr, Mansour Alsharnmari, 17 Projection) [ir. Mansous Alsharnenari, 2° Projection) Mr, Marvseur Algharmman, 3 Bropection)
(A Misgatenr miage) (A Nigatiae Irnage) (A Nigatiae Irnage)
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Figure 3.7: The centered (with respect to the set of the training
faces) training faces. Note that, these are negative images.

Step 7: a 2500 x 2500 covariance matrix for all training faces is calculated.
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Step 8: the eigenvectors and eigenvalues of the covariance matrix C' are computed.

Step 9: for choosing principal components and forming the feature vector matrix
A,, the variance contribution rate (VCR) and the total variance contribution rate
(TVC) are computed in Table 3.1. When the TV C' is over 95.5% then ¢ eigenvectors
associated with the biggest ¢ eigenvalues are selected. Hence, Based on Table 3.1, the
biggest eight eigenvectors associated with the biggest eigenvalues are selected to form
the feature vector matrix. The selected eigenfaces (the highly correlated eigenvectors)
are shown in Figure 3.8.

Table 3.1: The calculations of the VCR and TV C.

k A VCR, (%) TVC (%)
1 97325851016  29.0361 29.0361
2 6578765.9806  19.6270 48.6631
3 4576184.9630  13.6525 62.3157
4 4054857.8169  12.0972 74.4129
5 3000248.2414  8.9509 83.3638
6 2204809.6081  6.5778 89.9416
7 1816000.6101  5.4178 95.3595
8 1555452.9118  4.6405 100
9 0 0 100

Step 10: the principal components transform is performed and the training faces are
projected on the eigenspace.

3.1.3 Application of the IPCA Algorithm to Images

The IPCA algorithm shown in Sub-subsection 2.2.3.2 is used for calculating the IR
and AIR for the computed eigenvectors of the covariance matrix C' in Subsection
3.1.2 where d here is equal to the total number of the training faces n; and the
results are shown in Table 3.2. When the AIR is over 95.5% then ¢ eigenvectors
associated with the biggest ¢ eigenvalues are selected. Hence, Based on Table 3.2,
the biggest seven eigenvectors associated with the biggest eigenvalues are selected
to form the feature vector matrix A,. The selected eigenfaces (the highly corre-
lated eigenvectors) are the first seven selected eigenfaces by using the PCA algorithm
shown in Figure 3.8.
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Figure 3.8: The eigenfaces. Note that, these are negative images.

3.1.4 Comparison of the PCA and IPCA Algorithms

Comparison between the PCA and IPCA algorithms is based on the values of the
TVC and AIR that determine the selected eigenfaces for the feature vector matrix
A, in Subsection 3.1.2, Step 9 and in Subsection 3.1.3.

When k = 7 in Table 3.2, the AIR is equal to 95.6891% which is bigger than
95.5% but the TV C' is slightly small; consequently, if the eigenvectors are selected
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Table 3.2: The calculations of the IR and AIR.

k Ak pr. I (A) IRy (%) AIR(%)
1 9732585.1016 0.7096 0.4948  31.1180 31.1180
2 65787659806 0.8037 0.3152 19.8224 50.9404
3 4576184.9630 0.8635 0.2118 13.3174 64.2578
4 4054857.8169 0.8790 0.1860 11.6978 75.9555
5 3000248.2414 0.9105 0.1353  8.5073 84.4628
6 2204809.6081 0.9342 0.0982  6.1729 90.6357
7 1816000.6101 0.9458 0.0804  5.0534 95.6891
8 15554529118 0.9536 0.0686  4.3109 100

9 0 1 0 0 100

based on the TV (' then the first eight eigenvectors must be taken in order to make
sure that the TV C is big enough. Therefore, the AIR tells us more about the
information contained in the eigenfaces. Figure 3.9 shows a comparison between the
biggest calculated eigenvalues by using the PCA and IPCA algorithms as well as the
calculated eigenvalues from the covariance matrix C' for all training faces.

w10°

T T T T T T
-The Calculated Eigenvalues from the Covariance Matrix for All Training Faces
I The Calculated Eigenvalues by Using PCA Algorithrn.

9 H I The Calculated Eigenvalues by Using IPCA Algarithm 7

Eigenvalue
m
T
|

2452 2493 2494 2495 2496 2497 2498 2499 2500
Eigenvalue Index

Figure 3.9: A comparison between the biggest calculated eigenval-
ues by using the PCA and IPCA algorithms as well as the calculated
eigenvalues from the covariance matrix for all training faces.
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3.1.5 Image Compression

In image compression modelling, the training faces in Figure 3.1 are projected on the
eigenspace and recostructed again by using the PCA and IPCA algorithms; as well
as by using different selected eigenfaces to form the feature vector matrix A,.

3.1.6 Face Recognition

The database of the training faces created in Step 1 in Subsection 3.1.2 is used
for recognition. Some tested images are taken out of the database for setting up a
recognition threshold. Thirty-six tested images are taken for the first projection of
each person; twelve tested images are taken for the second projection of each person;
and twelve tested images are taken for third projection of each person; therefore, the
total number of the tested images is equal to 180. Some samples of the tested images
are shown in Figure 3.10; the full database of the tested images is shown in Appendix
B.

By using the PCA algorithm, a recognition threshold is specified for each training
face by means of the method explained in Sub-sub-subsection 2.2.5.3.1. The tested
images are processed as unknown images of faces as illustrated in Sub-subsection
2.2.5.3. Then Condition 2.2 is used for recognizing the tested images. The recognition
results of the tested images in Figure 3.10 by using the PCA algorithm are presented
in Table 3.3. The recognition of all 180 tested images by using the PCA algorithm
is shown in Appendix C. Finally, the tested images can be recognized in the same
way when the IPCA algorithm is used; or different eigenfaces are selected to form the
feature vector matrix.

Table 3.3: The recognition of the tested images in Figure 3.10.

Tested

Image No. Input Face Recognized Output Face Status
4 Mr. Mansour Alshammari ~ Mr. Mansour Alshammari  Success
15 Mr. Mansour Alshammari ~ Mr. Mansour Alshammari  Success
38 Mr. Mansour Alshammari Unknown Image Failure
62 Mr. Methkir Alharthee Unknown Image Failure
72 Mr. Methkir Alharthee Mr. Methkir Alharthee Success
120 Mr. Methkir Alharthee Mr. Methkir Alharthee Success
124 Mr. Mohammed Hanafy Mr. Mohammed Hanafy Success
160 Mr. Mohammed Hanafy Mr. Mohammed Hanafy Success

179 Mr. Mohammed Hanafy Mr. Mohammed Hanafy Success
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Tested Image Mo.d Tested Image Mo. 15 Tested Image Mo.38
(Mr. Mansour Alshammari, 15t Projection) (Mr. Mansour Alsharmrmari, |t Projection) (Mr. Mansour Alsharrmari, 2nd Projection)

Tested Image No.54 Tested Image Mo.62 Tested Image Mo 72
(Mr. Mansour Alsharamari, ard Projection) (Mr. Methkir Alharthee, |5t Projection) (Mr. Methkir Alharthee, 18t Projection)

Tested Image Mo 105 Tested Image No.120 Tested Image Mo.124
(Mr. Methkir Alharthee, 2nd Projection) (Mr. Methkir Alharthee, 3rd Projection) (Mr. Moharmmed Hanafy, 15t Projection)

Tested Image MNo.130 Tested Image No. 160 Tested Image Mo.179
(Mr. Mohammed Hanafy, 15t Projection) (Mr. Moharmmed Hanafy, ond Projection) (M. Moharmed Hanafy, 3 Praojection)

Figure 3.10: Some samples of the tested images.

3.1.7 Image Detection

The generated database of the tested images in Subsection 3.1.6 is used for detection.
By using the PCA algorithm, a detection threshold is specified by means of the
method explained in Sub-subsection 2.2.5.4. Then Condition 2.3 is used for detecting



60 Section 3.2. Optical Modelling

the tested images. The detection results of the tested images in Figure 3.10 by using
the PCA algorithm are presented in Table 3.4. The detection of all 180 tested images
by using the PCA algorithm is shown in Appendix D. Finally, the tested images can
be detected in the same way when the IPCA algorithm is used; or different eigenfaces
are selected to form the feature vector matrix.

Table 3.4: The detection of the tested images in Figure 3.10.

Irr?:gszelslo. Input Image Detected Output Image Status
4 a face a face Success
15 a face a face Success
38 a face not a face Failure
62 a face a face Success
72 a face a face Success
120 a face not a face Failure
124 a face a face Success
160 a face a face Success
179 a face a face Success

3.2 Optical Modelling

3.2.1 Introduction

In this section, the joint transform correlator (JTC) is fully simulated by using the
MATLAB © software. The simulation begins from scratch until generating the desired
pattern of the cross-correlated field in the back focal plane P; by using an adaptive
filtering mask designed for that. The JTC applications are simulated too. The
complete MATLAB © code that had been written to simulate this work is shown in
Appendix F.

In the simulation, lenses are assumed to be ideally focused (i.e. the model is an
aberration-free system) as in Figure 3.11; where f in the figure is the focal length.

3.2.2 Simulation of the JTC

We are at level that we can start in simulating the joint transform correlator (JTC).
The desired impulse response h and the data g (here it is called the object) are
100 x 100 images of faces for two people. They are respectively shown in Figure 3.12
and Figure 3.13. The impulse response and the object are normalized in order to
remove lighting effects on them then increasing the accuracy of cross-correlation. To
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i : g

Lens Focal plane

Figure 3.11: A focused lens.

keep variations among them just in the faces without the effects of the backgrounds,
the normalization is performed on the pixels occupying the faces in the same manner

as the normalization of the pixels on the faces of the training faces in Step 2 in
Sub-subsection 2.2.2.6.

Impulse Response Mo 3 for Mr. Moharmmed Hanafy

Figure 3.12: The desired impulse response h.

QObject Mo.1 for Mr. Mansour Alshammari

Figure 3.13: The object g.

The transparencies of the impulse response h and the object g are located in a
square array in the input plane P;. The width W, of g in the direction of the y-
coordinate is 100 pixels; the width W), of h in the direction of the y-coordinate is 100
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pixels; then the distance Y that separates the centers of h and g is equal to 200 pixels.
The constant c is selected to be 10 pixels then Relation 2.1 is satisfied. The distance
D obtained in Equation 2.66 is 130 pixels; the distance r; obtained in Equation 2.67
is 155 pixels; the distance ro obtained in Equation 2.68 is 155 pixels; D — r; and
D — ry are respectively equal to 155 pixels and 155 pixels; then the distances d; and
ds obtained respectively in Equation 2.71 and Equation 2.72 are respectively equal
to 310 pixels and 310 pixels. Since the distance d; is equal to the distance D as well
as the distance dy is also equal to the distance D then the input transparencies of h
and g are aligned properly in the input plane P;.

The number of samples N along the spatial space coordinate x; in the input plane
Py is 630; and the number of samples M along the spatial space coordinate y; is 630.
The physical side length L,, of the array in the z direction is 10 (m); and the physical
side length L,, of the array in the y; direction is 10 (m). Then the sample spacing
Ax; along the z;-coordinate is equal to % = 0.0159 (m); and the sample spacing Ay,
along the y;-coordinate is equal to gg& = 0.0159 (m). The transmitted field Uy (21, y1)
from the input plane P is shown in Figure 3.14.

The Transmitted Field frorm the Input Plane F‘1

(Impulse Mo.3 Is for Mr. Mohammed Hanafy and QObject Mo.1 |s for Mr. Mansour Alshammari)

—2560

¥y ()

Figure 3.14: The transmitted field U; (z1,y;) from the input plane
Py

The light wavelength A is 550x 1079 (m); and the focal length f is 0.055 (m). Then
the spatial space sampling interval Az, along the spatial space coordinate x5 is equal

to N’\Af;l = 55%23%?&2'9055 = 3.0250 x 107Y (m); similarly, the spatial space sampling
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; . Cthe q S R : : , Af  _ 550x10~9x0.055 __
interval Ay, along the spatial space coordinate ys is equal to 57 Ay = 63000150

3.0250 x 107%(m). The incident intensity I (zs,y2) on the back focal plane P, is
shown in Figure 3.15.

The Incident Intensity on the Plane F‘2

W A0 (Impulse No.3 s for Mr. Mohammed Hanafy and Object Mo.1 Is for Mr. Mansour Alshammari)

Figure 3.15: The incident intensity I (x2,y2) on the back focal
plane P.

Since the focal lengths of the lenses L, and L4 are equal, the spatial space sampling
intervals Axs and Ays in the back focal plane P3 are respectively equal to the spatial
space sampling intervals Ax; and Ay, in the input plane P;. The cross-correlated
field Us (x3,y3) in the back focal plane Pj is obtained as in Figure 3.16 by calculating
the inverse Fourier transform for the incident intensity I (z3,y2) on the back focal
plane P.

Figure 3.17 shows the designed adaptive mask for obtaining the desired pattern
of the cross-correlations of the impulse response h and the object ¢ in the back focal
plane P3;. The mask produces the cross-correlated pattern that is centered at (0,Y).
It is multiplied by the cross-correlated field in the plane Pj3 in order to obtain the
filtered filed as in Figure 3.18.
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The Crosscarrelated Field in the Plane F’a
(Impulse No.3 |s for Mr. Moharmed Hanafy and Object No.1 Is for Mr. Mansour Alshammari) ¥ ms

Figure 3.16: The cross-correlated field Us (x5, y3) in the back focal
plane P;.

The Adaptive Filtering Mask
{Impulse Ma.3 Is far Mr. Mohammed Hanafy and Object Ma.1 Is for Mr. Mangour Alshammari)

¥ (m)

5 4 3 2 1 1 2 3 4
x, (m)

Figure 3.17: The adaptive filtering mask.
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The Filtered Crosscarrelated Field in the Plane F‘3
(Impulse No.3 |s for Mr. Moharmed Hanafy and Object No.1 Is for Mr. Mansour Alshammari) ¥ 107

Figure 3.18: The filtered cross-correlated field in the back focal
plane P;.

3.2.3 Face Recognition

The database of the impulses for face recognition is picked to contain three, 100 x
100 impulses (images of faces) on black backgrounds. The impulses are taken for
vertical faces to people’s shoulders where oblique faces are ignored as shown in Figure
3.19. Taking just vertical faces will simplify the optimization of the database of the
impulses. Some objects are taken out of the database for setting up a recognition
threshold. Thirty-six objects are taken for each impulse then the total number of the
objects is equal to 108. Some samples of the objects are shown in Figure 3.20; the
full database of the objects is shown in Appendix A.

A recognition threshold is specified for each impulse by means of the method ex-
plained in Sub-sub-sub-subsection 2.3.4.2.2.1. The objects are processed as unknown
images of faces as illustrated in Sub-sub-subsection 2.3.4.2.2. Then Condition 2.5 is
used for recognizing the objects. The recognition results of the objects in Figure 3.20
are presented in Table 3.5. The recognition of all 108 objects is shown in Appendix

G.
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Irnpulse Response Moot for Mr. Mansour Alshammari Impulse Response Mo 2 for Mr. Methkir Alharthee Irnpulse Response Mo.3 far Mr. Moharmmed Hanafy

Figure 3.19: The database of the impulses.

Object Mo.3 for Mr. Mansour Alshammari Object Mo.40 for Mr. Methkir Alharthee Object Mo.78 for Mr. Mohammed Hanafy

Object Mo.g for Mr. Mansour Alshammari Object Mo.72 for Mr. Methkir Alharthee Object Mo.83 for Mr. Mohammed Hanafy

Figure 3.20: Some samples of the objects.

Table 3.5: The recognition of the objects in Figure 3.20.

Object No. Input Face Recognized Output Face Status
3 Mr. Mansour Alshammari Unknown Object Failure
8 Mr. Mansour Alshammari Mr. Mohammed Hanafy Failure
40 Mr. Methkir Alharthee Unknown Object Failure
72 Mr. Methkir Alharthee Unknown Object Failure
76 Mr. Mohammed Hanafy Mr. Mohammed Hanafy Success

83 Mr. Mohammed Hanafy Mr. Mohammed Hanafy Success
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3.2.4 Object Detection

The database of the generated objects in Subsection 3.2.3 is used for detection. A de-
tection threshold is specified by means of the method explained in Sub-sub-subsection
2.3.4.2.3. Then Condition 2.6 is used for detecting the objects. The detection results
of the objects in Figure 3.20 are presented in Table 3.6. The detection of all 108
objects is shown in Appendix H.

Table 3.6: The detection of the objects in Figure 3.20.

Object No. Input Object Detected Output Object Status

3 a face not a face Failure
8 a face not a face Failure
40 a face a face Success
72 a face not a face Failure
76 a face a face Success

83 a face not a face Failure
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Chapter I

Results of Performance Analysis

4.1 Performance Results of the PCA and IPCA
Algorithms

4.1.1 Introduction

AFTER modelling the applications of the PCA and IPCA algorithms, the perfor-
mance results for each application are obtained in this subsection. The results show
the behavior of each application when the eigenfaces that are generated by using the
PCA algorithm are used; the eigenfaces that are generated by using the IPCA algo-
rithm are used; and when different eigenfaces are selected to form the feature vector
matrix.

4.1.2 Results of Compression Performance

4.1.2.1 Speed of Compression and Reconstruction

When a small number of the eigenfaces is used to project and reconstruct the training
faces then the processing speed will increase and vice versa. Therefore, the IPCA al-
gorithm is the fastest one; then the PCA algorithm comes second; finally, the smallest
processing speed occurs when all calculated eigenvectors from the covariance matrix
for all training faces are used as eigenfaces.

4.1.2.2 Quality of a Reconstructed Image

When a small number of the eigenfaces is used to project and reconstruct the training
faces then the training faces will have bad quality. Therefore, the highest error in
reconstruction occurs when the IPCA algorithm is used; then the PCA algorithm
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comes second; finally, the usage of all eigenvectors as eigenfaces produces the samllest
reconstruction error.

For measuring the quality of the reconstructed training faces, Equation 2.46 is used
for computing the mean squared errors (MSEs) between the training faces and their
reconstructions. Figure 4.1 shows the plot of the MSEs of reconstructing training face
number five for different selected eigenfaces compared with resulted mean squared
errors when the PCA and TPCA algorithms are used. The plots of the MSEs of
reconstructing other training faces are shown in Appendix I. Figure 4.2 shows the
reconstruction of training face number five by using the highest correlated eigenface
(¢ = 1), the PCA eigenfaces (¢ = 8), the IPCA eigenfaces (¢ = 7), and all eigenvectors
as eigenfaces (¢ = 2500); along with mean squared errors resulted from reconstructing
the training face by using those eigenfaces.

The Mean Squared Emors of Reconstructing Training
Face No.5 for Different Selected Eigenfaces

10" (Mr. Methkir Alharthee, 2™ Projection)
- |
32.9560+4005 —— The Mean Squared Errors of Reconstruction for Diflerent Selected Eigenfaces. =
25 @ The Mean Squared Enor of Reconstruction When the First Eigenface Is Selected 2353924006 _|
2 ©  The Mean Squared Error of Reconstruction When All Eigenfaces Are Selected. N

The Mean Squared Error

| |
1 1250 2500
The Number of Selected Eigenfaces

it Explaining the Mean Squared Emors for the PCA and IPCA Algorithms on the Plot

1 T T 1
_ 3 —— The Mean Squared Emors of Reconstruction for Diffierent Selected Eigenfaces.
E 251 = == The Mean Squared Emor for PCA Algorithm, H
= 2k == = The Mean Squared Eror for IPCA Algorithm. I
&
z 15 =
0
g 1 .
@
Z 05 -
2 1706.7172
ol { ..

I.Ed%eiDES | |
0 1 7 ] i

The Number of Selected Eigenfaces

Figure 4.1: The plot of the mean squared errors (MSEs) of recon-
structing training face number five for different selected eigenfaces
compared with resulted mean squared errors when the PCA and
IPCA algorithms are used.
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Original Training Face Mo.5
(rAr. Methkir Alharthee, 2nd Projection)

Its Reconstruction When g=1

The Squared Error

Original Training Face Mo.5
(rAr. Methkir Alharthee, 2nd Projection)

Its Reconstruction WYWhen g=8

The Sguared Error

Crriginal Training Face Mo.5
itr. Methkir Alharthee, 2nd Frojection)

Itz Reconstruction YWwhen =7

The Squared Error

Criginal Training Face Mo.S
(hlr. Mlethkir Alharthee, 2nd Projection)

The Squared Error

Figure 4.2: The reconstruction of training face number five by
using the highest correlated eigenface (¢ = 1), the PCA eigenfaces
(¢ = 8), the IPCA eigenfaces (¢ = 7), and all eigenvectors as eigen-
faces (¢ = 2500); along with mean squared errors resulted from re-
constructing the training face by using those eigenfaces.

From Figure 4.1 and Figure 4.2, it can be noticed that when all eigenvectors
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are used as eigenfaces then the reconstructed training faces have the worst resolution;
that because the covariance matrix is too big then the calculation of 2500 eigenvectors
by using the MATLAB © software leads to some round-off errors in the eigenvectors
associated with the smallest eigenvalues. Hence, it is not recommended to select
the lowest correlated eigenvectors for reconstructing training faces due to they add
some noise to the reconstructed training faces. In addition, due to round-off error,
the MATLAB © software makes the smallest eigenvalues negative while they must
be positive because they are calculated from a positive definite covariance matrix.
Those negative eigenvectors must be set to zero.

4.1.2.3 Size of Compression
4.1.2.3.1 Information Rate

Obviously, from Equation 2.47, an information rate depends on the number of the
selected eigenfaces ¢. Note that, when all eigenvectors are picked to form the feature
vector matrix then there will not be any compression; and the overall size when there
is no any compression method is used will be the optimum one. Consequently, when
the number of the selected eigenfaces decreases then an information rate will decrease
(i.e. compression will increase) and vice versa. Therefore, the IPCA algorithm offers
the highest compression with the highest loss of information; after that, when the PCA
algorithm is used, there will not be information lost (i.e. there is no compression);
lastly, the usage of all eigenvectors as eigenfaces add some information (i.e. there is
no compression).

For measuring how much information is after compression compared with infor-
mation before compression, Equation 2.47 is used. Figure 4.3 shows the rates of in-
formation for different selected eigenfaces compared with resulted information rates
when the PCA and IPCA algorithms are used.

4.1.2.3.2 Mean Squared Error (MSE) of Compressed Images

Lost information increases when a small number of eigenfaces is picked and vice
versa. Therefore, the IPCA algorithm offers the highest compression with the highest
error; then the PCA algorithm comes second; lastly, the usage of all eigenvectors as
eigenfaces produce the lowest compression with the lowest error.

Equation 2.54 is used for computing the mean squared error (MSE) of compression.
Figure 4.4 shows the mean squared errors (MSEs) of compression for different selected
eigenfaces compared with resulted mean squared errors when the PCA and IPCA
algorithms are used.
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The Information Rates When Different Eigenfaces Are Selected Compared
w10t With the Original Information Rate for All Training Faces
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Figure 4.3: The rates of information for different selected eigen-
faces compared with resulted information rates when the PCA and
IPCA algorithms are used.

4.1.3 Results of Recognition Performance

4.1.3.1 Speed of Recognition

When the number of the selected eigenfaces decreases, the processing speed increases
and vice versa. Therefore, the usage of all calculated eigenvectors as eigenfaces leads
to the biggest processing time; then the usage of the calculated eigenfaces by using
the PCA algorithm comes second; finally, the usage of the calculated eigenfaces by
using the IPCA algorithm leads to the smallest processing time.

4.1.3.2 Error Rate

When the number of the selected eigenfaces increases, the error rate decreases; that
because the unknown face image will be projected precisely next to its corresponding
training face. On the other hand, when the selected eigenfaces decreases, the error
rate increases. Therefore, the usage of all calculated eigenvectors as eigenfaces leads
to the smallest error rate; then the usage of the calculated eigenfaces by using the
PCA algorithm comes second; finally, the usage of the calculated eigenfaces by using
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Figure 4.4: The mean squared errors (MSEs) of compression for
different selected eigenfaces compared with resulted mean squared
errors when the PCA and IPCA algorithms are used.

the IPCA algorithm leads to the biggest error rate.

In the recognition of all 180 tested images in Subsection 3.1.6, L = 180; SR = 133;
and FR = 47. Then by using Equation 2.55, the error rate ER (%) is equal to
% x 100 = 26.1111%. Figure 4.5 shows the error rates of recognition for different
selected eigenfaces compared with resulted error rates when the PCA and IPCA

algorithms are used.

4.1.4 Results of Detection Performance

4.1.4.1 Speed of Detection

When the number of the selected eigenfaces decreases, the processing speed increases
and vice versa. Therefore, the IPCA algorithm is the fastest one; then the PCA algo-
rithm comes second; finally, the smallest processing speed occurs when all calculated
eigenvectors from the covariance matrix for all training faces are used as eigenfaces.
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The Emor Rates of Recognition for Different Selected Eigenfaces
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Figure 4.5: The error rates of recognition for different selected
eigenfaces compared with resulted error rates when the PCA and
IPCA algorithms are used.

4.1.4.2 Error Rate

When the eigenfaces that contain the most significant patterns from the correlated
training faces (highly correlated eigenvectors) are only selected then the accuracy
of face detection increases. That because in face detection, distance calculation is
between the centered unknown image and its reconstruction; consequently, if the
unknown image is not a face then the distance will be big; therefore, the unknown
image will not be detected as a face image. As a result of that, the usage of the
calculated eigenfaces by using the IPCA algorithm produces the smallest error rate;
then the usage of the calculated eigenfaces by using the PCA algorithm comes second;
finally, the usage of all calculated eigenvectors as eigenfaces obtains the biggest error
rate.

In the detection of all 180 tested images in Subsection 3.1.7, L = 180; SD = 147,
and FFD = 33. Then by using Equation 2.56, the error rate ER (%) is equal to
% x 100 = 18.3333%. Figure 4.6 shows the error rates of detection for different

selected eigenfaces compared with resulted error rates when the PCA and IPCA
algorithms are used.
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The Error Rates of Detection for Different Selected Eigenfaces
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Figure 4.6: The error rates of detection for different selected eigen-
faces compared with resulted error rates when the PCA and IPCA
algorithms are used.

4.2 Results of JTC Performance

4.2.1 Results of Recognition Performance

In the recognition of all 108 objects in Subsection 3.2.3, L = 108; SR = 20; and
FR = 88. Then by using Equation 2.85, the error rate ER (%) is equal to % x 100 =
81.4815%.

4.2.1.1 Improvement of Recognition Performance

For finding the optimal combination out of the 108 objects in Subsection 3.2.3,
46656 (36 x 36 x 36) iterations are performed until the database of the optimal im-
pulses for face recognition is obtained as in Figure 4.7. The complete MATLAB ©
code that had been written to optimize the database of the impulses for face recog-
nition is shown in Appendix J. When the database of the optimal impulses is used
for recognizing all 108 objects then the total number of successes SR becomes 71;
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and the total number of failures F'R becomes 37. Therefore, the error rate ER (%) is

equal to % x 100 = 34.2593% which is much less than the resulted error rate when

the database of the impulses is not optimized.

Irnpulse Respanse No.1 for Mr. Mansour Alshammar Impulse Response No.2 for M. Methkor Albarthes Irnpulse Response No3 for Me. Mohammed Han

Figure 4.7: The database of the optimal impulses for face recogni-
tion.

4.2.2 Results of Detection Performance

In the detection of all 108 objects in Subsection 3.2.4, L = 108; SD = 58; and
FD = 50. Then by using Equation 2.86, the error rate ER (%) is equal to % x 100 =
46.2963%.

4.2.2.1 Improvement of Detection Performance

For finding the optimal combination out of the 108 objects in Subsection 3.2.4,
46656 (36 x 36 x 36) iterations are performed until the database of the optimal im-
pulses for object detection is obtained as in Figure 4.8. The complete MATLAB ©
code that had been written to optimize the database of the impulses for object detec-
tion is shown in Appendix J. When the database of the optimal impulses is used for
detecting all 108 objects then the total number of successes SD becomes 79; and the
total number of failures F'D becomes 29. Therefore, the error rate ER (%) is equal
to 2% x 100 = 26.8519% which is much less than the resulted error rate when the

108
database of the impulses is not optimized.

Irnpulse Response No.1 for Mr. Mansour Alshamman Impulse Response No.2 for M. Methkor Albarthes Irnpulse Response No3 for Me. Mohammed Hanaly

Figure 4.8: The database of the optimal impulses for object detec-
tion.
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Chapter

Conclusion

5.1 Discussion of Results

5.1.1 Introduction

IN fact, the results of the joint transform correlator (JTC) applications are obvi-
ously shown in Section 4.2; but the results of the PCA and IPCA applications are
not summarized yet. Hence, in this section, these results are fully discussed and
summarized.

5.1.2 Comparison of the PCA and IPCA Algorithms

5.1.2.1 Introduction

In this sub-subsection, it is determined which algorithm behaves better in each ap-
plication. It concludes that the IPCA algorithm, in general, behaves better than the
PCA algorithm in the most of the applications.

It is very important to be noticed that the calculation of all eigenvectors from the
covariance matrix for all training faces is too difficult because the covariance matrix
is too big as explained in Step 8 in Sub-subsection 2.2.2.6. Therefore, it is impractical

to use all eigenvectors as eigenfaces; but they are computed for comparison purposes
with the PCA and IPCA algorithms.

5.1.2.2 Results of Image Compression

The results of image compression are summarized in Table 5.1. From Table 5.1,
the TPCA algorithm behaves better than any other algorithm or technique. It offers
wonderful compression, reconstruction and processing speed with acceptable errors.
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Table 5.1: The results of image compression.

The Mean Squared Error An information rate (%)
(MSE) of Reconstructing . The MSE of Processing
Training Face No. 5 Before Compression : Compression Speed
’ After Compression
g=1 | 2.96 x 105 100 : 22.26 2.38 x 107 The fastest
q="1
(IPCA 1706.72 100 : 89.17 1.56 x 106 Second
Algorithm)
The Number
of Selected q=28
Eigenfaces q (PCA 1.25 x 107 100 : 100.32 1.16 x 1077 Third
Algorithm)
q = 2500
(Al 2.35 x 10° 100 : 27888.9 0 The slowest
Eigenvectors)

5.1.2.3 Results of Face Recognition

The results of face recognition are summarized in Table 5.2. From Table 5.2, the
PCA algorithm behaves better than any other algorithm or technique. It offers an
acceptable error rate, easy calculation and the speed is not bad.

Table 5.2: The results of face recognition.

| An Error Rate (%) Processing Speed
qg=1 | 65.56 The fastest

q=717

(IPCA Algorithm) 26.67 Second

The Number of
Selected

Eigenfaces q q=8

(PCA Algorithm) 26.11 Third

q = 2500

(All Eigenvectors) 17.78 The slowest

5.1.2.4 Results of Face Detection

The results of face detection are summarized in Table 5.3. From Table 5.3, the IPCA
algorithm behaves better than any other algorithm or technique. It offers the smallest
error rate as well as remarkable speed.
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Table 5.3: The results of face detection.

| An Error Rate (%) Processing Speed

g=1 24.44 The fastest
q=7
The Number of (IPCA Algorithm) 18.33 Second
Selected
Eigenfaces ¢q g =8
(PCA Algorithm) 18.33 Third
q = 2500 ‘ 1
(All Eigenvectors) 35.56 The slowest

5.2 Methods to Improve the Digital and the Op-
tical Models

5.2.1 Introduction

In fact, the discussed models are not in their final stage where they can be optimized.
Some ideas are presented in this section for each model that are going to help in
enhancing their performance.

5.2.2 Improvement of the Digital and the Optical Models

The performance of face recognition and image detection of the digital model can be
improved by increasing the size of the training faces and the detected or recognized
unknown image. Also, increasing the size of the impulses and the detected or recog-
nized unknown object of the optical model improves its performance in detection and
recognition.

The performance of digital and optical recognition can be improved by obtaining
a good way for blocking the pixels occupying the background of a face especially if the
background is not black. If it is not black such as white, the error rate of recognition
will increase because the intensities on the face will be close to 255 (i.e. they will be
close to the intensities on the background) then discrimination between the intensities
occupying the background and the intensities occupying the face becomes too hard.

For decreasing the error rates of face recognition and image detection of the digital
model, the database of the training faces can be optimized in the same manner as the
optimization of the database of the impulses for the optical model that is presented
in Sub-sub-sub-subsection 2.3.4.3.2.1 and Sub-sub-sub-subsection 2.3.4.3.3.1.
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The models performance can be improved by using another technique for enhanc-
ing the optimization speed of the databases. This technique measures information
contained in the 180 tested images (or in the 108 objects) then picking the tested
images (or the objects) that contain the highest information than the others to form
the database of the training faces (or the database of the impulses ).

Finally, the models performance can be improved by trying different detection
and recognition thresholds such as thresholds generated by receiver operating char-
acteristics (ROC).

5.3 The Digital Model Versus the Optical Model

In this section, we are going to compare between the digital model and the optical
model in detection and recognition based on a couple of criteria. The comparison is
summarized in Table 5.4.

Table 5.4: The comparison between the digital and the optical
models.

A Comparison Criterion ‘ The Digital Model The Optical Model

It is not necessarily to be

The Database It must be optimized

optimized
Implementation ‘ Easier Harder
Faster because it uses the
1
Speed Slower speed of light
Detection and
Recognition Performance Better Good

5.4 Future Work

For developing this work in future, the proposed ideas for improving the digital and
the optical models presented in Section 5.2 are going to be achieved. Also, there
is another idea that is considered to be performed in future is testing the models
performance under various types of noises.
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Appendix

A Code for the Digital Model

THIS code is for testing face reconstruction, detection and recognition processes
as well as the process of image compression by using principal components analysis
(PCA) and improved principal components analysis (IPCA) algorithms. In addition
to that this code is for setting up recognition and detection thresholds.

o

2 % This Code Is for Testing Face Reconstruction, Detection and

3 % Recognition Processes as Well as the Process of Image Compression
4 % by Using Principal Components Analysis (PCA) and Improved

5 % Principal Components Analysis (IPCA) Algorithms. In Addition to

6 % That This Code Is for Setting up Recognition and Detection

7 % Thresholds.

8

9

10 clc

clear all
close all
format long

[ S S Y
W N

-
w

% Faces images are NxN images.
N=size (imread ('Mr. Mansour Alshammari.jpg'),1l);

[un
(=]

This N is the
number of pixels.

ST
S © w N
o° oP

N
-

% Training faces.
Total_No_of_Known_Im=9; % The total number of the training faces.

NN
w N

An N"2xP, 2D
matrix where P 1is
the total number

All_Known_Im V=zeros (NxN, Total_ No_of_Known_Im);

V)
=

¥
w
o° o oe

)
(=2}
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27 % of the training
28 % faces. Each
29 % training face is
30 % vectorized and
31 % placed in one of
32 % the columns of
33 % the 2D matrix.
34 % The size of each
35 % training face
36 % vector is N"2.

37

38 Known_Images_Folder=...............

39 [cd '/The Known Images of Black Backgrounds']; % The folder of
40 % the black

41 % background

42 % training

43 % faces.

44 % Known_Images_Folder=..........

5 % [cd '/The Known Images of White Backgrounds']; % The folder
46 % of the white
47 % background
48 % training

49 % faces.

50

51 1f isdir (Known_Images_Folder)==

52 Error_Message=sprintf(...................

53 '"Error: The following folder does not exist\n%s', .......
54 Known_Images_Folder) ;

55 warndlg (Error_Message) ;

56 end

57

58 Known_Images=dir (fullfile (Known_Images_Folder, "«.3pg'));

59 for k=1l:length (Known_Images)

60 Known_Image=Known_Images (k) .name;

61 Known_TImage_Location=fullfile (Known_Images_Folder,Known_Image) ;
62 All _Known_Im V(:,k)=................

63 reshape (double (rgb2gray (imread (Known_Image_Location))) .....
64 ,NxN, 1) ;

65

66 figure ('units', 'centimeters', 'position', [16 7 7.5 8.5])

67 subplot (1,1,1)

68
69
70
71
72
73
74
75

76

imshow (uint8 (reshape (A11l_Known_Im _V(:,k),N,N)))

if k==
title({['Training Face No.' num2str(k)];......c.......
[" (" Known_Image (l:length (Known_Image)—6) .........
', 1~{st} Projection)']})
elseif k==

title({['Training Face No.' num2str(k)]l; ... cceee.o...
["(" Known_Image (l:length (Known_Image)—6) ........
', 27{nd} Projection)']})

o0 o° o0 o° o° o o° o° d° o° o°
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7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105

107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125

126

o0 o0 o0 O O O O O O A A A A° A A A A N N N A N N N A A A A A A A o o° o

e

All_Known_Im_V;

o0 o° o° o° o O° A° A° oA° o o°

nd

Imhist for setting up a threshold to work on just the pixels of a
face and throwing the background pixels. Imhist calculates the
number of pixels in an image that have the same intensity levels.
So,
histogram of the intensity levels will be for the backgroubd
pixels because the total number of pixels that have the same
intensity levels are the background pixels of the training face.
Note that, the histogram of a digital image is defined as the
discrete function, h(rk)=nk, where rk is the kth intensity level
and nk is the number of pixels in the image whose intensity level
is rk.

hist_Known_Im=zeros (Total_No_of_Known_Im,256);

for A=1:Total_ No_of_ Known_Im

elseif k==
title({['Training Face No.' num2str(k)J];..... oo ...
["(" Known_Image (l:length (Known_Image)—6) ........

', 3"{rd} Projection)']})
elseif k==4
title({['Training Face No.' num2str(k)l;.............
["(" Known_Image (l:length (Known_Image)—6) ......
', 1~{st} Projection)']})
elseif k==5
title({['Training Face No.' num2str(k)l; ..... ... .....
[" (" Known_Image (l:length (Known_Image)—6) ......
', 2”°{nd} Projection)']})
elseif k==

title({['Training Face No.' num2str(k)J];......cc.....
['"('" Known_Image (l:length (Known_Image)—6) .....

', 3"{rd} Projection)']})
elseif k==7
title({['Training Face No.' num2str(k)J];.....cco.....
[" (" Known_Image (l:length (Known_Image)—6) ......
', 1~{st} Projection)']})
elseif k==8
title({['Training Face No.' num2str(k)l;.............
[" (" Known_Image (l:length (Known_Image)—6) .....
', 2”{nd} Projection)']})
elseif k==9
title({['Training Face No.' num2str(k)l; ... ...
[" (" Known_Image (l:length (Known_Image)—6) ......
', 3"{rd} Projection)']})
end

disp(['Please, press any keyboard button to explore '......
'the remaining training faces >>>>>>>'])

pause

close all

clc

if a training face has a unified background then the biggest
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127

129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

157
158
159
160
161
162
163
164
165

167
168
169
170
171
172
173
174
175

176

o0 o0 0 O O O O O A A A A A A A AN AN N N N N N O A A A N AN AN N AN AN N N N AN A A A A A O o o°

Note that,

For doing that,

a training face has to be scaled between 0 to 255

uint8 can be used for

o
o
% before using imhist.
o
o

converting the training face class form double to uint8.

hist_Known_Im(A, :)=.....0.u.e...
imhist (uint8 (reshape (A1ll_Known_Im V(:,A),N,N)))

Known_Image=Known_Images (A) .name;
plot (hist_Known_Im (A, :))
if A==
title({['The Histogram of Training Face No.'
num2str (A)]; .......
["(" Known_Image (l:length (Known_Image)—6)
', 1~{st} Projection)']})
elseif A==
title({['The Histogram of Training Face No.'
num2str (A)]; ......
["(" Known_Image (l:length (Known_Image)—6)
', 2”{nd} Projection)']})
elseif A==
title({['The Histogram of Training Face No.'
num2str (A)]; ......
["(" Known_Image (l:length (Known_Image)—6)
', 3"{rd} Projection)']})
elseif A==
title({['The Histogram of Training Face No.'
num2str (A)]; ......
["(" Known_Image (l:length (Known_Image)—6)
', 17{st} Projection)']})
elseif A==
title({['The Histogram of Training Face No.'
num2str(A)]; ......
["(" Known_Image (l:length (Known_Image)—6)
', 2”°{nd} Projection)']})
elseif A==
title({['The Histogram of Training Face No.'
num2str (A)];....
["(" Known_Image (l:length (Known_Image)—6)
', 3"{rd} Projection)']})
elseif A==
title({['The Histogram of Training Face No.'
num2str (A)]; .....
['" (" Known_Image (l:length (Known_Image)—6)
', 17{st} Projection)']})
elseif A==
title({['The Histogram of Training Face No.'
num2str(A)]; .....
['" (" Known_Image (l:length (Known_Image)—6)
', 2”°{nd} Projection)']})
elseif A==
title({['The Histogram of Training Face No.'

4
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177

179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195

197
198
199
200
201
202
203
204
205

207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226

num2str(A)]; ......
[" (" Known_Image (l:length (Known_Image)—6) ......
', 3"{rd} Projection)']})
end
xlabel ('Intensity Level rk')
ylabel ({'The Number of Pixels in the Training Face'.........
' Whose Intensity Level Is rk Where h(rk)=nk'})
axis tight
disp(['Please, press any keyboard button to explore '......
'the remaining histograms >>>>>>>'])
pause
clc

o0 o0 o° o° O o° o° O° A° d° o o°

end
hist_Known_Im;

Mean_hist_Known_Im=sum (hist_Known_Im,1)/......

Total_No_of_Known_Im; % The average histogram

% for all training faces.

The picked threshold is based on the
average histogram for all training faces
when the training faces have black
backgrounds. Note that, all intesity levels
below the threshold represent the images
backgrounds because these levels have the
biggest histogram.
% Threshold_Known_Im=180; The Picked threshold is based on the
average histogram for all training
faces when the training faces have
white backgrounds. Note that, all
intesity levels above the threshold
represent the images backgrounds
because these levels have the biggest
histogram.

Threshold_Known_Im=8;

o o0 A0 o0 o° o° o

o° d° o° o° oA J° o° oe

(Mean_hist_Known_Im)

([Threshold_Known_Im Threshold_Known_Im], ......

[0 max (Mean_hist_Known_Im)], 'Color','r")

text (Threshold_Known_Im+0.5,max (Mean_hist_Known_Im)/2,.....
'{\color{red} The Threshold}")

title('The Mean Histogram of All Training Faces')

xlabel ("Intensity Level rk')

set (gca, 'XTick', [0 Threshold_Known_Im 255])

ylabel ({'The Mean Number of Pixels from All Training' ..........
'Faces Whose Intensity Level Is rk'})

axis tight

pause

plot
line

o0 o0 o0 O O O o° O° O° d° o° oP

Normalizing all training faces for removing the lightening
effects on them and to increase the resolution of face detection
and recognition. Note that, the normalization will be done just

o® o° o oP

for face pixels for keeping the variations among the images just
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227
228
229
230
231
232

234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

257
258
259
260
261
262
263
264
265

267
268
269
270
271
272
273
274
275

o)

% in the faces without the backgrounds effects.
Threshold_Known_Image=.......
zeros (N, N, Total_No_of_ Known_Im); The training faces after

applying the threshold.

o° o

Normalized_ _Known_Im V=......

zeros (NxN, Total_No_of_ Known_Im); An N"2xP, 2D matrix where
each column represents a
normalized training face

vector.

o° o o oe

for M=1:Total_No_of_ Known_Im
t=reshape (Al1l_Known_Im_V
T=t>Threshold_Known_Im;

—

:,M),N,N);
The pixels bigger than the threshold
are of interest because they
represent the pixels of a face.

The pixels smaller than the
threshold are of interest because

o° o oe

T=t<Threshold_Known_Im;

they represent the pixels of

o® o° o oP

o° o° o oP

a face.
for R=1:N
for C=1:N
if T(R,C)==1
Threshold_Known_Image (R,C,M
floor (255* (double (t (R, C
max (max (double(t)))));

done to increase the
dynamic range of the
training face for
visualization by
scaling the
intensities of the
training face from O
to 255.

o0 o0 o0 o° o o° o° O° d° oo — ~—

end;
end;
end;
Normalized_Known_Im_V(:,M)=.........
reshape (Threshold_Known_Image(:, :,M),N*xN,1);

Known_Image=Known_Images (M) .name;

figure

subplot (2,1,1)

imshow (t)

if M==

title({['This Is To Show How Good the Known '.......

'Images Threshold Is,'];.....
blanks (l); ['Training Face No.' num2str(M)];
[" (" Known_Image (l:length (Known_Image)—6) ......
', 17{st} Projection)']})

elseif M==

o0 o° o0 o° o° o o° o° d° o° o°

The normalization of a
training face. This is
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277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295

297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325

326

o0 o0 0 0 O O O O O A A A° A A A AN AN N N N N N N O A A A AN AN AN AN AN AN N N AN AN A A A AN AN AN N N N O o° o° o°

title({['This Is To Show How Good the Known '
'Images Threshold Is,'];.....

blanks (1l); ['Training Face No.' num2str(M)];

['" (" Known_Image (l:length (Known_Image)—6)
', 2”°{nd} Projection)']})
elseif M==
title({['This Is To Show How Good the Known '
'Images Threshold Is,'];.....

blanks(l); ['Training Face No.' num2str(M)];

["(" Known_Image (l:length (Known_Image)—6)
', 3"{rd} Projection)']})
elseif M==
title({['This Is To Show How Good the Known '
'Images Threshold Is,'];.....

blanks (l); ['Training Face No.' num2str(M)];

["(" Known_Image (l:length (Known_Image)—6)
', 17{st} Projection)']})
elseif M==
title({['This Is To Show How Good the Known '
'Images Threshold Is,'];.....

blanks (1); ['Training Face No.' num2str (M) ];

["(" Known_Image (l:length (Known_Image)—6)
', 2”°{nd} Projection)']})
elseif M==
title({['This Is To Show How Good the Known '
'Images Threshold Is,'];.....

blanks (1); ['Training Face No.' num2str (M) ];

["(" Known_Image (l:length (Known_Image)—6)
', 3"{rd} Projection)']})
elseif M==
title({['This Is To Show How Good the Known '
'Images Threshold Is,'];.....

blanks (1) ; ['Training Face No.' num2str (M)];

[" (" Known_Image (l:length (Known_Image)—6)
', 1~{st} Projection)']})
elseif M==
title({['This Is To Show How Good the Known '
'Images Threshold Is,'];.....

blanks (1l); ['Training Face No.' num2str (M) ];

["(" Known_Image (l:length (Known_Image)—6)
', 2”{nd} Projection)']})
elseif M==
title({['This Is To Show How Good the Known '
'Images Threshold Is,']l;.....

blanks (1l); ['Training Face No.' num2str(M)];

[" (" Known_Image (l:length (Known_Image)—6)
', 3"{rd} Projection)']})

end

subplot (2,1,2)

imshow (reshape (Normalized_Known_Im_V(:,M),N,N))
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327 % if M==

328 % title({['Normalized Training Face No.' num2str(M)];....
329 % [" (" Known_Image (l:length (Known_Image)—6) .......
330 % ', 1~{st} Projection)']})

331 % elseif M==

332 % title({['Normalized Training Face No.' num2str (M)];....
333 % ["(" Known_Image (l:length (Known_Image)—6) ......

334 % ', 2"{nd} Projection)']})

335 % elseif M==3

336 % title({['Normalized Training Face No.' num2str (M)];....
337 % [" (" Known_Image (l:length (Known_Image)—6) ......

338 % ', 3"{rd} Projection)']})

339 % elseif M==4

340 % title({['Normalized Training Face No.' num2str(M)];....
341 % ['"('" Known_Image (l:length (Known_Image)—6) ......

342 % ', 17{st} Projection)']})

343 % elseif M==

344 % title({['Normalized Training Face No.' num2str(M)];....
345 % [" (" Known_Image (l:length (Known_Image)—6) ......

346 % ', 2”{nd} Projection)']})

347 % elseif M==6

348 % title({['Normalized Training Face No.' num2str(M)];....
349 % [" (" Known_Image (l:length (Known_Image)—6) .....

350 % ', 3"{rd} Projection)']})

351 % elseif M==7

352 % title({['Normalized Training Face No.' num2str (M)];....
353 % [" (" Known_Image (l:length (Known_Image)—6) ......

354 % ', 17{st} Projection)']})

355 % elseif M==

356 % title({['Normalized Training Face No.' num2str(M)];....
357 % ['"('" Known_Image (l:length (Known_Image)—6) .......
358 % ', 2”°{nd} Projection)']})

359 % elseif M==9

360 % title({['Normalized Training Face No.' num2str(M)];....
361 % ['" (" Known_Image (l:length (Known_Image)—6) .......
362 % ', 3"{rd} Projection)']})

363 %

364 % disp(['Please, press any keyboard button to see how '.....
365 % 'good the applied'])

366 % disp ('threshold on the normalized training faces is >>>>>>>")
367 % pause

368 % close all

369 %

370 %

371 % figure

372 % subplot (2,1,1)

373 % imshow (uint8 (t))

374 % if M==

375 % title({['Training Face No.' num2str(M)]; ...........

376 % [" (" Known_Image (l:length (Known_Image)—6) ......
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377 % ', 17{st} Projection)']})

378 % elseif M==

379 % title({['Training Face No.' num2str(M)];.......

380 % ["('" Known_Image (l:length (Known_Image)—6) .....
381 % ', 2”°{nd} Projection)']})

382 % elseif M==

383 % title({['Training Face No.' num2str(M)];.......

384 [" (" Known_Image (l:length (Known_Image)—6) ......
385 % ', 3"{rd} Projection)']})

386 % elseif M==4

387 % title({['Training Face No.' num2str(M)]; ...........
388 % ["(" Known_Image (l:length (Known_Image)—6) ......
380 % ', 1~{st} Projection)']})

390 % elseif M==

391 % title({['Training Face No.' num2str(M)];........

392 % [" (" Known_Image (l:length (Known_Image)—6) ......
393 % ', 2”°{nd} Projection)']})

304 % elseif M==6

395 % title({['Training Face No.' num2str(M)];......

396 % ['"('" Known_Image (l:length (Known_Image)—6) ......
397 % ', 3"{rd} Projection)']})

398 % elseif M==7

399 % title({['Training Face No.' num2str(M)];......

400 % [" (" Known_Image (l:length (Known_Image)—6) .......
01 % ', 1~{st} Projection)']})

402 % elseif M==8

403 % title({['Training Face No.' num2str(M)];......

404 % ["(" Known_Image (l:length (Known_Image)—6) ......
105 % ', 2”{nd} Projection)']})

406 % elseif M==9

407 % title({['Training Face No.' num2str(M)];......

1408 % ["(" Known_Image (l:length (Known_Image)—6) .......
109 % ', 3"{rd} Projection)']})

410 % end

411 % subplot (2,1,2)

412 % imshow (uint8 (reshape (Normalized Known_Im V(:,M),N,N)))

413 % if M==

414 % title({['Normalized Training Face No.' num2str (M)];....
415 % [" (" Known_Image (l:length (Known_Image)—6) ......
116 % ', 1~{st} Projection)']})

417 % elseif M==

418 % title({['Normalized Training Face No.' num2str(M)];....
419 % ["(" Known_Image (l:length (Known_Image)—6) ......
20 % ', 2”°{nd} Projection)']})

21 % elseif M==

122 % title({['Normalized Training Face No.' num2str(M)];....
423 % ['"('" Known_Image (l:length (Known_Image)—6) .......
424 % ', 3"{rd} Projection)']})

425 % elseif M==

426 % title({['Normalized Training Face No.' num2str(M)];....
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427

429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455

457
458
459
460
461
462
463
464
465

467
468
469
470
471
472
473
474
475
476

o0 o0 0 O O O O O A A A A A A A A N N N O O O O A A ° o oP°

end;

["(" Known_Image (l:length (Known_Image)—6) .....
', 1~{st} Projection)']})
elseif M==

title({['Normalized Training Face No.' num2str(M)];....
( A\l

[ Known_Image (1:1length (Known_Image)—6) ......
', 2”°{nd} Projection)']})
elseif M==

title({['Normalized Training Face No.' num2str(M)];....
' Known_Image (l:length (Known_Image)—6) .......

["(

', 3"{rd} Projection)']})
elseif M==7
title({['Normalized Training Face No.' num2str (M)];....
[" (" Known_Image (l:length (Known_Image)—6) ......
', 1~{st} Projection)']})

elseif M==8

title({['Normalized Training Face No.' num2str(M)];....
V(l

[ Known_TImage (1:1length (Known_Image)—6) .....
', 2”{nd} Projection)']})
elseif M==

title({['Normalized Training Face No.' num2str(M)];....
' Known_TImage (1:1length (Known_Image)—6) .......

['(
', 3"{rd} Projection)']})
end

disp(['Please, press any keyboard button to explore '......

'the remaining normalized training faces >>>>>>>'])
pause
close all
clc

Normalized_ Known_Im_V;

o o o

Centering each face by simply subtracting the mean of the face
pixels from each pixel in the face.
pixels will have zero mean that means the face is centered.

Rows_Columns=zeros (1,1, ...........

Means=zeros (1, Total_No_of_Known_Im);

Total_No_of_ Known_Im);

o0 o° o© o o° o° o° o

the faces pixels are equal.
% The means of the
faces pixels.

<
o
°

Centered_Known_Im=zeros (NxN, ................

Total_No_of_ Known_Im);

An N"2xP, 2D matrix where each
column represents a training
face vector with a centered

o° o o° oe

face.

By doing that the new face

The rows and columns for the pixels
of the faces. Note that, the training
faces are not similar so the rows and
columns of the faces pixels will not
be equal. Therefore, MATLAB will add
zero rows and columns to make the
matrices of the rows and columns of
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477

479
480
481
482

484
485
486
487
488
489
490
491
492
493
494
495

497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525

526

Centered_Known_Image=zeros(N,N,........

Total_No_of_ Known_Im); The training faces after

centering the faces.

o
°
)

<

for j=1:Total_No_of_Known_Im

o0 o0 o0 0 O O O O A A A A° A° A A A AN N N O O O° o° o° o°

x=reshape (Normalized_ Known_Im V(:,3j),N,N);
[rr ccl=find(x>0); % The pixels bigger than zero are of

o\

interest because they represent the
pixels of a face.
(
(

o° o

Rows_Columns (l,1l:size(rr,1),j)=rr."';

Rows_Columns (2,1l:size(rr,1),j)=cc.';

Sum=0;

No=0;

for RR=1l:size(rr,1)
Sum=Sum+x (rr (RR) , cc (RR) ) ;
No=No+1;

end

Means (1, j)=Sum/No;

for RRl=1l:size(rr,1)
Centered_Known_Image (rr(RR1),cc(RR1),J)=........
X (rr (RR1),cc (RR1))—Means (1, j);
end
Centered_Known_Im(:,j)=.........
reshape (Centered_Known_Image(:,:, j),NxN,1);

figure ('units', 'centimeters', 'position', [16 7 7 8.5])
subplot (1,1,1)

Known_Image=Known_Images (Jj) .name;

imshow (uint8 (reshape (Centered_Known_Im(:, j),N,N)))

if J==

title({['Centered Training Face No.' num2str(j)];....
V(V

[ Known_Image (1:1length (Known_Image)—6) .....
', 17{st} Projection)']})
elseif j==

title({['Centered Training Face No.' num2str(j)];....
A\l

['"('" Known_Image (l:length (Known_Image)—6) ......

', 2”°{nd} Projection)']})

elseif j==3
titl {

(" Known_Image (l:length (Known_Image)—6) ......

37{rd} Projection)'l})

- — O

I~

elseif j==4
title({['Centered Training Face No.' num2str(j)]l;....
["(" Known_Image (l:length (Known_Image)—6) ......
', 17°{st} Projection)']l})
elseif j==

title({['Centered Training Face No.' num2str(j)];....
( ]

[ Known_Image (1:1length (Known_Image)—6) .....
', 2”°{nd} Projection)']})
elseif j==

({['Centered Training Face No.' num2str(3j)]l;....
) A\l
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527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575

576

title({['Centered Training Face No.' num2str(j)];....
( ]

[’ Known_Image (1:length (Known_Image)—6) .....
', 3"{rd} Projection)']})

I~

elseif j==7
title({['Centered Training Face No.' num2str(j)];....
["(" Known_Image (l:length (Known_Image)—6) .....
', 17{st} Projection)']})
elseif j==

title({['Centered Training Face No.' num2str(j)];....
[" (" Known_Image (l:length (Known_Image)—6) ......
', 2”°{nd} Projection)']})
elseif j==9
title({['Centered Training Face No.' num2str(j)];....
['" (" Known_Image (l:length (Known_Image)—6) ......
)

o0 0 o0 0 O O A A A A° A A A A A O O o° o° o° o°

, 3"{rd} Projection)']})
end
disp(['Please, press any keyboard button to explore '......
'the remaining centered training faces >>>>>>>'])
pause
close all
clc

end
Centered_Known_Im;

Tested images are supposed to be unknown but here multiple
images for each training face are taken for testing the face
reconstruction, recognition and detection processes as well
as selecting a decision threshold for face detection and
recognition.
Total_No_of_Tested_Im=180; % Total number of the

% tested images.

o° o o o o°

Im_P=[36 12 12 36 12 12 36 12 12]; Each element in this vector
represents the total number of
the taken images for each

training face.

o° 0P o o°

L1=Im_P(1);
L2=L1+Im_P (2);
L3=L2+Im_P (3); L3=60 is the total number of the tested

images for Mr. Mansour Alshammari.

o° o°

L4=1L3+Im_P (4);
L5=L4+Im_P (5);
L6=L5+Im_P (6) ; L6=120 is the total number of the tested images

for Mr. Methkir Alharthee.

o° o

L7=L6+Im_P (7);
L8=L7+Im_P (8);
L9=L8+Im_P (9); L9=180 is the total number of the tested images

for Mr. Mohammed Hanafy.

o° o
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578

All_Tested_Im_V=zeros (N*N, ...........

Total_No_of Tested_ _Im); % An N"2xP1l, 2D matrix where Pl is the
% total number of the tested images.
% Each tested image is vectorized and
% placed in one of the columns of the
% 2D matrix. The size of each tested
% image vector is N"2.

Tested_Images_Folder=............

[cd '/The Tested Images of Black Backgrounds']; The folder of
the black
background
tested

images.

o° o° o o° o

Tested_Images_Folder=..............

[cd '/The Tested Images of White Backgrounds']; % The folder
of the white
background
tested
images.

o oo

~

o° o° o o

if isdir (Tested_Images_Folder)==
Error_Messagel=sprintf(.........
'Error: The following folder does not exist\n%s'.......
, Tested_Images_Folder);
warndlg (Error_Messagel) ;
end

Tested_Images=dir (fullfile (Tested_Images_Folder, "x.3pg'));
for kl=1:length(Tested_Images)
Tested_Image_Number=[num2str (kl) '.Jpg']l;
Tested_Image_Location=............
fullfile (Tested_Images_Folder, Tested_Image_Number) ;
All_Tested_Im V(:,kl)=reshape...............
(double (rgb2gray (imread (Tested_Image_Location))),NxN,1);

figure ('units', 'centimeters', 'position', [16 7 7.5 8.5])
subplot (1,1,1)
imshow (uint8 (reshape (A1l1l_Tested_Im_V(:,k1),N,N)))
if kl<=L1
title({['Tested Image No.' num2str(kl)];...........
' (Mr. Mansour Alshammari, 17{st} Projection)'})
elseif k1>L1 && kl<=L2
title({['Tested Image No.' num2str(kl)];...........
' (Mr. Mansour Alshammari, 27{nd} Projection)'})
elseif k1>L2 && k1l<=L3
title({['Tested Image No.' num2str(kl)]l;...........
' (Mr. Mansour Alshammari, 37{rd} Projection)'})
elseif k1>L3 && kl<=L4

o0 o0 o0 O° O O O° O° A° A° o° o o°
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627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675

676

title({['Tested Image No.'
' (Mr.
elseif k1>L4 && kl<=L5
title({['Tested Image No.'
' (Mr.
elseif k1>L5 && kl<=L6
title({['Tested Image No.'
' (Mr.
elseif k1>L6 && kl<=L7
title({['Tested Image No.'
' (Mr. Mohammed Hanafy,
elseif k1>L7 && k1l<=LS
title({['Tested Image No.'
' (Mr. Mohammed Hanafy,
elseif k1>L8 && kl1l<=L9
title({['Tested Image No.'
' (Mr. Mohammed Hanafy,
end
disp(['Please,

pause
close all

o0 o0 0 O O 0 O O A A A A A A A A A O O o° o° o° o°

clc
end
All_Tested_Im_V;

Methkir Alharthee,

Methkir Alharthee,

Methkir Alharthee,

press any keyboard button to explore '
'the remaining tested images >>>>>>>'])

num2str(kl)];

1~{st} Projection)'})

num2str (k1) ];

2”°{nd} Projection)'})

num2str(kl)];

37{rd} Projection)'})

num2str (k1) ];
1™{st} Projection)'})

num2str(kl)J]; ...........
27{nd} Projection)'})

num2str (k1) ];
37{rd} Projection)'})

Imhist for setting up a threshold to work on just the pixels of a

Imhist calculates the

face and throwing the background pixels.

number of pixels in an image that have the same intensity levels.

So, if a tested image has a unified background then the biggest
histogram of the intensity levels will be for the background
pixels because the total number of pixels that have the same
intensity levels are the background pixels of the tested image.

Note that, the histogram of a digital
discrete function, h(rk)=nk, where rk
and nk is the number of pixels in the

image is defined as the
is the kth intensity level
image whose intensity level

0 o° o° o o° O° A° A° od° o o

is rk.
hist_Tested_Im=zeros (Total_ No_of_ Tested_Im,256);
for Al=1:Total_No_of_ Tested_Im
% Note that,
% before using imhist. For doing that,
% converting the tested image class form double to uint8.
hist_Tested_Im(Al, :)=.......
imhist (uint8 (reshape (All_Tested_Im_V(:,Al),N,N)));
plot (hist_Tested_Im(Al, :))
if Al<=L1
title({['The Histogram of Training Face No.'
num2str (Al) ];
' (Mr.

o® o° o° o oP

Mansour Alshammari, 17{st} Projection)'})

a tested image has to be scaled between 0 to 255
uint8 can be used for
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677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725

726

N o0 o o O A A A° A A A A N N N N N O O O A A A A AN AN AN N N N N AN A A A A A A o o o°

end

elseif Al1>L1 && Al<=L2
title({['The Histogram of Training Face No.' ......
num2str(Al)J]; .......
' (Mr. Mansour Alshammari, 27{nd} Projection)'})
elseif A1>L2 && Al<=L3
title({['The Histogram of Training Face No.' .......
num2str(Al)J]; .......
' (Mr. Mansour Alshammari, 37{rd} Projection)'})
elseif A1>L3 && Al<=L4
title({['The Histogram of Training Face No.' ......
num2str (Al)]; .......
'(Mr. Methkir Alharthee, 17{st} Projection)'})
elseif A1>L4 && Al<=L5
title ({['The Histogram of Training Face No.' ......
num2str (ALl)]; .......
'(Mr. Methkir Alharthee, 2”{nd} Projection)'})
elseif A1>L5 && Al<=L6
title({['The Histogram of Training Face No.' .....
num2str(Al)J]; .......
'(Mr. Methkir Alharthee, 37{rd} Projection)'})
elseif A1>L6 && Al<=L7
title({['The Histogram of Training Face No.' ......
num2str(Al)J]; .......
' (Mr. Mohammed Hanafy, 17{st} Projection)'})
elseif A1>L7 && Al<=L38
title({['The Histogram of Training Face No.' ......
num2str (Al)J]; .......
' (Mr. Mohammed Hanafy, 27{nd} Projection)'})
elseif A1>L8 && Al<=L9
title({['The Histogram of Training Face No.' .....
num2str (Al)]; .......
' (Mr. Mohammed Hanafy, 37{rd} Projection)'})
end
xlabel ('"Intensity Level rk')
ylabel ({'The Number of Pixels in the Tested Image' ........
' Whose Intensity Level Is rk Where h(rk)=nk'})
axis tight

disp(['Please, press any keyboard button to explore '......
'the remaining histograms >>>>>>>'7)

pause

clc

hist_Tested_Im;

Mean_hist_Tested _Im=...........

sum (hist_Tested_Im, 1) /Total_No_of Tested_ Im;

The average
histogram for
all tested
images.

o° o o° oe

Threshold_Tested_Im=8; % The picked threshold is based on the
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727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775

776

o0 o0 o° 0 o O° A A° o° o° o o

o° o° o° o o

Threshold_Tested_Image=.........

Normalized_ Tested_Im_V=zeros (NN, ...........

for Ml=1:Total_No_of_ Tested_ Im

o® o° o o

average histogram for all tested images
when the tested images have black
backgrounds. Note that, all intesity
levels below the threshold represent the
images backgrounds because these levels
have the biggest histogram.
Threshold_Tested Im=180; The picked threshold is based on the
average histogram for all tested
images when the tested images have
white backgrounds. Note that, all
intesity levels above the threshold
represent the images backgrounds
because these levels have the biggest
histogram.

o° o0 o° o° o° oo

o0 o0 o0 o° o° o° o oe

(Mean_hist_Tested_Im)

([Threshold_Tested_ Im Threshold_Tested Im], ......ccoocu...

[0 max (Mean_hist_Tested_Im)], 'Color','r'")

text (Threshold_Tested Im+0.5,max (Mean_hist_ Tested _Im)/2,........
'"{\color{red} The Threshold}")

title('The Mean Histogram of All Tested Images')

xlabel ('Intensity Level rk')

set (gca, 'XTick', [0 Threshold_Tested_Im 255])

ylabel ({'The Mean Number of Pixels from All Tested'......
'Images Whose Intensity Level Is rk'})

axis tight

pause

plot
line

Normalizing all the tested images for removing the lightening
effects on them and to increase the resolution of face detection
and recognition. Note that, the normalization will be done just
for face pixels for keeping the variations among the images just
in the faces without the backgrounds effects.

zeros (N,N, Total_No_of_ Tested_Im); The tested images after
applying the threshold.
Total No_of_ Tested_Im); % An N"2xP1l, 2D matrix where each
% column represents a normalized
% tested image vector.
tl=reshape (All_Tested_Im V(:,M1),N,N);
Tl=t1>Threshold_Tested_Im; The pixels bigger than the
threshold are of interest because
they represent the pixels of
face.
The pixels smaller than the
threshold are of interest
because they represent the
pixels of a face.

o® o° o oP

Tl=t1l<Threshold_Tested_Im;

o® o° o o0 W

for R1=1:N
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e
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825

826
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for Cl=1:N
if T1(R1,Cl)==
Threshold_Tested_Image (R1,Cl,Ml)=..........
floor (255 (double (t1 (R1,Cl))/.......
max (max (double(tl)))));
a tested image.

scaling the

0 A o o o0 o° o° o oo o

to 255.
end;
end;

end;
Normalized Tested Im V(:,Ml)=..............

reshape (Threshold_Tested_Image(:,:,M1),NxN,1);

figure
subplot (2,1,1)
imshow (t1l)
if Ml<=L1
title({['This Is To Show How Good the Tested '....
'Images Threshold Is,'];.....
blanks (1) ; ['Tested Image No.' num2str (M1)];....
' (Mr. Mansour Alshammari, 17{st} Projection)'})
elseif MI>L1 && M1<=L2
title({['This Is To Show How Good the Tested '....
'Images Threshold Is,']l;.....
blanks (1) ; ['Tested Image No.' num2str (M1)];....
' (Mr. Mansour Alshammari, 2”{nd} Projection)'})
elseif M1>L2 && M1<=L3
title({['This Is To Show How Good the Tested '....
'Images Threshold Is,']l;.....
blanks (1) ; ['Tested Image No.' num2str (M1)];....
' (Mr. Mansour Alshammari, 37{rd} Projection)'})
elseif M1>L3 && M1<=L4
title({['This Is To Show How Good the Tested '.....
'Images Threshold Is,']l;.....
blanks (l); ['Tested Image No.' num2str(M1l)];....
' (Mr. Methkir Alharthee, 1"{st} Projection)'})
elseif M1>L4 && M1<=L5
title({['This Is To Show How Good the Tested '.....
'Images Threshold Is,'];.....
blanks(l); ['Tested Image No.' num2str(M1l)];....
'(Mr. Methkir Alharthee, 2”{nd} Projection)'})
elseif M1>L5 && M1<=L6
title({['This Is To Show How Good the Tested '.....

The normalization of

is done to increase
the dynamic range of
the tested image for
visualization by

intensities of the
tested image from O

This
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827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875

876
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'Images Threshold Is,']l;.....
blanks (1); ['Tested Image No.' num2str (M1l)];.....
'(Mr. Methkir Alharthee, 37{rd} Projection)'})
elseif M1>L6 && M1<=L7
title({['This Is To Show How Good the Tested '....
'Images Threshold Is,']l;.....
blanks (1l); ['Tested Image No.' num2str (M1)];....
' (Mr. Mohammed Hanafy, 17{st} Projection)'})
elseif M1>L7 && M1<=L38
title({['This Is To Show How Good the Tested '.....
'Images Threshold Is,']l;.....
blanks (1); ['Tested Image No.' num2str (M1l)];.....
' (Mr. Mohammed Hanafy, 2”{nd} Projection)'})
elseif M1>L8 && M1<=L9
title({['This Is To Show How Good the Tested '....
'Images Threshold Is,'];.....
blanks (1); ['Tested Image No.' num2str (M1)];......
' (Mr. Mohammed Hanafy, 3"{rd} Projection)'})
end
subplot (2,1,2)
imshow (reshape (Normalized_Tested_Im_V(:,M1),N,N))
if Ml<=L1
title({['Normalized Tested Image No.' num2str (M1l)];
' (Mr. Mansour Alshammari, 17{st} Projection)'})
elseif MI>L1 && M1<=L2
title({['Normalized Tested Image No.' num2str (M1l)];
' (Mr. Mansour Alshammari, 27{nd} Projection)'})
elseif MI>L2 && M1<=L3
title({['Normalized Tested Image No.' num2str (M1l)];
' (Mr. Mansour Alshammari, 37{rd} Projection)'})
elseif M1>L3 && M1<=L4
title({['Normalized Tested Image No.' num2str (M1l)];....
'(Mr. Methkir Alharthee, 17{st} Projection)'})
elseif M1>L4 && M1<=L5
title({['Normalized Tested Image No.' num2str (M1l)];....
'(Mr. Methkir Alharthee, 27{nd} Projection)'})
elseif M1I>L5 && M1<=L6
title({['Normalized Tested Image No.' num2str (M1l)];....
'(Mr. Methkir Alharthee, 37{rd} Projection)'})
elseif M1>L6 && M1<=L7
title({['Normalized Tested Image No.' num2str (M1l)];....
' (Mr. Mohammed Hanafy, 17{st} Projection)'})
elseif MI1>L7 && M1<=L8
title({['Normalized Tested Image No.' num2str (Ml)];....
' (Mr. Mohammed Hanafy, 2”{nd} Projection)'})
elseif M1>L8 && M1<=L9
title({['Normalized Tested Image No.' num2str (M1l)];....
' (Mr. Mohammed Hanafy, 37{rd} Projection)'})
end
disp(['Please, press any keyboard button to '......
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877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
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'see how good the applied'])
disp('threshold on the normalized tested images is >>>>>>>")
pause
close all
clc

figure
subplot (2,1,1)
imshow (uint8 (tl))
if Ml<=L1
title({['Tested Image No.' num2str(Ml)];.........
' (Mr. Mansour Alshammari, 17{st} Projection)'})
elseif MI>L1 && M1<=L2
title({['Tested Image No.' num2str(M1l)];.......
' (Mr. Mansour Alshammari, 2”{nd} Projection)'})
elseif MI1>L2 && M1<=L3
title({['Tested Image No.' num2str(Ml)];......
' (Mr. Mansour Alshammari, 37{rd} Projection)'})
elseif M1>L3 && Ml<=L4
title({['Tested Image No.' num2str(Ml)];.......
'(Mr. Methkir Alharthee, 17{st} Projection)'})
elseif M1>L4 && M1<=L5
title({['Tested Image No.' num2str(Ml)];......
'(Mr. Methkir Alharthee, 27{nd} Projection)'})
elseif M1>L5 && M1l<=L6
title({['Tested Image No.' num2str(Ml)];.....
'(Mr. Methkir Alharthee, 3"{rd} Projection)'})
elseif M1>L6 && M1l<=L7
title({['Tested Image No.' num2str(M1l)];.......
' (Mr. Mohammed Hanafy, 17{st} Projection)'})
elseif MI1>L7 && M1<=LS8
title({['Tested Image No.' num2str(Ml)];.....
' (Mr. Mohammed Hanafy, 27{nd} Projection)'})
elseif M1>L8 && M1<=L9
title({['Tested Image No.' num2str(M1l)];.......
' (Mr. Mohammed Hanafy, 37{rd} Projection)'})
end
subplot (2,1,2)
imshow (uint8 (reshape (Normalized_Tested_Im_V(:,M1),N,N)))
if Ml<=L1
title({['Normalized Tested Image No.' num2str (M1l)];
' (Mr. Mansour Alshammari, 17{st} Projection)'})
elseif MI>L1 && M1<=L2
title({['Normalized Tested Image No.' num2str (M1l)];
' (Mr. Mansour Alshammari, 27{nd} Projection)'})
elseif M1>L2 && M1<=L3
title({['Normalized Tested Image No.' num2str (M1l)];
' (Mr. Mansour Alshammari, 37{rd} Projection)'})
elseif M1>L3 && M1<=L4
title({['Normalized Tested Image No.' num2str (Ml)];....
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927 ' (Mr. Methkir Alharthee, 17{st} Projection)'})
elseif M1>L4 && M1<=L5
title({['Normalized Tested Image No.' num2str (M1l)];....
'(Mr. Methkir Alharthee, 27{nd} Projection)'})
elseif MI1I>L5 && M1<=L6
title({['Normalized Tested Image No.' num2str (M1l)];....
'(Mr. Methkir Alharthee, 37"{rd} Projection)'})
elseif M1>L6 && M1<=L7
title({['Normalized Tested Image No.' num2str (M1l)];....
' (Mr. Mohammed Hanafy, 17{st} Projection)'})
elseif MI1>L7 && M1<=L8
title({['Normalized Tested Image No.' num2str (Ml)];....
' (Mr. Mohammed Hanafy, 2”{nd} Projection)'})
elseif M1>L8 && M1<=L9
title({['Normalized Tested Image No.' num2str (M1l)];....
' (Mr. Mohammed Hanafy, 37{rd} Projection)'})

928
929
930
931
932
933
934
935
936
937
938
939
940
941
942

943 end

944 disp(['Please, press any keyboard button to explore '
945 'the remaining normalized tested images >>>>>>>'])
946 pause

947 close all

o0 o0 o0 0 O O O O A A A° A A A A A O O o° o° o° o°

948 clc

949 end

950 Normalized_Tested_Im_V;
951
952 Centering each face by simply subtracting the mean of the face
pixels from each pixel in the face. By doing that the new face
954 pixels will have zero mean that means the face is centered.

955 Rows_Columnsl=zeros(1l,1,.......

956 Total_No_of_ Tested_Im); The rows and columns for the

957 pixels of the faces. Note that,
the tested images are not similar

so the rows and columns of the

953

o® o o

958
959
960 faces pixels will not be equal.
Therefore, MATLAB will add zero
rows and columns to make the
matrices of the rows and columns
of the faces pixels are equal.
965 Meansl=zeros (1l,Total_No_of_Tested Im);
966 Centered_Tested Im=.........

967 zeros (N+xN, Total_No_of_ Tested_Im);
968

961
962
963

o0 o0 o° o° o o° o° o° o°

964

An N"2xP1l, 2D matrix where
each column represents a
tested image vector with a
centered face.

969

e o o° oe

970
971 Centered_Tested_TImage=..........

972 zeros (N,N, Total_No_of_ Tested_Im);
973

o4 for jl=1:Total_ No_of_ Tested_Im

975 xl=reshape (Normalized_Tested_Im_V(:,jl),N,N);

976 [rrl ccl]l=find(x1>0); % The pixels bigger than zero are of

The tested images after
centering the faces.

o° o
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977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

1026
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interest because they represent the

Rows_Columnsl (1,1:size(rrl,1), jl)=rrl.’';

Rows_Columnsl (2,1:size(rrl, 1), jl)=ccl.’';

Suml=0;

Nol=0;

for RR2=1l:size(rrl, 1)
Suml=Suml+x1l (rrl (RR2),ccl (RR2));
Nol=Nol+1;

end

% pixels of the faces.
(
(

Meansl (1, J1)=Suml/Nol;
for RR3=1l:size(rrl, 1)
Centered_Tested_Image (rrl (RR3),ccl(RR3),jl)=.......
x1 (rrl (RR3),ccl (RR3))—Meansl (1, 3jl);
end
Centered_Tested_Im(:,jl)=..........
reshape (Centered_Tested_Image(:, :, J1),N*N,1);

figure('units', 'centimeters', 'position', [16 7 7 8.5])
subplot (1,1,1)
imshow (uint8 (reshape (Centered_Tested_Im(:, j1),N,N)))
if jl<=L1
title({['Centered Tested Image No.' num2str(jl)];....
' (Mr. Mansour Alshammari, 17{st} Projection)'})
elseif J1>L1 && Jl<=L2
title({['Centered Tested Image No.' num2str(jl)];.....
' (Mr. Mansour Alshammari, 27{nd} Projection)'})
elseif J1>L2 && J1<=L3
title({['Centered Tested Image No.' num2str(jl)];....
' (Mr. Mansour Alshammari, 37{rd} Projection)'})
elseif J1>L3 && jl<=L4
title({['Centered Tested Image No.' num2str(jl)]
'(Mr. Methkir Alharthee, 17{st} Projection)'
elseif 31>L4 && J1<=L5
title({['Centered Tested Image No.' num2str(jl)]
' (Mr. Methkir Alharthee, 2”{nd} Projection)'
elseif J1>L5 && Jl<=L6
title({['Centered Tested Image No.' num2str(jl)]
'(Mr. Methkir Alharthee, 37{rd} Projection)'
elseif jl>L6 && Jl<=L7
title({['Centered Tested Image No.' num2str(jl)];.....
' (Mr. Mohammed Hanafy, 17{st} Projection)'})
elseif JI>L7 && J1<=L8
title({['Centered Tested Image No.' num2str(jl)];....
' (Mr. Mohammed Hanafy, 27{nd} Projection)'})
elseif 31>L8 && Jj1<=L9
title({['Centered Tested Image No.' num2str(jl)];....
' (Mr. Mohammed Hanafy, 37{rd} Projection)'})

})
})

})

end
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1027 % disp(['Please, press any keyboard button to explore '......
1028 % 'the remaining centered tested images >>>>>>>'7)

1029 % pause

1030 % close all

1031 % clc

1032 end
1033 Centered_Tested_Im;
1034
1035
1036 Centering the set of the training faces by simply subtracting the
mean training face from each training face in the set. By doing
that the new set of the training faces will have zero mean which
1039 means the set is centered.
1040 Av_Image=sum (Centered_Known_Im,2)./......
1041 Total_No_of_Known_Im; % The average training face.
figure ('units', 'centimeters', 'position', [12 4 12.5 13])
subplot (1,1,1)
Reshaped_Av_Image=reshape (Av_Image,N,N) ;
Negative_Av_Image=255+ones (N,N) —255x (Reshaped_Av_Image/.....

max (max (Reshaped_Av_Image))); Obtaining a negative image
for the mean training face
in order to enhance its
appearance.

1037
1038

o® o° o oP

1042
1043
1044
1045
1046
1047
1048

o0 o o o°

1049
imshow (uint8 (Negative_Av_Image))
title ('The Average Training Face')
pause

close all

1050
1051
1052

o0 o0 ° o o o° O° A° A° o° o oP

1053
1054
1055 Known_Im_Subt_Mean=......

1056 zeros (N+«N, Total_No_of Known_Im);
1057

An N"2xP, 2D matrix where
each column represents a
centered (with respect to
the set of the training

1058
1059

o° o° o° o oP

1060
1061 for J=1:Total_No_of_ Known_Im

faces) training face vector.

1062 Known_TIm_Subt_Mean (:,J)=Centered_Known_Im(:,J)—Av_Image;
1063 Reshaped_Known_Im_Subt_Mean=........

1064 reshape (Known_Im_Subt_Mean(:,J),N,N);

1065 Negative_Known_Im_Subt_Mean=255xones (N,N)—.......

1066 255% (Reshaped_Known_Im_Subt_Mean/max (max (.......

1067 Reshaped_Known_Im_Subt_Mean))); Obtaining a negative

1068 image for the centered

1069 training face in order
to enhance its

appearance.

1070

o° 0@ o o° oP

1071
1072

1073 Known_Image=Known_Images (J) .name;
figure ('units', 'centimeters', 'position', [12 4 12.5 14])
subplot (1,1,1)

imshow (uint8 (Negative_Known_Im_Subt_Mean))

1074
1075

o o o

1076




Appendix A. A Code for the Digital Model 107

1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125

1126
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if J==
title({['Centered (with Respect to the Set of the '.....
'Training Faces) Training Face No.' num2str(J)];....
['"('" Known_Image (l:length (Known_Image)—6) .......
', 1~{st} Projection)'];' (A Negative Image) '})
elseif J==
title({['Centered (with Respect to the Set of the '....
'Training Faces) Training Face No.' num2str(J)];....
['" (" Known_Image (l:length (Known_Image)—6) ........
', 2°{nd} Projection)'];' (A Negative Image) '})
elseif J==
title({['Centered (with Respect to the Set of the '.....
'Training Faces) Training Face No.' num2str(J)];....
['"('" Known_Image (l:length (Known_Image)—6) .......
', 3"{rd} Projection)'];' (A Negative Image) '})
elseif J==
title({['Centered (with Respect to the Set of the '.....
'Training Faces) Training Face No.' num2str(J)];....
[" (" Known_Image (l:length (Known_Image)—6) .........
', 1~{st} Projection)'];' (A Negative Image) '})
elseif J==
title({['Centered (with Respect to the Set of the '.....
'Training Faces) Training Face No.' num2str(J)];....
[" (" Known_Image (l:length (Known_Image)—6) ......
', 2"{nd} Projection)'];' (A Negative Image) '})
elseif J==
title({['Centered (with Respect to the Set of the '.....
'Training Faces) Training Face No.' num2str(J)];....
[" (" Known_Image (l:length (Known_Image)—6) .......
', 3"{rd} Projection)'];' (A Negative Image) '})
elseif J==
title({['Centered (with Respect to the Set of the '.....
'Training Faces) Training Face No.' num2str(J)];....
["(" Known_Image (l:length (Known_Image)—6) ......
', 1~{st} Projection)'];' (A Negative Image) '})
elseif J==
title({['Centered (with Respect to the Set of the '.....
'Training Faces) Training Face No.' num2str(J)];....
[" (" Known_Image (l:length (Known_Image)—6) .......
', 2”{nd} Projection)'];' (A Negative Image) '})
elseif J==
title({['Centered (with Respect to the Set of the '.....
'Training Faces) Training Face No.' num2str(J)];....
[" (" Known_Image (l:length (Known_Image)—6) .......
', 3"{rd} Projection)'];' (A Negative Image)'})
end
disp(['Please, press any keyboard button to explore '......
'the remaining centered training faces >>>>>>>'])
pause
close all
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1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176

% clc
end
Known_Im_Subt_Mean;

Tested_Im_Subt_Mean=.......

zeros (NxN, Total_No_of_ Tested_Im); An N"2xP1l, 2D matrix where
each column represents a
tested image vector after
subtracting the average

training face.

o° o0 o° o oe

for Jl=1:Total_No_of_ Tested_ Im
Tested_Im_Subt_Mean(:,Jl)=Centered_Tested_Im(:,Jl)—Av_Image;
Reshaped Tested Im Subt_Mean=........

reshape (Tested_Im_Subt_Mean(:,J1),N,N);
Negative_Tested_Im_Subt_Mean=255xones (N,N)—255%.......
(Reshaped_Tested_Im_Subt_Mean/max (max (.......
Reshaped_Tested_Im_Subt_Mean))); Obtaining a negative
image for the tested
image in order to
enhance its appearance.

o° o° o o

figure ('units', 'centimeters', 'position', [12 4 12.5 14])
subplot (1,1,1)
imshow (uint8 (Negative_Tested_Im_Subt_Mean))
if Jl<=L1
title({['Tested Image No.' num2str(Jl) .........
' (Mr. Mansour Alshammari, '.....
'"17{st} Projection)'l;........
'After Subtracting the Average Training Face';.....
' (A Negative Image) '})
elseif J1>L1 && J1<=L2
title({['Tested Image No.' num2str(Jl) .......
' (Mr. Mansour Alshammari, '.....
'22{nd} Projection)'l;.........
'After Subtracting the Average Training Face';.....
' (A Negative Image)'})
elseif J1>L2 && J1<=L3
title({['Tested Image No.' num2str(Jl) .....
' (Mr. Mansour Alshammari, '.....
'37{rd} Projection)'l;.......
'After Subtracting the Average Training Face';.....
' (A Negative Image)'})
elseif JI>L3 && J1<=L4
title({['Tested Image No.' num2str(Jl) .....
' (Mr. Methkir Alharthee, '.......
'17{st} Projection)'l;.....
'After Subtracting the Average Training Face';....
' (A Negative Image) '})
elseif J1>L4 && J1<=L5

o0 o0 0 0 O O O O O A A A A A A A AN N N N O N O ° I ° o P
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1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226

title({['Tested Image No.' num2str(Jl) .....
' (Mr. Methkir Alharthee, '.......
'22{nd} Projection)']l;.....

' (A Negative Image)'})
elseif J1>L5 && J1<=L6
title({['Tested Image No.' num2str(Jl) .....
' (Mr. Methkir Alharthee, '.......
'37{rd} Projection)'l;....

' (A Negative Image)'})
elseif J1>L6 && J1<=L7
title({['Tested Image No.' num2str(Jl) .....
' (Mr. Mohammed Hanafy, '.......
'17{st} Projection)'l;.....

' (A Negative Image) '})
elseif J1>L7 && J1<=L8
title({['Tested Image No.' num2str(Jl) .....
' (Mr. Mohammed Hanafy, '.......
'2”{nd} Projection)'];.....

' (A Negative Image)'})
elseif J1>L8 && J1<=L9
title({['Tested Image No.' num2str(Jl) .....
' (Mr. Mohammed Hanafy, '.......
'3"{rd} Projection)'];.....

' (A Negative Image) '})

0 0 o0 o O O A A A A A A A AN AN N N N N N A A A A AN AN N N AN A N N A A A° o o°

end
Tested_Im_Subt_Mean;

o)

Cov_Matrix=Known_Im_Subt_ Mean#*......
transpose (Known_Im_Subt_Mean) ; The covariance matrix

for all training faces.

Another way for calculating the covariance matrix for all
training faces.
m=zeros (NxN, NxN) ;

o® o° o oP

for i=1:Total_No_of_ Known_Im

'After Subtracting the Average Training Face';....

'After Subtracting the Average Training Face';....

'After Subtracting the Average Training Face';....

'After Subtracting the Average Training Face';....

'After Subtracting the Average Training Face';....

end

disp(['Please, press any keyboard button to explore '.....
'the remaining tested images'])

disp(['after subtracting the average training face '.....
'from them >>>>>>>'7])

pause

close all

clc

% The calculation of a covariance matrix for all training faces.
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1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275

1276

C=Known_Im_Subt_Mean(:,1)*transpose (Known_Im_Subt_Mean(:,1));
m=m+C;
end
Cov_Matrix=(1/Total_No_of_Known_Im) *m;

o° o° o o

The covariance matrix
for all training faces.

o)
°
o)

©°

The calculation of eigenvalues and eigenvectors for the
covariance matrix.
Eigenvectors Eigenvalues]=.......
eig(Cov_Matrix);

— o° oP

o

Note that, The calculated covariance
matrix is usually too big which makes

the calculation of eigenvalues and
eigenvectors is very difficult if not
impossible. So, it 1is not practical to
calculate the eigenvalues and eigenvectors
for the such matrix. The dimensions of the
covariance matrix can be reduced to the
number of the training faces as will be
proved shortly.
Eigenvalues=(diag(Eigenvalues)).';

0 o° o o o° A° d° o o°

Eigenvectors must be positive because the covariance matrix is
positive definite. Due to round—off error, MATLAB makes the
smallest eigenvectors negative. Then those negative eigenvectors
must be set to zero.
for jjj=l:length(Eigenvalues)
if Eigenvalues (1, 3jJ)<0

Eigenvalues (1, 337)=0;

o° o° o o

end
end

o)

% The calculation of a more practical covariance matrix.
New_Cov_Matrix=transpose (Known_Im_Subt_Mean) *Known_Im_Subt_Mean;

[Eigvect Eigvall=eig(New_Cov_Matrix); The calculation of
eigenvalues and
eigenvectors for the

reduced covariance matrix.

o° o o oe

Eigval_Reduced_Cov=(diag(Eigval))."';
Eigvect_Reduced_Cov=Known_Im_Subt_Mean*.........

Eigvect; The columns of this matrix represent unnormalized
eigenvectors that are calculated based on the more
practical covariance matrix.

o° o oP

Ordering the calculated eigenvalues from the reduced covariance

o
o
o
°

matrix along with their eigenvectors in descending order as well
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1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326

o)

% as normalizing the eigenvectors.
Eigenvalues_Reduced_Cov=sort (Eigval_Reduced_Cov, 'descend’) ;
Eigenvectors_Reduced_Cov=zeros (size (Eigvect_Reduced_Cov,1),.....
size (Eigvect_Reduced_Cov, 2));
for ii=l:length (Eigenvalues_Reduced_Cov)
for pp=1l:length(Eigval_Reduced_Cov)
if Eigenvalues_Reduced_Cov (1l,ii)==Eigval_Reduced_Cov (1, pp)
Eigenvectors_Reduced_Cov(:,ii)=........
Eigvect_Reduced_Cov(:,pp)/.....
norm (Eigvect_Reduced_Cov (:,pp));
break
end
end
end

PCA and IPCA algoritms for calculating a feature vector matrix.

A feature vector matrix is a matrix that is composed of a couple
of eigenvectors that follow the most significant patterns of the
correlated faces. These eigenvectors are called eigenfaces. In
fact, the eigenvalues associated with those eigenfaces are
corresponding to the biggest calculated eigenvalues. Note that,
the PCA is approximately similar to the IPCA. The main difference
between them is that the way of selecting eigenvectors which form
the feature vector matrix.

o o° o o° o° d° d° o o°

fid=fopen ('PCA vs. IPCA.txt','w'); A text file for typing the
required results to select the
desired eigenvectors for the
feature vector matrix.

fprintf (fid, ['\n **%xx* The Results of PCA and IPCA Used to'.....

o0 o o o°

' Select the Desired Eigenvectors xxxxx\r\n']);
fprintf (fid, [' **xx++* for the Feature Vector'......
' Matrix. These Results Are Obtained from xxxxx\r\n'l);

fprintf (fid, ['\t **%xx the PCA and IPCA Code for Testing '......
'and Setting up Thresholds x**x*\r\n\n']);

fprintf (fid, "\t\t\t\t Transformed\r\n'") ;
fprintf (fid, [ "No. Eigenvalues Eigenvalues PIF'......
! IR (%%) \t ATR(%%) VCR (%%) TVC (%%) \r\n'1]);
fprintf (fid, [ '==== ============ =========== =======',.....
! s====== s======= s====== ========\r\n']);

% The calculation of the transformed eigenvalues.
ro=zeros (1, length (Eigenvalues_Reduced_Cov));
for v=1:length (Eigenvalues_Reduced_Cov)
ro(l,v)=1—(Eigenvalues_Reduced_Cov (l,v)/......
sum (Eigenvalues_Reduced_Cov));
end

o)

% The calculation of the possibility information function (PIF).
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1327 PIF=zeros (1, length (Eigenvalues_Reduced_Cov)) ;

1328 for nn=1:length (Eigenvalues_Reduced_Cov)

1329 PIF(l,nn)=—log2(ro(l,nn));

1330 end

1331

1332 % The calculation of the possibility information entropy (PIE).
1333 PIE=0;

1334 for nl=l:length(Eigenvalues_Reduced_Cov)

1335 PIE=PIE—ro(l,nl)*log2(ro(l,nl));
1336 end
1337 PIE;

1338

The calculation of the information rate (IR) and accumulated
1340 information rate (AIR).

1341 IR=zeros (l, length (Eigenvalues_Reduced_Cov));

1342 AIR=zeros (1, length (Eigenvalues_Reduced_Cov)) ;

1343 PIF1=0;

1344 for u=l:length (Eigenvalues_Reduced_Cov) ;

1339

o
o
o

°

1345 IR(1,u)=PIF(1,u)/sum(PIF);
1346 PIF1=PIF (1,u)+PIF1;

1347 AIR(1,u)=PIF1/sum(PIF);
1348 end

1349

The calculation of the wvariance contribution rate (VCR) and total
1351 variance contribution rate (TVC).

1352 VCR=zeros (1, length (Eigenvalues_Reduced_Cov));

1353 TVC=zeros (1, length (Eigenvalues_Reduced_Cov)) ;

1354 TVC1=0;

1355 for Q=1:length (Eigenvalues_Reduced_Cov) ;

1350

o
°
o)

°

1356 VCR(1,Q)=Eigenvalues_Reduced_Cov(1l,Q)/......

1357 sum (Eigenvalues_Reduced_Cov) ;

1358 TVCl=Eigenvalues_Reduced_Cov (1, Q) +TVC1l;

1359 TVC (1,Q)=TVC1l/sum(Eigenvalues_Reduced_Cov) ;

1360 fprintf (fid, ['%$—4.0f $—12.4f $—6.4f\t $—7.4f Yo,
1361 '$—7.4fF %$—8.4f $—7.4f $—8.4f \r\n\n'],Q,.....

1362 Eigenvalues_Reduced_Cov(l,Q),ro(1,0Q),PIF(1,Q), ....

1363 IR(1,Q)*100,AIR(1,Q)*100,VCR(1,Q)*100,TVC(1,Q)*100);
1364 end

1365
1366 fprintf (fid, ['== ==== mmmmmmmmmmmmmmmmmmmmmmeeee L

1367 | ========ss===s=s=s=ssss==ss===============\1r\n']) ;

1368 fprintf (fid, ['+% Notice that, in IPCA we can take the first '.....
1369 'seven eigenvectors associated with the\r\n']);

1370 fprintf (£id, [' biggest eigenvalues to form the feature '.....
1371 'vector matrix but in PCA we must take the\r\n']l);

1372 fprintf (fid, [' first eight eigenvectors. That because when '....
1373 'm=7, the AIR=95.6891%% which is good\r\n']);

1374 fprintf (fid, [' enough but the TVC is slightly small. So, '.....
1375 'if we want to pick the eigenvectors\r\n'l);

1376 fprintf (fid, [' based on the TVC then we have to take the '.....
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1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425

1426

'first eight eigenvectors in order to\r\n']);

fporintf (fid, [ make sure that the TVC is big enough. '......
'Therefore, the AIR tells us more about the\r\n']);

fprintf (£id, [’ information contained in the eigenfaces. '.....
'"\r\n\n\n']);

fclose (fid);

disp(['Please see the documented results of PCA and IPCA in '....
'the open text file. Then select the'l])

disp(['number of the eigenvectors for each algorithm required '....
'to form the feature vector matrix.'])

disp(['After that, press any keyboard button to resume the '.....
'code >>>>>>>>>>>>'1)

Text="PCA vs. IPCA.txt';

open (Text) % Opening the text file which contains

% the PCA and IPCA results.

pause

clc

open ('PCA_IPCA_Testing_and_Setting up_Thresholds.m')

% Customizing and fixing the number of eigenfaces for PCA and IPCA.
Prompt={['l to m, enter the value of m for PCA, where m is '.....
'the lower bound of eigenfaces. It can take up to ' ......

num2str (length (Eigenvalues_Reduced_Cov)) '":'],.....
['l to m, enter the value of m for IPCA, where m is the '.....
'lower bound of eigenfaces. It can take up to ' .......
num2str (length (Eigenvalues_Reduced_Cov)) ':']l};
Dlg_Title='The Lower Bound of Eigenfaces for PCA and IPCA';
Num_Lines=1;
Def={'8"',"'7"};
L=inputdlg (Prompt,Dlg_Title,Num_Lines,Def, 'on'");
V=str2num (char (L)) ;
for xx=1:2
if xx==
if V(xx)<l || V(xx)>length (Eigenvalues_Reduced_Cov) ||
mod (V(xx),1)~=0 || V(xx)<=V(2)
1if V(xx)<1
W=errordlg(['m for PCA Is Invalid Because It '.....
'Is Less Than One'],'An Error Dialog');
return
elseif V(xx)>length (Eigenvalues_Reduced_Cov)
W=errordlg(['m for PCA Is Invalid Because It '....
'Is Bigger Than the Upper Bound of '......
'Eigenfaces'], 'An Error Dialog');
return
elseif mod(V(xx),1l)~=0
W=errordlg(['m for PCA Is Invalid Because It '....
'Is Not an Integer'], 'An Error Dialog');
return
elseif V(xx)<=V(2)
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1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475

1476

W=errordlg(['m for PCA Is Invalid Because It
'"Must Be Bigger Than IPCA']);
return
end
end
else
if V(xx)<1l || mod(V(xx),1)~=0
1f V(xx)<1

W=errordlg(['m for IPCA Is Invalid Because It '....

'Is Less Than One'], 'An Error Dialog');
return
elseif mod(V(xx),1)~=0

W=errordlg(['m for IPCA Is Invalid Because It '....

'Is Not an Integer'],'An Error Dialog');
return
end
end
end
end

Best_Eigenvalues_PCA=Eigenvalues_Reduced_Cov(1l,1:V(1l));
Best_Eigenvectors_PCA=........
Eigenvectors_Reduced_Cov(:,1:V(1)); The columns of this
matrix represent the
eigenfaces that are
calculated based on
PCA algorithm.
Best_Eigenvalues_IPCA=Eigenvalues_Reduced_Cov (1l,1:V(2));
Best_FEigenvectors_IPCA=..........

Eigenvectors_Reduced_Cov(:,1:V(2));

o° o° o o oe

The columns of this

matrix represent the
eigenfaces that are

calculated based on

IPCA algorithm.

o° o° oo o° oe

% Plotting the eigenvalues for each explained algorithm compared
% with the calculated eigenvalues from the covariance matrix for
% all training faces.
Threshold=0.1; This threshold is for picking
up the biggest eigenvalues.
[WW LL]=find(Eigenvalues>Threshold);
Flipped_Eigenvalues_Reduced_Cov=fliplr (Eigenvalues_Reduced_Cov) ;
if length(LL)<length (Flipped_Eigenvalues_Reduced_Cov)

LL1=LL;

LL=[LL(1)—ones (1, length (Flipped_Eigenvalues_Reduced_Cov)—....

length (LL)) LL];

o
°
)

<

end
figure ('units', 'centimeters', 'position’', [6 1.2 25 16.9])
subplot (1,1,1)
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1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525

1526

bar (LL, [zeros (length (LL)—length (LL1l)) Eigenvalues(LL1l)],.......
0.8, 'FaceColor', 'k', "EdgeColor"', 'k")

hold on

bar (LL, [zeros (1, length (LL) —length (Best_Eigenvalues_PCA)) ........
fliplr (Best_Eigenvalues_PCA)],0.8/2, 'FaceColor', ......
'r', 'EdgeColor', 'r")

hold on

bar (LL, [zeros (1, length (LL) —length (Best_Eigenvalues_IPCA)) .......
fliplr (Best_Eigenvalues_IPCA)],0.8/4,........
'FaceColor', 'b', "EdgeColor', 'b")

hold off

title({['The Calculated Eigenvalues for Each Proposed '.....
'Algorithm Compared ']l; ['with the Calculated Eigenvalues '....
'form the Covariance Matrix for All Training Faces'l]})

xlabel ('Eigenvalue Index')

ylabel ('Eigenvalue')

legend (['The Calculated Eigenvalues from the Covariance '.....
'Matrix for All Training Faces.'],['The Calculated '.....
'Eigenvalues by Using PCA Algorithm.'], ['The Calculated '.....
'Eigenvalues by Using IPCA Algorithm.'], 'Location’', 'NorthWest')

disp('Please, press any keyboard button to resume the code >>>>")

pause

clc

close all

Displaying the calculated eigenfaces from the covariance matrix

for all training faces.

for I=1:length(LL1)

Eigenvaluesl=fliplr (LL1);

Eigenvectorsl=......
flipdim(Eigenvectors(:,LL1),2);

o
°
o
o

This flipping Jjust

to make the highest
correlated eigenface
is associated with the
first eigenvalue and
so on. This is done to
be compatable with the
generated document
"PCA vs. IPCA".

Y)Y/ e

Normalized eigenface.
This is done to increase

o0 @ o° o° o° o° o o o°

—

X=floor (255* (double (Eigenvectorsl (:,
max (max (Eigenvectorsl(:,I)))));

the dynamic range of the
eigenface for
visualization by scaling
the intensities of the
eigenface from 0 to 255.

o o° o° o° o° o° o

Eigenface=reshape (X,N,N) ;
Negative_Eigenface=255x0ones (N,N)—255x.....
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(Eigenface/max (max (Eigenface))) ; Obtaining a negative
image for the eigenface
in order to enhance its

appearance.

o° o° o oe

figure ('units', 'centimeters', 'position', [15.5 5.5 9 11.5])
subplot (1,1,1)
imshow (uint8 (Negative_Eigenface))
title({['Eigenface No.' num2str(I) ...............
' Associated with Eigenvalue No.'........
num2str (Eigenvaluesl (I)) ".'l;......
['It Is Calculated from the '.......
'Covariance Matrix'];'for All Training Faces.';......
' (A Negative Image) '})

disp(['Please, press any keyboard button to explore '......
'the remaining calculated eigenfaces'])
disp(['from the covariance matrix for all training '......
'faces >>>>>>>'1)
pause
clc
close all
end
% Displaying the calculated eigenfaces by using PCA algorithm.
for I=1l:length(Best_Eigenvalues_PCA)
X=floor (255* (double (Best_Eigenvectors_PCA(:,I))/max (max(.....
Best_Eigenvectors_PCA(:,I))))); Normalized eigenface.
This is done to increase
the dynamic range of the
eigenface for
visualization by scaling
the intensities of the

o0 o° o° o° o° o oe

eigenface from 0 to 255.
Eigenface=reshape (X,N,N) ;
Negative_Eigenface=255xones (N,N)—-255x.....

(Eigenface/max (max (Eigenface))) ; Obtaining a negative
image for the eigenface
in order to enhance its
appearance.

o® o o oP

figure('units', 'centimeters', 'position', [15.5 5.5 8 10.5])
subplot (1,1,1)
imshow (uint8 (Negative_Eigenface))
title({['Calculated Eigenface No.' num2str(I) .......
' Associated']; ['with Eigenvalue No.' num2str(I) .....
' by Using']; "PCA Algorithm'; ' (A Negative Image)'})

disp(['Please, press any keyboard button to explore the '.....
'remaining calculated'])
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1577 disp('eigenfaces by using PCA algorithm >>>>>>>")
1578 pause

1579 clc

1580 close all

1581 end

1582
1583 % Displaying the calculated eigenfaces by using IPCA algorithm.

1584 for I=1:length(Best_Eigenvalues_IPCA)

1585 X=floor (255* (double (Best_Eigenvectors_IPCA(:,I))/max (max(.....
1586 Best_Eigenvectors_IPCA(:,I))))); Normalized eigenface.
1587 This is done to increase
1588 the dynamic range of the
eigenface for
visualization by scaling
the intensities of the

eigenface from 0 to 255.

1589
1590
1591

o0 o° o° o° o° o° o

1592

1593 Eigenface=reshape (X,N,N) ;

1594 Negative_Eigenface=255%ones (N,N) —255x.....

1595 (Eigenface/max (max (Eigenface))); % Obtaining a negative
1596 % image for the eigenface
1597 % in order to enhance its
1598 % appearance.

1599

1600 figure ('units', 'centimeters', 'position', [15.5 5.5 8 10.5])

1601 subplot (1,1,1)

1602 imshow (uint8 (Negative_Eigenface))

1603 title({['Calculated Eigenface No.' num2str(I) .......

1604 Associated']; ['with Eigenvalue No.' num2str(I) .......

by Using']; '"IPCA Algorithm';' (A Negative Image) '})

1605 !

1606

1607 disp(['Please, press any keyboard button to explore the '.....
1608 'remaining calculated'])

1609 disp('eigenfaces by using IPCA algorithm >>>>>>>")

1610 pause

1611 clc

1612 close all

1613 end

1614

1615

1616 save ('Eigenvectors', 'Eigenvectors')

1617 save ('Best_FEigenvectors_PCA', 'Best_Eigenvectors_PCA'")
1618 save ('Best_Eigenvectors_IPCA', 'Best_Eigenvectors_IPCA'")
1619 break

1620

1621

1622 %%
o

o\

1623 %$%%%% The Compression and Reconstruction of the Training Faces %%%
1624

1625

1626 clc
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1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675

1676

close

© o° oP
© o° oP
o° oe

© o oP°
© o° oP°

o

o
o
o
o
o

o
o
o
o
o

o
o
o
o
o

o° o oP
© o° o° oP°
© o° o° oP°
© o0 o° o
o° o° oe

o
o

o
o
o
o
o

o
oe
o
o
o

o
o
o
o

©
o
o
o
o

o
o
o
o

o° o
o o
o° oe
O\O O\O
o° oe

©
©
©
©
©

o
o
o
o
o

o)

[o)

Best_Eigenvectors=Best_FEigenvectors_IPCA;

o® o o oP

for r=
All_Known_Transformed_Im(:,r)=Best_Eigenvectors.'sx.......

end

All_Known_Transformed_Im;

% The

All_Known_Reconstructed _Im V=...........
zeros (N+N, Total_No_of Known_Im); % An N"2xP, 2D matrix where

% Best_Eigenvectors=Eigenvectors;

% Best_Eigenvectors=Best_FEigenvectors_PCA;

Projecting each training face on the eigenspace. It is Jjust
expressing each training face in terms of the eigenfaces. This is
called principal components transform (also called the Hotelling
or Karhunen—Loéve transform)
All_Known_Transformed_Im=..............

zeros (size (Best_Eigenvectors,2), ........

Total_No_of_ Known_Im);

all
When a small number of eigenfaces is used to compress and
reconstruct the training faces then the processing speed

will increase so the IPCA algorithm is the fastest one then
PCA algorithm finally the smallest processing speed occurs
when all calculated eigenvectors from the covariance matrix
for all training faces are used as eigenfaces. When a small
number of the eigenfaces is used to project and reconstruct
the training faces then the training faces will have bad
quality. Therefore, the highest error in reconstruction
occurs when the IPCA algorithm is used; then the PCA
algorithm comes second; finally, the usage of all
eigenvectors as eigenfaces produces the samllest
reconstruction error.

% Just try it to see how affects
% on the reconstructed training
% faces.

Just try it to see how
affects on the
reconstructed training
faces.
Just try it to see how
affects on the
reconstructed training
faces.

o® o° o oP

o® o° o oe

A 2D matrix where each column
represents the coordinates of a
projected training face in the
eigenspace.

o0 o o oe

1:Total_No_of_ Known_Im

Known_Im_Subt_Mean(:,r);

reconstruction of the projected training faces.




Appendix A. A Code for the Digital Model 119

1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725

1726

All_Known_Reconstructed_Im=zeros (N,N, Total_No_of_Known_Im);
for a=1l:Total_No_of Known_Im

each column represents a
reconstructed training face

o oo oe

vector.

Pre=reshape (Best_Eigenvectors*............
All _Known_Transformed_Im(:,a),N,N)+.............

[)

reshape (Av_Image,N,N); % Adding the average training face.

RC1=Rows_Columns(:, :,a);
F=RC1 (1, :);
F1=RC1(2,:);

D=F (F>0) ;
D1=F1(F1>0);
RC=[D;D1]; The rows and columns for the pixels of a face

after removing the added zero rows and columns.
The added zero rows and columns are added by
MATLAB for making the matrices of the rows and
columns of the faces pixels are equal.
for QQ0=1:size (RC, 2)
All_Known_Reconstructed_Im(RC(1,Q0Q0),RC(2,Q0),a)=.......
Pre(RC(1,Q00),RC(2,00Q)) +Means (1,a); Adding the mean
of the pixels of
a face.

o® o o o o° ™

o o oP

end
Y=A1ll_Known_Reconstructed_Im(:,:,a); Removing any pixel less
than zero in a training
face because the image
can not be negative.

o° o° o o°

[UU NN]=find (Y<0) ;
for CC=1l:size (UU, 1)

Y (UU (CC) ,NN (CC))=0;
end

All_Known_Reconstructed_Im _V(:,a)=reshape(Y,N*N,1);

Known_Image=Known_TImages (a) .name;

figure ('units', 'centimeters', 'position', [16 7 7.5 8.5])
subplot (1,1,1)

imshow (uint8 (reshape (A1l1l_Known_Reconstructed_Im V(:,a),N,N)))
if a==

title({['Reconstructed Training Face No.' num2str(a)l;....
[" (" Known_Image (l:length (Known_Image)—6) .........
', 17°{st} Projection)']l})
elseif a==
title({['Reconstructed Training Face No.' num2str(a)l;....
[" (" Known_Image (l:length (Known_Image)—6) ........
', 27{nd} Projection) ']l})

elseif a==
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1727 title({['Reconstructed Training Face No.' num2str(a)l;....
1728 ["(" Known_Image (l:length (Known_Image)—6) ........

1729 ', 3"{rd} Projection)'l})

1730 elseif a==4

1731 title({['Reconstructed Training Face No.' num2str(a)l;....
1732 ['"(" Known_Image (l:length (Known_Image)—6) ......

1733 ', 17{st} Projection) ']l})

1734 elseif a==

1735 title({['Reconstructed Training Face No.' num2str(a)l;....
1736 [" (" Known_Image (l:length (Known_Image)—6) ......

1737 ', 27{nd} Projection) 'l})

1738 elseif a==6

1739 title({['Reconstructed Training Face No.' num2str(a)l;....
1740 [" (" Known_Image (l:length (Known_Image)—6) .....

1741 ', 3"{rd} Projection)'l})

1742 elseif a==7

1743 title({['Reconstructed Training Face No.' num2str(a)l;....
1744 [" (" Known_Image (l:length (Known_Image)—6) ......

1745 ', 1~{st} Projection)']l})

1746 elseif a==8

1747 title({['Reconstructed Training Face No.' num2str(a)l;....
1748 [" (" Known_Image (l:length (Known_Image)—6) .....

1749 ', 27{nd} Projection) ']l})

1750 elseif a==

1751 title({['Reconstructed Training Face No.' num2str(a)l;....
1752 [" (" Known_Image (l:length (Known_Image)—6) ......

1753 ', 3"{rd} Projection) 'l})

1754 end

1755 disp(['Please, press any keyboard button to explore '......
1756 'the remaining'])

1757 disp('reconstructed training faces >>>>>>>")

1758 pause

1759 close all

1760 clc

1761 end

1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776

All_Known_Reconstructed_Im_V;

o9

[Che)

$%%%%%%% The Calculation of Compression and Reconstruction $%%%%%%%
$5%%%%%% Performance $%5%5%%5%%%
clc

close all

After_Compression_Normalization=zeros(l,...................
length (Eigenvalues)); % Measuring an information rate after
% compression. The elements of this

Q

vector represent the information
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1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825

1826

MSE_Compression=.......

MSE_Reconstruction=zeros (length (Eigenvalues), ..........

Eigenvaluesl=fliplr (Eigenvalues) ;

Eigenvectorsl=flipdim(Eigenvectors, 2);

for kk=1l:length(Eigenvalues)

rates after compression with respect
to the information rates before

o oo oP

compression.
zeros (1, length (Eigenvalues)); Measuring compression
performance or how much
compressed information is.
The elements of this vector
represent the mean squared
errors in compression when
different eigenfaces are
selected.

o0 o0 o° o o o° o° oe

Total_No_of_Known_Im); Measuring reconstruction performance
or the quality of a reconstructed
training face. The elements of each
column of this matrix represent the
mean squared errors between a
projected training face and its
reconstruction when different

eigenfaces are selected.

o0 o° o© o o o° o° o°

This flipping just to make
the highest correlated
eigenface is associated
with the first eigenvalue
and so on. This is done to
be compatable with the
generated document

"PCA vs. IPCA".

o° o0 o0 o° o° o o oe

['"Iteration No.: ' num2str(kk) ' Out of ' ...........
num2str (length (Eigenvalues)) ]
Selected_Eigenvectors=Eigenvectorsl (:,1:kk);

Projecting each training face on the eigenspace. It is just
expressing each training face in terms of the eigenfaces.
This is called principal components transform (also called

o° o o o°

the Hotelling or Karhunen—Loéve transform)
All_Known_Transformed_Im=..............

zeros (size (Selected_Eigenvectors,2), ........

Total No_of_ Known_Im); A 2D matrix where each column
represents the coordinates of a
projected training face in the
eigenspace.

o® o° o oP

for r=1:Total_No_of_ Known_Im
All_Known_Transformed_Im(:,r)=Selected_Eigenvectors.'*.....
Known_Im_Subt_Mean(:,r);
end
All_Known_Transformed_Im;
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1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876

o® 0@ o° o° o° o o

The calculation of an information ratio before and after
compression.
Before_Compression=Total No_of_ Known_Imx.....

N+N; The overall information when there is
no any compression technique is used.
After_Compression=NxNxkk+kk+Total_ No_of_ Known_Im+.............
N=*N; The overall information when a compression technique

o
o
)

<

o° oo

is used. The overall information here is controlled
by the selected number of eigenvectors. When the
selected number is small then the information will
be samll and vice versa. It is very important to
notice that when all eigenvectors are used then
there will not be any compression and the overall
information when there is no any compression
technique is used will be the optimum one. Also, it
is really important to notice that the rows and
columns for the pixels of each face as well as the
means of the faces pixels are not added to the
overall information after compression that because
the face centering operation is not really important
for the image compression process and will not have
any effect if it is done or not but it has been done
here because it is important for other processes.
Before_Compression_Normalization=(Before_Compression/.......
Before_Compression) x100;

0 0 O O A0 A O O A O O A A O o o° o

Note that, the normalization is
done to make the overall
information before compression
is equal to 100 all the time
in order to make comparison
easier.
After_Compression_Normalization (1l,kk)=(After_Compression/.....
Before_Compression) «100;

o° o0 o° o° o° o°

Note that, the normalization is
done to make the overall
information before compression
is equal to 100 all the time

in order to make comparison

o° o0 o° o° o° oo

easier.
The_Information Ratio=[........c0.....

num2str (Before_Compression_Normalization) ............

'% (Before Compression) : ' ........ .. ... ..

num2str (After_Compression_Normalization(l,kk))....

'$ (After Compression)'] % This is just to make the

% information ratio is readable

% on the command window.
% The reconstruction of the projected training faces.
All_Known_Reconstructed_Im=zeros (N,N, Total_ No_of_ Known_Im);
for a=1:Total_ No_of Known_Im

Pre=reshape (Selected_Eigenvectors*...........
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1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925

1926

o0 o0 o0 O° O O O° O° A° A° o° o o°

All_Known_Transformed_Im(:,a),N,N)+.........
reshape (Av_Image,N,N); % Adding the average
% training face.
RCl=Rows_Columns(:, :,a);

F=RC1 (1, :);

F1=RC1 (2, :);

D=F (F>0) ;
D1=F1(F1>0);
RC=[D;D1]; The rows and columns for the pixels of a

face after removing the added zero rows and
columns. The added zero rows and columns are
added by MATLAB for making the matrices of
the rows and columns of the faces pixels
are equal.
for QQ=1:size (RC,2)
All_Known_Reconstructed_Im(RC(1,0Q),RC(2,Q00Q0),a)=......
Pre(RC(1,QQ0),RC(2,Q00))+..........
Means (l,a); % Adding the mean of the
% pixels of a face.

o° o° o° o o° o° ™

end

Y=A1ll_Known_Reconstructed_Im(:, :,a); Removing any pixel
less than zero in
a training face
because the image
can not be negative.

o° o0 o° o° oP

[UU NN]=find (Y<0);
for CC=1l:size (UU, 1)

Y (UU (CC) ,NN (CC) )=0;
end

MSE_Compression (1, kk)=sum(Eigenvaluesl (1,kk+1l:end));
MSE_Reconstruction(kk,a)=.........

sum(sum(...........

(reshape (Normalized_Known_Im_V(:,a),N,N)—Y)."2)) /NxN;

Displaying the effect of the selected eigenvectors on

the reconstructed training faces.

Known_Image=Known_Images (a) .name;

figure ('units', 'centimeters', 'position', [16 7 7.5 8.5])

subplot (3,1,1)

imshow (uint8 (reshape (Normalized_Known_Im V(:,a),N,N)))

if a==

title({['Original Training Face No.' num2str(a)l;....

['"(" Known_Image(l:length (Known_Image)—6) .....
', 1~{st} Projection)']l})

elseif a==

o° oo

2
title({['Original Training Face No.' num2str(a)l;....
[" (" Known_Image (l:length (Known_Image)—6)

123
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1927 % ', 27{nd} Projection) ']})

1928 % elseif a==

1929 % title({['Original Training Face No.' num2str(a)l;....
1930 % ['" (" Known_Image (l:length (Known_Image)—6) .....
1931 % ', 3"{rd} Projection)']l})

1932 % elseif a==

1933 % title({['Original Training Face No.' num2str(a)l];....
1934 % ["(" Known_Image(l:length (Known_Image)—6) ......
1935 % ', 1~{st} Projection)']l})

1936 % elseif a==

1937 % title({['Original Training Face No.' num2str(a)l;....
1938 % ["(" Known_Image (l:length (Known_Image)—6) ......
1939 % ', 2”{nd} Projection)']l})

1940 % elseif a==

1941 % title({['Original Training Face No.' num2str(a)l;....
1942 % ["(" Known_Image (l:length (Known_Image)—6) .....
1943 % ', 3"{rd} Projection)']})

1944 % elseif a==

1945 % title({['Original Training Face No.' num2str(a)l;....
1946 % ['" (" Known_Image (l:length (Known_Image)—6) ......
1947 % ', 1~{st} Projection)']})

1948 % elseif a==

1949 % title({['Original Training Face No.' num2str(a)l];....
1950 % ["(" Known_Image(l:length (Known_Image)—6) .....
1951 % ', 2°{nd} Projection)']l})

1952 % elseif a==

1953 % title({['Original Training Face No.' num2str(a)l;....
1954 % ["(" Known_Image(l:length (Known_Image)—6) ......
1955 % ', 3"{rd} Projection)']l})

1956 % end

1957 % subplot (3,1,2)

1958 % imshow (uint8(Y))

1959 % if a==

1960 % title(['Its Reconstruction When g=' num2str (kk)])

1961 % elseif a==

1962 % title(['Its Reconstruction When g=' num2str (kk)])

1963 % elseif a==

1964 % title(['Its Reconstruction When g=' num2str (kk)])

1965 % elseif a==

1966 % title(['Its Reconstruction When g=' num2str (kk)])

1967 % elseif a==

1968 % title(['Its Reconstruction When g=' num2str (kk)])

1969 % elseif a==

1970 % title(['Its Reconstruction When g=' num2str (kk)])

1971 % elseif a==

1972 % title(['Its Reconstruction When g=' num2str (kk)])

1973 % elseif a==

1974 % title(['Its Reconstruction When g=' num2str (kk)])

1975 % elseif a==

1976 % title(['Its Reconstruction When g=' num2str (kk)])
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125

1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025

2026

end
subplot (3,1, 3)
imshow (uint8(..........

(reshape (Normalized Known_Im V(:,a),N,N)—Y)."2))
if a==

title('The Squared Error')
elseif a==

title('The Squared Error')
elseif a==3

title ('The Squared Error')
elseif a==

title('The Squared Error')
elseif a==

title('The Squared Error')
elseif a==

title('The Squared Error')
elseif a==

title ('The Squared Error')
elseif a==

title('The Squared Error')
elseif a==

title('The Squared Error')
end

kk
pause
close all

o0 0 o0 o O O O O A A A A A A A AN N N O O O O A A ° o o°

end
end

Plotting the information rates when different eigenfaces are
selected compared with the original information rate for all

o® o o oP

and IPCA algorithms on the plot.

clc

figure('units', 'centimeters', 'position', [0.15 1.2 35.8 16.9])
subplot (2,1,1)

Legl=plot (l:length (Eigenvalues),After_Compression_Normalization);

Leg2=1ine ([0 length(Eigenvalues)], [100 100], 'Color', [0 102/255

hold on

Leg3=plot (1,After_ Compression_Normalization(l), 'kd',.....
'LineWidth', 1.5, '"MarkerEdgeColor', 'k', 'MarkerFaceColor', ..
! , '"MarkerSize', 8);

text (—50,After_Compression_Normalization (1l)+3650,.....
{'"\fontsize{10} \color{black}' .......
After_Compression_Normalization (1) })

hold on

Legd4=plot (length (Eigenvalues), .........
After_Compression_Normalization (length (Eigenvalues)), 'kd',

m'

training faces and explaining the information rates for the PCA

01);
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2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075

2076

'LineWidth', 1.5, '"MarkerEdgeColor"', 'k', 'MarkerFaceColor',.....
'g', '"MarkerSize',8);

text (length (Eigenvalues)—140, ............
After Compression_Normalization (length (Eigenvalues))+2350,....
{"\fontsize{1l0} \color{black}' .........
After_Compression_Normalization (length (Eigenvalues)) })

hold off

axis([—100 length(Eigenvalues)+ (length(Eigenvalues)/40) —2000 .....
max (After_Compression_Normalization)+........
(max (After_Compression_Normalization)/10)])

set (gca, 'XTick', [1 length(Eigenvalues) /2 length (Eigenvalues)])

title({['The Information Rates When Different Eigenfaces '......
'Are Selected Compared 'J];.......
'With the Original Information Rate for All Training Faces'})

xlabel ('The Number of Selected Eigenfaces')

ylabel ('The Information Rate (%) ")

legend ([Legl Leg2 Leg3 Leg4], ['The Information Rates When '.......

'Different Eigenfaces Are Selected.'], ['The Information '.....
'Rate for All Training Faces.'], ['The Information Rate '.....
'When the First Eigenface Is Selected.'],['The ".......
'Information Rate When All Eigenfaces Are Selected.']l,.....
'Location', "NorthWest');
subplot (2,1,2)
Legl=plot (l:length (Eigenvalues),After_ Compression_Normalization);
axis ([0 20 0 200])
Leg2=1ine ([0 length(Eigenvalues)], [100 100], 'Color', [0 102/255 0]);
Leg3=line ([length (Best_Eigenvalues_PCA) ......
length (Best_Eigenvalues_PCA)], [0 .......
After_Compression_Normalization (length(.......
Best_Eigenvalues_PCA))], 'LineStyle','—"', "Color', 'k", .. ..
'LineWidth', 3);
line ([0 length(Best_Eigenvalues_PCA)],.....
[After_Compression_Normalization(.......
length (Best_Eigenvalues_PCA)) ......
After_ Compression_Normalization(......
length (Best_Eigenvalues_PCA))],......
'LineStyle','—"', 'Color', 'k"', 'LinewWidth"', 3)
text (0.1,After_Compression_Normalization(.........
length (Best_Eigenvalues_PCA))+16, ......
{"\fontsize{1l0} \color{black}' ........
num2str (After_Compression_Normalization(.......
length (Best_Eigenvalues_PCA)), "$6.4f")})
Leg4=1line ([length (Best_Eigenvalues_IPCA) ........
length (Best_Eigenvalues_IPCA) ], [0 ........
After_Compression_Normalization(.......
length (Best_Eigenvalues_IPCA))], 'LineStyle','—"', "Color', ....
'r', 'LineWidth', 4);
line ([0 length (Best_Eigenvalues_IPCA)],......
[After_Compression_Normalization(.....
length (Best_Eigenvalues_IPCA)) .....
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2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125

2126

After_Compression_Normalization(......

length (Best_Eigenvalues_IPCA))], 'LineStyle','—"', "Color', ....

'r','LineWidth', 4)
text (0.08,After_Compression_Normalization(.....

length (Best_Eigenvalues_IPCA))—1.7,....

{"\fontsize{1l0} \color{red} \bf' .......

num2str (After_Compression_Normalization(.....

length (Best_Eigenvalues_IPCA)), "$6.41f")})
vv=[length (Best_Eigenvalues_IPCA) length (Best_Eigenvalues_PCA)];
if vv(l)== || vv(2)==

set (gca, 'XTick', [0 sort (vv) 20])
else set(gca, 'XTick', [0 1 sort(vv) 20])
end
title(['Explaining the Information Rates for the PCA and '.....

'IPCA Algorithms on the Plot'])
xlabel ('The Number of Selected Eigenfaces')
ylabel ('The Information Rate (%) ')
legend([Legl Leg2 Leg3 Leg4],['The Information Rates When '.....

'Different Eigenfaces Are Selected.'], ['The Information '....

'Rate for All Training Faces.'], ['The Information Rate '......

'When PCA Algorithm Is Used.'],['The Information '.....

'Rate When IPCA Algorithm Is Used.'],'Location', 'SouthEast');
disp('Please, press any keyboard button to resume the code >>>>")
pause
clc
close all

Plotting the mean squared errors of compression for different

selected eigenfaces compared with the mean squared errors for

the PCA and IPCA algorithms.

figure('units', 'centimeters', 'position', [0.15 1.2 35.8 16.9])

subplot (2,1,1)

Legl=plot (l:length(Eigenvalues), MSE_Compression);

hold on

Leg2=plot (1,MSE_Compression(l), 'kd', 'Linewidth',1.5,......
'MarkerEdgeColor', 'k', "MarkerFaceColor', 'm', '"MarkerSize', 8);

text (25,MSE_Compression (1)+(10"~7/11), .......
{"\fontsize{10} \color{black}' MSE_Compression(1l)})

hold on

Leg3=plot (length (Eigenvalues), ......
MSE_Compression (length (Eigenvalues)), 'kd', 'Linewidth',1.5, ....
'MarkerEdgeColor', 'k', "MarkerFaceColor', 'g', '"MarkerSize', 8);

text (length (Eigenvalues)—8,........
MSE_Compression (length (Eigenvalues))+10°7/3.2,.......
{"\fontsize{1l0} \color{black}' ........
MSE_Compression (length (Eigenvalues)) })

hold off

axis ([0 length(Eigenvalues)+ (length (Eigenvalues) /40) ......

—max (MSE_Compression) /10 .....

o° o o
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2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175

2176

max (MSE_Compression) + (max (MSE_Compression) /10) 1)

set (gca, 'XTick', [1 length(Eigenvalues) /2 length (Eigenvalues)])

title(['The Mean Squared Errors of Compression for Different '....
'Selected Eigenfaces'])

xlabel ('The Number of Selected Eigenfaces')

ylabel ('The Mean Squared Error')

legend([Legl Leg2 Leg3], ['The Mean Squared Errors of '.....
'Compression for Different Selected Eigenfaces.'],
['The Mean Squared Error of Compression When the First '.....
'Eigenface Is Selected.'], ['The Mean Squared Error of '.....
'Compression When All Eigenfaces Are Selected.'],......
'Location', "NorthEast');

subplot (2,1,2)

Legl=plot (l:length(Eigenvalues), MSE_Compression);

axis ([0 20 —1077/4 max (MSE_Compression)+(1077/4)1)

Leg2=line ([length (Best_Eigenvalues_PCA) ........
length (Best_Eigenvalues_PCA) ], .......
[0 MSE_Compression (length (Best_Eigenvalues_PCA))],.....
'LineStyle','—"', 'Color', 'k', 'LineWidth', 3);

line ([0 length(Best_Eigenvalues_PCA)],......
[MSE_Compression (length (Best_Eigenvalues_PCA)) ......
MSE_Compression (length (Best_Eigenvalues_PCA))],.......
'LineStyle','—"', 'Color', 'k', 'LinewWidth"', 3)

text (0.08,MSE_Compression (length (Best_Eigenvalues_PCA))+.....
(—=0.008%1077), {"\fontsize{10} \color{black}' .....
num2str (MSE_Compression (length (Best_Eigenvalues_PCA))) })

Leg3=line ([length (Best_Eigenvalues_IPCA) .......
length (Best_Eigenvalues_IPCA)], [0 .....
MSE_Compression (length (Best_Eigenvalues_IPCA)) ],
'LineStyle','—"', 'Color', 'r', 'LinewWidth', 4);

line ([0 length(Best_Eigenvalues_IPCA)],.....
[MSE_Compression (length (Best_Eigenvalues_IPCA)) .....
MSE_Compression (length (Best_Eigenvalues_IPCA)) ],
'LineStyle','—"', 'Color', 'r', 'LinewWidth"', 4)

text (0.08,MSE_Compression (length (Best_Eigenvalues_IPCA))+.....
0.24x10~7,{'\fontsize{10} \color{red} \bf' .......
num2str (MSE_Compression (length (Best_Eigenvalues_IPCA))) })

if vv(l)== || vv(2)==
set (gca, 'XTick', [0 sort (vv) 20])

else set(gca, 'XTick', [0 1 sort(vv) 20])

end

title(['Explaining the Mean Squared Errors for the PCA and '....
'IPCA Algorithms on the Plot'])

xlabel ('The Number of Selected Eigenfaces')

ylabel ('The Mean Squared Error')

legend([Legl Leg2 Leg3], ['The Mean Squared Errors of '.....
'Compression for Different Selected Eigenfaces.'],.....
'The Mean Squared Error for PCA Algorithm.',.....
'The Mean Squared Error for IPCA Algorithm.',.....
'Location', "NorthEast');
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2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225

2226

disp('Please, press any keyboard button to resume the code >>>>")
pause

clc

close all

Plotting the mean squared errors between each training face and

its reconstruction for different selected eigenfaces compared

with the mean squared errors between each training face and its

reconstruction for the PCA and IPCA Algorithms.

figure ('units', 'centimeters', 'position’', [0.15 1.2 35.8 16.9])

for jj=1l:Total_No_of_Known_Im

subplot (2,1,1)

Legl=plot (l:1length (Eigenvalues), (MSE_Reconstruction(:,3j)).");

hold on

Leg2=plot (1,MSE_Reconstruction(l, jj), 'kd', 'LineWidth', 1.5, ....
'MarkerEdgeColor', 'k', "MarkerFaceColor', 'm',.....

o° o° o o

'MarkerSize', 8);
text (35,MSE_Reconstruction(l,3J)+........
max (MSE_Reconstruction(:,33))/22, .. .......
{"\fontsize{10} \color{black}' MSE_Reconstruction(l,jj)})
hold on
Leg3=plot (length (Eigenvalues), .......
MSE_Reconstruction (length (Eigenvalues), jj), 'kd', .....
'LineWidth', 1.5, '"MarkerEdgeColor', 'k', .....
'MarkerFaceColor', 'g', "MarkerSize', 8);
text (length (Eigenvalues)—75, ......
MSE_Reconstruction (length (Eigenvalues), jj)+.....
max (MSE_Reconstruction(:,33))/7, ... ....
{'"\fontsize{10} \color{black}' .....
MSE_Reconstruction (length (Eigenvalues), j7) })
hold off
axis ([0 length(Eigenvalues)+ (length (Eigenvalues)/15) .....
—max (MSE_Reconstruction(:,33j)) /10 ......
max (MSE_Reconstruction(:, 3J3))+........
(max (MSE_Reconstruction(:, 33))/10)1)
set (gca, 'XTick', [1 length(Eigenvalues) /2 length(Eigenvalues)])
Known_Image=Known_Images (JjJj) .name;
if ji==
title ({['The Mean Squared Errors of Reconstructing '....
'Training']; ['Face No.' num2str(jj) .....
' for Different Selected Eigenfaces'l;.....
[" (" Known_Image (l:length (Known_Image)—6) .....

', 17{st} Projection) ']l})
elseif jj==
title ({['The Mean Squared Errors of Reconstructing '....
'"Training']; ['Face No.' num2str(jj) .....

' for Different Selected Eigenfaces'];.....
[" (" Known_Image (l:length (Known_Image)—6) .....
', 27{nd} Projection) ']})
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2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275

2276

elseif jj==
title({['The Mean Squared Errors of Reconstructing '.....
'"Training']; ['Face No.' num2str(jj) .....
' for Different Selected Eigenfaces'l;.....
[" (" Known_Image (l:length (Known_Image)—6) .....
', 3%"{rd} Projection) 'l})
elseif jj==
title ({['The Mean Squared Errors of Reconstructing '.....
'"Training']; ['Face No.' num2str(jj) .....
' for Different Selected Eigenfaces']l;.....
[" (" Known_Image (l:length (Known_Image)—6) .....
', 17{st} Projection) ']l})
elseif jj==
title ({['The Mean Squared Errors of Reconstructing '.....
'Training']; ['Face No.' num2str(jj) ......

' for Different Selected Eigenfaces'];....
["(" Known_Image (l:length (Known_Image)—6)
', 2°{nd} Projection)']l})

elseif jj==6

title ({['The Mean Squared Errors of Reconstructing '.....

'Training']; ['Face No.' num2str(jj)
' for Different Selected Eigenfaces'];....
["(" Known_Image (l:length (Known_Image)—6)

', 3"{rd} Projection)']l})
elseif jj==
title({['The Mean Squared Errors of Reconstructing '....
'Training']; ['Face No.' num2str(jj) .....

' for Different Selected Eigenfaces'];....

[" (" Known_Image (l:length (Known_Image)—6) .....

', 1~{st} Projection)']l})
elseif jj==
title({['The Mean Squared Errors of Reconstructing '....
'Training']; ['Face No.' num2str(jj)

' for Different Selected Eigenfaces'];.....

[" (" Known_Image (1l:length (Known_Image)—6) .....

', 2°{nd} Projection)'l})
elseif jj==
title({['The Mean Squared Errors of Reconstructing '....
'Training']; ['Face No.' num2str(jj)

' for Different Selected Eigenfaces'];....
[" (" Known_Image (l:length (Known_Image)—6) .....
', 3"{rd} Projection)'l})

end

xlabel ('The Number of Selected Eigenfaces')

ylabel ('The Mean Squared Error')

Leg=legend([Legl Leg2 Leg3], ['The Mean Squared Errors of '....
'Reconstruction for Different Selected Eigenfaces.']l,....
['The Mean Squared Error of Reconstruction When the '.....
'First Eigenface Is Selected.'], ['The Mean Squared '.....

'Error of Reconstruction When All Eigenfaces '.....
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2326 close all

2277 'Are Selected.'], 'Location', 'North'");

2278 subplot (2,1,2)

2279 MSE_Recons= (MSE_Reconstruction(:,3jj)).";

2280 Legl=plot (l:length(Eigenvalues),MSE_Recons) ;

2281 axis ([0 20 —max (MSE_Recons)/6 ......

2282 max (MSE_Recons) + (max (MSE_Recons) /10) 1)

2283 Leg2=line ([length (Best_Eigenvalues_PCA) .....

2284 length (Best_Eigenvalues_PCA)], [0 .....

2285 MSE_Recons (length (Best_Eigenvalues_PCA)) 1, ....

2286 'LineStyle','—"', 'Color', 'k', 'LineWidth"', 3);

2287 line ([0 length(Best_Eigenvalues_PCA)],.....

2288 [MSE_Recons (length (Best_Eigenvalues_PCA)) .....

2289 MSE_Recons (length (Best_Eigenvalues_PCA) )], ......

2290 'LineStyle','—"', 'Color', 'k', "LinewWidth', 3)

2291 text (0.1,MSE_Recons (length (Best_Eigenvalues_PCA)).....
2292 — (max (MSE_Recons) /88), {"\fontsize{10} \color{black}'
2293 num2str (MSE_Recons (length (Best_Eigenvalues_PCA))) })
2294 Leg3=line([length (Best_Eigenvalues_IPCA) .....

2295 length (Best_Eigenvalues_IPCA)],.....

2296 [0 MSE_Recons (length (Best_Eigenvalues_IPCA))], .....
2297 'LineStyle','—"', 'Coloxr', 'r', 'LineWidth"', 4);

2298 line ([0 length(Best_Eigenvalues_IPCA)],....

2299 [MSE_Recons (length (Best_Eigenvalues_IPCA)) .....

2300 MSE_Recons (length (Best_Eigenvalues_IPCA) )], .....

2301 'LineStyle','—"', 'Color', 'r', 'LineWidth', 4)

2302 text (0.1,MSE_Recons (length (Best_Eigenvalues_IPCA)).....
2303 + (max (MSE_Recons) /8), {"\fontsize{10} \color{red} \bf'
2304 num2str (MSE_Recons (length (Best_Eigenvalues_IPCA))) })
2305 if vv(l)== [ vv(2)==

2306 set (gca, '"XTick', [0 sort (vv) 20])

2307 else set(gca, 'XTick', [0 1 sort(vv) 201])

2308 end

2309 title(['Explaining the Mean Squared Errors for the '.....
2310 'PCA and IPCA Algorithms on the Plot'])

2311 xlabel ('The Number of Selected Eigenfaces')

2312 ylabel ('The Mean Squared Error')

2313 Leg=legend([Legl Leg2 Leg3], ['The Mean Squared Errors of
2314 'Reconstruction for Different Selected Eigenfaces.'],....
2315 'The Mean Squared Error for PCA Algorithm.',....

2316 'The Mean Squared Error for IPCA Algorithm.',....

2317 'Location', "NorthEast');

2318

2319 disp(['Please, press any keyboard button to explore '....
2320 'the remaining mean'])

2321 disp(['squared errors for other reconstructed training '.
2322 'faces >>>>>>>"'])

2323 pause

2324 clc

2325 end
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2327
2328

o O
2329 5%
3%

o\

0 00000000000000000 3 3 0 00000000000000000
2330 $%%%5%scscsssosssess A Face Recognitlion Process %%5%%5%5%%%%5c5650660606%0

2331
2332

2333 clc
2334 close all
2335

2336
2337 When the coordinates number of the projected training faces
in the eigenspace increases, the error rate will decrease and
vice versa as well as when the number decreases, the
processing speed will increase and vice versa. So, the usage
of all calculated eigenvectors as eigenfaces will lead to the
smallest error rate and biggest processing time then the

usage of the calculated eigenfaces by using PCA algorithm

2338
2339
2340
2341
2342
2343
2344 finally the usage of the calculated eigenfaces by using IPCA
algorithm will lead to the biggest error rate and smallest
processing time. It is very important to notice that the
calculation of all eigenvectors from the covariance matrix

2345
2346
2347
2348 for all training faces is too difficult because the
2349 covariance matrix is too big as explained before so it is

impractical to use all eigenvectors as eigenfaces.

o0 o® o0 O O O o O° O A° A° A° o o
O 0 O o o0 A O O O O° o° o o o
o 0 O o o0 A O O O O° o° o o o
o® o0 o0 O° O O o o° O° A° A° A° o° oP
o 00 A0 o0 0 O A OO d° o OO d° o° o

2350
2351

\o

2352 % Best_FEigenvectors=Eigenvectors; Just try it to see how affects

2353 on the results of face

o o° oo

2354 recognition.
2355 Best_Eigenvectors=Best_Eigenvectors_PCA; Just try it to see how
2356 affects on the results

of face recognition.

o° o° o

2357

2358 % Best_Eigenvectors=Best_FEigenvectors_IPCA; % Just try it to see
2359 % how affects on the
2360 % results of face

2361 % recognition.

2362

2363

2364 % Projecting each training face on the eigenspace. It is just

2365 % expressing each training face in terms of the eigenfaces. This is
2366 % called principal components transform (also called the Hotelling
2367 % or Karhunen—Loéve transform)

2368 All_Known_Transformed_Im=........

2369 zeros (size (Best_Eigenvectors,2),......

2370 Total_No_of Known_Im); % A 2D matrix where each
2371 % column represents the
2372 % coordinates of a

2373 % projected training

2374 % face in the eigenspace.

2375 for r=1l:Total_No_of_ Known_Im
2376 All_Known_Transformed_Im(:, r)=Best_Eigenvectors.'x......
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2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426

Known_Im_Subt_Mean(:,r);
end
All_Known_Transformed_Im;

Projecting each tested image on the eigenspace. It is Jjust
expressing each tested image in terms of the eigenfaces. This is
called principal components transform (also called the Hotelling
or Karhunen—Loéve transform)
All_Tested_ _Transformed_ Im=.....

zeros (size (Best_Eigenvectors,2), ....

Total_No_of_ Tested_ Im); A 2D matrix where each
column represents the
coordinates of a
projected tested image
in the eigenspace.

o° o° o oe

o° o° o° o oe

for rl=1:Total_No_of_ Tested_ Im
All_Tested_Transformed_Im(:,rl)=Best_Eigenvectors.'*......
Tested_Im_Subt_Mean(:,rl);
end
All_Tested_ _Transformed_ Im;

fid=fopen ('Face Recognition Results for Testing.txt',6 .....
! % A text file for typing

% the results of face

% recognition.

fprintf (fid, ['\n\t #**%%x%* The Results of Face Recognition '.......
'Obtained from the PCA and IPCA x*xx*x\r\n'j]);

fprintf (fid, ["\t\t\t\t**+x+ Code for Testing and Setting up '.....
'Thresholds **x*x\r\n\n']);

fprintf (£id, [ 'Image No. The Image Is Originally for L.
'The Image Is Recognized as The Status\r\n']);

fprintf (fid, [ '============= ======== ==== == T,
! ==== ==== ==========\r\n']);

w');

Distances_Vector=........

zeros (Total_No_of_ Tested_Im,.....

Total_No_of Known_Im); A 2D matrix where each row
represents the distances
between the weights of each
training face and the
weights of one of the
tested images.

o0 o° o° o° o° oe

The distances between the weights of a training face and the
weights of each corresponding tested image. Note that, here the
training face and tested images have the same face and projection
so these distances must be the smallest. The distances are

o® o° o° o° oP

extracted form the Distances_Vector matrix.
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2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476

1,Im_P
1,Im_P

Distances_Vector_Pl=zeros (

Distances_Vector_P2=zeros (

Distances_Vector_P3=zeros(l,Im_P
Distances_Vector_P4=zeros(l,Im_P
Distances_Vector_P5=zeros(l,Im_P
Distances_Vector_P6=zeros(l,Im_P
Distances_Vector_P7=zeros (1, Im_P
Distances_Vector_P8=zeros(l,Im_P
Distances_Vector_P9=zeros(l,Im_P

for p=1l:Total_No_of_Tested_Im
for g=1l:Total_No_of_Known_Im
Distances_Vector(p,g)=.....
norm(All_Tested_Transformed_Im(:,p)—.....
All_Known_Transformed_Im(:,q));
end

if p<=L1
Distances_Vector_P1l (1l,p)=Distances_Vector(p,1);
elseif p>Ll && p<=L2
Distances_Vector_P2 (1,p—Ll)=Distances_Vector (p,2);
elseif p>L2 && p<=L3
Distances_Vector_P3 (1,p—L2)=Distances_Vector (p,3);
elseif p>L3 && p<=L4
Distances_Vector_P4 (1,p—L3)=Distances_Vector (p,4);
elseif p>L4 && p<=L5
Distances_Vector_P5(1,p—L4)=Distances_Vector (p,5);
elseif p>L5 && p<=L6
Distances_Vector_P6 (1, p—L5)=Distances_Vector (p, 6);
elseif p>L6 && p<=L7
Distances_Vector_P7 (1l,p—L6)=Distances_Vector (p,7);
elseif p>L7 && p<=L8
Distances_Vector_P8(1l,p—L7)=Distances_Vector (p,8);
elseif p>L8 && p<=L9
Distances_Vector_P9(1,p—L8)=Distances_Vector (p,9);
end
end
dl=Distances_Vector_P1;
d2=Distances_Vector_P2;
d3=Distances_Vector_P3;
d4=Distances_Vector_P4;
d5=Distances_Vector_P5;
d6=Distances_Vector_P6;
d7=Distances_Vector_P7;
d8=Distances_Vector_P8§;
d9=Distances_Vector_P9;

The calculation of the mean and standard deviation for each
vector of the minimum distances and stacking them in a vector for

o o o

the means and another for the standard deviations. This is done
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2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526

for setting up a threshold for face recognition because when a
distance between a training face and a tested image is the
smallest with respect to the other training faces, that does not
mean the tested image is recognized as the training face due to
the tested image can be different than the training face and has
the smallest distance in the same time. So, a certain threshold
must be used to increase the accuracy of recognition.

_Mean=[mean (dl) ;mean (d2) ;mean (d3) ;mean (d4) ;mean (d5) ;mean(d6); .....

mean (d7) ;mean (d8) ;mean (d9) ];
P_STD=[std(dl);std(d2);std(d3);std(d4);std(d5);std(d6);std(d7);....
std(d8) ;std(d9)];

o® o° o° o° o o o

av}

% save (['Means for Face Recognition When All Eigenvectors '

% 'Are Used as Eigenfaces'], 'P_Mean')

% save (['STDs for Face Recognition When All Eigenvectors '.....

% 'Are Used as Eigenfaces'], 'P_STD')

save ([ 'Means for Face Recognition When the Eigenfaces '.....
'Computed by Using PCA Algorithm Are Used'], 'P_Mean')

save (['STDs for Face Recognition When the Eigenfaces '.....

'Computed by Using PCA Algorithm Are Used'], 'P_STD')
save ([ 'Means for Face Recognition When the Eigenfaces '....
'Computed by Using IPCA Algorithm Are Used'], 'P_Mean')
save (['STDs for Face Recognition When the Eigenfaces '.....
'Computed by Using IPCA Algorithm Are Used'], 'P_STD')

o® o° o oP

Failures_Vector=zeros(l,......
Total_No_of_Tested_Im); A vector for counting the number of
failures in the face recognition

process.

o oo oe

% This matrix is used
% for creating a table
% 1in Latex.

Latex_Matrix=cell (Total_ No_of_ Tested_Im, 4);

for w=1:Total No_of Tested_Im
% The face recognition process.
for h=1:Total_No_of_ Known_Im
if min(Distances_Vector(w, :))==.......

Distances_Vector(w,h) && ......

min (Distances_Vector(w,:))>=......
(P_Mean (h,1)—P_STD (h, 1)) &&.....
min (Distances_Vector(w, :))<=......

(P_Mean (h,1)+P_STD (h, 1))
s=transpose (struct2cell (Known_Images));
c=sortrows (s, 1);
z=c(:,1);
Recognized_As=char(z(h,1));
Recognized_Image_Location=.......
fullfile (Known_Images_Folder,Recognized_As);
Recognized_image=im2double (rgb2gray (.......
imread (Recognized_Image_Location)));
break;
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A o° o o o O A A° A° A A O o o o

else
Recognized_As='Unknown Image';
Recognized_image=imread ('Unknown_Face. Jjpg');
end
end

% Defining the face.
if w<=L3

n="'Mr. Mansour Alshammari';
elseif L3<w && w<=L6

n='Mr. Methkir Alharthee';
else n='Mr. Mohammed Hanafy';
end

yl=strcmp (Recognized_As (l:length (Recognized_As)—6),....
'Mr. Mansour Alshammari');

y2=strcmp (Recognized_As (l:length (Recognized_ As)—6),.....
'Mr. Methkir Alharthee');

y3=strcmp (Recognized_As (l:length (Recognized_As)—6),....
'Mr. Mohammed Hanafy');

='Success';

if w<=L3 && yl==0;
f="Failure';
Failures_Vector (1,w)=1;

elseif w>L3 && w<=L6 && y2==0;
='Failure';
Failures_Vector (1,w)=1;

elseif w>L6 && w<=L9 && y3==0;
f="'Failure';
Failures_Vector (1,w)=1;

end

Tested_Im_Number=[num2str(w) '.Jjpg'l;
Tested_Im_Location=.....
fullfile (Tested_Images_Folder, Tested_Im_Number) ;

Tested_Im=im2double (rgb2gray (imread(Tested_Im_Location)));

subplot (2,1,1)
imshow (Tested_Im)
title({['Image No.' num2str (w)
subplot (2,1,2)
imshow (Recognized_image)
if yl==1 || y2==1 || y3==
title({'The Image Is Recognized As'; .......cccc.o...
Recognized_As (l:length (Recognized_As)—6) })
else title ({'The Image Is Recognized As' .....
['"an' blanks (1) Recognized_As]})

end

if yl==1 || y2==1 || y3==
fprintf (fid, ['%$0.3d\t\t\t $—22s\t $—22s\t

Is Originally for'];n})
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2577 "$s \r\n\n'l,w,n, ........

2578 Recognized_As (l:1length (Recognized_As)—6),f);

2579 Latex Matrix(w,1l:4)={num2str(w) n ......

2580 Recognized_As (l:length(Recognized_As)—6) f};

2581 else fprintf(fid,.........

2582 '$0.3d\t\t\t $—22s\t $—22s\t %$s \r\n\n', ....
2583 w,n,Recognized_As, f);

2584 Latex_Matrix(w,1:4)={num2str(w) n Recognized_As f};

2585 end

2586

2587 % disp(['Please, press Any keyboard button to see another '....
2588 % 'face and its recognition....'])

2589 % pause

2590 % clc

2501 end

2502 Total_Number_of_ Failures=sum(Failures_Vector); % The total number
2593 % of failures in

2594 % the face

2595 % recognition

2596 % process.

2597

2508 fprintf (fid, ['==============================================='__ .
2599 | ======================================\r\n']) ;

2600 fprintf (fid, ['+* The Total Number of Successes: %0.3d out of '.....
2601 '%0.3d (%3.4f%%) \r\n\n'],Total_No_of Tested_ Im—.....

2602 Total_ Number_of_ Failures,Total_No_of_ Tested Im,....

2603 ((Total_No_of Tested_ Im—Total Number_ of Failures)/.....

2604 Total_No_of Tested_ _Im)=*100);

2605 fprintf (fid, ['+* The Total Number of Failures: %0.3d out of '.....
2606 '$0.3d (%3.4£f%%) \r\n\n'],....

2607 Total_ Number_of_ Failures,Total No_of Tested_ Im, .......

2608 (Total_Number_of_ Failures/Total_No_of_ Tested_Im)=*100);

2600 fclose (fid);

2610

2611 close all

2612 clc

2613

2614 disp(['Please, see the documented results of face recognition '....
2615 'in the open'])

2616 disp(['text file then press any keyboard button to resume the '....
2617 'code >>>>"'17)

2618 Text='Face Recognition Results for Testing.txt';

2619 open (Text) Opening the text file which contains

the results of face recognition.

%
2621 pause

2622 clc

2623 open ('PCA_IPCA_Testing_and_Setting_up_Thresholds.m')

[ )
(=}
e}
(=2}
o\°
o\
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2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675

2676

%$%%%%%%%% The Computation of Face Recognition Performance %%%%%%%%%

clc
close all

Error_Rate_Recognition=.......
zeros (1, length (Eigenvalues)); Measuring recognition

performance. The elements

of this vector represent

the error rates in recognition

when different eigenfaces are

selected.

o o0 o0 o° o° oe

Eigenvaluesl=fliplr (Eigenvalues);
Eigenvectorsl=flipdim(Eigenvectors,2); This flipping just to make
the highest correlated
eigenface is associated
with the first eigenvalue
and so on. This is done

to be compatable with the
generated document

"PCA vs. IPCA".

o0 o° o° o° o o° o° o°

for kk=1l:length(Eigenvalues)
['Iteration No.: " num2str(kk) ' Out of ' .......
num2str (length (Eigenvalues)) ]
Selected_Eigenvectors=Eigenvectorsl (:,1:kk);

Projecting each training face on the eigenspace. It is just
expressing each training face in terms of the eigenfaces.
This is called principal components transform (also called

o° o o° oe

the Hotelling or Karhunen—Loéve transform)
All_Known_Transformed_Im=........
zeros (size (Selected_Eigenvectors,2), ......
Total_No_of_ Known_Im); A 2D matrix where each column
represents the coordinates of
a projected training face in
the eigenspace.

o\

o° o oP

for r=1:Total_No_of_ Known_Im
All_Known_Transformed_Im(:,r)=Selected_Eigenvectors.'x....
Known_Im_Subt_Mean(:,r);
end
All_Known_Transformed_Im;

Projecting each tested image on the eigenspace. It is just
expressing each tested image in terms of the eigenfaces. This
is called principal components transform (also called the

o° o o o°

Hotelling or Karhunen—Loéve transform)
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2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726

All_Tested Transformed Im=.......
zeros (size (Selected_Eigenvectors,2), .....
Total_ No_of Tested Im);

a projected tested image in
the eigenspace.
for rl=1:Total_No_of_Tested_ Im
All_Tested_Transformed_Im(:,rl)=.............
Selected_Eigenvectors.'xTested_Im_Subt_Mean(:,rl);

o° o° o oe

—

end
All_Tested Transformed_Im;

fid=fopen(['.\Face Recognition Performance\Recognition '..
'Results for Different Eigenfaces\Results for Testing
'When g=' num2str(kk) '.txt']l,'w'); % A text file for

o° o

'and Setting up Thresholds #**x*\r\n\n']);
fprintf (fid, [ 'Image No. The Image Is Originally '...

'for The Image Is Recognized as The Status\r\n']);
fprintf (fid, [’

Distances_Vector=........

zeros (Total_No_of_ Tested_Im, ......

Total_No_of_ Known_Im); A 2D matrix where
each row represents
the distances between
the weights of each
training face and the
weights of one of the
tested images.

o° o° o° o° o° od° o

The distances between the weights of a training face and

projection so these distances must be the smallest. The

o° o d° o° oe

1,Im_P (1
1,Im_P(2
1,Im_P (3
1,Im_P (4
1,Im_P (5
(6
(7
(8

Distances_Vector_Pl=zeros ) ;
Distances_Vector_P2=zeros
Distances_Vector_P3=zeros
Distances_Vector_P4d=zeros
Distances_Vector_Pb=zeros
Distances_Vector_ P6=zeros
Distances_Vector_P7=zeros

Distances_Vector_P8=zeros

) ’

) 14

) 14

) 4
1,Im_P ) ;
1,Im_P ) ;
1,Im_P ) ;

4

4

~ o~~~ o~~~ —~

)
)
)
)
)
)
)
)

4

A 2D matrix where each column
represents the coordinates of

typing the results
of face recognition.
fprintf (£id, ['\n\t #*xx%% The Results of Face Recognition '....
'"When g=' num2str (kk) ' Obtained from the x*x*x*x\r\n']);
fprintf (fid, ['\t *%xx+ PCA and IPCA Code for Testing '....

weights of each corresponding tested image. Note that, here
the training face and tested images have the same face and

distances are extracted form the Distances_Vector matrix.

the
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2727 Distances_Vector_P9=zeros (1l,Im_P(9));

2728

2729 for p=1:Total_No_of_Tested_Im

2730 for g=1:Total_No_of_Known_Im

2731 Distances_Vector(p,q)=.......

2732 norm(All_Tested_Transformed_Im(:,p)—.....

2733 All_Known_Transformed_Im(:,q));

2734 end

2735

2736 if p<=L1

2737 Distances_Vector_P1l(1l,p)=Distances_Vector (p,1);

2738 elseif p>L1 && p<=L2

2739 Distances_Vector_P2 (1,p—Ll)=Distances_Vector (p,2);
2740 elseif p>L2 && p<=L3

2741 Distances_Vector_P3(1l,p—L2)=Distances_Vector (p,3);
2742 elseif p>L3 && p<=L4

2743 Distances_Vector_P4 (1,p—L3)=Distances_Vector (p,4);
2744 elseif p>L4 && p<=L5

2745 Distances_Vector_P5(1,p—L4)=Distances_Vector (p,5);
2746 elseif p>L5 && p<=L6

2747 Distances_Vector_P6(1l,p—L5)=Distances_Vector (p,6);
2748 elseif p>L6 && p<=L7

2749 Distances_Vector_P7(1,p—L6)=Distances_Vector(p,7);
2750 elseif p>L7 && p<=L8

2751 Distances_Vector_P8(1l,p—L7)=Distances_Vector (p,8);
2752 elseif p>L8 && p<=L9

2753 Distances_Vector_P9(1l,p—L8)=Distances_Vector(p,9);
2754 end

2755 end

2756 dl=Distances_Vector_P1;

2757 d2=Distances_Vector_P2;

2758 d3=Distances_Vector_P3;

2759 d4=Distances_Vector_P4;

2760 d5=Distances_Vector_P5;

2761 de6=Distances_Vector_P6;

2762 d7=Distances_Vector_P7;

2763 d8=Distances_Vector_P8§;

2764 d9=Distances_Vector_P9;

2765

2766 % The calculation of the mean and standard deviation for each
2767 % vector of the minimum distances and stacking them in a vector
2768 % for the means and another for the standard deviations. This
2769 % is done for setting up a threshold for face recognition

2770 % because when a distance between a training face and a tested
2771 % image is the smallest with respect to the other training
2772 % faces, that does not mean the tested image is recognized as
2773 % the training face due to the tested image can be different
2774 % than the training face and has the smallest distance in the
2775 % same time. So, a certain threshold must be used to increase
2776 % the accuracy of recognition.
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2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825

2826

P_Mean=[mean (dl) ;mean (d2) ;mean (d3) ;mean (d4) ;mean (d5); . ...
mean (d6) ;mean (d7) ;mean (d8) ;mean (d9) ];

P_STD=[std (dl);std(d2);std(d3);std(d4);std(d5);std(d6);....
std(d7);std(d8);std(d9)1];

save ([cd '\Face Recognition Performance\Means and STDs '.....
'for Different Eigenfaces\Means for Face Recognition '.....
'When g=' num2str(kk)], 'P_Mean')

save ([cd '\Face Recognition Performance\Means and STDs '.....
'for Different Eigenfaces\STDs for Face Recognition '.....
'When g=' num2str(kk)],'P_STD")

Failures_Vector=zeros(l,......
Total_No_of Tested_Im); A vector for counting the
number of failures in the

face recognition process.

o° o o

for w=1:Total No_of Tested_ Im
% The face recognition process.
for h=1:Total_No_of_Known_Im
if min(Distances_Vector (w,:))==.....

Distances_Vector(w,h) && .....

min (Distances_Vector (w,:))>=.....
(P_Mean (h,1)—P_STD(h,1)) &&.....
min (Distances_Vector (w, :))<=....

(P_Mean (h, 1)+P_STD (h, 1))
s=transpose (struct2cell (Known_Images)) ;
c=sortrows(s,1);
z=c(:,1);
Recognized_As=char(z(h,1));
Recognized_Image_Location=. ...
fullfile (Known_Images_Folder,Recognized_As);
Recognized_image=im2double (rgb2gray (......
imread (Recognized_Image_Location)));
break;
else
Recognized_As='Unknown Image';
Recognized_image=imread ('Unknown_Face.jpg');
end
end

% Defining the face.
if w<=L3

n='Mr. Mansour Alshammari';
elseif L3<w && w<=L6

n='Mr. Methkir Alharthee';
else n='Mr. Mohammed Hanafy';
end

yl=strcmp (Recognized_As (l:length (Recognized_As)—6),....
'Mr. Mansour Alshammari');
y2=strcmp (Recognized_As (l:length (Recognized_As)—6),.....
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2827 'Mr. Methkir Alharthee');

2828 y3=strcmp (Recognized_As (l:length (Recognized_As)—6),...
2829 'Mr. Mohammed Hanafy');

2830 f='Success';

2831 if w<=L3 && yl==0;

2832 f="Failure';

2833 Failures_Vector (1l,w)=1;

2834 elseif w>L3 && w<=L6 && y2==0;

2835 f='Failure';

2836 Failures_Vector (1l,w)=1;

2837 elseif w>L6 && w<=L9 && y3==0;

2838 f="Failure';

2839 Failures_Vector (1l,w)=1;

2840 end

2841

2842 % clc

2843 % Tested_Im_Number=[num2str(w) '.Jpg'l;

2844 % Tested_Im_Location=.....

2845 % fullfile (Tested_Images_Folder, Tested_Im_Number) ;
2846 % Tested_Im=.....

2847 % im2double (rgb2gray (imread (Tested_Im_Location)));
2848 % subplot (2,1,1)

2849 % imshow (Tested_Im)

2850 % title({['Image No.' num2str(w) ' Is Originally for']l;n})
2851 % subplot (2,1,2)

2852 % imshow (Recognized_image)

2853 % if yl==1 || y2==1 || y3==

2854 % title({'The Image Is Recognized As';.......

2855 % Recognized_As (l:length (Recognized_As)—6);.....
2856 % ['"When g=' num2str(kk)]})

2857 % else title({'The Image Is Recognized As';......

2858 % ['an' blanks(l) Recognized_As];.....

2859 % ['"When g=' num2str (kk)]})

2860 % end

2861

2862 if yl== || y2== || y3==

2863 fprintf (fid, ['%0.3d\t\t\t $—22s\t ...

2864 '$—22s\t $s \r\n\n'],......

2865 w,n,Recognized_As (l:length (Recognized_As)—6),f);
2866 else fprintf (fid, ['%0.3d\t\t\t $—22s\t ..
2867 '5—22s\t %$s \r\n\n'l,.....

2868 w,n,Recognized_As, f);

2869 end

2870

2871 % disp(['Please, press Any keyboard button to see '.....
2872 % 'another face and its recognition when g=' .....
2873 % num2str (kk) ' ....... 1)

2874 % pause

2875 % clc

2876

end
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2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926

Total_Number_of Failures=......
sum (Failures_Vector); % The total number of failures in
% the face recognition process.

Error_Rate_Recognition (1,kk)=(Total_Number_of_Failures/......
Total_No_of_ Tested_ _Im)=*100;

fprintf (£fid, [’ ==== ==== ===== ======1_

fporintf (£id, ['+** The Total Number of Successes: $%$0.3d out '....

'of %0.3d (%3.4f%%) \r\n\n'l,.......
Total_No_of_ Tested_Im—Total_Number_of_Failures,.....
Total_No_of_ Tested_Im,......
((Total_No_of_Tested_Im—Total_ Number_of Failures)/.....
Total_No_of_ Tested_Im)*100);

fprintf (fid, ['** The Total Number of Failures: %0.3d out '...

'of %0.3d (%3.4f%%) \r\n\n'],Total_Number_of_Failures,....

Total No_of Tested_Im, (Total Number_ of Failures/.....
Total_No_of Tested_Im)*100);
fclose (fid);

close all
clc

disp(['Please, see the documented results of face '.......
'recognition when g=' num2str(kk) ' in the open'])

disp(['text file then press any keyboard button to '.....
'resume the code >>>>'])

Text=['.\Face Recognition Performance\Testing Face '.....
'Recognition Results for Different Eigenfaces\Face '
'Recognition Results for Testing When g=' .....
num2str (kk) '.txt'];

open (Text) Opening the text file which contains

the results of face recognition.

o° oP

pause
clc
open ('PCA_IPCA_Testing_and_Setting_up_Thresholds.m')

0 0 o° o O O A A A° A° A A A o o oe

nd

0]

Plotting the error rates of face recognition for different
selected eigenfaces compared with the error rates for PCA and
IPCA algorithms.

clc

figure ('units', 'centimeters', 'position', [0.15 1.2 35.8 16.9])
subplot (2,1,1)

Legl=plot (l:length (Eigenvalues),Error_Rate_Recognition);

hold on

Leg2=plot (1,Error_Rate_Recognition(l), 'kd', 'Linewidth',1.5,.....
'MarkerEdgeColor', 'k', '"MarkerFaceColor',' , 'MarkerSize', 8);

o° o o

m 1
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2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975

2976

text (25,Error_Rate_Recognition(l)+2,{........
'"\fontsize{10} \color{black}' Error_Rate_Recognition (1) })
hold on
Leg3=plot (length (Eigenvalues), ........
Error_Rate_Recognition(length (Eigenvalues)), 'kd', .....
'LineWidth', 1.5, '"MarkerEdgeColor', 'k', 'MarkerFaceColor',.....
'g', '"MarkerSize', 8);
text (length (Eigenvalues)—60, ........
Error_Rate_Recognition (length (Eigenvalues))+8, .....
{'"\fontsize{1l0} \color{black}' .......
Error_Rate_Recognition (length (Eigenvalues)) })
hold off
axis ([0 length(Eigenvalues)+ (length (Eigenvalues) /40) ......
—max (Error_Rate_Recognition) /10 .......
max (Error_Rate_Recognition)+ (max (Error_Rate_Recognition) /10)1])
set (gca, 'XTick', [1 length(Eigenvalues) /2 length (Eigenvalues)])
title(['The Error Rates of Recognition for Different '......

'Selected Eigenfaces'])

xlabel ('The Number of Selected Eigenfaces')

ylabel ('The Error Rate (%)"')

legend([Legl Leg2 Leg3], ['The Error Rates of Recognition for '....
'Different Selected Eigenfaces.']l, ...t
['The Error Rate of Recognition When the First Eigenface .
'Is Selected.'], ['The Error Rate of Recognition When A1l '....
'Eigenfaces Are Selected.'], 'Location', 'NorthEast');

subplot (2,1,2)

Legl=plot (1:1length (Eigenvalues),Error_Rate_Recognition);

axis ([0 20 0 ............
max (Error_Rate_Recognition)+ (max (Error_Rate_Recognition) /10)1])

Leg2=line([length (Best_Eigenvalues_PCA) .....
length (Best_Eigenvalues_PCA) ], ...
[0 Error_Rate_Recognition (length (Best_Eigenvalues_PCA))],....
'LineStyle','—"', 'Color', 'r', 'LinewWidth', 4);

line ([0 length (Best_Eigenvalues_PCA)],.....
[Error_Rate_Recognition (length (Best_Eigenvalues_PCA)) .....
Error_Rate_Recognition (length (Best_Eigenvalues_PCA))1l, ....
'LineStyle','—"', 'Color', 'r', 'LineWidth"', 4)

text (length (Best_Eigenvalues_PCA)—0.8,.....
Error_Rate_Recognition (length (Best_Eigenvalues_PCA))+5.7,.....
{'\fontsize{10} \color{red} \bf' ......
num2str (Error_Rate_Recognition (length (Best_Eigenvalues_PCA))) })

Leg3=line([length (Best_Eigenvalues_IPCA) ......
length (Best_Eigenvalues_IPCA) ], ......
[0 Error_Rate_Recognition (length (Best_Eigenvalues_IPCA))],.....
'LineStyle','—"', 'Color', 'k', 'Linewidth', 3) ;

line ([0 length(Best_Eigenvalues_IPCA)],.....
[Error_Rate_Recognition (length (Best_Eigenvalues_IPCA)) .....
Error_Rate_Recognition(length (Best_Eigenvalues_IPCA))],....
'LineStyle','—"', 'Color', 'k', 'LinewWidth"', 3)

text (0.3, ........
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2977 Error_Rate_Recognition (length (Best_Eigenvalues_IPCA))+6, .....
2978 {"\fontsize{10} \color{black}' .....

2979 num2str(.......

2980 Error_Rate_Recognition(length (Best_Eigenvalues_IPCA))) })

2081 vv=[length (Best_Eigenvalues_IPCA) length (Best_Eigenvalues_PCA)];
2082 1f vv (l)== || vv(2)==

2983 set (gca, 'XTick', [0 sort (vv) 207])

2084 else set(gca, 'XTick', [0 1 sort(vv) 20])

20985 end

2086 title(['Explaining the Error Rates for the PCA and IPCA '.......
2987 'Algorithms on the Plot'])

2988 xlabel ('The Number of Selected Eigenfaces')
2989 ylabel ('The Error Rate (%) ')
2000 legend([Legl Leg2 Leg3],['The Error Rates of Recognition for '....

2991 'Different Selected Eigenfaces.'],.....

2992 'The Error Rate for PCA Algorithm.',......

2993 'The Error Rate for IPCA Algorithm.', 'Location', 'NorthEast');
2994

2995

2996 %
2007 $%%%%%5%%5%%5%5%5%%%%%%%%% A Face Detection Process %$%%%%%%%%%%%%%%%%%%%
2998
2999

3000 clc

3001 close all

3002

3003

3004 %%%%% When we only select the eigenfaces which contain the most
3005 %$%%%% significant patterns from the correlated training faces then
3006 $%%%% the accuracy of face detection and processing speed will

3007 %$%%%% increase. That because in face detection, distance

3008 %$%%%% calculation will be between a pre—processed unknown image and
3009 %%%%% 1its reconstruction so if a reconstructed image is not a face
3010 %%%%% then it will have a big distance hence it will not be

3011 %$%%%% detected as a face image. As a result of that, the usage of
3012 $%%%% the calculated eigenfaces by using IPCA algorithm will

3013 %$%%%% produce the smallest error rate and processing time then the
3014 %$%%%% usage of the calculated eigenfaces by using PCA algorithm
3015 %%%%% comes second finally the usage of all calculated eigenvectors
3016 $%%%% as eigenfaces will produce the biggest error rate and

3017 $%%%% processing time. It 1is very important to notice that the

3018 %%%%% calculation of all eigenvectors from the covariance matrix
3019 %$%%%% for all training faces is too difficult because the

3020 %%%%% covariance matrix is too big as explained before so it is
3021 %$%%%% impractical to use all eigenvectors as eigenfaces.

3022

3023 % Best_Eigenvectors=Eigenvectors; % Just try it to see how

3024 % affects on the results

3025 % of face detection.

o\°

3026

Best_Eigenvectors=Best_FEigenvectors_PCA; % Just try it to see how
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3027 affects on the results
3028 of face detection.

3020 Best_Eigenvectors=Best_Eigenvectors_IPCA; % Just try it to see how
3030 % affects on the results
3031 % of face detection.

3032
3033
3034 Projecting each training face on the eigenspace. It is just
expressing each training face in terms of the eigenfaces. This is
called principal components transform (also called the Hotelling
or Karhunen—Loéve transform)

3038 All_Known_Transformed_Im=.......

3039 zeros (size (Best_Eigenvectors,2), ......

3040 Total_No_of_ Known_Im); A 2D matrix where each column

3041 represents the coordinates of

a projected training face in

the eigenspace.

3035
3036

o° o° o o

3037

3042

o° o o° oe

3043
3044 for r=1:Total_No_of Known_Im

3045 All_Known_Transformed_Im(:,r)=Best_Eigenvectors.'x.......
3046 Known_Im_Subt_Mean(:,r);
3047 end

3048 All_Known_Transformed_Im;
3049
3050
3051 Projecting each tested image on the eigenspace. It is just
expressing each tested image in terms of the eigenfaces. This is
called principal components transform (also called the Hotelling
3054 or Karhunen—Loéve transform)

3055 All_Tested_Transformed_Im=.......

3056 zeros (size (Best_Eigenvectors,2),.....

3057 Total_No_of_ Tested_Im);
3058

3052
3053

o® o° o oP

A 2D matrix where each column
represents the coordinates of

3059 a projected tested image in

o° o o° oe

3060 the eigenspace.

3061 for rl=1l:Total_No_of Tested_Im
3062 All_Tested_Transformed_Im(:,rl)=Best_Eigenvectors.'*......
3063 Tested_Im_Subt_Mean(:,rl);

3064 end

3065 All_Tested_Transformed_Im;

3066

3067

3068 fid=fopen ('Face Detection Results for Testing.txt',.......

3069 'w'); % A text file for typing the

3070 % results of face detection.

3071 fprintf (fid, ['\n\t *xxxx The Results of Face Detection '.......
3072 'Obtained from the PCA and IPCA *xxxxx\r\n'l);

3073 fprintf (£id, ['\t\t\t\tx*xx+x Code for Testing and Setting '.......
3074 'up Thresholds xxxxx\r\n\n']);

3075 fprintf (fid, ['Image No.\t The Image Originally Is\t '......

3076 'The Detected Image Is\t The Status\r\n']);
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3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126

' e ===\t ==========\r\n']);

Note that, the tested images must be unknown whether they are
face images or not but they are known here to be face images just
for testing the face detection process and for setting up a
detection threshold.
Distances_Vectorl=zeros(l,......

Total_No_of_ Tested_ Im); A vector contains the distances
between each pre—processed tested
image and its reconstruction.

o® o° o oP

o° oo oe

for i1=1:Total_No_of Tested_Im
g=Best_FEigenvectors*All_Tested_Transformed_Im(:,1);
Reconstructed_Tested_Im=max (Tested_Im_Subt_Mean(:,i))*.......
(double (g) /max (max (g))); This is for making each
pre—processed tested image
and its reconstruction have
approximately the same

o0 o° o° o oP

dynamic range.

Distances_Vectorl (1l,i)=norm(Tested_Im_Subt_Mean(:,i)—.....
Reconstructed_Tested_Im); Note that, a calculated

distance must be between

a pre—processed tested

image and its reconstruction

but it is not between an

original tested image and

its reconstruction.

o° o0 o° o° o° o o°

end

The calculation of the mean and standard deviation for the
calculated distances between each pre—processed tested image and
its reconstruction. This is done for setting up a threshold for

o® o o oP

face detection.
Mean=mean (Distances_Vectorl) ;
Std=std(Distances_Vectorl);
save ([ 'Computed Mean for Face Detection When All '....
'Eigenvectors Are Used as Eigenfaces'], 'Mean')
]

save ([ 'Computed STD for Face Detection When All '.....
'Eigenvectors Are Used as Eigenfaces'], 'Std')

o0 o° o° o° o° o° o° o°

save ([ 'Computed Mean for Face Detection When the Eigenfaces '....
'Computed by Using PCA Algorithm Are Used'], 'Mean')
save ([ 'Computed STD for Face Detection When the Eigenfaces '.....
'Computed by Using PCA Algorithm Are Used'], 'Std')
save ([ 'Computed Mean for Face Detection When the Eigenfaces '....
'Computed by Using IPCA Algorithm Are Used'], 'Mean')
save ([ 'Computed STD for Face Detection When the Eigenfaces '.....

'Computed by Using IPCA Algorithm Are Used'], 'Std')

Failures_Vectorl=zeros(l, .....
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3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175

3176

Total_No_of_ Tested_ Im); A vector for counting the
number of failures in the

face detection process.

o oo oP

% This matrix is used
% for creating a table
% in Latex.

Latex_Matrix=cell (Total_No_of_Tested_Im,4);

for wl=1:Total_No_of_ Tested_Im
% The face detection process.

if Distances_Vectorl (1l,wl)>=(Mean—Std) && ......

Distances_Vectorl (1,wl) <= (Mean+Std)

Detected_As='a face';
Detected_Image=imread('A_Face.jpg');

else
Detected_As='not a face';
Detected_Image=imread ('Not_a_Face.jpg');

end

[

b='a face'; % Defining an original tested image.

fl="'Success';
e=strcmp (Detected_As, 'a face');
if wl<=L9 && e==
fl="'Failure';
Failures_Vectorl (1,wl)=1;
end

Tested_Im_Numberl=[num2str(wl) '.Jjpg']l;

Tested_Im_Locationl=fullfile (Tested_Images_Folder,.....
Tested_Im_Numberl);

Tested_Iml=im2double (rgb2gray (imread (Tested_Im_ Locationl)));

subplot (2,1,1)

imshow (Tested_Iml)

title(['Image No.' num2str(wl) ' Originally Is'])

subplot (2,1,2)

imshow (Detected_Image)

title('It Is Detected As')

o0 o° o° o o° O° O° d° o oP

if e==
fprintf (fid, ['$0.3d\t\t\t\t %s\t\t\t\t\t Ss\t\t\t\t'....
! %$s \r\n\n'],wl,b,Detected_As, fl);
Latex Matrix(wl,1l:4)={num2str(wl) b Detected_As fl};
else fprintf (fid, ['$0.3d\t\t\t\t Ss\t\t\t\t\t Ss\t\t\t'.....
! %$s \r\n\n'],wl,b,Detected_As, fl);
Latex Matrix(wl,l:4)={num2str(wl) b Detected_As fl};
end

disp(['Please, press any keyboard button to see another '....
'image and its detection....'])
pause

o o o
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3177 % clc

3178 end

3179 Total_ Number_ of_Failuresl=......

3180 sum(Failures_Vectorl); % The total number of failures
3181 % in the face detection process.

3182
3183 fprintf (fid, ['======================== S T

3184 ! ==== ==== =======\r\n']);

3185 fprintf (fid, ['+«x The Total Number of Successes: %0.3d out of '....
3186 '%$0.3d (%3.4f%%) \r\n\n'],Total_No_of Tested_ Im—.....

3187 Total_Number_of_ Failuresl,Total_No_of Tested_Im,.....

3188 ((Total_No_of Tested_Im—Total Number_of Failuresl)/.....

3189 Total_No_of_ Tested_Im)*100);

3190 fprintf (fid, ['+* The Total Number of Failures: %0.3d out '......
3191 'of %0.3d (%3.4f%%) \r\n\n'],Total_Number_of Failuresl,......
3192 Total_No_of Tested_ _Im,........

3193 (Total_Number_of_Failuresl/Total_No_of_Tested_Im)*100);

3194 fclose (fid);
3195
3196 close all

3197 clc

3198

3199 disp(['Please, see the documented results of face detection '.....
3200 'in the open'])

3200 disp(['text file then press any keyboard button to resume '.....
3202 'the code >>>>'17)

3203 Text='Face Detection Results for Testing.txt';

3204 open (Text) Opening the text file which contains

3205 the results of face detection.

3206 pause

3207 clc

3208 open ('PCA_IPCA_Testing_and_Setting_up_Thresholds.m')

3209

)

<
o
o

3210
3211 %%
3212 $%%%%%%%%% The Computation of Face Detection Performance $%%%%%%%%%
3213

3214

3215 clc

3216 close all

3217

3218

3219 Error_Rate_Detection=.......

3220 zeros (1, length (Eigenvalues)) ;
3221

Measuring detection
performance. The elements

of this vector represent

the error rates in detection
when different eigenfaces are
selected.

3222
3223
3224

o° o0 o° o° o° oo

3225
3226 Eigenvaluesl=fliplr (Eigenvalues);




150

Appendix A. A Code for the Digital Model

3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276

Eigenvectorsl=flipdim(Eigenvectors,2);

for kk=1l:length(Eigenvalues)

This flipping just to make
the highest correlated
eigenface is associated
with the first eigenvalue
and so on. This is done to
be compatable with the
generated document

"PCA vs. IPCA".

o0 o0 o° o° o° o° o oe

['Iteration No.: " num2str(kk) ' Out of ' .....
num2str (length (Eigenvalues)) ]
Selected_Eigenvectors=Eigenvectorsl (:,1:kk);

Projecting each training face on the eigenspace. It is just
expressing each training face in terms of the eigenfaces.
This is called principal components transform (also called

o° o o o°

the Hotelling or Karhunen—Loéve transform)
All_Known_Transformed_Im=.......
zeros (size (Selected_Eigenvectors,2), ........
Total_No_of_Known_Im); A 2D matrix where each column
represents the coordinates of a
projected training face in the
eigenspace.

o® o° o oP

for r=1:Total_No_of_ Known_Im
All_Known_Transformed_Im(:,r)=Selected_Eigenvectors.'*....
Known_Im_Subt_Mean(:,r);
end
All_Known_Transformed_Im;

Projecting each tested image on the eigenspace. It is just
expressing each tested image in terms of the eigenfaces. This
is called principal components transform (also called the
Hotelling or Karhunen—Loéve transform)

All _Tested_Transformed Im=...........

zeros (size (Selected_Eigenvectors,2), .....

Total_No_of_ Tested_ _Im); A 2D matrix where each column

o° o do oe

o

represents the coordinates of a
projected tested image in the
eigenspace.

o° o° o o

for rl=1:Total_No_of_Tested_ Im
All_Tested_Transformed_Im(:,rl)=.....
Selected_Eigenvectors. 'xTested_Im_Subt_Mean(:,rl);
end
All_Tested_ _Transformed_Im;

fid=fopen(['.\Face Detection Performance\Detection '.....
1

'Results for Different Eigenfaces\Results for Testing
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3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326

'When g=' num2str(kk) '.txt'],'w"); A text file for
typing the results of
face Detection.
fprintf (£id, ['\n **x%x The Results of Face Detection '.....
'"When g=' num2str(kk) ......
' Obtained from the PCA and x****x\r\n']);
fprintf (fid, ['\t\t **x*++ IPCA Code for Testing and '......

'Setting up Thresholds x***x\r\n\n']);

o° o o

fprintf (fid, ['Image No.\t The Image Originally '.....
'Is\t The Detected Image Is\t The Status\r\n']);

FPrintf (£id, ['=============\t =s=====m————m————————eoo\t 'L
| =====================\t ==========\r\n']) ;

Note that, the tested images must be unknown whether they are
images or not but they are known here to be face images
just for testing the face detection process and for setting

up a detection threshold.
Distances_Vectorl=zeros(l, .......
Total_No_of_ Tested_Im); A vector contains the distances
between each pre—processed tested
image and its reconstruction.

o° o o o
- Hh
Q
Q
O

o° o oe

for i=1:Total_No_of Tested_ Im
g=Selected_FEigenvectors*All_Tested_Transformed_Im(:,1i);
Reconstructed_Tested_Im=max (Tested_ Im_Subt_Mean(:,1i))*....

(double (g) /max (max (g))); This is for making each
pre—processed tested image
and its reconstruction have
approximately the same

o® o o o° oP

dynamic range.

Distances_Vectorl (1,1i)=norm(Tested_Im_Subt_Mean(:,i)—.....
Reconstructed_Tested_ Im); Note that, a calculated
distance must be between a
pre—processed tested image
and its reconstruction but

it is not between an
original tested image and
its reconstruction.

o0 o° o° o° o° o° o°

end

The calculation of the mean and standard deviation for the

calculated distances between each pre—processed tested image

and its reconstruction. This is done for setting up a

threshold for face detection.

Mean=mean (Distances_Vectorl) ;

Std=std(Distances_Vectorl);

save ([cd '\Face Detection Performance\Means and STDs for '....
'Different Eigenfaces\Mean for Face Detection When g='
num2str (kk) ], "Mean')

save ([cd '\Face Detection Performance\Means and STDs for

o o o o°
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3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375

3376

o0 o0 o° o O o o° O° A° A° o o°

o o o

'Different Eigenfaces\STD for Face Detection When g=' .....
num2str (kk) ], 'std")

Failures_Vectorl=zeros(l,.....
Total_ No_of_ Tested_Im); A vector for counting the

number of failures in the

o o o

face detection process.

for wl=1:Total_No_of_Tested_Im

% The face detection process.
if Distances_Vectorl(l,wl)>=(Mean—Std) && .....
Distances_Vectorl (1,wl) <= (Mean+Std)

Detected_As='a face';
Detected_Image=imread ('A_Face.jpg');

else
Detected_As='not a face';
Detected_Image=imread ('Not_a_Face.jpg');

end

H

)

b='a face'; % Defining an original tested image.

fl="'Success';
e=strcmp (Detected_As, 'a face');
if wl<=L9 && e==
fl="'Failure';
Failures_Vectorl (1,wl)=1;
end

clc
Tested_Im_Numberl=[num2str(wl) '.Jjpg'l;
Tested_Im_Locationl=fullfile (Tested_Images_Folder,....
Tested_Im_Numberl) ;
Tested_Iml=im2double(......
rgb2gray (imread (Tested_Im_Locationl)));
subplot (2,1,1)
imshow (Tested_Iml)
title(['Image No.' num2str(wl) ' Originally Is'])
subplot (2,1, 2)
imshow (Detected_Image)

title({'It Is Detected As';[' (When g=' num2str(kk) ')']l})
if e==
fporintf (£id, ['%0.3d\t\t\t\t Ss\t\t\t\t\t .
'$s\t\t\t\t %s \r\n\n'],wl,b,Detected_As, fl);
else fprintf (fid, ['$0.3d\t\t\t\t Ss\t\t\t\t\t '".....
'$s\t\t\t %s \r\n\n'],wl,b,Detected_As, fl);
end
disp(['Please, press any keyboard button to see '......

'another image and its detection when g=' .....
num2str (kk) " ....... 1)
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3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425

3426

pause
clc

o o

end
Total_Number_of_ Failuresl=.......
sum (Failures_Vectorl); % The total number of failures

Error_Rate_Detection(l,kk)=.........
(Total_Number_of Failuresl/Total_No_of_ Tested_Im)*x100;

fprintf (fid, ['** The Total Number of Successes: %0.3d '....
'out of %0.3d (%3.4£%%) \r\n\n'], ...
Total No_of_ Tested_ Im—Total_Number_of_Failuresl,....
Total No_of Tested_Im,.......
((Total_No_of Tested_Im—Total Number_of_ Failuresl)/.....
Total No_of Tested_Im)=*100);

fprintf (fid, ['** The Total Number of Failures: %$0.3d '....
'out of %0.3d (%3.4f%%) \r\n\n'],....
Total_Number_of_Failuresl,Total_No_of Tested_Im,.....
(Total_Number_of_ Failuresl/Total_No_of_Tested_Im)=*100);

fclose (fid);

close all
clc

disp(['Please, see the documented results of face '.....
'detection when g=' num2str(kk) ' in the open'])

disp(['text file then press any keyboard button to '.....
'resume the code >>>>'])

Text=['.\Face Detection Performance\Testing Face '.....
'Detection Results for Different Eigenfaces\Face '....
'Detection Results for Testing When g=' ......
num2str (kk) '.txt'];

open (Text) Opening the text file which contains

the results of face detection.

o° oe

pause
clc
open ('PCA_IPCA_Testing_and_Setting_up_Thresholds.m')

o0 o0 o0 o0 A O O O O A A A° A° o o o

nd

0]

eigenfaces compared with the error rates for the PCA and IPCA
algorithms.

clc

figure('units', 'centimeters', 'position', [0.15 1.2 35.8 16.9])
subplot (2,1,1)

Legl=plot (l:length(Eigenvalues),Error_Rate_Detection);

o o oP

Plotting the error rates of face detection for different selected
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3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475

3476

hold on

Leg2=plot (1,Error_Rate_Detection(l), 'kd', 'LineWidth',1.5,.....
'MarkerEdgeColor', 'k', '"MarkerFaceColor', 'm', 'MarkerSize', 8);

text (24.8,Error_Rate_Detection(1l)+1.8,......
{"\fontsize{10} \color{black}' Error_ Rate Detection(1l)})

hold on

Leg3=plot (length (Eigenvalues), .......
Error_Rate_Detection (length (Eigenvalues)), 'kd', ....
'LineWidth', 1.5, "MarkerEdgeColor', 'k', . ...
'MarkerFaceColor','g', '"MarkerSize', 8);

text (length (Eigenvalues)—55,......
Error_Rate_Detection (length (Eigenvalues))—1.8,.....
{'\fontsize{10} \color{black}' .....
Error_Rate_Detection (length (Eigenvalues)) })

hold off

axis ([0 length(Eigenvalues)+ (length(Eigenvalues) /40) ......
—max (Error_Rate_Detection) /10 ..............
max (Error_Rate_Detection)+ (max (Error_Rate_Detection)/10)])

set (gca, 'XTick', [1 length (Eigenvalues)/2 length(Eigenvalues)])

title(['The Error Rates of Detection for Different '.....
'Selected Eigenfaces'])

xlabel ('The Number of Selected Eigenfaces')

ylabel ('The Error Rate (%) ')

legend([Legl Leg2 Leg3], ['The Error Rates of Detection for '.....
'Different Selected Eigenfaces.'],['The Error Rate of '....
'Detection When the First Eigenface Is Selected.']l,....
['The Error Rate of Detection When All Eigenfaces Are '.....
'Selected.'], "Location', "NorthWest"') ;

subplot (2,1,2)

Legl=plot (l:length(Eigenvalues),Error_Rate_Detection);

axis ([0 20 0O .......
max (Error_ Rate Detection)+ (max (Error_Rate Detection)/10)])

Leg2=1line([length (Best_Eigenvalues_PCA) ......
length (Best_Eigenvalues_PCA)],.....
[0 Error_Rate_Detection (length (Best_Eigenvalues_PCA))],....
'LineStyle','—"', 'Color', 'k', 'LinewWidth', 3);

line ([0 length(Best_Eigenvalues_PCA)],........
[Error_Rate_Detection (length (Best_Eigenvalues_PCA)) ......
Error_Rate_Detection (length (Best_Eigenvalues_PCA))],....
'LineStyle','—"', 'Color', 'k', 'LinewWidth', 3)

text (length (Best_Eigenvalues_PCA)—0.9,.......
Error_Rate_Detection (length (Best_Eigenvalues_PCA))+3.6, .....
{"\fontsize{1l0} \color{black}' .........
num2str (Error_Rate_Detection (length (Best_Eigenvalues_PCA))) })

Leg3=line([length (Best_Eigenvalues_IPCA) ......
length (Best_Eigenvalues_IPCA)],......
[0 Error_Rate_Detection(length(Best_Eigenvalues_IPCA))],.....
'LineStyle','—"', 'Color', 'r', 'LinewWidth', 4);

line ([0 length (Best_Eigenvalues_IPCA)],.......
[Error_Rate_Detection (length (Best_Eigenvalues_IPCA)) .....
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3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495

Error_Rate_Detection (length (Best_Eigenvalues_IPCA)) ], ....
'LineStyle','—"', '"Color', 'r', 'LineWidth', 4)
text (0.3, ......
Error_Rate_Detection (length (Best_Eigenvalues_IPCA))+3.6,.....
{'"\fontsize{1l0} \color{red} \bf' .....
num2str (Error_Rate_Detection (length (Best_Eigenvalues_IPCA))) })
vv=[length (Best_Eigenvalues_IPCA) length (Best_Eigenvalues_PCA)];
if vv(l)== || vv(2)==
set (gca, "XTick', [0 sort(vv) 20])
else set(gca, 'XTick', [0 1 sort(vv) 201])
end
title(['Explaining the Error Rates for the PCA and IPCA '.....
'"Algorithms on the Plot'])
xlabel ('The Number of Selected Eigenfaces')
ylabel ('The Error Rate (%)"')
legend ([Legl Leg2 Leg3], ['The Error Rates of Detection for '.....
'Different Selected Eigenfaces.'],......
'The Error Rate for PCA Algorithm.',.....
'The Error Rate for IPCA Algorithm.', 'Location', 'NorthEast');
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Appendix B

Databases for the Digital and Optical
Models

ALL images in Figure B.1, Figure B.2, Figure B.3, Figure B.4, Figure B.5, Figure
B.6, Figure B.7, Figure B.8, and Figure B.9 form the database of the tested images.
The database of the objects consists of images that have vertical faces to people’s
shoulders shown in Figure B.1, Figure B.4, and Figure B.7.

Figure B.1: Images for Mr. Mansour Alshammari, 1%¢ projection.
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Figure B.2: Images for Mr. Mansour Alshammari, 2" projection.

Figure B.3: Images for Mr. Mansour Alshammari, 3"¢ projection.

Figure B.4: Images for Mr. Methkir Alharthee, 15! projection.
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Figure B.6: Images for Mr. Methkir Alharthee, 3" projection.

Figure B.7: Images for Mr. Mohammed Hanafy, 1% projection.



Appendix B. Databases for the Digital and Optical Models 159

Figure B.8: Images for Mr. Mohammed Hanafy, 2" projection.

Figure B.9: Images for Mr. Mohammed Hanafy, 3" projection.
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Appendix

Results of the Digital Recognition

Table C.1: The recognition of all 180 tested images by using the
PCA algorithm.

Irr?;gsgelio. Input Face Recognized Output Face Status
1 Mr. Mansour Alshammari Unknown Image Failure
2 Mr. Mansour Alshammari Unknown Image Failure
3 Mr. Mansour Alshammari Mr. Mansour Alshammari  Success
4 Mr. Mansour Alshammari Mr. Mansour Alshammari  Success
5 Mr. Mansour Alshammari Mr. Mansour Alshammari  Success
6 Mr. Mansour Alshammari Mr. Mansour Alshammari  Success
7 Mr. Mansour Alshammari Mr. Mansour Alshammari  Success
8 Mr. Mansour Alshammari Mr. Mansour Alshammari  Success
9 Mr. Mansour Alshammari Mr. Mansour Alshammari  Success
10 Mr. Mansour Alshammari Mr. Mansour Alshammari  Success
11 Mr. Mansour Alshammari Mr. Mansour Alshammari  Success
12 Mr. Mansour Alshammari Mr. Mansour Alshammari  Success
13 Mr. Mansour Alshammari Mr. Mansour Alshammari  Success
14 Mr. Mansour Alshammari Mr. Mansour Alshammari  Success
15 Mr. Mansour Alshammari Mr. Mansour Alshammari  Success
16 Mr. Mansour Alshammari Mr. Mansour Alshammari  Success
17 Mr. Mansour Alshammari Mr. Mansour Alshammari  Success
18 Mr. Mansour Alshammari Mr. Mansour Alshammari  Success
19 Mr. Mansour Alshammari Unknown Image Failure
20 Mr. Mansour Alshammari Mr. Mansour Alshammari  Success
21 Mr. Mansour Alshammari Mr. Mansour Alshammari  Success

Continued on the next page ...
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IrrrlI:gS(Zelio. Input Face Recognized Output Face Status
22 Mr. Mansour Alshammari Unknown Image Failure
23 Mr. Mansour Alshammari Mr. Mansour Alshammari  Success
24 Mr. Mansour Alshammari Mr. Mansour Alshammari  Success
25 Mr. Mansour Alshammari Mr. Mansour Alshammari  Success
26 Mr. Mansour Alshammari Unknown Image Failure
27 Mr. Mansour Alshammari Unknown Image Failure
28 Mr. Mansour Alshammari Mr. Mansour Alshammari  Success
29 Mr. Mansour Alshammari Mr. Mansour Alshammari  Success
30 Mr. Mansour Alshammari Mr. Mansour Alshammari  Success
31 Mr. Mansour Alshammari Unknown Image Failure
32 Mr. Mansour Alshammari Mr. Mansour Alshammari  Success
33 Mr. Mansour Alshammari Mr. Mansour Alshammari  Success
34 Mr. Mansour Alshammari Mr. Mansour Alshammari  Success
35 Mr. Mansour Alshammari Unknown Image Failure
36 Mr. Mansour Alshammari Unknown Image Failure
37 Mr. Mansour Alshammari Unknown Image Failure
38 Mr. Mansour Alshammari Unknown Image Failure
39 Mr. Mansour Alshammari Unknown Image Failure
40 Mr. Mansour Alshammari Mr. Mansour Alshammari  Success
41 Mr. Mansour Alshammari Mr. Mansour Alshammari  Success
42 Mr. Mansour Alshammari Mr. Mansour Alshammari  Success
43 Mr. Mansour Alshammari Mr. Mansour Alshammari  Success
44 Mr. Mansour Alshammari Mr. Mansour Alshammari  Success
45 Mr. Mansour Alshammari Mr. Mansour Alshammari  Success
46 Mr. Mansour Alshammari Mr. Mansour Alshammari  Success
47 Mr. Mansour Alshammari Mr. Mansour Alshammari  Success
48 Mr. Mansour Alshammari Mr. Mansour Alshammari  Success
49 Mr. Mansour Alshammari Unknown Image Failure
50 Mr. Mansour Alshammari Mr. Mansour Alshammari  Success
51 Mr. Mansour Alshammari Mr. Mansour Alshammari  Success
52 Mr. Mansour Alshammari Mr. Mansour Alshammari  Success
53 Mr. Mansour Alshammari Mr. Mansour Alshammari  Success
54 Mr. Mansour Alshammari Mr. Mansour Alshammari  Success
95 Mr. Mansour Alshammari Unknown Image Failure
56 Mr. Mansour Alshammari Mr. Mansour Alshammari  Success
57 Mr. Mansour Alshammari Unknown Image Failure
58 Mr. Mansour Alshammari Mr. Mansour Alshammari  Success
59 Mr. Mansour Alshammari Mr. Mansour Alshammari  Success

Continued on the next page ...
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IrrrlI:gS(Zelio. Input Face Recognized Output Face Status
60 Mr. Mansour Alshammari Mr. Mansour Alshammari  Success
61 Mr. Methkir Alharthee Unknown Image Failure
62 Mr. Methkir Alharthee Unknown Image Failure
63 Mr. Methkir Alharthee Mr. Methkir Alharthee Success
64 Mr. Methkir Alharthee Mr. Methkir Alharthee Success
65 Mr. Methkir Alharthee Unknown Image Failure
66 Mr. Methkir Alharthee Unknown Image Failure
67 Mr. Methkir Alharthee Mr. Methkir Alharthee Success
68 Mr. Methkir Alharthee Mr. Methkir Alharthee Success
69 Mr. Methkir Alharthee Mr. Methkir Alharthee Success
70 Mr. Methkir Alharthee Mr. Methkir Alharthee Success
71 Mr. Methkir Alharthee Mr. Methkir Alharthee Success
72 Mr. Methkir Alharthee Mr. Methkir Alharthee Success
73 Mr. Methkir Alharthee Mr. Methkir Alharthee Success
74 Mr. Methkir Alharthee Unknown Image Failure
75 Mr. Methkir Alharthee Unknown Image Failure
76 Mr. Methkir Alharthee Mr. Methkir Alharthee Success
77 Mr. Methkir Alharthee Mr. Methkir Alharthee Success
78 Mr. Methkir Alharthee Mr. Methkir Alharthee Success
79 Mr. Methkir Alharthee Mr. Methkir Alharthee Success
80 Mr. Methkir Alharthee Unknown Image Failure
81 Mr. Methkir Alharthee Unknown Image Failure
82 Mr. Methkir Alharthee Mr. Methkir Alharthee Success
83 Mr. Methkir Alharthee Mr. Methkir Alharthee Success
84 Mr. Methkir Alharthee Mr. Methkir Alharthee Success
85 Mr. Methkir Alharthee Mr. Methkir Alharthee Success
86 Mr. Methkir Alharthee Unknown Image Failure
87 Mr. Methkir Alharthee Unknown Image Failure
88 Mr. Methkir Alharthee Mr. Methkir Alharthee Success
89 Mr. Methkir Alharthee Mr. Methkir Alharthee Success
90 Mr. Methkir Alharthee Unknown Image Failure
91 Mr. Methkir Alharthee Mr. Methkir Alharthee Success
92 Mr. Methkir Alharthee Mr. Methkir Alharthee Success
93 Mr. Methkir Alharthee Mr. Methkir Alharthee Success
94 Mr. Methkir Alharthee Unknown Image Failure
95 Mr. Methkir Alharthee Unknown Image Failure
96 Mr. Methkir Alharthee Unknown Image Failure
97 Mr. Methkir Alharthee Unknown Image Failure

Continued on the next page ...
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Tested

Image No. Input Face Recognized Output Face Status
98 Mr. Methkir Alharthee Mr. Methkir Alharthee Success
99 Mr. Methkir Alharthee Mr. Methkir Alharthee Success
100 Mr. Methkir Alharthee Unknown Image Failure
101 Mr. Methkir Alharthee Mr. Methkir Alharthee Success
102 Mr. Methkir Alharthee Mr. Methkir Alharthee Success
103 Mr. Methkir Alharthee Mr. Methkir Alharthee Success
104 Mr. Methkir Alharthee Unknown Image Failure
105 Mr. Methkir Alharthee Unknown Image Failure
106 Mr. Methkir Alharthee Mr. Methkir Alharthee Success
107 Mr. Methkir Alharthee Mr. Methkir Alharthee Success
108 Mr. Methkir Alharthee Mr. Methkir Alharthee Success
109 Mr. Methkir Alharthee Unknown Image Failure
110 Mr. Methkir Alharthee Mr. Methkir Alharthee Success
111 Mr. Methkir Alharthee Mr. Methkir Alharthee Success
112 Mr. Methkir Alharthee Mr. Methkir Alharthee Success
113 Mr. Methkir Alharthee Mr. Methkir Alharthee Success
114 Mr. Methkir Alharthee Mr. Methkir Alharthee Success
115 Mr. Methkir Alharthee Mr. Methkir Alharthee Success
116 Mr. Methkir Alharthee Unknown Image Failure
117 Mr. Methkir Alharthee Mr. Methkir Alharthee Success
118 Mr. Methkir Alharthee Mr. Methkir Alharthee Success
119 Mr. Methkir Alharthee Mr. Methkir Alharthee Success
120 Mr. Methkir Alharthee Mr. Methkir Alharthee Success
121 Mr. Mohammed Hanafy Unknown Image Failure
122 Mr. Mohammed Hanafy Mr. Mohammed Hanafy Success
123 Mr. Mohammed Hanafy Mr. Mohammed Hanafy Success
124 Mr. Mohammed Hanafy Mr. Mohammed Hanafy Success
125 Mr. Mohammed Hanafy Mr. Mohammed Hanafy Success
126 Mr. Mohammed Hanafy Mr. Mohammed Hanafy Success
127 Mr. Mohammed Hanafy Mr. Mohammed Hanafy Success
128 Mr. Mohammed Hanafy Mr. Mohammed Hanafy Success
129 Mr. Mohammed Hanafy Mr. Mohammed Hanafy Success
130 Mr. Mohammed Hanafy Unknown Image Failure
131 Mr. Mohammed Hanafy Unknown Image Failure
132 Mr. Mohammed Hanafy Mr. Mohammed Hanafy Success
133 Mr. Mohammed Hanafy Mr. Mohammed Hanafy Success
134 Mr. Mohammed Hanafy Mr. Mohammed Hanafy Success
135 Mr. Mohammed Hanafy Mr. Mohammed Hanafy Success

Continued on the next page ...
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IrrrlI:gS(Zelio. Input Face Recognized Output Face Status
136 Mr. Mohammed Hanafy Mr. Mohammed Hanafy Success
137 Mr. Mohammed Hanafy Unknown Image Failure
138 Mr. Mohammed Hanafy Mr. Mohammed Hanafy  Success
139 Mr. Mohammed Hanafy Mr. Mohammed Hanafy Success
140 Mr. Mohammed Hanafy Unknown Image Failure
141 Mr. Mohammed Hanafy Mr. Mohammed Hanafy Success
142 Mr. Mohammed Hanafy Mr. Mohammed Hanafy Success
143 Mr. Mohammed Hanafy Unknown Image Failure
144 Mr. Mohammed Hanafy Mr. Mohammed Hanafy Success
145 Mr. Mohammed Hanafy Mr. Mohammed Hanafy Success
146 Mr. Mohammed Hanafy Mr. Mohammed Hanafy Success
147 Mr. Mohammed Hanafy Mr. Mohammed Hanafy Success
148 Mr. Mohammed Hanafy Unknown Image Failure
149 Mr. Mohammed Hanafy Unknown Image Failure
150 Mr. Mohammed Hanafy Mr. Mohammed Hanafy Success
151 Mr. Mohammed Hanafy Mr. Mohammed Hanafy Success
152 Mr. Mohammed Hanafy Unknown Image Failure
153 Mr. Mohammed Hanafy Mr. Mohammed Hanafy Success
154 Mr. Mohammed Hanafy Mr. Mohammed Hanafy Success
155 Mr. Mohammed Hanafy Mr. Mohammed Hanafy Success
156 Mr. Mohammed Hanafy Mr. Mohammed Hanafy Success
157 Mr. Mohammed Hanafy Unknown Image Failure
158 Mr. Mohammed Hanafy Mr. Mohammed Hanafy Success
159 Mr. Mohammed Hanafy Mr. Mohammed Hanafy Success
160 Mr. Mohammed Hanafy Mr. Mohammed Hanafy Success
161 Mr. Mohammed Hanafy Mr. Mohammed Hanafy Success
162 Mr. Mohammed Hanafy Mr. Mohammed Hanafy Success
163 Mr. Mohammed Hanafy Mr. Mansour Alshammari  Failure
164 Mr. Mohammed Hanafy Mr. Mohammed Hanafy  Success
165 Mr. Mohammed Hanafy Mr. Mohammed Hanafy Success
166 Mr. Mohammed Hanafy Mr. Mohammed Hanafy Success
167 Mr. Mohammed Hanafy Mr. Mohammed Hanafy Success
168 Mr. Mohammed Hanafy Mr. Mohammed Hanafy Success
169 Mr. Mohammed Hanafy Unknown Image Failure
170 Mr. Mohammed Hanafy Mr. Mohammed Hanafy Success
171 Mr. Mohammed Hanafy Mr. Mohammed Hanafy Success
172 Mr. Mohammed Hanafy Mr. Mohammed Hanafy Success
173 Mr. Mohammed Hanafy Mr. Mohammed Hanafy Success

Continued on the next page ...
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Tested

Image No. Input Face Recognized Output Face Status
174 Mr. Mohammed Hanafy Mr. Mohammed Hanafy Success
175 Mr. Mohammed Hanafy Mr. Mohammed Hanafy Success
176 Mr. Mohammed Hanafy Mr. Mohammed Hanafy  Success
177 Mr. Mohammed Hanafy Mr. Mohammed Hanafy Success
178 Mr. Mohammed Hanafy Mr. Mohammed Hanafy Success
179 Mr. Mohammed Hanafy Mr. Mohammed Hanafy Success
180 Mr. Mohammed Hanafy Mr. Mohammed Hanafy Success

The table end.
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Appendix D

Results of the Digital Detection

Table D.1: The detection of all 180 tested images by using the
PCA algorithm.

IrrrlI:gS;elsIo. Input Image Detected Output Image Status
1 a face not a face Failure
2 a face not a face Failure
3 a face a face Success
4 a face a face Success
5 a face a face Success
6 a face a face Success
7 a face a face Success
8 a face a face Success
9 a face a face Success
10 a face a face Success
11 a face a face Success
12 a face a face Success
13 a face a face Success
14 a face a face Success
15 a face a face Success
16 a face a face Success
17 a face a face Success
18 a face a face Success
19 a face a face Success
20 a face a face Success
21 a face a face Success

Continued on the next page ...
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Ir::gs;cego. Input Image Detected Output Image Status
22 a face a face Success
23 a face a face Success
24 a face a face Success
25 a face a face Success
26 a face a face Success
27 a face a face Success
28 a face a face Success
29 a face a face Success
30 a face a face Success
31 a face a face Success
32 a face a face Success
33 a face a face Success
34 a face not a face Failure
35 a face a face Success
36 a face a face Success
37 a face not a face Failure
38 a face not a face Failure
39 a face not a face Failure
40 a face a face Success
41 a face a face Success
42 a face a face Success
43 a face a face Success
44 a face a face Success
45 a face a face Success
46 a face a face Success
47 a face a face Success
48 a face a face Success
49 a face not a face Failure
50 a face not a face Failure
51 a face not a face Failure
52 a face a face Success
53 a face a face Success
54 a face a face Success
55 a face a face Success
56 a face a face Success
57 a face a face Success
58 a face a face Success
59 a face a face Success

Continued on the next page ...
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Ir::gs;cego. Input Image Detected Output Image Status
60 a face a face Success
61 a face not a face Failure
62 a face a face Success
63 a face a face Success
64 a face a face Success
65 a face not a face Failure
66 a face a face Success
67 a face a face Success
68 a face a face Success
69 a face a face Success
70 a face a face Success
71 a face a face Success
72 a face a face Success
73 a face a face Success
74 a face a face Success
75 a face a face Success
76 a face a face Success
77 a face a face Success
78 a face a face Success
79 a face a face Success
80 a face a face Success
81 a face a face Success
82 a face a face Success
83 a face a face Success
84 a face a face Success
85 a face a face Success
86 a face not a face Failure
87 a face a face Success
88 a face a face Success
&9 a face a face Success
90 a face a face Success
91 a face not a face Failure
92 a face a face Success
93 a face not a face Failure
94 a face a face Success
95 a face not a face Failure
96 a face not a face Failure
97 a face not a face Failure

Continued on the next page ...
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Ir::gs;cego. Input Image Detected Output Image Status
98 a face a face Success
99 a face a face Success
100 a face a face Success
101 a face a face Success
102 a face a face Success
103 a face not a face Failure
104 a face a face Success
105 a face a face Success
106 a face a face Success
107 a face a face Success
108 a face not a face Failure
109 a face not a face Failure
110 a face a face Success
111 a face a face Success
112 a face a face Success
113 a face a face Success
114 a face a face Success
115 a face not a face Failure
116 a face not a face Failure
117 a face a face Success
118 a face not a face Failure
119 a face a face Success
120 a face not a face Failure
121 a face not a face Failure
122 a face a face Success
123 a face a face Success
124 a face a face Success
125 a face a face Success
126 a face a face Success
127 a face a face Success
128 a face a face Success
129 a face a face Success
130 a face a face Success
131 a face a face Success
132 a face a face Success
133 a face a face Success
134 a face a face Success
135 a face a face Success

Continued on the next page ...
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Ir::gs;cego. Input Image Detected Output Image Status
136 a face a face Success
137 a face a face Success
138 a face a face Success
139 a face a face Success
140 a face a face Success
141 a face a face Success
142 a face a face Success
143 a face a face Success
144 a face a face Success
145 a face a face Success
146 a face a face Success
147 a face a face Success
148 a face not a face Failure
149 a face a face Success
150 a face not a face Failure
151 a face a face Success
152 a face not a face Failure
153 a face a face Success
154 a face not a face Failure
155 a face a face Success
156 a face not a face Failure
157 a face not a face Failure
158 a face a face Success
159 a face a face Success
160 a face a face Success
161 a face a face Success
162 a face a face Success
163 a face a face Success
164 a face a face Success
165 a face a face Success
166 a face a face Success
167 a face a face Success
168 a face a face Success
169 a face not a face Failure
170 a face not a face Failure
171 a face a face Success
172 a face a face Success
173 a face a face Success

Continued on the next page ...
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IrrrlI‘zfgS;celsIo. Input Image Detected Output Image Status
174 a face a face Success
175 a face a face Success
176 a face a face Success
177 a face a face Success
178 a face a face Success
179 a face a face Success
180 a face a face Success

The table end.
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Appendix E

Derivation of Uy (x9, y2) for the JTC

IN the joint transform correlator (JTC), the derivation of the complex amplitude
distribution Us (3, y2) of the Fourier transformed field in the back focal plane P, can
be found as follows,

Us (#2,42) = )\f/ / Uy (z1,y1) exp —IRF(@reatuine) gy 1dyy

J)\f/ / (%yl - 2> exp I3 PN oy, +

J>\f

Y
Changing variables: y; — B — a,dy; — da &

Y
y1+§—>b,dy1—>db
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Us (2, y2) )\f/ / (71,0a) exp ]Af(“zﬁ(”%)y?)d:clda—ir
j)\f/ / (x1,b) exp ~i3F (21224 (0= 3 )v2) dx1db
J)\f/ / (21, @) exp ™I 37 et as) =55 50 gy a1
By / / (21,b exp—j”mmbyzm” ¥ ddb
]
_ eXp JAfy2/ / (21, a) exp fo($1a:2+a92)dx da+
+ N exp? 372 /Oo /OO g (z1,b) exp /AT @122 H02) g

Therefore,
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Appendix

A Code for the Optical Model

THIS appendix presents the joint transform correlator (JTC) code for object detec-
tion and face recognition.

© 0w N O Uk W N

i
o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

Testing the Joint Transform Correlator (JIC) for Object Detection
and Recognition. Note That, Objects Here Are Known for Us in
Order to Use Them for Testing Object Detection and Recognition
Processes as Well as Setting up Recognition and Detection
Thresholds.

o® o° o° o oP

clc
clear all
close all

Impulses_Folder=[cd .....
'\The Black Background Impulses']; The folder of the black

background impulses.

o° o°

Impulses_Folder=[cd ......
'"\The White Background Impulses']; % The folder of the white
background impulses.

o° o

oo ~

if isdir(Impulses_Folder)==
Error_Message=sprintf (['Error: The following folder does
'not exist\n%s'],Impulses_Folder);
warndlg (Error_Message) ;
break
end

Impulses=dir (fullfile (Impulses_Folder, '~.jpg')); % Listing the
% folder of the

black or white
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30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78

79

Total_No_of_Impulses=length (Impulses);

o0 o0 o0 o° o° o o° o° J° o° o

hist_TImpulses=zeros (Total_No_of_TImpulses,256);
for A=1:Total_No_of_Impulses

o0 o0 o0 O O 0 O O A A A A° A A o o o

background

o° oo

impulses.

The total number
of the impulses.

o)
<
o)

°

Imhist for setting up a threshold to work on just the pixels of a
face and throwing the background pixels. Imhist calculates the
number of pixels in an impulse that have the same intensity
levels. So, if an impulse has a unified background then the
biggest histogram of the intensity levels will be for the
background pixels because the total number of pixels that have
the same intensity levels are the background pixels of the
impulse. Note that, the histogram of a digital image is defined
as the discrete function, h(rk)=nk, where rk is the kth intensity
level and nk is the number of pixels in the image whose intensity
level is rk.

One_Impulse=Impulses (A) .name;
Impulse_Location=fullfile (Impulses_Folder,One_Impulse);
Impulse=double (rgb2gray(.....
imread (Impulse_Location))); % The impulse response.
hist_TImpulses(A,:)=......
imhist (uint8 (Impulse)); Note that, each impulse must be
scaled between 0 to 255 before
using imhist. For doing that,
uint8 can be used for converting
the impulse class form double to
uint8.

o° o° o° o o° oe

plot (hist_Impulses (A, :))
if A==
title(['The Histogram of The First Impulse for '.....
'Mr. Mansour Alshammari'])
elseif A==
title(['The Histogram of The Second Impulse for '.....
'Mr. Methkir Alharthee'])
elseif A==
title(['The Histogram of The Third Impulse for '.....
'Mr. Mohammed Hanafy'])
end
xlabel ('Intensity Level r_{k}")
ylabel ({'The Number of Pixels in the Impulse Whose '.....
'Intensity Level Is r_{k} Where h(r_{k})=n_{k}"'})
axis tight

disp(['Please, press any keyboard button to explore '......
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80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128

129

o o oo

end

Mean_hist_Impulses=sum(hist_Impulses,1)/......

o° o° o o° o° o° o

o° oo

Impulses_Threshold=8;

o° o° o o° o° od° o

Objects_Folder=[cd ......

o
o
o
)

if isdir (Objects_Folder)==

end

Objects=dir (fullfile (Objects_Folder, "+~.3pg'));

'the remaining histograms >>>>>>>'7])
pause
clc

Total_No_of_Impulses; The average histogram

% for all impulses.

plot (Mean_hist_TImpulses)

title('The Mean Histogram of All Impulses')

xlabel ('Intensity Level r_{k}")

ylabel ({'The Mean Number of Pixels from All Impulses Whose';.....
'Intensity Level Is r_{k}'})

axis tight

pause

Setting up a threshold in order to work on Jjust the pixels of the
faces and blocking the pixels of the backgrounds.

The picked threshold is based on the
average histogram for all impulses when the
impulses have black backgrounds. Note that,
all intesity levels below the threshold
represent the impulses backgrounds because
these levels have the biggest histogram.
Impulses_Threshold=180; The Picked threshold is based on the
average histogram for all impulses when
the impulses have white backgrounds.
Note that, all intesity levels above
the threshold represent the impulses
backgrounds because these levels have
the biggest histogram.

o® o° o° o° o° oe

o o0 o° o° o° oo o

The folder of the
black background
tested objects.

'\The Black Background Tested Objects'];

o° o oP

Objects_Folder=[cd .........

'"\The White Background Tested Objects']; % The folder of the
white background
tested objects.

o0 oo ~

Error_Message=sprintf (['Error: The following folder does '....
'not exist\n%s'],Objects_Folder);

warndlg (Error_Message) ;

break

Listing the folder
of the black or

o
o
o
°
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130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158

160
161
162
163
164
165
166
167
168

170
171
172
173
174
175
176
177
178

179

Total No_of_Objects=length (Objects); % The total number
Objs=[36 36 36];
L1=0bjs (1) ;

L2=L1+0bjs (2

L3=L2+0b7s (3) ;

o® o® o0 O o o o° o° J° o° o

hist_Objects=zeros (Total_No_of_Objects, 256);
for Al=1:Total_No_of_Obijects

o® o° o oP

white background
objects.

o
o
o
°

of the objects.

% Each element in this vector represents
% the total number of the objects that
% are taken for each impulse.

% L1=60 is the total number of the

% objects for Mr. Mansour Alshammari.

) L2=120 is the total number of the
objects for Mr. Methkir Alharthee.
L3=180 is the total number of the
objects for Mr. Mohammed Hanafy.

4

o° o° o° oe

Imhist for setting up a threshold to work on just the pixels of a
face and throwing the background pixels. Imhist calculates the
number of pixels in an object that have the same intensity
levels. So, if an object has a unified background then the
biggest histogram of the intensity levels will be for the
background pixels because the total number of pixels that have
the same intensity levels are the background pixels of the
object. Note that, the histogram of a digital image is defined as
the discrete function, h(rk)=nk, where rk is the kth intensity
level and nk is the number of pixels in the image whose intensity
level is rk.

Object_Number=[num2str (Al) '.Jjpg'l;

Object_Location=fullfile (Objects_Folder,Object_Number);
Object=double (rgb2gray (imread (Object_Location))); % The object.
hist_Objects (Al, :)=imhist (uint8 (Object)); Note that, each
object must be
scaled between 0 to
255 before using
imhist. For doing
that, uint8 can be
used for converting
the object class
form double to
uint8.

o® o0 o° o° o o° o° o° o° o

plot (hist_Objects (Al, :))
if Al<=L1
title(['The Histogram of Object No.' num2str (Al)
' for Mr. Mansour Alshammari'])
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180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198

200
201
202
203
204
205
206
207
208

210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228

229

0 0 o° o° O O A A A° A° A A A o o o°

end

Mean_hist_Objects=sum(hist_Objects,1)/...........
Total_No_of_Objects; % The average histogram

o® o° o° o° o o° oe

o° o

o® o° o° o° o o oe

Max_Desired Cross_Fields=zeros (Total_No_of_ Objects,.....
Total_No_of_Impulses);

plot (Mean_hist_Objects)

title('The Mean Histogram of All Obijects')

xlabel ('Intensity Level r_{k}")

ylabel ({'The Mean Number of Pixels from All Objects Whose';....

axis tight
pause

Setting up a threshold in order to work on just the pixels of the

faces and blocking the pixels of the backgrounds.
Objects_Threshold=8;

Objects_Threshold=180;

elseif Al1>L1 && Al<=L2
title(['The Histogram of Object No.' num2str(Al) .....
' for Mr. Methkir Alharthee'])
elseif A1>L2 && Al<=L3
title(['The Histogram of Object No.' num2str (Al)
' for Mr. Mohammed Hanafy'])
end
xlabel ('Intensity Level r_{k}")
ylabel ({'The Number of Pixels in the Object Whose '....
'Intensity Level Is r_{k} Where h(r_{k})=n_{k}'})
axis tight

disp(['Please, press any keyboard button to explore '......
'the remaining histograms >>>>>>>'])

pause

clc

for all objects.

'Intensity Level Is r_{k}'})

The picked threshold is based on the average
histogram for all objects when the objects
have black backgrounds. Note that, all
intesity levels below the threshold
represent the objects backgrounds because
these levels have the biggest histogram.

The Picked threshold is based on the
average histogram for all objects when
the objects have white backgrounds. Note
that, all intesity levels above the
threshold represent the objects
backgrounds because these levels have

o° o° o° o o° o°

o° o0 o° o° o o o

the biggest histogram.

Each element of each row in this
matrix represents the maximum value

o oo oe

of the desired crosscorrelated field
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230 between an object and one of the

231 % impulses.
232

233

234 for n=1:Total_No_of_Objects

235

236 % Normalizing all the objects for removing lightening effects
237 % on them then increasing the resolution of object detection
238 % and recognition. Note that, the normalization will be done
239 % just for the faces pixels for keeping variations among the
240 % objects and impulses just in the faces without the

241 % backgrounds effects.

242 Object_Number=[num2str(n) '.Jjpg'l;

243 Object_Location=fullfile (Objects_Folder,Object_Number);

244 Objectl=........

245 double (rgb2gray (imread (Object_Location))); % The object.
246

247 T=0Objectl1l>0Objects_Threshold; The pixels bigger than the

threshold are of interest
because they represent the
pixels of a face.

The pixels smaller than the
threshold are of interest
because they represent the
pixels of a face.

248
249

o0 o° o o

250

o\

251 T=0bject1l<Objects_Threshold;
252

253

o° o o oe

254

~ o° o° oP°

255 Object=zeros(size(T,1),size(T,2)); % The normalized object.

256 for R2=1:size (T, 1)

257 for C2=1l:size (T, 2)

258 if T(R2,C2)==

259 Object (R2,C2)=ceil (255* (Objectl1l (R2,C2)/......

260 max (max (Objectl)))); % The normalization of the
261 % object. This is done to
262 % increase the dynamic

263 % range of the object for
264 % visualization by scaling
265 % the intensities from O
266 % to 255.

267 end

268 end

269 end

270 [r c]l=size (Object);

271

272

273 figure

274 subplot (2,1,1)
imshow (Objectl)
if n<=L1
title({['This Is To Show How Good the Objects '.....
'Threshold Is, '];blanks(l);['Object No.'

num2str(n) ' for Mr. Mansour Alshammari']})

275
276
277
278

o® o° o° o° o° o° oe
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280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298

300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328

329

N ° 0 O o O A A A° A A A AN AN N N N O O O A A A A AN AN N AN AN N N N AN AN A A A A AN AN N N N O o° o° o°

for m=1:Total_No_of_TImpulses

elseif n>L1 && n<=L2
title({['This Is To Show How Good the Objects '....
'Threshold Is,'];blanks(1l);['Object No.' .....
num2str(n) ' for Mr. Methkir Alharthee']})
elseif n>L2 && n<=L3
title({['This Is To Show How Good the Objects '.....
'Threshold Is, '];blanks(l);['Object No.'
num2str(n) ' for Mr. Mohammed Hanafy']})
end
subplot (2,1,2)
imshow (Object)
if n<=L1
title(['Normalized Object No.' num2str (n)
' for Mr. Mansour Alshammari'])
elseif n>L1 && n<=L2
title(['Normalized Object No.' num2str(n) .....
' for Mr. Methkir Alharthee'])
elseif n>L2 && n<=L3
title(['Normalized Object No.' num2str (n)
' for Mr. Mohammed Hanafy'])
end

figure
subplot (2,1,1)
imshow (uint8 (Objectl))
if n<=L1
title(['Object No.' num2str(n) .....
' for Mr. Mansour Alshammari'])
elseif n>L1 && n<=L2
title(['Object No.' num2str(n) .....
' for Mr. Methkir Alharthee'])
elseif n>L2 && n<=L3
title(['Object No.' num2str (n)
' for Mr. Mohammed Hanafy'])
end
subplot (2,1,2)
imshow (uint8 (Object))
if n<=L1
title(['Normalized Object No.' num2str(n) .....
' for Mr. Mansour Alshammari'])
elseif n>L1 && n<=L2
title(['Normalized Object No.' num2str (n)
' for Mr. Methkir Alharthee'])
elseif n>L2 && n<=L3
title(['Normalized Object No.' num2str(n) .....
' for Mr. Mohammed Hanafy'])
end
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330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378

379

o° o° o° o o

Normalizing all the impulses for removing lightening
effects on them then increasing the resolution of object
detection and recognition. Note that, the normalization
will be done Jjust for the faces pixels for keeping
variations among the objects and impulses just in the
faces without the backgrounds effects.
One_Impulse=Impulses (m) .name;

Impulse_Location=fullfile (Impulses_Folder,One_Impulse);
Impulsel=double (rgb2gray (......

imread (Impulse_Location))); % The impulse response.

o° o° o° o o oe

Tl=Impulsel>Impulses_Threshold; The pixels bigger than
the threshold are of
interest because they
represent the pixels of

face.

o° o° o o oe

@

Tl=Impulsel<Impulses_Threshold; The pixels smaller than
the threshold are of
interest because they
represent the pixels

of a face.

)i

~ o o o° o oe

Impulse=zeros(size(T1l,1),size(T1,2 The normalized

% impulse response.
for Rl=1:size(T1,1)
for Cl=1l:size(T1,2)
if T1(R1,Cl)==
Impulse (R1,Cl)=ceil (255 (Impulsel (R1,Cl)/.....
max (max (Impulsel)))); The normalization
of the impulse
response. This is
done to increase
the dynamic range
of the impulse for
visualization by
scaling the
intensities from
0 to 255.

o° o° o° o o° o° ° d° o o°

end
end
end
[p gl=size (Impulse);

Equalizing the width of the impulse response with the
width of the object in order to collimate them on the
input transparencies.
if g>c
if mod(g—c,2)==

Object=[zeros (r, (g—c)/2) Object zeros(r, (g—c)/2)]1;
elseif mod(g—c,2)==1

o° o oe
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380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408

410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428

429

Object=[zeros (r, floor ((g—c)/2)) Object
zeros (r, floor ((g—c)/2)+1)1;
end
elseif g<c
if mod(c—q, 2)==
Impulse=[zeros (p, (c—q) /2) Impulse .....
zeros (p, (c—q) /2)1;
elseif mod(c—q, 2)==1
Impulse=[zeros (p, floor((c—q)/2)) Impulse .....
zeros (p, floor ((c—q) /2)+1)1;
end
end

Collimating the impulse response and the object on the
input transparencies. Note that, the separation between
the impulse response and object must be bigger than
max {Wh, Wg}+Wg/2+Wh/2 in order to make the output
crosscorrelations of the impulse response and object are
completely separated without any overlapping.
Wh=size (Impulse,1l); The width of the impulse response in
the direction of the yl—coordinate.
The width of the object in the
direction of the yl—coordinate.
Y=max (Wh,Wg) + ( (Wh+Wg) /2); % The separation between the

% centers of the impulse response
% and obiject.
This distance in order to make the separation
between the centers of the impulse response and
object bigger than max{Wh,Wg}+Wg/2+Wh/2.
Impulse_Object=[.......
zeros (ceil (max (Wh,Wg) /2+Wh/4+3/4%Wg) +ceil (dis/2), .....
size (Impulse,2)); Impulse;.....
zeros (max (Wh,Wg) +dis, size (Impulse,2));0bject; .....
zeros (ceil (max (Wh, Wg) /2+3/4+xWh+Wg/4) +ceil (dis/2), .....
size (Object,2))1;

o° o o° o oo oe

<)
<
)

<

Wg=size (Object,1);

o
o
o
°

dis=10;

o oo oe

% Equalizing the dimensions of the input plane Pl by
% padding it with =zeros.
[R C]=size (Impulse_Object);
if R>C
if mod(R—C, 2)==
Impulse_Object=[.......
zeros (size (Impulse_Object,1), (R—C)/2) .....
Impulse_Object ......
zeros (size (Impulse_Object,1), (R—C)/2)1;
elseif mod(R—C,2)==1
Impulse_Object=[......
zeros (size (Impulse_Object,1l),.....
floor ((R—C)/2)) Impulse_Object .......
zeros (size (Impulse_Object, 1), ......
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430
431
432
433
434
435

437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458

460
461
462
463
464
465
466
467
468

470
471
472
473
474
475
476
477
478

floor ((R—C)/2)+1)1;
end
elseif R<C
if mod(C—R, 2)==
Impulse_Object=[......
zeros ((C—R) /2, size (Impulse_Object,2));....
Impulse_Object;....
zeros ( (C—R) /2, size (Impulse_Object,2))];
elseif mod(C—R, 2)==1
Impulse_Object=[zeros (floor ((C—R)/2), ......

size (Impulse_Object,2)); Impulse_Object;.....

zeros (floor ((C—R) /2)+1, ......
size (Impulse_Object,2))]1;
end
end

The transmitted field from
the input plane P1.

Ul=Impulse_Object;

o
5
[}

o

[M N]=size (Ul);
L=10; The physical side length of the

array which holds the input

plane Pl in meters (m).

dx1_Input=L/N; The sample spacing in the input plane
array in the direction of the spatial
space coordinate x1 in meters (m).
The sample spacing in the input plane
array in the direction of the spatial
space coordinate yl in meters (m).

o0 o° o

dyl_Input=L/M;

o° o© o° o° o° o

Sampling the input
plane P1 in the

o
Cl
o
Cl
% direction of the
% spatial space

% coordinate x1.

ceil (M/2)+xdyl_Input—dyl_Input; Sampling the input
plane P1 in the
direction of the
spatial space

coordinate yl.

o° o° o° o o

U2=fftshift (£fft2 (fftshift (U1l)));

o° o° o oe

the lens L2.
I=(abs (U2)) ."2;

o
°
o
o

field in the plane P2.

The Fourier transform of
the transmitted field in
the back focal plane of

The intensity of the Fourier transformed
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480
481
482
483
484
485

487
488
489
490
491
492
493
494
495
496
497
498

500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528

529

lambda=550e—9; % The wavelength in meters (m).

f=0.055; % The focal length in meters (m).

dx2=(lambda=*f) / (Nxdx1_Input) ; The sample spacing in the
plane P2 in the direction
of the spatial space
coordinate x2 in meters
(m) .

The sample spacing in the
plane P2 in the direction

dy2=(lambdaxf)/ (Mxdyl_Input);

of the spatial space
coordinate y2 in meters

(m) .

o0 o0 o0 o° o° o° o° o° o° o

ceil (N/2) xdx2—dx2; % Sampling the plane P2 in the

% direction of the spatial space
% coordinate x2.

ceil (M/2) xdy2—dy2; Sampling the plane P2 in the
direction of the spatial space

coordinate y2.

o° o oe

U3=ifftshift (ifft2(ifftshift(I))); The crosscorrelated
field in the back
focal plane of the

lens L4.

o° o° o o

dx3= (lambdaxf) / (Nxdx2) ; The sample spacing in the plane
P3 in the direction of the
spatial space coordinate x3 in
meters (m) .
The sample spacing in the plane
P3 in the direction of the
spatial space coordinate y3 in
meters (m).
xX3_Axis=—floor (N/2)*dx3:dx3:.....

ceil (N/2)*dx3—dx3; % Sampling the plane P3 in the

% direction of the spatial space

% coordinate x3.

dy3=(lambdaxf) / (Mxdy2) ;

o o° o° o° o° o° o° oP

ceil (M/2) xdy3—dy3; Sampling the plane P3 in the
direction of the spatial space

coordinate y3.

o° o oo

Synthesizing a desired filtering mask then filtering the
crosscorrelated field in the plane P3.

Cen=floor (M/2)+1; % The center of the filtering mask.
Cenl=Cen— (Y+dis); % The center of the desired

<)
°
o)

°
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[

% crosscorrelated field.

Whl=qg; % The width of the impulse response in
% the direction of the xl—coordinate.
Wgl=c; % The width of the object in the

direction of the xl—coordinate.

Mask=zeros (M, N) ;
for P=Cenl—floor ((Wh+Wg)/2) :Cenl+ceil ( (Wh+Wg) /2)
for Q=Cen—floor ((Whl+Wgl)/2) :Cen+ceil ( (Whl+Wgl)/2)
Mask (P, Q)=1;
end
end

The filtered crosscorrelated
field in the plane P3.

Cross_Field=Mask.*U3;

o)
°
o)

°

o° o oe

rosscorrelated field of interest.
P=Cenl—floor ( (Wh+Wg) /2) :Cenl+ceil ( (Wh+Wg) /2);
Q=Cen—floor ( (Whl+Wgl) /2) :Cen+ceil ( (Whl+Wgl) /2);
Desired_Cross_Field=U3(P,0Q);

Max_Desired_Cross_Fields(n,m)=......
max (max (Desired_Cross_Field));

figure
subplot (2,1,1)
imshow (Impulsel)
if m==
title({['This Is To Show How Good the Impulses '
'Threshold Is,']; blanks(l);.....
['Impulse Response No.' num2str(m) .....
' for Mr. Mansour Alshammari']})
elseif m==
title({['This Is To Show How Good the Impulses '
'Threshold Is,'];blanks(1l);.....
["Impulse Response No.' num2str(m) .....
' for Mr. Methkir Alharthee']})
elseif m==

title({['This Is To Show How Good the Impulses '....

'Threshold Is, '];blanks(l);....
['Impulse Response No.' num2str(m) ......
' for Mr. Mohammed Hanafy']})

end

subplot (2,1,2)

For simplicity, instead of processing the entire image of
the filtered crosscorrelated field, we select only the
c
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580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628

629
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imshow (Impulse)
if m==
title({['Normalized Impulse Response No.' .
num2str (m) ' for Mr. Mansour Alshammari']})
elseif m==
title({['Normalized Impulse Response No.' .....
num2str (m) ' for Mr. Methkir Alharthee']l})
elseif m==
title({['Normalized Impulse Response No.' .....
num2str (m) ' for Mr. Mohammed Hanafy']})
end

figure
subplot (2,1,1)
imshow (uint8 (Impulsel))
if m==
title(['Impulse Response No.' num2str(m) .....
' for Mr. Mansour Alshammari'])
elseif m==
title(['Impulse Response No.' num2str (m)
' for Mr. Methkir Alharthee'])
elseif m==
title(['Impulse Response No.' num2str(m) .....
' for Mr. Mohammed Hanafy'])
end
subplot (2,1,2)
imshow (uint8 (Impulse))
if m==
title(['Normalized Impulse Response No.' .....
num2str (m) ' for Mr. Mansour Alshammari'])
elseif m==
title(['Normalized Impulse Response No.' .....
num2str (m) ' for Mr. Methkir Alharthee'])
elseif m==
title(['Normalized Impulse Response No.'
num2str (m) ' for Mr. Mohammed Hanafy'])
end

figure ('units', 'centimeters', 'position’', [7 1.2 25 16.9])
imagesc (x1_Axis_Input,yl_Axis_Input,Ul)
colorbar
if n<=L1
if m==
title({['The Transmitted Field from the '....
'"Input Plane P_1"]; [' (Impulse No.l Is '....
'for Mr. Mansour Alshammari as Well '.....
'as Object No.' num2str(n) .....
' Is for Him)']l})
elseif m==
title({['The Transmitted Field from the '.....
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630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678

679
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'"Input Plane P_1"]; [' (Impulse No.2 Is '....
'for Mr. Methkir Alharthee and Object '....

'No.' num2str(n) .....
' Is for Mr. Mansour Alshammari) ']})
else
title({['The Transmitted Field from the '.....

'"Input Plane P_1']; [' (Impulse No.3 Is '....

'for Mr. Mohammed Hanafy and Object '....

'No.' num2str(n) .......
' Is for Mr. Mansour Alshammari) ']})
end
elseif n>L1 && n<=L2
if m==

title({['The Transmitted Field from the '....

'Input Plane P_1"];[' (Impulse No.l Is '....
'for Mr. Mansour Alshammari and Object '....

'No.' num2str(n) ......
' Is for Mr. Methkir Alharthee) ']})
elseif m==
title({['The Transmitted Field from the '....

'"Input Plane P_1"]; [' (Impulse No.2 Is '....
'for Mr. Methkir Alharthee as Well as '....

'Object No.' num2str(n) ' Is for Him)']})
else
title({['The Transmitted Field from the '....

'"Input Plane P_1'"]; [' (Impulse No.3 Is '....
'for Mr. Mohammed Hanafy and Object No.'....

num2str(n) ........
' Is for Mr. Methkir Alharthee) ']})
end
elseif n>L2 && n<=L3
if m==
title({['The Transmitted Field from the '....

'"Input Plane P_1"]; [' (Impulse No.l Is '....
'for Mr. Mansour Alshammari and Object '....

'No.' num2str(n) .......
' Is for Mr. Mohammed Hanafy)']})
elseif m==
title({['The Transmitted Field from the '....

'"Input Plane P_1']; [' (Impulse No.2 Is '....

'for Mr. Methkir Alharthee and '.....
'Object No.' num2str(n) ......
' Is for Mr. Mohammed Hanafy)']})
else
title({['The Transmitted Field from the '....

'"Input Plane P_1"];[' (Impulse No.3 Is '....

'for Mr. Mohammed Hanafy as Well as '.....
'Object No.' num2str(n) ' Is for Him)']})
end
end
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680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
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colormap ('gray')
xlabel ('x_1 (m)")
ylabel ('y_1 (m)")

figure ('units', 'centimeters', 'position', [7 1.2 25 16.9])
imagesc (x2_Axis,y2_Axis, 255% (I/max (max (I))))
colorbar
if n<=L1
if m==
title({['The Incident Intensity on the '.....
'Plane P_2"'"]; [' (Impulse No.l Is for '....
'Mr. Mansour Alshammari as Well as '....
'Object No.' num2str(n) ' Is for Him) ']})
elseif m==
title({['The Incident Intensity on the '.....
'Plane P_2"'"]; [' (Impulse No.2 Is for '.....
'Mr. Methkir Alharthee and Object No.'....
num2str(n) ...........
' Is for Mr. Mansour Alshammari) ']})
else
title({['The Incident Intensity on the '....
'Plane P_2"'"]; [' (Impulse No.3 Is for '....
'Mr. Mohammed Hanafy and Object No.'
num2str(n) ......
' Is for Mr. Mansour Alshammari) ']})
end
elseif n>L1 && n<=L2
if m==
title({['The Incident Intensity on the '.....
'Plane P_2"'"]; [' (Impulse No.l Is for '.....
'Mr. Mansour Alshammari and Object No.'....
num2str(n) .......
' Is for Mr. Methkir Alharthee) ']})
elseif m==
title({['The Incident Intensity on the '.....
'Plane P_2"']; ["' (Impulse No.2 Is for '.....
'Mr. Methkir Alharthee as Well as '.....
'Object No.' num2str(n) ' Is for Him)']})
else
title({['The Incident Intensity on the '....
'Plane P_2']; [' (Impulse No.3 Is for '....
'Mr. Mohammed Hanafy and '......
'Object No.' num2str(n) ......
' Is for Mr. Methkir Alharthee)']l})
end
elseif n>L2 && n<=L3
if m==
title({['The Incident Intensity on the '....
'Plane P_2"]; [' (Impulse No.l Is for '.....

'Mr. Mansour Alshammari and '......
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730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
T
778

779
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'Object No.' num2str(n) ......
' Is for Mr. Mohammed Hanafy)']})
elseif m==
title({['The Incident Intensity on the '....
'Plane P_2"']; [' (Impulse No.2 Is for '....
'Mr. Methkir Alharthee and '.....
'Object No.' num2str(n) .....
' Is for Mr. Mohammed Hanafy) ']})
else
title({['The Incident Intensity on the '.....
'Plane P_2"'"]; [' (Impulse No.3 Is for '.....
'Mr. Mohammed Hanafy as Well as '....
'Object No.' num2str(n) ' Is for Him) ']})

end
end
colormap ('gray')
xlabel ('x_2 (m)")
ylabel ('y_2 (m)")

figure ('units', 'centimeters', 'position', [7 1.2 25 16.9])
imagesc (x3_Axis,y3_Axis,U3)
colorbar
if n<=L1
if m==
title({['The Crosscorrelated Field in '.....
'the Plane P_3']; [' (Impulse No.1l Is '.....
'for Mr. Mansour Alshammari as Well as '....
'Object No.' num2str(n) ' Is for Him)']})
elseif m==
title({['The Crosscorrelated Field in '....
'the Plane P_3']; [' (Impulse No.2 Is '.....
'for Mr. Methkir Alharthee and '.....
'Object No.' num2str(n) ......
' Is for Mr. Mansour Alshammari) ']})
else
title({['The Crosscorrelated Field in '....
'the Plane P_3']; [' (Impulse No.3 Is '.....
'for Mr. Mohammed Hanafy and '.....
'Object No.' num2str(n) ......
' Is for Mr. Mansour Alshammari) ']})
end
elseif n>L1 && n<=L2
if m==
title({['The Crosscorrelated Field in '....
'the Plane P_3']; [' (Impulse No.1l Is '....
'for Mr. Mansour Alshammari and '.....
'Object No.' num2str(n) .....
' Is for Mr. Methkir Alharthee)']})
elseif m==
title({['The Crosscorrelated Field in '....

189
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780 % 'the Plane P_3']; [' (Impulse No.2 Is '.....
781 % 'for Mr. Methkir Alharthee as Well as '....
782 % 'Object No.' num2str(n) ' Is for Him) ']})
783 % else
784 % title({['The Crosscorrelated Field in '.....
785 % 'the Plane P_3'];[' (Impulse No.3 Is '....
786 % 'for Mr. Mohammed Hanafy and '.....

787 % 'Object No.' num2str(n) .....

788 % ' Is for Mr. Methkir Alharthee)']})

789 % end

790 % elseif n>L2 && n<=L3

791 % if m==

792 % title({['The Crosscorrelated Field in '.....
793 % 'the Plane P_3']; [' (Impulse No.1l Is '....
794 % 'for Mr. Mansour Alshammari and '.....

795 % 'Object No.' num2str(n) .....

796 % ' Is for Mr. Mohammed Hanafy) ']})

797 % elseif m==

798 % title({['The Crosscorrelated Field in '.....
799 % 'the Plane P_3']; [' (Impulse No.2 Is '.....
800 % 'for Mr. Methkir Alharthee and '.....

801 % 'Object No.' num2str(n) .....

802 % ' Is for Mr. Mohammed Hanafy) ']})

803 % else

804 % title({['The Crosscorrelated Field in '....
805 % 'the Plane P_3']; [' (Impulse No.3 Is '.....
806 % 'for Mr. Mohammed Hanafy as Well as '.....
807 % 'Object No.' num2str(n) ' Is for Him)']})
808 % end

809 % end

810 % colormap ('gray')

811 % xlabel ('x_3 (m)")

812 % ylabel ('y_3 (m)")

813 %

814 % figure ('units', 'centimeters', 'position', [7 1.2 25 16.9])
815 % imagesc (x3_Axis,y3_Axis,Mask)

816 % colorbar

817 % if n<=L1

818 % if m==

819 % title({'The Adaptive Filtering Mask';....

820 % [" (Impulse No.l Is for Mr. Mansour '.....
821 % 'Alshammari as Well as Object No.'

822 % num2str(n) ' Is for Him)']})

823 % elseif m==

824 % title({'The Adaptive Filtering Mask';.....

825 % ['" (Impulse No.2 Is for Mr. Methkir '.....
826 % 'Alharthee and Object No.' num2str (n)

827 % ' Is for Mr. Mansour Alshammari) ']})

829

title({'The Adaptive Filtering Mask';.....
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830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
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["(Impulse No.3 Is for Mr. Mohammed
'Hanafy and Object No.' num2str(n) .....

' Is for Mr. Mansour Alshammari) ']})
end
elseif n>L1 && n<=L2
if m==

title ({'The Adaptive Filtering Mask';.....
[" (Impulse No.l Is for Mr. Mansour '.....
'Alshammari and Object No.' num2str (n)
' Is for Mr. Methkir Alharthee)']})
elseif m==
title({'The Adaptive Filtering Mask';.....
["(Impulse No.2 Is for Mr. Methkir '.....
'Alharthee as Well as Object No.' .....
num2str(n) ' Is for Him)']})
else
title({'The Adaptive Filtering Mask';.....
["(Impulse No.3 Is for Mr. Mohammed '.....
'Hanafy and Object No.' num2str(n) .....
' Is for Mr. Methkir Alharthee)']})
end
elseif n>L2 && n<=L3
if m==
title({'The Adaptive Filtering Mask';.....
["(Impulse No.l Is for Mr. Mansour '.....
'Alshammari and Object No.' num2str (n)
' Is for Mr. Mohammed Hanafy)']})
elseif m==
title({'The Adaptive Filtering Mask';.....
[" (Impulse No.2 Is for Mr. Methkir '.....
'Alharthee and Object No.' num2str (n)
' Is for Mr. Mohammed Hanafy)']})
else
title({'The Adaptive Filtering Mask';.....
["(Impulse No.3 Is for Mr. Mohammed '.....
'Hanafy as Well as Object No.' .....

num2str(n) ' Is for Him)']})
end
end
colormap ('gray')
xlabel ('x_3 (m)")
ylabel ('y_3 (m)")

figure ('units', 'centimeters', 'position’', [7 1.2 25 16.9])
imagesc (x3_Axis,y3_Axis,Cross_Field)
colorbar
if n<=L1
if m==
title({['The Filtered Crosscorrelated '....
'Field in the Plane P_3']; [' (Impulse '....
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880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928

929
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'No.l Is for Mr. Mansour Alshammari '

'as Well as Object No.' num2str (n)
' Is for Him) ']})
elseif m==
title({['The Filtered Crosscorrelated '....
'Field in the Plane P_3']; [' (Impulse '....
'No.2 Is for Mr. Methkir Alharthee '".....
'and Object No.' num2str(n) ......
' Is for Mr. Mansour Alshammari) ']})
else
title({['The Filtered Crosscorrelated '....
'Field in the Plane P_3']; [' (Impulse '....
'No.3 Is for Mr. Mohammed Hanafy and '....
'Object No.' num2str(n) ......
' Is for Mr. Mansour Alshammari) ']})
end
elseif n>L1 && n<=L2
if m==
title({['The Filtered Crosscorrelated '.....
'Field in the Plane P_3']; [' (Impulse '....
'No.l Is for Mr. Mansour Alshammari '.....
'and Object No.' num2str(n) ......
' Is for Mr. Methkir Alharthee)']})
elseif m==
title({['The Filtered Crosscorrelated '.....
'Field in the Plane P_3']; [' (Impulse '....
'No.2 Is for Mr. Methkir Alharthee '....
'as Well as Object No.' num2str(n) .....
' Is for Him) ']})
else
title({['The Filtered Crosscorrelated '....
'Field in the Plane P_3']; [' (Impulse '....
'No.3 Is for Mr. Mohammed Hanafy and '....
'Object No.' num2str(n) ......
' Is for Mr. Methkir Alharthee)']})
end
elseif n>L2 && n<=L3
if m==
title({['The Filtered Crosscorrelated '....
'Field in the Plane P_3']; [' (Impulse '....
'No.l Is for Mr. Mansour Alshammari '....
'and Object No.' num2str(n) ......
' Is for Mr. Mohammed Hanafy)']})
elseif m==
title({['The Filtered Crosscorrelated '....
'Field in the Plane P_3']; [' (Impulse '....
'No.2 Is for Mr. Methkir Alharthee '.....
'and Object No.' num2str(n) .....
' Is for Mr. Mohammed Hanafy)']})

else
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930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979

o0 o0 0 0 O O O O O A A A° A A A AN AN N N N N N N O A A A AN AN AN AN AN AN N N AN AN A A A AN AN AN N N N O o° o° o°

title({['The Filtered Crosscorrelated '.....
'Field in the Plane P_3']; [' (Impulse '....
'No.3 Is for Mr. Mohammed Hanafy as '....
'Well as Object No.' num2str(n) ......
' Is for Him)']})

end
end
colormap ('gray')
xlabel ('x_3 (m)")
ylabel('y_3 (m)")

figure ('units', 'centimeters', 'position’', [7 1.2 25 16.9])
imagesc (x3_Axis,y3_Axis,Desired_Cross_Field)
colorbar
if n<=L1
if m==
title({['The Crosscorrelated Field of '.....
'Interest in the Plane P_3'];.....
["(Impulse No.l Is for Mr. Mansour '....
'Alshammari as Well as Object No.'
num2str(n) ' Is for Him)']})
elseif m==
title({['The Crosscorrelated Field of '".....
'"Interest in the Plane P_3']; [' (Impulse'....
' No.2 Is for Mr. Methkir Alharthee '.....
'and Object No.' num2str(n) ......
' Is for Mr. Mansour Alshammari) ']})
else
title({['The Crosscorrelated Field of '.....
'"Interest in the Plane P_3']; [' (Impulse'....
' No.3 Is for Mr. Mohammed Hanafy and '....
'Object No.' num2str(n) ......
' Is for Mr. Mansour Alshammari) ']})
end
elseif n>L1 && n<=L2
if m==
title({['The Crosscorrelated Field of '"......
'Interest in the Plane P_3']; [' (Impulse'....
' No.l Is for Mr. Mansour Alshammari '....
'and Object No.' num2str(n) ......
' Is for Mr. Methkir Alharthee)']})
elseif m==
title({['The Crosscorrelated Field of '.....
'Interest in the Plane P_3']; [' (Impulse'....
' No.2 Is for Mr. Methkir Alharthee '.....
'as Well as Object No.' num2str(n) .....
' Is for Him) ']})
else
title({['The Crosscorrelated Field of '.....
'Interest in the Plane P_3']; [' (Impulse'....
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980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029

o0 0 o0 O o O O A A A° A° A A AN AN AN N O O O O O A A AN A AN N N N N N N AN A A A A A A o o o

end

end

o o o

Testing

Note that, the objects here are known for us in order to use them
for testing the object recognition process as well as setting up

' No.3 Is for Mr. Mohammed Hanafy and
'Object No.' num2str(n) .....
' Is for Mr. Methkir Alharthee)']})
end
elseif n>L2 && n<=L3
if m==
title({['The Crosscorrelated Field of '".....
'"Interest in the Plane P_3']; [' (Impulse'....
' No.l Is for Mr. Mansour Alshammari '.....
'and Object No.' num2str(n) ......
' Is for Mr. Mohammed Hanafy)']})
elseif m==
title({['The Crosscorrelated Field of '.....

'"Interest in the Plane P_3']; [' (Impulse'....
' No.2 Is for Mr. Methkir Alharthee '....
'and Object No.' num2str(n) ......
' Is for Mr. Mohammed Hanafy)']})
else
title({['The Crosscorrelated Field of '.....
'Interest in the Plane P_3']; [' (Impulse'....
' No.3 Is for Mr. Mohammed Hanafy '.....
'as Well as Object No.' ......
num2str(n) ' Is for Him)']})
end
end
colormap ('gray')
xlabel ('x_3 (m)")
ylabel ('y_3 (m)")

Note that, "imshow" is better to be used instead
of "imagesc" during designing the adaptive mask
because "imshow" dispalays the cross—correlations
in the plane P3 clearer than "imagesc"!!

o® o o oP

o® o o oP
o0 o0 o oe
o0 o0 o oe

disp(['Please, press any keyboard button to explore '
'the remaining crosscorrelated fields >>>>>>>'])

pause

clc

close all

the process of object recognition.
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1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

% a recognition threshold.

% The elements in each of the following vectors represent the

% maximum values of the desired crosscorrelated fields between the
% objects and their corresponding impulse. Note that, each impulse
% and its corresponding objects have a same face so the vectors

% will include the biggest crosscorrelations.

V1= (Max_Desired_Cross_Fields(1:L1,1))."';

V2= (Max_Desired_Cross_Fields (L1+1:1L2,2))."';

V3= (Max_Desired_Cross_Fields (L2+1:1L3,3)).";

The calculation of the mean and the standard deviation for each
vector of the biggest crosscorrelations and stacking them in a
vector for the means and another for the standard deviations.
This is done for setting up a threshold for object recognition.
_Mean=[mean (V1) ;mean (V2) ;mean (V3) ];
V_STD=[std (V1) ;std(V2);std(V3)];
save ('Computed Means for Object Recognition', 'V_Mean')
save ('Computed STDs for Object Recognition', 'V_STD')

o° o° o o

<

fid=fopen ('Object Recognition Results for Testing.txt',....
'w'); A text file for typing

the object recognition

results for testing.

fprintf (fid, ['"\n **+xx The Object Recognition Results '.....
'for Testing Obtained from the Code of the *x*x*x*x*x\r\n']l);

fporintf (£id, [ **xx% Joint Transform Correlator (JTC) for '.....
'Testing and Setting up Thresholds xxxx\r\n\n']);

fprintf (fid, ['The Object No. The Object Is Originally for'......
! The Object Is Recognized as The Status\r\n']l);

fprintf (fid, [ '============== ============================'_ _ .

O o° o

o\

Failures_Vector=zeros (1, Total_No_of_Objects); % A vector for

% counting the number
% of failures in the

% object recognition

process.

% This matrix is used
% for creating a table
% in Latex.

Latex_Matrix=cell (Total_No_of_Objects, 4);

for w=1:Total_No_of_Obijects
% The object recognition process.
for ii=1:Total_No_of_TImpulses
if max (Max_Desired_Cross_Fields(w, :))==.....
Max_Desired_Cross_Fields (w,ii) && .....
max (Max_Desired_Cross_Fields(w,:))>=....
(V_Mean (1i,1)—V_STD(ii, 1)) && .....
max (Max_Desired_Cross_Fields(w,:))<=....
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1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128

1129

o® o° o0 o° o° o o° oe

(V_Mean (ii,1)+V_STD(ii, 1))
S=transpose (struct2cell (Impulses));
d=sortrows (S, 1);
z=d(:,1);
Recognized_As=char(z(ii,1));
Recognized_Object_Location=......
fullfile (Impulses_Folder,Recognized_As) ;
Recognized_Object=im2double (rgb2gray (.....
imread (Recognized_Object_Location)));
break
else
Recognized_As='Unknown Object';
Recognized_Object=imread('Unknown_Object. jpg');
end
end

% Defining the object.
1if w<=L1

name='Mr. Mansour Alshammari';
elseif Ll<w && w<=L2

name="'Mr. Methkir Alharthee’';
else name='Mr. Mohammed Hanafy';
end

Strl=strcmp (Recognized_As (l:length (Recognized_As)—06),
'Mr. Mansour Alshammari');

Str2=strcmp (Recognized_As (l:length (Recognized_As)—6),.....
'Mr. Methkir Alharthee');

Str3=strcmp (Recognized_As (l:length (Recognized_As)—06),
'Mr. Mohammed Hanafy');

='Success';

if w<=L1l && Strl==0;
='Failure';
Failures_Vector (1,w)=1;

elseif w>Ll && w<=L2 && Str2==0;
='Failure';
Failures_Vector (1,w)=1;

elseif w>L2 && w<=L3 && Str3==0;
F='Failure';
Failures_Vector (1,w)=1;

end

Object_Number=[num2str(w) '.Jjpg']l;

Object_Location=fullfile (Objects_Folder,Object_Number) ;
Object=im2double (rgb2gray (imread (Object_Location)));

subplot (2,1,1)

imshow (Object)

title({['Object No.' num2str(w) ' Is Originally for'];name})
subplot (2,1,2)

imshow (Recognized_Object)
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1130 % if Strl== || Str2== || Str3==

1131 % title({'The Object Is Recognized As'; .....uiiunnn..
132 % Recognized_As (l:1length (Recognized_As)—6) })

1133 % else title ({'The Object Is Recognized As' ......

1134 % ['"an' blanks (1) Recognized_As]})

135 % end

1136

1137 if Strl== || Str2== || Str3==

1138 fprintf (fid, ['%0.3d\t\t\t %$—23s\t L.

1139 '$—24s\t %s \r\n\n'],w,name, ......

1140 Recognized_As (l:length (Recognized_As)—6),F);

1141 Latex_Matrix (w,1l:4)={num2str (w) name .....

1142 Recognized_As (1l:1length (Recognized_As)—6) F};

1143 else fprintf (fid, ['%0.3d\t\t\t $—23s\t $—24s\t'.....
1144 ' %s \r\n\n'],w,name, Recognized_As,F);

1145 Latex_Matrix(w,1:4)={num2str (w) name Recognized_As F};
1146 end

1147

1148 % disp(['Please, press Enter button to see another '......
1149 % 'object and its recognition....'])

1150 % pause

1151 % clc

1152 end

1153

1170 fclose (fid);

1171

1172 close all

1173 clc

1174

1175 disp(['Please, see the documented results of object '......

1176 'recognition in the open'l])
1177 disp(['text file then press any keyboard button to '.....
1178 'resume the code >>>>'])

1179 Text='Object Recognition Results for Testing.txt';

1154 Total_ Number_ of Failures=sum(Failures_Vector); % The total number
1155 % of failures in the
1156 % object recognition
1157 % process.

1158

1159 fprintf (fid, ['=== ==== ===== ===== ======

1160 mmmmmmmmmem— e ————————==\1r\n']) ;

1161 fprintf (fid, ['+** The Total Number of Successes: %0.3d out '......
1162 'of %$0.3d (%3.4f%%) \r\n\n'],Total_No_of_Objects—......

1163 Total_Number_of_Failures,Total_No_of_ Objects,......

1164 ((Total_No_of_Objects—Total_Number_of_Failures)/.....

1165 Total_No_of_Objects)*100);

1166 fprintf (fid, ['+** The Total Number of Failures: %0.3d out'.....

1167 ' of %$0.3d (%3.4f%%) \r\n\n'],....

1168 Total_Number_of_Failures,Total_No_of_Objects,.....

1169 (Total_Number_of_Failures/Total_No_of_Objects)*100);




198

Appendix F. A Code for the Optical Model

1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229

open (Text) Opening the text file which contains

% the results of object recognition.
pause
clc

open ('The_JTC_Testing_and_Setting_up_Thresholds.m')

Testing the process of object detection.

Note that, the objects here are known for us in order to use them
for testing the object detection process as well as setting up a
detection threshold.

o° o° o o

The calculation of the mean and standard deviation for the
crosscorrelations between the objects and each impulse response.
This is done for setting up a threshold for object detection.
Vectorization=reshape (Max_Desired Cross_Fields,1,.....

size (Max_Desired_Cross_Fields,1)*.....

size (Max_Desired_Cross_Fields, 2));
Mean=mean (Vectorization) ;
STD=std(Vectorization);
save ('Computed Mean for Object Detection', '"Mean')
save ('Computed STD for Object Detection', 'STD')

o° o o

fid=fopen('Object Detection Results for Testing.txt', .....
! % A text file for typing

% the object detection

% results for testing.

fprintf (fid, ['\n ***%+* The Object Detection Results '.......
'for Testing Obtained from the Code of the xx*x*x\r\n']);

w');

fprintf (fid, [' **%% Joint Transform Correlator (JTIC) for '.....
'Testing and Setting up Thresholds **xx\r\n\n']);
fprintf (£fid, ['The Object No. The Object Originally '.......

'Is The Detected Object Is The Status\r\n']);
fprintf (fid, ['============== ===== S =

Failures_Vectorl=zeros(l,.......
Total_No_of_Obijects); vector for counting the number
f failures in the object detection

process.

o

Latex_Matrix=cell (Total_No_of_Objects,4); % This matrix is used
% for creating a table
% in Latex.
for w=1:Total_No_of_Objects
% The object detection process.
if max (Max_Desired_Cross_Fields(w, :))>=(Mean—STD) && .....
max (Max_Desired_Cross_Fields (w, :))<=(Mean+STD)
Detected_As='a face';
Detected_Object=imread ('A_Face.jpg');
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1230 else

1231 Detected_As='not a face';

1232 Detected_Object=imread ('Not_a_Face.jpg');
1233 end

1234

1235 b='a face'; % The object originally is a face.
1236

1237 Str=strcmp (Detected_As, 'a face');

1238 F='Success';

1239 if w<=L3 && Str==0;

1240 F='Failure';

1241 Failures_Vectorl (l,w)=1;

1242 end

1243
1244 Object_Number=[num2str(w) '.Jjpg'l;
Object_Location=fullfile (Objects_Folder,Object_Number) ;
Object=im2double (rgb2gray (imread (Object_Location)));
subplot (2,1,1)

imshow (Object)

title(['Object No.' num2str(w) ' Originally Is'])
subplot (2,1,2)

imshow (Detected_Object)

title('It Is Detected As')

1245
1246
1247
1248
1249
1250
1251

o0 o° o° o° o o° o° o° o

1252
1253

1254 if Str==

1255 fprintf (fid, ['$0.3d\t\t\t $—23s\t $—22s\t'.....
1256 ! %$s \r\n\n'],w,b,Detected_As,F);

1257 Latex_Matrix(w,1l:4)={num2str(w) b Detected_As F};

1258 else fprintf (fid, ['%0.3d\t\t\t $—23s\t $—22s\t"'....
1259 ! %$s \r\n\n'],w,b,Detected_As,F);

1260 Latex_Matrix(w,1:4)={num2str (w) b Detected_As F};

1261 end

1262

1263 % disp(['Please, press Enter button to see another '......
1264 % 'object and its detection....'])

1265 % pause

1266 % clc

1267 end

1268
1260 Total_ Number of_ Failuresl=sum(Failures_Vectorl);
1270

1271 the object

o0 o0 o o° oe

1279 Total_Number_of_Failuresl,Total_No_of_Objects,.....

The total number
of failures in

1272 detection

1273 process.

1274

1275 fprintf (£id, ['== ==== ===== ===== ======"'__.,.
1276 | ======================================\r\n'] ) ;

1277 fprintf (fid, ['** The Total Number of Successes: %0.3d out '.....
1278 'of %$0.3d (%3.4f%%) \r\n\n'],Total_No_of_Objects—.....
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1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300

((Total_No_of_Objects—Total_Number_of_ Failuresl)/.....
Total_No_of_Objects)*100);

fprintf (fid, ['** The Total Number of Failures: %$0.3d '.....
'out of %0.3d (%3.4f%%) \r\n\n'],Total_ Number_of_Failuresl, ....
Total_No_of_Objects,......
(Total_Number_of_Failuresl/Total_No_of_Objects)*100);

fclose (fid);

close all
clc

disp(['Please, see the documented results of object '.....
'"detection in the open'])

disp(['text file then press any keyboard button to '.....
'resume the code >>>>'])

Text="'Object Detection Results for Testing.txt';

open (Text) Opening the text file which contains

)

<
o
°

the results of object detection.

pause

clc

open ('The_JTC_Testing_and_Setting_up_Thresholds.m')
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Appendix G

Results of the Optical Recognition

Table G.1: The recognition of all 108 objects by using the joint
transform correlator (JTC).

Object No. Input Face Recognized Output Face Status
1 Mr. Mansour Alshammari Unknown Object Failure
2 Mr. Mansour Alshammari Unknown Object Failure
3 Mr. Mansour Alshammari Unknown Object Failure
4 Mr. Mansour Alshammari Unknown Object Failure
5 Mr. Mansour Alshammari Unknown Object Failure
6 Mr. Mansour Alshammari Unknown Object Failure
7 Mr. Mansour Alshammari Unknown Object Failure
8 Mr. Mansour Alshammari Mr. Mohammed Hanafy Failure
9 Mr. Mansour Alshammari Mr. Mohammed Hanafy Failure
10 Mr. Mansour Alshammari Unknown Object Failure
11 Mr. Mansour Alshammari Unknown Object Failure
12 Mr. Mansour Alshammari Unknown Object Failure
13 Mr. Mansour Alshammari Unknown Object Failure
14 Mr. Mansour Alshammari Unknown Object Failure
15 Mr. Mansour Alshammari Unknown Object Failure
16 Mr. Mansour Alshammari Unknown Object Failure
17 Mr. Mansour Alshammari Unknown Object Failure
18 Mr. Mansour Alshammari Unknown Object Failure
19 Mr. Mansour Alshammari Unknown Object Failure
20 Mr. Mansour Alshammari Unknown Object Failure
21 Mr. Mansour Alshammari Mr. Mohammed Hanafy Failure
22 Mr. Mansour Alshammari Unknown Object Failure

Continued on the next page ...
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Object No. Input Face Recognized Output Face Status
23 Mr. Mansour Alshammari Unknown Object Failure
24 Mr. Mansour Alshammari Unknown Object Failure
25 Mr. Mansour Alshammari Mr. Mohammed Hanafy Failure
26 Mr. Mansour Alshammari Mr. Mohammed Hanafy Failure
27 Mr. Mansour Alshammari Mr. Mohammed Hanafy Failure
28 Mr. Mansour Alshammari Unknown Object Failure
29 Mr. Mansour Alshammari Mr. Mohammed Hanafy Failure
30 Mr. Mansour Alshammari Unknown Object Failure
31 Mr. Mansour Alshammari Mr. Mohammed Hanafy Failure
32 Mr. Mansour Alshammari Mr. Mohammed Hanafy Failure
33 Mr. Mansour Alshammari Mr. Mohammed Hanafy Failure
34 Mr. Mansour Alshammari Unknown Object Failure
35 Mr. Mansour Alshammari Mr. Mohammed Hanafy Failure
36 Mr. Mansour Alshammari Mr. Mohammed Hanafy Failure
37 Mr. Methkir Alharthee Unknown Object Failure
38 Mr. Methkir Alharthee Unknown Object Failure
39 Mr. Methkir Alharthee Unknown Object Failure
40 Mr. Methkir Alharthee Unknown Object Failure
41 Mr. Methkir Alharthee Unknown Object Failure
42 Mr. Methkir Alharthee Unknown Object Failure
43 Mr. Methkir Alharthee Unknown Object Failure
44 Mr. Methkir Alharthee Unknown Object Failure
45 Mr. Methkir Alharthee Unknown Object Failure
46 Mr. Methkir Alharthee Unknown Object Failure
47 Mr. Methkir Alharthee Unknown Object Failure
48 Mr. Methkir Alharthee Unknown Object Failure
49 Mr. Methkir Alharthee Unknown Object Failure
50 Mr. Methkir Alharthee Unknown Object Failure
51 Mr. Methkir Alharthee Unknown Object Failure
52 Mr. Methkir Alharthee Unknown Object Failure
53 Mr. Methkir Alharthee Unknown Object Failure
54 Mr. Methkir Alharthee Unknown Object Failure
55 Mr. Methkir Alharthee Unknown Object Failure
56 Mr. Methkir Alharthee Unknown Object Failure
57 Mr. Methkir Alharthee Unknown Object Failure
58 Mr. Methkir Alharthee Unknown Object Failure
59 Mr. Methkir Alharthee Unknown Object Failure
60 Mr. Methkir Alharthee Unknown Object Failure
61 Mr. Methkir Alharthee Unknown Object Failure

Continued on the next page ...
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Object No. Input Face Recognized Output Face Status
62 Mr. Methkir Alharthee Unknown Object Failure
63 Mr. Methkir Alharthee Unknown Object Failure
64 Mr. Methkir Alharthee Unknown Object Failure
65 Mr. Methkir Alharthee Unknown Object Failure
66 Mr. Methkir Alharthee Unknown Object Failure
67 Mr. Methkir Alharthee Unknown Object Failure
68 Mr. Methkir Alharthee Unknown Object Failure
69 Mr. Methkir Alharthee Unknown Object Failure
70 Mr. Methkir Alharthee Unknown Object Failure
71 Mr. Methkir Alharthee Unknown Object Failure
72 Mr. Methkir Alharthee Unknown Object Failure
73 Mr. Mohammed Hanafy Unknown Object Failure
74 Mr. Mohammed Hanafy Unknown Object Failure
75 Mr. Mohammed Hanafy Unknown Object Failure
76 Mr. Mohammed Hanafy Mr. Mohammed Hanafy Success
7 Mr. Mohammed Hanafy Unknown Object Failure
78 Mr. Mohammed Hanafy Mr. Mohammed Hanafy Success
79 Mr. Mohammed Hanafy Mr. Mohammed Hanafy Success
80 Mr. Mohammed Hanafy Mr. Mohammed Hanafy Success
81 Mr. Mohammed Hanafy Mr. Mohammed Hanafy Success
82 Mr. Mohammed Hanafy Mr. Mohammed Hanafy Success
83 Mr. Mohammed Hanafy Mr. Mohammed Hanafy Success
84 Mr. Mohammed Hanafy Unknown Object Failure
85 Mr. Mohammed Hanafy Mr. Mohammed Hanafy Success
86 Mr. Mohammed Hanafy Mr. Mohammed Hanafy Success
87 Mr. Mohammed Hanafy Mr. Mohammed Hanafy Success
88 Mr. Mohammed Hanafy Mr. Mohammed Hanafy Success
89 Mr. Mohammed Hanafy Mr. Mohammed Hanafy Success
90 Mr. Mohammed Hanafy Mr. Mohammed Hanafy Success
91 Mr. Mohammed Hanafy Mr. Mohammed Hanafy Success
92 Mr. Mohammed Hanafy Mr. Mohammed Hanafy Success
93 Mr. Mohammed Hanafy Unknown Object Failure
94 Mr. Mohammed Hanafy Unknown Object Failure
95 Mr. Mohammed Hanafy Unknown Object Failure
96 Mr. Mohammed Hanafy Unknown Object Failure
97 Mr. Mohammed Hanafy Mr. Mohammed Hanafy Success
98 Mr. Mohammed Hanafy Unknown Object Failure
99 Mr. Mohammed Hanafy Mr. Mohammed Hanafy Success
100 Mr. Mohammed Hanafy Unknown Object Failure

Continued on the next page ...
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Object No. Input Face Recognized Output Face Status
101 Mr. Mohammed Hanafy Unknown Object Failure
102 Mr. Mohammed Hanafy Unknown Object Failure
103 Mr. Mohammed Hanafy Mr. Mohammed Hanafy Success
104 Mr. Mohammed Hanafy Mr. Mohammed Hanafy Success
105 Mr. Mohammed Hanafy Mr. Mohammed Hanafy Success
106 Mr. Mohammed Hanafy Unknown Object Failure
107 Mr. Mohammed Hanafy Unknown Object Failure
108 Mr. Mohammed Hanafy Unknown Object Failure

The table end.
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Appendix H

Results of the Optical Detection

Table H.1: The detection of all 108 objects by using the joint

transform correlator (JTC).

Object No. Input Object Detected Output Object Status
1 a face not a face Failure
2 a face not a face Failure
3 a face not a face Failure
4 a face not a face Failure
5 a face not a face Failure
6 a face not a face Failure
7 a face not a face Failure
8 a face not a face Failure
9 a face a face Success
10 a face not a face Failure
11 a face not a face Failure
12 a face not a face Failure
13 a face not a face Failure
14 a face not a face Failure
15 a face not a face Failure
16 a face not a face Failure
17 a face not a face Failure
18 a face not a face Failure
19 a face not a face Failure
20 a face not a face Failure
21 a face a face Success
22 a face not a face Failure

Continued on the next page ...
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Object No. Input Object Detected Output Object Status

23 a face not a face Failure
24 a face not a face Failure
25 a face not a face Failure
26 a face a face Success
27 a face a face Success
28 a face not a face Failure
29 a face not a face Failure
30 a face a face Success
31 a face not a face Failure
32 a face not a face Failure
33 a face a face Success
34 a face a face Success
35 a face not a face Failure
36 a face a face Success
37 a face a face Success
38 a face a face Success
39 a face a face Success
40 a face a face Success
41 a face a face Success
42 a face a face Success
43 a face a face Success
44 a face a face Success
45 a face a face Success
46 a face a face Success
47 a face a face Success
48 a face a face Success
49 a face a face Success
50 a face a face Success
51 a face a face Success
52 a face a face Success
53 a face a face Success
54 a face a face Success
55 a face a face Success
56 a face a face Success
57 a face not a face Failure
58 a face a face Success
59 a face a face Success
60 a face a face Success
61 a face a face Success

Continued on the next page ...
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Object No. Input Object Detected Output Object Status
62 a face a face Success
63 a face a face Success
64 a face a face Success
65 a face a face Success
66 a face a face Success
67 a face a face Success
68 a face a face Success
69 a face a face Success
70 a face not a face Failure
71 a face not a face Failure
72 a face not a face Failure
73 a face a face Success
74 a face not a face Failure
75 a face not a face Failure
76 a face a face Success
7 a face not a face Failure
78 a face not a face Failure
79 a face not a face Failure
80 a face not a face Failure
81 a face not a face Failure
82 a face a face Success
83 a face not a face Failure
84 a face a face Success
85 a face not a face Failure
86 a face a face Success
87 a face not a face Failure
88 a face a face Success
89 a face a face Success
90 a face a face Success
91 a face a face Success
92 a face not a face Failure
93 a face a face Success
94 a face not a face Failure
95 a face not a face Failure
96 a face not a face Failure
97 a face not a face Failure
98 a face a face Success
99 a face not a face Failure
100 a face a face Success

Continued on the next page ...
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Object No. Input Object Detected Output Object Status

101 a face a face Success
102 a face a face Success
103 a face not a face Failure
104 a face a face Success
105 a face not a face Failure
106 a face a face Success
107 a face a face Success
108 a face a face Success

The table end.
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Appendix

MSEs Plots of Reconstructing Some
Training Faces

The Mean Squared Emors of Reconstructing Training
Face No.1 for Different Selected Eigenfaces
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Figure I.1: The plot of the mean squared errors (MSEs) of recon-
structing training face number one for different selected eigenfaces
compared with resulted mean squared errors when the PCA and
IPCA algorithms are used.
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The Mean Squared Errors of Reconstructing Training
Face No.2 for Different Selected Eigenfaces
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Figure 1.2: The plot of the mean squared errors (MSEs) of recon-
structing training face number two for different selected eigenfaces
compared with resulted mean squared errors when the PCA and
IPCA algorithms are used.
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The Mean Squared Error

The Mean Squared Error
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Face No.3 for Different Selected Eigenfaces
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Figure 1.3: The plot of the mean squared errors (MSEs) of recon-
structing training face number three for different selected eigenfaces
compared with resulted mean squared errors when the PCA and
IPCA algorithms are used.
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The Mean Squared Erors of Reconstructing Training
Face No4 for Different Selected Eigenfaces
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Figure I.4: The plot of the mean squared errors (MSEs) of recon-
structing training face number four for different selected eigenfaces
compared with resulted mean squared errors when the PCA and
IPCA algorithms are used.
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Figure 1.5: The plot of the mean squared errors (MSEs) of recon-
structing training face number six for different selected eigenfaces
compared with resulted mean squared errors when the PCA and

The Mumber of Selected Eigenfaces

IPCA algorithms are used.
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Figure 1.6: The plot of the mean squared errors (MSEs) of recon-
structing training face number seven for different selected eigenfaces
compared with resulted mean squared errors when the PCA and
IPCA algorithms are used.
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Figure 1.7: The plot of the mean squared errors (MSEs) of recon-
structing training face number eight for different selected eigenfaces
compared with resulted mean squared errors when the PCA and

IPCA algorithms are used.
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Figure 1.8: The plot of the mean squared errors (MSEs) of recon-
structing training face number nine for different selected eigenfaces
compared with resulted mean squared errors when the PCA and
IPCA algorithms are used.
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Appendix

A Code for Optimizing the Optical Model
Database

THIS code is for optimizing the impulses database of the joint transform correlator
(JTC) for object detection and face recognition.

o

Optimizing the Impulses' Database of the Joint Transform
Correlator (JTC) for Object Detection and Face Recognition.

o
o
o
°

clc
clear all
close all

© W N O e W N

10
11 Total No_of_ TImpulses=3; % The total number of the impulses.
12

13

14 Objects_Folder=[cd ........

15 '\The Black Background Tested Objects'];
16

The folder of the
black background
tested objects.

o° o o

17
18 Objects_Folder=[cd .........

'"\The White Background Tested Objects']; % The folder of the
white background

tested objects.

o
o
o
°

19
20

o° o

21
22 1f isdir (Objects_Folder)==

23 Error_Message=sprintf (.....
24 '"Error: The following folder does not exist\n%s',.....
25 Objects_Folder);

26 warndlg (Error_Message) ;
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27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

76

break
end

Objects=.......
dir(fullfile (Objects_Folder, 'x.Jjpg')); % Listing the folder of
% the black or white

background objects.

The total number
of the objects.

Total_No_of_Objects=length (Objects);

)
°
)

)

Objs=[36 36 36]; % Each element in this vector represents
% the total number of the objects that
% a

re taken for each impulse.

L1=0bijs (1) ;
% objects for Mr. Mansour Alshammari.
L2=120 is the total number of the
objects for Mr. Methkir Alharthee.
L3=180 is the total number of the
objects for Mr. Mohammed Hanafy.

% L1=60 is the total number of the
)

4

L2=L1+0bjs (2

L3=L2+0b7s (3) ;

o° o° o° o°

Imhist for setting up a threshold to work on just the pixels of

a face and throwing the background pixels. Imhist calculates the
number of pixels in an object that have the same intensity
levels. So, if an object has a unified background then the
biggest histogram of the intensity levels will be for the
backgroubd pixels because the total number of pixels that have
the same intensity levels are the background pixels of the
object. Note that, the histogram of a digital image is defined as
the discrete function, h(rk)=nk, where rk is the kth intensity
level and nk is the number of pixels in the image whose intensity
level is rk.

hist_Objects=zeros (Total_No_of_Objects, 256);

for Al=1:Total_No_of_Obijects

o0 o° o0 o° o° o o° o° d° o° oo

Object_Number=[num2str (Al) '.Jpg'l;
Object_Location=fullfile (Objects_Folder,Object_Number);
Object=double (rgb2gray (imread (Object_Location))); % The object.
hist_Objects(Al,:)=.....
imhist (uint8 (Object)); Note that, each object must be
scaled between 0 to 255 before
using imhist. For doing that,
uint8 can be used for converting
the object class form double to
uint8.

o° o° o° o° o° o

plot (hist_Objects (Al, :))
if Al<=L1

o° oo
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7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105

107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125

126

o0 o0 o0 O O O O O A A A A° A A A o o o

title(['The Histogram of Object No.' num2str (Al)
' for Mr. Mansour Alshammari'])
elseif A1>L1 && Al<=L2
title(['The Histogram of Object No.' num2str(Al) .....
' for Mr. Methkir Alharthee'])
elseif A1>L2 && Al<=L3
title(['The Histogram of Object No.' num2str(Al) .....
' for Mr. Mohammed Hanafy'])
end
xlabel ('Intensity Level r_{k}")
ylabel ({'The Number of Pixels in the Object Whose '....
'Intensity Level Is r_{k} Where h(r_{k})=n_{k}"'})
axis tight

disp(['Please, press any keyboard button to explore '....
'the remaining histograms >>>>>>>'1])

pause

clc

end

Mean_hist_Objects=sum(hist_Objects,1)/......

o® o° o© o° o° o° oP

o oo

Objects_Threshold=8;

o® o° o® o° o o° oP

Total_No_of_Objects; The average histogram

% for all obijects.
plot (Mean_hist_Objects)
title('The Mean Histogram of All Objects')

xlabel ('Intensity Level r_{k}")

ylabel ({'The Mean Number of Pixels from All Objects Whose';....

'Intensity Level Is r_{k}'})
axis tight
pause

Setting up a threshold in order to work on just the pixels of the

faces and blocking the pixels of the backgrounds.

have black backgrounds. Note that, all
intesity levels below the threshold
represent the objects backgrounds because
these levels have the biggest histogram.
Objects_Threshold=180; The Picked threshold is based on the

o® o° o° o° o oe

that, all intesity levels above the
threshold represent the objects
backgrounds because these levels have
the biggest histogram.

o® o° o° o° o o° o

Max_Desired_Cross_Fields=zeros (Total_No_of_Objects, .....

Total_No_of_Impulses); % Each element of each row in this

The picked threshold is based on the average
histogram for all objects when the objects

average histogram for all objects when
the objects have white backgrounds. Note
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matrix represents the maximum value
of the desired crosscorrelated field
between an object and one of the
impulses.

127
128
129

o° o o oe

130
131
132
133 Recognition_Combinations=zeros (L1* (L2—L1)* (L3—-L2), .....

134 Total_No_of_ Impulses+l); The first three columns of this

135 matrix contain different
combinations of impulses and the
third column represents the error
rates of recognition associated with
those combinations.

136
137
138

o° 0@ o° oo o° oe

139
140
141
142 Detection_Combinations=zeros (Llx (L2—L1)* (L3—L2), ......

143 Total_No_of_ Impulses+l); The first three columns of this
144 matrix contain different
combinations of impulses and the
third column represents the error
rates of detection associated with

those combinations.

145
146
147

o0 o° o° o o oe

148
149

150

151 1=0;

152

153

154 for Iml=1:L1

155 for Im2=L1+1:1L2

156 for Im3=L2+1:L3

157

158 Impulses=[Iml Im2 Im3]; % The selected impulses.
159

160 for n=1:Total_No_of_Objects

161
162 Normalizing all the objects for removing
lightening effects on them then increasing the
resolution of object detection and recognition.
Note that, the normalization will be done just
for the faces pixels for keeping variations among
the objects and impulses Jjust in the faces
without the backgrounds effects.

163
164
165

167

o° o© o o° o° o° o

168

169 Object_Number=[num2str(n) '.jpg']l;

170 Object_Location=.....

171 fullfile (Objects_Folder,Object_Number) ;

172 Objectl=double (rgb2gray(.....

173 imread (Object_Location))); % The object.

174

175 T=0bjectl>0Objects_Threshold; The pixels bigger

176 % than the threshold
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177

179
180
181
182

184
185
186
187

189
190
191
192
193
194
195

197
198
199
200
201
202
203
204
205

207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225

226

o° o° o° o o° o°

are of interest
because they
represent the pixels
of a face.

The pixels smaller
than the threshold
are of interest
because they
represent the
pixels of a face.
); % The normalized
% object.

o° o° o° o°

T=0bject1l<Objects_Threshold;

~ o° J° o° o° od° o°

Object=zeros(size(T,1),size(T,2

for R2=1:size (T, 1)
for C2=1l:size (T, 2)
if T(R2,C2)==
Object (R2,C2)=.....
ceil (255% (Objectl (R2,C2) /max (....
max (Objectl)))); The
normalization
of the object.
This is done to
increase the
dynamic range of
the object for
visualization by
scaling the
intensities from
0 to 255.

0 o0 o° o° o o o° o° o° o° o°

end
end
end
[r c]=size (Object);

for m=1:Total_No_of_Impulses

Normalizing all the impulses for removing
lightening effects on them then increasing
the resolution of object detection and
recognition. Note that, the normalization
will be done just for the faces pixels for
keeping variations among the objects and
impulses just in the faces without the
backgrounds effects.
Impulse_Number=[num2str (Impulses(m)) '.Jjpg']l;
Impulse_Location=......

fullfile (Objects_Folder, Impulse_Number) ;
Impulsel=double (rgb2gray(.....
imread (Impulse_Location)));

o® o° o° o o° o° o° o

The impulse
response.

o o°
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227 Tl=Impulsel>......
228 Objects_Threshold;
229

The pixels bigger than
the threshold are of
interest because they
represent the pixels
of a face.

230
231

o® o° o° o o

232
Tl=Impulsel<.....

234 % Objects_Threshold; % The pixels smaller
235 % % than the threshold
236 % % are of interest

237 % % because they

238 % % represent the

239 % % pixels of a face.
240 Impulse=zeros(size (T1,1),....

241 size(T1,2)); % The normalized

242 % impulse response.

243 for Rl=1l:size(T1,1)

244 for Cl=1l:size(T1,2)

245 if T1(R1,Cl)==1

246 Impulse(R1,Cl)=.....

247 ceil (255 (Impulsel (R1,C1)/....
248 max (max (Impulsel))))....

249 ; % The normalization of the
250 % impulse response. This is
251 % done to increase the

252 % dynamic range of the

253 % impulse for visualization
254 % by scaling the intensities
255 % from 0 to 255.

256 end

257 end

258 end

259 [p gl=size (Impulse);

260
261
262 Equalizing the width of the impulse response
with the width of the object in order to

collimate them on the input transparencies.

263

o° o oe

264

265 if g>c

266 if mod(g—c,2)==

267 Object=[zeros (r, (g—c)/2) Object .....
268 zeros (r, (g—c)/2)1;

269 elseif mod(g—c,2)==1

270 Object=[zeros (r, floor ((g—c)/2)) .....
271 Object zeros(r,floor ((g—c)/2)+1)1;
272 end

273 elseif g<c

274 if mod(c—q, 2)==

275 Impulse=[zeros (p, (c—q)/2) Impulse

276 zeros (p, (c—q) /2)1;
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277 elseif mod(c—qg, 2)==

278 Impulse=[zeros (p, floor((c—q)/2)) .....
279 Impulse zeros (p, floor ((c—q)/2)+1)]1;
280 end

281 end

282
Collimating the impulse response and the
object on the input transparencies. Note
that, the separation between the impulse
response and object must be bigger than

max {Wh, Wg}+Wg/2+Wh/2 in order to make the
output crosscorrelations of the impulse
response and object are completely separated
without any overlapping.

284
285
286
287
288
289

o° o© o o° o° o° o oo

290

291 Wh=size (Impulse,l); % The width of the impulse

292 % response in the direction
293 % of the yl—coordinate.

294 Wg=size (Object,1l); % The width of the object in
295 % the direction of the

296 % yl—coordinate.

297 Y=max (Wh, Wg) + ( (Wh+Wg) /2); % The separation

298 % between the centers
299 % of the impulse

300 % response and

301 % object.

302 dis=10; This distance in order to make the

303 separation between the centers of the
impulse response and object bigger

than max{Wh, Wg}+Wg/2+Wh/2.

304

o° o o° oe

305

306 Impulse_Object=[............

307 zeros (ceil (max (Wh,Wg) /2+Wh/4+3/4+Wg) +.. ...
308 dis,size(Impulse,2));Impulse;....

309 zeros (max (Wh,Wg) +dis, size (Impulse,2)); ....
310 Object; zeros (ceil (max (Wh,Wg) /2+.....

311 3/4+xWh+Wg/4)+dis, size (Object,2))];

312

313 % Equalizing the dimensions of the input plane
314 % Pl by padding it with zeros.

315 [R Cl=size (Impulse_Object);

316 if R>C

317 if mod(R—C, 2)==0

318 Impulse_Object=[.....

319 zeros (size (Impulse_Object, 1), ....
320 (R—C) /2) Impulse_Object

321 zeros (size (Impulse_Object, 1), ....
322 (R—C)/2)1;

323 elseif mod(R—C,2)==

324 Impulse_Object=[....

325 zeros (size (Impulse_Object, 1), ....

326 floor ((R—C)/2)) Impulse_Object
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327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375

376

zeros (size (Impulse_Object,1),....
floor ((R—C)/2)+1)1;
end
elseif R<C
if mod(C—R, 2)==0
Impulse_Object=[zeros ((C—R)/2,.....
size (Impulse_Object,2));....
Impulse_Object;zeros ((C—R)/2,....
size (Impulse_Object,2))1;
elseif mod(C—R,2)==1
Impulse_Object=[.....
zeros (floor ((C—R)/2), ....
size (Impulse_Object,2));....
Impulse_Object;.....
zeros (floor ((C—R) /2)+1, .....
size (Impulse_Object,2))1;
end
end

The transmitted field from
the input plane P1.

Ul=Impulse_Object;

o
°
o
o

[M N]=size (Ul);
L=10; The physical side length of the array
which holds the input plane Pl in
meters (m) .

dx1_Input=L/N; The sample spacing in the

o° o° oe

input plane array in the
direction of the spatial space
coordinate x1 in meters (m).
The sample spacing in the
input plane array in the

dyl_Input=L/M;

direction of the spatial space
coordinate yl in meters (m).

o® o° o° o° o° o° o o

dx1l_TInput; % Sampling the input plane Pl in
the direction of the spatial

space coordinate x1.

o° o0 o

dyl_Input:ceil (M/2)xdyl_TInput—....
dyl_Input; % Sampling the input plane P1 in
the direction of the spatial

o0 o0 o

space coordinate yl.

U2=fftshift (fft2 (fftshift (....
ul))); The Fourier transform of the
transmitted field in the back

o
o
o
o



Appendix J. A Code for Optimizing the Optical Model Database 225

377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405

407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425

426

)

% focal plane of the lens L2.
I=(abs (U2)) ."2;

o

The intensity of the Fourier
transformed field in the
plane P2.

o° o o

lambda=550e—9; % The wavelength in meters (m).
£f=0.055; % The focal length in meters (m).
dx2=(lambdaxf)/....
(Nxdx1l_Input); The sample spacing in the
plane P2 in the direction
of the spatial space
coordinate x2 in meters

(m) .

o° o0 o oo oP

dy2=(lambda*f)/.....
(Mxdyl_Input); The sample spacing in the
plane P2 in the direction
of the spatial space
coordinate y2 in meters
(m) .
xX2_Axis=—floor (N/2) *xdx2:dx2:ceil (N/2) *dx2—. ...
dx2; Sampling the plane P2 in the
direction of the spatial space
coordinate x2.
y2_Axis=—floor (M/2)xdy2:dy2:ceil (M/2) xdy2—. ...
dy2; Sampling the plane P2 in the
direction of the spatial space
coordinate vy2.

o° o o o° oe

o o oe

o° o oe

U3=ifftshift (ifft2 (ifftshift(.....
I))); % The crosscorrelated field in the

% back focal plane of the lens L4.
dx3=(lambdax*f) / (Nxdx2) ; The sample spacing in
the plane P3 in the
direction of the
spatial space
coordinate x3 in
meters (m) .
The sample spacing in
the plane P3 in the
direction of the
spatial space
coordinate y3 in
meters (m).
x3_Axis=—floor (N/2) xdx3:dx3:ceil (N/2) *dx3—.....

dx3; % Sampling the plane P3 in the

% direction of the spatial space

% coordinate x3.
y3_Axis=—floor (M/2)xdy3:dy3:ceil (M/2) xdy3—. ...

dy3=(lambdax*f) / (Mxdy2) ;

A 0 O o A0 A o o O o° o° oP
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427
428
429
430
431
432

434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455

457
458
459
460
461
462
463
464
465

467
468
469
470
471
472
473
474
475

dy3; Sampling the plane P3 in the
direction of the spatial space

coordinate y3.

o oo oP

Synthesizing a desired filtering mask then
filtering the crosscorrelated field in the
plane P3.

Cen=floor (M/2)+1;

o oo oP

The center of the filtering
mask.

Cenl=Cen— (Y+dis) ; The center of the desired

oo oo o° oe

crosscorrelated field.

Whl=qg; % The width of the impulse response in
% the direction of the xl-—coordinate.
Wgl=c; % The width of the object in the

direction of the xl—coordinate.

Mask=zeros (M, N) ;
for P=Cenl—floor ((Wh+Wg) /2) :Cenl+.....
ceil ((Wh+Wg) /2)
for Q=Cen—floor ((Whl+Wgl)/2) :Cen+.....
ceil ((Whl+wgl) /2)
Mask (P, Q)=1;
end
end

% The filtered
% crosscorrelated field
% in the plane P3.

Cross_Field=Mask.xU3;

For simplicity, instead of processing the
entire image of the filtered crosscorrelated
field, we select only the crosscorrelated
field of interest.
P=Cenl—floor ( (Wh+Wg) /2) :Cenl+ceil ( (Wh+Wg) /2);
O0=Cen—floor ((Whl+Wgl)/2) :Cen+tceil ((Whl+Wgl) /2);
Desired_Cross_Field=U3(P,Q);

o° o o oP

Max_Desired_Cross_Fields(n,m)=.....
max (max (Desired_Cross_Field));

end

end

Testing the process of object recognition.
Note that, the objects here are known for us in

o 0P o°

order to use them for testing the object recognition
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477

479
480
481
482

484
485
486
487
488
489
490
491
492
493
494
495

497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526

o° o

< < 00 o° o0 o° o° o
N =

process as well as setting up a recognition
threshold.

The elements in each of the following vectors
represent the maximum values of the desired
crosscorrelated fields between the objects and their
corresponding impulse. Note that, each impulse and
its corresponding objects have a same face so the
vectors will include the biggest crosscorrelations.

=(Max_Desired_Cross_Fields (1:L1,1))."';
= (Max_Desired_Cross_Fields (L1+1:L2,2)).";
V3= (Max_Desired_Cross_Fields (L2+1:13,3))."';

o® o° o° o° o oP

The calculation of the mean and the standard
deviation for each vector of the biggest
crosscorrelations and stacking them in a vector for
the means and another for the standard deviations.
This is done for setting up a threshold for object

recognition.
V_Mean=[mean (V1) ;mean (V2) ;mean (V3) ];
V_STD=[std (V1) ;std(V2);std(V3)];
Failures_Vector=zeros(l,.....

f

Total_No_of_Objects); A vector for counting the
number of failures in the

object recognition process.

o° o° oe

or w=1l:Total_No_of_Objects
% The object recognition process.
for 1ii=1:Total_No_of_TImpulses
if max (Max_Desired_Cross_Fields(w,:))==....
Max_Desired_Cross_Fields (w,1i) &é&
max (Max_Desired_Cross_Fields (w, :)
(V_Mean (ii,1)—V_STD(ii,1)) &&
max (Max_Desired_Cross_Fields (w, :))<=...
(V_Mean (ii, 1)+V_STD (ii, 1))
z={'Mr. Mansour Alshammari';....
'Mr. Methkir Alharthee';.....
'Mr. Mohammed Hanafy'};
Recognized_As=char(z (ii,1));
break
else
Recognized_As='"'Unknown Object';
end
end
% Defining the object.
if w<=L1
name='Mr. Mansour Alshammari';
elseif Ll<w && w<=L2

227
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name='Mr. Methkir Alharthee';
else name='Mr. Mohammed Hanafy';
end

Strl=strcmp (Recognized_As, ....
'Mr. Mansour Alshammari');
Str2=strcmp (Recognized_As, 'Mr. Methkir Alharthee');
Str3=strcmp (Recognized_As, 'Mr. Mohammed Hanafy');
='Success';
if w<=L1l && Strl==0;
F='Failure';
Failures_Vector (1,w)=1;
elseif w>Ll && w<=L2 && Str2==0;
F='Failure';
Failures_Vector (1,w)=1;
elseif w>L2 && w<=L3 && Str3==0;
F='Failure';
Failures_Vector (1,w)=1;
end
end

Total Number_of Failures=.....

sum (Failures_Vector) ; The total number of
failures in the object
recognition process.

o° o oe

Recognition_Error_Rate=(Total_Number_of_Failures/.....
Total_No_of_Objects)*100; % The error rate

<
o
°

of recognition.

Testing the process of object detection.

Note that, the objects here are known for us in order
to use them for testing the object detection process
as well as setting up a detection threshold.

o0 o° o oe

The calculation of the mean and standard deviation
for the crosscorrelations between the objects and
each impulse response. This is done for setting up a
threshold for object detection.
Vectorization=reshape (Max_Desired_Cross_Fields,1,.....
size (Max_Desired_Cross_Fields,1)*.....
size (Max_Desired_Cross_Fields, 2));
Mean=mean (Vectorization) ;
STD=std (Vectorization) ;

o® o o oP

Failures_Vectorl=zeros(l,.....
Total_No_of_Objects); % A vector for counting the
% number of failures in the

object detection process.
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229

626

for w=1:Total_No_of_Objects
% The object detection process.
if max (Max_Desired_Cross_Fields(w,:))>=....

(Mean—STD) && .....

max (Max_Desired_Cross_Fields(w,:))<=....

(Mean+STD)
Detected_As='a face';
else
Detected_As='not a face';
end

[

b='a face'; % The object originally is a face.

Str=strcmp (Detected_As, 'a face');
F='Success';
if w<=L3 && Str==0;
='Failure';
Failures_Vectorl (1,w)=1;
end
end

Total Number of Failuresl=....
sum(Failures_Vectorl); The total number of

o° o° oe

detection process.

Detection_Error_Rate=(Total Number of Failuresl/
Total_No_of_Objects)«100; The error rate
of detection.

o o

Recognition_Combinations ((Im3—L2)+i, :)=.....
[Impulses Recognition_Error_Rate];

Detection_Combinations ( (Im3—L2)+1i,:)=.....
[Impulses Detection_Error_Rate];

end

i=i+ (Im3—-L2);
end
Iml

save ('Impulses Combinations for Recognition',....

'Recognition_Combinations"')

save ('Impulses Combinations for Detection',....

'Detection_Combinations')

failures in the object
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627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665

% Finding the optimal combination of impulses which obtain the
% lowest error rate of recognition.
Optimal_Combination_Recognition=0; % The optimal combination of
% impulses for recognition.
The lowest error rate of
recognition that is produced
when the optimal combination
of impulses for recognition
is used.
for j=l:size(Recognition_Combinations,1)
if Recognition_Combinations (j,Total_No_of_ Impulses+l)==.....
min (Recognition_Combinations(:,Total_No_of_TImpulses+l))
Optimal_Combination_Recognition=.......
Recognition_Combinations (j,1l:Total_No_of_Impulses);
Optimal_Error_Rate_Recognition=.....
Recognition_Combinations (j, Total_No_of_TImpulses+l);

Optimal_Error_Rate_Recognition=0;

o° o o° o° oP

end
end

Finding the optimal combination of impulses which obtain the
lowest error rate of detection.
Optimal_Combination_Detection=0;

o
)
o
°

The optimal combination of
impulses for detection.
The lowest error rate of

o)
°
o)

°

Optimal_Error_Rate_Detection=0;
detection that is produced when
the optimal combination of
impulses for detection is used.
for j=l:size(Detection_Combinations,1)
if Detection_Combinations(j,Total_No_of_ Impulses+l)==.....
min (Detection_Combinations (:,Total_No_of_TImpulses+1l))
Optimal_Combination_Detection=.....
Detection_Combinations (j,1l:Total_No_of_TImpulses);
Optimal_FError_Rate_Detection=.....
Detection_Combinations (j,Total_No_of_Impulses+l);

o° o° o oe

end
end
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Appendix K

Authorizations for Using People Photos

Figure K.1, Figure K.2 and Figure K.3 show respectively the authorizations for using
the photos of Mr. Mansour Thuwaini Al-Shammari, Mr. Mathkar Alawi Alharthi and
Mr. Mohamed Elsayed Hanafy.

4 )

[ am Mansour Thuwaini Al-Shammari. I give Abdulaziz Abdullah Alorf full
authorization to use the images of my face in his researches.

Signature,

Obscured

N\ J

Figure K.1: The authorization for using the photos of Mr. Mansour
Thuwaini Al-Shammari.
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4 )

[ am Mathkar Alawi Alharthi. I give Abdulaziz Abdullah Alorf full
authorization to use the images of my face in his researches.

N\ J

Figure K.2: The authorization for using the photos of Mr. Mathkar
Alawi Alharthi.

4 )

[ am Mr. Mohamed Elsayed Hanafy. I give Abdulaziz Abdullah Alorf full
authorization to use the images of my face in his researches.

Signature,

N\ J

Figure K.3: The authorization for using the photos of Mr. Mo-
hamed Elsayed Hanafy.
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