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Abstract

Tropospheric ozone (O3) and carbon monoxide (CO) pollution in the Northern

Hemisphere is commonly thought to be of anthropogenic origin. While this

is true in most cases, copious quantities of pollutants are emitted by fires

in boreal regions, and the impact of these fires on CO has been shown to

significantly exceed the impact of urban and industrial sources during large

fire years. The impact of boreal fires on ozone is still poorly quantified, and

large uncertainties exist in the estimates of the fire-released nitrogen oxides

(NOx), a critical factor in ozone production. As boreal fire activity is predicted

to increase in the future due to its strong dependence on weather conditions,

it is necessary to understand how these fires affect atmospheric composition.

To determine the scale of boreal fire impacts on ozone and its precursors, this

work combined statistical analysis of ground-based measurements downwind

of fires, satellite data analysis, transport modeling and the results of chemical

model simulations.

The first part of this work focused on determining boreal fire impact on

ozone levels downwind of fires, using analysis of observations in several-days-

old fire plumes intercepted at the Pico Mountain station (Azores). The results

of this study revealed that fires significantly increase midlatitude summertime

ozone background during high fire years, implying that predicted future in-

creases in boreal wildfires may affect ozone levels over large regions in the

iv



Northern Hemisphere.

To improve current estimates of NOx emissions from boreal fires, we fur-

ther analyzed ∆NOy/∆CO enhancement ratios in the observed fire plumes

together with transport modeling of fire emission estimates. The results of

this analysis revealed the presence of a considerable seasonal trend in the fire

NOx/CO emission ratio due to the late-summer changes in burning properties.

This finding implies that the constant NOx/CO emission ratio currently used

in atmospheric modeling is unrealistic, and is likely to introduce a significant

bias in the estimated ozone production.

Finally, satellite observations were used to determine the impact of fires on

atmospheric burdens of nitrogen dioxide (NO2) and formaldehyde (HCHO)

in the North American boreal region. This analysis demonstrated that fires

dominated the HCHO burden over the fires and in plumes up to two days

old. This finding provides insights into the magnitude of secondary HCHO

production and further enhances scientific understanding of the atmospheric

impacts of boreal fires.
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Chapter 1

Introduction

1.1 Background

Biomass burning is a significant source of atmospheric trace gases and par-

ticles [e.g. Crutzen and Andreae, 1990; Andreae and Merlet , 2001] with the

potential to affect air quality not only at the regional but also at the hemi-

spheric scales [Edwards et al., 2004; Yurganov et al., 2004; Van der Werf et al.,

2004; Kasischke et al., 2005]. For example, global biomass burning accounts

for 15-30% of the entire tropospheric CO background [Galanter et al., 2000].

Fires also serve as an important source of ozone precursors, such as NOx and

non-methane hydrocarbons (NMHC) [Goode et al., 2000; Andreae and Mer-

let , 2001], and were shown to explain most of the interannual variability in

summer organic carbon aerosol in the western U.S. [Spracklen et al., 2007].

The impact of forest fires in boreal regions (regions located north of 45◦ N

latitude) on atmospheric composition was significantly underestimated in the

past years [Lavoue et al., 2000], but received considerable attention recently,

as new measurements, i.e., from satellites [Stocks et al., 2003], became avail-

able, and a significant increase in the annual area burned across the North
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2

American region was observed [Gillet et al., 2004; Kasischke and Turetsky ,

2006]. Boreal forests contain one third of all terrestrial carbon storage and

can generate up to 20% of the global biomass burning carbon through direct

and indirect (post-fire) emissions [Conard and Ivanova, 1997]. In the summer,

CO emissions from boreal wildfires are similar in magnitude to total U.S. and

European anthropogenic emissions even in average fire years [Wotawa et al.,

2001], and their impact on atmospheric burden can significantly exceed the im-

pact of CO from fossil fuels during the months with extremely high fire activity

[Yurganov et al., 2004]. Boreal fires also emit large amounts of aerosols and

contribute 10% of total anthropogenic black carbon emissions in the Northern

Hemisphere, on average [Bond et al., 2004]. An important feature of intense

crown fires in the boreal regions is their ability to inject emissions into the

upper troposphere and even stratosphere [Fromm and Servanckx , 2003; Jost

et al., 2004]. Lifting of pollution plumes into these high-altitude layers in-

creases the lifetimes of emitted species and results in dispersion of pollutants

over a large spatial scale due to faster transport [Fromm and Bevilacqua,

2004]. Prolonged lifetimes of particles at these altitudes may lead to changes

in the radiative balance of the atmosphere [Law and Stohl , 2007].

Most important, in terms of the amount of generated emissions, is a small

number of large fires generated by lightning in remote areas [Stocks et al.,

2003]. The episodic nature of these fires implies that they can release large

amounts of pollutants into the atmosphere over relatively short timescales

[Stocks et al., 1998]. Low levels of hydroxyl radical (OH) at high latitudes

result in enhanced lifetime of these pollutants [Levine and Cofer III , 2000],

allowing formation of large, long-lasting pollution plumes. The frequency of

occurrence of boreal fires varies dramatically on a year-to-year basis and is

highly sensitive to changes in meteorological conditions [Stocks et al., 1998;

Flannigan et al., 2005]. Consequently, these fires may become more frequent
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in response to global warming, which will cause the largest temperature in-

crease over the high-latitude regions [Hassol , 2004; IPCC , 2007]. General

circulation models (GCMs) predict more extreme droughts and increases in

lightning frequency, fire intensity and fire length in response to doubled-CO2

concentrations in the atmosphere [Stocks et al., 1998]. The resulting net loss

of carbon from the biosphere to the atmosphere and changes in the albedo

of areas impacted by burning have a potential for creating a positive feed-

back between climate warming and fire activities, which would aggravate the

fire situation even further [Stocks et al., 1998; IPCC , 2007]. It is therefore

crucial to understand and quantify the impact of boreal fires on atmospheric

composition in order to determine the effects of climate change on air quality.

While it has been accepted that wildfires affect the interannual variability

of CO in the Northern Hemisphere [Yurganov et al., 2004; Van der Werf

et al., 2004; Novelli et al., 2003; Kasischke et al., 2005], the impact of fires on

tropospheric ozone (O3) is less conclusive and it is generally recognized that

ozone production in the Northern Hemisphere is dominated by anthropogenic

sources. Ozone is the major source of hydroxyl radical (OH), a compound

which controls the oxidizing capacity of the atmosphere, and is an important

oxidant itself [Seinfeld and Pandis , 1998]. It is the third most important

greenhouse gas [IPCC , 2007] and its elevated concentrations have negative

impacts on health and plants. Ozone levels in the U.S. are regulated by the

Environmental Protection Agency (US EPA) which recently lowered the 8-

hour standard from 0.08 ppm to 0.075 ppm. Complying with these standards

requires good understanding of sources contributing to the ozone budget.

Ozone is formed from the photolysis of NO2 and subsequent reaction of

the oxygen atom with molecular oxygen:

NO2 + hν → NO + O(3P) (1.1)
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O(3P) + O2→O3 (1.2)

Ozone then reacts with NO to form NO2

O3 + NO → O2 + NO2 (1.3)

In addition to the above reactions, which constitute a zero cycle for O3,

additional O3 formation can be achieved in the presence of HO2 or organic

peroxy radicals that oxidize NO to NO2 without destroying ozone:

NO + PO2 → NO2 + PO, (1.4)

where peroxy radicals are formed from the oxidation of non-methane

volatile organic compounds (NMVOCs). While anthropogenic sources of pol-

lution, such as cars and industry, are known to be the dominant contributors

to O3 in the areas where standards are commonly exceeded, intense periods

of fire activity, which result in release of large amounts of ozone precursors

such as NOx (sum of NO and NO2) and NMVOCs, were found to significantly

increase the frequency of such exceedances [Pfister et al., 2008]. Recent work

showed that boreal fires can impact summertime ozone levels in the U.S. and

Europe [Jaffe et al., 2004; Simmonds et al., 2005; Forster et al., 2001], even

at the locations where anthropogenic pollution levels are normally very high

[Morris et al., 2006]. Jaffe et al. [2004] showed that in the summer of 2003,

large Siberian fires contributed to an exceedance of O3 regulatory standard

at the surface site in the Northwestern US. For a few other sites in Alaska,

British Columbia and Washington, these fires resulted in the highest mean

summer O3 mixing ratios since the records were kept.

Despite these given examples of the significant impacts of boreal fires on

ozone, ozone production in the boreal fire plumes is still not fully under-

stood and there is no clear picture of the average magnitude of this impact.
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While Honrath et al. [2004] and Bertschi and Jaffe [2005] showed that ozone

enhancement ratios (∆O3/∆CO) can be very high even in very well-aged

plumes (more than 10 days old), suppressed ozone formation was observed as

well [Tanimoto et al., 2000], and ozone enhancement ratios in the aged (7–15

days old) boreal fire plumes at the Pico Mountain Observatory (Azores) ex-

hibited high variability [Val Mart́ın et al., 2006], implying the need for further

studies.

One of the possible reasons for the observed difference in ozone enhance-

ment ratios is the highly variable NOx/CO emission ratio for boreal fires,

which plays a determining role in the ozone production [Goode et al., 2000;

McKeen et al., 2002; Cook et al., 2007]. This ratio is believed to be lower for

boreal fires, than for fires in other ecosystems, such as tropics and savanna

due to the dominant role of the smoldering (as opposed to flaming) stage in

the fuel burning for boreal fires, as well as to the lower nitrogen content of

boreal vegetation [Wofsy et al., 1992]. Smoldering combustion is especially

common for the burning of the ground surface layer, which contributes a ma-

jor fraction of total fuel consumption in boreal forests [French et al., 2004;

Kasischke and Johnstone, 2005]. Quantifying the fraction of fuel consumed in

smoldering versus flaming combustion is critical for reliable estimates of emis-

sions of ozone precursors and is done using the fire-derived carbon emissions

models [Kasischke et al., 2005; Turquety et al., 2007]. Improving these models

represents a challenging task due to the high variability in fuel types and fire

properties and is currently an active area of research [French et al., 2007].

One of the vital steps in this process is testing the derived emission products

against the existing measurements of ozone, NOx, NOy (which includes the

oxidation products of NOx in more aged plumes) and CO in the boreal fire

plumes.

In summary, research on ozone production in the boreal fire plumes is far
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from being complete, and more studies on factors controlling NOx emissions

from boreal fires is needed. If fires are shown to systematically affect the

ozone levels in the far away regions, and given that this impact may increase

in the future as a result of climate change, more stringent ozone air quality

standards will have to be introduced for cars and industry. Hence, as many

Northern Hemisphere regions strive to attain these standards, studies aimed

at quantifying the impact of boreal fires on ozone in the regions downwind

are of critical importance.

1.2 Research objectives and approach

Pico Mountain Observatory is a measurement station at a mountaintop site in

the Azores Islands in the central North Atlantic region established in 2001 by

our research group in collaboration with the University of Azores, Portugal.

This site is mostly located in the free troposphere [Kleissl et al., 2007] and in

the summer it is frequently impacted by air from arctic/subarctic regions from

North America and Eurasia carrying emissions from boreal wildfires [Honrath

et al., 2004]. Nearly continuous measurements of NOx, NOy O3, BC, and CO

are available for the boreal fire seasons in 2001, 2003, 2004 and 2005. This

dataset is unique as it represents multi-year and multi-species measurements

downwind of boreal regions.

In the previous section it was shown that the magnitude of boreal fire

impact on ozone levels in the regions downwind is poorly quantified. There-

fore, the first objective of this work is to quantify the impact of

boreal wildfires on midlatitude lower free tropospheric background

O3 during summer. To accomplish this objective, observations made at the

Pico Mountain Observatory were analyzed together with HYSPLIT backward

trajectories and modeling of the boreal fire impact at the observatory using
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MOZART chemical transport model. Analysis was performed for summer-

time observations of CO and O3 during three years, which included two years

of high fire activity (2003 and 2004) and one year of low fire activity (2001).

The studied air masses represented pollution plumes that had already under-

gone considerable photochemical processing, but were not completely mixed

in background air. This allowed the study of ozone production within well

aged (7–15 days old) biomass burning plumes.

The previous section also discussed the need to improve the existing in-

ventories of ozone precursors released from boreal fires and the effect of fire

burning properties on these emissions. Hence, the second objective of

this work was to assess the impact of seasonal trends in fuel con-

sumption and flaming/smoldering ratios in the boreal wildfires on

emissions of NOx (species dominated by flaming combustion) and

CO (species dominated by smoldering combustion). To accomplish

this objective we used ∆NOy/∆CO measurements in the several-days-old fire

plumes at the Pico Mountain Observatory during the active boreal fire sea-

sons of 2004 and 2005. Airmass history for the studied periods was analyzed

using the FLEXPART transport model simulations.

To learn about the impact of boreal fires on ozone precursors in

the fire region and immediately downwind of fires, the third objec-

tive of this work, we utilized satellite measurements of NO2 and formalde-

hyde (HCHO), made with the SCIAMACHY instrument, over the regions of

active boreal fires in Alaska and Canada in 2004. These measurements were

combined with modeling of fire emissions. Emissions of NOx and HCHO were

estimated using the BWEM model, and simulations of fire emissions transport

were performed using FLEXPART.
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1.3 Dissertation overview

The following chapters convey methods, analyses, results and conclusions to

address the research objectives of this work. Chapter 2 presents analysis of

the multi-year (2001, 2003 and 2004) measurements of CO and ozone made at

the Pico Mountain Observatory to which address the first research objective.

Chapter 3 presents analysis performed to assess the seasonal trend in emissions

from boreal forest fires. Chapter 4 presents analysis of the impact of boreal

fires on atmospheric levels of formaldehyde and NO2 in the North American

boreal region during summer of 2004. The appendix includes figures used for

this analysis.



Chapter 2

Evidence of significant

large-scale impacts of boreal

fires on ozone levels in the

midlatitude Northern

Hemisphere free troposphere†

†This chapter is based on material previously published as Lapina, K., R. Honrath, R.

C. Owen, Val Mart́ın M. and G. Pfister (2006), Evidence of significant large-scale impacts

of boreal fires on ozone levels in the midlatitude Northern Hemisphere free troposphere,

Geophys. Res. Lett., 33, L10815, doi:10.1029/2006GL025878. Copyright 2006 American

Geophysical Union Reproduced by permission of American Geophysical Union. Copyright

permission details are given in Appendix B.

9
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2.1 Introduction

Boreal wildfires are known to significantly impact tropospheric composition

[e.g., Van der Werf et al., 2004; DeBell et al., 2004]. CO emissions have gained

considerable attention in recent years, as the resulting impacts on tropospheric

background CO levels are significant [Novelli et al., 2003; Edwards et al.,

2004]. Recent studies have also identified increased mean summertime O3

at boundary layer (BL) sites in northwest N. America and at Mace Head,

Ireland during years of exceptionally large area burned [Jaffe et al., 2004;

Simmonds et al., 2005], suggesting that boreal fires may also significantly

impact background O3. However, loss of ozone from the BL may mute this

signal at BL sites [DeBell et al., 2004], and the large-scale impact of boreal

fires on FT O3 levels remains poorly characterized.

O3 plays a central role in tropospheric chemistry as a major source of hy-

droxyl radical. O3 is phytotoxic, harmful to health and an important green-

house gas [Houghton et al., 2001]. Tropospheric O3 production in the NH

midlatitudes is dominated by anthropogenic sources, which impact tropo-

spheric O3 over large regions [e.g., Chandra et al., 2004]. However, northerly

regions can be a substantial source of the O3 precursors nitrogen oxides (NOx,

NO + NO2), CO and volatile organic compounds [Goode et al., 2000] during

the boreal fire season (May–September). Quantifying the resulting impact of

boreal fires on tropospheric O3 is a challenging task, due to the large degree

of variability in the type of fire and fuel [Kasischke et al., 2005], which leads

to variability and uncertainty in emissions of NOx, a limiting factor for O3

production. As a result, the magnitude of O3 production from boreal fires is

highly variable and uncertain, with the limited number of studies available

reporting O3 enhancements ranging from high [e.g., Bertschi and Jaffe, 2005;

Honrath et al., 2004; Law et al., 2005], to very low [e.g., Tanimoto et al., 2000]
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in several-days-old fire plumes.

Most studies of O3 in aged fire plumes are based on observations obtained

during the sampling of individual plumes and therefore characterize a specific

combination of fire type, meteorological conditions and plume age, or a lim-

ited number of such combinations. In contrast, this work utilizes multi-year

(2001, 2003 and 2004) measurements at a site far downwind from the boreal

fire region. Thus, the resulting dataset includes observations of fire plumes

characteristic of multiple sources that have aged and dispersed during 5–15

days of transport [Honrath et al., 2004]. In addition, this work utilizes FT

measurements, a key distinction as BL O3 loss may obscure the true mag-

nitude of boreal fire O3 impacts. It therefore provides a sampling of the

large-scale impacts of boreal fires on FT O3 levels.

2.2 Methods

To characterize the impact of boreal fires on O3 mixing ratios in regions well

downwind, we combine analysis of observations made at the PICO-NARE

station with backward trajectories and the results of global simulations of fire

emissions transport and chemistry.

2.2.1 Measurements

The PICO-NARE station is located on the summit caldera of Pico mountain

in the Azores Islands (Portugal) in the central North Atlantic Ocean (38◦N,

28◦W). This station is frequently impacted by air from high-latitude regions,

often without downwind transport over anthropogenic source regions [Honrath

et al., 2004]. It is therefore well suited to study the outflow from N. American

and Siberian boreal wildfires. Station altitude (2225 m) is well above the

marine boundary layer (MBL). To ensure that the measurements analyzed
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here are characteristic of the FT, we have excluded from this analysis all

periods potentially affected by upslope flow of MBL air [Kleissl et al., 2005].

(This screening removed 30% of the measurements, but did not affect the

results significantly.)

CO was determined using a modified non-dispersive infrared absorption

instrument (Thermo Environmental, Inc., Model 48C-TL), calibrated daily

with standards referenced to the NOAA CMDL standard [Novelli et al.,

2003]. O3 was determined with commercial ultraviolet absorption instru-

ments (Thermo Environmental Instruments Inc., Franklin, Massachusetts;

Model 49C) referenced to the NOAA CMDL network ozone standard (S. Olt-

mans, NOAA/ESRL, personal communications, 2001, 2004). As a result of

instrument damage due to water ingestion following heavy icing the previous

winter, no O3 data are available for summer 2002. Additional details on the

instruments and calibration methods are provided elsewhere [Honrath et al.,

2004; Owen et al., An analysis of transport mechanisms of North American

emissions to the central North Atlantic, submitted to J. Geophys. Res.] Data

were recorded as one-minute averages, and were further averaged to obtain

the 1-hour averages used in this work.

2.2.2 Transport Analysis

To identify airmass transport pathways, we calculated hourly backward tra-

jectories using the HYbrid Single-Particle Lagrangian Integrated Trajectories

(HYSPLIT) model [Draxler and Rolph, 2003]. The model uses hourly wind

vectors interpolated from 6-hourly National Weather Service National Center

for Environmental Prediction FNL output [Stunder , 1997]. For each hour,

a set of six trajectories was initiated: one terminating at the station, four

terminating at end points separated by 1◦ of latitude and longitude from the
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station, and one terminating directly below the station, at a height of 2000 m.

Trajectories were run for 10 days backward in time, with trajectory locations

recorded every hour.

We selected time periods potentially affected by outflow from boreal re-

gions by picking hours when one or more of the trajectories passed over Alaska

or Canada north of 50◦N. These flow periods are referred to as northern N.

American periods (abbreviated as NNA periods). They include multiple in-

tervals of time impacted by N. American or Siberian fires, which last from

hours to days [Honrath et al., 2004].

2.2.3 MOZART Simulations

The global chemical transport model MOZART (Model for OZone And Re-

lated chemical Tracers) was used to simulate the impact of emissions from the

2004 N. American boreal fires on CO at the PICO-NARE station. MOZART

was driven by 6-hourly meteorological fields from the National Centers for

Environmental Prediction (NCEP) dataset. The spatial resolution is approx-

imately 2.8◦×2.8◦ with 28 vertical levels between the surface and 2 hPa. The

chemical time step of the model is 20 minutes. The MOZART simulation

results presented in this work are mixing ratios averaged over 2-hour windows

and interpolated to the location and pressure of the PICO-NARE observa-

tory. These simulations utilized updated N. American boreal fire emissions

that were optimized using MOPITT (Measurements Of Pollution In The Tro-

posphere) CO columns as described by Pfister et al. [2005]; CO emissions

were injected between 0 and 9 km. To infer the magnitude of the fire impact

at the PICO-NARE station, we use the MOZART-simulated ratio of CO fire

tracer (CO that was emitted from the N. American boreal fires) to total CO

mixing ratio at the PICO-NARE station, ([COf ]/[CO])MOZART . A second
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model run, in which N. American boreal fire emissions were turned off, was

also conducted. Simulation results for O3 from this run were used to assess

the importance of processes other than boreal fire emissions on O3 levels.

2.3 Results

Figure 2.1a shows the distribution of summer CO mixing ratios for the years

of 2001, 2003 and 2004. In 2003 and 2004 CO exhibited maximum levels

nearly twice as high as in 2001 (Table 2.1). High mixing ratios were also

more frequent. Median values increased from 67 ppbv in 2001 to 108 and

87 ppbv in 2003 and 2004, respectively. We have shown previously [Honrath

et al., 2004] that 2001 was a low-fire year, while the highest CO levels in 2003

were the result of extreme Siberian fires that year. These fires consumed the

largest area burned in more than ten years [Jaffe et al., 2004]. 2004 was also

a high-fire year, with the largest fire season on record in Alaska [Pfister et al.,

2005]. To confirm these fires as the primary cause of the high CO that year, we

have inspected the backward trajectories for CO observations exceeding the

70th percentile of the 2004 summer measurements (98 ppbv). At least 75%

of these cases were consistent with transport from the region of active fires

in Alaska and/or western Canada based on MODIS (MODerate resolution

Imaging Spectroradiometer) fire counts, with haze in the upwind region clearly

visible in MODIS true-color images. Thus, the considerably higher CO mixing

ratios observed in both 2003 and 2004 were the result of emissions from large

fires transported to the Azores region in NNA flow. This conclusion is in

accordance with recent works showing that boreal wildfires strongly affect

the NH summer CO background during years of high fire activity [Novelli

et al., 2003; Edwards et al., 2004; Van der Werf et al., 2004; Kasischke et al.,

2005].
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Figure 2.1 Distributions of (a) CO and (b) O3 including all measurements for each summer. A small
number of CO observations greater than the maximum value shown are included in the rightmost
bin..
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The distributions of summer O3 mixing ratios were also shifted toward

higher levels in 2003 and 2004 relative to 2001 (Figure 2.1b). Median O3

increased from 31 ppbv in 2001 to 40 ppbv in 2003 and 41 ppbv in 2004

(Table 2.1). Given the prior observations of O3 enhancements in individual

boreal fire plumes noted above and the presence of elevated levels of nitrogen

oxides in fire plumes sampled at the PICO-NARE station during 2004 [Val

Mart́ın et al., 2005], O3 production in the fire plumes may have contributed

to the higher O3 levels in 2003 and 2004. To evaluate this, we now test the

hypothesis that boreal fire emissions result in significantly increased O3 levels

in the highly aged fire plumes sampled at the PICO-NARE station.

To assess the impact of boreal fires on O3 levels, we analyze only those

measurements obtained during NNA periods. This minimizes the potential

impact of latitudinal O3 gradients on the results. We selected from the full set

of NNA periods those apparently impacted by fire emissions (termed “fire”

airmasses) and those with clean background conditions (referred to as “non-

fire” airmasses). Fire periods were identified based on the occurrence of signif-

icantly enhanced CO levels, confirmed by simulations of fire emissions trans-

port. Non-fire periods were identified based on the occurrence of low CO

levels and absent or minimal model-simulated fire impacts. The 40th and

60th percentiles of CO measurements in NNA flow periods (Table 2.1) were

used for the non-fire and fire CO cutoff values, respectively. For 2004, we

required ([COf ]/[CO])MOZART > 0.1 for the fire periods; no intervals with

([COf ]/[CO])MOZART > 0.09 were included within non-fire periods. For 2001

and 2003, we used the results of previous analyses [Honrath et al., 2004], in

which the NRL Aerosol Analysis and Prediction System model was used to

identify PICO-NARE measurements potentially impacted by upwind boreal

fires. Fire periods were required to be within those previously identified inter-

vals, and non-fire periods were required to exclude those previously identified
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Figure 2.2 O3 frequency distribution in Northern N. American (NNA) flow, fire and non-fire subsets.
The area under the non-fire O3 distributions is shaded..

intervals.

Histograms of O3 for fire and non-fire periods in each year are shown in

Figure 2.2. For each year, the two distributions are clearly different. Table 2.1

presents the medians, means and ranges of each distribution. To confirm that

the O3 distributions in the fire airmasses were significantly different from the

O3 distributions during the non-fire periods, we performed a nonparametric

Wilcoxon Sum-rank test. We also performed a two-sample t-test to test for

differences between the means of two distributions. These two tests gave con-

sistent results at the 0.01 level of significance, indicating that the distributions

were significantly different, with significantly higher mean values in the fire

subset.

The differences between the median O3 values in the non-fire and fire

subsets each year (∆Median) are shown in Table 2.1. To estimate the con-

tribution to ∆Median resulting from latitudinal or altitudinal O3 gradients

not caused by fires, we repeated the analysis with the following difference.
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Instead of using measured O3 mixing ratios, we used [O3] simulated at Pico

in the 2004 MOZART simulation that excluded N. American boreal fire emis-

sions. The resulting ∆Median was 3 ppbv—14% of the actual value (22 ppbv:

Table 2.1). To assess potential impacts of anthropogenic O3 production, we

repeated the original analysis but excluded periods with trajectories pass-

ing over N. America south of 48◦N. ∆Median changed by <1 ppbv. (Both

reanalyses were conducted for 2004, the only year with sufficient data and

MOZART simulations.) These results support the hypothesis that a majority

of the observed fire minus non-fire O3 differences is the result of boreal wildfire

emissions.

We discussed above the effect of high fire activity in 2003 and 2004 on CO.

Here, we see evidence of fire impacts in 2001 as well. This is the result of a

relatively small number of 2001 events in which Siberian fire emissions reached

the Azores, as noted previously [Honrath et al., 2004]. These 2001 events had

little effect on the overall CO and O3 distributions, but nevertheless provide

additional evidence of fire-enhanced O3.

It is possible to obtain ozone enhancement ratios by dividing the values of

∆Median (corrected by the MOZART-based estimate of 2004 non-fire contri-

bution) by the difference between median CO in the fire and non-fire subsets.

For 2004, the ratio is 0.5. This value is relatively large, but is in the range of

the highest values measured in aged boreal fire plumes by the sources cited in

the Introduction. However, further work is required to explain the mechanism

leading to these high ozone enhancements.

2.4 Conclusions

By separating multi-year summertime O3 observations impacted by outflow

from high-latitude regions into two subsets composed of fire-affected and non-
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fire (relatively clean) periods, we found that O3 levels in the North Atlantic

lower FT are significantly increased when boreal fire impacts are present.

O3 production from boreal fire precursors was therefore at least partially

responsible for significant shifts in the O3 distributions toward higher mixing

ratios during the high-fire-activity summers of 2003 and 2004, when median

O3 values were 9–10 ppbv greater than during the summer of 2001 (a low-fire

year). Given the long distance from the fires in northwestern N. America and

Siberia to the Azores where our measurements were made, these results imply

that boreal fires affect background O3 levels over a very large region of the

NH midlatitudes.

Surface temperatures in the boreal regions have risen more rapidly than

global average temperatures over recent decades [Hassol , 2004], and Global

Circulation Model simulations predict that boreal climate warming will lead

to increased boreal fire danger in future decades [Stocks et al., 1998]. Our

results imply that increased boreal fire magnitudes would lead to (or may

have already led to) an increase in the summertime O3 background over large

regions of the NH, providing a climate forcing feedback (as O3 is a greenhouse

gas) and negatively affecting the ability of downwind nations to meet O3 air

quality standards.



Chapter 3

Late-summer changes in

burning conditions in the boreal

regions and their implications

for NOx and CO emissions from

boreal fires†

†This chapter is based on material previously published as Lapina, K., R. Honrath,

R. C. Owen, Val Mart́ın M., Hyer, E. J. and Fialho, P. (2008), Late-summer changes in

burning conditions in the boreal regions and their implications for NOx and CO emissions

from boreal fires, J. Geophys. Res., 113, D11304, doi:10.1029/2007JD009421. Copyright

2008 American Geophysical Union. Reproduced by permission of American Geophysical

Union. Copyright permission details are given in Appendix B.
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3.1 Introduction

Research in recent years has shown that the impact of boreal fires on tro-

pospheric CO background levels is significant [Novelli et al., 2003; Edwards

et al., 2004]. Measurements in fire plumes and modeling studies have also

confirmed boreal fires as an important source of ozone precursors [Val Mart́ın

et al., 2006; Pfister et al., 2006; Real et al., 2007], resulting in significant

impacts on midlatitude lower free troposphere (FT) background O3 during

summer [Lapina et al., 2006]. Large boreal wildfires can significantly affect

tropospheric composition even in populated areas thousands of miles away,

where anthropogenic sources usually dominate air quality impacts [Wotawa

et al., 2001; Sapkota et al., 2005; Colarco et al., 2004; DeBell et al., 2004;

Morris et al., 2006].

Quantifying and modeling fire emissions is a challenging task, due to the

large degree of variability in the types of fire and fuel [Kasischke et al., 2005].

Burning in the boreal forests is typically separated into two components with

significantly different fuel characteristics and associated combustion processes:

burning of aboveground vegetation and burning of organic soil layers (the

ground layer) [French et al., 2004]. The ground layer is located on the top of

mineral soil and is made of litter, lichen, moss and organic soils [Kasischke

et al., 2005]. The amount of ground-layer carbon is twice the amount of above-

ground carbon, on average [French et al., 2004], and therefore ground-layer

carbon may be a major contributor to the total amount of carbon emissions re-

leased during fires. Ground-layer emissions are especially difficult to quantify,

as the fraction of soil layer consumed is one of the most uncertain parameters

in fire modeling [Kasischke and Bruhwiller , 2002; French et al., 2004]. For

example, recent field studies that measured the depth of burning in Alaskan

fires indicate that current fire models significantly underestimate the degree
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of consumption of surface layer fuels [French et al., 2007].

Burning of peatlands (i.e., sparsely forested lowlands) is another major

source of emissions from fires [Duncan et al., 2003; Turquety et al., 2007].

Peatlands occupy 15–20% of the area of North American boreal regions, and

research in the recent years has shown that they are as susceptible to burning

as are well-drained upland ecosystems [Turetsky et al., 2004].

While CO emissions are greatest during smoldering combustion, NOx

(NO+NO2), a limiting factor for O3 production, is mainly produced dur-

ing the flaming stage of burning [Lobert et al., 1991]. Therefore the emission

ratio of NOx/CO is related to the relative amounts of flaming and smoldering

combustion. Because the NOx/CO ratio (currently highly uncertain) plays

an important role in estimates of NOx emissions and therefore O3 production

[e.g., McKeen et al., 2002; Cook et al., 2007], understanding the processes

affecting its magnitude in fire plumes is of primary importance.

The extent of ground-layer burning in boreal regions increases through the

growing season. Early in the season, soil layers are still frozen or saturated,

and only dry vegetation on the surface is susceptible to burning. However, by

late summer deeper soil layers have dried out and become flammable [Kasis-

chke and Johnstone, 2005; Turetsky et al., 2004]. As burning of ground layers

occurs mostly via smoldering combustion [Miyanishi , 2001], this change in

fuel properties is expected to result in an increase in both total carbon con-

sumption and the relative importance of smoldering combustion, relative to

flaming combustion. In particular, the increase in ground-layer burning dur-

ing the late fire season is expected to drive down the overall emission ratio of

NOx/CO (while increasing the total emissions of CO and possibly NOx).

The aim of this work is to use measurements in boreal fire plumes down-

wind of the source fires to assess the magnitude of this effect. Following emis-

sion, NOx is converted to nitric acid (HNO3), peroxyacetyl nitrate (PAN) and
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other members of the NOy (total reactive nitrogen oxides) family. We there-

fore use ∆NOy/∆CO enhancement ratios in aged boreal fire plumes sampled

during summers of 2004 and 2005 at the Pico Mountain observatory in the

central North Atlantic to constrain NOx/CO emission ratios in the upwind

fires. The Boreal Wildland-Fire Emissions Model (BWEM) [Kasischke et al.,

2005], a current model of boreal fire emissions of CO and NOx, is also ap-

plied, together with the FLEXPART transport model, to estimate emissions

and determine their consistency with the observations.

3.2 Methods

This section starts with the description of the Pico Mountain observatory and

measurements used in this work. The estimation of CO and NOx fire emissions

for the 2004 and 2005 fire seasons using BWEM is described in section 4.3.1,

and use of the FLEXPART transport model to generate time series of CO and

NOx fire tracers at the observatory is described in section 4.3.2. Identification

of fire events and selection of background levels of CO and NOy are described

in sections 3.2.4 and 3.2.5.

3.2.1 Pico Mountain station and measurements

The Pico Mountain observatory is located on the summit caldera of Pico

Mountain in the Azores Islands (Portugal) in the central North Atlantic Ocean

(38.78◦N, 28.67◦W). The observatory is frequently impacted by air from high-

latitude regions, often without downwind transport over anthropogenic source

regions [Honrath et al., 2004]. It is therefore well suited to study the outflow

from North American and Siberian boreal wildfires. The observatory’s alti-

tude (2225 m) is well above the marine boundary layer (MBL) during summer
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[Kleissl et al., 2007] and the impact of island pollution on measurements is

negligible [Kleissl et al., 2007; Val Mart́ın et al., 2006].

CO was determined using a non-dispersive infrared absorption instrument

(a modified Thermo Environmental, Inc., Model 48C-TL), calibrated daily

with standards referenced to the NOAA Global Monitoring Division standard

[Novelli et al., 2003]. CO data were recorded as one-minute averages, and were

further averaged to obtain the 30-min averages used in this work. Additional

details on the instrument and calibration methods are provided in the works

of Honrath et al. [2004] and Owen et al. [2006].

NO, NO2 and NOy were determined by an automated NOx,y system devel-

oped at Michigan Technological University, using established techniques: NO

detection by O3 chemiluminescence, NO2 by conversion to NO via ultraviolet

photodissociation and NOy by Au-catalyzed reduction to NO in the presence

of CO. Measurements were recorded as 30-s averages (NO and NO2) and 20-s

averages (NOy) every 10 min, and were averaged to obtain the 30-min aver-

ages used here. A detailed description of the system can be found elsewhere

[Val Martin et al., 2006; Val Martin et al., Seasonal variation of nitrogen

oxides in the central North Atlantic lower free troposphere, submitted to J.

Geophys. Res., 2007].

To ensure that NOy observations were representative of air in the sur-

rounding FT, we have excluded from this analysis (1) all periods potentially

affected by upslope flow of MBL air [Kleissl et al., 2007], (2) measurements

made during low to calm winds (wind speed < 2 m/s), to avoid including NOy

observations with potential for HNO3 to be removed on the mountain surface,

and (3) measurements with high ambient variability, to avoid including nitro-

gen oxides resulting from volcanic emissions, sometimes observed at this site

under near-calm conditions [Val Mart́ın et al., 2006]. For this purpose, peri-

ods with high ambient variability were defined as in the work of Val Mart́ın
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et al. [2006].

3.2.2 Boreal Wildland-Fire Emissions Model

BWEM is a model specifically developed to calculate emissions from boreal

fires in the high-latitude regions of the Northern Hemisphere. The main

feature that distinguishes BWEM from other wildland fire emissions models

is its explicit consideration of surface organic layer consumption, which is a

major contributor to fire emissions in boreal regions.

Emissions were estimated separately for burning of aboveground vegeta-

tion and burning of the surface organic layer. There is no peatland cat-

egory, although the deeper surface organic material and lower aboveground

biomass of peatlands are accounted for by the forest inventory and soil carbon

database used in the model [Kasischke et al., 2005]. For aboveground vege-

tation, BWEM employs a standard bottom-up approach, in which emission

factors of CO and other species are applied to the estimated fuel consumption.

To estimate emissions from ground layer consumption, BWEM accounts for

variation in the depth of burning according to the month of burning and fire

type (surface or crown) and for variations in carbon density of the surface

layer.

The potential carbon emissions (i.e., carbon emissions released if burn-

ing takes place) from burning of aboveground vegetation, Cp a(t), and of the

ground layer, Cp g(t), are calculated as follows:

Cp a(t) = Bafc aFb aβa(t) (3.1)

and

Cp g(t) =

∫ db(t)

0

Cg(x)dx, (3.2)

where Ba is aboveground carbon density, fc a represents the biomass carbon

content (fc a = 0.45), Fb a is the biomass fraction available for burning, βa(t) is
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the fractional fuel consumption (a function of biomass density and fire type),

Cg(x) is the carbon density of the surface organic layer as a function of depth,

x, and db(t) is the depth of burning.

Crown and surface fires are considered separately by the BWEM, and the

prevalence of crown fires increases from 70% of area burned early in the fire

season (before 1 June) to 90% of area burned after 1 August. Crown fires

consume more aboveground vegetation (have high βa(t)) and the depth of

ground-layer burning is also higher, because they typically burn in drier con-

ditions compared to surface fires. The depth of burning was varied seasonally

within BWEM by using different values of db(t) for early (before 1 June), mid-

season (1 June–31 July) and late (August and later) fires. Late-season fires

have values of db(t) twice those of fires earlier in the season (1 June–31 July).

As a result of these assumptions, greater carbon emissions (i.e., emissions of

CO2, CO, hydrocarbons and carbonaceous particles) are generated by fires

occurring later in the growing season [Kasischke et al., 2005].

In the BWEM as applied in this work, the ratio of flaming to smoldering

was 80:20 for aboveground biomass and 20:80 for the surface organic layer.

Potential emissions of other species can be obtained from potential carbon

estimates using emission factors relative to total carbon as a function of com-

bustion type: EFf , for flaming, and EFs, for smoldering. For CO, we used

the BWEM emission factors: 460 and 190 grams of CO per kilogram of carbon

burned for smoldering and flaming, respectively [Kasischke and Bruhwiller ,

2002]. For NOx, emission factors were selected based on a review of avail-

able literature, as described in section 3.2.2.2 below. Potential emissions were

then combined with estimates of area burned using a geographic information

system (GIS). Emissions of any species, E(t), were obtained using:

E(t) = A(t){EFf [0.8Cp a(t)+0.2Cp g(t)]+EFs[0.2Cp a(t)+0.8Cp g(t)]}, (3.3)
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where A(t) is the area burned. Early in the season (June–July) an overall

smoldering/flaming ratio in the model is 1.3, on average, and later in the sea-

son it is 2.0, as the prevalence of smoldering increases due to higher levels of

fuel consumption in surface organic layers. This results in enhanced emissions

(per unit fuel combusted) of compounds with larger emission factors for smol-

dering combustion (e.g., CO and hydrocarbons) and reduced emissions (per

unit fuel combusted) of flaming combustion products (e.g., NOx). NOx/CO

emission ratios drop correspondingly (see section 4.5.2).

Burned area and fire locations for Alaska were obtained from the Alaska

Fire Service [Kasischke et al., 2002]. For Canada, burned area was obtained

from the Canadian Forest Service (http://cfs.nrcan.gc.ca/regions/nofc). Be-

cause these data were available at the provincial level only, fire locations were

determined from MODIS hot spots. Information on the temporal distribution

of the fires in both regions was obtained from MODIS hot spot data. Despite

incomplete information due to satellite coverage limitations, this approach has

been shown to adequately represent day-to-day variability in emissions time

series for atmospheric modeling applications [Hyer et al., 2007a; Roy et al.,

2007].

Emissions were calculated on a 1◦ × 1◦ grid, on a daily basis and assum-

ing typical burning conditions (moderate severity scenario) [Kasischke et al.,

2005]. A more detailed description of the model can be found in the work of

Kasischke et al. [2005].

3.2.2.1 Fires in Siberia

The emissions simulated by BWEM and used in this work include North

American emissions only. Large areas burn every year in Siberia (approxi-

mately three times those in North America, on average [Soja et al., 2007]).

Although Siberian fire emissions can impact the Pico Mountain measurement



29

site [Honrath et al., 2004; Lapina et al., 2006], such impacts have been reported

during exceptionally large fire years (i.e., 2003). The impact of Siberian emis-

sions at the Pico Mountain station during 2004 is expected to be small relative

to the North American fires, as 2004 was a low-fire year in Siberia. 2005 was a

relatively high-fire year for Siberia [Soja et al., 2007]. Therefore, it is possible

that some impact of Siberian emissions was present during the summer 2005.

However, during time periods affected by fires from both source regions, we

expect the impact of North American fires to be larger due to their relative

proximity to the observatory. Hence, the fire periods discussed below, selected

based on North American fire impacts, are expected to be characteristic of

North American fires.

3.2.2.2 NOx emission factors

Daily NOx fire emissions were obtained using equation (3), which requires

knowledge of NOx emission factors. NOx is a flaming-stage compound [Lobert

et al., 1991] and is produced in smaller amounts during smoldering combus-

tion, as laboratory studies have shown [Yokelson et al., 1997]. The combus-

tion temperatures in biomass fires are insufficient for significant conversion

of atmospheric N2 to NOx [Andreae, 2004]. Hence, NOx emissions reflect the

nitrogen content of the fuel, which is considered to be relatively low in boreal

vegetation [Wofsy et al., 1992]. This, and the fact that a large fraction of

biomass in the boreal fires is consumed via smoldering combustion, result in

lower NOx emission factors for boreal fires compared to fires in other regions.

However, currently there are few field observations of NOx from boreal fires

available, and the existing emission factors exhibit large variability, making

the modeling of NOx emissions a challenging task.

Goode et al. [2000] performed field measurements of NOx emission factors

from boreal wildfires in Alaska. They reported an average emission factor
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(which includes fire observations made by Nance et al. [1993]) of 1.54 grams

NOx as NO per kilogram fuel burned. In the units reported in this work this

corresponds to 3.42 grams NOx as NO per kilogram carbon burned. The mea-

sured fires were predominantly flaming crown and surface fires, and emission

factors for predominantly smoldering fires, such as peat fires, are expected to

be lower.

While many studies use a single NOx emission factor that incorporates

both smoldering and flaming combustion processes [Andreae and Merlet , 2001],

we took advantage of BWEM’s ability to allocate emissions by combustion

type. To obtain emission factors for the flaming and smoldering stages of

combustion, we referred to laboratory measurements, reported by Yokelson

et al. [1996], because the field studies report only fire-integrated estimates. We

chose the emission factors for smoldering and flaming combustion obtained

for fuel described as “broadcast” by Yokelson et al. [1996], 0.0656 NO and

0.0189 NO2 for flaming combustion and 0.0167 NO and 0.0019 NO2 for smol-

dering combustion, in units of moles per kilogram fuel. These correspond to

EFf = 5.64 and EFs = 1.24 (g NOx as NO per kilogram carbon) for flaming

and smoldering combustion, respectively. The broadcast fuel was made up

of a mixture of decomposing organic matter, pine needles, twigs, and wood.

To test whether the selected values of EFf and EFs are reasonable, we input

them into BWEM under the average fuel consumption scenario to derive fire-

integrated emission factors. The derived estimates were in a good agreement

(within 25%) with the field observations [Goode et al., 2000].

Based on the selected emission factors, the NOx/CO emission ratio for

purely smoldering combustion in the model was 3×10−3 mol mol−1, while the

emission ratio for purely flaming combustion was 28× 10−3 mol mol−1. This

results in NOx/CO emission ratios of 18× 10−3 mol mol−1 for aboveground

vegetation and 5× 10−3 mol mol−1 for the surface organic layer.
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3.2.3 FLEXPART simulations

The Lagrangian particle dispersion model FLEXPART [Stohl et al., 2005] was

used to calculate mixing ratios of CO and NOx tracers at the Pico Mountain

observatory resulting from the BWEM-estimated fire emissions, to assess the

potential impact of wet deposition on nitrogen oxides levels in the fire plumes

and to evaluate emissions injection height scenarios. FLEXPART (version 6.2)

was driven with data from the European Centre for Medium Range Weather

Forecasts (ECMWF) [ECMWF , 2005] with a 1◦ × 1◦ horizontal resolution,

61 vertical levels and a temporal resolution of 3 hours, using meteorological

analysis at 0000, 0600, 1200, and 1800 UTC, and ECMWF 3-hr forecasts at

intermediate times (0300, 0900, 1500, 2100 UTC).

Forward FLEXPART runs were used to simulate the advection and disper-

sion of fire emissions tracers. These results were used to analyze the vertical

distribution of emissions. Particles representing fire emissions were released

over 3-hour intervals above the locations of active fires, at altitudes deter-

mined by the height scenarios (see section 3.2.3.1). The number of particles

released into each grid cell was scaled by the mass of emissions in each grid cell.

Particles were dropped from the simulation after 20 days and were conserved

up to that time. Thus, the simulations model only enhancements caused by

fire emissions over the previous 20 days.

Backward FLEXPART simulations (i.e., retroplumes) were used to calcu-

late mixing ratios of fire tracers at the measurement site and to determine

the transport pathways of air before arriving at the observatory. Retroplumes

were initiated every three hours using 4,000 particles released over a 1-hour

time interval into a 1◦ × 1◦ grid box centered on the observatory, over an

altitude range of 2000–2500 m asl. Particles were followed backward in time

for 20 days. In order to account for differences in air density between the
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release cell and upwind sources, the upwind residence times of the particles

were normalized by the local air density. Normalized particle residence times

were convolved with North American boreal fire CO emissions (section 4.3.1)

according to the technique described by Seibert and Frank [2004] to obtain

CO fire tracer mixing ratios at the Pico Mountain station, COBBT
. Emis-

sions were convolved with the retroplumes from the surface layer up to the

maximum injection height of emissions. The same approach was employed

to obtain simulations of NOxBBT
, an inert tracer representing NOx fire emis-

sions. Since particles are tagged with their release times, the travel time of

air sampled at the observatory can be estimated.

To identify periods when anthropogenic impacts were significant (in or-

der to omit these periods from the analyses presented below), we performed

FLEXPART simulations of anthropogenic tracers. Anthropogenic tracers rep-

resenting North American, European, and Asian emissions, were obtained in

a manner similar to the fire tracers, except that emissions were convolved with

the retroplumes in the footprint layer only (0–300 m). All three sources had

significant impacts, although North American emissions were dominant. An-

thropogenic emissions were based on the EDGAR 3.2 Fast Track 2000 dataset

[Olivier and Berdowski , 2001] with 1◦ resolution.

3.2.3.1 Injection height of fire emissions

The injection height plays an important role in the fate of fire emissions, as it

influences their long-range transport and lifetime. It is affected by numerous

factors, which include not only fire characteristics (e.g., intensity and type)

but also meteorological conditions present at the time of burning [Trentmann

et al., 2006; Luderer et al., 2006].

Because of this complex behavior, we selected an arbitrary scenario, consis-

tent with our understanding of processes that affect fire injection height in the
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boreal regions. In this scenario, emissions were released between the surface

and 7.5 km with a constant mixing ratio throughout the column. This choice

is consistent with limited field observations and was based on the results of

other recent boreal fire modeling studies, most of which have distributed emis-

sions with constant mixing ratio between the surface and a selected maximum

height [Damoah et al., 2006; Pfister et al., 2005; Stohl et al., 2006; Cook et al.,

2007]. For example, Cook et al. [2007] distributed emissions from surface up

to 10 km, while Stohl et al. [2006] injected emissions into the lowest 3 km of

the model atmosphere. Hyer et al. [2007a] found that emissions injected by

constant mixing ratio through the tropospheric column or injected into the

midtroposhere (∼500 hPa) resulted in the best agreement with MOPITT ob-

servations. An alternative approach is to distribute emissions within selected

layers of the modeled atmosphere to account for significant contributions from

a particular fire type. For example, to simulate large contributions from peat

fires, Turquety et al. [2007] released 40% of the emissions into the boundary

layer (with the remaining 60% evenly divided between the middle and upper

troposphere), while Generoso et al. [2007] implemented a scheme in which

the fraction of total emissions increased with height up to a maximum level

(which varied from 3 to 6.5 km), similar to the impact of convection gen-

erated by intense crown fires. Turquety et al. [2007] performed a sensitivity

study of chemical transport model simulations of the 2004 North American

fires, which showed that at least half of the emissions needed to be injected

above the model boundary layer to match MOPITT CO data. By choosing a

maximum injection height of 7.5 km, we place a major fraction of emissions

(about 70%) above the boundary layer.

The 2004 North American fires were also studied by Mazzoni et al. [2007]

who determined the injection heights of individual fire plumes using satel-

lite data and found somewhat lower numbers, with a maximum height of
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5.2 km and a mean of 2.4 km. However, these results may be biased by inher-

ent limitations of the spaceborne sensor, including exclusion of cloudy pixels

and undersampling due to the infrequent overpasses. For example, no pyro-

convective events lofting emissions to the upper troposphere or lower strato-

sphere [Fromm and Servanckx , 2003; Jost et al., 2004; Fromm et al., 2005]

were observed, while such occurrences were documented in 2004 [Damoah

et al., 2006].

For comparison purposes, an additional run in which all emissions were

injected into the lowest layer of the model (0–300 m) was also conducted. In all

cases the model was run with the FLEXPART convective scheme turned on.

Previous work has demonstrated the effectiveness of this scheme to transport

emissions as high as the stratosphere for specific extreme events, even when a

relatively low initial injection height (3 km) was used [Damoah et al., 2006]. As

will be discussed below (section 3.3.4), the comparison between these two runs

showed that simulations employing a 7.5 km maximum injection height best

reproduced the observations at the Pico Mountain observatory, indicating the

importance of placing a significant fraction of emissions above the boundary

layer. The higher release height also resulted in faster model transport and

reduced wet removal (section 3.2.3.2). However, the choice of injection height

was not critical for the conclusions presented below, as the choice of fire

periods and modeled NOx to CO enhancement ratios did not significantly

change when the 300 m injection height simulations were used instead.

3.2.3.2 Assessment of wet removal

To compare the fire-affected periods in terms of the amount of precipitation

during transport to the Pico Mountain observatory, which may have affected

NOy levels, we performed a “wet” run, in which NOxBBT
underwent wet

removal in the model. As the emphasis was on a plume-to-plume comparison,
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rather than accurate modeling of NOy deposition, and since interconversion

among NOy species is not modeled in FLEXPART, a simplified method was

employed.

FLEXPART allows the choice of species and their first-order physico-

chemical parameters in the modeling of wet deposition, which takes the form

of an exponential decay process during precipitation [Stohl et al., 2005]. We

applied the default NO2 wet scavenging parameters, provided in FLEXPART,

to all NOy in the model, and computed removal that would have occurred

if all NOy were scavenged as is NO2. These simulations are defined as

NOxBBw . NO2 was chosen because of its moderate removal efficiency. The

results are presented below in terms of fWET , the fraction of NOx tracer re-

moved in the wet run, relative to the NOxBBT
(inert tracer) simulation (i.e.,

(NOxBBT
−NOxBBw)/NOxBBT

). While fWET is not meant to be an accurate

estimate of wet deposition of NOy in the fire plumes, the calculated values are

instructive as an indication of the relative importance of precipitation among

the events analyzed.

Runs performed using 300 m and 7.5 km release heights showed similar

event-to-event differences, although the lower release height resulted in higher

NOxBBT
removed (fWET in the range of 0.45–0.85, with the mean value of

0.55, compared to the range of 0.26–0.70 and the mean value of 0.41 for the

base run). This higher removal was a result of the longer residence time

of emissions in the boundary layer during transport to Pico. Also, as no

wet removal was assumed to occur in the initial step when emissions were

injected up to 7.5 km, fWET in this run can be underestimated if there were

precipitation in the fire cloud.
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3.2.4 Fire-affected events selection

Fire-affected time periods were identified on the basis of high CO observa-

tions and enhanced FLEXPART CO fire tracer. CO was considered to be

high when the 30-min average mixing ratio exceeded the estimated boreal

CO background (section 3.2.5) by at least 5 ppbv. For a high-CO period to

be considered a fire-affected event, the presence of fire emissions had to be

confirmed by elevated COBBT
mixing ratios and COBBT

had to exceed an-

thropogenic CO tracers during the event period or within ± 6 hours. In this

way we limited our analysis to periods affected predominantly by fire emis-

sions. We excluded periods when high relative humidity (above 96%) was

observed at the observatory, as such conditions favor removal of the nitric

acid component of NOy thus potentially biasing the ∆NOy/∆CO analysis.

When averaging model results for the fire-affected periods, the start and

end of each event were adjusted by up to ±6 hours relative to the original

start and end of the event, in order to maximize the average COBBT
over

the period of same length. This was done in order to account for errors in

transport modeling, e.g. periods when the model simulated an event a few

hours earlier or later than it occurred in reality.

3.2.5 Estimation of background levels and enhancement

ratios

Enhancement ratios of NOy for the fire-affected periods are presented be-

low (section 3.3.5). Enhancement ratios of NOy (∆NOy/∆CO) were calcu-

lated by averaging ∆NOy and ∆CO for each period and taking their ratios,

where ∆NOy and ∆CO are defined as enhancements over the background lev-

els of these species. Enhancement ratios depend critically on the background
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values used. Therefore, the remainder of this section discusses the estimation

of the background levels for the fire-affected periods.

To estimate the CO background values in the boreal fire plumes,

we averaged CO monthly observations at two boreal stations, Alert

and Barrow. These CO measurements are made by the NOAA Earth

System Research Laboratory, Global Monitoring Division (available at

http://www.esrl.noaa.gov/gmd), and are screened for non-background values.

We obtained daily varying CO boreal backgrounds by linearly interpolating

between the monthly values. Responding to a seasonal change in OH con-

centrations, CO background levels drop sharply from June to July and then

increase slowly in the late summer. Since this seasonal process continues to

affect air during its transport to the Pico Mountain observatory, the effective

CO boreal background is different from the one when the airmass left the

source region (approximately 10 days prior, on average). To account for this

change, we used boreal background values corresponding to the day the mea-

surements were made. CO background values obtained in this way ranged

from 87 to 97 ppbv for the studied time periods, with the mean of 92 ppbv.

To assess whether these background values are reasonable, we compared

them to CO mixing ratios observed during boreal outflow in the absence

of fires. We identified three such periods prior to the start of large fires:

0500–0900 UTC June 7, 2004, 0800–1900 UTC June 19, 2004, and 0530–1200

UTC May 31, 2005. Model simulations indicated near-zero fire impact during

these times. The difference between the estimated background levels and the

mean observed CO mixing ratios in boreal outflow without the presence of

fire emissions was not significant, less than 8 ppbv. This estimation may be

an upper limit on the potential bias of the background calculation as this

comparison was obtained during the late spring/early summer season when

ambient CO levels undergo fast transition due to a sharp rise in OH levels.
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For the NOy background, we used the mean mixing ratio observed at the

Pico Mountain station during the same periods (except the period on June 19,

when NOy measurements were unavailable). The resulting NOy background

mixing ratios were 139 ppbv for 2004 and 214 ppbv for 2005. These mixing

ratios were close to the lowest values observed during the fire-affected periods.

During most events, ∆NOy was only weakly sensitive to uncertainty in these

background values, since NOy enhancements in the fire plumes were usually

large. For example, a 25% change in the presumed NOy backgrounds would

result in a 13% change of ∆NOy on average, and would not significantly affect

the results presented below.

3.3 Results and Discussion

We start this section with the discussion of the generated CO fire inven-

tory and its comparison to other existing inventories. Next, simulated fire

NOx/CO emission ratios are discussed in the context of measurements and

modeling studies (section 4.5.2). Fire tracers at the Pico Mountain station are

compared with observations during the fire-affected periods for two injection

height scenarios in sections 3.3.3 and 3.3.4. Finally, the variability in observed

∆NOy/∆CO enhancement ratios is used to assess the presence of seasonality

in NOx/CO emission ratios from fires.

3.3.1 BWEM CO emissions estimates

Figures 3.1a and b present the calculated daily emissions of CO from boreal

fires in North America for the summers of 2004 and 2005. These seasons

were the largest and third-largest on record in Alaska, respectively (Cen-

ter for International Disaster Information, www.cidi.org/wildfire). Large

areas were also burned in Canada (National Forestry Database Program,
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Figure 3.1 Estimated emissions from North American boreal fires during the summers of 2004
and 2005, derived with BWEM (solid lines) for CO (a and b, in units of Tg day−1) and NOx (c and
d, in units of Tg N day−1). The prior CO emissions estimate of Pfister et al. [2005] is plotted for
comparison (dotted line in part a)..

http://nfdp.ccfm.org/compendium/fires), thus making 2004 and 2005 large

fire years in boreal North America [Pfister et al., 2005; Stohl et al., 2006; Tur-

quety et al., 2007; Soja et al., 2007]. Here we compare our CO inventory for

Alaskan and Canadian wildfires with other existing inventories, and discuss

the reasons for observed differences.

Two other independent CO emission inventories were developed for the

2004 North American boreal fire season. Pfister et al. [2005] used an inverse

modeling approach to constrain 2004 fire CO emissions using MOPITT obser-

vations and MOZART chemical transport model simulations. They applied

a weekly adjustment to their a priori emissions estimate, which resulted in

more than a twofold increase in the total summer emissions. Another inven-

tory for the 2004 fires was developed by Turquety et al. [2007], who used a

bottom-up approach with emphasis on the large deduced contribution of peat

burning. Although these approaches differed, both inventories resulted in an

estimate of 30 Tg CO released from Alaskan and Canadian fires over 2004
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summer season, with Pfister et al. [2005] reporting an uncertainty of ±5 Tg

CO. We obtained a somewhat higher estimate of 37 Tg CO using BWEM.

(For comparison, anthropogenic CO emissions for the entire continental U.S.

during the same period were approximately 25 Tg CO [Pfister et al., 2005]).

In addition, there are significant differences in the timing of these emissions.

For example, while all three inventories predict large peaks in CO emissions

at the end of June and throughout July, BWEM emissions stay high through-

out August (Figure 3.1a). A decrease in burned area in August resulted in

the decline in emissions in the previous inventories, while the higher August

emissions in BWEM are the result of accounting for deeper burning of the

organic soil layer in late summer.

Turquety et al. [2007] introduced a linearly increasing daily scaling factor

(ranging from 0.67 on 1 June to 1.33 on 31 August) to account for an increase

in peat fuel consumption due to drying as summer progressed. However, no

such increase was applied to the burning of surface organic layer in the upland

forests. Consequently, their late-season estimates are likely too low. Pfister

et al. [2005] noticed that their adjustment to the a priori emissions increased

as summertime advanced. They suggested a further thawing of surface layers

and intensifying peat fires as a possible explanation for this increase. However,

their a posteriori August CO emissions were still significantly lower (by 11 Tg)

than the BWEM-estimated emissions for the same time period. To further

investigate this difference, we used FLEXPART simulations (section 4.3.2)

of the vertical distribution of fire emissions over the region and time period

used for inversion by Pfister et al. [2005]. On average, 30% of the CO mass

in the studied region was present below 2 km, where MOPITT’s sensitivity

is low. This number increased to more than 50% for the run with emissions

injected within the lowest 300 m. Provided a late-season increase in smol-

dering emissions is associated with much of emissions to be released near the
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ground, this change may therefore have contributed to an underestimation of

total CO by the MOPITT-based inversion. (For a discussion of the effects of

MOPITT vertical sensitivity on estimated source magnitudes, see the work of

Hyer et al. [2007b]). However, smoldering emissions, the production of which

is expected to increase in the late summer, do not necessarily originate from

the low-intensity ground fires, typically characterized by low injection height,

but they can be a result of more frequent high-energy crown fires in the late

season [Kasischke et al., 2005]. Therefore, although changes in the injection

height of emissions are possible, there is not enough information available at

present to draw conclusions regarding the nature of these changes.

A more detailed intercomparison of CO inventories, which would account

for differences in methodologies (including, for example, the fact that each

inventory used different sources for burned areas) is beyond the scope of this

work. Current methods used for building fire emission inventories have very

large uncertainties, making it challenging to find the best estimate.

We are not aware of any other existing inventories for 2005 boreal fire sea-

son available for comparison with this work. Fire activity in North American

boreal regions during 2005 was lower than in 2004, and we derived 23.5 Tg

CO for the total summer 2005 emissions.

3.3.2 NOx emissions and NOx/CO emission ratios

We estimated total NOx emitted from the North American boreal fires during

the summers of 2004 (Figure 3.1c) and 2005 (Figure 3.1d) as 0.145 Tg N and

0.088 Tg N, respectively.

Daily fire NOx/CO emission ratios were calculated by dividing total NOx

fire emissions by total CO fire emissions for that day. Emission ratios de-

pend on multiple model parameters, which include the depth of burning,
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Figure 3.2 Comparison of measurements with modeled fire tracers during the fire event on August
1–3, 2004, for (a) CO and (b) NOy. Measurements (black), modeled fire tracer (dashed line) and
North American anthropogenic CO tracer (dotted line in a) are shown. Horizontal lines show the
average values for the event. Vertical lines indicate the beginning and end of the actual event (solid
lines) and of the period corresponding to the modeled event in the FLEXPART (dashed lines). The
right axis is offset so that zero tracer mixing ratio is aligned with the estimated boreal background..



43

allocation of flaming/smoldering, and choice of emission factors for CO and

NOx. The average emission ratio dropped from 9× 10−3 mol mol−1 in June

and July to 7 × 10−3 mol mol−1 in August, with the summer average of

8 × 10−3 mol mol−1, for both 2004 and 2005. The drop in the emission ra-

tio in August is a result of the increase in the amount of organic soil layer

consumed later in the burning season, as described above (section 4.3.1).

Although previous boreal fire emission inventories have not considered

a seasonal decline in NOx/CO emission ratios, their ratios are in general

agreement with the BWEM seasonal-average value. For example, Cook et al.

[2007] selected 8 × 10−3 mol mol−1 as the optimal NOx/CO emission ra-

tio for their model to best match the aircraft and satellite observations of

the 2004 Alaskan and Canadian fire plumes in July. McKeen et al. [2002]

reported ∆NOy/∆CO observations of 7 × 10−3 mol mol−1 in late June in

North American fire plumes less than 50 hours old and used this number as a

reasonable fit for the emission ratio in their model simulations. Observations

of fresh (less than one day old) Alaskan fire plumes by Wofsy et al. [1992] give

a lower value, 5.6× 10−3 mol mol−1, which the authors suggested may have

indicated smoldering tundra fires as the source. Goode et al. [2000] sampled

air over the Alaskan fires in the late June and measured NOx/CO ratio of

18 × 10−3 mol mol−1. The same value was obtained by Wofsy et al. [1994]

who sampled fire-affected air masses in NE Canada from the middle to late

July. These high numbers were likely the result of predominantly flaming

nature of sampled fires.
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3.3.3 Fire-affected periods and comparison of model to

observations

Twelve fire-affected periods satisfying the criteria described in section 3.2.4

were identified: seven events in 2004 and five events in 2005 (see Table 1 for

the start and end times of the events). NOy levels were significantly enhanced

in all selected periods. (The 2004 periods selected here are nearly identical to

those previously identified by Val Mart́ın et al. [2006].)

The majority of the fire plumes observed at the Pico Mountain station

have a finely detailed structure, characterized by short-term variability in CO

and NOy that is typically not reproduced by the FLEXPART simulations.

An example of this is shown in Figure 3.2. (For additional examples of mea-

surements obtained during the fire-affected periods and time periods in the

absence of fire emissions, see Figures 1 and 3 in the work of Val Mart́ın et al.

[2006].) However, averaging over the events’ duration leads to a reasonably

good agreement between the observations and simulated tracers. Scatter plots

of the mean FLEXPART tracer mixing ratios for each event versus the event-

mean CO and NOy enhancements are shown in Figure 3.3. FLEXPART gen-

erally captured the timing and relative magnitudes of the fire events (r = 0.76

and r = 0.89 for CO and NOy, respectively). The better correlation for NOy

was likely the result of reduced sensitivity to variability in the background,

as discussed in section 3.2.5.

The regression slopes are 1.1 for CO and 1.3 for NOy. The slopes were

calculated using the geometric mean (reduced major axis) two-sided regression

technique [Ayers , 2001; Draper and Smith, 1998]. To use these slopes to

evaluate the consistency of the measurements with the BWEM emissions, it

is necessary to consider the fact that losses during transport to the station

are possible. For CO, loss of less than 20% by reaction with OH is expected
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over the 7–15 day transport period, if OH concentrations in the fire plumes

are low as was concluded by de Gouw et al. [2006] ([OH]=4.5 × 105 cm−3).

This would produce a tracer/observed enhancement slope of ≤1.25, if the

emissions inventory and transport model were accurate. The regression slope

of 1.1 thus indicates rather good agreement.

For NOy, significant removal is expected, mainly via wet scavenging of

HNO3 and therefore a slope significantly greater than unity is expected. For

anthropogenic emissions, a majority of NOy (> 80%) is typically lost before or

during transport out of the boundary layer [Stohl et al., 2002; Parrish et al.,

2004; Li et al., 2004; Hudman et al., 2007]. The fraction of NOy from the fires

that is lost may be significantly lower, however, for several reasons [Val Mart́ın

et al., 2006]. First, PAN/HNO3 ratios in boreal fire plumes are larger than

those in typical anthropogenic source regions, due to lower NOx/NMHC emis-

sion ratios and cooler temperatures [Jacob et al., 1992; Mauzerall et al., 1998;

Mason et al., 2001]. For example, the airborne measurements of the North

American fire plumes over the eastern U.S. determined that more than half

of the NOy in the plumes was in the form of PAN. Nitric acid and aerosol

nitrate were also significantly elevated, while NOx concentrations were low

[Singh et al., 2007]. Since PAN is not effectively removed by wet deposition,

this is expected to increase NOy transport efficiency. Second, rapid convec-

tion associated with large fires may result in relatively ineffective removal of

soluble species—for example, relatively significant amounts of black carbon

particles can survive such uplift [Stohl et al., 2006]. Third, convection-induced

injection into the cold FT leads to a long lifetime for PAN, which can then

be transported long distances [Singh et al., 2007; Cook et al., 2007]. Finally,

dry conditions during transport in the FT can also lead to inefficient removal

of nitric acid.

Since the magnitude of NOy loss during lofting and transport to the Pico
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Figure 3.3 Scatter plot of simulated tracer mixing ratios against observed enhancements, averaged
over each event: (a) COBBT versus ∆CO and (b) NOxBBT versus ∆NOy. Fire events (Table 1) are
coded as shown in the legend..

Mountain station is not known, it is not possible to quantitatively evaluate

the NOy regression slope. The slope of 1.3 is consistent with ∼25% loss, and

suggests that either NOy loss was low and of that approximate magnitude, or

loss was greater but NOx emissions were underestimated.

3.3.4 Impact of emission injection height

To determine the sensitivity of the simulations to the emissions injection

height, we compared the standard FLEXPART simulation results to those

from the run in which all emissions were released within the lowest 300 m

layer. The correlation of the resulting tracer simulations was significantly

worse than in the base run (Figure 3.3): the correlation coefficient dropped

by more than 30% for both species and the regression slopes dropped by nearly

40%. Hence, use of the low maximum release height resulted in underestima-

tion of mixing ratios at the Pico Mountain station. While this comparison

to the Pico Mountain observations alone is insufficient to constrain the mag-
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nitude and injection height of all emissions [Leung et al., 2007], these results

support the conclusions of previous research that releasing emissions above the

boundary layer is important for adequate modeling of boreal fires [Turquety

et al., 2007; Hyer et al., 2007b].

To determine whether there is a relationship between the magnitude of

∆CO observed at the observatory and the initial injection height, we di-

vided fire-affected periods into two groups: high-CO events, characterized

by ∆CO > 60 ppbv (three events total), and moderate-CO events, with

∆CO < 30 ppbv (a group of six events). We compared the ratios of modeled

to observed CO enhancements (COBBT
/∆CO) for these groups, using both

simulations (300 m and 7.5 km injection height). Average COBBT
/∆CO for

high-CO events dropped from 0.8 (for the 7.5 km simulations) to 0.4 (for the

300 m simulations), while no change was observed for moderate-CO events

(with the average COBBT
/∆CO of 0.6 for both runs). These results imply

that high-CO events at the Pico Mountain observatory resulted from large,

intense fires that injected emissions well above the boundary layer. Injection

of emissions at higher altitude likely led to a shorter travel time and, possibly,

to less dilution of CO during transport.

3.3.5 NOxBBT
/COBBT

vs ∆NOy/∆CO

The tracers mixing ratios, NOxBBT
and COBBT

, have uncertainties resulting

from both transport modeling errors and errors associated with the emissions

estimation. In the remainder of this paper, we analyze enhancement ratios,

observed and simulated, in order to minimize the effects of uncertainties in

the transport simulations, and focus on the consistency of the observations

with estimated emission ratios.

The tracer ratios (NOxBBT
/COBBT

) are presented in Figure 3.4a (black
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asterisks) by day of year. These simulated enhancement ratios are somewhat

higher in the early summer season (8.5× 10−3 mol mol−1 in June–July) com-

pared to the late summer season (7.3× 10−3 mol mol−1 from August to early

September) as a result of the increased smoldering combustion simulated in

August, and are very similar (within 5%) to the spatially-averaged NOx/CO

emission ratios, since the species are treated as conserved tracers. Measured

NOy enhancement ratios (∆NOy/∆CO) are also shown in Figure 3.4a (solid

symbols). While the measured ratios follow a similar pattern, they exhibit

more scatter and a larger decline in August than NOxBBT
/COBBT

.

To assess the consistency of the observations with the model,

we computed the ratio of observed to modeled enhancement ratios

(∆NOy/∆CO)/(NOxBBT
/COBBT

). If CO were treated as conserved and

the modeled emissions are correct, the deviation of this ratio from

unity would indicate the degree of NOy loss between emission and sam-

pling. The mean ratio between observed and modeled enhancement ratios,

(∆NOy/∆CO)/(NOxBBT
/COBBT

), dropped from 0.90 in June–July to 0.50 in

August. If the emissions were correct, this would indicate NOy loss of about

10% in June–July and about 50% in August. Although the magnitude of

NOy loss after emission is poorly characterized, it is very likely that the loss

is significantly greater than 10%, as discussed in section 3.3.3. This implies

that the modeled NOx/CO emission ratio is an underestimate, at least in the

early season, and therefore that the NOx emission factors are too low, the CO

emission factors are too high, or the ratio of flaming to smoldering is too low

in the early season.

The increased scatter in the measurements, relative to the simulated

NOxBBT
/COBBT

, may be due to fire-to-fire variability in emissions and in-

jection height not captured by the model, and/or varying degrees of NOy

removal during transport. The impact of wet removal is analyzed further in
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the next section, followed by a discussion of the seasonal ∆NOy/∆CO decline.

3.3.6 Impact of removal on ∆NOy/∆CO

To test whether the observed scatter in ∆NOy/∆CO is a result of varying

degrees of removal of nitric acid from the fire plumes during their multi-day

transport to the observatory, we used fWET . Figure 3.4b shows fWET by event

as an indicator of potential wet removal. The correlation between fWET and

∆NOy/∆CO was low (r = −0.38). Based on this, we conclude that most

of the scatter in ∆NOy/∆CO apparent in Figure 3.4a was not the result of

varying NOy removal, but was most likely the result of a fire-to-fire variability

in emissions and/or initial NOy export efficiency during lofting into the FT

near or above the fires.

3.3.7 NOx/CO seasonal trend

The decline in ∆NOy/∆CO observed during the late fire season is consistent

with expectations based on an increase in the relative importance of smol-

dering combustion, as discussed in section 4.3.1. To quantify the magnitude

of this decline, we first divided the fire plumes into early- and late-summer

subsets. These subsets were divided using the late-season start day used by

BWEM (1 August), and taking into account that the shortest transport time

from fire source regions to the observatory is 7 days, as modeled by FLEX-

PART. Therefore, all measurements made at the Pico Mountain observatory

prior to 8 August were included into the early-summer subset, and the mea-

surements made after that date constitute the late-summer subset. Although

this division is somewhat arbitrary, it is consistent with the decline in the ob-

served ratios. One event was located on the border between these subsets, on

8 August. This event also had the largest wet removal value (fWET =0.7). Al-
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Figure 3.4 (a) Measured and modeled enhancement ratios during the fire-affected periods at the
Pico Mountain observatory, in units of ×10−3 mol mol−1. Shown are NOxBBT /COBBT , simulated
without wet removal (asterisks), and measured ∆NOy/∆CO enhancement ratios (coded as shown
in Figure 3.3). Solid lines represent early- and late-summer averages of ∆NOy/∆CO ± 2 standard
error of the mean. (b) fWET , an indicator of wet-removed fraction..

though ∆NOy/∆CO during this event was similar to that in the late-summer

events, this event was excluded from further analysis.

The mean ∆NOy/∆CO ratios for the early and late summer subsets

are plotted on Figure 3.4 using solid lines. We employed a non-parametric

Wilcoxon Sum-rank test and a two-sample t-test to test for differences between

two means. The early- and late-summer means are significantly different

(α=0.01), with significantly higher values in the early-summer subset (7.3×

10−3 mol mol−1) relative to the late-summer subset (2.8× 10−3 mol mol−1).
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3.4 Conclusions

Using ∆NOy/∆CO enhancement ratios observed in aged fire plumes, this

work presents the first evidence of a seasonal trend in NOx/CO emission ra-

tios from boreal fires, with higher values in early summer and lower values in

late summer. This trend is consistent with our understanding of the seasonal

progression of boreal fire activity, in particular an increase in the amount of

fuel consumed by smoldering combustion later in the growing season due to

deeper burning of the drier surface layer fuels. This change in burning prop-

erties affects the relative proportions of species released from fires, leading to

enhanced emissions of compounds with larger emission factors for smoldering

combustion and reduced emissions of flaming combustion products. A major

growth in overall fuel consumption in the late summer is also expected, due to

higher levels of fuel consumption in surface organic layers. These changes are

not accounted for in prior inventories of boreal forest fire NOx emissions, but

they can result in considerable differences in estimated emissions and, hence,

are expected to significantly affect the results of modeled ozone production

rates.

Tracer transport simulations of CO and NOx emissions from fires were in

reasonably good agreement with the measurements. The NOx emission fac-

tors used in this work represent the best information currently available in

the published literature. However, comparison of simulated NOxBBT
/COBBT

with ∆NOy/∆CO in the aged fire plumes suggests that NOxBBT
/COBBT

ratios were underestimated in the early season. This indicates that either

NOx emission factors were underestimated, CO emission factors were overes-

timated, the model’s ratio of flaming to smoldering combustion in the early

season was too low, or a combination of these errors was present. The sea-

sonal trend in this disagreement favors the third cause, which would imply



52

Table 3.1 Boreal wildfire events observed at the Pico Mountain station.

Event number Start time End time

1 June 25 07:30, 2005 June 27 01:00, 2005

2 June 29 21:20, 2005 July 1 09:30, 2005

3 July 17 21:30, 2004 July 18 07:10, 2004

4 July 22 13:30, 2004 July 23 11:00, 2004

5 July 25 07:15, 2004 July 25 23:30, 2004

6 July 31 06:30, 2004 July 31 13:00, 2004

7 August 1 16:00, 2004 August 3 06:30, 2004

8 August 7 22:30, 2004 August 8 12:00, 2004

9 August 11 23:00, 2005 August 13 16:00, 2005

10 August 20 08:30, 2005 August 21 20:30, 2005

11 August 22 15:00, 2005 August 23 11:00, 2005

12 September 1 08:30, 2004 September 2 18:00, 2004

that the magnitude of the seasonal drop in emission ratios from boreal fires

might be even larger than simulated. The inability of the model to simulate

the observed drop indicates that further research on the depth of ground-

layer burning in the boreal regions and on boreal fire NOx emission factors is

needed.

High ∆NOy/∆CO enhancement ratios measured at the Pico Mountain

observatory and the poor correlation of these ratios with fWET , an indicator

of wet removal, implies efficient lofting and transport of NOy from boreal fires.

There was a better agreement between measurements and simulated mix-

ing ratios when emissions were released up to 7.5 km compared to the case

when the maximum injection height of 300 m was used, implying the impor-

tance of pyro-convection in the boreal region. The presumed injection height

was most important for the events with the highest ∆CO, pointing to large

intense fires as their source.
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There is evidence of an increase in area burned in boreal regions in recent

years, and further increases are predicted [Flannigan et al., 2005; Kasischke

and Turetsky , 2006; Soja et al., 2007]. In addition, deeper seasonal thawing

of permafrost and increased depth of burning are predicted [Kasischke and

Turetsky , 2006]. The results presented here indicate that this would further

shift the relative amounts of species emitted during flaming and smoldering

combustion and increase total emissions with implications for atmospheric

impacts.



Chapter 4

Observing boreal wildfire

impacts on HCHO and NO2

from space†

4.1 Introduction

In recent years, the impact of boreal wildfires on atmospheric composition

has received increased attention [e.g., Wotawa et al., 2001; Novelli et al.,

2003; Jaffe et al., 2004; Pfister et al., 2005; Lapina et al., 2006; Stohl et al.,

2006]. In addition to being a major source of CO [Edwards et al., 2004;

Yurganov et al., 2004; Kasischke et al., 2005], measurements in fire plumes

and modeling studies have confirmed that boreal fires are an important source

of ozone precursors, i.e., VOCs and NOx (NO + NO2) [Goode et al., 2000;

‡This chapter is based on material to be submitted, with minor changes, as K. Lapina, R.

Honrath, R. C. Owen, A. Richter, F. Wittrock, E. Hyer and J. Burrows (2009), Observing

boreal wildfire impacts on HCHO and NO2 from space, J. Geophys. Res.

54
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Val Mart́ın et al., 2006; de Gouw et al., 2006; Pfister et al., 2006; Real et al.,

2007; Verma et al., 2009], resulting in significant ozone impacts [Jaffe et al.,

2004; Simmonds et al., 2005; Lapina et al., 2006].

Building emission inventories for fires in boreal regions is a challenging

task due to large uncertainties in fuel availability and consumption [French

et al., 2007] and variability in fire burning properties. Estimating production

of secondary compounds from fire emissions, such as formaldehyde (HCHO),

is further complicated by uncertainties in the complex chemical mechanisms

of VOC oxidation [de Gouw et al., 2006; Mason et al., 2006]. HCHO from

biomass burning is an important source of HOx radicals, which control the

oxidizing capacity of the atmosphere [Lee et al., 1998], and contributes to

ozone formation in the presence of NOx [Seinfeld and Pandis , 1998]. Large

amounts of HCHO are released by fires directly [Lee et al., 1997] and formed

downwind from fire-emitted VOCs (which include oxygenated compounds,

such as methanol) [Stavrakou et al., 2009]. Because HCHO is produced as an

intermediate during the oxidation of VOCs emitted from fires, its high con-

centrations can serve as an important tracer of recent photochemical activity

in fire plumes [Fried et al., 2008].

While methane oxidation is the main source of formaldehyde in the remote

atmosphere, biomass burning and biogenic emissions control HCHO levels

near source regions [Marbach et al., 2005; Wittrock et al., 2006], and space-

based HCHO data can be used to constrain these emissions [Palmer et al.,

2003; Meyer-Arnek et al., 2005; Palmer et al., 2006; Millet et al., 2008]. En-

hanced HCHO is commonly observed by satellites over fire regions [W.Thomas

et al., 1998; Wittrock , 2006; Marbach et al., 2005; Meyer-Arnek et al., 2005;

Spichtinger et al., 2004; Fu et al., 2007; De Smedt et al., 2008], and studies

over boreal fires in Siberia and North America showed that HCHO was well-

correlated with the locations of the fire hot spots [Wittrock , 2006; Spichtinger
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et al., 2004].

Large post-emission increases in HCHO were previously observed in field

studies [Yokelson et al., 2003, 2009], especially in the plumes processed by

clouds, due to heterogeneous methanol loss [Tabazadeh et al., 2004]. VOC ox-

idation in fire plumes is initiated by reaction with OH, and eventually leads to

the production of HCHO for most compounds. This secondary production can

sustain enhanced HCHO in the fire plumes for many hours or days after release

from fires [Stavrakou et al., 2009]. Thus, despite the relatively short HCHO

lifetime of several hours at midday, Fried et al. [2008] observed high HCHO

concentrations in an Alaskan plume 3–4 days old during the INTEX-NA cam-

paign off the coast of North America. Stavrakou et al. [2009] estimated that

directly released HCHO contributes only 14% to the total HCHO production

over the first day since emission, by which time half of the total HCHO that

will be produced from these emissions has been formed. They based their

estimate on model simulations which included an explicit speciation profile of

VOCs released from fires. They went further to compare modeled annually

averaged HCHO columns with SCIAMACHY data, but boreal fire regions

were excluded from the analysis due to the poor model agreement and high

noise.

Fires are also an important source of NOx and can be a major contribu-

tor to NO2 columns in regions with low impact of anthropogenic emissions,

such as the tropics [Boersma et al., 2008]. NOx emissions per unit carbon

consumed are lower from boreal fires compared to fires in other regions, due

to the lower nitrogen content of the fuel and a higher fraction of smolder-

ing combustion [Lobert et al., 1991; Wofsy et al., 1992]. Despite this, large

wildfires in boreal North America have been shown to be responsible for sig-

nificant impacts on the summer distribution of nitrogen oxides observations

in the remote atmosphere over the central North Atlantic [Val Mart́ın et al.,



57

2006, 2008]. Elevated NO2 tropospheric columns were occasionally observed

by OMI over Siberian fires in 2006 [Verma et al., 2009] and by GOME over

Canadian fires in 1998 [Spichtinger et al., 2001]. While the signal from the

latter was not detectable on a seasonal basis, enhanced NO2 columns, aver-

aged from July to August, were distinguishable over the area with the most

intense fires in Siberia [Spichtinger et al., 2004]. This implies that the strength

of the produced NO2 signal depends on fire properties and/or spatial distri-

bution. Dependence of the tropospheric NO2 signal on the type of fire was

further confirmed by Marbach et al. [2005], who used a combination of HCHO

and NO2 measurements from GOME to study global biomass burning in the

summer of 1997. They found that while monthly HCHO columns were consis-

tently correlated with fire counts from the Along Track Scanning Radiometer

(ATSR), only grassland fires resulted in enhanced tropospheric NO2 amounts.

In this work, we use HCHO and NO2 tropospheric columns from SCIA-

MACHY to assess the impact of fires on the atmospheric burdens of these

species in the Alaskan and Canadian regions. Our study is performed for the

summer of 2004, which was a large fire season in boreal North America and

the largest on record in Alaska (Center for International Disaster Information,

www.cidi.org/wildfire). Another objective of this work was to improve our un-

derstanding of secondary HCHO production occurring in the fire plumes and

to compare its magnitude to direct HCHO fire emissions.

4.2 SCIAMACHY measurements

SCIAMACHY HCHO and NO2 tropospheric columns used in this study are

the products of the University of Bremen. SCIAMACHY is an absorption

spectrometer covering the spectral range from the ultraviolet to the near in-

frared. It was launched on ENVISAT in 2002 and has an equator crossing
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time of 10 AM local time. Scan width in the nadir view is 960 km and global

coverage is achieved within 6 days. The ground pixel size is 30 km × 60

km for NO2 and 60 km × 120 km for HCHO and only ground scenes having

less than 20 percent cloud cover are considered. To estimate slant columns,

the Differential Optical Absorption Spectroscopy (DOAS) method is applied

in the spectral region of 334–348 nm for HCHO and 425–450 nm for NO2.

Stratospheric correction for NO2 was performed using the reference sector

method, i.e., measurements from a clean air region (140–180W) were sub-

tracted from the slant column at each latitude prior to conversion to vertical

columns. In order to compensate for the offsets introduced by solar refer-

ence measurements [Richter and Burrows , 2002], the slant HCHO columns

were normalized to the mean background value of 3.5× 1015 molec cm−2 over

the 150–180W reference sector. More details on retrieval technique and error

analysis are given in the works of Wittrock [2006] and Richter et al. [2005].

Due to the sparse coverage of SCIAMACHY observations (see Figures A.1,

A.2, A.3, A.4 and Figure A.5 in the Appendix A), 5-day composites were used

in this study. HCHO and NO2 data were gridded at a 1-degree resolution and

each grid cell with at least one pixel over the 5-day period was assigned the

mean value of all pixels in that cell. A total of eighteen composites were

analyzed in this work, with the earliest 5-day period centered on June 3 and

the latest on August 27. SCIAMACHY data were analyzed for the region

extending from 180W to 90W and from 55N to 70N, covering a major portion

of the North American boreal region.
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4.3 Modeling transport of fire emissions

4.3.1 The Boreal Wildland-Fire Emissions Model

BWEM [Kasischke et al., 2005] was used to estimate HCHO primary emis-

sions (emissions directly released during biomass burning). This model was

specifically developed to calculate emissions from boreal fires and it explicitly

considers surface organic layer consumption, which is a major contributor to

fire emissions in boreal regions.

Emissions in the model are estimated separately for burning of above-

ground vegetation (at a ratio of 80% flaming/20% smoldering) and the surface

organic layer (at a ratio of 20% flaming/80% smoldering). The depth of sur-

face layer burning during the late season (August) is twice the depth during

the early season (June–July), resulting in an increase in emissions, especially

for smoldering compounds [Lapina et al., 2008]. Emissions of NOx and HCHO

were calculated by applying emission factors (EF) to carbon emissions sepa-

rately in flaming (EFf ) and smoldering (EFs) categories. Field studies report

only fire-integrated estimates of emission factors. Therefore we derived EFf

and EFs to match the fire-integrated EF of 1.85 ± 0.38 g HCHO/kg C re-

ported for the Alaskan wildfires in late June by Goode et al. [2000]. By using

the typical ratio of EFs to EFf of 2 for HCHO (based on the laboratory

measurements by Yokelson et al. [1996]), and assuming the overall fuel con-

sumption breakdown of 43% flaming/57% smoldering in June predicted by

BWEM, we derived EFf = 2.6 and EFs = 5.3 g HCHO/kg C burned.

Emission factors for NOx were selected as described in work by Lapina

et al. [2008]. We used EFf = 5.64 and EFs = 1.24 (g NOx as NO per

kilogram carbon).

Emissions were calculated on a 1◦ × 1◦ grid, on a daily basis. Burned

area and fire locations for Alaska were obtained from the Alaska Fire Service
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[Kasischke et al., 2002]. For Canada, burned area was obtained from the

Canadian Forest Service (http://cfs.nrcan.gc.ca/regions/nofc). Because these

data were available at the provincial level only, fire locations were determined

from MODIS hot spots. Information on the temporal distribution of the fires

in both regions was obtained from MODIS hot spot data. In a recent paper,

we showed that BWEM CO emission estimates for the North American boreal

fires in 2004 and 2005 were in good agreement with CO observations in the

fire plumes 7–15 days downwind [Lapina et al., 2008]. More information on

BWEM can be found elsewhere [Kasischke et al., 2005].

4.3.2 FLEXPART simulations

The Lagrangian particle dispersion model FLEXPART [Stohl et al., 2005] was

used to simulate the advection and dispersion of BWEM-estimated emissions

of HCHO and NOx, treated as inert tracers in the model. These simulations

were used to remove the effect of transport on calculated HCHO and NO2

burdens by analyzing burdens within transported plume regions, identified as

described in section 4.3.3. Model results were also used to quantify the mass

of emissions over selected locations and to distinguish between fresh and more

aged emissions for calculations of HCHO burden due to directly released fire

emissions.

Particles representing fire emissions were released on a daily basis above

the locations of active fires, between the surface and 7.5 km with a constant

mixing ratio throughout the column, as described by Lapina et al. [2008].

Forward FLEXPART runs (version 6.2) were driven with data from the Eu-

ropean Centre for Medium Range Weather Forecasts (ECMWF) [European

Centre for Medium-Range Weather Forecasts, 2005] with a 1◦× 1◦ horizontal

resolution, 61 vertical levels and a temporal resolution of 3 hours, using me-
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teorological analyses at 0000, 0600, 1200, and 1800 UTC, and ECMWF 3-h

forecasts at intermediate times (0300, 0900, 1500, 2100 UTC). The number

of particles released into each grid cell was scaled by the mass of emissions in

that cell.

At every location, the tracer concentration was modeled as a sum of the

contributions of transported fire emissions released (emitted) upwind at ear-

lier times, at 6-h resolution. These separate contributions grouped by the

upwind release time are referred to as the age spectrum. The model only sim-

ulates tracer concentrations caused by fire emissions not older than the longest

upwind time stored in the model, i.e., the maximum age of the tracer, after

which particles were dropped from the simulation. The choice of the max-

imum age for the fire tracers, thcho and tnox , is described in sections 4.3.2.1

and 4.3.2.2.

We used FLEXPART output at 18 UTC, the mean SCIAMACHY over-

pass time in the study region, which corresponds to 10 AM in Alaska. For

a meaningful comparison of model to satellite observations it is necessary to

take into account the presence of a large number of missing values in the

SCIAMACHY data. Using FLEXPART as a tool to model the downwind

locations of the transported emissions, we sampled FLEXPART tracer maps

for each day only at the locations where SCIAMACHY measurements were

available on that day. The resulting daily maps were then combined to obtain

5-day FLEXPART composites used in this work. These FLEXPART compos-

ites thus include values at the same locations and times as were included in

the SCIAMACHY 5-day composites described in section 4.2. FLEXPART

maps generated in this way were in better agreement with satellite observa-

tions than the maps obtained by averaging 5 days of simulations at every grid

cell, based on a visual examination.
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4.3.2.1 Maximum age of tracer for HCHO analysis

One of the objectives of this work was to investigate the timescale over which

the impact of fires on HCHO columns remains significant. This timescale is

not well defined, as in addition to being directly released from fires, HCHO can

be produced through secondary production in the plumes, as discussed in more

detail in section 4.4.1.3. To simulate fire impacts on HCHO, the maximum

age of the HCHO tracer needs to be set equal to the typical maximum age

of fire plumes maintaining high HCHO levels. This age was determined by

analyzing SCIAMACHY HCHO columns together with transport simulations

of fire emissions.

The maximum age of the tracer was varied between 24 and 72 hours, with

a 12-h resolution. For each simulation, we analyzed FLEXPART composite

maps to assess how well they matched SCIAMACHY observations. This was

done based on a visual examination and by using values of the Pearson coef-

ficients, R, for spatial correlation between the modeled and observed HCHO

column maps on a 1◦ × 1◦ grid. This analysis was conducted only for the pe-

riods with high fire activity, defined as 5-day periods with mean daily HCHO

emissions exceeding 4 Gg. First, we analyzed how well each simulation re-

produced the location of the enhanced HCHO levels downwind of fires. A

maximum age of 24 hours was found to be insufficient for most cases, as these

simulations failed to reproduce high HCHO present at locations further away

from the sources. However, 72-h simulations often overstretched the plumes’

extent to locations where the satellite data showed HCHO columns reduced to

background levels. Improved spatial correlation between the model and SCIA-

MACHY HCHO maps was confirmed by the correlation analysis. The average

value of R increased from 0.47 to 0.55, when thcho was increased from 24 to 48

hours. Simulations using a larger values of thcho did not result in further im-
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Figure 4.1 An example 5-day composite (July 11–July 15, 2004) of FLEXPART HCHO tracer
simulations (center) and HCHO SCIAMACHY columns (right). Left: mean 5-day HCHO emissions
over the fire locations released over the 48-hour period prior to the SCIAMACHY overpass. The
plume region defined based on high values of the fire HCHO tracer (see text for description) is
hatched in black. White areas inside the study region indicate either zero fire tracer concentrations
(for FLEXPART) or missing satellite observations (for both SCIAMACHY and FLEXPART).

provement. (R remained below 0.56 for thcho as large as 72 hours.) Although

a single maximum age did not produce the best match for all composites, we

picked the value that showed the best agreement for most composites and set

thcho equal to 48 hours for the final analysis. As the lifetime of HCHO is only

a few hours, the presence of high HCHO levels at locations more than a day

downwind demonstrates the importance of secondary HCHO formation from

oxidation of the fire-emitted VOCs.

4.3.2.2 Maximum age of tracer for NO2 analysis

To study the impact of fires on NO2 levels and to model transport of the NOx

fire emissions, we took into account that NOx is directly released from fires

and its lifetime is on the order of few hours. We selected a maximum age

for the NOx tracer of 6 hours, with this value being a typical lifetime of NOx

oxidation against HNO3 at these latitudes [Martin et al., 2003]. Although it

is possible for NOx to last longer, especially if the plumes are lifted above

the boundary layer, we found no evidence of enhanced NO2 in SCIAMACHY

maps at the transport distance of greater than 6 hours away which could be

linked to the fire source.
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4.3.3 Determining plume regions

FLEXPART simulations with the final values of thcho and tnox were used to

locate plume regions for the analysis of fire impact on HCHO and NO2 levels

downwind. Each of the FLEXPART 5-day composite maps was analyzed

separately to define locations of transported emissions for that time period,

i.e., the plume region. Plume regions were identified based on the presence

of high levels of simulated fire tracer columns. Two separate plume regions

were identified for each 5-day composite, one for NO2 and one for HCHO.

For HCHO, a grid cell was defined as being part of a plume if the value of

the fire HCHO tracer exceeded 1.0 × 1016 molec cm−2. Using this criterion,

the average value of corresponding SCIAMACHY cells in each 5-day compos-

ite varied between 2.6× 1015 molec cm−2 and 2.1× 1016 molec cm−2 with an

overall average of 1.3×1016 molec cm−2, which is higher than 90% of all sum-

mer HCHO values in the study region, confirming that we selected locations

within fire plumes with greatly enhanced HCHO levels. An example of a se-

lected plume region is shown in Figure 4.1. We evaluated the accuracy of the

FLEXPART simulations by including an additional 2-degree buffer around

the identified plume locations, and comparing the results for the case when

no buffer was added. The addition of the buffer had no effect on the results of

analysis presented in this work and, therefore, the results below are presented

for the plume area without the buffer.

To define plume regions for the NO2 analysis, a grid cell was defined

as being part of the plume if the FLEXPART NOx tracer exceeded 5.0 ×

1015 molec cm−2. By using this criterion combined with a choice of a shorter

maximum residence time for the NOx tracer, i.e., tnox of 6 hours, we identified

only regions over the fires and immediately downwind where the impact of

fires on NO2 levels is likely to be the strongest. The mean NO2 value for the se-
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lected grid cells in each 5-day composite varied between 1.0×1014 molec cm−2

and 1.2× 1015 molec cm−2, with an overall average of 5.0× 1014 molec cm−2,

which corresponds to the 80th percentile of all summer NO2 values in the

study region.

The fire tracer cutoffs used to identify fire plumes were somewhat arbitrary,

but the selected locations were not sensitive to the moderate changes in the

values used (within ±20%). Higher cutoffs produced plume areas of smaller

size and, in the case of HCHO, appeared to exclude multiple grid cells with

enhanced HCHO downwind of fires.

4.4 Burden in fire plumes

We define plume burden as the total mass of HCHO or NO2 contained in the

plume region, calculated as

B = f
∑

i

aiCi, (4.1)

where B is the burden (in Gg), ai is area of the grid cell i, Ci is a SCIAMACHY

or FLEXPART-derived tropospheric column value (molec cm−2) in cell i, and

f is a unit conversion factor.

4.4.1 Contributions to the HCHO burden in fire plumes

The total HCHO burden in the plume, B, can be separated into the burden

enhancement due to fires, and the background burden —Bbk, the burden that

would be present in the absence of fires. Fire burden is composed of the

burden contributed by the directly released HCHO emissions, Bdirect, and the

burden resulting from secondary HCHO production from precursors emitted

from fires, Bsecondary. Therefore, the total HCHO burden can be expressed as
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B = Bbk + Bdirect + Bsecondary (4.2)

Bdirect can be estimated using the FLEXPART transport simulations of HCHO

emissions and information on HCHO destruction as described in section 4.4.1.2

below. Knowing B, Bbk and Bdirect, we can deduce the burden resulting from

secondary HCHO production, Bsecondary.

4.4.1.1 Background HCHO burden

Bbk was estimated by determining the HCHO burden corresponding to an

area of the same size as each plume, but not containing fire emissions. The

impact of fire emissions in a grid cell was considered to be minimal if the level

of FLEXPART-simulated HCHO tracer was below 1.0 × 1014 molec cm−2.

This threshold was sufficiently low to select locations at a significant distance

away from the fire sources that were not contaminated by fire emissions,

as was evident from their low levels in SCIAMACHY HCHO maps. (The

value of Bbk, as calculated here, reflects the combination of the true HCHO

background, originating from the presence of VOCs from non-fire sources,

e.g., methane and biogenic emissions, and bias in the satellite data.)

The analysis was performed for the summer, when biogenic emissions of

isoprene are at their maximum and contribute to the HCHO budget in the

study region. To test for the evidence of a HCHO signal due to isoprene, which

could interfere with our estimation of Bbk, we used estimates of isoprene fluxes

for the summer of 2004 (Colette Heald, Colorado State University, personal

communication, 2009). The fluxes were simulated with a global chemical

transport model (GEOS-Chem, version 7.04) using the MEGAN (Model of

Emissions of Gases and Aerosols from Nature) version 2 model [Guenther

et al., 2006]. We selected five HCHO composites during periods when fire
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emissions were low and the SCIAMACHY HCHO signal from fires was min-

imal (periods centered on June 3, June 8, June 13, July 3 and August 2).

Next, we selected the region where GEOS-Chem predicted enhanced isoprene

emissions (greater than 6× 1011 atoms C cm−2 sec−1 in July) and an area of

similar size (approximately 13◦ × 4◦) with low isoprene emissions (less than

2×1011 atoms C cm−2 sec−1 in July; see Figure A.6 in the Appendix A). The

mean HCHO columns in the regions with high and low isoprene emissions

were not significantly different (with the mean HCHO column in the region

with low isoprene emissions even exceeding the mean HCHO column with

high isoprene emissions for three periods), implying that impact of isoprene

on HCHO columns was within the noise level of the SCIAMACHY data (see

Table A.1 and Figure A.7 in the Appendix A).

Out of all the background locations in each 5-day composite, we selected

300 grid cells and divided their HCHO burden by the total area. The result-

ing value (background burden per unit area) was multiplied by the area of

the plume to obtain the Bbk value for that composite. The grid cells were

selected randomly. (HCHO levels outside of the fire plumes were relatively

homogeneous and there was no evidence of major HCHO sources in the study

area other than fires.) HCHO columns for the background cells exhibited vari-

ability due to noise in the SCIAMACHY data, but the standard error of the

obtained mean was relatively low due to the large number of grid cells used

for averaging (Figure 4.2). On several occasions the background is negative,

implying a negative bias for these periods in the retrieved columns, likely as

a result of the correction for offset error performed during retrieval.

4.4.1.2 Burden due to direct HCHO emissions

To estimate Bdirect we reduced the contributions of emitted HCHO according

to the HCHO destruction rate constant, using the FLEXPART age spectra to
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Figure 4.2 Mean HCHO tropospheric background column for each of the 5-day HCHO composites.
The standard error of the mean is shown with solid vertical lines, and the 25th and 75th percentiles
of the HCHO columns in the background grid cells are indicated with the dotted lines .



69

define the distribution of times since emission [Parrish et al., 2007; Honrath

et al., 2008]. Thus, the contribution of emissions released at time tE to the

total HCHO concentration at the time of measurement, tM , can be expressed

as

[A]tE = [A]0,tE exp(−k′∆t), (4.3)

where [A]0,tE is the concentration increment that the emissions would have

contributed in the absence of removal, k′ is the mean value of the diurnally-

varying rate constant for pseudo-first order HCHO loss between tE and tM ,

which describes the main HCHO removal mechanisms (the reaction with OH

and photolysis [Fried et al., 2008]), and ∆t is the time since emission.

The total burden in grid cell j can be obtained by summing up the incre-

mental contributions over all values of ∆t between the SCIAMACHY overpass

time and up to several e-folding time periods earlier:

Bdirectj =

tM∑
tM−∞

[A]0,tE exp(−k′∆t) (4.4)

Because of the dependence of k′ on sunlight, we calculated a diurnal profile

of k′, which varied between a maximum daytime value k′max for overhead

conditions and zero during night. k′max was selected based on estimates of

the column-averaged τ (with τ defined as 1/k′) at overhead conditions, which

range from 1.5 to 3 hours [Macdonald et al., 2001; Palmer et al., 2003; Wittrock

et al., 2006; De Smedt et al., 2008]. Here we report results using this range

to reflect the associated uncertainty.

For the τ values adopted here, only primary emissions released within

the last 18–24 hours made a significant contribution to the HCHO burden,

while HCHO released 24 to 48 hours upwind decayed to negligible levels (with

contributions of less than 0.5% for a τ of 1.5 hours and less than 5% for a τ

of 3 hours) by the time of the satellite overpass.
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4.4.1.3 Burden due to secondary HCHO

The burden of secondary HCHO, Bsecondary, is estimated by subtracting Bdirect

and Bbk from the total burden B, calculated from the SCIAMACHY data.

Precise estimation of the amount of secondary HCHO produced would require

knowledge of the lifetimes and relative emission rates of the VOCs that con-

tribute to secondary HCHO formation, as well as information on atmospheric

levels of OH and NOx [Stavrakou et al., 2009], and is beyond the scope of

this work. However, an approximate estimate can be obtained by assuming

that the ratio of burden to HCHO emitted or produced is the same for both

primary and secondary HCHO, hence,

Esecondary = Edirect(Bsecondary/Bdirect), (4.5)

where Edirect is the total primary HCHO emissions contributing to the region.

The sum of Esecondary and Edirect gives a lower limit estimate of the total

amount of HCHO from fires, as we consider secondary production only within

the first 48 hours after the release of emissions.

4.4.2 Contributions to the NO2 burden

Similarly to HCHO, the NO2 burden in the fire plumes can be separated into

contributions of several factors, including fires. However, NO2 levels aside

from fires were highly variable, precluding selection of background locations.

As the background contribution in the plumes could not be inferred, we ana-

lyzed the total NO2 plume burden to determine whether fires had a detectable

impact on NO2 tropospheric columns as seen from space.
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4.5 Results and discussion

4.5.1 HCHO and NO2 in the study region

To learn about the factors controlling the variability of HCHO and NO2 in the

study region, we first visually compared 19-day HCHO and NO2 composites

for the periods before and after the start of major fires in the region. (We

chose 19 days as this is the length of the period in June before the start of

fires.) The top row of Figure 4.3 presents early- to mid-June composites for

the period prior to the start of the main fire season. HCHO columns during

this period were generally very low. However, there are highly enhanced

NO2 column densities in the northeastern part of the region, indicating the

presence of the non-fire sources of NOx. As fire activity increased later in

the summer (Figure 4.3, lower rows), widespread HCHO enhancements in

the region of active fires became apparent. For NO2, the relationship is less

obvious: highly enhanced NO2 columns were seen over the fire locations in late

June/early July, but not over the August fires; during late July and August,

high NO2 was present over the southeastern part of the region, away from

fires, implying that fires were not the dominant source of NOx in the region.

Visual analysis of the 5-day SCIAMACHY composite maps further demon-

strated that areas of highly enhanced HCHO were closely collocated with the

locations of transported FLEXPART fire tracer. NO2 data, on the other

hand, did not exhibit a consistent response to fires: enhancement over the

fire locations was present only occasionally.

4.5.2 Modeling HCHO plume locations

FLEXPART identified plumes on thirteen out of eighteen 5-day composites.

The locations of the modeled plumes agreed well with the locations of en-
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Figure 4.3 19-day composites of HCHO (left), NO2 (center) and BWEM CO emissions over the
fire locations (right) for four periods in 2004. From the top: June 1–June 19, June 20–July 8,
July 9–July 27, July 28–August 15. The black border in the image on the right indicates the study
region analyzed in this work.
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Figure 4.4 5-day-average daily BWEM emissions of HCHO in the study region (solid line) and the
corresponding fraction of HCHO tracer mass contained within the plume area in the FLEXPART
5-day composites (dashed line).

hanced SCIAMACHY HCHO columns on all but two 5-day periods. The

exceptions were the plumes for the periods centered on August 7 and August

27, when the model missed the locations of elevated HCHO, possibly due to

the errors in the fire emissions inventory. Of the five composites in which

FLEXPART identified no plumes, three were in early June, prior to the start

of large fires. Low SCIAMACHY HCHO columns confirmed the absence of

fire signal for four out of these five periods, with some moderately enhanced

HCHO present for the fifth period. Hence, the emissions and transport mod-

els performed well overall, and simulations agreed with observations on fifteen

out of eighteen periods.

Figure 4.4 shows daily emissions of primary HCHO released from fires

calculated by BWEM and the fraction of these total emissions that is present

in the analyzed plumes. It is apparent that during the periods with high

fire activity most of the HCHO mass (that is, at least 50%, and more than
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70% for the nine composites with greater than 14 Gg) is contained within

the plume region. (Zero mass indicates periods when no plume regions were

identified due to low fire emissions.) The spatial correlation between the

modeled and observed HCHO column maps was significant (R > 0.55) for

each composite with high fire activity (with the exceptions of the periods

centered on August 7 and August 27, as described above), indicating that the

FLEXPART model and BWEM inventory generally performed well in terms

of the plume locations and relative magnitude of the emissions.

4.5.3 Impact of fires on the HCHO burden

Figure 4.5 presents the fire burdens in the transported fire plumes in each

5-day composite. The correlation between the SCIAMACHY-estimated bur-

dens (B − Bbk, solid black line) and the total HCHO fire emissions released

over the 48-hour period preceding the measurement and transported with

the fire plume (Edirect, dotted black line), was high (R=0.91), implying that

fires greatly affected HCHO levels over the plume regions. The total HCHO

burden in the fire plumes (B, red dashed line) also tracked the variations

in Edirect relatively well (R=0.82), consistent with the expectation that fires

were the major source of variability in the SCIAMACHY HCHO columns in

the identified plume regions. The background burden in the plumes, Bbk, (not

shown on the plot) was not correlated with Edirect.

The blue line with error bars in Figure 4.5 shows Bdirect, the burden contri-

bution due to directly released HCHO emissions, calculated using equation 4.4

with two different estimates of k′max. These values differed by a factor of 1.5.

The significant difference between the fire burden (B − Bbk, solid black line)

and Bdirect indicates a considerable contribution of secondary HCHO pro-

duction. The mean ratio of the burden attributed to secondary production
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Figure 4.5 HCHO burdens in the identified fire plumes in each 5-day composite: the total HCHO
burden calculated from SCIAMACHY HCHO composite maps (B, red dashed line), the HCHO fire
burden (B−Bbk, black solid line), and HCHO burden from primary emissions, Bdirect (blue line with
error bars for two different values of k′max used in calculation). Total emissions contributing to the
fire plumes, Edirect, is shown with the black dotted line. Burdens are shown only for the periods
with identified fire plumes (that is, 5-day composites with non-zero fraction of tracer mass within the
plume area, as shown in Figure 4.4).

(Bsecondary = B − Bbk − Bdirect) and Bdirect was 0.7 or 1.5, depending on the

choice of k′max used in the calculation. Thus, the contribution of secondary

HCHO production from the oxidation of the fire-emitted VOCs was of a mag-

nitude similar to the contribution of directly emitted HCHO.

Although the relationship between VOC emissions and the mass of HCHO

produced, and the relationship between HCHO produced and the resulting

atmospheric burden, Bsecondary, are complex, Bsecondary was rather well cor-

related to Edirect (R = 0.75, using k′max=1/1.5 hours for the calculation of

Bdirect). This may be explained as a result of the fact that the emissions

of VOCs that contribute to secondary HCHO production are expected to be
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approximately proportional to the emissions of primary HCHO.

It needs to be noted that our calculation of Bdirect may be biased, as our

emissions model did not account for a diurnal cycle in fire activity. Emissions

from boreal fires, similar to other regions [Giglio, 2007; Boersma et al., 2008;

Stavrakou et al., 2009], are likely to be higher in the late afternoon and lower

in the periods of the night and morning hours. The latter are immediately

prior to SCIAMACHY overpass and, hence, are least affected by the removal

and currently contribute most to the estimate of Bdirect (see section 4.4.1.2).

Thus, Stavrakou et al. [2009] found that neglecting the diurnal fire cycle in

their model simulations led to local increases in modeled HCHO columns on

the order of 10%. An overestimation of Bdirect for this reason would imply

that the impact of secondary HCHO production relative to the impact of

directly-released HCHO is even larger than inferred from this analysis.

The BWEM-based amount of directly-released HCHO in the entire study

region is 0.42 ±0.09 Tg. By applying equation 4.5 we estimate that an addi-

tional 0.23–0.76 Tg were formed in the fire plumes, bringing the total amount

of fire HCHO released or produced in the region to 0.6–1.3 Tg. As HCHO

production from the slower oxidizing VOCs continues for days after fires [Fried

et al., 2008; Stavrakou et al., 2009], this range represents a lower limit on the

total fire HCHO.

To compare these numbers to other HCHO sources in the region, we com-

puted total summer HCHO emissions from isoprene over the study region.

Using one-day yields of HCHO molecule per isoprene C reacted of 0.28 for

low-NOx conditions [Dufour et al., 2009], we calculate that the total amount

of HCHO produced from isoprene in the entire study region during summer

of 2004 was 1.6 Tg. This number exceeds the estimate of total HCHO from

fires over the same time period, while above (section 4.4.1.1) we found no de-

tectable signal in SCIAMACHY over the areas with high isoprene emissions.
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To determine whether this result could be due to a difference in column con-

centration such that the more episodic fires produced a stronger signal in the

SCIAMACHY observations, we estimated the average daily mass of HCHO

per unit area in the fire plumes and over the areas of high isoprene emissions

in July. Using a secondary to primary HCHO ratio for fires of 1, we found

that the average estimated daily flux due to isoprene in the high-emissions

area (extending from 124W to 111W and from 57N to 61N, as shown in

Figure A.7 in the Appendix A), 0.46 mg HCHO m−2 hour−1, is compara-

ble to the average estimated daily fire HCHO flux within the fire plumes,

0.50 mg HCHO m−2 hour−1. This result implies that the finding of clear

HCHO enhancements associated with fire emissions, but not over areas of

high expected isoprene emissions, is not due to a lower HCHO flux in the

case of isoprene emissions. We do not yet understand the cause of this dis-

crepancy. It could indicate overestimated isoprene fluxes or, alternatively, it

could indicate that our estimates of fire HCHO impacts are too low.

To determine the impact of fires on HCHO levels outside of the plumes,

we used SCIAMACHY data to compute the total HCHO burden in the entire

study region. The mean ratio of HCHO burden in the fire plumes to the

HCHO burden in the whole region was 0.65. (Because of a large number of

negative values in HCHO data, the total burden for a large region was not

always higher than the burden over a small region.) This, and the fact that

the area of the simulated fire plumes exceeded 10% of the study area on seven

out of thirteen periods, implies a very large fire impact on the HCHO burden

in the whole North American boreal region.



78

4.5.4 Impact of fires on the NO2 burden

Although highly enhanced NO2 columns (1.0× 1015 molec cm−2 and higher)

were occasionally observed over the fire locations, the effect of fires on NO2

levels in the plumes was not as apparent as their impact on HCHO.

The total NO2 burden in the fire plumes was correlated with the mass

of the fire tracer in the plumes (R = 0.57), but this relationship was not as

strong as for the HCHO burden. Conversion of NOx emissions to NOy may

be one of the possible explanations for this result.

NO2 columns in the study region showed issues similar to HCHO, with

several periods having a very large number of negative column amounts. This

was probably due to an incorrect assumption for stratospheric correction,

as the reference sector used was affected by NOx fire emissions over Alaska.

Therefore, it is likely that this issue has further weakened a modest impact

of fires on the NO2 burden.

4.6 Conclusions

Analysis of plumes from the 2004 Alaskan and Canadian fires has shown that

fires dominated the HCHO burden in regions affected by emissions up to 2-

days upwind. By comparing FLEXPART simulations of BWEM-estimated

emissions to SCIAMACHY observations, we concluded that high HCHO lev-

els in the outflow from fires can be sustained for at least 48 hours, due to

continuing secondary production. This production was responsible for an in-

crease in the HCHO burden, with a magnitude at least comparable to that

due to directly emitted HCHO.

Model simulations successfully predicted the locations of transported fire

emissions. Comparisons with SCIAMACHY tropospheric HCHO and NO2
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columns indicate that the BWEM inventory performed well in terms of the

timing and relative magnitude of fires. Fire emissions released over the 48-

hour period prior to the satellite overpass were significantly correlated with

estimates of the HCHO burden due to secondary production from VOCs,

which were constrained by SCIAMACHY HCHO columns. We estimated

that at least 0.6–1.3 Tg of HCHO was added to the atmosphere from the

Alaskan and Canadian fires in 2004. This amount is somewhat lower than es-

timates of HCHO from isoprene in the studied region. However, we were able

to discern no difference in SCIAMACHY HCHO columns when comparing

areas of high isoprene to areas of low isoprene emissions. In contrast, SCIA-

MACHY observed large differences in HCHO columns due to fire emissions.

Therefore, we conclude that fire emissions had larger impact on HCHO tropo-

spheric columns than did isoprene during the extended period of fire activity.

Further studies are needed to quantify HCHO production from isoprene and

fire HCHO in the boreal regions in order to determine the reasons for the

observed discrepancy in the satellite data signal.

While highly elevated NO2 levels were occasionally observed over fire lo-

cations, fires had a relatively moderate impact on the NO2 burden, even in

fresh plumes over and immediately downwind of fire locations. Observations

of highly enhanced NO2 away from the fires imply the presence of other dom-

inant sources of NO2 in the region studied.



Chapter 5

Summary and Conclusions

5.1 Summary and Conclusions

This work produced several major results. First, it demonstrated that O3

levels in the North Atlantic free troposphere are significantly increased when

boreal fire impacts are present. Next, it showed that there is a seasonal trend

in the NOx/CO emission ratio from boreal fires, that is due to the change

in the burning properties of fires taking place in boreal regions. Finally,

it showed that boreal fires dominated the burden of HCHO, an important

ozone precursor, over fire locations and in plumes up to two days old, during

the summer of 2004. These conclusions are presented below in more detail,

followed by a general summary and recommendations for future work.

5.2 Impacts of boreal fires on tropospheric

ozone levels

Analysis of the multi-year O3 and CO measurements in several-day-old plumes

at the Pico Mountain Observatory showed that boreal fires had a major im-

80
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pact on summer distributions of CO and were at least partially responsible

for significant shifts in the summer distributions of O3 in the high-fire years

(2003 and 2004) compared to the low-fire year (2001). The average increase

in ozone levels during the periods affected by fire emissions, compared to the

relatively clean periods, was on the order of 20 ppbv. As the Pico Mountain

Observatory is located thousands of kilometers away from the fire source re-

gions, the magnitude of this impact implies that boreal fires can affect very

large regions in high-fire years. As fires raise the background ozone levels

over the Northern Hemisphere, the number of ozone exceedances is expected

to increase and this will negatively affect the ability of downwind nations to

meet their ozone air quality standards. Summertime ozone levels are likely

to be enhanced even more in the future, as boreal fire activity is amplified by

the changing climate.

5.3 Seasonal trend in the fire NOx/CO emis-

sion ratio

Analysis of the ∆NOy/∆CO enhancement ratios measured in several-days-

old boreal fire plumes at the Pico Mountain Observatory demonstrated the

presence of a significant decreasing seasonal trend in NOx/CO emission ratio

from fires. This trend is consistent with the current understanding that the

relative magnitude of ground burning significantly increases in late summer.

As the ground layer is consumed predominantly via smoldering combustion

and the ratio of CO to NOx is much higher in smoldering than in flaming

fires, this late-season change leads to a drop in the NOx/CO emission ratio.

This finding is an important step in improving the existing boreal fire

emission inventories and it shows that the use of a single NOx/CO emission
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ratio (as is commonly done in atmospheric modeling) introduces a significant

bias in the estimated emissions. This seasonal trend also implies a higher fuel

consumption per unit area burned in late summer, leading to a major overall

increase in fire emissions.

A combination of the BWEM-estimated emissions with the FLEXPART

transport model predicted well the fire impact at the Pico Mountain Obser-

vatory and was in good agreement with the measurements, especially when

the maximum injection height of emissions in the model was increased from

300 m to 7.5 km, implying that most of the observed plumes were lifted high

into the atmosphere, likely as a result of intense crown fires.

5.4 Impacts of fires on HCHO and NO2

A combined analysis of the SCIAMACHY HCHO columns and the FLEX-

PART transport simulations using the BWEM emissions showed that fires

were the dominant source of HCHO in plumes up to two days old. No such

impact was observed for NO2. Observed HCHO columns were larger than

expected from the primary HCHO fire emissions, implying a significant sec-

ondary HCHO production from the fire-released VOCs. While the amount

of HCHO from fire, both emitted and produced, was similar in magnitude to

the HCHO assumed to result from isoprene emissions in the studied region,

the analysis was able to discern no signal from isoprene, which may indicate

a significant shortcoming in the current emission estimates.

5.5 Summary and future research

The evidence presented for the North Atlantic free troposphere region helps to

assess the impact of boreal fires on the chemical environment in the Northern
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Hemisphere in general. By demonstrating a significant impact of boreal fires

on ozone levels, this work results in an improved understanding of the sources

affecting the Northern Hemisphere summer ozone budget. Increase in the

background concentrations of ozone, which is an important greenhouse gas,

over very large regions of the Northern Hemisphere implies a positive feedback

on the climate in boreal region, which has a potential to aggravate the fire

situation even further.

This work also demonstrates the need for further research on quantifying

fuel consumption in the boreal regions, especially the ground fuel, as this

knowledge helps to constrain and improve the fire emission inventories of

ozone precursors, such as NOx, HCHO and CO.

Satellite data analysis used in this work was an important step in quanti-

fying the impacts of fires over the boreal regions. Tropospheric data products

from more recent satellite instruments, such as GOME-2 and OMI, have an

improved spatial and temporal resolution and thus can provide a better pic-

ture of the atmospheric impact of fires. These data should be used in the

future analysis of fire effects over remote boreal regions.

Further monitoring of boreal fire impacts on atmospheric composition is

crucial, as the climate change will lead to an increase in fire activity which

will further affect the background concentrations of atmospheric pollutants.
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F. C. Fehsenfeld, and J. F. Meagher, Ozone production from Canadian wildfires
during June and July of 1995, J. Geophys. Res., 107 , 2002.

Meyer-Arnek, J., A. Ladstatter-Weienmayer, A. Richter, F. Wittrock, and J. P.
Burrows, A study of the trace gas columns of O3, NO2 and HCHO over Africa in
September 1997, Faraday Discuss., 130 , 387–405, 2005.

Millet, D. B., D. J. Jacob, K. F. Boersma, T. M. Fu, T. P. Kurosu, K. Chance,
C. L. Heald, and A. Guenther, Spatial distribution of isoprene emissions from
North America derived from formaldehyde column measurements by the OMI
satellite sensor, J. Geophys. Res., 113 , 2008.

Miyanishi, K., Duff consumption, in Forest fires: behavior and ecological effects,
edited by E. A. Johnson and K. Miyanishi, pp. 437–475, Academic Press, San
Diego, Calif, 2001.

Morris, G. A., et al., Alaskan and Canadian forest fires exacerbate ozone pollution
over Houston, Texas, on 19 and 20 July 2004, J. Geophys. Res., 111 , 2006.

Nance, J. D., P. V. Hobbs, L. F. Radke, and D. E. Ward, Airborne measurements
of gases and particles from an Alaskan wildfire, J. Geophys. Res., 98 , 14,873–
14,882, 1993.



91

Novelli, P. C., K. A. Masarie, P. M. Lang, B. D. Hall, R. C. Myers, and J. W.
Elkins, Reanalysis of tropospheric CO trends: Effects of the 1997-1998 wildfires,
J. Geophys. Res., 108 , 2003.

Olivier, J., and J. Berdowski, Global emissions sources and sinks, in The Climate
System, edited by J. Berdowski, R. R. Guicherit, and B. Heij, vol. 33–78, A.A.
Balkema Publishers / Swets and Zeitlinger Publishers, Lisse, The Netherlands,
2001.

Owen, R., O. Cooper, A. Stohl, and R. Honrath, An analysis of the mechanisms of
transport of North American emissions to the Central North Atlantic, J. Geophys.
Res., 111 , 2006.

Palmer, P., D. Jacob, A. Fiore, R. Martin, K. Chance, and T. Kurosu, Mapping
isoprene emissions over North America using formaldehyde column observations
from space, J. Geophys. Res., 108 , 2003.

Palmer, P. I., et al., Quantifying the seasonal and interannual variability of North
American isoprene emissions using satellite observations of the formaldehyde col-
umn, J. Geophys. Res., 111 , 2006.

Parrish, D. D., A. Stohl, C. Forster, E. L. Atlas, D. R. Blake, P. D. Goldan, W. C.
Kuster, and J. A. de Geow, Effects of mixing on evolution of hydrocarbon ratios
in the troposphere, J. Geophys. Res., 112 , 2007.

Parrish, D. D., et al., Fraction and composition of NOy transported in air masses
lofted from the North American boundary layer, J. Geophys. Res., 109 , 2004.

Pfister, G., P. G. Hess, K. Emmons, J.-F. Lamarque, C. Wiedinmyer, D. P. Ed-
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Richter, A., J. P. Burrows, H. Nüß, C. Granier, and U. Niemeier, Increase in
tropospheric nitrogen dioxide over China observed from space, Nature, 437 , 129–
132, 2005.



92

Roy, B., G. A. Pouliot, A. Gilliland, T. Pierce, S. Howard, P. V. Bhave, and
W. Benjey, Refining fire emissions for air quality modeling with remotely sensed
fire counts: A wildfire case study, Atmos. Environ., 41 , 655–665, 2007.

Sapkota, A., et al., Impact of the 2002 Canadian forest fires on particulate matter
air quality in Baltimore city, Environ. Sci. Technol., 39 , 24–32, 2005.

Seibert, P., and A. Frank, Source-receptor matric calculation with a Lagrangian
particle disperion model in backward mode, Atmos. Chem. and Phys., 4 , 51–63,
2004.

Seinfeld, J. H., and S. N. Pandis, Atmospheric Chemistry and Physics: From Air
Pollution to Climate Change, John Wiley, New York, 1998.

Simmonds, P., A. Manning, R. Derwent, P. Ciais, M. Ramonet, V. Kazan, and
D. Ryall, A burning question. Can recent growth rate anomalies in the greenhouse
gases be attributed to large-scale biomass burning events?, Atmos. Environ., 39 ,
2513–2517, 2005.

Singh, H. B., et al., Reactive nitrogen distribution and partiti oning in the North
American troposphere and lowermost stratosphere, J. Geophys. Res., 112 , 2007.

Soja, A. J., et al., Climate-induced boreal forest change: Predictions versus current
observations, Global and Planetary Change, 56 , 274–296, 2007.

Spichtinger, N., M. Wenig, P. James, T. Wagner, U. Platt, and A. Stohl, Satellite
detection of a continental-scale plume of nitrogen oxides from boreal forest fires,
Geophys. Res. Lett., 28 , 4579–4582, 2001.

Spichtinger, N., R. Damoah, S. Eckhardt, C. Forster, P. James, S. Beirle, T. Wag-
ner, P. Novelli, and A. Stohl, Boreal forest fires in 1997 and 1998: a seasonal
comparison using transport model simulations and measurement data, Atmos.
Chem. and Phys., 4 , 1857–1868, 2004.

Spracklen, D. V., J. A. Logan, L. J. Mickley, R. Y. R. J. Park, A. L. Westerling,
and D. A. Jaffe, Wildfires drive interannual variability of organic carbon aerosol
in the western U.S. in summer, Geophys. Res. Lett., 34 , 2007.

Stavrakou, T., J.-F. Müller, I. De Smedt, M. Van Roozendael, G. R. van der Werf,
L. Giglio, and A. Guenther, Evaluating the performance of pyrogenic and biogenic
emission inventories against one decade of space-based formaldehyde columns,
Atmos. Chem. and Phys., 9 , 1037–1060, 2009.

Stocks, B., et al., Climate change and forest fire potential in Russian and Canadian
boreal forests, Clim. Change, 38 , 1–13, 1998.

Stocks, B. J., et al., Large forest fires in Canada, 1959-1997, J. Geophys. Res.,
108 , 2003.



93

Stohl, A., S. Eckhardt, C. Forster, P. James, N. Spichtinger, and P. Seibert, A
replacement for simple back trajectory calculations in the interpretation of atmo-
spheric trace substance measurements, Atmos. Environ., 36 , 4635–4648, 2002.

Stohl, A., C. Forster, A. Frank, P. Seibert, and G. Wotawa, Technical note: The
Lagrangian particle dispersion model FLEXPART version 6.2, Atmos. Chem. and
Phys., 5 , 2461–2474, 2005, sRef-ID:1680-7324/acp/2005-5-2461.

Stohl, A., et al., Pan-arctic enhancements of light absorbing aerosol concentrations
due to north american boreal forest fires during summer 2004, J. Geophys. Res.,
111 , 2006.

Stunder, B., NCEP model output—FNL archive data: TD-6141, Tech. rep., avail-
able at http://www.arl.noaa.gov/ready-bin/fnl.pl, 1997, NOAA-Air Resources
Laboratory, Silver Spring, MD 20910.

Tabazadeh, A., R. J. Yokelson, H. B. Singh, P. V. Hobbs, J. H. Crawford, and
L. T. Iraci, Heterogeneous chemistry involving methanol in tropospheric clouds,
Geophys. Res. Lett., 31 , 2004.

Tanimoto, H., Y. Kajii, J. Hirokawa, H. Akimoto, and N. P. Minko, The atmo-
spheric impact of boreal forest fires in far eastern Siberia on the seasonal variation
of carbon monoxide: Observations at Rishiri, a northern remote island in Japan,
J. Geophys. Res., 27 , 4073–4076, 2000.

Trentmann, J., G. Luderer, T. Winterrath, M. D. Fromm, R. Servranckx, C. Tex-
tor, M. Herzog, H. F. Graf, and M. O. Andreae, Modeling of biomass smoke
injection into the lower stratosphere by a large forest fire (Part I): Reference sim-
ulation, Atmos. Chem. and Phys., 6 , 5247–5260, 2006.

Turetsky, M. R., B. D. Amiro, E. Bosch, and J. S. Bhatti, Historical burn area
in western canadian peatlands and its relationship to fire weather indices, Global
Biogeochem. Cycles, 18 , 2004.

Turquety, S., et al., Inventory of boreal fire emissions for North America in 2004:
the importance of peat burning and pyro-convective injection, J. Geophys. Res.,
112 , 2007.

Val Mart́ın, M., R. Honrath, R. C. Owen, G. Pfister, P. Fialho, and F. Barata,
Significant enhancements of nitrogen oxides, ozone and aerosol black carbon in
the North Atlantic lower free troposphere resulting from North American boreal
wildfires, J. Geophys. Res., 111 , 2006.

Val Mart́ın, M., R. E. Honrath, R. C. Owen, and K. Lapina, Large-scale impacts
of anthropogenic pollution and boreal wildfires on the nitrogen oxides over the
central North Atlantic region, J. Geophys. Res., 113 , 2008.



94

Val Mart́ın M., R. Honrath, R. Owen, J. Kleissl, P. Fialho, G. Pfister, and K. Lap-
ina, Large enhancements of NOx over the central North Atlantic lower free tropo-
sphere resulting from boreal wildfires: Observations at the PICO-NARE station
during summer 2004, Eos Trans. AGU , 86 , 2005, Fall Meet. Suppl., Abstract
A41D-02.

Van der Werf, G. R., J. T. Randerson, G. J. Collatz, L. Giglio, P. S. Kasibhatla,
A. F. Arellano Jr., S. C. Olsen, and E. S. Kasischke, Continental-scale partitioning
of fire emissions during the 1997 to 2001 El Nino/La Nina period, Science, 303 ,
73–76, 2004.

Verma, S., et al., Ozone production in boreal fire smoke plumes using observa-
tions from the Tropospheric Emission Spectrometer and the Ozone Monitoring
Instrument, J. Geophys. Res., 114 , 2009.

Wittrock, F., The retrieval of oxygenated volatile organic compounds by remote
sensing techniques, Ph.D. thesis, Institute of Environmental Physics, Univer-
sity of Bremen, Bremen, available at http://nbn-resolving.de/urn:nbn:de:gbv:46-
diss000104818, 2006.

Wittrock, F., et al., Simultaneous global observations of glyoxal and formaldehyde
from space, Geophys. Res. Lett., 33 , 2006.

Wofsy, S. C., S.-M. Fan, D. R. Blake, J. D. Bradshaw, S. T. Sandholm, H. B. Singh,
G. W. Sachse, and R. C. Harriss, Factors influencing atmospheric composition over
subarctic North America during summer, J. Geophys. Res., 99 , 1887–1897, 1994.

Wofsy, S. C., et al., Atmospheric chemistry in the arctic and subarctic: Influence
of natural fires, industrial emissions, and stratospheric inputs, J. Geophys. Res.,
97 , 16,731–16,746, 1992.

Wotawa, G., P. C. Novelli, M. Trainer, and C. Granier, Inter-annual variability of
summertime CO concentrations in the northern hemisphere explained by boreal
forest fires in North America and Russia, Geophys. Res. Lett., 28 , 4575–4578,
2001.

W.Thomas, E. Hegels, S. Slijkhuis, R. Spurr, and K. Chance, Detection of biomass
burning combustion products in Southeast Asia from backscatter data taken by
the GOME spectrometer, Geophys. Res. Lett., 25 , 1317–1320, 1998.

Yokelson, R., et al., Emissions from biomass burning in the Yucatan, Atmos.
Chem. and Phys. Discussions, 9 , 767–835, 2009.

Yokelson, R. J., D. W. T. Griffith, and D. E. Ward, Open-path Fourier trans-
form infrared studies of large-scale laboratory biomass fire, J. Geophys. Res., 101 ,
21,067–21,080, 1996.



95

Yokelson, R. J., R. Susott, D. E. Ward, J. Reardon, and D. W. T. Griffith, Emis-
sions from smoldering combustion of biomass measured by open-path fourier trans-
form infrared spectroscopy, J. Geophys. Res., 102 , 18,865–18,878, 1997.

Yokelson, R. J., I. T. Bertschi, T. J. Christian, P. V. Hobbs, D. E. Ward, and
W. M. Hao, Trace gas measurements in nascent, aged, and cloud-processed smoke
from African savanna fires by airborne Fourier transform infrared spectroscopy
(AFTIR), J. Geophys. Res., 108 , 2003.

Yurganov, L. N., et al., A quantitative assessment of the 1998 carbon monoxide
emission anomaly in the Northern Hemisphere based on total column and surface
concentration measurement, J. Geophys. Res., 109 , 2004.



Appendix A

Figures

This document includes supplementary figures and results used for the analysis
discussed in Chapter 4 of this work. Figures A.1, A.2, A.3, A.4 and A.5 present
daily SCIAMACHY observations of HCHO columns, gridded on a 1◦ × 1◦ grid.
They demonstrate a sparse coverage of the measurements (section 4.2), which is
the main reason for the use of 5-day composites in the analysis.

The locations used to compare the SCIAMACHY signal over the regions of
high-isoprene and low-isoprene regions (section 4.4.1.1) are shown in Figures A.6
and A.7. Table A.1 presents statistics for the HCHO measurements in the analyzed
regions. The last column of Table A.1 contains the difference between the average
HCHO columns in the high- and low-isoprene regions.
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Figure A.1 Daily SCIAMACHY observations of HCHO, for the period from June 1 untill June 17,
2004. White areas inside the study region indicate missing satellite observations.
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Figure A.2 Daily SCIAMACHY observations of HCHO, for the period from June 18 untill July 7,
2004. White areas inside the study region indicate missing satellite observations.
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Figure A.3 Daily SCIAMACHY observations of HCHO, for the period from July 8 untill July 25, 2004.
White areas inside the study region indicate missing satellite observations.



100

 

180
-165

-150-135-120
-105

-90

7/26

SCIA HCHO trop. column, molec/cm2

-5.0e+15 -8.3e+14  3.3e+15  7.5e+15  1.2e+16  1.6e+16  2.0e+16

 

180
-165

-150-135-120
-105

-90

7/27

SCIA HCHO trop. column, molec/cm2

-5.0e+15 -8.3e+14  3.3e+15  7.5e+15  1.2e+16  1.6e+16  2.0e+16

 

180
-165

-150-135-120
-105

-90

7/28

SCIA HCHO trop. column, molec/cm2

-5.0e+15 -8.3e+14  3.3e+15  7.5e+15  1.2e+16  1.6e+16  2.0e+16

 

180
-165

-150-135-120
-105

-90

7/29

SCIA HCHO trop. column, molec/cm2

-5.0e+15 -8.3e+14  3.3e+15  7.5e+15  1.2e+16  1.6e+16  2.0e+16

 

180
-165

-150-135-120
-105

-90

7/30

SCIA HCHO trop. column, molec/cm2

-5.0e+15 -8.3e+14  3.3e+15  7.5e+15  1.2e+16  1.6e+16  2.0e+16

 

180
-165

-150-135-120
-105

-90

7/31

SCIA HCHO trop. column, molec/cm2

-5.0e+15 -8.3e+14  3.3e+15  7.5e+15  1.2e+16  1.6e+16  2.0e+16

 

180
-165

-150-135-120
-105

-90

8/1

SCIA HCHO trop. column, molec/cm2

-5.0e+15 -8.3e+14  3.3e+15  7.5e+15  1.2e+16  1.6e+16  2.0e+16

 

180
-165

-150-135-120
-105

-90

8/2

SCIA HCHO trop. column, molec/cm2

-5.0e+15 -8.3e+14  3.3e+15  7.5e+15  1.2e+16  1.6e+16  2.0e+16

 

180
-165

-150-135-120
-105

-90

8/3

SCIA HCHO trop. column, molec/cm2

-5.0e+15 -8.3e+14  3.3e+15  7.5e+15  1.2e+16  1.6e+16  2.0e+16

 

180
-165

-150-135-120
-105

-90

8/4

SCIA HCHO trop. column, molec/cm2

-5.0e+15 -8.3e+14  3.3e+15  7.5e+15  1.2e+16  1.6e+16  2.0e+16

 

180
-165

-150-135-120
-105

-90

8/5

SCIA HCHO trop. column, molec/cm2

-5.0e+15 -8.3e+14  3.3e+15  7.5e+15  1.2e+16  1.6e+16  2.0e+16

 

180
-165

-150-135-120
-105

-90

8/6

SCIA HCHO trop. column, molec/cm2

-5.0e+15 -8.3e+14  3.3e+15  7.5e+15  1.2e+16  1.6e+16  2.0e+16

 

180
-165

-150-135-120
-105

-90

8/7

SCIA HCHO trop. column, molec/cm2

-5.0e+15 -8.3e+14  3.3e+15  7.5e+15  1.2e+16  1.6e+16  2.0e+16

 

180
-165

-150-135-120
-105

-90

8/8

SCIA HCHO trop. column, molec/cm2

-5.0e+15 -8.3e+14  3.3e+15  7.5e+15  1.2e+16  1.6e+16  2.0e+16

 

180
-165

-150-135-120
-105

-90

8/9

SCIA HCHO trop. column, molec/cm2

-5.0e+15 -8.3e+14  3.3e+15  7.5e+15  1.2e+16  1.6e+16  2.0e+16

 

180
-165

-150-135-120
-105

-90

8/10

SCIA HCHO trop. column, molec/cm2

-5.0e+15 -8.3e+14  3.3e+15  7.5e+15  1.2e+16  1.6e+16  2.0e+16

 

180
-165

-150-135-120
-105

-90

8/11

SCIA HCHO trop. column, molec/cm2

-5.0e+15 -8.3e+14  3.3e+15  7.5e+15  1.2e+16  1.6e+16  2.0e+16

 

180
-165

-150-135-120
-105

-90

8/12

SCIA HCHO trop. column, molec/cm2

-5.0e+15 -8.3e+14  3.3e+15  7.5e+15  1.2e+16  1.6e+16  2.0e+16

Figure A.4 Daily SCIAMACHY observations of HCHO, for the period from July 26 untill August 12,
2004. White areas inside the study region indicate missing satellite observations.
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Figure A.5 Daily SCIAMACHY observations of HCHO, for the period from August 13 untill August 30,
2004. White areas inside the study region indicate missing satellite observations.
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Figure A.6 Monthly-mean modeled isoprene emission fluxes in units of atoms/C/cm2. The areas
used for comparison of HCHO columns between the high-isoprene and low-isoprene regions dur-
ing the periods of low fire activity are overplotted in red (high-isoprene) and black (low-isoprene).
High-isoprene region indicated in this figure was also used for computing the average daily isoprene
flux.
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Figure A.7 SCIAMACHY HCHO 5-day composites. The areas used for comparison of HCHO
columns between the high-isoprene and low-isoprene regions during the periods of low fire activity
are overploted in red (high-isoprene) and black (low-isoprene).
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Appendix B

Copyright permissions and

information

This section contains copyright information for Chapters 2 and 3, which are based
on the articles Lapina et al. [2006] and Lapina et al. [2008].

B.1 Documentation for Chapter 2

Chapter 2 is based entirely on Lapina et al. [2006], the copyright of which is held by
the American Geophysical Union. The two following subsections contain the email
sent to request permission and information regarding reproduction of the paper in
this dissertation and the response granting that right.
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B.1.1 Email requesting for reproduction permission

Subject: Use of paper in dissertation

Sent By “Kateryna Lapina” klapina@mtu.edu

On: April 17, 2009 6:23 PM

To: grl@agu.org

Dear Sir/Madam,

I am completing a doctoral dissertation at Michigan Technological University
entitled ”Boreal forest fire impacts on lower troposphere CO and ozone levels at the
regional to hemispheric scales” and I am seeking permission to reprint as a chapter
in my dissertation the contents from my GRL paper

Lapina K., R. E. Honrath, R. C. Owen, M. Val Martn, G. Pfister (2006), Ev-
idence of significant large-scale impacts of boreal fires on ozone levels in the mid-
latitude Northern Hemisphere free troposphere, Geophys. Res. Lett., 33, L10815,
doi:10.1029/2006GL025878.

Thank you very much.

Sincerely,

Kateryna Lapina
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B.1.2 Email granting reproduction permission

Subject: permission

Sent By ”Michael Connolly” MConnolly@agu.org

On: April 20, 2009 1:19 PM

To: klapina@mtu.edu

We are pleased to grant permission for the use of the material requested for
inclusion in your thesis. The following non-exclusive rights are granted to AGU
authors:

All proprietary rights other than copyright (such as patent rights). The right
to present the material orally. The right to reproduce figures, tables, and extracts,
appropriately cited. The right to make hard paper copies of all or part of the paper
for classroom use. The right to deny subsequent commercial use of the paper.

Further reproduction or distribution is not permitted beyond that stipulated.
The copyright credit line should appear on the first page of the article or book
chapter. The following must also be included, Reproduced by permission of Ameri-
can Geophysical Union. To ensure that credit is given to the original source(s) and
that authors receive full credit through appropriate citation to their papers, we
recommend that the full bibliographic reference be cited in the reference list. The
standard credit line for journal articles is: ”Author(s), title of work, publication
title, volume number, issue number, citation number (or page number(s) prior to
2002), year. Copyright [year] American Geophysical Union.”

If an article was placed in the public domain, in which case the words Not
subject to U.S. copyright appear on the bottom of the first page or screen of the ar-
ticle, please substitute published for the word copyright in the credit line mentioned
above.

Copyright information is provided on the inside cover of our journals. For
permission for any other use, please contact the AGU Publications Office at AGU,
2000 Florida Ave., N.W., Washington, DC 20009.

Michael Connolly

Journals Publications Specialist
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the American Geophysical Union. The two following subsections contain the email
sent to request permission and information regarding reproduction of the paper in
this dissertation and the response granting that right.
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from boreal fires, J. Geophys. Res., 113, D11304, doi:10.1029/2007JD009421.
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will be published within the next month) for the publication in the JGR. Will then
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Sincerely,

Kateryna Lapina
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