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ABSTRACT 
 
The challenge for wastewater professionals is to design and operate treatment processes 

that support human well being and are environmentally sensitive throughout the life-

cycle.  This research focuses on one technology for small-scale wastewater treatment: the 

vertical flow constructed wetland (VFCW), which is herein investigated for the capacity 

to remove ammonium and nitrate nitrogen from wastewater.  Hydraulic regime and 

presence/absence of vegetation are the basis for a three-phase bench scale experiment to 

determine oxygen transfer and nitrogen fate in VFCWs.  Results show that 90% NH4
+-N 

removal is achieved in aerobic downflow columns, 60% NO3
--N removal occurs in 

anaerobic upflow columns, and 60% removal of total nitrogen can be achieved in 

downflow-upflow in-series.  The experimental results are studied further using a variably 

saturated flow and reactive transport model, which allows a mechanistic explanation of 

the fate and transport of oxygen and nitrogen.  The model clarifies the mechanisms of 

oxygen transport and nitrogen consumption, and clarifies the need for readily 

biodegradable COD for denitrification. 

 

A VFCW is then compared to a horizontal flow constructed wetland (HFCW) for life 

cycle environmental impacts.  High areal emissions of greenhouse gases from VFCWs 

compared to HFCWs are the driver for the study.  The assessment shows that because a 

VFCW is only 25% of the volume of an HFCW designed for the same treatment quality, 

the VFCW has only 25-30% of HFCW impacts over 12 impact categories and 3 damage 

categories.  Results show that impacts could be reduced by design improvements. 

 

Design recommendations are downflow wetlands for nitrification, upflow wetlands for 

denitrification, series wetlands for total nitrogen removal, hydraulic load of 142 L/m2d, 

30 cm downflow wetland depth, 1.0 m upflow wetland depth, recycle, vegetation and 

medium-grained sand.  These improvements will optimize nitrogen removal, minimize 

gaseous emissions, and reduce wetland material requirements, thus reducing 

environmental impact without sacrificing wastewater treatment quality.
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1. INTRODUCTION  
 
As of 2008, sanitation issues endangered the lives of 2.5 billion people around the world 

through water and food contamination or direct contact (JMP, 2008); it also causes 

environmental damage, contributes to climate change, and wastes potential agricultural 

nutrient resources. The American Society of Civil Engineers gave U.S. wastewater 

infrastructure a “D-“ on the Report Card for America’s Infrastructure due to sewer 

overflows, under-designed or over-capacity collection and treatment systems, 

interdependence on the energy sector, inability of local agencies to fund large 

infrastructure programs (ASCE, 2009). Within the goal of environmental sustainability, 

minimizing resource use, maximizing energy efficiency, reducing waste emissions, 

enabling recycling, and increasing resilience are becoming primary goals in wastewater 

treatment, along with traditional goals of protecting human health and water quality. 

Sustainable designs1 are thus needed to provide or replace sanitation policy and 

technology to meet increasing demands.  

 

Sustainable wastewater treatment is possible through consideration of life-cycle impacts 

and the inherent nature of wastewater treatment systems. By considering the life cycle 

inputs and outputs of a treatment technology, we can reduce environmental impacts and 

increase sustainability. The inherent nature of wastewater treatment is to sanitize 

domestic sewage to prevent the spread of disease and environmental damage. The 

challenge is to find sanitation processes that support human well-being and are 

environmentally sensitive throughout the life-cycle.  Wastewater management, as an 

essential part of our infrastructure, should be designed to recover water, energy and 

nutrient resources (cf., Guest et al., 2009). 

 

Decentralized and ecological wastewater treatment technologies may minimize resource 

use and waste, encourage water and nutrient conservation, and reduce infrastructure and 

                                                 
1 Sustainable design is defined as design of human/industrial systems to ensure that use of natural resources 
and cycles do not lead to diminished quality of life due to losses in future economic opportunities or to 
adverse impacts on social conditions, human health, and the environment (Mihelcic et al., 2003). 



 2

operation costs. Decentralization is being promoted for households and communities 

currently without sewerage, for new housing/commercial developments that are far from 

centralized sanitation facilities, and for some municipal systems that have become 

outdated, failed or reached capacity (Venhuizen, 1997; Pinkham, 2000; USEPA, 2002).  

 

Decentralized wastewater treatment often refers only to septic systems, which serve 

nearly 25% of U.S. homes and 40% of new development (Christen, 2006), while 

centralized often refers to large-scale mechanical (activated sludge) technology fed by 

large collection systems. Between those extremes exists a wide spectrum of potential 

technologies and management and regulatory policies, which may be more sustainable 

through energy efficiency, employment, aesthetics, public participation, land use, 

knowledge-capacity building, cost, operation and maintenance, treatment function (Muga 

and Mihelcic, 2007), groundwater protection, reduced sewer infrastructure and nutrient 

discharges (Tonning, 2007), and maintaining resources within a watershed (Danielson, 

2007). However, distributed technologies are not routinely considered (Kreissl, 2007). 

Only a few states have begun to permit cluster, satellite, or distributed systems because 

the necessary regulatory infrastructure and technical design are not yet well understood. 

A framework is thus needed for communities to develop sustainable and appropriately 

designed wastewater management and technology.  

 

Of the many wastewater treatment technologies that exist, some utilize natural systems 

(Crites and Tchobanoglous, 1998; Fuchs, 2009). Nature-based systems that depend on the 

sun, air temperature, microbial life, soil or plants have potential sustainability benefits 

because of the low need for energy and chemical inputs. A list of sustainability indicators 

was recently developed to evaluate wastewater treatment technologies which suggested 

that land based treatment systems may provide more balanced social, economic, and 

environmental sustainability than mechanical systems when flows are less than 1 MGD 

(Muga and Mihelcic, 2007). Constructed wetlands are a nature-based system for treating 

domestic sewage, stormwater, industrial wastewater, and agricultural runoff (Kadlec and 

Knight, 1996). They can be a low-impact and sustainable technology which produces 
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benefits above and beyond conventional wastewater treatment: green space, air filtering, 

wildlife habitat, biodiversity, decreased energy costs, nutrient recycling, reuse of effluent 

for agriculture or irrigation, and potential source of animal feed or biofuel crop. 

Constructed wetlands can provide a service vital for human survival and sanitation in an 

ecological system that may require less material and energy inputs than conventional 

treatment systems. Research on wetlands and other nature-based treatment systems is 

thus important in moving towards a sustainable future. 

 

Vertical flow constructed wetlands have been used for treatment of domestic and 

municipal wastewater in many parts of Europe and by some wetland designers in the U.S. 

(Wallace and Knight, 2004). This type of wetland has proven effective for secondary 

wastewater treatment and may be preferable over horizontal flow systems because it 

requires much less land area. Except for a few relatively recent cases (reviewed in 

Langergraber, 2008; Toscano et al., 2009), vertical-flow wetlands typically employ a 

downward hydraulic regime, where wastewater is distributed at the wetland surface and 

flows through the filter media by gravity. In contrast, the majority of upflow wetland 

research has taken place in the laboratory.  

 

Due to growing concerns about ammonium and nitrate discharges causing hypoxia, 

eutrophication, and contaminated drinking water, it is becoming important to develop 

sustainable technologies that also reliably remove nitrogen from wastewater.  Nitrogen 

removal is often left out of wastewater treatment design because of the energy 

requirements associated with oxygenating wastewater for nitrification, or de-oxygenating 

for denitrification.  However, researchers have shown that wetlands with vertical flow 

regimes are effective at removing nitrogen species (ammonium and nitrate) from 

wastewater by nitrification-denitrification at the laboratory scale (Breen, 1990; 

Farahbakhshazad and Morrison, 1997, 2000; Moreno et al, 2002). However, vertical flow 

wetland design has been based only on empirical observations and rules of thumb 

(Langergraber and Simunek, 2006; Gross et al., 2007; Cooper, 1999), making it 

impractical for optimizing system design and operation. A better understanding of the 
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biochemical transformations occurring in the vertical flow regimes will allow designers 

to be more logical and economical about the use, design and operation of constructed 

wetlands for wastewater treatment.  

 

Gaseous nitrogen emissions have also become important.  Nitrous oxide gas, which forms 

during nitrification or denitrification at non-optimal operating conditions, is a greenhouse 

gas with a global warming potential 20-30 times as great as carbon dioxide, and remains 

active in the atmosphere many times longer.  NOx (nitric oxide and nitrogen dioxide 

together) emissions form photochemical oxidants or “smog”, which have known cancer 

risks.  NOx and other greenhouse gas emissions have been reported to be higher in 

vertical flow constructed wetlands than horizontal flow constructed wetlands (i.e., Sovik 

et al., 2006).  Designers should consider that wetlands designed for nitrification-

denitrification may also produce gaseous N emissions.  Instead of reducing 

environmental problems, the problems might just be transferred from water to air and the 

tradeoffs should be considered. 

   

1.1. Research Hypotheses 

To enhance vertical-flow wetland design and investigate the environmental potential of 

constructed wetlands, two primary hypotheses were investigated in this study. A bench-

scale experiment and unsaturated flow model were used in an attempt to address the 1st 

hypothesis: upward flow regimes cause higher root-water contact and therefore higher 

water uptake and better oxygen transfer, thus upflow systems will be more efficient than 

downflow wetlands in nitrification, while downflow wetlands will be more efficient at 

denitrification. A life cycle assessment (LCA) was used to test the 2nd hypothesis: a 

vertical flow constructed wetland will have less environmental impact through its life 

cycle than a horizontal flow constructed wetland due to its treatment efficiency and 

nitrogen cycling.  
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1.2. Research Objectives 

The objectives for testing the hypotheses of this project were to: 

 

1. Identify oxygen transfer and nitrogen fate mechanisms in vertical flow 

constructed wetlands from experimental observations and numerical modeling. 

2. Suggest improvements in rational design of vertical flow wetlands for nitrogen 

removal from experimental data and modeling results. 

3. Compare the life cycle impacts of a vertical flow wetland to a horizontal flow 

wetland designed to treat wastewater for a small community and understand the 

environmental impacts and design issues especially related to nitrogen emissions. 

 

1.3. Dissertation Framework 

The following chapters contain background literature and the dissertation research 

organized to answer the hypotheses set forth above.   

 

Chapter 2 addresses the 1st hypothesis through a bench-scale laboratory experiment 

where oxygen transport and nitrogen fate are measured in planted and unplanted vertical 

flow wetland columns.  This chapter includes background, methods, results and 

discussion of a 3-phase laboratory experiment on bench scale constructed wetlands.  The 

experiment gained insight into nitrogen chemistry and removal in vertical flow wetlands 

through downflow, upflow and downflow-upflow reactors in series.  The experiment 

demonstrated that the 1st hypothesis was false and that downflow unsaturated wetlands 

are most efficient in oxygen transport and nitrification while saturated conditions in 

upflow wetlands lead to anaerobic conditions for denitrification. 

 

Chapter 3 also addresses the 1st hypothesis by using a variably saturated reactive 

transport model to simulate the laboratory data, mechanistically explaining the 

experimental results.  Chapter 3 contains the background, methods, results and discussion 

of the numerical simulation using HYDRUS-2D/CW-2D software.  The model was 

calibrated using the downflow and upflow column experimental results and validated 
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against the reactors-in-series experimental results.  The model demonstrated that the main 

mechanism for oxygen transfer is advection, superseding diffusion, and that nitrogen fate 

was dependent not only on oxygen concentration but also on readily biodegradable 

carbon.   

 

Chapter 4 is focused on the 2nd hypothesis using life cycle assessment (LCA) to compare 

the life cycle environmental impacts of vertical and horizontal flow constructed wetlands.  

The fourth chapter covers the background, methods, results and discussion of the life 

cycle assessment.  The life cycle environmental impacts are compared for the two flow 

regimes and compared to other wastewater treatment LCA studies.  It was found that 

despite higher reported greenhouse gas emissions, vertical flow wetlands have only 25% 

of the environmental impact of horizontal flow wetlands.  Vertical flow wetlands are a 

great step forward for wastewater treatment practitioners to conserve resources and 

reduce impacts. 

 

Chapter 5 concludes the dissertation with a review of the extent to which the objectives 

were met and a discussion of the impacts of all these results on the field of wastewater 

treatment.  The consideration of resource conservation and reduction of environmental 

impacts is becoming a priority in engineering design.  Wastewater treatment technology 

and management needs to consider water, energy and nutrients as resources to recycle 

rather than wastes to separate.  Constructed wetlands may be an appropriate solution for 

resource recovery and reducing environmental impacts. 
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2. CONSTRUCTED WETLANDS AND NITROGEN REMOVAL 
 
The 1st hypothesis2 of the research is tested in a bench scale experiment on vertical flow 

wetland columns.  Literature on wastewater treatment constructed wetlands is reviewed 

with a focus on nitrogen removal and vertical flow wetlands.  The experimental design is 

discussed and resulting data is presented.  The discussion focuses on whether this 

experiment proves the hypothesis, experimental oxygen and nitrogen transport 

mechanisms, contributions to the body of knowledge, suggestions for rational design of 

vertical flow wetlands, and further research questions. 

 

2.1. Background 

2.1.1. Constructed Wetlands for Wastewater Treatment 

Constructed wetlands are often used for wastewater treatment in rural areas where 

stabilization ponds are infeasible, in cluster or individual systems where regional sewer 

infrastructure is not available or cost-effective, and for individual homes/resorts where 

onsite systems tend to fail or are not appropriate (WERF, 2006). The Water Environment 

Research Foundation’s (WERF) wetland database project reported 1,640 small scale 

(<200 m3/d, or <6 ha land area) constructed wetlands in the US and Europe. Of those, 

1,245 are subsurface flow wetlands, 50% of which treated less than 2.6 m3/d, which is a 

typical flow for a single US household. Almost 90% of the wetlands in the database serve 

populations less than 5,000, and 70% are identified for domestic use (single-home or 

small village). The number of wetlands serving single-family homes may be grossly 

underreported, with as many as 4,000 in Kentucky alone (WERF, 2006). Table 2.1 shows 

characteristics typical of wastewater treated by vertical-flow constructed wetlands.  The 

follow sections review the literature on impact of flow regime and vegetation on oxygen 

transport, nitrification, denitrification and total nitrogen removal in constructed wetlands. 

 

 

                                                 
2 1st hypothesis: due to the upward flow regime that causes high root-water contact and therefore high 
water uptake and better oxygen transfer, upflow systems will be more efficient than downflow wetlands in 
nitrification, while downflow wetlands will be more efficient at denitrification. 
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Table 2.1. Typical influent concentrations for vertical flow wetlands. Typical concentrations shown 
for biological oxygen demand (BOD), chemical oxygen demand (COD, total nitrogen (N-total), 
ammonium-nitrogen (NH4

+-N), and nitrate-nitrogen (NO3
--N). 

  BOD COD 
N-

total 
NH4

+

-N 
NO3

--
N  

Source mg/L mg/L mg/L mg/L mg/L Reference 
septic effluent 151 -- 81.6 78 0.1 Whitehill et al., 2003 
septic effluent 650 -- 77 60.9 1.4 Whitehill et al., 2003 
septic effluent 142 296 42 -- -- Loc. cit. Peeples and Mancl, 1998 
septic effluent 138 327 45 31 -- Loc. cit. Peeples and Mancl, 1998 
septic effluent 181 -- -- 65 -- Loc. cit. Peeples and Mancl, 1998 
primary effluent 75 144 11 -- -- Loc. cit. Peeples and Mancl, 1998 
medium strength 
untreated domestic 
wastewater 190 430 40 25 -- Metcalf and Eddy, 2003 
residencial effluent, 50 
gal/capita-day 450 1050 70.3 41.2 -- Crites and Tchobanoglous, 1998 
synthetic wastewater -- 700 114 0.12 -- Pell and Nyberg, 1989 
synthetic wastewater 161 -- -- 25 -- Peeples and Mancl, 1998 
synthetic wastewater -- 401.1 -- 41.3 -- Yoo et al., 1999 
synthetic wastewater -- 226.2 -- 41.3 -- Yoo et al., 1999 
synthetic wastewater -- 385 31.6 21.6 -- Rodgers et al., 2006 
Average 237.6 439.9 56.9 39.1 0.8  
Std. Deviation 186.9 276.4 31.3 22.3 0.9  

 
 
2.1.2. Flow regime in constructed wetlands  

At least 679 of the small-scale treatment wetlands counted in the WERF database are 

vertical-flow systems (Wallace and Knight, 2004). Most of the research on vertical-flow, 

and most full-scale vertical-flow systems, are downflow.  Only since 2000 have upflow 

configurations been examined (Farahbakhshazad and Morrison, 1997, 2000; Moreno et 

al., 2002). While it has been shown that vertical-flow wetlands provide more water-root 

contact than horizontal systems, specific mechanisms for biochemical oxygen demand 

(BOD) and nitrogen (N) removal are not well understood. Because of growing concerns 

about ammonium discharges causing fish toxicity, surface water hypoxia, and 

eutrophication, and also because of nitrate contamination of groundwater, the USEPA set 

nitrogen criteria for the 15 ecoregions in the US (Christen, 2007). Eight states (CT, KS, 

MT, NY, OH, OR, PN, WA) are using the EPA criteria as a starting point for developing 

nitrogen total maximum daily loads, discharge requirements, and nitrogen credit trading 

(Christen, 2007; Landers, 2007). As ammonium and nitrate become more of a concern to 
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society and the environment, new information is needed to understand how vertical-flow 

wetlands can be best designed to meet nitrogen requirements. 

 

BOD, ammonium and nitrate removal are dependent on oxygen concentration, which is 

affected by the  transport and consumption in soil-plant systems. Labile carbon is also 

important as it is the preferred electron donor for nitrate reduction. Figure 2.1 shows 

nitrogen fate in a wetland. First, microbes biologically transform organic nitrogen (RN) 

to ammonium (NH4
+), which is then available then for adsorption, volatilization, and 

plant uptake, then they reduce ammonium to nitrate (NO3
-), which is available for plant 

uptake and adsorption, and reduce nitrate into nitrogen gas (N2). Oxygen inputs from 

roots and gas transport are important for BOD and ammonium removal. Anoxic 

conditions are necessary for reducing nitrate. The carbon source for denitrification could 

be carbonaceous BOD (CBOD) as shown in Figure 2.1. Quantifying and optimizing 

oxygen and carbon sources are necessary to enhance the removal of BOD and nitrogen. 

Vegetation directly affects both oxygen and carbon concentrations. 

 

 
 

 

Influent N 
RN + NH4

+ 
Ammonium cation 

NH4
+ 

Nitrate anion 
NO3

- 
Effluent N 

NH4
+ + NO3

- 
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volatilization 
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Figure 2.1 Nitrogen transformation processes in a subsurface flow constructed wetland. 



 13

2.1.3. Vegetation impact 

The absorption of nutrients and input of oxygen by plant roots is very sensitive to the 

balance of soil air and water contents (Kramer and Boyer, 1995). High air-content 

conditions in the rootzone favor aerobic microbes, such as nitrosomonas and nitrobacter, 

which convert ammonium to nitrate for plant uptake. Low air-content conditions are 

beneficial for facultative denitrifying microbes, converting nitrate into nitrite or nitrogen 

gas.  

 

Several constructed wetland studies emphasize plant uptake of nitrogen, claiming that it 

is responsible for the majority of ammonium removal in upflow wetlands (Breen, 1990; 

Rogers et al., 1991; Farahbakhshazad and Morrison, 1997, 2000, Farahbakhshazad et al., 

2000; Moreno et al., 2002). However, many wetland designers in the US do not consider 

plant uptake in design because final removal of nitrogen would require harvesting plant 

biomass which they see as an undesirable task in wetland operation (Hines, 2006).  

In a soil-vegetation system, nitrogen may be available most commonly as NO3
- (nitrate), 

but also as NH4
+ (ammonium).  In order to use nitrogen, plants or soil bacteria oxidize the 

ammonium to nitrate, and the plants are able to absorb and metabolize the nitrate.  Some 

nitrogen may be lost by the production and volatilization of NH3 (ammonium) or N2 

(nitrogen gas) by soil bacteria or through the plants (Kramer and Boyer, 1995; Kadlec 

and Knight, 1996).  For plant productivity to remain stable, the soil-vegetation system 

should have a constant supply of nitrogen.  In natural systems, the nitrogen is cycled back 

into the system by decaying organic matter and infiltrating rainwater.  In agricultural 

systems, depletion is prevented by added fertilizers that contain nitrogen and nitrogen-

fixing cover crops.  

  

Some researchers noted the significant effects of plants on oxygen transport and nitrogen 

removal while others found no significant difference (see below). Researchers have 

shown that Phragmites australis (common reed), can input 0.3 kg d-1 of oxygen per meter 

of root (Armstrong and Armstrong, 1990).    P. australis is commonly used in bench-

scale (Lee and Scholz, 2007; Sun and Austin, 2007; Farahbakhshazad and Morrison, 
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1997), pilot-scale (Prochaska et al., 2007; Landry et al., 2009) and full-scale (Leuderitz et 

al., 2001; Meuleman et al., 2003) constructed wetlands, and is the vegetation of choice in 

Austrian and Danish (Brix and Arias, 2005) and other European (Cooper, 1999) 

guidelines for constructed wetland design.  Other species of reed as well as rice, rushes, 

cattail, and ornamental or marketable vegetation have also been planted in constructed 

wetlands, but the value of different species for wastewater treatment is negligible.  

Vegetation may be incorporated for other values such as carbon uptake, crop value, fiber, 

seed oil, or livestock feed. 

 

2.1.4. Oxygen transport 

Green et al. (1998) found a maximum aeration capacity in a vertical downflow wetland of 

8.73 mmol O2/L for a stoichiometric nitrification potential of 65.7 mg/L NH4
+-N.  

Oxygen was supplied by a siphon effect resulting from flooding and draining the soil 

column.  Lahav et al. (2001) used the same system and found that oxygen transfer 

efficiency (and nitrification) increased with specific surface area (ratio of surface area to 

volume for media), where specific surface area was inversely proportional to hydraulic 

loading rate.  Sun and Austin (2007) reported that vertical flow wetland columns 

maintained oxygen-saturation (~9.2 mg/L) from influent point to effluent point, even for 

columns in series, while nitrification and total nitrogen removal occurred.  There was no 

report of oxygen transport in upflow wetlands.  Overall, it is important to note that the 

stoichiometric requirement for oxygen for nitrification is 1.86 mol O2/mol NH4
+-N.  

Oxygen may enter the constructed wetland via wastewater, gas diffusion from the 

surface, effusion from plant roots, and advection caused by soil-gas-pressure-induced 

flow such as the siphon effect of flooding and draining. 

 

2.1.5. Nitrification 

Farahbakhshazad and Morrison (1997) showed significant (>90%) removal of 

ammonium in a vegetated upflow column, but low removal in an unplanted upflow 

column. A vertical profile showed nitrification in the bottom of the upflow column; as 

oxygen was transferred from plant roots, ammonium oxidation continued, and then 
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denitrification occurred. They observed very little oxygenation of the unplanted soil 

column, while the oxygen concentration in the planted column increased as root density 

increased up the column. Farahbakhshazad and Morrison (1997) and Breen (1990) 

demonstrated higher removal of ammonium by plant uptake than by microbial 

transformation but only at very low N concentrations (on the order of 1 mg/L).  Moreno 

et al. (2002) found a significant capacity of upflow columns to remove ammonium, citing 

nitrification as well as plant uptake due to effective wastewater-rootzone contact. Within 

nitrification and plant uptake research it is still unclear how to design a wetland for both 

optimal oxygen transfer for nitrification and optimal plant uptake of ammonium.  

Researchers debate whether plant-supplied oxygen is enough oxygen to support both 

BOD removal and nitrification.  Total removal of NH4
+-N was noted in pilot scale 

downflow wetlands in-series, due to nitrification (Langergraber et al., 2008).  When the 

same system was scaled up, they again found complete nitrification of NH4
+-N in the 

wetlands in-series, but only 68% removal for a single-stage wetland.  Torrens et al. 

(2009) found 73-93% NH4
+-N removal in pilot-scale downflow wetlands with different 

filter media, and noted that the presence of plants (P. australis) was not significant for 

NH4
+-N removal.   

 

Strategies to improve nitrification include aeration (Wallace et al., 2006), effluent 

recirculation (Sun et al., 1998), and rapid low-volume dosing (Morris and Herbert, 1997), 

showing that improved oxygen transfer enhanced nitrification, resulting in 40% to 90% 

ammonium removal. Sun and Austin (2007) reported ammonium removal by completely 

autotrophic nitrogen-removal over nitrite (CANON) with high-nitrogen wastewater.  

Heterotrophic nitrification and anaerobic ammonium oxidation have also been 

documented. 

 

2.1.6. Denitrification 

Denitrification depends on organic carbon and anoxia to effectively remove nitrate. 

Whitehill et al. (2003) demonstrated effective denitrification in two full-scale wetlands 

(83% and 91% removal of influent total nitrogen), citing anoxic soils and an external 



 16

carbon source as the means for nitrate removal.  Denitrification has been shown to be 

rate-limited at BOD/NO3
- ratios < 8 in an upflow reactor (Urynowicz et al., 2007).  Laber 

et al. (1997) found better denitrification in full-scale wetlands by adding carbon 

(methanol).  van Oostrom and Russell (1994) enhanced denitrification with a layer of 

decaying organic matter in column studies, and Fleming-Singer and Horne (2002) found 

that plant carbon in sand columns removed nitrate better than sand alone. Unplanted 

downflow columns were not successful at removing nitrate, lacking either organic carbon 

or anoxic conditions (Hsieh and Davis, 2005). The only upflow study to consider 

denitrification was Farahbakhshazad and Morrison (1997), who found removal of nitrate 

only in the anoxic area below the root zone. More data are needed to design for both 

nitrification and denitrification (if possible) in vertical flow constructed wetlands. 

 

A reduction in total nitrogen can usually be taken to mean that denitrification occurred 

because it is the typical route for converting aqueous nitrogen into dinitrogen gas—N2 

(although nitrogen may be lost from aqueous measurements through other volatilization 

or adsorption processes).  Gross et al. (2007) reported a 68.5% reduction in total nitrogen 

in recirculating downflow columns; Sun and Austin (2007) saw an average of 16.2% total 

nitrogen removal in 3 different systems of downflow wetlands in series.  Other downflow 

wetlands in-series performed with 58% removal (lab columns) and 63% (pilot scale), but 

single stage downflow wetlands had 10% removal in the lab 60% removal in the pilot 

(Langergraber et al. 2008).  Other mechanisms have also been shown to remove nitrate 

such as aerobic denitrification and methane oxidation (loc cit. Sun and Austin, 2007).   

 

2.1.7. Total nitrogen removal 

Within this dissertation, total nitrogen is considered to be the sum of ammonium and 

nitrate, because these are the two nitrogen species usually of concern and typically 

measured/reported in wastewater treatment. Although many studies have simply 

measured the influent and effluent concentrations of ammonium and nitrate to find the 

treatment efficiency of a wetland, some have focused on either nitrification or 
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denitrification.  A range of reported N-removal efficiencies in constructed wetlands is 

shown in Figure 2.2.   

 

Figure 2.2a compares effluent to influent NH4
+-N, along with lines representing 90%, 

50% and no removal. Most vertical flow wetlands reported in the literature used to 

develop this figure were able to remove 50% of the ammonium.  For typical wastewater 

influent values (10-40 mg/L), downflow wetlands removed more NH4
+-N than upflow 

wetlands. 

 

NO3
--N influent and effluent are shown in Figure 2.2b.  While NO3

--N removal cannot be 

concluded from this plot, it is clear that in many wetlands NO3
--N is produced during 

nitrification of ammonium (all values above the 0% removal line signify NO3
--N 

increase).  All but two data points in the “removal” area are upflow wetlands, which 

means they may have greater capacity for removing NO3
--N than downflow wetlands. 

 

Figure 2.2c shows total nitrogen removal.  All the upflow wetlands reported were able to 

achieve greater than 50% removal for total nitrogen (ammonium plus nitrate), while only 

about half of the downflow wetlands achieve greater than 50% removal. 

 

Effluent values for NH4
+-N and NO3

--N are shown as a function of influent total nitrogen 

in Figure 2.2d.  These relationships signify the nitrification-denitrification potential of the 

reported wetlands.  Assuming influent TN entering the wetland is mostly NH4
+-N, it is 

most reduced with downflow wetlands (more purple triangles than squares below 90% 

removal line), meaning that downflow wetlands have a better nitrification potential than 

upflow wetlands.  NH4
+-N is nitrified to NO3

--N; a low NO3
--N concentration in the 

effluent compared to influent TN would then signify denitrification.  Apparently upflow 

wetlands have a better denitrification potential than downflow (more black squares than 

triangles below 90% removal line).   
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Figure 2.2. Ammonium (a), nitrate (b) and total nitrogen (c) removal in real and pilot scale wetlands 
and bench-scale studies.  Figure (d) shows ammonium and nitrate removal compared to total 
nitrogen influent. Solid data points (�) are upflow wetland data; open data points (à) are downflow 
wetlands, except “series other” which are combination wetlands.  See page A-38 in the appendix for 
references for these data. 
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For all Figure 2.2 plots, relatively few wetlands in-series were reported compared to 

single wetland data, and they did not show significant behavior or better performance 

than single wetlands.  The in-series wetlands were either downflow wetlands in-series, or 

some combination of horizontal and vertical flow in-series. 

 
2.1.8. Conclusion of literature review 

Vertical-flow constructed wetlands are potentially a valuable tool for removing nitrogen 

from wastewater.  In many conditions, ammonium-nitrogen removal is possible either 

through nitrification or plant uptake.  Until recently, designers have been less concerned 

with nitrate removal, and denitrification in vertical flow wetlands is usually low.  Vertical 

flow wetlands are designed by rules of thumb, usually a guideline for surface area per 

person-equivalent, which normalizes for either the hydraulic or organic loading.  There is 

currently no rational (performance) basis for choosing surface area, wetland volume or 

depth, flow regime, series-flow or recycle, filter media, or plants for specific nitrogen 

removal.  The following laboratory and modeling research are designed to consider 

treatment performance for nitrogen in the evaluation of flow configuration. 
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2.2. Methods 

Four one-dimensional soil 

columns were constructed to 

study the effects of hydraulic 

regime and plant roots on 

oxygen and nitrogen transport 

and fate in wastewater 

constructed wetlands. To 

determine the effects of vertical 

flow and vegetation on nitrogen 

fate and transport, the columns 

simulated: 

 

1) planted upflow wetland 

2) planted downflow 

wetland 

3) unplanted upflow wetland 

4) unplanted downflow wetland 

 

The columns were patterned after previous column studies of nitrogen removal in upflow 

wetlands (Farahbakhshazad and Morrison, 1997; Moreno et al., 2002), and septic tank 

effluent loading in soil-based wastewater treatment system (Beach, 2001).  

 

Figure 2.3 shows a schematic of the column. Four columns were constructed from clear 

acrylic pipe, 15 cm in diameter and 75 cm in length. Four sample ports (porous ceramic 

cups: SoilMoisture, Inc.) were installed through the sides for intermediate sample 

collection.  The inside walls were sprayed with a nontoxic adhesive spray and covered 

with soil media to roughen the wall and minimize preferential sidewall flow (loc. cit. 

Beach, 2001).   
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Figure 2.3 Wetland column general schematic.
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The bottom of the column was a funnel filled with glass beads (d = 4mm) that collected 

or distributed flow to minimize soil water stagnation and avoid soil media from flushing 

out of the columns. Each column was packed with eleven 5-cm lifts of Grayling sand, 

following a procedure to minimize segregation and achieve uniform density. Grayling 

sand was locally available (46o 39’ 40’’ N, 88o 35’ 42” W), has a high infiltration 

capacity and is well suited for growing vegetation. Moisture characteristics of the soils 

were measured by a certified laboratory (Daniel B. Stephens and Associates, 

www.hydrotestlab.com, who has provided high quality measurements of these soils in 

previous studies).  Table 2.2 characterizes the Grayling sand.  Soil pH, organic matter and 

nitrate from three depths in each column were measured by the Michigan State 

University Extension at the end of the experiment. 
 
Table 2.2 Grayling sand characteristics. 

Characteristic  
Soil type Sand 
Organic Carbon Content (%) 0.44 
Surface Area (m2 g-1) -- 
Cation Exchange Capacity (meq/g) 0.002 
Total porosity 0.378 
Microporosity 0.052 
Bulk Density g cm-3) 1.65 
Hydraulic Conductivity, Ks (cm s-1) 0.0025 
Mean Particle size (cm) 0.023 
Uniformity Coefficient (d10/d60) 1.67 
Irreducible saturation 0.08 

 

During packing, when the soil depth reached each sample port location, a pre-constructed 

sample port was fit into the column wall as the access point for syringe sampling.  Each 

sample port was constructed so that the porous ceramic cup was water-saturated, the 

tubing full of water, and the septa-end sealed to prevent desaturation, at the time of 

installation in the column (see appendix page A-3 for details).  When Grayling soil was 

packed around the porous cup, the tension in the cup pores was great enough to be able to 

pull a water sample from the surrounding unsaturated soil.  In the porous cups which 

were placed in the plant root zone, it was more difficult to maintain good contact between 

the cup and the surrounding roots and soil, and the lack of good contact sometimes 

prevented being able to pull a sample. 
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Phragmites australis (common reed) plants with 30-cm long rhizomes/rootballs were 

placed with the last 6 lifts in two columns, ensuring that the sand settles around the plant 

roots. P. australis was chosen for its comparability to other studies, excellent growth 

characteristics, root depth of up to 1 meter and potential to maximize oxygen transfer into 

the root zone (Farahbakhshazad and Morrison, 1997; Chadde, 2002; Moreno et al., 2002). 

Except for plant roots in two columns, all packing followed the same procedure to 

promote uniformity within and between the columns.  Mature P. australis specimens 

were transplanted from a local drainage two miles south of Michigan Technological 

University (47o 08’ 31’’ N, 88o 51’ 67” W).  Soil was cleaned from the plant roots at the 

time of transplanting to the lab vegetation tank, and again when the plants were installed 

in the wetland columns.  Before wastewater was pumped into the wetland columns, the 

planted columns were fed with Hoagland’s solution, a common laboratory plant fertilizer 

containing nutrients and trace elements (see appendix page A-13 details).  Over the 

course of the experiment, the mature stalks died off and new shoots were produced.  P. 

australis grew well in both the Hoagland solution and the wastewater, especially during 

the upflow experiment phase when the soil was saturated with wastewater. 

 

Four 1.2-m solar spectrum fluorescent bulbs were fixed to each side of the row of 

columns, centered on the planted columns.  The bulbs were placed approximately at mid-

height of the vegetation.  A 1.2-m plant/aquarium light was hung approximately 0.5 m 

above the vegetation.  The lighting placement was based on earlier radiometry 

measurements using a QSL-100 radiometer (Biospherical Instruments, Inc.) of 

photosynthetic available radiance (PAR, measured in micro-Einsteins).  PAR was 

measured for various arrangements of lights around the plants.  During the main 

experimental phase, the lights were arranged to imitate bright daylight, or approximately 

1600 micro-Einsteins.  PAR decreases exponentially with distance from the light source, 

so lights were set as close as possible, leaving room for plant growth, to simulate 

daylight.  Lights were set on a timer for a 12-hour photo-period.  
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The reactor design flowrate was based on the recommended maximum hydraulic loading 

for vertical flow constructed wetlands, 1 person-equivalent/m2 (Langergraber et al., 

2003), which is equivalent to the production of 189 L of wastewater per capita-day 

(USEPA, 2006). This corresponds to 3.3 L/day per column, or an empty bed contact time 

of 1.3 d. The columns were fed from a single influent tank, so that the influent flowrate 

and feed concentration were the same to each column.  The actual flowrate averaged 2.53 

L/day per column, 77% of the recommended maximum.  The influent flowrate for each 

column was set at 2470-2580 mL/day (split into discrete influxes of 51-54 mL/30 sec 

every 30 minutes, variably with tubing age).  Two Masterflex pumps with two pump 

heads each split the flow between the four columns (two planted columns connected to 

one pump, two unplanted columns connected to a second pump).   

 

Table 2.3 lists the phases of the experiment and purpose of each phase.  The baseline 

hydrodynamic characterization, characterization with plants, and bromide tracer test 

determined the hydraulic characteristics and packing uniformity. Two oxygen 

measurements were made in preparation for the full study—one of gaseous transfer from 

the soil surface, and one of plant root oxygen transfer. 
 
Table 2.3 Phases of column experiment with associated reactor configuration and feed. 

Experimental phase Purpose Reactor configuration Reactor Feed 
Baseline hydrodynamic 
characterization  

Check soil hydraulic 
characteristics 

4 unplanted downflow 
columns; reverse flow 
to upflow 

Milli-Q water with 
bromide tracer slug 

Baseline dissolved oxygen Check DO 
measurement 

Milli-Q water 

Soil diffusion of DO DO gaseous 
movement 

Deoxygenated Milli-Q 
water 

Hydrodynamic 
characterization with 
plants  

Measure hydraulics 
after installation of 
plant roots 

2 planted and 2 
unplanted downflow 
columns 

Milli-Q water with 
bromide tracer 

Plant root DO transfer  Define root DO 
movement 

Deoxygenated Milli-Q 
water 

Microbial population seed Develop nitrifier and 
denitrifier populations 

Primary settled 
wastewater 

Continuous loading: 
Downflow 
Upflow 
In-series 

Run full experiment 
with seeded vegetated 
and unvegetated 
columns 

2 planted and 2 
unplanted columns: 
downflow, upflow, in-
series phases 

Synthetic wastewater  
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The columns were bacteria-seeded by pumping settled primary wastewater effluent 

through the column.  The wastewater was obtained from the Houghton wastewater 

treatment plant (Portage Lake Water and Sewage Authority, PLWSA) to produce a 

population of nitrifying and denitrifying microbes.  The primary wastewater was pumped 

through the reactors for 4 weeks. When it was clear from the difference in influent and 

effluent measurements that ammonium and nitrate concentrations were reduced inside the 

columns, the bacterial populations were assumed to be well-seeded.  The primary 

wastewater ammonium concentration was very dilute due to spring run-off, and also very 

high in sodium content from road salts, so during the main sampling stage of the 

experiment, a synthetic wastewater was the influent.  The synthetic wastewater was 

developed to contain concentrations of BOD (160 mg/L), NH4
+-N (20 mg/L) and NO3

--

N(5 mg/L), simulating typical primary settled wastewater effluent or septic tank effluent 

values found in literature (see appendix page A-15 for formula).   

 

In the main operational stage of the experiment, dissolved oxygen (DO), ammonium, 

nitrate, COD, oxidation-reduction potential (ORP) and pH were measured in the influent 

and effluent and through the soil profiles (DO, ORP and nitrate only) in each column. 

Column profile concentrations were measured twice weekly for three-four weeks for each 

experiment phase (downflow, upflow, in-series) until the columns appeared to reach 

steady-state.  For each experiment phase, the column and flow configuration and sample 

labeling was as shown in Figure 2.4a (downflow), 2.4b (upflow) and 2.4c (in-series).  It 

was assumed that the experiment order did not affect the results because time was 

allowed for the column operation to stabilize after each switch to a new flow regime or 

column connection.  Effluent results indeed showed that after about one week, the 

operation stabilizes to a quasi-steady state for each flow regime or phase. 
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c)  
 
 
 
 

This experiment measured removal of ammonium and nitrate by nitrification and 

denitrification through the column depth. Adsorption, volatilization, and microbial 

fixation are other routes of N removal, but have been acknowledged as insignificant over 

time compared to nitrification/denitrification (Paredes et al., 2007) and were not 

monitored in this study.  

 

Samples were drawn from each column by drawing 5 mL of solute from the column port 

or influent/effluent line using a gas-tight syringe. Samples were taken in order from 

effluent end of column to influent end, so that the flow rate of each sample would not 

affect the subsequent sample. DO and ORP were measured in the influent, effluent and 

along the vertical profile with Unisense microprobes (Unisense A/S, 2007) in a flow cell 

(Figure 2.5a and 2.5b) that connected directly to the column by hypodermic needle to 

ensure no contact with ambient air.  A 1-mL plastic syringe drew the sample through the 

flow cell.  pH was also measured with a Unisense microprobe, but only in the influent 

and effluent.  Ammonium-N was measured in the influent and effluent using HACH 

   

 

Influent tank 
(mixed) 

PumpTimer

P. australis

Inf

D4

D2

D1

Mid

Eff

U2

U1
RE BE YE  TE

Figure 2.4 Experiment configuration for each phase: a) downflow, b) upflow, and c) downflow-
upflow in-series.  RE, BE, YE and TE are column names, while labels to the right of the columns 
(D1, D2, Inf, Eff, etc) are for sample ports.
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spectrometry, as was COD.  Nitrate-N was measured by Standard Method 4500-NO3- D, 

modified for samples of 1 mL, which were drawn from influent, effluent, and the profile 

sample ports (APHA, 1998).  During the main 3-phase experiment (downflow, upflow 

and in-series), all measurements were taken twice per week.   

 

a)  b) 

 

 

      

     

Dissolved 
oxygen

ORP  Reference  pH 

Electrode  
needle tip

Q
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needle
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Two-way 
valve 

Glass and Tygon flow cell connecting in-line 
electrodes without air introduction  

Figure 2.5 a) Photo of microprobe flowcell in plywood holder, and b) diagram of flowcell.  (Photo by 
author). 
 
Finally, transpiration and photosynthesis of the P. australis and air temperature at the leaf 

surface were measured using a LI-COR 6400 photosynthesis measurement system (LI-

COR Biosciences).  Transpiration and photosynthesis were monitored to see if plants had 

any specific response to flow regime in the different experiment phases.  Photosynthetic 

carbon fixation was also used, in conjunction with reported C/N ratio for P. australis and 

measured leaf surface area, to estimate potential nitrogen uptake of plants.  The LI-6400 

was used to measure the column photosynthesis and transpiration rates for the two 

planted columns as well as one control plant not loaded with wastewater.  The LI-6400 is 

an open system that measures photosynthesis and transpiration by the differences in CO2 

and H2O in the airstream that flows through the leaf chamber.  The differences in 

concentration are measured by infra-red gas analyzers (IRGA’s).   The experiment was 

conducted such that the chamber conditions were programmed to resemble room 

conditions of the plants for CO2 and H2O concentrations, and light energy.  LI-6400 light 

was controlled by setting the light source equal to the ambient light to measure 
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photosynthesis in the LI-COR chamber at the same light conditions in the room.  The 

process is set up by a light source calibration step in the LI6400 operating procedure. 

To measure the photosynthetic and transpiration rates, four leaves were sampled from 

each column twice a week.  The leaves sampled were sampled in succession from only 

one stalk in the given column.  The values were then averaged to represent the column 

photosynthetic and transpiration rates for the day of sampling. 

 

The appendix (pages A-1 to A-38) contains detailed lab procedures for the experiment. 
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2.3. Results 
 

For the main 3-phase experiment, the data obtained on wastewater constituents and the 

plant measurements were analyzed using the specific data analyses methods listed in 

Table 2.4.  In the following section, temporal, statistical, and/or vertical profile data is 

shown for each analyte.  Dissolved oxygen and nitrogen data were also examined by 

Analysis of Variance (ANOVA) testing to determine significant effects of plant presence 

or flow regime.  Finally, a mass balance of nitrogen is presented.   

 
Table 2.4 Analyses of data for each constituent or plant measurement. 

  Temporal 
Box/whisker 

stats 
Vertical 
profile ANOVA 

Mass 
Balance 

DO X X X X   
ORP X X X     

NO3
--N X X X X X 

NH4
+-N X X   X X 
pH X X       

COD X X       
Photosynthesis X X       
Transpiration X X       
Temperature X X       
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2.3.1. Dissolved Oxygen (DO) 

 
Figure 2.6 Dissolved Oxygen (DO) measured in influent and effluent over the course of the 
experiment. 
 
Figure 2.6 shows the dissolved oxygen concentration in the influent and effluent ports 

from the columns through the experiment.  The text on the top of the figure shows the 

hydraulic configuration of the reactor and the type of wastewater fed to the columns.  The 

concentration for the influent tank (Figures 2.6 and 2.8) is not the same as measured 

influent values at the point of entry into the column (shown in Figure 2.7).  At the point 

of entry, DO was usually about 2 mg/L, but as it was distributed onto the soil surface in 

the downflow columns, it equilibrated again resulting in atmospheric-equilibrium 

concentrations.  This is apparent by the sudden increase in DO from sample port “inf” 

(the influent point) to sample port “4”, 10 cm below the soil surface (Figure 2.7a and 

2.7b).  

 

The decrease at the end of the downflow phase is related to the increase in influent 

ammonium.  Downflow columns stayed saturated with DO; while upflow and in-series 

phases had mid to low-range DO.  Clearly, during the downflow phase, the unsaturated 

flow regime transported enough oxygen through the soil profile to meet oxygen demand 

and nearly saturated the wastewater with oxygen.  The mechanisms to replenish oxygen 
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were likely equilibrium-diffusion into the wastewater or into soil pores at the soil surface 

and/or advective transport into the soil column with wastewater movement.   

 

Figure 2.7c shows that DO in the upflow column was very low through the saturated 

profile.  In Figure 2.8, the effluent averages for upflow are all below 2 mg/L (with one 

outlier for unplanted columns which occurred on May 25).  During the upflow phase, 

about 2 mg/L of DO was lost from influent to effluent (Figure 2.8).   

 

From Figure 2.7d, it appears that the unplanted columns in series transported more DO in 

the downflow (inf to mid) while planted columns provide more DO in the upflow (U1-

eff).   Figure 2.8 shows very low DO from the downflow columns, 1-2 mg/L (probably 

due to flooding from several malfunctions).  The planted upflow column in-series showed 

an increase up to 5 mg/L DO.  It is possible that the plant roots transported oxygen into 

the saturated soil in the upflow columns.  The unplanted upflow column in-series did not 

increase the oxygen through the saturated profile. 

 

The flow regime had a significant impact on oxygen in the effluent.  Figure 2.8 shows 

that downflow effluent averaged near 8 mg/L DO, while upflow effluent had less than 2 

mg/L DO.  During the downflow and upflow experiment phases, planted columns were 

not significantly different from unplanted columns in effluent DO.   
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a)  

b)  

c)  

d)  
Figure 2.7 DO vertical profile for each experiment phase a) downflow with real wastewater, b) 
downflow with synthetic wastewater, c) upflow and d) in-series.   
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Figure 2.8 Statistical data for dissolved oxygen (DO).  D was sampled at the influent tank (BK) and 
effluent of the red (RE), blue (BE), yellow (YE) and teal (TE) columns. 
 

Figure 2.8 shows the statistical data for dissolved oxygen.  The downflow experiment 

phase is broken into real wastewater and synthetic wastewater followed by upflow and 

in-series phases, left to right.  For the influent (BK) and each column, the statistical 

spread (with mean, quartiles, and upper and lower bounds) is shown.  Statistical data for 

all other constituents is plotted similarly.   As shown in Figure 2.8, influent DO varies 

greatly, but averaged about 5 mg/L.   Downflow columns had a significantly higher DO 

than upflow, except in the unplanted series where the downflow column appears to have 

lower DO (but the difference is not significant between YEseries and TE series).  There is 

no significant difference between planted and unplanted columns in any experiment 

phase (shown by analysis of variance, p. 47), except in the in-series phase, the upflow 

column (BEseries) has much higher DO, due to either oxygen diffusion from the soil 

surface to the water table, or plant-root oxygen diffusion.   
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2.3.2. Ammonium-nitrogen (NH4
+-N) 

 

 
Figure 2.9  NH4

+-N measured in influent and effluent over the course of the experiment. 
 
NH4

+-N was low in the influent until NH4-Cl was added at the end of the downflow phase 

(up to 50 mg/L before 5/18/09) (Figure 2.9).  The increase in influent ammonium 

explains the large variation of the “BKsynth” samples shown in Figure 2.10.  For the rest 

of the experiment, synthetic wastewater was formulated so that the influent concentration 

would be around 20 mg/L.  In downflow, all NH4
+-N was nitrified and none is found in 

the effluent (Figure 2.10 shows 1-2 mg/L which was the lower detection limit).  In 

upflow, it appears that planted columns had more nitrification than unplanted.  For the in-

series phase, the downflow planted column (REseries) oxidized most of the influent 

ammonium—the plot seems to show an increase in the upflow column (BEseries) but the 

data is not significantly different at 95% confidence.  In the unplanted columns, 

ammonium was not oxidized in downflow, but was partly removed in upflow; the in-

series results are due to the quantity of oxygen available for consumption by ammonium-

oxidizing bacteria. 
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Figure 2.10 Statistical data for NH4

+-N.  NH4
+-N was sampled at the influent tank (BK) and effluent 

of the red (RE), blue (BE), yellow (YE) and teal (TE) columns.  8% of effluent readings were above 
the detection limit and removed from the data. 
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2.3.3. Nitrate-nitrogen (NO3
--N) 

 
 

 
 2.11 NO3

--N measured in influent and effluent over the course of the experiment. 
 

As shown in Figure 2.11, nitrate in the effluent varied in downflow depending on NH4
+-N 

influent—in the last two weeks of downflow, the NH4
+-N was increased and enough DO 

was available for complete nitrification.  In the upflow, apparently no nitrate was 

produced, but it does not necessarily indicate that nitrification did not occur; Figure 2.10 

shows a decrease in ammonium from influent to effluent in the upflow phase indicating 

nitrification.  The decrease in ammonium combined with the absence of increase in 

nitrate indicates that the upflow conditions allowed for some denitrification, and it 

occurred at a rate similar to nitrification so that there appears to be no change in nitrate 

concentration.  Similarly in the columns in series, nitrification occurred as shown by the 

ammonium decrease in Figures 2.9 and 2.10, and nitrate increase in Figures 2.11 and 

2.13.  Some nitrate was denitrified, particularly in the upflow columns of the in-series 

phase.   Significant nitrification produced nitrate immediately in downflow profile, as 

shown in Figure 2.12a and 2.12b, and oxygen was too high for denitrification to occur.  

In upflow, DO was too low for nitrification, and nitrate did not increase from influent 

levels (2.12c).   

Downflow, 
real ww 

Downflow, 
synth ww, 
urea 

UpflowDownflow,  
synth ww, 
NH4‐Cl 

In‐series (Red down to Blue 
up; Yellow down to teal up)  
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a)  

b)  

c)  

d)  
Figure 2.12 NO3

--N vertical profile for each experiment phase.  A gap in measurements between 4/9 
and 4/23 occurred due to probe malfunction. 
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Nitrification was better again in the downflow part of the in-series columns, and limited 

nitrification and denitrification occurred in the upflow part of the series (2.12d). 

 

Figure 2.13 shows the statistical data for nitrate.  While it appears that synthetic 

wastewater nitrate did not reflect the real wastewater concentration, 5 mg/L nitrate is a 

more realistic value for primary settled wastewater.  The downflow effluent during 

synthetic wastewater loading had a large variation due to NH4
+-N influent variation (20-

50 mg/L as shown in Figures 2.9 and 2.10).  There is no significant difference between 

planted and unplanted columns.    

 

 
Figure 2.13 Statistical data for NO3

--N.  NO3
--N was sampled at the influent tank (BK) and effluent of 

the red (RE), blue (BE), yellow (YE) and teal (TE) columns. 
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2.3.4. Chemical Oxygen Demand (COD) 
 

 
Figure 2.14 COD measured in influent and effluent over the course of the experiment. 
 
Both the temporal (Figure 2.14) and statistical (Figure 2.15) plots of COD data show 

COD removal in the downflow phase (when the soil profile is unsaturated and oxygen is 

available).  However, there is no significant COD removal, and some COD production, 

during the upflow phase (saturated soil profile and low DO).  The in-series data shows 

COD decrease/removal in the downflow columns followed by a slight increase in COD in 

the upflow columns.  Overall, downflow columns appear to have capacity for up to 40% 

removal, while upflow columns may actually increase COD by 20-40%.  Statistical data 

for COD (Figure 2.15) also shows that the influent COD was similar between real and 

synthetic wastewater, validating the COD concentration in the synthetic wastewater 

formula.  
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Figure 2.15 Statistical data for COD.  COD was sampled at the influent tank (BK) and effluent of the 
red (RE), blue (BE), yellow (YE) and teal (TE) columns. 
 
 
2.3.5. Flowrate 
 
Inflow and outflow measurements were made periodically during the downflow phase of 

the experiment, and because no system settings changed that would affect the flowrate, 

the values were assumed to be similar during the rest of the experiment.  Average inflow 

was 55 mL/30 min for each column and average outflow was 40 mL/30 min for planted 

columns (due to evapotranspiration) and 50 mL/30 min for unplanted columns (due to 

evaporation).   

 

2.3.6. Oxidation Reduction Potential (ORP) 

ORP was measured between 150 and 250 mV for the influent for the downflow and 

upflow experiment phases. ORP was not measured during the in-series phase due to a 

probe malfunction.  There was no significant difference between real and synthetic 

wastewater ORP.  ORP was measured around 375 mV for effluent during the downflow 

phase.  In the vertical column profile during downflow, mean ORP increased to near 500.  

In the upflow phase, effluent ORP was lower than downflow and more variable, between 

150 and 350 mV.  The upflow vertical profiles, ORP was between 0 and 250 through the 

saturated portion of the profile.  Throughout the downflow and upflow phases, ORP 

reflected dissolved oxygen levels. Synthetic wastewater ORP was similar to real 

wastewater.  (See ORP data on page A-28 in the appendix).   
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2.3.7. pH 

Both temporal and statistical plots of pH data show that the influent wastewater pH was 

8.5, and effluent pH averaged just below 7.  During the entire experiment, the columns 

were able to neutralize the influent pH.  For the first weeks of the downflow phase, the 

planted columns had more buffering capacity, reducing the pH to between 5 and 6.  In 

general, the effluent pH was neutral.  (See pH data on page A-30 in the appendix).  pH 

was not directly correlated to any other analytes, but in general, the pH conditions were 

appropriate for nitrification. 
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2.3.8. Temperature 
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Figure 2.16 Air temperature at the leaf surface of control plant in the unloaded column (fed plain 
water), and plants in the blue and red columns (fed with wastewater) during the experiment time. 
 
Depending on time of day when measurements were made, the air temperature varied 

minimally between 22.85 and 29.95 degrees Celsius with an average standard deviation 

of 1.28 degrees (Figure 2.16).  Because the variation in temperature was small, statistical 

data are not shown.  

 
2.3.9. Photosynthesis  
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Figure 2.17 Photosynthesis of control plant in the unloaded column (fed plain water), and plants in 
the blue and red columns (fed with wastewater) during the experiment time. 
 
Photosynthesis was measured on a control plant (P. australis specimen planted in 

Grayling sand, fed with tap water) and the plants in the Blue and Red columns.  Figure 
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2.17 shows that the measured photosynthesis over time ranged between 0 and 2.7 µmol 

CO2/m2/sec for all plants over the course of the experiment.  Typical photosynthesis 

measurements for grasses and reeds (including P. australis) are between 0-30 µmol 

CO2/m2/sec (Knapp et al., 1993; Arntz et al.,1998; Perry and Mendelssohn, 2009) so the 

P. australis in this experiment is fixing carbon at less than 10% of its maximum rate.  

This is likely due to the lack of sunlight in the laboratory because the lighting situation 

could not reproduce the light intensity of natural broad daylight. 

0.00

0.50

1.00

1.50

2.00

2.50

3.00

WH
water

BL real RE real WH
water

BL syn RE syn WH
water

BL up RE up WH
water

BL
series

RE
series

Ph
ot
os
yn
th
es
is
 (μ

m
ol
 C
O
2/
m
2/
se
c)

 
Figure 2.18 Statistical data for photosynthesis.  WH is the control plant, fed with plain water.  BL is 
the blue column, RE is red column. 
  
Figure 2.18 shows statistical data for photosynthesis, where WH is the control plant and 

BL and RE are the plants in the Blue and Red columns; experimental phases are divided 

as follows: downflow with real wastewater “BL real”; downflow with synthetic 

wastewater “BL syn”; upflow “BL up” and in-series “BL series”.  The statistical data for 

transpiration will be shown in the same manner.  The type of wastewater fed to the 

column did not cause a significant difference in photosynthesis, as shown in Figure 2.18 

(comparing real wastewater, BL real and RE real, to synthetic wastewater, BL syn and 

RE syn).  Plants fed with wastewater have up to 0.5 µmol CO2/m2/sec more 

photosynthesis than plants fed with plain water (e.g., comparing BL-water to BL-syn), 

due to available nutrients in the wastewater.  According to both Figure 2.17 and Figure 

2.18, photosynthesis did not differ significantly for the waste-water loaded columns 

through the 3-phase experiment.  Flow regime did not have an apparent effect because 

light was the limiting condition. 
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2.3.10. Transpiration  
 

Transpiration rates for the plants in the control and experiment group varied between 0-3 

mmol H2O/m2/sec during the course of the study.  Typical transpiration rates in P. 

australis are 6-10 mmol H2O/m2/sec in both flooded and non-flooded conditions (Li et 

al., 2007).  As shown in Figures 2.19 and 2.20, the plants in the wastewater-loaded 

columns (red and blue) averaged about 0.7 mmol H2O/m2/sec transpiration during the 

unsaturated downflow phase (or 1.0 mmol H2O/m2/sec for the BL downflow column in-

series).   
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Figure 2.19 Transpiration of control plant in the unloaded column (fed plain water), and plants in 
the blue and red columns (fed with wastewater) during the experiment time. 
 
Transpiration increased slightly in the red and blue columns during the saturated upflow 

phase, and averaged about 1.3 mmol H2O/m2/sec (or 1.6 mmol H2O/m2/sec for the RE 

upflow column in-series).  Those results show that transpiration was correlated to 

hydraulic regime; plants in saturated upflow conditions had slightly higher transpiration 

than plants in unsaturated downflow conditions).  Figure 2.20 shows that the wastewater-

loaded columns typically had a slightly greater transpiration rate than the control plant 

(which averaged 0.5 mmol H2O/m2/sec for entire experiment), but even so, the average 

transpiration rate for wastewater-loaded columns was only 1 mmol H2O/m2/sec, or 10% 

of the literature maximum.  Again, this is most likely due to the lack of natural sunlight 
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since transpiration is related to photosynthesis which is limited by photosynthetically 

active radiation found in sunlight.     
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Figure 2.20 Statistical data for transpiration.  WH is the control plant, fed with plain water.  BL is 
the blue column, RE is red column. 
 
2.3.11. Soil chemistry 
 
Michigan State University Extension tested the soil pH, organic content, and nitrate 

content for Grayling sand (sieved and dried before experiment), and at the surface, mid-

depth, and bottom of each column.  Over the duration of the experiment, the soil pH 

increased from acidic 4.9 to neutral 7.2.  Organic content decreased by 0.1% from 0.7% 

to 0.6%.  Soil nitrate increased from 0.6 ppmm to 7.3 ppmm.  The soil nitrate increase 

corresponds to a soil-nitrogen mass of 83.2 g for column RE, 86.2 g for column BE, and 

111.4 g for columns YE and TE, for a total of 4% of influent total nitrogen over the 

course of the experiment.  (Data and details are listed on page A-31 of the appendix). 
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2.3.12. Significance Testing 

Using the Analysis of Variance (ANOVA) Single Factor test in the Microsoft Excel 2007 

Data Analysis Toolpak, the data for ammonium, nitrate, total nitrogen, and dissolved 

oxygen were tested for each experiment phase (left columns of Table 2.5).  The tests are 

made assuming that influent and effluent data points from each experiment phase can be 

considered as “repeat measurements”, or replicate observation during a particular 

treatment.  ANOVA single factor was used to test the ammonium, nitrate, total nitrogen 

and dissolved oxygen results (normalized to influent concentration for the column) for 

each experiment phase. The data sets from the two planted columns were tested as a pair 

(RE:BE) against the hypothesis that the planted columns did not produce similar results.  

The data sets from the unplanted columns were tested as a pair (YE:TE) against the 

hypothesis that the unplanted columns did not produce similar results.  Because RE:BE 

are connected and YE:TE are connected in the in-series phase, the ANOVA for that 

phase was also a test of whether the flow regimes (downflow and upflow) produced 

significantly different results.   Finally, the planted data was aggregated and compared to 

the unplanted data (P:U) and tested against the hypothesis that the presence of vegetation 

produced significantly different results than the absence of vegetation.  ANOVA results 

are shown in Table 2.5.  Where the F-ratio of F/Fcritical is less than 1 the data sets are 

similar, but greater than 1 the data sets are different.  Probability values or p-values above 

0.95 indicate that the similarity is significant at 95% confidence, and p-values below 0.05 

mean that the difference is significant at 95% confidence level.  Data sets and ANOVA 

tables are shown in the Appendix (page A-182). 

 

The ANOVA results indicate that the replicate columns are similar, as they should be.  

However, there was not the expected significant difference between the downflow and 

upflow column in-series, except for dissolved oxygen and for nitrate in the unplanted 

columns.  There was also not a significant difference between planted and unplanted 

columns. 
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Table 2.5 ANOVA results for alpha 0.05 for comparison of data sets RE:BE, YE:TE, and P:U.  If the 
ratio of F to Fcritical (F-ratio) is less than 1 (red), the data sets are similar; greater than 1 (green), the 
data sets are different.  Probability values above 0.95 (orange) mean the similarity is significant at 
the 95% confidence level; p-values below 0.05 (blue) mean the difference is significant within 95% 
confidence.  *Results should be interpreted with some caution and considered along with previous 
statistical data shown above. 

  RE/BE YE/TE P/U 
  F-ratio p-value F-ratio p-value F-ratio p-value 

NH4
+-N 

Downflow 0.0000 1.0000 0.0000 0.9968 4.3007* 0.0001* 
Upflow 0.0050 0.8823 0.0050 0.8813 0.0217 0.7660 
In-series 0.5370 0.1363 0.1660 0.3921 0.9326 0.0578 

        

NO3
--N 

Downflow 0.0001 0.9865 0.1059 0.5001 0.0046 0.8917 
Upflow 0.0480 0.6525 0.0677 0.5932 0.0260 0.7466 
In-series 0.2431 0.2885 4.5665* 0.0008* 0.2532 0.3064 

        

TN 
Downflow 0.0895 0.5439 0.0028 0.9144 0.3566 0.2365 

Upflow 0.0416 0.6752 0.0020 0.9274 0.3620 0.2315 
In-series 0.0000 0.9971 0.0104 0.8277 0.9511 0.0555 

        

DO 
Downflow 0.0419 0.6766 0.0397 0.6830 0.0665 0.6062 

Upflow 0.0005 0.9623 0.1966 0.3613 1.3372* 0.0247* 
In-series 2.8191 0.0063 3.7284 0.0021 0.2040 0.3525 

 
For NH4

+-N data in the downflow phase, the planted columns were statistically similar to 

each other and the unplanted columns were statistically similar to each other.  ANOVA 

showed a significant difference in removal between planted and unplanted columns, but 

the difference is not practical, which is explained below.  In the upflow phase, each pair 

was similar according to the F-ratio, but the similarity was not statistically significant 

within the 95% confidence level.  However, looking back at Figure 2.10, the upflow data 

NH4
+-N for the planted pairs and unplanted pairs each have nearly the same average and 

1st and 3rd quartile.  The similarities in the upflow phase would probably be significant at 

an 85% or 90% confidence interval, which may be acceptable in environmental data.  In 

the in-series phase, the pairs again are similar, but not significantly.   

 

Interpreting the ANOVA results with the Figure 2.10 statistical results, it appears that the 

planted columns removed significantly more NH4
+-N than unplanted columns, in-series.  

For planted columns, the downflow column was capable of nitrifying most of the 
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ammonium, and the upflow column did not contribute further removal so was not 

statistically different.  For the unplanted columns, the downflow column nitrified some of 

the ammonium (but had flooding due to plugging issues) and the upflow column may 

have contributed some further nitrification, but it was not statistically significant.   

 

For NO3
-N data in the downflow phase, all pairs were similar, and the similarity between 

the planted columns was significant.  In the upflow phase all pairs were similar but not at 

a significant level.  The nitrate statistical plot (Figure 2.13) suggests that the pairs appear 

to have similar means and ranges and may be statistically similar at a lower confidence 

interval.  In the in-series phase, ANOVA results showed that the planted columns were 

similar but the unplanted columns were significantly different from each other.  

According to Figure 2.13, the mean nitrate concentration for unplanted in-series is almost 

exactly 20 mg/L for both downflow (YEseries) and upflow (TEseries), however, the 

downflow data tended to be less than 20 mg/L while the upflow data was likely to be 

greater than 20 mg/L, meaning that some nitrate formation (nitrification) continued to 

occur in the upflow column.  The planted in-series columns had a similar result.  There 

was no significant difference for nitrate between planted and unplanted columns. 

 

For total nitrogen (TN), all pairs were similar according to the F-ratio, but only the 

planted pair for in-series was statistically similar.  The fact that the in-series columns are 

similar (i.e., the upflow column effluent was similar to the downflow effluent) means that 

either:  a) no significant treatment occurred in the upflow column, or b) nitrification and 

denitrification occurred at equal rates so that TN did change through the upflow column. 

 

For DO, the downflow pairs were similar and interpreted along with Figure 2.8, would 

probably be statistically similar at a slightly lower confidence interval.  The upflow 

planted pair was significantly similar, while the unplanted pair had a similar dataset but it 

was not significant (however, if outliers were removed and/or the significance level was 

slightly lower, it may be significant).  The planted pair was statistically different from the 

unplanted pair.  For the in-series phase, the planted columns were significantly different 
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from each other as were the unplanted columns, which is the expected result since the 

series contained two different flow regimes.  However, in comparing the planted to 

unplanted columns for in-series, there was not a statistical difference.   

 

* The ANOVA results should be interpreted with caution, and considered together with 

the analyte statistical data.  A significant difference in variance of data sets may not mean 

a practical difference; if the variances are very small. ANOVA can indicate a significant 

difference even if the dataset means are similar.  For example, in NH4
+-N, the planted and 

unplanted columns are statistically different for downflow.  In reality, all the data was 

recorded as “below detection level” so the variance is essentially zero (see Figure 2.10).  

Since the detection limit for planted columns was 1 mg/L and the detection limit for 

unplanted columns using a test with a different range was 2 mg/L, with zero-variance, 1 

is statistically different than 2.  Realistically, the downflow and upflow columns removed 

all NH4+-N equally.  Similarly, for the planted:unplanted comparison for DO in upflow, 

Figure 2.8 does not show a large difference in means.  However, the small variance again 

causes the datasets to appear different in the ANOVA test.  For upflow DO, planted and 

unplanted are practically similar.   

 

2.3.13. Mass Balance of Nitrogen 
 
A mass balance was completed for nitrogen in and out of each column over each 

experiment phase (calculations on page A-25 of the appendix).  The removal of NH4
+-N, 

NO3
--N, and TN are shown in Table 2.6.  In the downflow columns, 93% (red) of 

ammonium-nitrogen was removed by planted columns and 91% (red) in unplanted 

columns.  For upflow, planted columns removed 59% while unplanted removed 55% of 

ammonium-nitrogen.  The in-series columns performed more closely to downflow, with 

the planted columns removing 93% of NH4
+-N and unplanted removing 79%.   



 51

Table 2.6 Nitrogen mass balance showing proportion of influent ammonium, nitrate and total 
nitrogen removed.   (+/-) is the error in proportion of mass removed, propagated through the mass 
balance calculations. 

  
NH4

+-N  
removal (+/-) 

NO3
--N 

removal (+/-) Total N removed (+/-) 
Downflow RE 0.93 0.12 0.00 0.20 0.00 0.20 
 BE 0.93 0.14 0.02 0.25 0.02 0.24 
 Planted 0.93 0.13 0.01 0.23 0.01 0.22 
 YE 0.91 0.14 0.24 0.21 0.22 0.19 
 TE 0.91 0.14 0.05 0.23 0.05 0.22 
 Unplanted 0.91 0.14 0.15 0.22 0.14 0.21 
                
Upflow  RE 0.58 0.09 0.58 0.21 0.38 0.14 
 BE 0.61 0.09 0.63 0.15 0.42 0.10 
 Planted 0.59 0.09 0.60 0.18 0.40 0.12 
 YE 0.57 0.13 0.50 0.25 0.32 0.16 
 TE 0.52 0.14 0.50 0.26 0.30 0.16 
 Unplanted 0.55 0.13 0.50 0.26 0.31 0.16 
                
In-series RE (down) 0.92 0.06 0.50 0.16 0.47 0.15 
 BE (up) 0.13 0.12 0.24 0.30 0.22 0.28 
 Planted 0.93 0.09 0.62 0.23 0.59 0.22 
 YE (down) 0.51 0.21 -0.23 0.42 -0.15 0.28 
 TE (up) 0.58 0.41 0.20 0.32 0.17 0.28 
 Unplanted 0.79 0.31 0.01 0.37 0.04 0.28 

 
 

In terms of nitrate removal, downflow columns performed poorly, removing only 1% and 

15% for planted and unplanted respectively.  Upflow columns removed 60% and 50% of 

nitrate with respect to plants/no plants.  In-series columns removed 62% of nitrate in the 

planted series and only 1% in the unplanted series.   

 

Total nitrogen removal was poor due to poor nitrate removal in downflow columns: 1% 

of TN was removed in the planted columns and 14% of TN was removed in the unplanted 

columns.  Upflow columns had better TN removal: 40% and 31% with respect to 

plants/no plants.  In-series planted columns removed 59% while unplanted columns only 

removed 4% of TN.   

 

As mentioned in the soil chemistry results, 4% of influent total nitrogen was retained in 

the soil. Soil nitrogen was not included in the above mass balance because the data were 

for before and after the experiment and could not be discretized into experimental phases.  
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The cation exchange capacity of Grayling soil is very low (Table 2.2: 0.002 meq/g) for 

all soils (range of 0.003-1 meq/g, WSU, 2004), meaning that any nitrogen retained would 

quickly fill up the small adsorptive capacity.  Total nitrogen was probably retained during 

the beginning of the downflow experiment phase.   

 

Potential nitrogen uptake of plants was also calculated based on the average 

photosynthetic carbon fixation of 1.5 µmol CO2/m2/sec (Figure 2.18), typical C/N ratio of 

17 for P. australis (average of reported values from Nijburg and Laanbroek, 1997; 

Lissner et al., 1999; Burns and Walker, 2000; Gessner, 2000; Asaeda et al., 2002), and 

measured leaf area of 0.42 m2 for the P.australis planted in column BE.  Nitrogen uptake 

by the plant was calculated to be only 0.03 g/d, or 0.1% of influent total nitrogen (see 

page A-27 of the appendix for calculations).  At extreme values of photosynthesis (30 

µmol CO2/m2/sec), C/N ratio (38), and leaf area (1.5 m2), nitrogen uptake would still only 

be 1.2 g/d, less than 5% of total influent nitrogen.  Even in the best conditions for plants, 

plant uptake would contribute little to nitrogen removal.  For photosynthesis and plant 

uptake to impact nitrogen removal, a plant with high photosynthesis, high surface area, 

and a low C/N ratio would be more ideal; typically terrestrial plants have C/N > 10, while 

algae may have 5 < C/N < 10 (Lamb et al., 2006).   

 

According to these results, design decisions for a subsurface wetland might need to be 

based based on the form of nitrogen that is of regulatory concern for removal.  For 

example, for NH4
+-N removal where nitrate is not a concern, downflow systems are the 

best choice and plants do not matter.  For TN removal, a downflow-upflow in-series 

configuration with vegetation is the best option. 

 

Standard error in measurements were also propagated through the mass balance 

calculations, as shown by the (+/-) columns in Table 2.6.  Error was propagated based on 

the method of Meyer (1975) for independent and uncorrelated variables, assuming that 

flowrate and concentration were naturally independent (calculations on page A-26 of the 

appendix).  For NH4
+-N, the propagated error was +/- 6-41% of ammonium-nitrogen 
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mass removed for all columns, with a mean experimental error of +/- 15%.  For NO3
--N, 

the error ranged from +/- 15-42% for all columns with a mean of +/- 25% nitrate-nitrogen 

mass removed.  Total nitrogen removal error was in the range of +/- 10-28%, with a mean 

of +/- 20% total nitrogen mass removed.  Ammonium-nitrogen mass balance contains the 

lowest level of uncertainty because it only depends on flow rate and the influent and 

effluent concentrations of ammonium.  However, nitrate mass balance factors in both 

nitrification (producing nitrate) and denitrification (consuming nitrate) as well as the 

influent and effluent concentrations; the extra terms increased the uncertainty of the data 

by 10% over the ammonium uncertainty.  The total nitrogen mass balance accounts for 

influent and effluent ammonium and nitrate but not intermediate processes; the 

calculation is similar to an average of the ammonium and nitrate error.  Considering that 

many environmental variables are uncontrolled in this experiment to make it as realistic 

as possible, this level of uncertainty in the nitrogen mass balance is acceptable. 

 

2.4. Discussion 

An overall discussion of the research results including the modeling (Chapter 3) and life 

cycle assessment (Chapter 4) results will appear in the conclusions (Chapter 5).   A 

discussion of the results presented above in terms of enhancing the understanding of 

nitrogen fate in wetland treatment systems and the ramifications of flow configuration on 

the fate and potential design follows. 

 

This laboratory experiment was designed to show whether upflow wetlands could be 

more efficient than downflow wetlands in nitrification, while downflow wetlands might 

be more efficient at denitrification.   The upflow regime may have allowed high root-

water contact because of the saturated condition, but it did not allow better oxygen 

transfer in the treatment section of the column (between influent and effluent points).  

Downflow systems were most effective in nitrification while the upflow regime was more 

efficient in denitrification because the unsaturated downflow column maintained aerobic 

conditions while the saturated upflow column was anoxic.  For overall nitrogen removal, 

the downflow-upflow series system was most effective. 
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In a downflow configuration, the soil column is not saturated, allowing air flow and air 

pockets within the soil.  Oxygen transport is driven by diffusion as chemical and 

nitrogenous oxygen demand create an oxygen gradient and by advection as water and air 

alternately fill the soil pore space in the intermittent flow regime.  Diffusion and 

advection provide oxygen at a greater rate than nitrifiers can use it, so the oxygen 

concentration stays high even though all the ammonium is oxidized.  In this experiment, 

the downflow column was too aerated for denitrification to occur, so nitrate was not 

reduced.  Oxygen transfer was greater than oxygen demand.  This capacity could allow 

an increase in nitrogen load (either higher flow rate with similar intermittent conditions, 

or higher concentration of NH4
+-N with the same flow regime).   

 

In an upflow configuration, the soil column is fully saturated up to the outlet level, at 

which point oxygen may diffuse from the air into the water table.  Advective oxygen 

transport is inhibited by the saturated conditions.  Diffusion is not fast enough to meet the 

oxygen demand; oxygen transfer is poor and nitrifiers are slow to oxidize ammonium 

(except at the effluent level: oxygen diffusion is high at the water table surface so 

nitrification increases just before water exits the column).  Low nitrification still produces 

some nitrate, but the anoxic conditions were appropriate for an equal amount of 

denitrification, so the nitrate appeared to have no change. 

 

The downflow and upflow columns in series generally behaved as they did separately, 

with the only difference being that the upflow column received its influent from the 

downflow column.  Similar to the upflow phase, the upflow column in-series had an 

increase in DO at the effluent point from oxygen diffusing from the soil surface.  The 

upflow planted column showed a significantly higher DO concentration than the 

unplanted column which allowed greater nitrification in planted versus unplanted in-

series columns (Figure 2.10).  According to the mass balance (Table 2.6), more nitrate 

was removed in planted columns as well.  Plants may contribute to nitrogen removal 



 55

more significantly than the ANOVA test shows, although through other ways than uptake 

of nitrogen. 

 

Denitrification was limited in all the column studies.  The presence of oxygen (even at 

low concentration) probably inhibited denitrifier growth.  It is also possible that not 

enough carbon was available for denitrifiers.  The synthetic wastewater was formulated 

on the assumption that all the COD was readily biodegradable and available for 

denitrification.  It is more likely that a fraction of COD was slowly biodegradable by 

hydrolysis and a fraction was inert, leaving less available carbon (readily biodegradable) 

for denitrifier consumption.  Most likely, the denitrifiers consumed nitrate and limited 

biodegradable carbon in the presence of low oxygen concentration, and the resulting 

denitrification balanced nitrification so that in the nitrate plots, there appears to be little 

or no nitrate decrease in the upflow columns.   

 

The diffusive oxygen transfer rate, or oxygen transfer rate (g O2/m2d) driven by COD and 

nitrogenous oxygen demand, in both upflow and downflow is calculated using the 

equation from Cooper (1999): 

 

 [ 0.7(CODi – CODo) + 4.3(NH4
+-Ni – NH4

+-No) ] × flowrate / area 

 

CODi and CODo are influent and effluent COD concentrations (M/L3) and NH4
+-Ni and 

NH4
+-No are influent and effluent NH4

+-N concentrations (M/L3).  100% efficient oxygen 

transfer assumes that all COD and ammonium-nitrogen are removed.  The oxygen 

transfer rate in a vertical flow wetland has been reported in the range of 4-94 g O2/m2d 

(Cooper, 1999), so the rates found in this experiment appear to be on the low side (Table 

2.7).  The maximum diffusive oxygen transfer rate achieve in this study, when influent 

ammonium spiked to 45 mg/L and was completely nitrified, was 29.1 g O2/m2d. 
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Oxygen that remained in the downflow columns beyond NBOD and COD consumption 

was assumed to be due to advection since it was not driven by diffusion.  The advective 

oxygen transfer is calculated as: 

 

 DOo × flowrate / area 

 

DOo is the effluent DO concentration (M/L3).  The advective oxygen transfer rate was 1.1 

g O2/m2d for downflow columns.  Total oxygen transfer rate for downflow columns, 

including both diffusion and advection, is 15.2 g O2/m2d for planted columns and 13.4 g 

O2/m2d for unplanted columns.   

 
Table 2.7 Diffusive oxygen transfer, nitrification and denitrification rates and efficiency obtained in 
this study. 

 Mean O2 transfer rate Mean nitrification rate Mean denitrification rate 
 g O2/m2d Eff. g NH4

+-N/m2d Eff. g NO3
--N/m2d Eff. 

Downflow planted 14.1 84% 2.9 100% 0.2 5% 
Downflow unplanted 12.3 76% 2.8 100% 0.0 1% 
Upflow planted 8.3 45% 1.9 64% 1.6 44% 
Upflow unplanted 4.3 25% 1.2 43% 1.0 28% 
Series planted 11.0 57% 2.1 76% 1.2 29% 
Series unplanted 9.7 53% 1.8 67% 0.1 2% 

 
 

Vertical flow wetland studies have not reported areal nitrification rates, but those shown 

in Table 2.7 could offer a design perspective.  Nitrification rate is calculated as:  

 

 (NH4
+-Ni – NH4

+-No) × flowrate / area 

 

Downflow columns achieved nitrification rates of 2.9 g NH4
+-N/m2d, which was 100% 

effective at nitrification (assuming all ammonium-nitrogen was removed through 

nitrification).  In the upflow and series columns, planted columns had slightly better 

nitrification effectiveness than unplanted columns, but all were around 1-2 g NH4
+-

N/m2d.  These results suggest that a wetland designed as the columns in this study could 

achieve at least 2.9 g NH4
+-N/m2d (possibly twice this amount or more; concentrations as 

high as 45 mg/L were completely nitrified as shown in Figure 2.10).  Knowing an 
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average influent concentration, a vertical flow wetland could be designed based on this 

maximum nitrification rate. 

 

The rate of denitrification (which is the same as total nitrogen removal rate) has not been 

reported.  Denitrification rate is calculated as:  

 

 [ (NH4
+-Ni  + NO3

--Ni) - (NH4
+-No + NO3

--No) ] × flowrate / area 

 

NO3
--No and NO3

--Ni are the influent and effluent nitrate concentrations (M/L3).  100% 

denitrification effectiveness considers that all influent ammonium has been nitrified into 

nitrate, and all influent nitrate plus oxidized ammonium has been denitrified to nitrogen 

gas.  Areal denitrification rates reached as high as 1.6 g NO3
--N/m2d in the planted 

upflow column and 1.2 g NO3
--N/m2d in the planted series reactor, but only 1.0 g NO3

--

N/m2d in unplanted columns. 

 

Constructed wetland design targeting nitrogen removal should meet the following 

conditions: 

  

a) For nitrification, soil profile should be unsaturated. 

b) For nitrification, the hydraulic regime and pumping schedule should maximize 

diffusive and advective oxygen transfer. 

 c) For denitrification, the soil profile should be saturated. 

d) For denitrification, the hydraulic regime and pumping schedule should minimize 

oxygen transfer. 

 e) For denitrification, labile carbon must be available. 

f) For either ammonium or nitrate uptake by plants, there should be a high level of root-

water contact. 

 

A true rational design method would take the given wastewater characteristics and 

effluent requirements and produce characteristics of a reactor in which biological or 
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chemical transformations or removal convert the wastewater to the desired effluent 

quality.  The reactor may be defined by volume, surface area, depth, media 

characteristics, flow regime, recycle rate and vegetation.  The lab results are used here to 

qualitatively describe reactor characteristics. 

 

Design decisions can be made based on which nitrogen species is of primary concern.  If 

only nitrification is required, downflow wetlands are appropriate, while downflow and 

upflow in-series is the best option for total nitrogen removal (including both ammonium 

and nitrate).  

 

The depth of the downflow wetland could potentially be significantly decreased.  

Nitrification appeared to occur in the top 10 cm of the soil column (Figure 2.12b).  Based 

on that evidence it may be possible to reduce the downflow wetland depth from 1 m 

(Danish guidelines; in this experiment the depth was 60 cm) to 10 cm.  However, a 

reduced depth in unsaturated soil could introduce the effects of short-circuiting.  A safety 

factor of 2-3, making the depth 20-30 cm, would reduce the risk of short-circuiting while 

still allowing 70% reduction of wetland media.  For the upflow columns, the treatment 

depth in this study (depth between influent and effluent) was 40 cm, with 20 cm of 

unsaturated soil above the water table.   

 

European guidelines for vertical flow wetlands specify a person equivalent (p.e.) 

hydraulic and organic load and a suggested surface area per person equivalent.  Up to 5 

m2/p.e. is recommended for nitrification (Brix and Arias, 2005), but this study showed 

that only 1.1 m2/p.e. was sufficient to nitrify all NH4
+-N, due to the effective transport of 

oxygen.   

 

Further research is recommended in the areas of vegetation influence, carbon source, 

variation of hydraulic load and intermittency, other nitrogen removal processes, and 

gaseous emission measurement to quantify nitrogen fate.  Although the analysis of 

variance did not show significant impact of plants on nitrogen removal, according to the 
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mass balance (Table 2.6) and calculated nitrification and denitrification rates (Table 2.7), 

columns with P. australis did remove more nitrogen than those without.  It is possible 

that carbon from plant degradation contributed to denitrification.  The reeds’ effect was 

more definite on nitrate than on ammonium, and in upflow rather than downflow 

columns.  This is probably due to the plant root contact with nitrified wastewater in 

saturated conditions in the upflow columns.  Wetland designs (especially upflow 

wetlands) should include plants for this reason.  Based on the low productivity of the 

plants in this study, most likely due to lighting conditions which did not simulate sunlight 

intensity, it is probable that nitrogen uptake would increase in the field.  However, even 

at the maximum photosynthesis rate reported, the proportional increase in nitrogen uptake 

would still only account for up to 5% of total influent nitrogen in this study.  In the 

absence of P. australis, which is an invasive species in the United States, vegetation with 

a high leaf surface area, high photosynthesis rate, and low C/N ratio would contribute the 

most to nitrogen removal through plants.   

 

Finally, for full denitrification to occur, a significant carbon source must be available.  In 

this experiment, the synthetic wastewater was designed to provide enough COD for full 

denitrification, but slowly biodegradable or inert fractions were not considered.  Up to 

40% of COD was removed in downflow wetlands.  This left 60% of COD for potential 

consumption by denitrifiers, and probably most of that was slowly biodegradable or inert, 

unavailable for denitrification.  The impacts of COD fractionation will be explored 

further in the numerical modeling (Chapter 3). 

 

Other operational configurations of wetland flow regimes could be investigated at the 

bench scale to understand vegetation and COD influence in vertical flow wetlands, 

including an upflow-downflow in-series configuration (opposite the series in this study) 

and/or effluent recycle.  These could potentially introduce nitrate at the beginning of the 

wetland to take advantage of carbon for early denitrification.   
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Varying the loading would also have, as yet, unmeasured effects.  The oxygen transfer 

capacity of the downflow wetland column was dependent on the unsaturated flow, while 

for the upflow wetland it was only dependent on diffusion.  The treatment capacity of the 

wetland would decrease with an increased hydraulic load; advective oxygen transport 

would be reduced if more wastewater is applied because the ratio of water to air cycling 

through pore space would increase.  On the other hand, if the hydraulic load was 

maintained but contaminant concentrations were higher (i.e., higher nitrogen loading), 

advective oxygen would be the same as in this study, but the ratio of oxygen transport to 

oxygen demand would be lower.  In either case, diffused oxygen would increase due to 

the increased concentration gradient, but as shown in this study it provides little oxygen 

compared to the oxygen demand.   

 

Changing the pumping schedule of intermittent flow would also have unmeasured effects.  

While changing the pumping scheme (but maintaining the hydraulic load) would not 

change the hydraulic retention time, it would change the diffusive and advective oxygen 

transport in the downflow column as well as the hydraulics of the upflow column, 

possibly leading to a change in nitrogen chemistry.   

 

There is also a question of nitrogen oxide gases forming when nitrification and 

denitrification occur in suboptimal conditions.  While these were not measured in the 

laboratory experiment, it may be useful to measure N2O and NOx in wetland pilots to 

ensure that the design and operation will minimize gases which have global warming 

potential or photo-oxidant formation potential.  This will be discussed more in the life 

cycle assessment which considers the environmental impacts of nitrogen emissions from 

constructed wetlands (Chapter 4).   
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3. CONSTRUCTED WETLAND PROCESS MODELING 
In this chapter, the laboratory experiment of Chapter 2 is numerically simulated using the 

variably saturated flow and reactive transport model HYDRUS-2D/CW-2D.  Models for 

constructed wetlands are reviewed and the reasons for choosing HYDRUS-2D/CW-2D 

are explained.  The chapter includes the methods for setting up, calibrating and validating 

the model, and the results of the calibration and validation.  The discussion focuses on the 

ability of this modeling study to elucidate oxygen and nitrogen transport mechanisms, 

understanding gained beyond the laboratory experiment and design impacts on nitrogen 

fate.  

 

3.1. Background  

Numerous computer models have been developed to simulate hydraulics and/or 

biogeochemistry (including nitrogen cycling) in natural and constructed wetlands 

processes.  Modeling efforts have addressed nitrogen fate in the subsurface but without 

oxygen effects (de Vos et al., 2002; Hanson et al., 2006), ammonium and nitrate 

degradation but not biological growth (Winn and Liehr, 2001; Lee et al., 2002), and many 

reactor types without variably saturated flow (cf. Kadlec 2002; Langergraber, 2008).  The 

goal of this literature review was to identify a computer model that could describe 

nitrogen and oxygen fate and transport with biogeochemical reactions in a variably 

saturated soil column, with the conclusion that HYDRUS-2D/CW-2D is the best 

available model.  The review includes a description of the International Water 

Association’s (IWA) Activated Sludge Model, which is a wastewater treatment model 

incorporated into HYDRUS-2D/CW-2D to simulate biogeochemical reactions. 

 

3.1.1. Subsurface Flow Constructed Wetlands Modeling 

Wynn and Liehr (2001) simulate SSF wetlands using a compartmentally based model, 

considering cycles of nitrogen and carbon, growth and metabolism of both autotrophic 

and heterotrophic bacteria, and water and oxygen balances.  The model requires inputs of 

air temperature, precipitation, flow rate and concentrations of BOD, DO, ammonium, 

nitrate and organic N and data to set 42 parameters for physical, microbiological, and 
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biological processes. While the modularity of the program offers the choice of which 

compartments to study, the amount of data required may overwhelm most designers.  The 

model uses a simplistic approach for nutrient uptake by plants.  According to the results 

of modeling an actual constructed wetland the wetland was deeper than required, 

reducing oxygen transfer from the rootzone, increasing ammonification, and decreasing 

nutrient flux to rootzone microbes.  The authors suggested a shallow bed with large 

surface area, but did not consider vegetation with deeper roots that may transfer oxygen 

farther into the soil.  Wynn and Liehr (2001) listed research that was needed to improve 

constructed wetland design including whether biomass growth and nutrient uptake should 

be modeled with Monod kinetics rather than simple nutrient cycles.  The Monod kinetic 

approach is incorporated in this study.  

 

Lee et al. (2002) developed a compartmental wetland model (WETLAND) for designing 

and evaluating constructed wetlands.  WETLAND is built of modules for hydrologic, 

nitrogen, carbon, bacteria, DO, vegetation, phosphorus and sediment cycles, similar to 

the model of Wynn and Liehr (2001). A sensitivity analysis showed that the most 

influential parameters are input that affects the bacteria and oxygen cycles.  The authors 

assumed a uniform vegetation stand and constant transport of oxygen by roots to the 

wetland bottom.  Vegetation was modeled using a linear growth rate at the beginning of 

the growing season, reaching a constant maximum through the growing season, and then 

a linear decrease to zero during senescence; the vegetation model did not account for root 

depth or difference in plant species.  The authors concluded that WETLAND may be 

useful for considering nutrient removal in wetland design, but more complete data was 

needed to evaluate the model.   

 

Recently, a multi-component reactive transport model was incorporated with the variably 

saturated flow model HYDRUS-2D to form CW-2D (Langergraber and Simunek, 2005).  

HYDRUS-2D simulates water flow and solute transport through variably saturated 

porous media (Simunek et al, 1999) and can include water uptake by vegetation.  

HYDRUS-2D numerically solves the Richards equation for saturated-unsaturated flow 
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and the convection-dispersion equation for heat and solute transport.  Solute transport 

includes gas diffusion (gas-aqueous equilibrium mass transfer), aqueous advection-

dispersion, and chemical or physical non-equilibrium (solid-aqueous mass transfer).  

Non-aqueous solutes cannot be transported either into or out of the model boundaries (for 

example, the model cannot describe advective or diffusive air flow into a soil column 

from the atmosphere).  CW-2D modifies the HYDRUS-2D solute transport to include 

non-linear, coupled reactions for 9 processes relating 12 components.  The components 

are: dissolved oxygen, three organic matter fractions, four nitrogen species, inorganic 

phosphorus, and three groups of microorganisms.  The components are coupled through 

hydrolysis, aerobic and anoxic growth of heterotrophs (including nitrate- and nitrite-

based denitrification), growth of autotrophs by two-step nitrification, and decay of 

microorganisms.   

 

The mathematical structure of CW-2D is based on the Activated Sludge Model (ASM, 

description to follow), while the 46 biochemical reaction parameters can be calibrated for 

pilot-scale vertical flow constructed wetlands.  Although HYDRUS-2D has the capability 

to simulate plant uptake of water and nutrients for highly loaded systems treating 

domestic wastewater, neither the pilot-scale wetlands nor the model of Langergraber and 

Simunek (2005) included vegetation.  Langergraber and Simunek identified the need to 

incorporate better information on substrate clogging (“biomat” development), plant 

uptake of nutrients, and full-scale operation of constructed wetlands.  CW-2D restricts the 

oxygen input to within the system, in a manner appropriate for an activated sludge reactor 

but not for wetland systems, where oxygen transfer occurs at the surface. 

 

Langergraber and Simunek (2005) described the use of HYDRUS-2D/CW-2D for 

modeling flow and multi-component reactive transport in a single-stage pilot-scale 

downflow wetland.  They found that effluent nitrate concentrations were overestimated 

due to low values for readily biodegradable organic matter available for denitrification.  

They also modeled a two-stage (downflow then upflow) pilot-scale system for two 

loading cycles (50 L/m2 every two hours), and showed that oxygen entered the 
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unsaturated top of the downflow column and equilibrated with the atmosphere to a depth 

of at least 5 cm but was completely consumed at the depth of the water table.  

Ammonium was quickly oxidized in the aerobic section of the soil column but 

denitrification did not occur.  No results were presented for the upflow section of the 

pilot-scale wetland.  With saturated conditions and available organic matter, 

denitrification should be possible within the upflow wetland and CW-2D should also be 

able to simulate upflow treatment. 

 

Henrichs et al. (2007) tested HYDRUS-2D/CW-2D for modeling vertical flow 

constructed wetlands used to treat combined sewer overflow.  They found that the model 

was sensitive to influent COD fractionation (readily and slowly biodegradable and inert 

organic matter), adsorption of slowly biodegradable organic matter, and heterotrophic 

bacteria concentrations.  For single applications (6 hours to 6 days) of wastewater in 

lysimeters and field plots they simulations agreed with the observations well, but for 

long-term simulations, the measured and simulated data did not match.  Their study used 

default biological parameters without attempting to calibrate the biological kinetics of 

CW-2D.   

 

Toscano et al. (2009) modeled organic matter degradation and nitrogen removal in a two-

stage constructed wetland, horizontal followed by vertical flow, using HYDRUS-

2D/CW-2D.  To estimate organic matter fractions, they assumed that 85% of the effluent 

COD was inert organic matter, one-third of the difference between the influent COD and 

the inert organic matter was slowly biodegradable, and two-thirds was readily 

biodegradable.  They included oxygen release via a reaeration rate that is implemented 

evenly throughout the system and plant uptake of ammonium and nitrate in their 

simulation.  Plant roots did not affect COD simulations, which successfully matched 

measured values, but the inclusion of plant effects overestimated nitrogen removal in the 

vertical flow wetland.   
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Several researchers have reviewed other wetland models.  In a review of first-order 

treatment models (Kadlec, 2000), it was suggested that first-order equations for solute 

transport are not able to accurately describe the effects of flow path (short-circuiting) and 

spatial distribution of vegetation.  A review by Rousseau et al. (2004) of model-based 

designs of horizontal SSF wetlands compared the required area for a wetland predicted 

by rules of thumb, regression equations, first-order models, and the previously mentioned 

model of Wynn and Liehr (2001).  The rules of thumb gave the most conservative areal 

estimates, predicting consistently higher areas than other models.   

 

Langergraber (2008) reviewed five models that can describe flow dynamics and single-

solute transport, including completely stirred tanks in a plug flow channel, plug flow with 

dispersion, CSTRs-in-series with delay, the one-dimensional advection-dispersion 

equation, and HYDRUS-1D (based on the Richards equation) combined with MOFAT 

(combined effects of water and air flow).  These models could typically simulate tracer 

experiments, but often could not reliably simulate diffusion or dispersion, and did not 

have capabilities for reactive transport or variably saturated flow.  Langergraber (2008) 

reviewed six models for reactive transport in saturated conditions (useful for horizontal 

flow wetlands).  Four of the six described kinetics via Monod-type reactions (including 

Wynn and Liehr, described above), one of which coupled the ASM with a network of 

CSTRs, particulate clogging, and plant growth and decay.  Another reactive transport 

model described BOD removal by using a first-order degradation rate constant for each 

of a number of completely-mixed-flow-reactors in series, which make up the horizontal-

flow wetland.  A sixth model considered nitrogen removal processes through 

transformation between water, plant and aggregate compartments, based on biomass 

suspended in the water and biofilm growth on plant roots and soil particles.   

 

Two other models besides HYDRUS-2D/CW-2D consider Monod-type kinetics, which 

are coupled to either the 2D finite element code RetrasoCodeBright (RCB) or to a 1D 

vertical flow described by the Richards equation (Langergraber, 2008).  Neither model 

has been validated for reactive transport in vertical flow wetlands.  Overall, HYDRUS-
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2D/CW-2D is the most widely accepted and best validated mechanistic approach for 

describing kinetic processes, transport, and variably saturated flow in constructed 

wetlands. 

 

3.1.2. Activated Sludge Models 

In 1982, the International Association on Water Quality formed a task force to review 

existing knowledge of activated sludge wastewater treatment and reach a consensus about 

the simplest mathematical model of carbon oxidation, nitrification and denitrification 

(Henze et al., 2000).  The result was Activated Sludge Model No. 1 (ASM1), which 

incorporated eight Monod-based biokinetic processes: aerobic growth of heterotrophs, 

anoxic growth of heterotrophs, aerobic growth of autotrophs, decay of heterotrophs, 

decay of autotrophs, ammonification of soluble organic nitrogen, hydrolysis of 

biodegradable organic material, and hydrolysis of organic nitrogen.  Using Monod-type 

reactions and experimentally-derived stoichiometric and kinetic parameters, the ASMs 

calculate reactions for fifteen state variables: readily biodegradeable organic matter, 

slowly biodegradable organic matter, soluble inert organic matter, particulate inert 

organic matter in influent and produced by biomass decay, heterotrophic biomass, 

autotrophic biomass, ammonium nitrogen, soluble biodegradable nitrogen, particulate 

biodegradable nitrogen, particulate nonbiodegradable nitrogen produced by biomass 

decay, active biomass nitrogen, and nitrite/nitrate nitrogen, dissolved oxygen and 

alkalinity. (Later ASMs included phosphorus and other state variables).   

 

HYDRUS-2D/CW-2D reaction processes are based on ASMs and include hydrolysis of 

slowly biodegradable organic matter into readily biodegradable organic matter; aerobic, 

nitrite-based and nitrate-based growth and lysis of heterotrophs; aerobic growth of 

autotrophs on ammonium and lysis; and aerobic growth of autotrophs on nitrite and lysis 

(Langergraber and Simunek, 2005).  State variables include dissolved oxygen, readily 

biodegradable organic matter, slowly biodegradable organic matter, inert organic matter, 

heterotrophs, Nitrosomonas, Nitrobacter, ammonium-nitrogen, nitrite-nitrogen, nitrate-

nitrogen, dinitrogen, and inorganic phosphorus. 
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3.1.3. Literature review conclusion 

Currently, HYDRUS-2D/CW-2D is the most comprehensive tool for modeling vertical 

flow constructed wetlands.  It has the capability to describe variably saturated flow which 

would apply to both downflow and upflow wetlands, and contains a solute transport 

module which includes biological kinetics, adsorption, and gas transport within the 

model.  The mechanistic approach offers a better understanding of the laboratory data and 

oxygen and nitrogen behavior in vertical flow wetlands in general.  Calibration of 

specific parameters in CW-2D may allow the model to be useful for wetland design or 

management.   

 

3.2. Methods 

Preliminary modeling with HYDRUS-2D, a variably saturated flow and reactive-

transport modeling package, was completed to simulate oxygen transport in upflow and 

downflow wetlands (Fuchs et al., 2007).  The simulations suggest that upflow hydraulics 

may have a higher capacity for oxygen transfer, and therefore nitrification, compared to 

downflow, which may have better conditions for denitrification. Figure 3.1 shows that 

upflow configurations can allow deeper gaseous diffusion of oxygen from the soil surface 

because the soil profile was not as saturated.  While the simulations provide interesting 

evidence to support the hypothesis, they were not based on measured data, which 

predicated the need for the experimental research of Chapter 2.  



 74

0

10

20

30

40

50

60

70

80

90

100

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Concentration O2, mg/L

D
ep

th
 in

to
 s

oi
l c

ol
um

n,
cm

Downflow
Upflow

 
Figure 3.1 Dissolved oxygen plume in downflow and upflow simulations in HYDRUS-2D. 
 

The laboratory column study was modeled using the water flow and solute transport 

processes in HYDRUS-2D.  Time steps were discretized for the numerical simulation 

using initial and minimum time steps of 0.0001 days and a maximum time step 0.01days. 

 

The laboratory columns operated only in vertical flow, so it was assumed that horizontal 

constituent variations and transverse dispersion were negligible.  The model grid was a 

vertical rectangular transport domain 60 cm deep and 1 cm wide, vertically discretized in 

centimeter-thick rows (1 column by 60 rows resulting in a two-dimensional finite element 

mesh of 122 nodes and 120 triangular finite elements (see Figure 3.2).  Constant-flux 

boundary conditions were applied to the top and bottom for water flow (14.5 cm/day in 

and out, 1-dimensional flux corresponding to 142 L/m2/day).  Water flow was calculated 

using standard HYDRUS-2D software, while solute transport was evaluated with the 

wetlands module, CW-2D. 
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Figure 3.2 Downflow and upflow column finite element mesh and boundary conditions. 
 

The model was run for 30-day simulations, with reaction rates calibrated so that solutes 

reached steady state in the first 5 days.  The van Genuchten-Mualem model, with no 

hysteresis, was chosen for flow simulations.  Because the drainage layer was small 

compared to the sand column, only the sand column was modeled.  Van Genuchten 

hydraulic parameters and solute transport parameters for the Grayling sand are given in 

Table 3.1.   The van-Genuchten soil moisture parameters for the Grayling sand were 

measured by Daniel B. Stephens and Associates (www.hydrotestlab.com, Albuquerque, 

NM) by constant head, hanging column, pressure plate, water activity meter and relative 

humidity tests (Stephens and Assoc., 2008).  An initial condition for water content of 

0.20 was set for the entire downflow column while the upflow column was saturated 

below the top 40 cm and decreased linearly to field capacity from the water table to the 

top of the column.  For downflow, the water flow boundary conditions were constant flux 

nodes (14.5 cm/d at the top, and -14.5 cm/d at the bottom).  The water flow boundary 

conditions for upflow were also constant flux (14.5 cm/d at bottom, and -14.5 cm/d at 

outflow node).  The upflow column also had a water-flow boundary condition at the 
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surface where 14.5 cm/d flowed in and immediately out across the column top.  The 

surface flow nodes allowed the simulation of atmospheric oxygen diffusing into pore 

water from the soil surface, getting around the HYDRUS limitation of no gas flow. 

 
Table 3.1 Grayling sand hydraulic and solute transport parameters. 

van Genuchten hydraulic model solute transport model 

theta-r theta-s alpha n I Ks 
bulk 

density 
longitudinal 
dispersion 

0.0275 0.3843 
0.0192 

/cm 4.3292 0.5 
216 
cm/d 

1.65 
g/cm3 3* cm 

 

For the downflow column, a Dirichlet (first-type) boundary was set for the top boundary 

in order to specify influent concentrations, and a Cauchy (third-type) boundary was set 

for the bottom of the column (boundary conditions shown in Figure 3.2).  For the upflow 

column, the bottom boundary was set as first-type to specify influent concentrations, and 

a third-type boundary set for the outflow node.  HYDRUS-2D does not actually allow for 

gas transfer across a boundary without associated water flow (i.e., the gas must be 

dissolved in the influent until it is within the model boundary), so to simulate oxygen 

diffusion from the soil surface, the two nodes at the top of the column were set as (left: 

constant-flux in with Dirichlet condition; right: constant-flux out with Cauchy condition).  

The gas-transport limitation of the model was superceded by creating a “crossflow” 

boundary at the top of the column where oxygenated water would flow in a Dirichlet 

node on one side of the top layer and the same amount would flow out a Cauchy node on 

the other side, but the oxygen would diffuse down into the column.  This effectively 

created an atmospheric condition for oxygen to enter the column.  The water in crossflow 

did not affect the hydraulic conditions of the column.   

 

Solute transport equations were weighted for the transport domain using a Crank-

Nicholson time-weighting scheme and Galerkin finite elements with a Stability Criterion 

of 5 (Pe, Cr).  Twelve solutes were evaluated using CW-2D.  The solute parameters are 

listed in Table 3.2.  Multi-component reactions are accomplished in CW-2D using 

activated sludge models (ASM).  The kinetic and stoichiometric parameters for CW-2D 

are listed in Table 3.3. 
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Table 3.2 Solutes and parameters used in model. 

Constituent  
Diffusion coeff. 

(cm2/d) 

Influent 
concentration 

(mg/L) 

Initial condition 
(mg/L except 

microbes) 

Dissolved oxygen (DO) 
1.54656 (aq) 

9.18 9.18 
4924.8 (g) 

Readily biodegradeable 
organic matter (CR) -- 16.3 16.3 

Slowly biodegradeable 
organic matter (CS) -- 8.2 8.2 

Inert organic matter (CI) -- 25.5 25.5 
Heterotrophs (XH) -- -- 5 g/g sorbed 

Autotrophs--Nitrosomonas 
(NS) -- -- 5 g/g sorbed 

Autotrophs--Nitrobacter (NB) -- -- 5 g/g sorbed 

Ammonium (NH4
+-N) 0.25859 (aq) 20 20 

Nitrite (NO2
--N) 0.35502 (aq) 1 1 

Nitrate (NO3
--N) 0.28224 (aq) 5 5 

Dinitrogen (N2) 0.36637 (aq) 0 0 
Inorganic phosphorus (IP) -- 1 1 
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Table 3.3 ASM a) kinetic and b) stoichiometric parameters used in activated sludge models, CW-2D 
example Wetland1, and this study.  Growth and decay rates are bold. 
 

a) Kinetic parameters     

Parameter Process 
ASM 
value 

CW2D 
Wetland1 
example 

Fuchs 
(downflow) 

Fuchs 
(upflow) 

 Hydrolysis 
Ks hydrolysis rate constant, 1/d 3 0.05 0.05 1 

Kx 
saturation/inhibition coefficient for hydrolysis, 
mgCOD,CS/mgCOD,BM 0.1 0.1 0.1 0.1 

 Heterotrophic growth (aerobic) 
uH maximum aerobic growth rate on CR, 1/d 6 0.1 0.7 0.1 
bH rate constant for heterotrophic lysis, 1/d 0.4 0.0025 0.1 0.1 
Khet,O2 saturation/inhibition coefficient for O2, mgO2/L 0.2 0.2 0.2 0.2 

Khet,CR 
saturation/inhibition coefficient for substrate, 
mgCOD,CR/L 2 2 2 2 

Khet,NH4N 
saturation/inhibition coefficient for NH4+, 
mgNH4N/L 0.05 0.05 0.05 0.05 

Khet,IP saturation/inhibition coefficient for P, mgIP/L 0.01 0.01 0.01 0.01 
 Heterotrophic growth (denitrification) 
uDN maximum denitrification rate, 1/d 4.8 0.08 0 .5 
KDN,O2 saturation/inhibition coefficient for O2, mgO2/L 0.2 0.2 0.2 1 

KDN,NO3N 
saturation/inhibition coefficient for nitrate, 
mgNO3N/L 0.5 0.5 0.5 0.5 

KDN,NO2N 
saturation/inhibition coefficient for nitrite, 
mgNO2N/L 0.5 0.5 0.5 1 

KDN,CR 
saturation/inhibition coefficient for substrate, 
mgCOD,CR/L 4 2 2 2 

KDN,NH4N 
saturation/inhibition coefficient for NH4+, 
mgNH4N/L 0.05 0.05 0.05 0.05 

KDN,IP saturation/inhibition coefficient for P, mgIP/L 0.01 0.01 0.01 0.01 

 Autotrophic growth (nitrification by nitrosomonas) 
uANs maximum aerobic growth rate on NH4+, 1/d 0.9 0.015 0.4 0.4 
bANs rate constant for nitrosomonas lysis,1/d 0.15 0.0015 0.28 0.27 
KANs,O2 saturation/inhibition coefficient for O2, mgO2/L 1 1 1 1 

KANs,NH4N 
saturation/inhibition coefficient for NH4+, 
mgNH4N/L 0.5 0.5 0.5 0.5 

KANs,IP saturation/inhibition coefficient for P, mgIP/L 0.01 0.01 0.01 0.01 

 Autotrophic growth (nitrification by nitrobacter) 
uANb maximum aerobic growth rate on NO2-, 1/d 1 0.0167 0.4 0.4 
bANb rate constant for nitrobacter lysis, 1/d 0.15 0.0015 0.3 0.27 
KANb,O2 saturation/inhibition coefficient for O2, mgO2/L 0.1 0.1 0.1 0.1 

KANb,NO2N 
saturation/inhibition coefficient for nitrite, 
mgNO2N/L 0.1 0.1 0.1 0.1 

KANb,NH4N 
saturation/inhibition coefficient for NH4+, 
mgNH4N/L 0.05 0.05 0.05 0.05 

KANb,IP saturation/inhibition coefficient for P, mgIP/L 0.01 0.01 0.01 0.01 
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b) Stoichiometric parameters for organic matter and biomass and composition parameters  

Parameter ASM value 

CW-2D 
Wetland1 
example 

Fuchs 
(downflow) 

Fuchs 
(upflow) 

 Stoichiometric parameters 

fHyd,CI 
Production of CI in hydrolysis, 
mgCOD,CI/mgCOD,CS 0 0 0 0 

fBM,CR 
Fraction of CR generated in biomass lysis, 
mg COD,CR/mgCOD,BM 0.05 0.05 0.05 0.05 

fBM,CI 
Fraction of CI generated in biomass lysis, 
mgCOD,CI/mgCOD,BM 0.1 0.1 0.1 0.1 

YH 
Yield coefficient for heterotrophs, 
mgCOD,BM/mgCOD,CR 0.63 0.63 0.63 0.63 

YANs 
Yield coefficient for nitrosomonas, 
mgCOD,BM/mgNH4N 0.24 0.24 0.24 0.24 

YANb 
Yield coefficient for nitrobacter, 
mgCOD,BM/mgNO2N 0.24 0.24 0.24 0.24 

 Composition parameters 
iN,CR N content of CR, mgN/mgCOD,CR 0.03 0.03 0.03 0.03 
iN,CS N content of CS, mgN/mgCOD,CS 0.04 0.04 0.04 0.04 
iN,CI N content of CI, mgN/mgCOD,CI 0.01 0.01 0.01 0.01 
iN,BM N content of biomass, mgN/mgCOD,BM 0.07 0.07 0.07 0.07 
iP,CR P content of CR, mgP/mgCOD,CR 0.01 0.01 0.01 0.01 
iP,CS P content of CS, mgP/mgCOD,CS 0.01 0.01 0.01 0.01 
iP,CI P content of CI, mgP/mgCOD,CI 0.01 0.01 0.01 0.01 
iP,BM P content of biomass, mgP/mgCOD,BM 0.02 0.02 0.02 0.02 

 

In a typical activated sludge reactor oxygen is bubbled from the bottom of the water 

column.  ASMs include an oxygen reaeration concentration and rate, and they implement 

reaeration by a model that describes the change in dissolved oxygen (DO) concentration 

over time by multiplying air content and reaeration rate by the difference in actual and 

saturated DO concentration.  Reaeration is implemented from within the system, similar 

to an activated sludge reactor, but in a constructed wetland this approach would be 

appropriate only if the wetland was aerated by injecting air throughout.  For this study, 

reaeration by the ASM method was set to zero, and oxygen demand was met by influx of 

oxygen from the soil surface via gas-liquid equilibrium across a stagnant boundary layer.  

The air concentration of oxygen was set as 0.21 atm with a stagnant layer of 0.1 cm, and 

Kh for oxygen of 31.44 (dimensionless, Kh = caq/cgas).  In order to best simulate the 

oxygen transport and consumption found in the laboratory, it was necessary to specify an 

influent DO concentration of 9.18 mg/L, which is the atmospheric equilibrium 
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concentration for 20 oC.  Within the 30-day period, the column oxygen levels equilibrated 

to the steady state value found in the experiments. 

 

The solute pulse was 30 days long for the simulation, to reflect the influx of a wastewater 

with relatively stable solute concentrations.  The boundary conditions for flow and solute 

were time independent and the initial conditions set equal to the influent concentrations.  

CW-2D functions on the assumption that microbes adsorb to soil particles surfaces as a 

biofilm.  In the current formulation of CW-2D, biofilm growth cannot clog the soil, but 

sloughing or washout could be modeled.  In this study, no measurement was made to 

quantify microbe populations or biomass density, so it is assumed that the microbes are 

sorbed to Type-2 sorption sites (non-equilibrium sorption, which makes up 100% of the 

sorption sites).  Sorbed heterotrophs and autotrophs are quantified in the initial condition 

and can react with both aqueous- and sorbed-phase solutes, but have a zero-value for 

influent and do not desorb (effectively a system with 100% of sorption sites in chemical 

non-equilibrium with a linear adsorption isotherm where kd = 0 and a first-order decay 

constant α = 0 for all solutes). 

 

The model was calibrated to fit downflow and upflow laboratory data (see Table 3.4).  

Influent COD was assumed to break down into readily biodegradable organic matter 

(33%), slowly biodegradable organic matter (16%) and inert organic matter (51%) based 

on the method of (Toscano et al., 2009), where influent total COD is 50 mg/L and 

effluent is 30 mg/L.   

 

A sensitivity analysis of saturation-inhibition coefficients showed that the model was 

insensitive to changes in most their values.  For the coefficients where the model was 

sensitive (KANs,O2 and KANs,NH4N), it was determined that the value used by Langergraber 

and Simunek (2005) was the most reasonable based on model outputs.  The reaction rates 

were then calibrated so that the model simulated downflow and upflow laboratory results 

in an approximately steady-state fashion (reaching a steady value after 5-15 days, similar 

to the lab).  Because of the nonlinear construction of the model, many combinations of 
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the growth and decay rates (Table 3a) can produce a quasi-steady state solution similar to 

the lab data.  However, fewer of these combinations could produce the in-series effluent 

concentrations observed in the lab in the validation effort.   Therefore, an iterative 

process was used to calibrate and validate the model reaction rates: 

 

a) Calibration: Adjust reaction rates to best simulate mean effluent concentrations of 

dissolved oxygen, ammonium and nitrate in downflow and upflow columns 

separately.  

b) Validation: Use calibrated parameter set to predict downflow and upflow columns 

in series. Modeled downflow effluent characteristics were used as the influent 

characteristics for the upflow simulations.  If the calibrated reaction rates could 

not predict in-series data, the reaction rates were adjusted further until in-series 

effluent characteristics were simulated.   

c) Test adjusted parameters from step (b) on calibration models (i.e., go back to step 

(a)).  Iterate until reaction rates simulate both single column and in-series 

laboratory effluent. 

 

The resulting growth and decay rates for downflow and upflow columns are listed in 

Table 3.3.  Steady-state constituent concentration produced with those rates for 

downflow, upflow and in-series simulations are summarized in Table 3.4.  For the final 

set of calibrated and validated parameters, effluent concentrations are as close as possible 

or within the range of measured values (DO, NH4
+-N, NO3

--N).   
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Table 3.4 a) Influent concentrations used for calibration of downflow and upflow models and effluent 
concentrations from laboratory and simulation; b) influent concentrations used for validation of in-
series model and effluent concentrations from lab and simulation.  Measured parameters are in bold. 
  a) Calibration (Downflow and Upflow Separate Columns)  
         
   Influent Effluent 
   Downflow Upflow Downflow Upflow 
   Lab/Sim Lab/Sim Lab Sim Lab Sim 
  DO (mgO2/L) 9.18 4 4 7.2 1.5 2.7 
  COD (mg/L) 50 57 34  60   
  CR (mgCOD/L) 14 4  0   1.2 
  CS (mgCOD/L) 7 2  24   0.9 
  CI (mgCOD/L) 29 51  31   51.9 
  NH4

+-N (mgN/L) 20 20 <1 0 8-12 16.5 
  NO2

--N (mgN/L) 1 1  0   0.3 
  NO3

--N (mgN/L) 5 5 25 26 7.5 8 
  N2 (mgN/L) 0 0  0   1.2 
  P (mgP/L) 1 1   0.9   1 
         
  b) Validation (Downflow-Upflow In series)   
         
   Influent Effluent 
       Downflow Upflow 
   Lab/Sim Lab Sim Lab Sim 
  DO (mgO2/L) 4.5 1.5 1.8 1.5-5 3.5 
  COD (mg/L) 72 40  52   
  CR (mgCOD/L) 25.3  0.2   1.5 
  CS (mgCOD/L) 12.6   31   2 
  CI (mgCOD/L) 34  37   40 
  NH4

+-N (mgN/L) 20 2-20 7.5 5-12 6 
  NO2

--N (mgN/L) 1  .22   0.3 
  NO3

--N (mgN/L) 5 13-20 18.5 15-20 14 
  N2 (mgN/L) 0  0   6.5 
  P (mgP/L) 1   1   1.1 
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3.3. Results 

Figure 3.3 (a-h) shows oxygen transport and nitrogen fate for laboratory results as 

compared to four parameters sets: the calibrated model, default CW-2D kinetic 

parameters, calibrated parameters with reaeration, and calibrated parameters with 100% 

readily biodegradable influent COD.  Table 3.5 lists the proximity of results from the 

parameter sets to laboratory data and the correlation coefficient “c” (calculated similar to 

an r2) value for each set of parameters as a separate measure of goodness-of-fit.  

Proximity of results for a parameter set was determined by averaging the absolute 

differences (in mg/L) between measured and modeled data for sample points in 

downflow and upflow columns, and summing those averages for DO, NH4
+-N and NO3

--

N.  Standard deviation for the proximity results was determined by the propagation of 

error method of Meyer (1975) for error in additive quantities.   

 

The calibrated model fits the oxygen and nitrate profiles and ammonium influent/effluent 

data for the downflow column (Figure 3.3a) and upflow column (Figure 3.3b), and has 

the best fit of all the tested parameter sets, being within 4.7 mg/L total proximity (Table 

3.5).  In the downflow oxygen profile, the fit was achieved with oxygen-saturated 

influent, which does not match the laboratory data.  For the upflow column, the match 

between laboratory and simulated data is excellent, although the modeled ammonium 

effluent was not as low as found in the laboratory.   

 

Figures 3.3c and 3.3d show that CW-2D default parameters were not acceptable for 

modeling this laboratory data.  The kinetic rates are so low as to show almost no change 

in nitrogen profiles in either the downflow or upflow columns.  Little oxygen is 

consumed in either profile.  The default parameters do not provide a match between 

laboratory and simulated data.  The total proximity to laboratory data for the default 

parameter set was 17.5 +/- 4.6 mg/L (Table 3.5). 

 

HYDRUS-2D/CW-2D incorporates a reaeration rate to describe gas-to-aqueous phase 

transfer of oxygen, following a common wastewater treatment model (used in ASMs) 
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(Langergraber and Simunek, 2005).  However, the reaeration is implemented 

homogeneously throughout the model, without regard for where the oxygen enters.  

While the model may be appropriate for activated sludge wastewater treatment, with 

oxygen bubbling from the bottom of a tank, it does not seem to fit vertical flow 

configurations, as shown in Figures 3.3e and 3.3f.  Including a reaeration rate of 240/d 

(Langergraber and Simunek, 2005), caused the model to overestimate oxygen 

concentrations throughout the vertical profile in both downflow and upflow columns.  

While this did not affect nitrogen chemistry in the downflow column, it allowed 

nitrification 20 cm deeper than laboratory data in the upflow column.  Proximity of the 

reaeration parameter set results was within 9.6 mg/L of laboratory measurements (Table 

3.5). 

 

Lastly, the influence of COD fractionation on oxygen and nitrogen was compared.  

Figure 3.3 (a-f) used the fractionation of Toscano et al., 2009.  However, the laboratory 

synthetic wastewater was originally created with the intent that the COD would be 100% 

available for denitrification, so Figures 3.3g and 3.3h shows the simulation with CR = 

100% of CODinf.   Langergraber and Simunek (2005) used a fractionation of (CR = 88%, 

CS = 6%, CI = 6%), and other studies have shown that raw wastewater is often 

characterized by (CR = 20%, CS = 60%, CI = 20%) (Melcer, 2005; Pasztor et al., 2009).  

Figure 3.3g shows that COD fraction does not particularly influence oxygen and nitrogen 

chemistry in the downflow column; enough oxygen is available for both heterotrophs and 

nitrifiers.  However, the 100% readily biodegradable COD has a large influence in the 

upflow column: heterotrophs grow quickly, immediately consuming oxygen and then 

nitrate in the anaerobic condition, creating poor oxygen conditions for ammonium 

oxidation but good for denitrification.  The 100%CR parameter set produced results 

within 6.6 mg/L of laboratory data; a parameter set using COD fractionation of 20/60/20 

was also tested, and produced results within 6.4 mg/L of laboratory measurements (Table 

3.5; COD 206020 fractionation not shown Figure 3.3). 
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Table 3.5 Proximity of model results from five parameter sets to laboratory data, in mg/L, showing 
average (standard deviation) for vertical profile sample points in both downflow and upflow 
columns.  Total is the sum of proximities for DO, NH4 and NO3 for each parameter set.  “c” is the 
correlation coefficient calculated similar to an r2 value, where a value of 1 indicates a perfect fit. 

DO c NH4
+-N c NO3

--N c Total 

Calibrated 1.5(1.5) 0.4792 1.8(1.5) 0.9049 1.4(0.8) 0.9686 4.7(2.2) 

COD 206020 1.5(1.3) 0.4961 2.3(3.1) 0.8478 2.7(0.6) 0.9666 6.4(3.4) 

100%CR 1.3(1.6) 0.4296 2.3(2.2) 0.8421 3.0(1.5) 0.9676 6.6(3.1) 

Reaeration 2.8(1.5) 0.6634 2.4(2.2) 0.9126 3.4(1.5) 0.7461 9.6(3.0) 

Defaults 2.2(1.2) 0.5533 6.9(2.4) 0.9943 8.1(3.7) 0.2604 17.5(4.6) 
 
After the model was calibrated to fit laboratory data for the separate downflow and 

upflow columns, the parameters were validated with the in-series downflow-upflow data.  

The validated fit is shown in Figure 3.4.  Because the parameters are different for the 

downflow and upflow reactors (see Table 3.3), first the downflow column of the in-series 

reactor was simulated, and then the downflow simulated effluent concentrations were 

used as the input for the upflow part of the simulation.  This 2-part process explains why 

there is not a very smooth transition in the data from downflow to upflow (across the 

“zero” height in Figure 3.4).   

 

The validation would have a better fit for downflow if the initial oxygen concentration 

was higher, causing faster nitrification at the top and increasing the nitrate concentration.  

It may also have a better fit if oxygen were completely consumed in the lowest 20 cm of 

the column so that denitrification could occur, reducing the nitrate concentration.  

However, complete oxygen consumption and denitrification were not warranted by the 

laboratory results used for calibration. 

 

In the upflow column (in-series), the calibrated parameters tend to overestimate 

denitrification in the column profile, but due to additional oxygen diffusion and 

nitrification near the effluent point, simulated nitrate increases to near the actual effluent 

concentration of 18 mg/L.   

 



 86

Between the calibration and validation data, the set of kinetic parameters listed in Table 

3.3 for this study achieves the overall best fit.   

 

a)  (b)  

(c)  (d)  

 (e)  (f)  

 (g)  (h)  
 
Figure 3.3 Downflow and upflow oxygen transfer and ammonium and nitrate fate. Comparison of 
calibrated parameters without reaeration (a) and (b), to reaerated columns (c) and (d), CW2D 
default parameters (e) and (f), and 100% readily biodegradeable influent COD (g) and (h). 
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Figure 3.4 Validation of downflow and upflow calibrated parameters, using DO, NH4

+-N and NO3
--N 

data from columns in-series.  60cm to 0cm is downflow, 0cm to -40cm is upflow. 
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3.4. Discussion 

This modeling study was designed to simulate the laboratory data from downflow, 

upflow and downflow-upflow series wetland experiments from Chapter 2.  The following 

discussion describes how the model improves understanding of oxygen and nitrogen fate 

and transport based on different flow configurations.   

 

The initial hypothesis that upflow wetlands would have higher oxygenation and therefore 

nitrification than downflow wetlands, based on preliminary modeling, was proven wrong 

by laboratory data in Chapter 2 and by the calibration and validation of HYDRUS-

2D/CW-2D also disproves the hypothesis.  The model results show that the downflow 

column actually has better oxygen transfer through its unsaturated conditions and 

therefore better nitrification, while the upflow column minimizes oxygen transport and 

maintains better denitrification conditions.   

 

In the downflow column, in order to simulate advective and diffusive oxygen transfer 

from the atmosphere, the influent was assigned an oxygen-saturated concentration.  In 

effect, the influent was at equilibrium with the atmospheric oxygen concentration as it 

entered the column.  Diffusion and water flow then moved oxygen through the column 

where it was consumed by heterotrophic or autotrophic bacteria.  With a high 

concentration of oxygen, such as in the downflow column, heterotrophs grew quickly 

until readily biodegradable organic matter reached a threshold low concentration, and 

autotrophs (Nitrosomonas and Nitrobacter) grew quickly until ammonium and nitrite 

reached low threshold levels.  Because the soil was not saturated, oxygen diffusion was 

high enough throughout the column to inhibit denitrifiers, which were limited by both 

oxygen and low readily biodegradable COD.   

 

In the upflow column, oxygen in the wastewater influent was quickly consumed by 

heterotrophs.  Autotrophic growth occurred as well, but because the oxygen was quickly 

depleted, nitrification was less than in the downflow column.  Due to the low oxygen 

concentration, heterotrophs did not consume as much COD aerobically, leaving carbon 
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available for denitrification.  Near the water table nitrification increased and 

denitrification decreased because of oxygen diffusion from the surface through 

unsaturated soil above the water table (reactions above water table not shown).  At that 

point it oxygenated the water, but diffused very slowly through the saturated soil (see 

oxygen increase between 30 to 40 cm in Figure 3.3b, or between -30 to -40 cm in Figure 

3.4).   

 

With downflow and upflow columns in series, oxygen was partially consumed through 

the unsaturated downflow column and quickly decreased to zero in the saturated upflow 

column, with an increase near the water table.  Ammonium and nitrate fate were clearly 

related to oxygen concentration: where oxygen was available ammonium decreased and 

nitrate increased.  In anoxic conditions, nitrate decreased.  The model showed that only 

about 20% of the influent total nitrogen was nitrified and denitrified in the series 

columns, while the lab results showed that an average of 32% of total nitrogen was 

removed in downflow-upflow.  The difference may be due to COD fractionation.   

 

COD and NO3
- were balanced in the laboratory synthetic wastewater so that there would 

be enough carbon to denitrify all potential nitrate.  Rather than being 100% readily 

biodegradable, as assumed, COD was more likely divided between readily biodegradable, 

slowly biodegradable, and inert organic matter.  The fractionation of Toscano et al. 

(2009), 33/16/51 (readily/slowly biodegradable/inert), was used to calibrate the model in 

this study, but proved to be inappropriate because the simulation created COD rather than 

removing up to 40% in downflow as occurred in the laboratory experiments (see Figure 

3.5, Dcal).  Melcer (2005) and Pasztor et al. (2009) found that raw wastewaters contained 

a 20/60/20 fractionation.  Changing the simulation to a 20/60/20 fractionation also does 

not lead to COD consumption; slowly biodegradable organic matter decays too slow 

through hydrolysis or is produced too fast by biological decay (Figure 3.5, D206020).  

Assuming a 100/0/0 influent fractionation creates the most real COD removal scenario 

for downflow (Figure 3.5, D100), and as shown in Figure 3.3g, this fractionation does not 

impact oxygen or nitrogen chemistry, but it is inappropriate for the upflow column.  The 
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fractionation of Toscano et al. (2009) gives model results closest to the upflow data for 

oxygen and nitrogen chemistry, but instead of creating 6% more COD, approximately 5% 

is removed.  (It is important to note that in Figure 3.5, the aim of the model is to simulate 

the actual removal values for downflow and upflow, not 100% removal of COD).  For 

this study, the model was calibrated to fit nitrogen data, but not COD since COD fraction 

data was unavailable.  The fit would possibly be improved when calibrated with actual 

COD fractions. 

 

For the 33/16/51, or calibrated, fractionation the COD/NO3-N ratio was 3.3 mg CR/mg 

NO3-N.  In downflow, the column was too aerated for denitrification, and in upflow there 

was not enough readily available carbon in this fractionation to allow denitrification (0% 

removal of NO3—N, Figure 3.3b).  The 20/60/20 fractionation had a ratio of 2 mg 

CR/mg NO3-N, but allowed for 41% NO3 removal (data not shown) in the upflow 

column because denitrifiers could use COD that hydrolyzed from slowly to readily 

biodegradable.  This can be seen in Figure 3.5 for U206020 where most of the COD 

removed is CS, or slowly biodegradable.  This case demonstrates that denitrification is 

sensitive not only to readily biodegradable COD concentration, but also to slowly 

biodegradable COD, because it can use that COD after it is hydrolyzed.    
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Figure 3.5 Influent COD fractionation scenarios as compared to measured removal for downflow 
and upflow: 10% CR/5% CS/ 85% CI (Dcal and Ucal); 100%CR (D100 and U100); and 20% 
CR/60% CS/20% CI (D206020 and U206020). 
 
A second reason that the model might have underestimated nitrogen removal is that it did 

not include the influence of plant presence.  As shown in the laboratory results, plants 

may influence nitrate concentration due to increased denitrification from the availability 

of carbon from degrading plant material.  The plant influence compared to data from 

unplanted columns is noticeable overlaying the model validation (Figure 3.6a-c).  Plants 

may actually increase oxygen as compared to the model, decrease ammonium, and 

decrease nitrate.   The model was calibrated and validated to fit average data from planted 

and unplanted columns but may have a better fit if plant root oxygen release and uptake 

of or impact on nitrogen are modeled using planted and unplanted data separately.  The 

mechanisms for plant influence on nitrogen are not clear.  If simulations included plant 

input of oxygen, this would presumably lead to further nitrification, thus higher nitrate 

concentrations, so that simulated oxygen and ammonium concentrations would more 

closely match laboratory data, but nitrate concentrations would not.  If simulations 

included a plant input of available carbon (due to plant senescence), this may increase 

denitrification and decrease nitrate.  At this point, no information is available on which to 
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base simulation of oxygen or carbon input from plants.  Because nitrogen uptake was 

calculated to be negligible in Chapter 2, it was not included in the simulations. 

a)  

(b)  

c)  
Figure 3.6 Dissolved oxygen (a), ammonium (b) and nitrate (c) in downflow-upflow model validation 
and in planted and unplanted columns. 
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HYDRUS-2D/CW-2D is a complex model and high-quality data was collected for many 

processes and characteristics of vertical flow wetland columns that can be described by 

the model.  However, due to the non-linearity and coupled processes, the ability to 

simulate laboratory experiments was limited by data that was not collected (COD 

fractionation, vegetation influence).  The model can simulate nitrification well because 

the process does not depend on carbon availability; denitrification is more difficult to 

simulate without COD fractionation (as shown in the upflow section of Figure 3.4). 

 

The kinetic parameters used in other HYDRUS-2D/CW-2D studies (Langergraber and 

Simunek, 2005; Henrichs et al., 2007; Toscano et al., 2009) were ineffective in this study.  

Microbial growth and decay rates were calibrated for the laboratory data and were 1-2 

orders of magnitude greater than the default parameters.  It is likely that these parameters 

are dependent on environmental conditions such as temperature, soil characteristics, and 

wastewater constituents.  A large range of parameters have been reported for activated 

sludge systems, and it is possible that an even larger range would be possible in the 

complex ecosystem of a constructed wetland.  Those studies also considered nitrification 

and denitrification on short time scales, on the order of 1-2 hydraulic loading cycles (up 

to 24 hours).  Here, a 30 day run-time was used to match steady-state concentrations of 

constituents with laboratory results, in order to demonstrate the long-term operation of a 

vertical flow constructed wetland.  Maintaining heterotrophic and autotrophic growth and 

decay over the 30 day run-time could depend on significantly different maximum growth 

and decay rates than those which show growth and decay over a single hydraulic loading 

cycle.   

 

The reaeration factor, inherited from ASMs, which was used in CW-2D to allow oxygen 

transfer into the wetland, did not simulate oxygen transfer correctly for the laboratory 

data in this study.  Instead an oxygen-saturated surface layer was used to simulate oxygen 

transfer from the atmosphere.  The high-oxygen layer did not adequately simulate 

influent DO values, but it allowed the simulation of oxygen advection/diffusion into the 
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soil column.  This approach allows the transport of oxygen through the column from the 

soil surface rather than assuming it enters homogeneously throughout the column. 

 

Given the results of the simulations described above, some design recommendations can 

be made to improve the nitrogen removal efficiency of vertical flow constructed 

wetlands.  First, for vertical flow wetland columns designed only for nitrification, the 

minimum required depth may be only 10-20 cm depending on water content.  Downflow 

columns had high oxygen availability so all of the influent ammonium was quickly 

oxidized in the top 10 cm of the column.  Even in the saturated upflow column, oxygen 

diffusion allowed for nitrification in the 20 cm below the water table surface.   

For denitrification, conclusions are more complicated due to the need for preliminary 

nitrification, low oxygen conditions and available carbon.  However, HYDRUS-2D/CW-

2D results show that denitrification can be successful in a downflow-upflow in-series 

reactor, where wastewater is nitrified in a downflow wetland and then denitrified in the 

saturated upflow wetland.  As shown in Figure 3.4, total nitrogen removal increases 

through the upflow column; it may be possible to continue total nitrogen removal even 

farther by extending the length of the upflow column (until denitrification reaches the 

limits of carbon availability).   

 

Another design improvement that may be inferred from the model sensitivity to COD is 

that a longer hydraulic retention time (HRT) in a denitrifying wetland could allow the 

time needed for slowly biodegradable COD to hydrolyze into readily biodegradable 

COD, then available for denitrification.   Except in cases of high inert fractions, a longer 

HRT could improve denitrification as well as COD removal.  The longer HRT would be 

best implemented by increasing the wetland depth rather than surface area, which would 

also improve denitrification conditions by decreasing the amount of oxygen diffusion (at 

the water table surface) in relation to the volume. 

 

Another option would be to take advantage of readily biodegradable wastewater carbon 

before it degrades, by using an upflow-downflow series design where nitrified 
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wastewater is recycled back into an upflow wetland that receives primary effluent higher 

in readily biodegradable COD. 

 

HYDRUS-2D/CW-2D could be used as a design tool for nitrifying wetlands based on the 

calibrated parameters of this study, since ammonium removal is based on oxygen 

availability.  A base model could be built based on rules of thumb for surface area and 

depth and characteristics of appropriate soil media.  The flow regime, surface area and 

depth could then be adjusted until the model produces the desired effluent quality 

(nitrification only).  A clearer understanding of the impact of COD fractionation and 

mechanisms of plant influence is needed before it will be useful as a design tool for 

denitrifying wetlands.   

 

Further research on the model parameters is recommended.  The model should be tested 

using laboratory data with known COD fractions.  Model settings should also be 

validated on a separate pilot scale design.  Parameter calibration may also be improved 

with ammonium and COD vertical profile data.  Scaling up the column to pilot-scale or 

wetland size will require consideration of heterogeneities in hydraulics; short-circuiting 

or stagnation would change the solute transport and fate characteristics of the vertical 

flow wetland (but would most likely only affect unsaturated downflow wetlands, not 

saturated upflow wetlands).  In order to create a real design tool using this model, the 

mechanism of plant impact and the influence of COD fraction on nitrogen processes need 

to be better understood.  It would also be valuable to be able to measure the kinetic 

parameters in the laboratory or at the field scale, or have a clearer way to estimate them.  

Using the calibrated model, the wetland model could be loaded with increasing hydraulic 

or organic loadings to find the failure threshold where microorganisms die off and 

treatment ceases.  This level would give designers an idea of the range of loads under 

which the wetland may safely operate. 
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4.  LIFE CYCLE ASSESSMENT OF CONSTRUCTED WETLANDS 
 

The 2nd hypothesis3 of this research project is tested by a life cycle assessment (LCA) of 

vertical and horizontal flow constructed wetlands.  The motivation for comparing the two 

wetland technologies and including greenhouse gas emissions is presented.  The value 

and structure of the LCA tool is discussed and then methods are presented for this LCA.  

Results show the environmental value of the VFCW compared to the HFCW, and the 

chapter concludes with a discussion of the specific environmental impacts and design 

recommendations to reduce environmental impacts.   

 

4.1. Introduction and Motivation 

According to the National Academy of Engineering (2008), one of the 14 Grand 

Challenges for Engineering for the 21st century is managing the nitrogen cycle.  The NAE 

cites anthropogenic nitrogen fixation and subsequent water pollution, smog and acid rain, 

global warming, and associated environmental and human impacts, as the motivation for 

finding “countermeasures for nitrogen cycle problems”.  Activities such as fertilizer 

production and distribution, crop growth, and sewage treatment are all inefficient users of 

nitrogen and the losses from each contribute to environmental impacts.  The challenge for 

engineers is to improve the effectiveness of human uses of nitrogen, including chemistry 

within the wastewater treatment plant.   

 

The previous two chapters have shown that vertical flow constructed wetlands (VFCW) 

are very efficient at converting ammonium to nitrate and may also be effective in 

denitrification.  Because of the efficient oxygen transport of a VFCW, its footprint can be 

much smaller than a horizontal flow constructed wetland (HFCW) designed for the same 

effluent quality.  However, wetland researchers have shown that VFCWs have higher 

gaseous emissions of greenhouse gases CO2, CH4, and N2O than HFCWs.  The quantity 

and impact of these gases is important because CH4 has 21 times the global warming 

                                                 
3 2nd hypothesis, a vertical flow constructed wetland will have less environmental impact through its life 
cycle than a horizontal flow constructed wetland due to its treatment efficiency and nitrogen cycling. 
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potential of CO2 and N2O has 310 times the global warming potential of CO2 (IPCC, 

2007).  Table 4.1 lists reported values of areal emissions along with influent and effluent 

water quality parameters.   

 

The range of reported emissions is large (emissions are related to seasonal and other 

environmental conditions), but it appears that areal emissions from VFCWs are generally 

higher.  The only study to comprehensively measure influent nitrogen and BOD, effluent 

nitrogen and BOD, and gaseous nitrogen and carbon in both VFCWs and HFCWs was 

Sovik et al. (2006).  They found that: a) VFCWs had significantly higher areal gaseous 

emissions than HFCWs, and b) gas emissions were correlated to temperature, substrate 

supply (influent N and C concentrations), and degree of oxidation in the wetland. 

 
Table 4.1 Influent and effluent water quality and gaseous emissions of N2O, CO2, and CH4 reported 
for vertical flow and horizontal flow wetlands. 

Vertical Flow Constructed Wetlands 
Influent Effluent Emissions 

TN NH4
+ BOD NH4

+ NO3
- N2O CO2 CH4 

mg/L mg/m2/d 
Zhou et al., 2008   -1.4-188 
Inamori et al., 2007 9.8 8.1 38   <.24 <72 
Inamori et al., 2007 18.4 10.2 60   <.48 <240 
Inamori et al., 2007 36.7 19.3 163   <1.44 <480 
Sovik et al., 2006 50.9 35.7 142 31.7 1.7 15 8400 110 
Sovik et al., 2006 50.9 35.7 142 31.7 1.7 5.3 1600 34 

Horizontal Flow Constructed Wetlands 
Influent Effluent Emissions 

TN NH4
+ BOD NH4

+ NO3
- N2O CO2 CH4 

mg/L mg/m2/d 
M.-Landry et al., 2009 21.7 0.18 0.2 (g/m2d)0.05 (g/m2d) 3 1400 5 

Fey et al., 1999 500   3.2 
Sovik et al., 2006 96.5 83.9 125 36.2 5.9 7.1 3800 340 
Sovik et al., 2006 96.5 83.9 125 36.2 5.9 1.6 960 1.5 
Sovik et al., 2006 43.1 31.7 62.8 34 1.2 4.2 2100 160 
Sovik et al., 2006 43.1 31.7 62.8 34 1.2 1.1 380 11 
 

Addressing the NAE’s grand challenge to manage nitrogen, an engineer should choose 

the wetland with the lesser nitrogen emissions over its life cycle (i.e., less nitrogen-
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induced environmental impacts), and with the most potential for denitrification.  A 

VFCW may be more efficient than an HFCW for nitrogen removal from wastewater, but 

if gaseous emissions are accounted for, can it have less environmental impact?  Life cycle 

assessment is the tool used here to answer this question. 

 

4.2. Background 

Life Cycle Assessment (LCA) is the evaluation of the impacts of material and energy 

inputs and outputs during each life stage (material acquisition, construction, operation, 

decommission) of a product or process.  It shows what types of environmental impacts 

are caused by inputs/outputs during various life cycle stages and can be useful for 

reducing impacts by design, comparing products to choose the least harmful, and 

providing options to prioritize environmental or product solutions.  Although other tools 

have been designed for sustainability assessment (environmental impact assessment, 

ecological footprint, emergy analysis, material flow analysis, cost/benefit or cost-

effectiveness analysis), LCA is the most comprehensive and transparent tool for 

estimating potential environmental impacts.   

 

LCA has become accepted as the best environmental assessment tool for transparently 

laying out the inputs/outputs, assumptions, and impacts of a product or process in a 

quantifiable method (Schnoor, 2009).  LCA studies that follow accepted guidelines 

provide useful information for researchers, policy-makers, industry and consumers to 

make informed choices about how to reduce environmental impact.  The United Nations 

Environment Program (UNEP) and the Society of Environmental Toxicology and 

Chemistry (SETAC) launched the Life Cycle Initiative in 2002 (Udo de Haes, 2003) to 

“develop and disseminate practical tools for evaluating opportunities, risks and trade-offs 

associated with products and services over their life cycle to achieve sustainable 

development” (UNEP, 2009).  The Life Cycle initiative now develops and disseminates 

information and tools for life cycle approaches for capability development, management, 

inventory and impact assessment methodologies, consumption, resources and materials 

on a worldwide basis.  UNEP-SETAC’s role is to improve science and practice of LCA.  
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Concurrently, the International Organization for Standardization (ISO) developed the ISO 

14000 series, a set of standards to guide the methods at each step of LCA.  The ISO 

standards take the following form. 

 

4.2.1. Structure of LCA 

LCA may include material/energy acquisition, manufacture/construction, operation/use, 

demobilization/decommissioning, and remediation/restoration as the life cycle stages 

depending on the goal of the LCA.  An LCA is designed to consider the given 

product/process and life stages within a system boundary or scope.  Some material and 

energy is directly used for or by the product, while other inputs and outputs may be 

indirectly related through processes used to make/operate the product.  The researcher 

decides at which level to draw the system boundary to define inputs and outputs.  In 

doing so, the Goal and Scope of the LCA are defined.  LCA may be used to determine the 

greatest environmental impacts within the life of a single product/process in order to 

redesign for reducing impacts, or to compare the environmental burdens of several 

products/processes which may be chosen.  The comparison offers the ability to choose a 

product or process based on priorities for reducing specific types of environmental 

impacts (e.g., reducing global warming potential versus reducing eutrophication 

potential). 

 

A Functional Unit (FU) is chosen to allow fair comparison of items of interest (life 

stages in a single product or several products).  The FU should include the timespan of 

consideration in the LCA and baselines for the size and the specific function of the 

product or process. 

 

An Inventory Analysis is then conducted to define and tally the inputs and outputs of 

materials and energy for each life stage and process within the system boundary of the 

LCA.   
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The Life Cycle Impact Assessment (LCIA) step is where environmental impacts are 

calculated for each input or output, and then aggregated to estimate the environmental 

impacts of the whole product or process.  LCIA has several steps which may lead to 

midpoint or endpoint damages.  First, the impacts are tallied into midpoint impact 

categories (such as global warming potential, eutrophication potential, carcinogenic 

potential) and then normalized against total inputs/outputs from a reference system to 

compare the potentials.  Then, the normalized impacts can be weighted based on social 

perspectives or values of what impacts are important.  Finally, since midpoint impacts are 

not the actual effect on humans or nature, the endpoint damage to human health, the 

environment, and natural resources are calculated from the midpoint impacts (with 

varying degrees of uncertainty).  The midpoint/endpoint difference is analogous to 

quantifying hazard levels versus exposure impacts in toxicological risk assessment.   

 

The midpoint-endpoint damage framework allows interpretation of results at multiple 

levels (Jolliet et al., 2004).  The nature of LCA presents several levels of uncertainty in 

the inventory data, impact assessment model, and damage calculations.  The practitioner 

can minimize uncertainty in the data through quality control measures, but each impact 

assessment method has its own process for attributing the impact of the various 

inventoried materials and processes to an impact category.  Because of the uncertainty in 

the damage calculations, LCA is best used as a comparative tool: the impacts of one 

product relative to another or one life stage relative to another are more important than 

the absolute value of any one impact.  Interpreting midpoint damage on specific impact 

categories or endpoint damage on humans and the environment tells what harm to 

humans or environment may be expected from the product or process under assessment.  

 

4.2.2. Life cycle of wastewater treatment 

Large quantities of water, nitrogen, phosphorus and other resources as well as 

environmental pollutants and hazardous or pathogenic material accumulate in municipal 

wastewater.  Dicharges from treated and untreated wastewater can cause contamination 

and eutrophication of downstream water bodies, and emissions can contribute to global 
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warming, ozone depletion, photochemical oxidant formation, and potentially other human 

and environmental damage.  Engineers and policy-makers must make informed decisions 

about the health and environmental benefits, risks and tradeoffs associated with different 

wastewater treatment solutions.  LCA is a useful tool for quantifying and comparing the 

impacts of different products. 

 

LCA can be used as a tool in the design phase, for choosing between technologies that 

can provide desired performance characteristics for the necessary loads, by accounting 

for the impacts caused by the technology over its life cycle.  For example, Dixon et al. 

(2003) compared hypothetical treatment options: an aerated bio-filtration plant to a 

horizontal flow constructed wetland for up to 200 person-equivalents (p.e.).  For the same 

level of treatment at all scales, the wetland had significantly less CO2, used less energy 

(except at the highest scale due to energy-intensive material transport for the larger 

wetland), and had higher solid emissions due to larger excavation volume (defined as 

solid waste: excavated material and sludge production).  Machado et al. (2006) also 

compared a 500 p.e. package plant to a constructed wetland and a sand filter, and found 

that the life cycle impacts of the wetland and the sand filter were much less than the 

activated sludge plant, especially for global warming potential, aquatic toxicity and 

eutrophication.   

 

LCAs on wastewater treatment indicate that the life cycle impacts of the operation phase 

are much greater than the construction phase for a conventional 13000 p.e. system(Ortiz 

et al., 2007) or 140,000 p.e. system with nutrient removal (Renou et al., 2007), a package 

biofiltration plant for 200 p.e. (Dixon et al., 2003), oxidation ditches and biofiltration 

package plants for 100 p.e. (Emmerson et al., 1995), and conventional treatment or urine 

separation for 4000-13000 p.e. (Tillman et al., 1998; Lundin et al., 2000).  However, for 

constructed wetlands, the construction phase dominates the life cycle impacts due to the 

amount of materials transported for construction as well as the reduction of energy use 

during operation (Dixon et al., 2003; Machado et al., 2006).   
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Other researchers have used LCA to assess slow rate infiltration, oxidation ditches, 

membrane bioreactors, the Bardenpho process, and urine separation.  Some researchers 

have focused on specific impact categories such as acidification, eutrophication, climate 

change, resource depletion, and toxicity, as these relate most closely to wastewater 

treatment byproducts (Lundin et al., 2000; Lundie et al., 2004; Renou et al., 2008).  Foley 

et al. (2007) compared 34 combinations of biological treatment technologies and found 

that biological nutrient removal did not necessarily reduce global environmental impacts 

(such as climate change, ozone depletion, or radiation) compared to primary treatment, 

but it improved local water quality (eutrophication).  These results demonstrate that some 

impact categories have a local focus while others have a global environmental focus.  In 

the weighting process, societal values may place more importance on categories of 

“local” acidification and eutrophication than other categories.  However, Foley et al. 

(2007) showed that those categories had to be weighted at five times the value of other 

categories to justify biological nutrient removal on grounds of global environmental 

impact.  They also found that because eutrophication is weighted as only a small fraction 

of overall impact, the cost to achieve lower eutrophication scores with high treatment 

performance was not matched by a concommitant improvement in overall environmental 

impact.  The results suggested that anaerobic processes paired with energy recovery from 

sludge had potentially better environmental and human health outcomes, less resource 

use, and a beneficial tradeoff between local and global environmental priorities than 

state-of-the-art aerated biological nutrient removal.   

 

Tradeoffs of environmental impacts have been in question elsewhere: Hospido et al. 

(2004) found that denitrification improved eutrophication potential but negatively 

affected global warming, acidification and photo-oxidant formation.  Some wastewater 

LCAs have focused on energy recovery from activated sludge systems as a way to reduce 

environmental impacts (Lundin et al., 2000; Lundie et al., 2004).  Others have focused on 

urine separation or liquid composting (Tillman et al., 1998; Hospido et al., 2008).  

Maurer et al. (2003) found that nutrient recovery through urine separation was 

energetically more efficient and environmentally more beneficial than nutrient removal.  
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The analysis of Bjorklund et al. (2000) found that nutrient recycling through solid 

biodegradable waste could reduce environmental impacts, but through urine separation 

and agricultural application would increase acidification.  Remy and Jekel (2008) found 

that one of the most beneficial results of source separation would be avoiding the transfer 

of toxic heavy metals to agriculture via sewage sludge.   

 

Two LCAs weighed environmental impacts of advanced wastewater treatment as 

compared to sand filtration and found that the benefits of removing heavy metals, 

endocrine disruptors, and other micropollutants were not worth the environmental 

consequences of extended tertiary treatment (Hoibye et al., 2008; Wenzel et al., 2008).  

For pathogenic contaminants, ultraviolet disinfection was the most beneficial option, but 

for heavy metals and particulates, sand filtration was found to have a net environmental 

benefit. 

 

Only two LCAs were identified that explicitly discussed nitrogen emissions in the 

wastewater treatment life cycle, but they considered only nitrogen emissions from fuel 

use, not from the actual wastewater treatment operation (Lundin et al., 2002; Hospido et 

al., 2004).  Hwang and Hanaki (2000) included CO2 generation in their LCA of 

wastewater treatment, simply demonstrating a model where CO2 generation was included 

throughout the life cycle.  The production of nitrogen and carbon emissions from the 

wastewater in the operation phase of wastewater treatment has been excluded from LCAs 

because of lack of data (air emissions are not regularly measured like aqueous emissions 

are), but some data on nitrous oxide emissions exists in the literature.  The 

Intergovernmental Panel on Climate Change reported estimates between 16-96 mg/m2/d 

for N2O from municipal wastewater treatment (IPCC, 2001).  Czepiel et al. (1995) 

measured N2O emissions in wastewater treatment plants and found 20-1800 mg/m2/d 

from aerated processes and 10-40.8 mg/m2/d in unaerated processes.  Sumer et al. (1995) 

found an average rate of emission of 25 mg/m2/d in a range of 0-77 mg/m2/d N2O from 

activated sludge operations, while the range of measurements of Benckiser et al. (1996) 

were much larger, from 53-4903 mg/m2/d.  Though the range of N2O emissions is very 
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large, all the emissions rates reported are significantly higher than emissions from either 

vertical flow or horizontal flow constructed wetlands (Table 4.1). 

 

Here, LCA is used to assess the environmental impact differences in constructed wetland 

design, comparing a hypothetical horizontal flow wetland to a vertical flow wetland.  

Clarifying the life cycle differences will help designers choose wetland technology that is 

appropriate for real situations.  The data is also comparable to other reported wastewater 

LCAs.  The LCA shows which impacts are specifically related to nitrogen in constructed 

wetlands as the focus of this dissertation.   

 

4.3. Methods 

The goal of the LCA is to determine which constructed wetland flow regime (horizontal 

or vertical) has the least environmental impact over its life cycle, and whether there may 

be tradeoffs in impacts (on air versus water quality, for example).  The scope considers 

the primary treatment by a septic tank and secondary treatment by a wetland including 

land use, soil, vegetation, liner, wastewater distribution and collection systems (life cycle 

shown in Figure 4.1).  The functional unit is treatment of the wastewater of 400 person-

equivalents (p.e.) for a system lifetime of 50 years, with an effluent requirement of NH4
+-

N < 5 mg/L.  The life cycle includes material assembly and construction, septic tank and 

wetland operation, and final decommissioning and disposal of the materials.  One p.e. is 

assumed to produce 150 L/day wastewater containing 60 g BOD5, 13 g N and 2.5 g P 

(Brix and Arias, 2005).  The primary assumptions are that: 1) All influent N is in the 

form of NH4
+-N and 2) there are no safety factors included in the designs. 

 

A community septic tank is included in the design as a pre-treatment requirement for the 

wetlands, in order to settle out solids and allow for conversion of organic nitrogen to 

ammonium.  The septic tank design follows guidelines of Crites and Tchobanoglous 

(1998) for a steel-reinforced concrete plug flow tank with a volume of 328.5 m3 (2 

longitudinal cells with w = 4.1 m, l = 8 m, d = 4.1 m).  The maintenance requirement is 

pumping out sludge every five years, or 10 times over the 50-year life cycle of the whole 



 107

treatment system (sludge disposal is outside the scope of this LCA).  The septic tank is 

followed by a pump to transfer wastewater to the wetland. 
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Figure 4.1 Life cycle scope for VFCW and HFCW. 
 
The horizontal flow wetland was sized using the Kadlec and Knight model for 

constructed wetlands, as described in Fuchs (2009).  The area required to treat 60,000 L/d 

wastewater to NH4
+-N < 5 mg/L is 5049 m2 (single cell with w = 100.5 m, l = 50.2 m, d = 

1.3 m).  The main filter media is coarse gravel with a porosity of 0.38 and hydraulic 

conductivity of 10,000 m/day.  

 

The vertical flow wetland was sized using the Danish guidelines for vertical flow 

constructed wetlands (Brix and Arias, 2005).  The guidelines offer a rule-of-thumb areal 

requirement per p.e. (3.2 m2/p.e.) with depth and distribution/drain guidelines, which is 

currently the best vertical flow constructed wetland design process available.  The 

vertical flow wetland is 1280 m2 (two cells with w = 20 m, l = 32 m, d = 1.4 m), which 

treats 60, 000 L/d to NH4
+-N < 5 mg/L.  The main filter media is coarse sand (porosity 

and hydraulic conductivity not needed for calculation). Design calculations for the 
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wastewater treatment systems (septic tank, HFCW, VFCW) are listed on page A-32 of 

the appendix.  

 

The most time-intensive step of LCA is the inventory analysis.  A number of material and 

process databases have compiled for Europe, the US and the world and are incorporated 

into tools that categorize and aggregate the impacts as well.  The LCA software Simapro 

(Pre. 2001) contains a range of databases and impact assessment options.  The inventory 

for materials and processes for the life cycle of the constructed wetlands are listed on 

page A-36 of the appendix.   

 

In this LCA, gaseous emissions from the wastewater treatment process are also included.  

Because there is such a large range of values reported for N2O, CO2 and CH4 emissions 

from constructed wetlands (Table 4.1), the values from only one comprehensive study are 

used for this analysis for consistency.  Sovik et al. (2006) reported influent BOD and 

nitrogen (mg/L); effluent BOD, ammonium and nitrate (mg/L); and gaseous emissions of 

N2O, CO2 and CH4 (mg/m2d) for both vertical and horizontal flow wetlands.  The fraction 

of influent total nitrogen emitted as N2O and the fraction of influent BOD emitted as CO2 

and CH4 from Sovik et al. (2006) are used as emission factors for this LCA, related to 

influent TN and  BOD for 1 p.e.  Gaseous emissions are reported in mg/m2d but are 

entered in the life cycle assessment in mg/L and so are proportional to the wetland 

surface area and daily flow rate.  Table 4.2 lists the aqueous and gaseous emissions used 

to compare the VFCW and HFCW.   
 
Following the inventory analysis, where inventory data was arranged into assembly 

(construction phase), life cycle (use phase), and disposal (decommissioning phase) for 

each wetland using Simapro 7.0 software (Pre, 2001), the impact assessment was 

conducted using the same software.  Two impact assessment methods were used: 

Ecoindicator 99 and CML 2 Baseline 2000.  Both methods have been used in other 

wastewater treatment life cycle assessments (Hospido et al., 2004; Machado et al., 2006; 

Lassaux et al., 2007; Ortiz et al., 2007; Hospido et al., 2008).  Renou et al. (2008) showed 

that the overall difference between assessment methods in Simapro is small, so the 
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researcher may choose any impact assessment method based on the impact/damage 

categories it considers or how the impact/damages are calculated.  The Ecoindicator 

method calculates life cycle impacts in eleven impact categories (as shown at the bottom 

of Figure 4.2) and also calculates endpoint damages to human health, ecosystem quality 

and resources (see Figure 4.5).  However, the Ecoindicator 99 category for 

acidification/eutrophication only considers emissions to air, not water (it is based on the 

assumption that chemical deposition causes acidification/eutrophication).  Because 

wastewater treatment can significantly impact eutrophication potential through emissions 

to water, the CML 2 Baseline 2000 impact assessment was used to calculate 

eutrophication potential for various wetland treatment scenarios.  The overall impact 

assessment addresses the difference between VFCW/HFCW, the overall importance of 

adding gas emissions, the impact of each type of gas emission, the impact of other 

wetland effluent parameters, potential endpoint damages caused by VFCW/HFCW, the 

importance of gaseous emissions to endpoint damages, and design/operation information. 

 
Ecoindicator 99 calculates an overall indicator for endpoint damages to human health, 

ecosystem quality and resources.  Human health is affected by impacts from carcinogens, 

respiratory organics, respiratory inorganics and climate change.  Ecosystem quality is 

impacted by radiation, ozone layer, ecotoxicity, acidification/eutrophication and land use.  

Loss of resources is due to use of minerals and fossil fuels.  The impacts and damages are 

weighted according to an egalitarian (E) approach where long-term ecosystem quality is 

viewed as equally beneficial to human health, a mid-term hierarchical (H) scheme where 

human health is somewhat more important than the environment, or a short-term 

individualist (I) viewpoint where human health is of primary concern over ecosystem 

quality.  For the purpose of this LCA, the hierarchical weighting scheme is applied. 
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Table 4.2 Influent and effluent water quality and gaseous emissions from Sovik et al. (2006) and used 

in this study. 

Influent Effluent Emissions 
TN NH4

+ BOD P NH4
+ NO3

- BOD P N2O CO2 CH4 

VFCW mg/L mg/m2d 
Sovik et al., 2006 50.9 35.7 142.0   31.7 1.7 62.8   15.0 8400.0 110.0 
Sovik et al., 2006 50.9 35.7 142.0   31.7 1.7 62.8   5.3 1600.0 34.0 

Average of Sovik 10.2 5000.0 72.0 
As proportion of 1 p.e. (TN or BOD) 17.3 14084.5 202.8 

mg/L 
Simapro input: 86.6 86.6 400.0 16.6 5.0 35.0 1.0 4.0 0.4 300.5 4.3 

Influent Effluent Emissions 
TN NH4

+ BOD P NH4
+ NO3

- BOD P N2O CO2 CH4 

HFCW mg/L mg/m2d 
Sovik et al., 2006 96.5 83.9 125.0   36.2 5.9 13.4   7.1 3800.0 340.0 
Sovik et al., 2006 96.5 83.9 125.0   36.2 5.9 13.4   1.6 960.0 1.5 
Sovik et al., 2006 43.1 31.7 62.8   34.0 1.2 41.0   4.2 2100.0 160.0 
Sovik et al., 2006 43.1 31.7 62.8   34.0 1.2 41.0   1.1 380.0 11.0 

Average of Sovik 3.5 1810.0 128.1 
As proportion of 1 p.e. (TN or BOD) 6.0 7710.3 545.8 

mg/L 
Simapro input: 86.6 86.6 400.0 16.6 5.0 35.0 1.0 4.0 0.5 648.8 45.9 
 

4.4. Results 

The impact assessments using Ecoindicator 99 (H) for the VFCW and HFCW 

considering and excluding gaseous emissions are shown with impact point values listed 

in Figure 4.2.  The life cycle impacts are negligible for respiratory organics, radiation and 

ozone layer.  In all other impact categories, the VFCW impacts, with or without gaseous 

emissions, are significantly less than the HFCW impacts.  N2O, CO2, and CH4 influence 

the respiratory inorganics, climate change, and acidification/eutrophication categories 

with the largest influence being in climate change.  The influence of each gas is 

demonstrated in Figure 4.3a for the VFCW and Figure 4.3b for the HFCW, which show 

the impacts of each individual gas beyond the baseline impact not considering gaseous 

emissions.  For example, for the climate change impact category, the baseline impact for 

a VFCW is 280 damage points, but 700 with the consideration of just CH4, 800 
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considering the addition of just N2O, and 1600 considering the baseline plus CO2.  For a 

VFCW, the baseline climate change impact plus consideration of all three gaseous 

emissions during operation is 2581 (as shown in Figure 4.2).  For respiratory inorganics 

and acidification/eutrophication, the increase in impact from the baseline LCA (no 

gaseous emissions) is due to N2O, while CO2 and CH4 only influence climate change.  

CO2 is the greatest climate change factor for VFCWs, while CH4 has the larger climate 

change impact for HFCWs. 

 

Ecoindicator 99 (H) does not consider aqueous emissions in the 

acidification/eutrophication impact category, so the CML 2 Baseline 2000 impact 

assessment is used to study eutrophication; gaseous emissions from wetland treatment 

processes account for only 0.3% or 0.4% of eutrophication impacts for a VFCW and 

HFCW, respectively.   Major eutrophication impacts are phosphorus (75% of impact) and 

nitrate (21%) emissions to water.   

 

LCA was also used to test the impacts of various treatment performance levels for the 

VFCW and HFCW on the eutrophication impact category using the CML 2 Baseline 

2000 impact assessment.  Figure 4.4 shows the baseline LCA, which considers that the 

wetlands meet water quality standards (COD = 1 mg/L, NH4
+-N = 5 mg/L, and P = 4 

mg/L).  It also shows the influence of no phosphorus treatment (high P = 16.6 mg/L 

effluent phosphorus), low nitrification (effluent NH4
+-N = 25 mg/L and NO3

--N = 15 

mg/L), poor treatment of chemical oxygen demand (high COD = 50 mg/L effluent COD), 

and complete nitrification and denitrification (effluent N = 0 mg/L).  Eutrophication is 

most impacted by phosphorus, for which complete lack of treatment would increase the 

eutrophication potential 200% from the baseline LCA (however, phosphorus is usually 

treated by chemical precipitation rather than depending on absorption capacity of the 

wetland).  On the other hand, poor treatment of COD or N increases eutrophication by 

only 5-10%, respectively.  Potential for total N removal through denitrification would 

reduce the eutrophication impact by about 30%.    
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The sensitivity of environmental impacts to different levels of treatment performance 

should be interpreted with caution, keeping mind that the scenarios may not be 

completely realistic for the wetland design.  For example, poor treatment of COD to the 

level of 50 mg/L effluent COD is unlikely unless the wetland has a severe malfunction.  

Full denitrification is also unlikely unless the wetland has been specifically designed for 

such (which would require a larger volume, with anoxic conditions and available carbon, 

not included in the wetlands for this LCA).  
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Figure 4.2 Environmental impacts assessed using Ecoindicator 99 (H) for VFCW and HFCW with 
and without gaseous emissions.   
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Figure 4.3 Environmental impacts of different gaseous emissions in a) VFCW and b) HFCW. 
(Ecoindicator 99–H). Markers for CH4, N2O and CO2 are for the additional impact of the individual 
gas. 
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Figure 4.4 Eutrophication impacts of various scenarios on baseline VFCW and HFCW life cycles.  
(CML 2 baseline 2000). 
 

Endpoint damages to human health, ecosystem quality and resources are also calculated 

using Ecoindicator 99-H.  Human health damage points are normalized Disability 

Adjusted Life Years (DALYs) caused by carcinogens, respiratory inorganics, respiratory 

organics, climate change, radiation, and ozone layer reduction.  Ecosystem quality 

damage points are normalized Potentially Disappeared Fraction (PDF) of species per m2 

of land area per year for ecotoxicity, acidification/eutrophication and land use (which 

includes the consideration of constructed wetland as habitat).  Resource damage points 

are normalized MJ surplus of minerals and fossil fuels.  As shown in Figure 4.5, clearly 

VFCW, including gaseous emissions, has significantly less impact to human health (25% 

of HFCW), ecosystem (30% of HFCW) and resources (25% of HFCW).  The importance 

of including gaseous emissions in the LCA is demonstrated as they are more than 1/3rd of 

the human health impacts for VFCW and more than 1/4th of human health impacts for 

HFCW.  The impact of gaseous emissions on ecosystem quality is small and is due to 

N2O factored into acidification/eutrophication. 
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Figure 4.5 Endpoint damages of VFCW and HFCW with and without gaseous emissions assessed 
with Ecoindicator 99-H. 
 

4.5. Discussion 

The life cycle assessment began with the hypothesis that a vertical flow constructed 

wetland will have less environmental impact through its life cycle than a horizontal flow 

constructed wetland due to its treatment efficiency and nitrogen cycling.  Despite the fact 

that nitrogen and carbon emissions are higher per unit area for VFCW than for HFCW 

(Table 4.1), the overall impacts are higher for HFCW because the wetland has to be so 

much larger for equivalent water treatment (HFCW volume = 6559 m3; VFCW volume = 

1792 m3).  For both midpoint and endpoint damages, VFCW impacts are ¼th or less of 

HFCW impacts, depending on the impact category (Figure 4.2 and Figure 4.5).  The life 

cycle assessment suggests that VFCW have less environmental impacts through the life 

cycle than HFCW, due to treatment efficiency (nitrogen removal in a smaller wetland). 

 

The nitrogen accounted for in this LCA includes ammonium, nitrate, nitrite, and nitrous 

oxide explicitly emitted in the wastewater treatment process.  The impact assessment 

methods also calculate emissions of other nitrogen oxides, ammonium gas, and other 

nitrogen emissions from the various materials and processes used in the constructed 

wetland assembly, operation and disposal.  Ammonium affects eutrophication and 

acidification.  Nitrate and nitrite affect eutrophication.  Nitrous oxide affects respiratory 

inorganics, climate change and acidification.   
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The carbon accounted for includes biochemical oxygen demand (BOD), carbon dioxide 

and methane explicitly emitted in the wastewater treatment process.  Ecoindicator 99 

calculates emissions of carbon dioxide and methane from other sources (construction, 

operation and disposal materials and processes), as well as many other carbon-based 

emissions.  Carbon dioxide and methane had a large impact on the climate change 

indicator while BOD has a small affect on life cycle eutrophication.   

   

The results of this LCA are significant for environmental engineers designing community 

wastewater treatment.  Beyond the reported LCAs which show that constructed wetlands 

have more environmental benefit than conventional wastewater treatment technologies, 

this LCA demonstrates that wetland design is important.  Not only are VFCW more 

efficient in land use and nitrification, but they have considerably less environmental 

impact than HFCW designed to meet the same effluent standards.  

 

Compared to conventional wastewater treatment where operation dominates the life cycle 

impacts, wetlands have very small operational environmental impacts.  The main impacts 

come from constructing (assembly life stage) and disposing of the wetland (end of life 

stage), due to transportation materials to the site for construction, heavy machinery for 

construction and demolition, and transporting materials away to be land filled or land 

farmed.  Those impacts could potentially be reduced by using local or onsite materials 

(sand and gravel), and recycling used sand as a soil amendment.   

 

This LCA also provides new information because it shows the necessity of including 

gaseous emissions from the wastewater treatment process.  Figure 4.2 and Figure 4.5 

demonstrate the difference in LCA with and without gaseous emissions, particularly 

pertinent to the impact categories respiratory inorganics, climate change and 

eutrophication, and the endpoint categories human health and ecosystem quality.  While 

the emissions included in this LCA were based on limited data, and LCAs have typically 

excluded gaseous emissions due to lack of agreement in available data; this LCA shows 
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that even mid-range measurements have a significant impact in the constructed wetland 

life cycle.   

 

Comparing wetland N2O emission rates per unit area to rates reported for conventional 

treatment, the wetland emissions are much smaller.  However, conventional systems 

concentrate the treatment in a smaller area, so it is not clear if constructed wetlands truly 

provide a benefit over conventional treatment in gaseous emission reduction.  Fey et al. 

(1999) reported N2O emissions as 5.5 g/yr per capita for a horizontal flow constructed 

wetland, while Czepiel et al. (1995) measured 3.2 g/yr per capita for activated sludge 

treatment and Kimochi et al. (1998) found a range of 0-1.9 g/yr per capita from an 

activated sludge treatment plant.  Conventional treatment may reduce gaseous emissions 

per unit treatment volume due to controlled optimal conditions for nitrification and 

denitrification, but other researchers (Dixon et al., 2003; Machado et al., 2006) have 

shown that constructed wetlands are environmentally superior to an extent that may 

outweigh the difference in gas emissions between conventional technologies and 

wetlands. 

 

Several design recommendations can be made based on the results.  As shown in Figure 

4.3, gaseous emissions make up the majority of climate change impacts for a constructed 

wetland life cycle.  Nitrous oxide and other nitrogen oxides are formed during 

nitrification and denitrification processes at suboptimal conditions (low oxygen during 

nitrification, high oxygen or low C/N ratio during denitrification) and are directly related 

to temperature and influent nitrogen concentration.  The formation of nitrogen oxides can 

be avoided with high COD/N ratio (Osada et al., 1995; Young Park et al., 2000; Tallec et 

al., 2006), low O2 to NOx ratio for denitrification and avoiding NO or N2O production 

(Osada et al., 1995), long denitrification detention time, and avoiding simultaneous 

ammonium oxidation and nitrite reduction (Gejlsbjerg et al., 1998).   

 

Optimizing the design for oxygen transfer, nitrification and denitrification processes will 

reduce nitrous oxide emissions, therefore reducing impacts from respiratory organics, 
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climate change and acidification/eutrophication.  Based on results from Chapters 2 and 3, 

a VFCW may be optimized for nitrification by using a downward flow regime, an 

intermittent pumping cycle with 48 pulses/day, and an area of 1.1 m2/p.e.  It can be 

optimized for denitrification by using an upflow saturated regime, as long as carbon is 

available (carbon was not optimized in the research in Chapters 2 and 3). 

 

The life cycles of VFCW and HFCW can also be broken down into life stage 

contributions, as shown in Figure 4.6.  For VFCWs, other research has shown that the life 

stage with the greatest overall impact is the assembly or construction phase (i.e., Dixon et 

al., 2003), which here is found to have about the same level of impact as the use phase.  

The construction impacts could be significantly reduced by using local or onsite materials 

to avoid transporting wetland media.  The availability of sand for VFCW filter media or 

gravel for HFCW filter media may be site dependent.  Chapters 2 and 3 showed that a 

nitrifying VFCW wetland could be much shallower than guidelines call for so the sand 

volume could be reduced by potentially 60%.  HFCW disposal impacts are much higher 

than other stages because of the assumption that wetland material would be transported to 

a land-farm or landfill, and that new material would be transported to the wetland site to 

remediate it. 

 

LCA is also useful for making operation and management choices in wastewater 

treatment.  Researchers have assessed the environmental impacts of a variety of primary 

sedimentation, biological nutrient removal operations, sludge handling variations, energy 

efficiency, energy/heat recovery, demand management and upgrades.  Environmental 

impacts during the use phase of wetlands could potentially be reduced by incorporating 

sludge digestion and energy recovery instead of transporting and landfilling sludge.   

 

Foley et al. (2007) suggested that there may be global versus local tradeoffs in design and 

operational decisions for wastewater treatment.  The locally valued impact categories 

considered here include eutrophication and land use, while global impact categories are 

climate change and fossil fuel consumption (other impact categories either have a very 
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small impact in this study and are excluded, or are not specifically globally or locally 

valuable).  In this case, there is no tradeoff between global and local impacts: VFCWs 

have less impact for all categories than HFCWs.  Optimizing the design for nitrification 

and denitrification would improve both global and local impact categories by reducing 

nitrous oxide, ammonium and nitrate emissions. 
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Figure 4.6 Breakdown of impacts over life stages of HFCW (top) and VFCW (bottom).  (Impact 
categories with less than 1% of the total impact were removed: respiratory organics, radiation, ozone 
layer and minerals). 
 

Other life cycle issues are related to wastewater treatment, and this research does not 

show that constructed wetlands are always the best solution.  In this LCA, the scope 

included only the wastewater treatment.  However, if the system boundaries are extended 

to include water treatment or distribution, it is pertinent to consider closing the water 

resource loop through reuse, recycle, or even keeping water and waste separate.  Water 

reuse and recycle could be feasible with constructed wetland effluent, particularly from 

an optimized design that removes a high level of nutrients.  Separating water and waste 

would make a constructed wetland infeasible since it requires water to move the waste to 

it and distribute waste over/through it.   
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Wastewater engineering should also consider closing the energy resource cycle, whether 

it means heat and energy recovery from solids or algae growth.  Energy recovery would 

be feasible with wetlands since solids are settled prior to distribution of wastewater to the 

wetland.  As previously mentioned, on-site solids digestion and energy recovery with a 

community wastewater treatment system could reduce the environmental impacts of the 

wetland use phase even further.  Expanding LCA scopes to consider energy 

production/consumption would encourage the creation of connected wastewater-energy 

systems.  For example, Tilche and Galatola (2008) built on the potential of anaerobic 

digestion to reduce greenhouse gases by showing that methane production for light goods 

vehicles (from landfill biogas and wastewater treatment sludge) showed a net 

environmental advantage compared to electricity production from wastewater.  These 

kind of comparisons can guide wastewater engineering to find environmental beneficial 

wastewater technologies which also close resource loops in other areas. 

 

Nutrient recovery is a third loop to close, which requires the consideration of agriculture 

in LCA.  Researchers are beginning to consider source separation of urine and faeces, 

which could tie directly into water recovery and reuse technologies, energy recovery, and 

returning nitrogen and phosphorus to agriculture without toxic contaminants (Maurer et 

al., 2003; Remy and Jekel, 2008; Larsen et al. 2009).  This is one reason that recovery of 

water, energy, and nutrients is a key consideration in discussion of what make a particular 

wastewater treatment technology sustainable (Guest et al., 2009).  Source separation may 

not be the only method for nutrient recovery, and may not be publicly accepted for some 

time.  In that light constructed wetlands may still offer an advantage in that some of the 

wastewater nutrients remain in the filter media and are taken up by plants.  Plants 

harvested regularly could be composted with sludge, and filter media at the end of its 

lifetime could be a high-nutrient soil amendment.  However, the value of using wetland 

plants and media for nutrient recovery is yet to be determined. 
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LCA of constructed wetlands opens up policy questions, such as where wastewater 

decentralization may be appropriate, how to manage decentralized systems, and how to 

facilitate technology transfer and adoption.  Muga and Mihelcic (2007) found that 

decentralized technologies such as land based treatment may be more sustainable than 

mechanical treatment systems based on a set of sustainability indicators.  Indicator sets 

may be used to “match” technology and management systems to communities, such as in 

Fuchs and Mihelcic (2009).  The Water Environment Research Foundation is beginning 

to look at how to transfer decentralized technologies and overcome barriers to technology 

adoption (Etnier et al., 2007).  In particular, WERF recommends increasing financial 

incentives associated with decentralized technology, enhancing knowledge of 

decentralized systems, improving favorability of regulators toward decentralization, and 

increasing systems thinking.  These improvements, along with research into management 

of decentralized systems, may enable the resource conservation discussed above by 

minimizing the concentration and contamination of resources. 
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5. SUMMARY AND CONCLUSIONS  
 
This research focused on one technology for small-scale and sustainable wastewater 

treatment, the vertical flow constructed wetland (VFCW).  An experimental investigation 

demonstrated the capacity of downflow wetlands to transfer oxygen through the soil 

column for nitrification, and the potential of upflow wetlands to remain anoxic for 

denitrification.  A modeling effort elucidated mechanisms for oxygen and nitrogen fate 

and transport and emphasized the importance of organic and biological components that 

were not measured in the laboratory experiment.  A life cycle assessment confirmed the 

environmental benefits of a VFCW as compared to a horizontal flow constructed wetland 

(HFCW) despite the higher greenhouse gas emissions (per unit area) found in the VFCW.   

 

The research project tested two hypotheses4.  The first hypothesis was proven to be 

incorrect by experimental and modeling results, and the correct hypothesis is: due to 

advantage of high oxygen transport of oxygen in the unsaturated downflow column over 

low oxygen transport in the saturated upflow column, downflow wetlands are more 

efficient than upflow wetlands in nitrification, while upflow wetlands are more efficient 

in denitrification.  The second hypothesis was true however, as the small surface area and 

material quantity required for a VFCW cause far less environmental impacts in all impact 

categories (including greenhouse gas emissions) compared to an HFCW. 

 

Following these hypotheses, the objectives of the project were to: 

1. Identify oxygen transfer and nitrogen fate mechanisms in vertical flow 

constructed wetlands from experimental observations and numerical modeling. 

2. Suggest improvements in rational design of vertical flow wetlands for nitrogen 

removal from experimental data and modeling results. 

                                                 
4 1st hypothesis: due to the upward flow regime that causes high root-water contact and therefore high 
water uptake and better oxygen transfer, upflow systems will be more efficient than downflow wetlands in 
nitrification, while downflow wetlands will be more efficient at denitrification. 2nd hypothesis: a vertical 
flow constructed wetland will have less environmental impact through its life cycle than a horizontal flow 
constructed wetland due to its treatment efficiency and nitrogen cycling.  
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3. Compare the life cycle impacts of a vertical flow wetland to a horizontal flow 

wetland designed to treat wastewater for a small community, to understand the 

environmental impacts and design issues especially related to nitrogen emissions. 

 

In answer to the first objective, the experimental results show that oxygen transfer is 

mainly driven by diffusion, although some advection from the hydraulic regime increased 

oxygen in downflow wetlands.  Because of the unsaturated pore space in the downflow 

column, oxygen diffusion would be more likely than in the saturated upflow column 

where diffusion into the water table would be much slower.  The combination of 

advection and diffusion can explain the high dissolved oxygen found in the downflow 

column, and the absence of advective oxygen transport combined with slow diffusion 

accounts for the low oxygen in the upflow column.  The oxygen presence or absence 

partially explains the nitrogen fate in those columns.  Ammonium was fully nitrified in 

the oxygen-rich downflow column but was only minimally nitrified in the saturated, 

oxygen-poor upflow column.  Nitrate could not be denitrified in the downflow columns 

due to the oxygen which inhibited denitrifiers.  However, in the upflow columns, low 

oxygen was a good condition for denitrification which was only limited by carbon 

availability.  In the planted columns, nitrate was removed more than in the unplanted 

columns, possibly due to carbon available from plant degradation, but not due to plant 

uptake.  It is also possible (though not measured) that other nitrogen removal pathways 

accounted for some nitrogen removal, such as volatilization to nitrogen oxides which can 

occur in non-optimal nitrification and denitrification (such as presence of some oxygen 

and/or limited carbon for denitrifiers). 

 

Several improvements in vertical flow wetland design for nitrogen removal can be 

recommended based on the experimental and modeling results.   

1. Different VFCWs (downflow, upflow, or in-series) may apply depending on 

the nitrogen characteristics of the wastewater as well as the nitrogen species of 

concern.   For wastewater high in ammonium and low in nitrate, where only 

nitrification is of interest, unsaturated downflow wetlands are the best choice.  
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For nitrified wastewater where denitrification is needed, saturated upflow 

wetlands (with a carbon source) will provide the best results.  A downflow 

and upflow wetland in-series may be the best option in cases where 

wastewater needs nitrification and denitrification. 

2. Because denitrification depends on available carbon, it may be best to take 

advantage of wastewater-carbon (readily biodegradable COD) early before it 

degrades, inferring a recycle of nitrified wastewater.  The recycle could loop 

back to the influent tank or could be part of an upflow-downflow in-series 

arrangement (opposite the in-series columns in this study) with recycle of 

effluent back into the upflow wetland.    

3. A longer hydraulic retention time (HRT) for upflow wetlands should lead to 

more denitrification because of the slow hydrolysis of slowly biodegradable 

COD into readily biodegradable COD.  For an upflow wetland, increasing the 

HRT means simply increasing the volume; however, increasing the depth is 

preferential to increasing the surface area, so that oxygen diffusion effects are 

not increased. 

4. A surface area of 1.1 m2/p.e. was sufficient here for a nitrifying downflow 

column (where 1 p.e. = 150 L/d) according to the bench-scale experiment.  

Compared to current vertical flow constructed wetland guidelines of 3.2-5 

m2/p.e., the VFCW surface area could be significantly reduced.  The 

recommended surface area is equivalent to a hydraulic load of 142 L/m2d. 

5. This study showed that a small volume with high pumping frequency (48 

pulses per day) produced the oxygenation necessary for full nitrification in the 

downflow wetland without flooding or clogging.   

6. Downflow wetland depth could be reduced by up to 70% from the 1 m 

guideline.  Both the experimental and modeling results showed that 

nitrification occurred in the top 10-20 cm of the downflow column, and that 

further nitrification occurred in the top 20 cm below the water table in the 

upflow column.   
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7. Upflow wetland depth could be increased by up to 0.6 m (from the 0.4 m 

saturated depth of the experiment; no guidelines exist for upflow wetlands) to 

increase the hydraulic retention time to allow denitrifiers to consume slowly 

biodegradable COD and reduce the influence of oxygen diffusion. 

8. Vegetation should be included in denitrifying wetlands.  The mechanism for 

nitrate removal with the presence of plants is not clear, but this study showed 

that vegetation has a clear positive influence (>10%) on nitrate and total 

nitrogen removal. Vegetation should have a low C/N ratio (<15), high 

potential photosynthesis rate, and large leaf area index (most fitting would be 

a productive but small-structured terrestrial species). 

9. The soil media used in this study was medium-grained sand, which is 

recommended for vertical flow wetlands along with the hydraulic load and 

pumping schedule in order to create the hydraulic conditions for advective 

oxygen transfer and avoid pore clogging. 

 

These design recommendations should be taken as an integrated concept because the 

biochemical mechanisms depend on the arrangement of the whole system.  For example, 

reducing the surface area of a downflow wetland but maintaining a flood-and-drain 

hydraulic loading regime will produce different oxygen transfer (and thus nitrification) 

results.  Likewise, the unsaturated flow characteristics (which, along with the hydraulic 

loading schedule, determine advective oxygen transfer) of the downflow column are 

dependent on the specific soil media. 

 

Recommendations should also be tested at the field scale.  In particular, the unit surface 

area, reduced downflow depth, and small-volume/high-frequency pumping schedule 

should be tested with a variety of wastewater concentrations and throughout the year in 

regions where seasonal temperatures may be low.  The reduced downflow depth may be 

more susceptible to freezing in winter temperatures.  The unit surface area may not be 

appropriate if system influent concentrations are highly variable.   
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The design recommendations above are supported by the results of the LCA.  Optimizing 

nitrification and denitrification with the recommendations from this study will reduce the 

production of greenhouse gas emissions from the wetland wastewater treatment process.  

Improvements in the treatment process will reduce impacts due to respiratory inorganics, 

climate change and acidification/eutrophication by minimizing gaseous and aqueous 

emissions from the wetland.  Reducing the depth of a downflow wetland will lead to a 

significant decrease in the material requirements of the wetland, reducing transportation 

and heavy machinery impacts; however, the addition of an upflow wetland for 

denitrification would neutralize the benefits of reduced volume.  However, adding the 

denitrification capacity would reduce the eutrophication potential of the system.  Using 

local or on-site materials rather than transporting sand and gravel from a distance would 

also reduce the fossil fuel impacts of the wetland life cycle.  Finally, the LCA results 

show clearly that a VFCW is preferable to an HFCW for wastewater treatment for all 

impact and damage categories. 

 

There are several conclusions of this work significant to the field of wastewater 

treatment.  For one, VFCWs are an efficient and low-energy technology for wastewater 

nitrification, and have excellent potential for denitrification.  They require significantly 

less land use than an HFCW and achieve water quality standards at much lower 

environmental impact than HFCWs and therefore much lower impact than conventional 

wastewater treatment (inferred from previously cited reports that HFCWs have lower 

impact compared to conventional technologies).  The consideration of resource 

conservation and reduction of environmental impacts is becoming a priority in 

engineering design.  Wastewater treatment technology and management needs to 

consider water, energy and nutrients as resources to recycle rather than wastes to 

separate.  Constructed wetlands may be an appropriate solution for resource recovery and 

reducing environmental impacts. 

 

Secondly, the design contribution of this work, though still in the form of “guidelines”, is 

a much more holistic concept of vertical flow wetland function than the rule-of-thumb 
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guidelines currently available (Danish and Austrian guidelines, previously cited).  

Because a constructed wetland is a complex ecosystem integrating soil, vegetation, 

microbes, and wastewater constituents, design equations (such as 1st-order kinetics or 

advection-dispersion equations) cannot adequately describe the multiple processes and 

feedbacks.  The ability to model the downflow and upflow processes with HYDRUS-

2D/CW-2D demonstrates the understanding of many of the oxygen and nitrogen fate and 

transport mechanisms at work simultaneously.  The design recommendations from this 

study are an improvement on available guidelines because of their basis in the 

mechanisms established from the experimental and modeling results. 
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6. RECOMMENDATIONS FOR FUTURE WORK  

There are still questions to be answered regarding nitrogen removal in constructed 

wetlands and vertical flow wetland design.  Pilot- or field-scale observations would help 

to confirm the observations of this study and the verification of the model.  Testing the 

recommendations from this work at the field scale would also would show whether the 

recommended design is feasible at low temperatures or with highly variable wastewater 

concentrations.  With model parameters verified, the model could be used for studying 

design and operational configurations to optimize oxygen transfer and nitrogen fate.  

Further bench-scale experiments or modeling could investigate the influence of other 

hydraulic loads or pumping schedules on oxygen transfer and nitrogen removal.  They 

could also be used to test different wetland configurations such as the upflow-downflow-

in-series or recycle as mentioned in the design recommendations.  Experiments are 

needed to gain further understanding of the impacts of COD fractionation and vegetation 

on denitrification and wetland design.  Bench-scale experiments could also be conducted 

to determine greenhouse gas emissions from various wetland configurations, to determine 

design parameters which will maximize nitrification and denitrification but minimize 

greenhouse gas formation. 

 

This research does not advocate that vertical flow constructed wetlands are always the 

optimum wastewater solution.  Environmental resource cycles, including water, energy 

and nutrients, are becoming important as these resources diminish.  Expanding the scope 

of environmental studies to include those resource cycles will offer keys to new solutions 

for wastewater treatment, which may include decentralization, ecological technologies 

such as vertical flow constructed wetlands, source separation of urine and faeces, and will 

need to include energy and heat recovery, water reuse, and nutrient recovery.  

Management of sustainable wastewater systems will need to change as the technology 

and infrastructure changes, especially as decentralization occurs.  Finally, sustainable 

solutions to wastewater treatment will require progressive policy actions so that 

technology and management systems will be adopted.  An integrated research system that 
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considers the resource cycles, policy and management systems, and technical 

development is needed to meet the challenge.   
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Soil Column Assembly 
 
Equipment/supplies: 
Sanded column 
Column base 
6” ID rubber gasket with 2 hose clamps 
6” diameter 30-mesh wire screen circle 
River gravel 
 

1. Fit rubber gasket over the column part of the base; tighten lower hose clamp. 
2. Fill funnel with river gravel to the top of the column. 
3. Place wire screen on top of the gravel (gravel should support the screen, not let it 

fall). 
4. Fit sanded column into the top of the rubber gasket so that it clamps down on the 

screen. 
5. Tighten top hose clamp. 
6. Pack column. 

 

 
Figure A.1 Assembled wetland columns (Photo by author). 
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Column sanding procedure  
 
Equipment/supplies: 
Spray adhesive 
Acrylic column 
Sand 
 

1. Plug the threaded sample port holes in column with a removable material, to 
prevent glue and sand from clogging the holes or disturbing the screw threads. 

2. Under a fume hood, evenly spray the inside of the column with adhesive.  Do not 
overspray, as adhesive may melt the acrylic column. 

3. Pour sand through the column, while turning it, to coat the wet adhesive with 
sand.   

4. Allow to dry under fume hood for at least 24 hours, or until no evidence of 
volatile substance (by smell) is left on the column. 

 



 A-4

  
Sample port assembly 
 
Equipment/supplies: 
1/8” OD Tygon tubing (VWR catalog #63010-232) 
Sandpaper 
Epoxy 
¼” OD x 1/8” ID porous cups (soilmoisture.com) 
O-seal pipe to Swagelok adapter (Swagelok.com, part SS-200-1-OR) 
Tube union (Swagelok.com, part SS-200-6) 
1/8” OD tube nuts (Swagelok) 
1/8” OD tube nylon ferrules (Swagelok) 
¼” rubber septa 
3/8” wrenches 
5/16” wrench 
 

1. Cut 12 cm of 1/8” Tygon tubing. 
2. Roughen 1 cm of tubing end with sandpaper. 
3. Mix epoxy. 
4. Spread epoxy around roughened end of tubing. 
5. Insert epoxied end into porous cup. 
6. Let dry 24 hours. 
7. Fit tube with Swagelok fittings as shown in Figure, except septum cap (septum in 

end nut). 
8. Boil assembly, submerged completely to saturate and remove air bubbles. 
9. Allow assembly to cool while submerged. 
10. Cap with septum cap while submerged. 
11. Install through drilled holes in column, into moist soil. 
12. Keep soil moist so cups do not dry out and become desaturated. 
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Column packing procedure 
 
Equipment/Supplies: 
Grayling sand 
Water 
Scale 
Bowl for mixing 
Trowel/mixing tool 
Aluminum weighing trays 
Rubber-head hammer 
Tamper* 
Raking device** 
 

1. Moisten 3000g Grayling sand with 174 mL water, until sand is wet to visible 
inspection (moisture content by dry weight of sand is 5.5% ). 

2. Weigh, dry and re-weigh 1-3 trays of moist sand samples used to ensure 
consistent water content between mixes. 

3. Pack sand into column 1450 g at a time. 
4. Pour moist sand into column, level the surface with fingertips.^^^ 
5. Drop tamper 10 times from 10 cm above soil surface. 
6. Rap column side at soil surface level at 90 degree intervals (0, 90, 180, 270 

degrees around column) 4 times at each point after the 2nd, 5th and 10th tamper 
drop. 

7. Roughen sand surface with raking device. 
8. Repeat steps 1-7 to desired sand depth. 

 
^^^When a sample port is reached, pour moist sand to the level of the port.  Insert 
sampling assembly.  Pour the rest of the sand on top of the port, leveling surface with 
fingertips.  Continue with steps 5-8.  
 
*Tamper is built of 1 drilling hammer glued with silicon aquarium sealant onto 1 ABS 
black pipe endcap (4” dia).  The assembly weighs 1751 g (3.95 lbs). 
**Raking device is built of 3 small screwdrivers taped together at the handle, with tape 
down the prong so that 1 cm of 3 prongs sticks out to form the rake. 
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ChronTrol Pump Program 
 
Desired effect: Set one program to turn on circuits for 30 seconds, to check and set 
flowrate.  Set another program to turn circuits on for 30 seconds, every 30 minutes for a 
year.  (This will power on wastewater pumps 1 and 2 to pump wastewater 30 seconds, 
twice an hour). 
 
Plan: Program #3 is an Interval program to turn on Circuit 1 and 2 for 30 seconds when 
the program is activated.  Program #4 is an Interval program to turn on Circuit 1 and 2 for 
30 seconds when the program is activated, and repeats the operation every 30 minutes 
until it is stopped.  Program #5 starts Program #4 at 1:00 pm on February 25 (2009) and 
stops it on February 24 (2010) at midnight. 
 
Set Program #3 
Press ENTER, then 3 (display E-03). 
Press CIRCUIT, then 1 (display C-01), then CIRCUIT, then 2 (display C-02). 
Press INTERVAL, then 0, 0, SECOND, 30 (display 000030). 
Press ENTER, then TIME. 
 
Set Program #4 
Press ENTER, then 4 (display E-04). 
Press CIRCUIT, then 1 (display C-01), then CIRCUIT, then 2 (display C-02). 
Press INTERVAL, then 0, 0, SECOND, 30 (display 000030). 
Press CYCLE, then 30 (display 0030). 
Press ENTER, then TIME. 
 
Set Program #5 
Press ENTER, then 5 (display E-05). 
Press PROGRAM, then 4 (display P-04). 
Press ON (display 1 00). 
Press 1:00 PM* (display 1 00.). 
Press DATE 225* (display 4 23). 
Press OFF (display 12 00). 
Press 12:00* (display 12 00). 
Press DATE 224* (display 4 22). 
Press ENTER, then TIME. 
 
 
*Times and dates may be changed if reset is necessary.
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Influent Assembly 
 
Equipment/supplies: 
Tygon lab tubing (spec) 
Masterflex Console pump drives (spec) 
Masterflex Console pump heads (spec) 
ChronTrol Programmer (spec) 
 

1. 50 feet of Tygon lab tubing was cut into 4 equal pieces (for 4 influent tubes). 
2. 2 pump heads were fitted on each of 2 drives. 
3. Tubing was threaded through each of the 4 pump heads, and color-coded with 

tape. 
4. Pumps were plugged into Circuit 1 and Circuit 2 of the ChronTrol programmer. 
5. The ChronTrol programmer was programmed as discussed in “ChronTrol Pump 

Program”. 
6. Inflow ends of tubes were immersed in a bucket* of water, and Program #3 was 

used to check and set the flow rate for each pump at ~280 mL/min. 
 
*Influent tank during the experiment was a 6 gallon bucket with lid to prevent 
atmospheric oxygen from mixing or diffusing into the influent wastewater.   
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Evaporation Test Procedure 
 
Equipment/supplies: 
Packed soil columns 
Piezometer tubing 
Scale 
Water 
Ruler 
 

1. Attach piezometer tubing to bottom sample port; allow water table to equilibrate 
in tubing. 

2. Place soil column on scale. 
3. Pond water to known height just at or above soil surface by upflow saturation; 

record height of water in piezometer. 
4. Turn off flow; allow water to evaporate. 
5. Record mass and water table height each half-hour for 8 hours; note when the 

water table falls below the soil surface.   
6. Repeat for longer if necessary. 
7. Repeat for each column. 
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Saturated Hydraulic Conductivity, Measured by Falling Head Test 
 
Saturated hydraulic conductivity (K) is calculated by the following equation: 

0

lnLa hK
At h

⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
 

Where L is the height of the soil sample, a is the cross-sectional area of the tube*, A is the 
cross-sectional area of the soil sample (sand column)**, ho is the height of water table at 
time to, and h is the height of the water table at time t.   

 
Figure A.2 Falling head test set-up. 
 
Equipment/supplies: 
Sand column 
Influent tubing with valve 
Graduated tube 
Water 
Timer 
 

1. Clamp graduated tube above column; measure and record height difference. 
2. Attach graduated tube to influent tubing. 
3. Fill tubing with water; record water table in graduate tube (as height ho above 

sand column). 
4. Start timer and open valve. 
5. Let water table fall to a known height h; stop timer and close valve. 
6. Record time change t.   
7. Repeat 10 times; average. 

 
*Area a of the graduated tube is 0.385 cm2. 
**Area A of the sand column is 181.5 cm2.
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Sampling 
 
Unisense A/S microprobes (DO, pH, ORP), manuals available online 
http://www.unisense.com/Default.aspx?ID=107    
 
Unisense macroprobe (Nitrate biosensor) 
 Initially, nitrate was measured using the Unisense A/S nitrate biosensor.  
However, the biocell containing nitrate- and nitrite-reducing bacteria was not viable 
longer than three weeks and the biosensor required very controlled conditions in order to 
provide good quality data.    Before the start of the downflow experiment, nitrate 
measurement switched to APHA standard method 4500-NO3- D using a nitrate-specific 
ion electrode.   
 
APHA Standard Methods 4500-NO3- D. Nitrate Electrode Method 
 The standard method was modified to allow for a 1mL sample size.  1mL of a 
standard NO3- solution was added to 2 mL of buffer solution (as opposed to 10 mL and 
10 mL respectively in the standard method).  The mass of each addition was recorded, 
and then the electrode tip was immersed in the solution.  A potential reading was 
recorded when the reading was stable (after about 1 minute).  A standard curve was 
created from 5 standard concentrations (1, 10, 20, 50 and 100 mg/L NO3-N), and then the 
same method was used to add 1 mL of sample to 2 mL of buffer solution and measure the 
nitrate concentration with the electrode.  Standards were kept at room temperature.  
Samples were frozen in 2mL vials and thawed to room temperature just before 
measuring.  Nitrate samples were taken from influent, effluent, and vertical profile 
sample ports, the influent tank, and two replicate samples for each set of 25 samples.  
Samples were taken twice per week during the entire experiment.  Due to interference, 
small sample size or unknown cause, the 1mg/L standard solution did not fit the standard 
curve and was considered “below the detectable range”.  It was not replaced with a higher 
concentration standard, so nitrate readings below 10mg/L are questionable. 
Ion chromatography NH4

+ 
 Initially, a Dionex ion chromatograph was chosen to evaluate ammonium ion 
concentration.  During the “real wastewater” phase, ammonium peaks could not be seen 
in the ion plots due to overlap from a large quantity of organic ions.  It was determined 
that organic constituents in the wastewater interfered with the ammonium reading.  
Ammonium measurement switched to HACH spectrophotometry with ammonium-N test 
kits.  
 
HACH NH4

+ test kits (P/N TNT831, TNT832) 
HACH COD test kits (P/N TNT822) 
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Lighting Set-up/Radiometry 
 
Equipment/supplies: 
Extension cords 
Timer 
4 48” light fixtures 
8 48” grow bulbs (spec) 
1 48” aquarium light fixture with mixed bulbs (spec) 
Radiometer (spec) 
 

1. Hang fixtures as near as possible to plants; vertically if feasible. 
2. Install bulbs. 
3. Plug fixtures into timer and extension cords as needed. 
4. Using the radiometer, measure the light intensity at a variety of points from the 

bulb surface to the plant leaf surface.  Record.   
5. Adjust fixtures to most closely imitate bright daylight (numbers)? 
6. The equation to calculate light intensity from the radiometer measurement is: 
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Evaporation 
 
Evaporation from the columns was shown to be negligible in comparison to  was 
measured by several methods, including change in mass of a saturated column open to 
air, a capped-column percolation test to measure water flux into air by relative humidity, 
and by change in mass of a material which absorbed the evaporated water.    
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Plant Characterization 
 
P. australis specimens were dug from a local drainage two miles south of Michigan 
Technological University.  Soil was cleaned from the plant roots at the time of 
transplanting to the lab vegetation tank, and again when the plants were installed in the 
wetland columns.  Before being installed in the columns, the reeds were allowed to adjust 
to laboratory atmospheric conditions in either potting soil or Grayling sand with about six 
inches of water covering the soil surface for about eight months.  Individual plants were 
classified according to rootball diameter, rootball length, length of trailing roots (roots 
that had grown farther into the soil and were not part of the rootball mass), height and 
state of green stalks, and number of visible rhizome or stalk buds.  The two plants that 
matched most closely, especially in terms of rootball volume (diameter x length), state of 
green stalks, and number of buds, were chosen for the column experiment.  They were 
planted in the columns and grew for an additional six months while being subjected to 
hydraulic tracer experiments, saturated/deaerated conditions, and Hoagland solution 
(plant nutrient solution) before the main experiment phase.  
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Hoagland Solution 
 
Plant nutrient solution was made according to the following common laboratory recipe 
(Armstrong et al., 1999; Pietrini et al., 2003). 
 
Table A.1. Hoagland solution formula. 
Component   Stock Solution  mL Stock Solution/1L 
2M KNO3       202g/L    2.5 
2M Ca(NO3)2 x 4H2O      472g/L    2.5 
Iron (Sprint 138 iron chelate)     15g/L     1.5 
2M MgSO4 x 7H2O      493g/L    1 
1M NH4NO3       80g/L     1 
Minors:         1 
     H3BO3       2.86g/L 
     MnCl2 x 4H2O           1.81g/L 
     ZnSO4 x 7H2O      0.22g/L 
     CuSO4       0.051g/L 
     H3MoO4 x H2O or      0.09g/L 

Na2MoO4 x 2H2O        0.12g/L      
1M KH2PO4 (pH to 6.0         136g/L     0.5 
 with 3M KOH) 
 
1)  Make up stock solutions and store in separate bottles with appropriate label. 
2)  Add each component to 800mL deionized water then fill to 1L. 
3)  After the solution is mixed, it is ready to water plants. 
4)  Plants were fed 4 liters of fertilizer per column per day. 
 
Armstrong, J., F. Afreen-Zobayed, S. Blyth and W. Armstrong, 1999.  Phragmites 
australis: effects of shoot submergence on seedling growth and survival and radial 
oxygen loss from roots.  Aquatic Botany, Vol. 64, No. 3-4, pp. 275-289. 
 
Pietrini, F., M. A. Iannelli, S. Pasqualini and A. Massacci, 2003.  Interaction of Cadmium 
with Glutathione and Photosynthesis in Developing Leaves and Chloroplasts of 
Phragmites australis (Cav.) Trin. ex Steudel.  Plant Physiology, Vol 133, pp. 829-837. 
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Real Wastewater Characterization 
 
Wastewater was collected from the PLWSA treatment plant primary effluent 
approximately once per week in 40L plastic carbouys.  Unisense and HACH equipment 
were used to measure DO, NH4, NO3, pH, ORP and COD.  Due to spring runoff and 
street treatments (salts, sand) in the combined sewer system, the wastewater was very 
dilute in ammonium with high salt content.  A synthetic wastewater was created as a 
substitute.  However, based on the removal of the low concentrations of ammonium and 
nitrate, it appeared that the real wastewater provided the microbial seed for the column 
experiments. 
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Synthetic Wastewater 
 
Synthetic wastewater was developed to overcome difficulties with a) dilute real 
wastewater due to spring snowmelt in the combined sewer and b) interference with 
ammonium measurements (by ion chromatography) due to other organics in the real 
wastewater.  With synthetic wastewater, a specific set of influent values were set (BOD, 
NH4+, alkalinity, etc) by using a specific recipe.  The goal of the synthetic wastewater 
was to contain constituents and concentrations similar to septic tank effluent or primary 
treated effluent from a wastewater plant.  Wastewater characteristics are shown in Table 
A.2. 
 
Table A.2. Characteristics of actual and synthetic wastewaters. 

Source/ Concentration, 
mg/L BOD5 COD TN NH4+ Citation 

Actual septic tank studies 142 296 42 -- 
Loc. cit. Peeples and Mancl, 
1998 

Actual septic tank studies 138 327 45 31 
Loc. cit. Peeples and Mancl, 
1998 

Actual septic tank studies 181 -- -- 65 
Loc. cit. Peeples and Mancl, 
1998 

Diverted primary effluent 
from wastewater 
treatment plant 75 144 11 -- 

Loc. cit. Peeples and Mancl, 
1998 

Medium strength 
untreated domestic 
wastewater 190 430 40 25 Metcalf and Eddy, 2003 
Residencial effluent, 50 
gal/capita-day 450 1050 70.3 41.2 

Crites and Tchobanoglous, 
1998 

Synthetic wastewater -- 700 114 0.12 Pell and Nyberg, 1989 

Synthetic wastewater 161 -- -- 25 Peeples and Mancl, 1998 

Synthetic wastewater -- 401.1 -- 41.3 Yoo et al., 1999 

Synthetic wastewater -- 226.2 -- 41.3 Yoo et al., 1999 

Synthetic wastewater -- 385 31.6 21.6 Rodgers et al., 2006 
 
Pell and Nyberg (1989) used a synthetic wastewater with similar waste concentrations as 
real wastewater, made from sodium bicarbonate, casein hydrolysate (digested milk 
solids), meat extract, urea, sodium chloride, calcium chloride and magnesium sulfate.  In 
a following study (Pell and Ljunggren, 1996), they replaced the casein hydrolysate with 
Tryptone which breaks down more easily in a wastewater treatment system (better 
reflecting COD removal).  Peeples and Mancl (1998) diluted primary sludge 1:68, to 
meet constituent targets. 
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Kuai and Verstraete (1998) created a synthetic wastewater containing ammonium sulfate, 
potassium phosphate, sodium bicarbonate, and trace elements (EDTA, zinc sulfate, cobalt 
chloride, manganese chloride, copper sulfate, ammonium molybdate, calcium chlorides 
and  ferric sulfate).  The emphasis on that study was to feed autotrophic nitrifier-
denitrifier populations specifically with a high-nitrogen feed (1000 mg/L ammonium-N), 
therefore the synthetic recipe was enhanced for those populations.  Yoo et al. (1999) 
developed two synthetic wastewaters to compare the effects of COD/NH4+ and 
COD/phosphate ratios.  Their recipes contained sodium acetate in one influent, and 
ammonium acetate, potassium phosphate, sodium bicarbonate, calcium chloride, ferric 
chloride, manganese sulfate, zinc sulfate, magnesium sulfate, and yeast extract.  The goal 
of the study was to enhance simultaneous nitrification-denitrification via nitrite, so the 
recipes were developed to feed specific microbes. 
 
Fontenot et al. (2006) used a synthetic wastewater made of dextrose, glutamic acid, 
sodium-EDTA, ferrous chloride, copper sulfate, zinc sulfate, cobalt chloride, manganese 
chlorides, sodium molybdate, sodium phosphate and ammonium chloride.  The 
wastewater was injected into the bottom of pilot scale upwelling marsh tanks in order to 
measure the influence of marsh vegetation on nitrification in the rhizosphere, in an 
investigation of on-site wastewater treatment in coastal areas.  The recipe was developed 
to reflect domestic sewage constituents.  Rodgers et al. (2006) investigated carbon and 
nitrogen removal from a synthetic domestic-strength wastewater in horizontal flow 
biofilm systems.  The composition of the wastewater was glucose, yeast, dried milk, urea, 
ammonium chloride, sodium phosphate, potassium bicarbonate, sodium bicarbonate, 
magnesium sulfate, ferric sulfate, manganese sulfate, and calcium chloride.  The COD, 
total and ammonia nitrogen characteristics of Rodgers et al. are shown in Table X.  
 
Common among all the synthetic wastewater recipes cited are constituents which provide 
BOD, COD, conductivity, ammonium-N and alkalinity similar to domestic sewage or 
primary treated effluent.  Glucose, dextrose, yeast, dried milk, tryptone and casein 
hydrolysate provide the BOD and COD.  Urea or ammonium compounds provide organic 
and ammonia nitrogen.  Bicarbonate compounds provide the alkalinity, and ions of salts 
provide the conductivity.  As well, ions and trace elements may be important for biomass 
or plant growth in certain systems such as constructed wetlands.  The following recipe 
was developed for this study, adapted from Pell and Nyberg (1989).  Adaptations were to 
use tryptone rather than casein hydrolysate (better simulating BOD) and ammonium 
chloride rather than urea.  Because the goal of this study is to measure nitrification and 
denitrification, it was preferable to start with ammonium-N rather than organic nitrogen 
which needed unavailable microbes to be reduced to ammonium-N.  A stock solution was 
mixed and diluted as follows. 
 
1.7 g Tryptone (Oxoid) 
0.9 g meat extract (Lab Lemco Powder, Oxoid) 
3.82 g ammonium chloride 
1.05 g sodium chloride 
0.53 g calcium chloride 
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0.35 g magnesium sulfate 
26.25 g sodium bicarbonate 
1 L water 
 
Dilute to 40 L with water.  The final solution should contain: 
161 mg/L BOD 
20 mg/L ammonium-nitrogen 
365 mg/L alkalinity (calcium carbonate) 
1100 umho/cm conductivity 
59 mg/L sodium ion 
 
References: 
Crites, R., and G. Tchobanoglous, 1998.  Small and decentralized wastewater 
management systems.  
 
Fontenot, J., Boldor, D., and K. Rusch, 2006.  Nitrogen removal from domestic 
wastewater using the marshland upwelling system.  Ecological Engineering, Vol. 27, pp 
22-36. 
 
Kuai, L., and W. Verstraete, 1998.  Ammonium removal by the oxygen-limited 
autotrophic nitrification-denitrification system.  Applied and Environmental 
Microbiology, Vol. 64, No. 11, pp. 4500-4506. 
 
Metcalf and Eddy, Inc., 2003.  Wastewater Engineering Treatment and Reuse, 4th 
Edition.  McGraw-Hill, New York, NY. 
 
Peeples, J. and K. Mancl, 1998. Laboratory scale septic tanks.  Ohio Journal of Science, 
Vol. 98, No. 4/5, pp. 75-79. 
 
Pell, M.l and H. Ljunggren, 1996. Composition of the bacterial population in sand-filter 
columns receiving artificial wastewater, evaluated by soft independent modeling of class 
analogy (SIMCA).  Water  Research, Vol. 30, No. 10, pp. 2479-2487. 
 
Pell, M. and F. Nyberg, 1989.  Infiltration of Wastewater in a Newly Started Pilot Sand-
Filter System: I. Reduction of Organic Matter and Phosphorus.  J. Environmental Quality, 
Vol. 18, pp. 451-457. 
 
Rodgers, M., Lambe, A., and L. Xiao, 2006.  Carbon and nitrogen removal using a novel 
horizontal flow biofilm system.  Process Biochemistry, Vol. 41, pp. 2270-2275. 
 
Yoo, H., Ahn, K., Lee, H., Lee, K., Kwak, Y., and K. Song, 1999.  Nitrogen removal 
from synthetic wastewater by simultaneous nitrification and denitrification (SND) via 
nitrite in an intermittently-aerated reactor.  Water Research, Vol. 33, No. 1, pp. 145-154. 
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Flowrate 
 
Measure influent flowrate daily by redirecting influent tube into a graduated cylinder 
during one pump cycle.  The volume collected divided by the 30s flow period is the 
flowrate.   
 
Measure effluent flowrate by taring an empty beaker, filling from effluent tubing over a 
recorded time (5 minutes was used) and weighing the filled beaker.  The fluid mass 
divided by the flow period is the flow rate.  (The time for this should have been 30 
minutes to compare to 1 full on-off pump cycle; however, evaporation and transpiration 
were assumed to be negligible and during the downflow phase, outflow was similar to 
inflow.  Outflow and inflow were measured regularly during the downflow phase and 
assumed not to differ significantly for the upflow and in-series phases of the experiment). 
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LI-COR 
 
The LI-6400 (LI-COR) was used to measure the column photosynthesis and transpiration 
rates for the two planted columns as well as one plant not loaded with wastewater.  The 
LI-6400 is an open system that measures photosynthesis and transpiration by the 
differences in CO2 and H2O in the airstream that flows through the leaf chamber.  The 
differences in concentration are measured by infa-red gas analyzers (IRGA’s).   The 
experiment was conducted such that the chamber conditions were programmed to 
resemble room conditions of the plants for CO2 and H2O concentrations, and light energy. 
 
The light energy, quantum flux, was kept constant at 35 μmol/m2/sec.  The light energy 
was kept constant in order to limit variation in chamber conditions from plant to plant, 
and day to day.  The quantum flux around the plants ranged from 20-70 μmol/m2/sec.  
The impact on photosynthetic rate due transferring the plants within the range of light 
energy around the columns was thought to be negligible.  The CO2 concentrations were 
kept constant at 400 μmol/mol, which closely matched the ambient air concentration.   
The H2O concentration within the incoming air was controlled and held constant by the 
air flow setting of the LI-6400 pump.  The air flow setting was kept constant at 500 
μmol/sec, and the room H2O concentrations averaged roughly 14 μmol/mol. 
 
To measure the photosynthetic and transpiration rates, four leaves were sampled from 
each column.  Sampling during the first week was done every day.  After the first week 
plant sampling was done twice a week.  The leaves sampled were sampled in succession 
from only one stalk in the given column.  The values were then averaged to represent the 
column photosynthetic and transpiration rates for the day of sampling. 
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LI-COR Standard Operating Procedure 

Attach Sensor Head → Cable Assembly → Console 

Cable connection to Sensor Head 

Connect chamber connector.  The cord is labeled “Chamber Head”. 

Connect Air Tubes.  Match tubes with and without black tape markings.  
The tubes marked with black tape are for the sample, and the ones without 
are for the reference. 

Connect round IRGA connector.  Be sure the red dots matchup before 
pushing.  Push connector until there is a “click” to indicate the connection 
is secure. 

Cable Connection to Console 

Connect square IRGA and Chamber connectors.  The IRGA cable is 
labeled “LI-6400 Head”. 

Connect sample and reference air tubes.  The sample tube is indicated by 
black tape. 

IRGA Calibrations 

Zeroing 

If conditions (temperature, mostly) haven’t changed a great deal since the 
last time you zeroed the IRGA’s, it won’t need adjusting.  If the chemicals 
are not fresh you may do more harm than good. 

See Section 18 in the manual for more information. 

Spanning 

If you don’t have a good standard for spanning it is best to leave this 
setting as it is. (See section 18 in the manual for more information) 

Preparations Checklist (Section 4-3) 

Replace CO2 cartridge, and batteries if needed 

Turn the LI-6400 on 

Will take about 10 seconds as the screen shows “initializing” 

Configuration 

Select “2x3 LED”, and press enter 

Select the New Measurements Menu at the bottom of the screen 

Check the Temperature 

Check the block, air, and leaf temperatures (found in line “h”).  Verify that 
they are reporting reasonable values and are within a few degrees of 
eachother 
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Check the Light Source and the Sensors 

The light sensors are reported in line “g” as ParIn_μm and ParOut_μm.  
When the Sensor on the outside (ParOut_μm) is covered, it should drop to 
zero. 

Check the Pressure Sensor 

This is reported in line “g” as Prss_kPa.  It should show a reasonable value 
(98 kPa). 

Check the Leaf Fan 

Turn the leaf fan on and off (level 3 of the controls).  Listen for changes in 
sound as the motor starts and stops.  If there is no change in sound see 
chapter 20 

Leave the Fan On when finished 

Is Flow Control Ok? 

The Flow Control key is on level two of the control keys.  Set the flow to 
1000 μmol/sec watch to determine the actual maximum flow (usually 
around 700). 

Set flow back to 500 μmol/sec 

If the IRGA’s have been on for 10 minutes move to next step, otherwise 
wait for them to finish warming-up 

Check the Flow zero 

Turn off the pump (level 2 of controls) and the chamber fan (level 3 of the 
controls).  The flow should drop to within 1-2 μmol/sec.  If it doesn’t, re-
zero the flow meter (see page 18-7 of the manual) 

Turn the fan back on when done 

Adjust the Latch and Close the Chamber 

Adjust the latch so that the chamber lips are slightly apart when the 
chamber is closed. 

With the chamber closed, close the adjustment knob until it becomes snug 

Open the chamber, and turn the knob one or two more half turns.  Now the 
chamber is adjusted properly for sealing when empty, or with thin leaves. 

Close the chamber for the next two steps 

Check the CO2 IRGA Zero 

With the Mixer off, and the flow set to 500 μmol/sec, monitor the C02 
reference and sample (shown on display line “a”). 

Turn the soda lime on full scrub, and the desiccant on full bypass. 
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The reference should approach zero quickly, while the sample will 
approach zero a bit more slowly.  If they are within 5μmol/mol of zero it 
will be adequate. 

If the CO2 does not reach the values above, and the IRGA”s are properly 
calibrated, it may be time to replace the chemicals 

Check the H2O zero 

Turn the desiccant tube to full scrub and watch the sample and reference 
H2O. 

After about one minute the reference should be down to 0.2-0.3 μmol/mol 
and falling slowly.  The sample may still be higher.  This is good enough.  

If it is negative and falling after only a minute, re-zeroing may be needed 
(see section 18). 

Mixer Calibration 

In the calibration menu, select “_CO2 Mixer – Calibrate”.  When asked if 
OK to continue, press “Y”. 

Let the program run as it tests a range of values. 

The upper limit should be at least 2000 ppm.  If not, something may be 
wrong.  If not greater than 2000 ppm, see page 18-21.  Otherwise, press 
“Y” and complete the calibration 

Lamp Calibration 

Make sure the chamber is closed 

This process is automated.  Simply select the “Light Source Calibration” 
entry in the Calibration Menu. 

Select “Y” to continue.  The system will run the calibration and at the end 
give the option to plot the curve.  To implement the calibration, select “Y” 
when asked “Implement the cal?”. 

Check the Tleaf Zero 

Unplug the leaf temperature Thermocouple (it’s purple colored on the 
sensor head).  Compare the leaf and block temperatures.  If they differ by 
more than 0.1°, adjust the leaf temperature zero (see page 18-19). 

Reconnect the thermocouple, and verify that the “Tleaf_°C” responds 
when the thermocouple in the chamber is warmed by touching it. 

Set Desired Reference Values for CO2 and H2O 

Set the soda lime to full scrub, and set the reference concentration to 
400μmol/mol 

Set the desiccant at mid-range (between scrub and bypass) 

Check for Leaks 
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Set the flow rate to 200 μmol/sec.  

With the chamber closed and empty, exhale around the chamber gaskets 
and look for any fluctuations in the sample cell CO2 concentrations.  If 
there are no leaks, the value should not increase by more than 
1μmol/mole. 

If warning messages appear see page 4-36 for possible solutions. 

Taking Measurements for Phragmites Planted in Vertical Treatment Wetlands in DOW 
423. 

Set the flow rate to 500 μmol/sec. 

Set the CO2 mixer to 400 μmol/sec 

It may take the mixer a few minutes to stabilize depending on the 
cartridge.  Watch for the stability reading to show “3/3”. 

Match the IRGA’s 

Select “MATCH” from level 1 of the controls.  Make sure chamber is 
closed.  And readings should be stable. 

If given no warning messages, select “MATCH IRGAs”. 

Open File and name accordingly 

Naming system previously used: YYYY-MM-DD  Name of Column (ie 
blue, red, or white) 

There will be one file per column 

 For each column there will be four (4) measurements 

Turn Lamp On 

Set quantum flux to 35 μmol/m2/sec.  

Measurements 

Choose a stalk that has at minimum 4 decent sized leaves.  Typically they 
should be around 1cm wide, and at least 5-6 cm long (they must be able to 
cross the 3cm chamber.  All 4 measurements for the column will be from 
the stalk selected 

Choose the first leaf, and measure the width.  Multiply that width times 3.  
This will provide the leaf area that will be enclosed in the chamber.   

 In Line 3 of the controls, enter the area measured. 

Clamp into the leaf, making sure the leaf is flat and straight in the 
chamber. 

Hold chamber as still as possible, and wait for the readings to stabilize.  
Once stabilized, press the “log” button (either on the chamber or the 
keypad).  Now the first measurement is done! ☺ 
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Repeat steps 2-5 for the next 3 leafs on the column. 

Close file and open new one for next column. 

Repeat step “F” for all three columns. 

Special Considerations 

 Pay special attention to the reference CO2 reading while sampling as the 
cartridges can be variable and sudden changes may occur.  If this happens 
wait a few minutes.  If it does not re-stabilize, a new cartridge will need to 
put on and the machine will have to be recalibrated. 

When moving from column to column (particularly when putting the 
console on the ladder) make sure the chamber and the reference are still 
matched.  Changes in pressure may create the need to re-match the 
electrodes.  This will need to be done as often as needed.  A Match that is 
within 0-0.4 μmole is reasonable as long as it is stable. 
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Mass balance calculations 
 

Variables: 

Flowrate (L/d) 

Influent concentration (NH4
+-N, NO3

--N) (mg/L) 

Effluent concentration (NH4
+-N, NO3

--N) (mg/L) 

Time difference from sample to sample (days) 

 

 

 

C (mg) = ∑ [ (Ct-1 + Ct )/2  dt]  x  Qav   (for NH4
+-Ni, NH4

+-No, NO3
--Ni, NO3

--No) 

 

 

NH4 removal  = (NH4
+-Ni – NH4

+-No)/ NH4
+-Ni  

NO3Nitrification   = (NH4
+-Ni – NH4

+-No) 

Denitrification  = NO3
--Ni + NO3nitrification – NO3

--No  

= NO3
--Ni – NO3

--No + NH4
+-Ni  – NH4

+-No 

NO3 removal   = Denitrification / (NO3
--Ni + NO3nitrification)  

= (NO3
--Ni  – NO3

--No  + NH4
+-Ni  – NH4

+-No) 

(NH4
+-Ni  – NH4

+-No + NO3
--Ni) 

 

TN removal   = (NO3
--Ni  – NO3

--No + NH4
+-Ni  – NH4

+-No) 

 (NH4
+-Ni   + NO3

--Ni) 
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Error propagation calculations 
 
 

Variables: 

Error (standard deviation) of flowrate (SQ), concentrations (Sc) 

 

Flowrate variance = SQ
2 

Concentration variance = Sc
2 

 

Error in C = ∑ [ (Ct-1 + Ct )/2  dt]  x  Qav   (from mass balance calculations) 

= S2  

= (C2 SQ
2 + Q2 Sc

2)^(1/2)  (from Meyer , 1975) 

 

∑ S2      (for NH4
+-Ni, NH4

+-No, NO3
--Ni, NO3

--No) 

 

Error in NH4 removal = (∑ S2
(NH4+-No) ) / NH4

+-Ni 

Error in NO3 removal = (∑ S2
(NO3--No) ) / (NH4

+-Ni  – NH4
+-No + NO3

--Ni) 

Error in TN removal  

= ((∑ S2
(NH4+-Ni) )+ (∑ S2

(NH4+-No) ) +(∑ S2
(NO3--Ni) ) +(∑ S2

(NO3--No) ))  

(NH4
+-Ni   + NO3

--Ni) 

 

 

 

Meyer, S.L., 1975.  Data analysis for scientists and engineers.  John Wiley & Sons, Inc., 

USA. 
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Photosynthetic nitrogen uptake calculations 
 
Nuptake = photosynthetic C uptake per area x leaf area / (C/N)  
Average photosynthesis = 1.5 µmol CO2/m2/sec 
Leaf area = 0.42 m2 
C/N ratio for P. australis = 17 g C/g N 
 
Nuptake = 0.03 g N/d 
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ORP data 
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Figure A.3 ORP profile data for a) downflow and b) upflow phases. 
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Figure A.4 ORP statistical data.  Only for downflow and upflow phases. 
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pH data 
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Figure A.5 pH data over entire experiment. 
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Figure A.6 pH statistical data. 
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Soils data 
 
Table A.3 Soil pH, organic content and nitrate content before and after experiment. 
Soil Results

 
Sample I.D. pH Organic Matter   Nitrate-N

 % ppm

Control G1 5.0 0.7 0.5 Sieved and dried Grayling sand
Control G2 4.9 0.8 0.6 Sieved and dried Grayling sand
Control G3 4.9 0.7 0.6 Sieved and dried Grayling sand
Sn Waste R1 7.2 0.5 4.3 Column RE (planted) surface
Sn Waste R3 7.2 0.6 3.1 Column RE (planted) 20-30 cm
Sn Waste R5 7.1 0.6 14.3 Column RE (planted) 45-55 cm, bottom of column
Sn Waste B1 7.5 0.5 1.4 Column BE (planted) surface
Sn Waste B3 7.2 0.5 3.4 Column BE (planted) 20-30 cm
Sn Waste B5 7.5 0.6 19.3 Column BE (planted) 45-55 cm, bottom of column
Sn Waste Y1 7.4 0.3 3.0 Column YE (unplanted) surface
Sn Waste Y3 7.3 0.6 1.6 Column YE (unplanted) 20-30 cm
Sn Waste Y5 7.2 0.5 5.4 Column YE (unplanted) 45-55 cm, bottom of column
Syn Wast T1 7.2 0.6 2.6 Column TE (unplanted) surface
Syn Wast T3 7.2 0.6 7.5 Column TE (unplanted) 20-30 cm
Syn Wast T5 6.8 0.7 22.2 Column TE (unplanted) 45-55 cm, bottom of column
Control mean 4.9 0.7 0.6
Control stdev 0.1 0.1 0.1
Sample mean 7.2 0.6 7.3 Average nitrate increase, 7.3 - 0.6 = 6.7 ppm
Sample stdev 0.2 0.1 7.2

Column dry soil mass (g) Column nitrogen increase (soil mass x average nitrate increase) (g)
RE 12278.4 83.2
BE 12729.9 86.2
YE 16443 111.4
TE 16443 111.4
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LCA design calculations 
 

Design Calculations for Septic System
all calculations taken from Crites and Tchobanoglous (p 321), 1998

Total Volume
(use 5 yr pump out interval)

V=volume (ft3)
Qave=average daily flow (gpd)
PF=peaking factor

Tank Layout

*use two tanks for redundancy
*tanks use a shared wall
*include a longitudinal baffle in each tank
*baffle will help treat scum and add structural integrity
*use L:W ratio of 3:1

Total Volume 328.5 m3

Each tank 164.2 m3

depth 15 m 
length 8.0 m
width 4.1 m

tank footprin 32.8 m2

total footprin 65.6 m2

Concrete
(assume 9" thickness all sides)

(assume density is 65.13 kg/ft3)

Volume 40 m3

Mass 92554 kg

Rebar
(use #4 bar)
(assume linear mass is 0.303 kg/ft)
(assume two layers of rebar per side laid perpendicular)

Length 107 m
Mass 107 kg

3 3
3

3.65(15,850 )(1.5)3.65( )( ) 11601.4 328.5
7.48 /ave

gpdV Q PF ft m
gal ft

= = = =
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Pipe
(assume 2 inlets and outlets for each tank)
(assume linear mass is 63.96 kg/100 ft for 3" PVC)

Inlets 12 ft
Outlets 12 ft
To pumps 55 ft
Total 79 ft

Mass 51 kg

Pumps
Use 2 pumps for redundancy
Pump cost = $500 (arbitrary value)

Excavation
Sub-grade 20 cm
Tank depth 5.4 m 
Tank length 8.4 m
Tank width 8.6 m
Cut ratio 4:1

Volume 1560 m3

Gravel
Amount of backfill gravel

(assume gravel is 1682 kg/m3)

Volume 1170 m3

Mass 1968424 kg  



 A-35

Design Calculations for VFCW
all calculations taken from Brix and Arias, 2005

Step 1
Determine area require for N removal

Area

A = surface area
p.e. = person equivalents

Step 2
Determine depth

d = depth

Dimensions
Length 40 m
Width 32 m
Depth 1.6 m

Surface Area 1280 m2

Liner

(assume liner is 0.0684 kg/ft2)

Aliner 1779 m2

Mass 2620 kg

Pipe
(assume linear mass is 30.84 kg/100 ft for 2" PVC)

Inlet 1344 m
Outlet 695.2 m
Total 2039.2 m
Mass 973 kg

Sand & Gravel

(assume sand is 1602 kg/m3)

(assume gravel is 1682 kg/m3)

Sand

1.0 m in wetl 1280 m3

Mass 2050560 kg

Sand - Restoration Fill

1.4 m in wetl 1792 m3

Mass 2870784 kg

Gravel

0.2 m in wetl 256 m3

Mass 430592 kg

Wood Chips

0.2 m in wetl 256 m3

Mass 97280 kg

2 23.2 / . . 400 . . 1280A m p e p e m= × =

0.2 ( ) 1.0 ( ) 0.2 ( )
1.4
0.2 ( ) 1.6

d m gravel m sand m woodchips
d m
d m embankment m

= + +
=
+ =
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Design Calculations for HFCW
all calculations taken from Fuchs, 2009

Step 1
Determine area require for N removal

(Temperature of 10oC used to account for cold weather)

Area

Q = flowrate, L/d
kt = rate constant
Ci = influent nitrogen concentration
C* = background nitrogen concentration
Ce = effluent nitrogen concentration

Step 2
Determine cross-sectional area

Ac = cross-sectional area
Q = flowrate
k = hydraulic conductivity, 1000 m/d
s = slope, 0.005 m/m

Step 3
Determine length and width

Length:Width = 0.5

Step 4
Determine depth

d = depth
Ac = cross sectional area
W = width

Step 5
Check head loss to ensure flow

hL = headloss, m
s = slope, m/m

*
2

*

0.0365 0.0364(60, 999 / ) 86.6 1.5ln ln 5049
117 5 1.5

i

t e

C CQ L dA m
k C C

⎛ ⎞− −⎛ ⎞= × = × =⎜ ⎟ ⎜ ⎟− −⎝ ⎠⎝ ⎠

260,000 / 120
(0.1) 1000(0.1)(0.005)c

Q L dA m
k s

= = =

2

1/ 22

( ) (0.5 ) 0.5

5049 100.5
0.5

50.2

A W L W W W

mW m

L m

= = =

⎛ ⎞
= =⎜ ⎟
⎝ ⎠

=

2120 1.2
100.5

0.2 ( ) 1.4

cA md m
W m

d m freeboard m

= = =

+ =

0.005(50.2 ) 0.25
?

0.25 1.4

L

L

h sL m
h d

OK

= = =
<
<
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Life cycle inventories 
 
Assumptions: All transport distances are 20km.  Household tap water determined to be 
outside the scope of the LCA.  Plant carbon and nutrient uptake excluded.   
 
Table A.4 Septic tank material inventory 
CW Septic Tank materials and 
Pumps and compressors 500 USD 1 pumps, $500 each
PVC pipe A 51 kg 79 ft, 63.96 kg/ft, 3" PVC Schedule 40
Concrete, normal, at plant/CH S 71.168 m3 20cm thickness sides, top, and bottom

Steel ETH S 106.6 kg 2 layers on sides, top, and bottom, laid perpendicular, 
#4 rebar, 0.303 kg/ft, 29358 ft

Gravel from pit ETH S 1968424.4 kg tank subgrade & wall backfill, 

Excavation hydraulic digger S 1560 m3 depth of tank plus 6" under, and 4:1 cut away from tank

Transport, lorry 40t/CH S 41222715.6 kgkm transport of concrete, rebar, gravel, pipe 20 km distance
 

 
Table A.5 Vertical Flow Constructed Wetland life cycle material and process inventory. 
VFCW Life Cycle
Use phase processes
Transport, lorry 40t/CH S 328500000 kgkm septage hauling 1 per year
Electricity from coal B250 500 kWh one pump operating
Mowing, by motor mower/CH S 6.4 ha mowing wetland, 50 time over 50 years
Domestic wastewater treated in 1095000000 l treatment of 60000 lpd for 50 years

Cluster VFCW Materials and 
Wheat straw organic, at farm/CH S 0 kg based on Fuchs
LDPE B250 1302.3 kg 1779.2 m2 liner, .0684 kg/ft2
PVC pipe A 939.4 kg 1975.2 m, 2" PVC Schedule 40, 14.5 kg/100 ft

Sand ETH S 4921344 kg 1602 kg/m3, 1408 m3 under liner, and in wetland, 1664 m3 
restoration

Gravel from pit ETH S 430592 kg 1682 kg/m3, 256 m3
Wood chips, hardwood, from 
industry, u=40%, at plant/RER S 256 m3 20 cm insulative cover, 380 kg/m3

Transport, lorry 40t/CH S 98268160 kgkm excavated soil, sand/ gravel/ wood for construction, 20 
km

Transport, lorry 16t/CH S 44834 kgkm liner, pipe, plants, 20 km
Excavation hydraulic digger S 1664 m3 excavation of wetland at construction
Excavation skid steer loader S 1664 m3 fill of wetland at construction

VFCW System Assembly
CW Septic Tank 1 p 1 Septic tank
Cluster VFCW 1 p 1 VFCW

VFCW System Disposal Processes 
and Waste scenario
Excavation hydraulic digger S 1664 m3 dig up old sand and gravel
Excavation skid steer loader S 1664 m3 restore wetland with new fill sand
Transport, lorry 40t/CH S 109029154 kgkm sand, gravel, pipe, liner from wetland; sand to restore
Landfill B250 (98) 100 %  
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Table A.6 Horizontal Flow Constructed Wetland life cycle material and process 
inventory. 
HFCW Life Cycle
Use phase processes
Transport, lorry 40t/CH S 328500000 kgkm septage hauling 1 per year
Electricity from coal B250 500 kWh one pump operating
Mowing, by motor mower/CH S 25.245 ha mowing wetland, 50 time over 50 years
Domestic wastewater treated in 1095000000 l treatment of 60000 lpd for 50 years

Cluster HFCW materials and 
Wheat straw organic, at farm/CH S 0 kg based on Fuchs
LDPE B250 4286.1 kg 5823.6 m2 liner
PVC pipe A 223.5 kg 855 ft, 2" PVC Schedule 40, 30.84 kg/100 ft
Sand ETH S 11382370.4 kg 1602 kg/m3, 10cm under wetland, 1.1m restoration
Gravel from pit ETH S 11101536.4 kg 1682 kg/m3, 1.3m in wetland

Transport, lorry 40t/CH S 407172848 kgkm excavated soil, sand/ gravel for construction and 
restoration, 20 km

Transport, lorry 16t/CH S 90193 kgkm liner, pipe, plants, 20 km
Excavation hydraulic digger S 6600 m3 excavation of wetland at construction
Excavation skid steer loader S 6600 m3 fill of wetland at construction

HFCW System Assembly
CW Septic Tank 1 p
Cluster HFCW 1 p

HFCW System Disposal
Excavation hydraulic digger S 6600 m3 dig up old sand and gravel
Excavation skid steer loader S 6600 m3 restore wetland with new fill sand
Transport, lorry 40t/CH S 2353005001 kgkm sand, gravel, pipe, liner from wetland; sand to restore
Landfill B250 (98) 100 %  
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Nitrogen data references (full references listed in reference section of Chapter 2) 
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NAWE R&D, 2006
Schonerklee et al.,1997
0% removal
50% removal
90% removal
Gross et al, 2007, Ecol Eng
Gross et al, 2007, Chemosphere
Sun and Austin, 2007, Chemosphere
Panuvatvanich et al, 2009, Water Research
Langergraber et al, 2008, Vymazal (ed)
Meuleman et al, 2003, Ecol Eng
Torrens et al, 2009, Water Research
Brix and Arias, 2005, Ecol Eng
Cooper, 2001, J CIWEM
Fuchs, 2009
Sun et al., 1998
Lee and Scholz, 2007, Ecol Eng

Evidence that sometimes the 
non-first wetland in a series will 
"produce" ammonium

 
Figure A.7 References for Figure 2.2a. 
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Figure A.8 References for Figure 2.2b. 
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Figure A.9 References for Figure 2.2c. 
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Figure A.10 References for Figure 2.2d. 
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ANOVA data and tables  
 
Table A.7 Ammonium data for downflow experiment phase, proportion of effluent to 
influent for each column, RE, BE, YE, TE.  Planted (PL) data is the aggregation of RE 
and BE, and unplanted (UP) data is the aggregation of YE and TE.  14 samples for RE 
and BE; 10 samples for YE and TE. 

RE/BK BE/BK YE/BK TE/BK PL AV UP AV 
0.210526 0.210526 0.498947 0.427368 0.210526 0.498947 
0.242718 0.242718 0.291262 0.371359 0.242718 0.291262 

0.15361 0.15361 0.30722 0.30722 0.15361 0.30722 
0.5 0.5 1 1 0.5 1 

0.724638 0.724638 1.449275 1.449275 0.724638 1.449275 

0.5 0.5 1 1 0.5 1 
0.5 0.5 1 1 0.5 1 

0.5 0.5 1 1 0.5 1 

0.05 0.05 0.1 0.1 0.05 0.1 
0.05 0.05 0.1 0.1 0.05 0.1 

0.030303 0.030303 0.030303
0.023041 0.023041 0.023041

0.023641 0.023641 0.023641

0.023641 0.023641 0.023641
0.210526 0.427368 

0.242718 0.371359 
0.15361 0.30722 

0.5 1 
0.724638 1.449275 

0.5 1 
0.5 1 
0.5 1 

0.05 0.1 
0.05 0.1 

0.030303
0.023041
0.023641
0.023641
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Table A.8  ANOVA Single-Factor for RE:BE, ammonium downflow. 
SUMMARY 

Groups  Count  Sum  Average  Variance

Column 1  14  3.532118 0.252294 0.059105

Column 2  14  3.532118 0.252294 0.059105

ANOVA 

Source of Variation  SS  df  MS  F  P‐value  F crit 

Between Groups  6.66E‐16  1 6.66E‐16 1.13E‐14 1 2.909132 
Within Groups  1.536727  26 0.059105

Total  1.536727  27    Fratio  3.87E‐15   
 
 
Table A.9  ANOVA Single-Factor for YE:TE, ammonium downflow. 
SUMMARY 

Groups  Count  Sum  Average  Variance
Column 1  10  6.746705 0.67467 0.221863

Column 2  10  6.755223 0.675522 0.219115

ANOVA 

Source of Variation  SS  df  MS  F  P‐value  F crit 

Between Groups  3.63E‐06  1 3.63E‐06 1.65E‐05 0.996808 4.413873 

Within Groups  3.968794  18 0.220489

Total  3.968798  19            
 
 
Table A.10  ANOVA Single-Factor for PL:UP, ammonium downflow. 
SUMMARY 

Groups  Count  Sum  Average  Variance
Column 1  28  7.064236 0.252294 0.056916

Column 2  20  13.50193 0.675096 0.208884

ANOVA 

Source of Variation  SS  df  MS  F  P‐value  F crit 

Between Groups  2.085553  1 2.085553 17.42531 0.000131 4.051749 
Within Groups  5.505525  46 0.119685

Total  7.591078  47            
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Table A.11 Ammonium data for upflow experiment phase, proportion of effluent to 
influent for each column, RE, BE, YE, TE.  Planted (PL) data is the aggregation of RE 
and BE, and unplanted (UP) data is the aggregation of YE and TE.  8-9 samples for RE 
and BE; 8 samples for YE and TE. 
 
RE/BK  BE/BK  YE/BK  TE/BK  PL AV  UP AV 

0.050251  0.050251  0.050251

0.15  0.24181  0.413793 0.086207 0.15 0.413793

0.37644  0.438743  0.509948 0.317801 0.37644 0.509948

0.598958  0.269792  0.53125 0.619792 0.598958 0.53125
0.538813  0.461187  0.538813

0.872038 0.853081 0.872038

0.57377  0.68306  1.071038 0.896175 0.57377 1.071038

0.487805  0.882927 0.921951 0.882927

0.555556  0.621212  0.5 0.878788 0.555556 0.5
0.477064  0.349083  0.091743 0.091743 0.477064 0.091743

0.050251

0.24181 0.086207
0.438743 0.317801

0.269792 0.619792

0.461187
0.853081

0.68306 0.896175
0.487805 0.921951

0.621212 0.878788

0.349083 0.091743
7.61 2
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Table A.12  ANOVA Single-Factor for RE:BE, ammonium upflow. 
SUMMARY 

Groups  Count  Sum  Average  Variance

Column 1  8  3.320852 0.415107 0.043249

Column 2  9  3.602944 0.400327 0.038613

ANOVA 

Source of Variation  SS  df  MS  F  P‐value  F crit 

Between Groups  0.000925  1 0.000925 0.022688 0.882279 3.073185 
Within Groups  0.611646  15 0.040776

Total  0.612571  16    Fratio  0.007383   
 
 
Table A.13  ANOVA Single-Factor for YE:TE, ammonium upflow. 
SUMMARY 

Groups  Count  Sum  Average  Variance

Column 1  8  4.872737 0.609092 0.098729

Column 2  8  4.665537 0.583192 0.133317

ANOVA 

Source of Variation  SS  df  MS  F  P‐value  F crit 
Between Groups  0.002683  1 0.002683 0.023127 0.881298 3.102213 

Within Groups  1.624323  14 0.116023

Total  1.627006  15    Fratio  0.007455   
 
 
Table A.14 ANOVA Single-Factor for PL:UP, ammonium upflow. 
SUMMARY 

Groups  Count  Sum  Average  Variance

Column 1  18  14.5338 0.807433 2.918208

Column 2  17  11.53827 0.678722 0.217618

ANOVA 

Source of Variation  SS  df  MS  F  P‐value  F crit 

Between Groups  0.144839  1 0.144839 0.090027 0.766024 2.864083 
Within Groups  53.09143  33 1.608831

Total  53.23627  34    Fratio  0.031433   
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Table A.15 Ammonium data for in-series experiment phase, proportion of effluent to 
influent for each column, RE, BE, YE, TE.  Planted (PL) data is the aggregation of RE 
and BE, and unplanted (UP) data is the aggregation of YE and TE.  7 samples for RE and 
BE; 7 samples for YE and TE. 
 
RE/BK  BE/BK  YE/BK  TE/BK  PL AV  UP AV 
0.188034  0.203419  0 0.897436 0.188034 0

0  0.715789  1.168421 0 0 1.168421

0.056915  0.053191  0.744681 0.122872 0.056915 0.744681

0.050761  0.050761  0.101523 0.654822 0.050761 0.101523

0.060976  0.50061  0.588415 0.121951 0.060976 0.588415
0.040323  0.040323  0.281855 0.080645 0.040323 0.281855

0.06135  0.06135  0.363804 0.122699 0.06135 0.363804

0.203419 0.897436

0.715789 0

0.053191 0.122872
0.050761 0.654822

0.50061 0.121951

0.040323 0.080645
0.06135 0.122699
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Table A.16  ANOVA Single-Factor for RE:BE, ammonium in-series. 
SUMMARY 

Groups  Count  Sum  Average  Variance

Column 1  7  0.458358 0.06548 0.003378

Column 2  7  1.625443 0.232206 0.07295

ANOVA 

Source of Variation  SS  df  MS  F  P‐value  F crit 

Between Groups  0.097292  1 0.097292 2.549305 0.136326 3.176549 

Within Groups  0.457969  12 0.038164

Total  0.555261  13    Fratio  0.802539   
 
 
Table A.17  ANOVA Single-Factor for YE:TE, ammonium in-series. 
SUMMARY 

Groups  Count  Sum  Average  Variance
Column 1  7  3.248698 0.4641 0.163395

Column 2  7  2.000426 0.285775 0.119007

ANOVA 

Source of Variation  SS  df  MS  F  P‐value  F crit 
Between Groups  0.111299  1 0.111299 0.788229 0.392084 3.176549 

Within Groups  1.694411  12 0.141201

Total  1.80571  13    Fratio  0.24814   
 
 
Table A.18  ANOVA Single-Factor for PL:UP, ammonium in-series. 
SUMMARY 

Groups  Count  Sum  Average  Variance
Column 1  14  2.083802 0.148843 0.042712

Column 2  14  5.249124 0.374937 0.138901

ANOVA 

Source of Variation  SS  df  MS  F  P‐value  F crit 

Between Groups  0.357831  1 0.357831 3.940584 0.057778 2.909132 

Within Groups  2.360971  26 0.090807

Total  2.718802  27    Fratio  1.354557   
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Table A.19 Nitrate data for downflow experiment phase, proportion of effluent to influent 
for each column, RE, BE, YE, TE.  Planted (PL) data is the aggregation of RE and BE, 
and unplanted (UP) data is the aggregation of YE and TE.  9 samples for RE and BE; 9 
samples for YE and TE. 
 

RE/BK  BE/BK  YE/BK  TE/BK  PL AV  UP AV 

1.229897  1.373452 0.645279 0.70021 1.229897 0.645279 
2.176209  2.244225 2.131253 2.113474 2.176209 2.131253 

2.513251  2.811369 2.739336 3.297987 2.513251 2.739336 

1.081612  1.194391 1.311359 2.37735 1.081612 1.311359 
5.035402  4.013653 4.933131 5.543443 5.035402 4.933131 

3.881154  3.949057 4.425188 4.262329 3.881154 4.425188 

5.889123  6.311715 4.143019 7.023173 5.889123 4.143019 
8.07032  7.420613 7.279746 9.487036 8.07032 7.279746 

7.085986  7.830173 6.691108 7.070709 7.085986 6.691108 

1.373452 0.70021 
2.244225 2.113474 

2.811369 3.297987 
1.194391 2.37735 

4.013653 5.543443 
3.949057 4.262329 

6.311715 7.023173 
7.420613 9.487036 

7.830173 7.070709 
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Table A.20  ANOVA Single-Factor for RE:BE, nitrate downflow. 
SUMMARY 

Groups  Count  Sum  Average  Variance

Column 1  9  36.96295 4.106995 6.546232

Column 2  9  37.14865 4.127628 6.354601

ANOVA 

Source of Variation  SS  df  MS  F  P‐value  F crit 

Between Groups  0.001916  1 0.001916 0.000297 0.986463 4.493998 
Within Groups  103.2067  16 6.450416

Total  103.2086  17    Fratio  6.61E‐05   
 
 
Table A.21  ANOVA Single-Factor for YE:TE, nitrate downflow. 
SUMMARY 

Groups  Count  Sum  Average  Variance

Column 1  9  34.29942 3.811047 5.289234

Column 2  9  41.87571 4.652857 8.108106

ANOVA 

Source of Variation  SS  df  MS  F  P‐value  F crit 

Between Groups  3.188901  1 3.188901 0.47605 0.500103 4.493998 
Within Groups  107.1787  16 6.69867

Total  110.3676  17    Fratio  0.10593   
 
 
Table A.22  ANOVA Single-Factor for PL:UP, nitrate downflow. 
SUMMARY 

Groups  Count  Sum  Average  Variance
Column 1  18  74.1116 4.117311 6.071093

Column 2  18  76.17513 4.231952 6.492213

ANOVA 

Source of Variation  SS  df  MS  F  P‐value  F crit 

Between Groups  0.118282  1 0.118282 0.01883 0.891665 4.130018 
Within Groups  213.5762  34 6.281653

Total  213.6945  35    Fratio  0.004559   
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Table A.23 Nitrate data for upflow experiment phase, proportion of effluent to influent 
for each column, RE, BE, YE, TE.  Planted (PL) data is the aggregation of RE and BE, 
and unplanted (UP) data is the aggregation of YE and TE.  11 samples for RE and BE; 11 
samples for YE and TE. 
 
RE/BK  BE/BK  YE/BK  TE/BK  PL AV  UP AV 
1.344503  1.344923  1.729096 1.628136 1.344503 1.729096

2.123694  1.254741  1.035251 1.070778 2.123694 1.035251

1.014477  1.082656  0.9606 0.956635 1.014477 0.9606
1.498906  1.658561  1.31424 1.41854 1.498906 1.31424

0.905024  1.146741  0.915457 0.994964 0.905024 0.915457

1.140022  2.195812  1.431929 1.338282 1.140022 1.431929

1.21878  1.390607  1.260052 1.05045 1.21878 1.260052
1.017832  1.30422  0.946787 1.130835 1.017832 0.946787

0.738035  1.43582  1.034655 1.153808 0.738035 1.034655
1.806818  1.392717  1.814774 2.85085 1.806818 1.814774

4.851346  1.647925  4.475637 1.245528 4.851346 4.475637

1.344923 1.628136
1.254741 1.070778

1.082656 0.956635
1.658561 1.41854

1.146741 0.994964
2.195812 1.338282

1.390607 1.05045
1.30422 1.130835

1.43582 1.153808
1.392717 2.85085

1.647925 1.245528
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Table A.24  ANOVA Single-Factor for RE:BE, nitrate upflow. 
SUMMARY 

Groups  Count  Sum  Average  Variance

Column 1  11  17.65944 1.605403 1.32281

Column 2  11  15.85472 1.441339 0.094242

ANOVA 

Source of Variation  SS  df  MS  F  P‐value  F crit 

Between Groups  0.148045  1 0.148045 0.208948 0.65252 4.351243 
Within Groups  14.17052  20 0.708526

Total  14.31856  21    Fratio  0.04802   
 
 
Table A.25  ANOVA Single-Factor for YE:TE, nitrate upflow. 
SUMMARY 

Groups  Count  Sum  Average  Variance

Column 1  11  16.91848 1.538043 1.045801

Column 2  11  14.83881 1.348982 0.288066

ANOVA 

Source of Variation  SS  df  MS  F  P‐value  F crit 

Between Groups  0.196592  1 0.196592 0.294771 0.593179 4.351243 
Within Groups  13.33866  20 0.666933

Total  13.53525  21    Fratio  0.067744   
 
 
Table A.26  ANOVA Single-Factor for PL:UP, nitrate upflow. 
SUMMARY 

Groups  Count  Sum  Average  Variance
Column 1  22  33.51416 1.523371 0.681836

Column 2  22  31.75729 1.443513 0.644536

ANOVA 

Source of Variation  SS  df  MS  F  P‐value  F crit 

Between Groups  0.07015  1 0.07015 0.105778 0.746618 4.072654 
Within Groups  27.85382  42 0.663186

Total  27.92397  43    Fratio  0.025973   
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Table A.27 Nitrate data for in-series experiment phase, proportion of effluent to influent 
for each column, RE, BE, YE, TE.  Planted (PL) data is the aggregation of RE and BE, 
and unplanted (UP) data is the aggregation of YE and TE.  4-6 samples for RE and BE; 
67 samples for YE and TE. 
 
RE/BK  BE/BK  YE/BK  TE/BK  PL AV  UP AV 

2.104746  3.314842 0.805327 2.104746 3.314842

0.670928  1.612911 0.762363 0.670928 1.612911
1.080439  1.60787  2.689269 0.867007 1.080439 2.689269

1.490421  0.616613  1.835317 1.40904 1.490421 1.835317

2.79398  0.902018  3.704668 0.864185 2.79398 3.704668

1.606436  1.440415  2.887348 1.274768 1.606436 2.887348

0.805327
0.762363

1.60787 0.867007

0.616613 1.40904
0.902018 0.864185

1.440415 1.274768
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Table A.28  ANOVA Single-Factor for RE:BE, nitrate in-series. 
SUMMARY 

Groups  Count  Sum  Average  Variance

Column 1  6  9.746949 1.624492 0.564385

Column 2  4  4.566915 1.141729 0.213236

ANOVA 

Source of Variation  SS  df  MS  F  P‐value  F crit 

Between Groups  0.559344  1 0.559344 1.29267 0.288463 5.317655 
Within Groups  3.461632  8 0.432704

Total  4.020976  9    Fratio  0.24309   
 
 
Table A.29  ANOVA Single-Factor for YE:TE, nitrate in-series. 
SUMMARY 

Groups  Count  Sum  Average  Variance

Column 1  6  16.04435 2.674059 0.669601

Column 2  6  5.98269 0.997115 0.074653

ANOVA 

Source of Variation  SS  df  MS  F  P‐value  F crit 

Between Groups  8.436424  1 8.436424 22.67084 0.000767 4.964603 
Within Groups  3.721267  10 0.372127

Total  12.15769  11    Fratio  4.566496   
 
 
Table A.30  ANOVA Single-Factor for PL:UP, nitrate in-series. 
SUMMARY 

Groups  Count  Sum  Average  Variance
Column 1  10  14.31386 1.431386 0.446775

Column 2  12  22.02705 1.835587 1.105245

ANOVA 

Source of Variation  SS  df  MS  F  P‐value  F crit 

Between Groups  0.891154  1 0.891154 1.10164 0.306425 4.351243 
Within Groups  16.17867  20 0.808933

Total  17.06982  21    Fratio  0.253178   
 
 



 A-53

Table A.31 Total nitrogen data for downflow experiment phase, proportion of effluent to 
influent for each column, RE, BE, YE, TE.  Planted (PL) data is the aggregation of RE 
and BE, and unplanted (UP) data is the aggregation of YE and TE.  14 samples for RE 
and BE; 14 samples for YE and TE. 
RE/BK BE/BK YE/BK TE/BK PL AV UP AV 

0.210526 0.210526 0.498947 0.427368 0.210526 0.498947
3.308437 0.58209 4.554615 3.347423 3.308437 4.554615
2.461121 2.274818 2.54674 2.867882 2.461121 2.54674
1.147176 1.274462 0.68548 0.734186 1.147176 0.68548
0.724638 0.724638 1.449275 1.449275 0.724638 1.449275

0.5 0.5 1 1 0.5 1
1.800435 1.853204 1.877648 1.863855 1.800435 1.877648
1.969205 2.186762 2.269311 2.676996 1.969205 2.269311
0.346184 0.378563 0.44779 0.753845 0.346184 0.44779
1.033038 0.831566 1.053012 1.173356 1.033038 1.053012
0.520368 0.529009 0.563156 0.54243 0.520368 0.563156
0.786055 0.841022 0.538891 0.913519 0.786055 0.538891
0.947296 0.872718 0.835621 1.088989 0.947296 0.835621
1.364669 1.504247 1.254973 1.32617 1.364669 1.254973

0.210526 0.427368
0.58209 3.347423

2.274818 2.867882
1.274462 0.734186
0.724638 1.449275

0.5 1
1.853204 1.863855
2.186762 2.676996
0.378563 0.753845
0.831566 1.173356
0.529009 0.54243
0.841022 0.913519
0.872718 1.088989
1.504247 1.32617
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Table A.32  ANOVA Single-Factor for RE:BE, total nitrogen downflow. 
SUMMARY 

Groups  Count  Sum  Average  Variance

Column 1  14  17.11915 1.222796 0.781521

Column 2  14  14.56363 1.040259 0.451541

ANOVA 

Source of Variation  SS  df  MS  F  P‐value  F crit 

Between Groups  0.233239  1 0.233239 0.378308 0.543856 4.225201 
Within Groups  16.02981  26 0.616531

Total  16.26305  27    Fratio  0.089536   
 
 
Table A.33  ANOVA Single-Factor for YE:TE, total nitrogen downflow. 
SUMMARY 

Groups  Count  Sum  Average  Variance

Column 1  14  19.57546 1.398247 1.272596

Column 2  14  20.16529 1.440378 0.835776

ANOVA 

Source of Variation  SS  df  MS  F  P‐value  F crit 

Between Groups  0.012425  1 0.012425 0.011786 0.914381 4.225201 
Within Groups  27.40884  26 1.054186

Total  27.42127  27    Fratio  0.00279   
 
 
Table A.34  ANOVA Single-Factor for PL:UP, total nitrogen downflow. 
SUMMARY 

Groups  Count  Sum  Average  Variance
Column 1  28  31.68277 1.131528 0.602335

Column 2  28  39.74075 1.419313 1.015602

ANOVA 

Source of Variation  SS  df  MS  F  P‐value  F crit 

Between Groups  1.159483  1 1.159483 1.433285 0.236458 4.019541 
Within Groups  43.68431  54 0.808969

Total  44.8438  55    Fratio  0.356579   
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Table A.35 Total nitrogen data for upflow experiment phase, proportion of effluent to 
influent for each column, RE, BE, YE, TE.  Planted (PL) data is the aggregation of RE 
and BE, and unplanted (UP) data is the aggregation of YE and TE.  11 samples for RE 
and BE; 11 samples for YE and TE. 
 
RE/BK BE/BK YE/BK TE/BK PL AV UP AV 

0.210554 0.210606 0.214161 0.201657 0.210554 0.214161
0.324998 0.207538 0.139938 0.144741 0.324998 0.139938
0.252641 0.266952 0.201629 0.200797 0.252641 0.201629
0.327104 0.427822 0.532017 0.261135 0.327104 0.532017
0.473305 0.568487 0.167762 0.182332 0.473305 0.167762
0.202387 0.38982 0.691146 0.747344 0.202387 0.691146
0.669934 0.640411 0.242982 0.202563 0.669934 0.242982
0.198734 0.254652 0.886633 0.907313 0.198734 0.886633
0.616094 0.877012 1.061664 0.962555 0.616094 1.061664
0.308917 0.64252 1.042247 1.251741 0.308917 1.042247
0.878614 0.417333 0.662788 0.948984 0.878614 0.662788

0.210606 0.201657
0.207538 0.144741
0.266952 0.200797
0.427822 0.261135
0.568487 0.182332

0.38982 0.747344
0.640411 0.202563
0.254652 0.907313
0.877012 0.962555

0.64252 1.251741
0.417333 0.948984
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Table A.36  ANOVA Single-Factor for RE:BE, total nitrogen upflow. 
SUMMARY 

Groups  Count  Sum  Average  Variance

Column 1  11  4.463282 0.405753 0.051004

Column 2  11  4.903155 0.445741 0.046245

ANOVA 

Source of Variation  SS  df  MS  F  P‐value  F crit 

Between Groups  0.008795  1 0.008795 0.180874 0.675164 4.351243 

Within Groups  0.972486  20 0.048624

Total  0.981281  21    Fratio  0.041568   
 
 
Table A.37  ANOVA Single-Factor for YE:TE, total nitrogen upflow. 
SUMMARY 

Groups  Count  Sum  Average  Variance
Column 1  11  5.842967 0.531179 0.128917

Column 2  11  6.011161 0.546469 0.173517

ANOVA 

Source of Variation  SS  df  MS  F  P‐value  F crit 
Between Groups  0.001286  1 0.001286 0.008504 0.927445 4.351243 

Within Groups  3.024334  20 0.151217

Total  3.02562  21    Fratio  0.001954   
 
 
Table A.38  ANOVA Single-Factor for PL:UP, total nitrogen upflow. 
SUMMARY 

Groups  Count  Sum  Average  Variance
Column 1  22  9.366437 0.425747 0.046728

Column 2  22  11.85413 0.538824 0.144077

ANOVA 

Source of Variation  SS  df  MS  F  P‐value  F crit 

Between Groups  0.14065  1 0.14065 1.474283 0.231454 4.072654 

Within Groups  4.006901  42 0.095402

Total  4.147551  43    Fratio  0.361996   
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Table A.39 Total nitrogen data for in-series experiment phase, proportion of effluent to 
influent for each column, RE, BE, YE, TE.  Planted (PL) data is the aggregation of RE 
and BE, and unplanted (UP) data is the aggregation of YE and TE.  7 samples for RE and 
BE; 7 samples for YE and TE. 
 

RE/BK BE/BK YE/BK TE/BK PL AV UP AV 
0.869974 1.59588 1.998658 1.349303 0.869974 1.998658 
2.530688 1.64729 3.314842 3.648493 2.530688 3.314842 
0.303674 0.031815 1.093604 0.567652 0.303674 1.093604 
0.328301 0.505326 0.799025 1.106786 0.328301 0.799025 
0.541939 0.641389 1.007958 0.951038 0.541939 1.007958 
0.749304 0.67882 1.163123 0.884174 0.749304 1.163123 

0.52819 0.741957 1.12628 1.197731 0.52819 1.12628 
1.59588 1.349303 
1.64729 3.648493 

0.031815 0.567652 
0.505326 1.106786 
0.641389 0.951038 

0.67882 0.884174 
0.741957 1.197731 
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Table A.40  ANOVA Single-Factor for RE:BE, total nitrogen in-series. 
 
SUMMARY 

Groups  Count  Sum  Average  Variance

Column 1  7  5.852069 0.83601 0.600498

Column 2  7  5.842476 0.834639 0.343846

ANOVA 

Source of Variation  SS  df  MS  F  P‐value  F crit 

Between Groups  6.57E‐06  1 6.57E‐06 1.39E‐05 0.997084 4.747225 
Within Groups  5.666063  12 0.472172

Total  5.66607  13    Fratio  2.93E‐06   
 
 
Table A.41  ANOVA Single-Factor for YE:TE, total nitrogen in-series. 
SUMMARY 

Groups  Count  Sum  Average  Variance

Column 1  7  10.50349 1.500498 0.782348

Column 2  7  9.705176 1.386454 1.05739

ANOVA 

Source of Variation  SS  df  MS  F  P‐value  F crit 

Between Groups  0.045522  1 0.045522 0.049487 0.827699 4.747225 
Within Groups  11.03843  12 0.919869

Total  11.08395  13    Fratio  0.010424   
 
 
Table A.42  ANOVA Single-Factor for PL:UP, total nitrogen in-series. 
SUMMARY 

Groups  Count  Sum  Average  Variance
Column 1  14  11.69455 0.835325 0.435852

Column 2  14  20.20867 1.443476 0.852612

ANOVA 

Source of Variation  SS  df  MS  F  P‐value  F crit 

Between Groups  2.588937  1 2.588937 4.018644 0.055517 4.225201 
Within Groups  16.75002  26 0.644232

Total  19.33896  27    Fratio  0.951113   
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Table A.43 Dissolved oxygen data for downflow experiment phase, proportion of 
effluent to influent for each column, RE, BE, YE, TE.  Planted (PL) data is the 
aggregation of RE and BE, and unplanted (UP) data is the aggregation of YE and TE.  13 
samples for RE and BE; 10-13 samples for YE and TE. 
 
RE/BK  BE/BK  YE/BK  TE/BK  PL AV  UP AV 

0.86249  0.846977  0.886791 0.832693 0.86249 0.886791

1.930855  1.851407  1.508459 1.930855 1.508459

2.17605  2.153529  2.026647 2.309566 2.17605 2.026647
1.482343  1.425845  1.396088 1.48102 1.482343 1.396088

1.551796  1.44283  1.429516 1.543993 1.551796 1.429516

1.113849  1.024734  1.020794 1.100771 1.113849 1.020794
1.68144  1.545092  1.610404 1.672282 1.68144 1.610404

1.164053  0.948868  1.100837 1.040609 1.164053 1.100837

1  0.919758  0.930293 1 0.930293
1.077678  1.039285  1.037247 1.125783 1.077678 1.037247

1.121525  0.91209  1.106874 1.154764 1.121525 1.106874
1.80881  1.826294  1.779257 1.433804 1.80881 1.779257

3.404877  3.021995  3.21855 3.404877 3.21855
0.846977 0.832693

1.851407
2.153529 2.309566

1.425845 1.48102
1.44283 1.543993

1.024734 1.100771
1.545092 1.672282

0.948868 1.040609
0.919758

1.039285 1.125783
0.91209 1.154764

1.826294 1.433804

3.021995
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Table A.44  ANOVA Single-Factor for RE:BE, dissolved oxygen downflow. 
SUMMARY 

Groups  Count  Sum  Average  Variance

Column 1  13  20.37577 1.567367 0.465292

Column 2  13  18.9587 1.458362 0.401035

ANOVA 

Source of Variation  SS  df  MS  F  P‐value  F crit 

Between Groups  0.077233  1 0.077233 0.1783 0.676597 4.259677 
Within Groups  10.39593  24 0.433164

Total  10.47316  25    Fratio  0.041858   
 
 
Table A.45  ANOVA Single-Factor for YE:TE, dissolved oxygen downflow. 
SUMMARY 

Groups  Count  Sum  Average  Variance

Column 1  13  19.05176 1.46552 0.398298

Column 2  10  13.69528 1.369528 0.177386

ANOVA 

Source of Variation  SS  df  MS  F  P‐value  F crit 

Between Groups  0.052081  1 0.052081 0.171533 0.682953 4.324794 
Within Groups  6.376055  21 0.303622

Total  6.428136  22    Fratio  0.039663   
 
 
Table A.46  ANOVA Single-Factor for PL:UP, dissolved oxygen downflow. 
SUMMARY 

Groups  Count  Sum  Average  Variance
Column 1  26  39.33447 1.512864 0.418927

Column 2  23  32.74704 1.423784 0.292188

ANOVA 

Source of Variation  SS  df  MS  F  P‐value  F crit 

Between Groups  0.096842  1 0.096842 0.269303 0.606235 4.0471 
Within Groups  16.9013  47 0.359602

Total  16.99814  48    Fratio  0.066542   
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Table A.47 Dissolved oxygen data for upflow experiment phase, proportion of effluent to 
influent for each column, RE, BE, YE, TE.  Planted (PL) data is the aggregation of RE 
and BE, and unplanted (UP) data is the aggregation of YE and TE.  9 samples for RE and 
BE; 9 samples for YE and TE. 
 
RE/BK  BE/BK  YE/BK  TE/BK  PL AV  UP AV 

1.610829  0.94942  0.491739 1.241052 1.610829 0.491739

0.41334  0.660525  0.151102 0.057751 0.41334 0.151102

0.31241  0.392954  0.280347 0.22269 0.31241 0.280347
0.457205  1.983418  0.420645 0.106407 0.457205 0.420645

0.304844  0.69985  0.400197 0.223765 0.304844 0.400197

1.315714  0.54463  0.433074 0.203053 1.315714 0.433074
2.098372  1.961382  0.393427 0.439904 2.098372 0.393427

0.579845  0.717756  0.965368 0.108551 0.579845 0.965368

1.186922  0.237796  1.734014 0.882053 1.186922 1.734014
0.94942 1.241052

0.660525 0.057751
0.392954 0.22269

1.983418 0.106407

0.69985 0.223765
0.54463 0.203053

1.961382 0.439904
0.717756 0.108551

0.237796 0.882053
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Table A.48  ANOVA Single-Factor for RE:BE, dissolved oxygen upflow. 
SUMMARY 

Groups  Count  Sum  Average  Variance

Column 1  9  8.279481 0.919942 0.428477

Column 2  9  8.14773 0.905303 0.406879

ANOVA 

Source of Variation  SS  df  MS  F  P‐value  F crit 

Between Groups  0.000964  1 0.000964 0.002309 0.962271 4.493998 
Within Groups  6.682847  16 0.417678

Total  6.683811  17    Fratio  0.000514   
 
 
Table A.49  ANOVA Single-Factor for YE:TE, dissolved oxygen upflow. 
SUMMARY 

Groups  Count  Sum  Average  Variance

Column 1  9  5.269914 0.585546 0.234454

Column 2  9  3.485226 0.387247 0.166179

ANOVA 

Source of Variation  SS  df  MS  F  P‐value  F crit 

Between Groups  0.176951  1 0.176951 0.883354 0.361259 4.493998 
Within Groups  3.205068  16 0.200317

Total  3.382018  17    Fratio  0.196563   
 
 
Table A.50  ANOVA Single-Factor for PL:UP, dissolved oxygen upflow. 
SUMMARY 

Groups  Count  Sum  Average  Variance
Column 1  18  16.42721 0.912623 0.393165

Column 2  18  8.75514 0.486397 0.198942

ANOVA 

Source of Variation  SS  df  MS  F  P‐value  F crit 

Between Groups  1.635019  1 1.635019 5.522708 0.024715 4.130018 
Within Groups  10.06583  34 0.296054

Total  11.70085  35    Fratio  1.337212   
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Table A.51 Dissolved oxygen data for in-series experiment phase, proportion of effluent 
to influent for each column, RE, BE, YE, TE.  Planted (PL) data is the aggregation of RE 
and BE, and unplanted (UP) data is the aggregation of YE and TE.  9 samples for RE and 
BE; 9 samples for YE and TE. 
 
RE/BK  BE/BK  YE/BK  TE/BK  PL AV  UP AV 

0.963429  0.155165 1.202493 0.963429 0.155165

0.579819  1.008705 1.499988 0.579819 1.008705

0.522505  1.790811  0.086617 1.149889 0.522505 0.086617

0.440696  3.168345  0.156112 2.366315 0.440696 0.156112

0.262871  4.826547  0.24326 2.150325 0.262871 0.24326
1.202493

1.499988

1.790811 1.149889

3.168345 2.366315
4.826547 2.150325
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Table A.52  ANOVA Single-Factor for RE:BE, dissolved oxygen in-series. 
SUMMARY 

Groups  Count  Sum  Average  Variance

Column 1  5  2.76932 0.553864 0.066721

Column 2  3  9.785703 3.261901 2.310487

ANOVA 

Source of Variation  SS  df  MS  F  P‐value  F crit 

Between Groups  13.75024  1 13.75024 16.87886 0.006298 5.987378 
Within Groups  4.887858  6 0.814643

Total  18.6381  7    Fratio  2.819074   
 
 
Table A.53  ANOVA Single-Factor for YE:TE, dissolved oxygen in-series. 
SUMMARY 

Groups  Count  Sum  Average  Variance

Column 1  5  1.64986 0.329972 0.147051

Column 2  5  8.36901 1.673802 0.308369

ANOVA 

Source of Variation  SS  df  MS  F  P‐value  F crit 

Between Groups  4.514697  1 4.514697 19.82651 0.002132 5.317655 
Within Groups  1.821681  8 0.22771

Total  6.336378  9    Fratio  3.728431   
 
 
Table A.54  ANOVA Single-Factor for PL:UP, dissolved oxygen in-series. 
SUMMARY 

Groups  Count  Sum  Average  Variance
Column 1  8  12.55502 1.569378 2.662586

Column 2  10  10.01887 1.001887 0.704042

ANOVA 

Source of Variation  SS  df  MS  F  P‐value  F crit 

Between Groups  1.431315  1 1.431315 0.916978 0.352517 4.493998 
Within Groups  24.97448  16 1.560905

Total  26.40579  17    Fratio  0.204045   
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