
Michigan Technological University Michigan Technological University

Digital Commons @ Michigan Tech Digital Commons @ Michigan Tech

Dissertations, Master's Theses and Master's
Reports - Open

Dissertations, Master's Theses and Master's
Reports

2013

A COMPARATIVE STUDY OF HEURISTIC OPTIMIZATION A COMPARATIVE STUDY OF HEURISTIC OPTIMIZATION

ALGORITHMS ALGORITHMS

Rohit A. Bhatia
Michigan Technological University

Follow this and additional works at: https://digitalcommons.mtu.edu/etds

 Part of the Electrical and Computer Engineering Commons

Copyright 2013 Rohit A. Bhatia

Recommended Citation Recommended Citation
Bhatia, Rohit A., "A COMPARATIVE STUDY OF HEURISTIC OPTIMIZATION ALGORITHMS", Master's report,
Michigan Technological University, 2013.
https://doi.org/10.37099/mtu.dc.etds/702

Follow this and additional works at: https://digitalcommons.mtu.edu/etds

 Part of the Electrical and Computer Engineering Commons

http://www.mtu.edu/
http://www.mtu.edu/
https://digitalcommons.mtu.edu/
https://digitalcommons.mtu.edu/etds
https://digitalcommons.mtu.edu/etds
https://digitalcommons.mtu.edu/etd
https://digitalcommons.mtu.edu/etd
https://digitalcommons.mtu.edu/etds?utm_source=digitalcommons.mtu.edu%2Fetds%2F702&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.mtu.edu%2Fetds%2F702&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.37099/mtu.dc.etds/702
https://digitalcommons.mtu.edu/etds?utm_source=digitalcommons.mtu.edu%2Fetds%2F702&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.mtu.edu%2Fetds%2F702&utm_medium=PDF&utm_campaign=PDFCoverPages

A COMPARATIVE STUDY OF HEURISTIC OPTIMIZATION ALGORITHMS

By

Rohit A. Bhatia

A REPORT

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

In Electrical Engineering

MICHIGAN TECHNOLOGICAL UNIVERSITY

2013

© 2013 Rohit A. Bhatia

This report has been approved in partial fulfillment of the requirements for the Degree of

MASTER OF SCIENCE in Electrical Engineering.

Department of Electrical and Computer Engineering

Report Advisor: Dr. Ashok Goel

Committee Member: Dr. Zhuo Feng

Committee Member: Dr. Laura E. Brown

Department Chair: Dr. Daniel R. Fuhrmann

3

Table of Contents

Acknowledgements 4

Abstract 5

1. Heuristic algorithms - Introduction 6

2. Non-adaptive simulated annealing

 2.1 Overview 9

 2.2 Working of the non-adaptive simulated annealing algorithm 11

 2.3 Pseudocode 13

 2.4 Parameterization 16

 2.5 Algorithm output 18

3. Adaptive simulated annealing

 3.1 Motivation 20

 3.2 Working of the adaptive simulated annealing algorithm 21

 3.3 Pseudocode 23

 3.4 Algorithm output 25

4. Random restart hill climbing

 4.1 Overview 27

 4.2 Working of the random restart hill climbing algorithm 28

 4.3 Pseudocode 30

 4.4 Algorithm output 33

5. Performance comparison

 5.1 Performance comparison with a cost function of two variables 35

 5.2 Performance comparison with a cost function of three variables 39

 5.3 Performance comparison with a cost function of four variables 43

6. Conclusions 47

Appendix 1 48

References 74

4

Acknowledgements

I am grateful to my advisor Dr. Ashok Goel for his continuous support and guidance that

fostered my learning in the subject area and helped me develop a strong understanding

of the matter. Without Dr. Goel’s support, this would have been an enormously difficult

task to implement.

Additionally, I am grateful to Dr. Zhuo Feng and Dr. Laura E. Brown for being part of my

defense committee and providing me their valuable feedback so as to get the most from

my efforts.

I am also glad to have had access to resources at Michigan Technological University

that made my learning experience very joyous and fulfilling.

Finally, I am extremely grateful to my family and friends, and my parents in particular for

their unconditional support especially in times when I needed it.

5

Abstract

Heuristic optimization algorithms are of great importance for reaching solutions to

various real world problems. These algorithms have a wide range of applications such

as cost reduction, artificial intelligence, and medicine. By the term cost, one could imply

that that cost is associated with, for instance, the value of a function of several

independent variables. Often, when dealing with engineering problems, we want to

minimize the value of a function in order to achieve an optimum, or to maximize another

parameter which increases with a decrease in the cost (the value of this function). The

heuristic cost reduction algorithms work by finding the optimum values of the

independent variables for which the value of the function (the “cost”) is the minimum.

There is an abundance of heuristic cost reduction algorithms to choose from. We will

start with a discussion of various optimization algorithms such as Memetic algorithms,

force-directed placement, and evolution-based algorithms. Following this initial

discussion, we will take up the working of three algorithms and implement the same in

MATLAB.

The focus of this report is to provide detailed information on the working of three different

heuristic optimization algorithms, and conclude with a comparative study on the

performance of these algorithms when implemented in MATLAB. In this report, the three

algorithms we will take in to consideration will be the non-adaptive simulated annealing

algorithm, the adaptive simulated annealing algorithm, and random restart hill climbing

algorithm. The algorithms are heuristic in nature, that is, the solution these achieve may

not be the best of all the solutions but provide a means to reach a quick solution that

may be a reasonably good solution without taking an indefinite time to implement.

6

1. Heuristic algorithms - Introduction

There are several algorithms at our disposal for cost reduction. We use the term “cost

reduction” since we often want to minimize the value of a function of several independent

variables. Such a reduction may be desired in order to either reach an optimum value,

or to maximize another parameter of interest which increases with this decreasing cost.

To name a few, Memetic algorithms, simulated annealing, force-directed placement, and

evolution-based placement are some of the common algorithms that are used in cost

reduction. The term “placement” broadly refers to the intermediate solution (or result)

attained at an iterative step as the algorithm executes.

“Placement algorithms can be divided into two major classes: constructive

placement and iterative improvement. In constructive placement, a method is used

to build up a placement from scratch; in iterative improvement, algorithms start with

an initial placement and repeatedly modify it in search of a cost reduction. If a

modification results in a reduction in cost, the modification is accepted; otherwise it

is rejected.” [1]

These algorithms are heuristic in nature. That is, these algorithms produce a solution

that is good enough for arriving to a solution to the problem at hand. There are

parameters that are used for “tuning” these algorithms to arrive at a solution in the

shortest possible time. These parameters are specific to individual algorithms that are

used. Often, there is a tradeoff between the speed of execution of the algorithm and the

accuracy of the result obtained.

There is a class of hybrid algorithms that combine evolutionary algorithms (evolution-

based placement algorithm listed above is a kind of evolutionary algorithm) and local

searches and result in what we call as Memetic Algorithms.

“Memetic Algorithms are class of stochastic global search heuristics in which

Evolutionary Algorithm based approaches are combined with problem-specific

solvers. Later local search heuristics techniques are implemented. This hybridisation

is to either accelerate or to discover good solution from the population where the

evolution alone would take long time to discover or to reach the solution. Memetic

7

Algorithms use heuristic local searches either approximate method or exact method

to get the local refined solution from the population.” [2]

Authors in [1] describe the force – directed placement with an analogy to the Hooke’s

law for the force exerted on stretched springs. While placing the modules, we assume

that the modules are connected by a net which exerts an attractive force between them.

The magnitude of this force is directly proportional to the distance between the modules.

If the modules are allowed to move freely in the system, they would continue to move

until they settle down at positions where there is a zero resultant force on each module

and the system achieves a minimum energy state. “Hence, the force-directed placement

methods are based on moving the modules in the direction of the total force exerted on

them until this force is zero.” [1] Authors have used the term “modules” for a specific

application but it is equivalent to considering these modules as results of an optimization

step.

Algorithms that fall in the genetic algorithm category have been inspired by the natural

process of evolution. One such algorithm is the Simulated Evolution algorithm (SimE),

which is a general search strategy for solving a variety of combinatorial optimization

problems. It operates on a single solution, termed as population, and each population

consists of elements. The algorithm has three basic steps in one main loop, namely,

Evaluation, Selection, and Allocation. In the first step, the goodness of each element is

measured as a single number between ‘0’ and ‘1’ which is indicative of how near the

element is from its optimal solution. Following this step, Selection is carried out where

unfit elements (elements that are far from their optimal solution) are selected in the

current solution. It is because of Selection step that SimE does not get “trapped” at local

minima since unfit elements are allowed to be a part of the intermediate solution. The

last step is Allocation. The purpose here is to mutate the population by altering the

current solution. This step has a high impact on the quality of the solution. [3]

For the purpose of this report, we will consider three algorithms that have been used for

cost reduction optimizations. Namely, non-adaptive simulated annealing, adaptive

simulated annealing, and random restart hill climbing will be evaluated in detail. The

evaluation will cover the working of the algorithms, the pseudocode, MATLAB based

8

implementations of these algorithms, and presentation of the performance comparison

results from their implementation.

9

2. Non-adaptive simulated annealing

2.1 Overview

Simulated annealing is a very time consuming algorithm but yields excellent results. The

algorithm derives its name from metallurgy. Authors in [1] draw an interesting analogy

between how the algorithm works and how metals are allowed to cool down so as to

mold them in to the desired shape. A metal that is stressed has an imperfect crystal

structure. How we bring about the metal to the desired form is to first heat the metal to a

high temperature then cool it down gradually. In metallurgy, we refer to this as annealing.

At higher temperatures, the atoms in the metal have sufficient kinetic energy to break

loose from their current incorrect positions. As the material cools down, the atoms slowly

start getting trapped at the correct lattice positions. However, if we cool down the metal

rather quickly, the atoms do not get a chance to get to the correct lattice positions and

defects (due to the atoms being at the incorrect positions) become part of the crystal

structure.

Simulated annealing algorithm does just that. In this algorithm, we start with an initial

temperature and a starting configuration, or an initial guess for the solutions that would

yield an optimal result. On successive iterations, we reduce the temperature and

determine a configuration that results in an improvement over the current solution. We

continue to reduce the temperature until we have reached a stopping temperature. The

details on the working of this algorithm will be discussed in the following section.

It is imperative that the algorithm reaches the global minima of the function and does not

get stuck at a local minima which may not yield the absolute minimum value, in our case,

the cost. “Simulated annealing is a stochastic method to avoid getting stuck in local, non-

global minima, when searching for global minima. This is done by accepting, in addition

to transitions corresponding to a decrease in function value, transitions corresponding to

an increase in function value. The latter is done in a limited way by means of a stochastic

acceptance criterion. In the course of the minimization process, the probability of

accepting deteriorations descends slowly towards zero.” [4]

10

For the purpose of demonstrating the working of this algorithm as implemented in

MATLAB, we will work with a function which we can assume determines the cost in terms

of the x and y values of the intermediate solution. The aim is in reaching the global

minima of this function starting with some initial guess of the x and y independent

variables. The intent of doing so is to demonstrate the working of this algorithm without

focusing on the function itself since that may vary depending on the application.

11

2.2 Working of the non-adaptive simulated annealing algorithm

We will look at the working of this algorithm over two sections. We present an abstract

understanding of how the algorithm works here in this section. In the next section, we

look at the pseudocode and detail how the algorithm proceeds to achieve the global

minima of a given function.

To begin with, we start with an initial guess and a starting temperature for the working of

this algorithm. Specific to our implementation, the initial guess is the x and y values of

the intermediate solution (or the starting point). We also fix the starting temperature for

the implementation of the algorithm. Once these are fixed, we set other parameters like

cooling schedule, maximum consecutive rejections, stopping temperature, etc. We will

discuss the relevance of each of these parameters in a following section.

The simulated annealing algorithm starts with accepting all moves but with a probability

of accepting the move. At higher temperatures, the probability of accepting a move is

higher. However, this probability decreases as the temperature decreases. The moves

that cause a cost increase are accepted with a probability that decreases with the

increase in cost.

In most implementations of this algorithm, the acceptance probability is given by exp(–

ΔC/ T), where ΔC is the cost increase. Initially, the temperature is set to a very high value

so most of the moves are accepted. Acceptance (or rejection) of a move is determined

by comparing the acceptance probability to a random probability value between 0 and 1.

At each iteration, the temperature is gradually reduced so the cost increasing moves are

less likely to be accepted. Toward the end, only moves that cause a cost reduction are

accepted and the algorithm converges to a low cost configuration. [1]

The fact that moves that result in a cost increase are also accepted (even though with a

lower probability) ensures that the algorithm does not get “stuck” at a local minima and

has a “fair” chance of covering all minima before reaching the global minima.

12

It must be pointed out that we use the term “non-adaptive” with our application of the

simulated annealing algorithm. This simply means that the cooling schedule is fixed. We

do not vary the cooling schedule on successive iterations. In case of the adaptive

simulated annealing algorithm, the cooling schedule will be adaptive, that is, it will vary

as the algorithm executes. The adaptive version of the simulated annealing algorithm

will be covered in the next section.

Following section will give the reader a better understanding of the working of this

algorithm since we take the pseudocode of the algorithm in to account.

13

2.3 Pseudocode

The simulated algorithm works as per the following pseudocode shown in Figure 2.3.1

Figure 2.3.1: Pseudocode for the Simulated Annealing algorithm [1]

We will now analyze the algorithm in greater detail. We first start with the initialization

using “initialize.” The initialization involves setting the following parameters

1. Schedule: The cooling schedule. This determines the temperature decrements

on successive iterations.

2. MaxConsecutiveRejections: Maximum number of consecutive rejections.

3. MaxSuccessAtTemperature: Maximum number of successful moves at a given

temperature.

4. RandomGenerator: This generates a random configuration from an existing

configuration.

5. InitialTemperature: The starting temperature for the simulated annealing

algorithm.

6. StoppingTemperature: The stopping temperature for the simulated annealing

algorithm. Algorithm exits implementation once this temperature has been

reached.

14

7. MaxTriesAtTemperature: Maximum number of moves that are permitted at a

particular temperature.

8. StoppingValue: The stopping value for the simulated annealing algorithm.

Algorithm exits implementation once this value of the function has been reached.

Following initialization, we generate a random configuration. In case of cost estimates,

this can be computed using the function that determines the cost based on the x and y

values of the solution. This is the “cost function.” In our case, this value equals the initial

cost which we wish to minimize.

Iterative improvements are carried out next. Until the temperature doesn’t reach the

stopping temperature or until we haven’t reached the limit for maximum successive

rejections as set by the MaxConsecutiveRejections parameter, we perform moves at

each temperature. The number of moves at each temperature depends on parameters

like MaxTriesAtTemperature and MaxSuccessAtTemperature.

We now consider a static situation when we are accepting or rejecting moves at a

particular temperature. This implies that we have not reached the set limits of

MaxTriesAtTemperature and MaxSuccessAtTemperature parameters. This is what we

call the “inner loop criterion.” The new configuration is reached by perturbing the existing

configuration.

Perturbing the existing configuration is done in a two-step process. First, we generate

random values for the x and y variables in the neighborhood of the current values. Next,

we plug in these values in to the cost function that determines the cost based on the new

values. The difference in costs in evaluated to determine if the new values result in a

decrease, or an increase in the cost.

There are two scenarios that arise from the perturbation. If the cost decreases, then the

move is accepted without any consideration to the acceptance probability given by exp(-

ΔC/T) where ΔC is the cost increase and T is the current annealing temperature.

However, if the cost increases, the move is still accepted with consideration to the

15

acceptance probability. This is what makes the simulated annealing algorithm so special

– it does not get stuck at a local minima.

Accepting (with or without consideration to the acceptance probability) or rejecting

moves is done at a particular annealing temperature. Next, we reduce the temperature

and follow the same procedure as in the previous step. The algorithm concludes

execution if either the temperature is less than the stopping temperature or if the number

of consecutive rejections has reached the preset.

.

16

2.4 Parameterization

This section details the parameters we have used for the implementation of the

Simulated Annealing algorithm. The parameters are generally tuned depending on the

application.

1. Schedule: Since this is the non-adaptive simulated annealing algorithm, we use

a fixed value for the cooling schedule. The temperature at the next step is 0.9

times the current temperature.

2. MaxConsecutiveRejections: Maximum number of consecutive rejections is set to

1,000.

3. MaxSuccessAtTemperature: Maximum number of successful moves at a given

temperature is set to 20.

4. RandomGenerator: This generates a random configuration from an existing

configuration. This is set to the anonymous function:

@(param) (param+(randperm(length(param))==length(param))*randn/100)

Where param is a two-input vector with the current x and y values from the

solution. The output is again a two member vector with the updated x and y

values generated using randperm that generates random permutations of

integers 0 and 1. This is then multiplied by randn that generates normally

distributed random number and is divided by 100 to keep the new x and y values

within the neighborhood.

5. InitialTemperature: The starting temperature for the simulated annealing

algorithm is set to 1

6. StoppingTemperature: The stopping temperature for the simulated annealing

algorithm is set to 1e-8. Algorithm exits implementation once this temperature has

been reached.

7. MaxTriesAtTemperature: Maximum number of moves that are permitted at a

particular temperature is set to 300.

17

8. StoppingValue: The stopping value for the simulated annealing algorithm is set

to 1. Algorithm exits implementation once this value of the function has been

reached. In our application, this is a reasonable value for the minimum cost.

Appendix 1 includes the complete code for the non-adaptive simulated annealing

algorithm.

18

2.5 Algorithm output

The non-adaptive simulated algorithm is implemented using a sample cost function 2x2

– 4xy + y4 + 2. A 3-Dimensional graph of function f shows that f has two local minima at

(-1,-1,1) and (1,1,1) and one saddle point at (0,0,2) [5]. This is shown in Figure 2.5.1.

Figure 2.5.1: Cost function used for simulated annealing implementation [5]

We enter a vector as an initial guess and also a function handle so that the cost can be

computed at subsequent iterations. The initial guess is a vector that contains the starting

x and y values. This is shown in Figure 2.5.2

Figure 2.5.2: Passing the initial guess and the cost function handle in to the simulated annealing
algorithm

Once the algorithm is run and it completes execution, we see that the solution converges

to the minima (the minimum cost) and we get the optimal x and y values for the solution.

19

The annealing algorithm waveforms at successive iterations and the final output are

shown in Figures 2.5.3 and 2.5.4 respectively.

Figure 2.5.3: Simulated annealing algorithm waveforms at successive iterations

Figure 2.5.4: Output of the simulated annealing algorithm with the minimum cost and the x and
y values for the solution

The results conform to the known minima for the given function. As is evident in Figure

2.5.4 the algorithm completes execution once the maximum number of consecutive

rejections has been reached and not (in this case) because of having reached the

minimum temperature.

20

3. Adaptive Simulated Annealing

3.1 Motivation

Iterative improvement algorithms such as Simulated Annealing produce accurate results

at the cost of enormous computation time. Such time-cost considerations encourage us

to seek other algorithms that are more efficient. One such enhancement is the Adaptive

Simulated Annealing (ASA) algorithm. ASA reduces the computation time required to

reach a solution at the cost of some loss in accuracy of the solution.

Though at times it might not seem like a significant improvement in the computation time

for relatively simple computations, the computation time is significantly improved for

complex computations.

Another motivation in choosing the ASA is that we have the choice of going for a

parameter-free simulated annealing algorithm. Such an advantage is crucial in that we

can avoid having to deal with setting parameters which ultimately determine both the

computation time and the accuracy of the results. This benefits the user with results that

have much less dependence on the parameters, since just a few parameters are used

for this form of ASA.

What makes ASA different from SA (Simulated Annealing) is that since ASA does not

require the implementer to tune any parameters, a feedback mechanism is used to adjust

the annealing temperature rather than using a fixed cooling schedule as in the case of

SA. The parameters that are set and adjusted are the temperature and the acceptance

rate. Over the subsequent sections, we will look in to the details of how these parameters

are set, and the working of the ASA.

21

3.2 Working of the adaptive simulated annealing algorithm

The Simulated Annealing (SA) algorithm works by reaching a state of thermal equilibrium

to yield globally optimal solutions. This requires a series of annealing steps that cool

down the temperature. Often, the cooling results in a prohibitively long computation time.

“Lam and Delosme proposed an approximate thermal equilibrium they call D-

equilibrium which balances the trade-off of required computation time and the quality

of the solution found by the run of SA. Under certain assumptions about the forms

of the distribution of the cost values and the distribution of cost value changes, they

analyzed their model and determined the annealing schedule that maintains the

system in D-equilibrium (i.e., the annealing schedule that optimally balances the

computational cost / solution quality trade-off). This “optimal” annealing schedule

adjusts the temperature based on the parameter λ which controls the cost-quality

trade-off and more importantly based on the current rate of accepted moves.

Analyzing their annealing schedule, Lam and Delosme determined that the

temperature is reduced the quickest when the probability of accepting a move is

equal to 0.44.” [6]

After having made this observation that a faster cooling rate led to a shorter annealing

run, the size of the neighborhood considered for the moves was allowed to fluctuate to

match this target move acceptance rate of 0.44 as closely as possible. The idea behind

this is to either increase the acceptance rate by decreasing the maximum distance from

the current state or to decrease the acceptance rate by increasing the maximum distance

from the current state.

Swartz presented a modified version of the Lam and Delosme’s annealing schedule.

Instead of having a monotonically decreasing temperature, Swartz proposed controlling

the temperature by continuously increasing and decreasing it on the basis of the

acceptance rate. Starting with an initial acceptance rate of 1.0, the rate decreases

exponentially during the first 15% of the run until it reaches 0.44. Following this, it

remains nearly constant for the next 50% of the run and then it exponentially decreases

to 0 by the end of the run.

22

Boyan presented an approach similar to Swartz’s where a feedback mechanism was

used to adapt the temperature in order to track the theoretical “optimal” acceptance rate.

Doing so had the advantage of not having to modify the neighborhood function during

the search. This made the “Modified Lam” annealing schedule problem - independent.

[7]

Unlike the SA algorithm, we don’t use the temperature as a stopping criterion. Instead,

we use the maximum number of evaluations of the cost calculations as the criteria for

stopping the algorithm. Note that this value may be changed by the user.

In the following section, we present the pseudocode for the ASA algorithm and run

through the steps followed therein.

23

3.3 Pseudocode

The simulated algorithm works as per the following pseudocode shown in Figure 3.3.1

Figure 3.3.1: Pseudocode for the Adaptive Simulated Annealing algorithm [6]

Let us take a detailed look at how the algorithm is implemented. We begin with

generating an initial state based on the initial x and y values provided to the function.

Next, the initial temperature is set to a value of 0.5 and initial accept rate to 0.5. We set

a reasonably higher value for Evalsmax, i.e., the maximum number of evaluations that

will be carried out.

Once inside the iterative loop, we carry out one iteration at a time until the number of

operations has reached Evalsmax or until the algorithm reaches convergence. At each

iteration, we choose a neighborhood value of S (the current values) and evaluate the

24

cost function, in our case the cost as a result of these neighborhood values. If the new

cost is less than the current cost, accept the move with an increased acceptance rate. If

the cost will increase as a result of this move, the move is accepted depending on the

probability that decreases with increasing cost. However, if the cost increase is

significant, the move is rejected. This is fairly similar to the SA algorithm.

What differentiates between the ASA from the SA algorithm is that we allow the current

temperature to fluctuate based on the AcceptRate and the LamRate (LamRate is the

“target” acceptance rate). As per the idea of the ASA, we try to stick to a probability of

accepting moves to 0.44 so that the temperature reduces the fastest and results in a

shorter convergence time. This is controlled by the part of the code shown in Figure

3.3.2.

Figure 3.3.2: Controlling the temperature based on the LamRate and AcceptRate

Appendix 1 provides the complete MATLAB code for the Adaptive Simulated Annealing

algorithm.

25

3.4 Algorithm output

As in the case of the non-adaptive SA algorithm, we use the sample cost function 2x2 –
4xy + y4 + 2. A 3-Dimensional graph of function f shows that f has two local minima at (-
1,-1,1) and (1,1,1) and one saddle point at (0,0,2) [5]. This is shown in Figure 3.4.1.

Figure 3.4.1: Cost function used for simulated annealing implementation [5]

We enter a vector as an initial guess and also a function handle so that the cost can be

computed at subsequent iterations. The initial guess is a vector that contains the starting

x and y values. This is shown in Figure 3.4.2

Figure 3.4.2: Passing the initial guess and the cost function handle in to the adaptive simulated
annealing algorithm

26

Once the algorithm is run and it completes execution, we see that the solution converges

to the minima (the minimum cost) and we get the optimal x and y values for the solution.

The annealing algorithm waveforms at successive iterations and the final output are

shown in Figures 3.4.3 and 3.4.4 respectively.

Figure 3.4.3: Adaptive Simulated Annealing algorithm waveforms at successive iterations

Figure 3.4.4: Output of the simulated annealing algorithm with the minimum cost and the x and
y values for the solution

We notice from the results that the Adaptive Simulated Annealing algorithm converges

reasonably faster than the SA algorithm at the cost of some accuracy in the results. This

is the tradeoff that the user has to account for between the convergence time and the

accuracy of the solution. Detailed performance comparisons are provided in a

subsequent section.

27

4. Random restart hill climbing

4.1 Overview

The classical hill climbing algorithm (also called gradient descent algorithm) is often used

in finding the optimal points of a given function. In our case, the cost function is what is

of interest to us for which we want to determine the optimum x and y values that yield

the minimum cost.

Though simulated annealing and adaptive simulated annealing are the usual choice in

seeking the minimum value of the cost function, the hill climbing algorithm with suitable

enhancement(s) can also be employed to accomplish this task.

The classical hill climbing algorithm yields the optimum points of a function. Since we

are interested in the global minima, the hill climbing algorithm with suitable

enhancements is used to do so. But what is the need of an enhancement to this

algorithm? The downside of the classical hill climbing algorithm is that it yields only local

minima while we seek the global minima. Hence, the classical hill climbing algorithm will

not work for this task.

Some of the variants of the hill climbing algorithm are the stochastic hill climbing [8] and

the random restart hill climbing. In this implementation, the random restart hill climbing

algorithm is used to find the optimum x and y values and thereby minimize the value of

the cost function. Just like simulated annealing and adaptive simulated annealing, we

start with an initial guess and iteratively move toward the optimal solution. In the following

section, we will review the working of the adaptation made to the hill climbing algorithm.

28

4.2 Working of the random restart hill climbing algorithm

Before proceeding with discussing how the random restart hill climbing algorithm works,

it would be helpful to discuss how the classical hill climbing algorithm works. We start

with a cost function (assume a function of two variables f(x,y), referred to as f) and an

initial starting point x0,y0.

First, we compute the gradient of f at x0,y0 in terms of the partial derivatives. The gradient

is given as

∇𝑓 = (
𝜕𝑓

𝑑𝑥
) 𝑖 + (

𝜕𝑓

𝜕𝑦
) 𝑗 (1)

Where the 𝜕 terms are the partial derivatives of f at the current x and y values and i and

j are unit vectors along the x and y directions respectively. This implies that we first

calculate the partial derivatives of f and multiply those with i and j as in the equation

above. Suppose now we fix our new points

xi+1 = xi + h∇𝑓i

yi+1 = yi + h∇𝑓i (2)

We now have the new (neighborhood) points only in terms of one unknown, namely h.

The h is what we refer to as the step size. We now express fi+1 in terms of only one

unknown h. Next, we take the derivate of the cost (or objective) function f with respect to

h and get a function in terms of h alone, say r(h). To determine what should be the step

size h so as to minimize the cost function, we only need to find the roots of r(h) and plug

the obtained value of h back in equation (2) to get the neighborhood points xi+1 and yi+1.

If the roots are not real, we start off with a random initial condition and carry out iterative

searches starting from that point.

Based on the new points, we follow the same procedure again until we reach a point

where the gradient of the cost function is zero. This indicates that a critical point is

reached; a point beyond which further improvisation is not possible.

29

Having reached a critical point, we have implemented the classical form of the hill

climbing algorithm. However, this may not necessarily be the global minima since there

is a chance that a local minima could have been reached. This is not desirable since we

seek a global minima.

Of the several alternatives available, we implement the RRHC (Random Restart Hill

Climbing) algorithm. Once a local minima has been reached, do not let it terminate.

Instead, we begin the search starting from a random initial condition (x0’, y0’) and

iteratively seek improvement by implementing another local search with this initial

condition. Whenever a local minima is reached, the x and y values are stored along with

the function value.

The procedure of starting with random initial conditions up on arrival at a local minima is

carried out repeatedly until the preset number of maximum number of iterations is

reached. Once the limit is reached, we look through the stored results and output the x

and y values that provided us the least value of the cost function. This is the result of the

random restart hill climbing algorithm. Appendix 1 provides the complete MATLAB code

of the Random Restart Hill Climbing Algorithm.

30

4.3 Pseudocode

The Random Restart Hill Climbing algorithm works as per the pseudocode shown in

Figure 4.3.1

Figure 4.3.1: Pseudocode for the Random Restart Hill Climbing algorithm

Let us take a detailed look at how the algorithm is implemented. We begin with

generating an initial state based on the initial x and y values provided to the function.

Next, we symbolically get points xi+1 and yi+1 in terms of h, the step size and express the

cost function in terms of h alone. It must be noted though that an approach other than

symbolic differentiation might be required for cases where either the nature of the cost

31

function is not known, or to account for the possibility of the cost function not being

differentiable at all or not being differentiable at certain points of interest. We take the

derivative of the cost function with respect to h and solve it for h. Using this step size

value, we compute the next iteration point xi+1 = xi + h
𝜕𝑓

𝑑𝑥
 and yi+1 = yi + h

𝜕𝑓

𝜕𝑦
. The same

procedure is carried out until the gradient of f ▽f is not zero. If, however, ▽f is zero, the

current x and y values are the critical points and we store these points, along with the

value of f at these points in a results table.

Since we reach a critical point when ▽f is zero, we want to ensure that this is indeed the

global minima and not a local minima. To achieve this objective, we start the same

iterative improvement from a randomly chosen point and see where this point takes us

in terms of reaching the critical point. This is illustrated in Figure 4.3.2. Since the

algorithm Hill Climbing algorithm is restarted from randomly chosen points, we call this

the Random Restart Hill Climbing algorithm.

Figure 4.3.2: Random Restart of the Hill Climbing algorithm

32

The procedure is repeated until the maximum number of iterations is reached. Once this

limit is reached, we scan through the stored results and report the x and y values that

yield the minimum value of the cost function. The limit is determined empirically. This

becomes the result of the implementation of this algorithm.

33

4.4 Algorithm output

As in the case of the previous algorithms, we use the sample cost function 2x2 – 4xy +
y4 + 2. A 3-Dimensional graph of function f shows that f has two local minima at (-1,-1,1)
and (1,1,1) and one saddle point at (0,0,2) [5]. This is shown in Figure 4.4.1.

Figure 4.4.1: Cost function used for simulated annealing implementation [5]

We enter a vector as an initial guess and also the cost function so that the cost can be

computed at subsequent iterations. The initial guess is a vector that contains the starting

x and y values. This is shown in Figure 4.4.2

Figure 4.4.2: Passing the initial guess and the cost function in to the random restart hill climbing
algorithm

34

Once the algorithm is run and completes execution, we see a list of critical points. These

points are of interest to us. Just before the algorithm terminates, we output the result

based on the minimum value of the cost function. The random restart gradient descent

algorithm waveforms at successive iterations and the final output are shown in Figures

4.4.3 and 4.4.4 respectively.

Figure 4.4.3: Random restart hill climbing algorithm waveforms at successive iterations

Figure 4.4.4: Output of the random restart hill climbing algorithm with the minimum cost and the
x and y values for the solution

Since we have the set of results with local minima at (-1,-1) and (1,1) we can set

additional filters so as to yield non-negative x and y values. Note that the third value in

the results table indicates the value of the cost function at the given x and y values.

35

5. Performance comparison

Based on the settings chosen for the three algorithms, each algorithm was tested for its

performance with three different functions. We present a detailed performance

comparison of these algorithms followed by a concluding section.

5.1 Performance comparison with a cost function of two variables

We use the sample cost function 2x2 – 4xy + y4 + 2. The solution results for all the three

algorithms are given in Tables 5.1.1, 5.1.2, and 5.1.3. The error is evaluated taking the

known minimum function value as 1.0.

Simulated Annealing algorithm

 x y
minimum function

value
Error (%)

Trail 1 1.0000 1.0000 1.0000 0.0000

Trail 2 1.0000 1.0000 1.0000 0.0000

Trail 3 1.0000 1.0000 1.0000 0.0000

Trail 4 1.0000 1.0000 1.0000 0.0000

Trail 5 1.0000 1.0000 1.0000 0.0000

Trail 6 1.0000 1.0000 1.0000 0.0000

Trail 7 1.0000 1.0000 1.0000 0.0000

Trail 8 1.0000 1.0000 1.0000 0.0000

Trail 9 1.0000 1.0000 1.0000 0.0000

Trail 10 1.0000 1.0000 1.0000 0.0000

Average 1.0000 1.0000 1.0000 0.0000

Table 5.1.1: Solution from the SA algorithm for a cost function of two independent variables x,
and y

36

Adaptive Simulated Annealing algorithm

 x y
minimum function

value
Error (%)

Trail 1 1.0219 0.9987 1.0011 0.1100

Trail 2 1.1427 1.0316 1.0288 2.8800

Trail 3 1.0663 1.0176 1.0060 0.6000

Trail 4 1.0349 1.0619 1.0177 1.7700

Trail 5 1.1524 1.0736 1.0357 3.5700

Trail 6 1.0329 1.0047 1.0017 0.1700

Trail 7 0.9711 0.9577 1.0072 0.7200

Trail 8 1.0469 1.0101 1.0031 0.3100

Trail 9 0.9707 0.9977 1.0015 0.1500

Trail 10 0.9763 1.0202 1.0055 0.5500

Average 1.0416 1.0174 1.0108 1.0800

Table 5.1.2: Solution from the ASA algorithm for a cost function of two independent variables x,
and y

Random Restart Hill Climbing algorithm

 x y minimum function value Error (%)

Trail 1 1.0000 1.0000 1.0000 0.0000

Trail 2 -1.0000 -1.0000 1.0000 0.0000

Trail 3 -1.0000 -1.0000 1.0000 0.0000

Trail 4 1.0000 1.0000 1.0000 0.0000

Trail 5 1.0000 1.0000 1.0000 0.0000

Trail 6 -1.0000 -1.0000 1.0000 0.0000

Trail 7 -1.0000 -1.0000 1.0000 0.0000

Trail 8 -1.0000 -1.0000 1.0000 0.0000

Trail 9 -1.0000 -1.0000 1.0000 0.0000

Trail 10 -1.0000 -1.0000 1.0000 0.0000

Average -0.4000 -0.4000 1.0000 0.0000

Table 5.1.3: Solution from the RRHC algorithm for a cost function of two independent variables
x, and y

37

Figure 5.1.1 shows a plot of computation time of all the algorithms for 10 trials each.

Figure 5.1.1: Computation time (sec.) for 10 tries of the three algorithms

Table 5.1.4 aims to provide information on the tradeoff between percentage error (hence

accuracy) and computation time in each of the three algorithms

 Simulated Annealing
Adaptive Simulated

Annealing
Random Restart Hill

Climbing

 Error (%) time (sec.) Error (%) time(sec.) Error (%) time(sec.)

Trail 1 0.0000 11.8725 0.1100 8.3083 0.0000 107.0738

Trail 2 0.0000 14.2725 2.8800 8.2298 0.0000 111.5707

Trail 3 0.0000 7.4209 0.6000 8.1175 0.0000 111.9641

Trail 4 0.0000 8.1256 1.7700 8.1117 0.0000 114.8540

Trail 5 0.0000 12.8865 3.5700 8.0961 0.0000 117.4197

Trail 6 0.0000 9.1926 0.1700 8.1202 0.0000 119.5169

Trail 7 0.0000 14.5878 0.7200 8.0581 0.0000 121.1676

Trail 8 0.0000 12.8568 0.3100 8.2373 0.0000 127.4931

Trail 9 0.0000 24.6004 0.1500 8.0896 0.0000 132.2677

Trail 10 0.0000 7.5052 0.5500 8.2354 0.0000 119.4661

Average 0.0000 12.3321 1.0830 8.1604 0.0000 118.2794

Table 5.1.4: Computation time (sec.) vs. percentage error of the three algorithms for the given

cost function of two independent variables

38

Figure 5.1.2 shows a scatter plot of the computation time (sec.) vs. percentage error

(hence accuracy) tradeoff in each of the three algorithms. The points with a glow

represent the average computation time (sec.) vs. average error (%) for each algorithm’s

implementation.

Figure 5.1.2: Computation time (sec.) vs. percentage error (hence accuracy) tradeoff in each of
the three algorithms.

0.0000

20.0000

40.0000

60.0000

80.0000

100.0000

120.0000

140.0000

0.0000 0.5000 1.0000 1.5000 2.0000 2.5000 3.0000 3.5000 4.0000

C
o

m
p

u
ta

ti
o

n
 t

im
e

(s
ec

.)

error (%)

Performance comparison (function of two variables)

SA

ASA

RRHC

39

5.2 Performance comparison with a cost function of three variables

We use the sample cost function x2 + y2 + z2. The solution results for all the three

algorithms are given in Tables 5.2.1, 5.2.2, and 5.2.3. The error is evaluated taking the

known minimum function value as 0.0 since this function represents the volume of a

sphere.

Simulated Annealing algorithm

 x y z
minimum function

value
Error (%)

Trail 1 -4.30e-05 5.32e-06 5.48e-06 1.91e-09 0.0000

Trail 2 1.57e-07 3.37e-05 -8.28e-06 1.21e-09 0.0000

Trail 3 -1.98e-06 2.07e-05 3.58e-07 4.35e-10 0.0000

Trail 4 -4.80e-06 -5.81e-06 -3.33e-06 6.78e-11 0.0000

Trail 5 6.16e-06 3.27e-05 -4.77e-05 3.38e-09 0.0000

Trail 6 -2.26e-05 -4.74e-06 9.48e-05 9.52e-09 0.0000

Trail 7 5.79e-06 2.47e-06 -1.03e-06 4.06e-11 0.0000

Trail 8 3.85e-05 4.83e-06 4.49e-07 1.50e-09 0.0000

Trail 9 4.69e-08 5.23e-06 4.43e-05 1.99e-09 0.0000

Trail 10 2.91e-07 -5.75e-07 -5.95e-05 3.54e-09 0.0000

Average -2.15e-06 9.39e-06 2.56e-06 2.36e-09 0.0000

Table 5.2.1: Solution from the SA algorithm for a cost function of three independent variables x,
y, and z

40

Adaptive Simulated Annealing algorithm

 x y z
minimum function

value
Error (%)

Trail 1 -0.0122 0.0897 0.1514 0.0311 3.1100

Trail 2 0.0166 0.3772 0.0833 0.1495 14.9500

Trail 3 0.0927 0.2953 0.0348 0.0970 9.7000

Trail 4 0.0447 0.0673 -0.0234 0.0071 0.7100

Trail 5 -0.0142 0.2292 0.0474 0.0550 5.5000

Trail 6 -0.0395 0.2485 0.0017 0.0633 6.3300

Trail 7 -0.0046 -0.0289 -0.0005 0.0009 0.0857

Trail 8 0.0796 0.6125 0.0352 0.3827 38.2700

Trail 9 0.0269 0.1638 -0.0313 0.0285 2.8500

Trail 10 -0.0528 0.4458 0.1669 0.2293 22.9300

Average 0.0137 0.2500 0.0465 0.1044 10.4400

Table 5.2.2: Solution from the ASA algorithm for a cost function of three independent variables
x, y, and z

Random Restart Hill Climbing algorithm

 x y z
minimum function

value
Error (%)

Trail 1 0.0000 0.0000 0.0000 0.0000 0.0000

Trail 2 0.0000 0.0000 0.0000 0.0000 0.0000

Trail 3 0.0000 0.0000 0.0000 0.0000 0.0000

Trail 4 0.0000 0.0000 0.0000 0.0000 0.0000

Trail 5 0.0000 0.0000 0.0000 0.0000 0.0000

Trail 6 0.0000 0.0000 0.0000 0.0000 0.0000

Trail 7 0.0000 0.0000 0.0000 0.0000 0.0000

Trail 8 0.0000 0.0000 0.0000 0.0000 0.0000

Trail 9 0.0000 0.0000 0.0000 0.0000 0.0000

Trail 10 0.0000 0.0000 0.0000 0.0000 0.0000

Average 0.0000 0.0000 0.0000 0.0000 0.0000

Table 5.2.3: Solution from the RRHC algorithm for a cost function of three independent
variables x, y, and z

41

Figure 5.2.1 shows a plot of computation time of all the algorithms for 10 trials each.

Figure 5.2.1: Computation time (sec.) for 10 tries of the three algorithms

Table 5.2.4 aims to provide information on the tradeoff between percentage error (hence

accuracy) and computation time in each of the three algorithms.

 Simulated Annealing
Adaptive Simulated

Annealing
Random Restart Hill

Climbing

 Error (%) time(sec.) Error (%) time(sec.) Error (%) time(sec.)

Trail 1 0.0000 13.2846 3.1100 9.3280 0.0000 82.3744

Trail 2 0.0000 10.4691 14.9500 9.2858 0.0000 81.9271

Trail 3 0.0000 16.0278 9.7000 9.2807 0.0000 85.4474

Trail 4 0.0000 19.6527 0.7100 9.4716 0.0000 85.2702

Trail 5 0.0000 14.2018 5.5000 9.4105 0.0000 89.2661

Trail 6 0.0000 17.2582 6.3300 9.3741 0.0000 88.1859

Trail 7 0.0000 16.8966 0.0857 9.5158 0.0000 88.7392

Trail 8 0.0000 17.2577 38.2700 9.4201 0.0000 86.2815

Trail 9 0.0000 21.5238 2.8500 10.0450 0.0000 93.5806

Trail 10 0.0000 12.6871 22.9300 9.3865 0.0000 85.3771

Average 0.0000 15.9259 10.4436 9.4518 0.0000 86.6450

Table 5.2.4: Computation time (sec.) vs. percentage error of the three algorithms for the given

cost function of three independent variables

42

Figure 5.2.2 shows a scatter plot of the computation time (sec.) vs. percentage error

(hence accuracy) tradeoff in each of the three algorithms. The points with a glow

represent the average computation time (sec.) vs. average error (%) for each algorithm’s

implementation.

Figure 5.2.2: Computation time (sec.) vs. percentage error (hence accuracy) tradeoff in each of
the three algorithms.

0.0000

10.0000

20.0000

30.0000

40.0000

50.0000

60.0000

70.0000

80.0000

90.0000

100.0000

0.0000 5.0000 10.0000 15.0000 20.0000 25.0000 30.0000 35.0000 40.0000 45.0000

C
o

m
p

u
ta

ti
o

n
 t

im
e

(s
ec

.)

error (%)

Performance comparison (function of three variables)

SA

ASA

RRHC

43

5.3 Performance comparison with a cost function of four variables

We use the sample cost function (2w2 – 4wx + x4 + 2)*(2y2 – 4yz + z4 + 2). The solution

results for all the three algorithms are given in Tables 5.3.1, 5.3.2, and 5.3.3. The error

is evaluated taking the known minimum function value as 1.0.

Simulated Annealing algorithm

 w x y z
minimum function

value
Error (%)

Trail 1 1.0000 1.0000 -1.0000 -1.0000 1.0000 0.0000

Trail 2 1.0000 1.0000 -1.0000 -1.0000 1.0000 0.0000

Trail 3 1.0000 1.0000 -1.0000 -1.0000 1.0000 0.0000

Trail 4 1.0000 1.0000 -1.0000 -1.0000 1.0000 0.0000

Trail 5 1.0000 1.0000 -1.0000 -1.0000 1.0000 0.0000

Trail 6 1.0000 1.0000 -1.0000 -1.0000 1.0000 0.0000

Trail 7 1.0000 1.0000 -1.0000 -1.0000 1.0000 0.0000

Trail 8 1.0000 1.0000 -1.0000 -1.0000 1.0000 0.0000

Trail 9 1.0000 1.0000 -1.0000 -1.0000 1.0000 0.0000

Trail 10 1.0000 1.0000 -1.0000 -1.0000 1.0000 0.0000

Average 1.0000 1.0000 -1.0000 -1.0000 1.0000 0.0000

Table 5.3.1: Solution from the SA algorithm for a cost function of four independent variables w,
x, y, and z

44

Adaptive Simulated Annealing algorithm

 w x y z
minimum function

value
Error (%)

Trail 1 1.1072 1.0052 -0.9071 -0.9738 1.0327 3.2700

Trail 2 1.0764 0.9977 -0.6883 -0.8921 1.1387 13.8700

Trail 3 1.0246 0.9841 -0.8870 -0.9478 1.0221 2.2100

Trail 4 0.9245 1.0302 -1.0296 -0.9989 1.0280 2.8000

Trail 5 0.9951 0.9799 -0.8949 -0.9394 1.0198 1.9800

Trail 6 1.0509 1.0231 -0.8316 -0.9106 1.0455 4.5500

Trail 7 0.9807 1.0058 -1.0396 -1.0193 1.0038 0.3800

Trail 8 0.9998 0.9796 -0.8535 -0.8864 1.0507 5.0700

Trail 9 0.9755 1.0065 -1.0176 -0.9904 1.0039 0.3900

Trail 10 0.9630 0.9885 -0.9836 -0.9546 1.0114 1.1400

Average 1.0098 1.0001 -0.9133 -0.9513 1.0357 3.5700

Table 5.3.2: Solution from the ASA algorithm for a cost function of four independent variables w,
x, y, and z

Random Restart Hill Climbing algorithm

 w x y z
minimum function

value
Error (%)

Trail 1 -1.0000 -1.0000 1.0000 1.0000 1.0000 0.0000

Trail 2 -1.0000 -1.0000 1.0000 1.0000 1.0000 0.0000

Trail 3 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000

Trail 4 1.0000 1.0000 -1.0000 -1.0000 1.0000 0.0000

Trail 5 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000

Trail 6 1.0000 1.0000 -1.0000 -1.0000 1.0000 0.0000

Trail 7 -1.0000 -1.0000 1.0000 1.0000 1.0000 0.0000

Trail 8 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000

Trail 9 1.0000 1.0000 -1.0000 -1.0000 1.0000 0.0000

Trail 10 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000

Average 0.4000 0.4000 0.4000 0.4000 1.0000 0.0000

Table 5.3.3: Solution from the RRHC algorithm for a cost function of four independent variables
w, x, y, and z

45

Figure 5.3.1 shows a plot of computation time of all the algorithms for 10 trials each.

Figure 5.3.1: Computation time (sec.) for 10 tries of the three algorithms

Table 5.3.4 aims to provide information on the tradeoff between percentage error (or

accuracy) and computation time in each of the three algorithms

 Simulated Annealing
Adaptive Simulated

Annealing
Random Restart Hill

Climbing

 Error (%) time(sec.) Error (%) time(sec.) Error (%) time(sec.)

Trail 1 0.0000 120.2330 3.2700 10.8771 0.0000 175.3429

Trail 2 0.0000 120.9094 13.8700 10.5780 0.0000 171.8625

Trail 3 0.0000 121.5211 2.2100 10.5127 0.0000 169.7304

Trail 4 0.0000 119.1562 2.8000 10.6375 0.0000 180.2140

Trail 5 0.0000 129.1668 1.9800 11.3135 0.0000 180.2062

Trail 6 0.0000 128.1730 4.5500 11.7564 0.0000 185.0980

Trail 7 0.0000 130.7918 0.3800 11.1606 0.0000 184.5443

Trail 8 0.0000 119.3853 5.0700 11.1768 0.0000 198.1524

Trail 9 0.0000 127.3835 0.3900 11.7708 0.0000 204.0424

Trail 10 0.0000 124.3711 1.1400 10.9535 0.0000 200.5978

Average 0.0000 124.1091 3.5660 11.0737 0.0000 184.9791

Table 5.3.4: Computation time (sec.) vs. percentage error of the three algorithms for the given
cost function of four independent variables

46

Figure 5.3.2 shows a scatter plot of the computation time (sec.) vs. percentage error

(hence accuracy) tradeoff in each of the three algorithms. The points with a glow

represent the average computation time (sec.) vs. average error (%) for each algorithm’s

implementation.

Figure 5.3.2: Computation time (sec.) vs. percentage error (hence accuracy) tradeoff in each of
the three algorithms.

0.0000

50.0000

100.0000

150.0000

200.0000

250.0000

0.0000 2.0000 4.0000 6.0000 8.0000 10.0000 12.0000 14.0000 16.0000

C
o

m
p

u
ta

ti
o

n
 t

im
e

(s
ec

.)

error (%)

Performance comparison (function of four variables)

SA

ASA

RRHC

47

6. Conclusions

As is evident from the computation time plots, RRHC is the computationally most

expensive algorithm among the three. The computation times for SA and ASA algorithms

are comparable when working with functions of two or three independent variables.

However, the difference is significant when working with a function of four independent

variables.

SA and RRHC algorithms deliver higher accuracy in comparison to the ASA algorithm.

This is evident from the scatter plots for these three algorithms for each of the tested

functions. The tradeoff is that SA and RRHC algorithms take more computation time

when compared to the ASA algorithm.

Also, it was noted that the RRHC was not able to trace out all the possible optimal

solutions in the same number of iterations when implemented on the function of four

variables. What this implies is that more iterations may be necessary for RRHC for

relatively complex functions.

Given the performance comparison of the three algorithms and their individual accuracy

vs. computation time tradeoffs, it is up to the implementer to decide which of the three

algorithms would best suit the task at hand.

48

Appendix 1

Main file in MATLAB (for function of two variables):

%%%%%%%%%%%%%%% Rohit A. Bhatia %%%%%%%%%%%%%%%
%%%%%%%%%%%%%%% EE 5991 | Heuristic Optimization Algorithms

%%%%%%%%%%%%%%%

clearvars; %clear all variables from MATLAB workspace
clc;
GlobalResults = [];
comparisonLimit = 10;
results = [];

%sample function from

http://www.analyzemath.com/calculus/multivariable/maxima_minima.html
testFunction = @(x,y)(2*x.^2 - 4*x*y + y.^4 + 2);
ruleFunction = @(c)testFunction(c(1),c(2)); % function handle
initialGuess = [1 5]; % initial guess for

x and y coordinates -
tempUserOpt = [];
for performaceComp = 1:1:comparisonLimit
 [SimulatedAnnealingResults] =

anneal_rev1(ruleFunction,initialGuess); % Simmulated Annealing

algorithm implementation (rev1)
 completeResult = horzcat(SimulatedAnnealingResults);
 [AdaptiveSimulatedAnnealingResults] =

AdaptiveAnneal_rev1(ruleFunction,initialGuess); % Adaptive Simmulated

Annealing algorithm implementation (rev1)
 completeResult = horzcat(completeResult,

AdaptiveSimulatedAnnealingResults);
 [RandomRestartHCResults] =

randomRestartHillClimbing_2var_rev1(testFunction,initialGuess);
 completeResult = horzcat(completeResult, RandomRestartHCResults);
 GlobalResults = [GlobalResults;completeResult];
end
[comparisonGenerated, computationTimeInformation] =

PerformaceComparision(GlobalResults,comparisonLimit);
[reportGenerated] =

ReportOnTable(GlobalResults,computationTimeInformation,comparisonLimit

);

Main file in MATLAB (for function of three variables):

%%%%%%%%%%%%%%% Rohit A. Bhatia %%%%%%%%%%%%%%%
%%%%%%%%%%%%%%% EE 5991 | Heuristic Optimization Algorithms

%%%%%%%%%%%%%%%

clearvars; %clear all variables from MATLAB workspace
clc;
GlobalResults = [];
comparisonLimit = 10;
results = [];

49

testFunction_3var = @(x,y,z)(x.^2 + y.^2 + z.^2);
ruleFunction = @(c)testFunction_3var(c(1),c(2),c(3)); % function

handle
initialGuess = [-1 3 1]; % initial guess

for x, y and z coordinates -
tempUserOpt = [];
for performaceComp = 1:1:comparisonLimit
 [SimulatedAnnealingResults] =

anneal_3var_rev1(ruleFunction,initialGuess); % Simmulated Annealing

algorithm implementation (rev1)
 completeResult = horzcat(SimulatedAnnealingResults);
 [AdaptiveSimulatedAnnealingResults] =

AdaptiveAnneal_3var_rev1(ruleFunction,initialGuess); % Adaptive

Simmulated Annealing algorithm implementation (rev1)
 completeResult = horzcat(completeResult,

AdaptiveSimulatedAnnealingResults);
 [RandomRestartHCResults] =

randomRestartHillClimbing_3var_rev1(testFunction_3var,initialGuess);
 completeResult = horzcat(completeResult, RandomRestartHCResults);
 GlobalResults = [GlobalResults;completeResult];
end
display('Fetch Results Now!');
[comparisonGenerated, computationTimeInformation] =

PerformaceComparision_3var(GlobalResults,comparisonLimit);
[reportGenerated] =

ReportOnTable_3var(GlobalResults,computationTimeInformation,comparison

Limit);

Main file in MATLAB (for function of four variables):

%%%%%%%%%%%%%%% Rohit A. Bhatia %%%%%%%%%%%%%%%
%%%%%%%%%%%%%%% EE 5991 | Heuristic Optimization Algorithms

%%%%%%%%%%%%%%%

clearvars; %clear all variables from MATLAB workspace
clc;
GlobalResults = [];
comparisonLimit = 10;
results = [];

testFunction_4var = @(w,x,y,z)((2*w.^2 - 4*w*x + x.^4 + 2)*(2*y.^2 -

4*y*z + z.^4 + 2));
% based on x and y coordinates of the module being placed
ruleFunction = @(c)testFunction_4var(c(1),c(2),c(3),c(4)); %

function handle
initialGuess = [1 1 -1 0]; % initial guess

for w, x, y and z coordinates -
tempUserOpt = [];
for performaceComp = 1:1:comparisonLimit
 [SimulatedAnnealingResults] =

anneal_4var_rev1(ruleFunction,initialGuess); % Simmulated Annealing

algorithm implementation (rev1)
 completeResult = horzcat(SimulatedAnnealingResults);

50

 [AdaptiveSimulatedAnnealingResults] =

AdaptiveAnneal_4var_rev1(ruleFunction,initialGuess); % Adaptive

Simmulated Annealing algorithm implementation (rev1)
 completeResult = horzcat(completeResult,

AdaptiveSimulatedAnnealingResults);
 [RandomRestartHCResults] =

randomRestartHillClimbing_4var_rev1(testFunction_4var,initialGuess);
 completeResult = horzcat(completeResult, RandomRestartHCResults);
 GlobalResults = [GlobalResults;completeResult];
end
[comparisonGenerated, computationTimeInformation] =

PerformaceComparision_4var(GlobalResults,comparisonLimit);
[reportGenerated] =

ReportOnTable_4var(GlobalResults,computationTimeInformation,comparison

Limit);

Non-adaptive simulated annealing algorithm implementation in MATLAB:

%%%%%%%%%%%%%%% Rohit A. Bhatia %%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%% EE 5991 Algorithm - 1 %%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%% Simulated Annealing %%%%%%%%%%%%%%%%%%%%%%%

% >> PROCEDURE Simulated_ Annealing
% Above indicates the beginning of the algorithm implementation
% >> 1 initialize;

function [reportResults] = anneal_rev1(ruleFunction,

parentParam,userOpt)
% arrays for holding data
plot_fVal = [];
plot_minVal = [];
plot_temp = [];
tempPlot_diff = [];
solutionUpdateRow = [];
solutionMatrix = [];
reportResults = zeros(1,5);
% The following piece of code is used for initialization.
% Default parameters for Simmulated Annealing algorhtim
% length(param) returns
% randperm(length(param)) randomly returns [1 2] per the definition of
% randperm. randperm(length(param)) == length(param) randomly returns

[1 0]
% per definition of == operator the result is then multiplied with
% "randn/100" and added to the previous value of input parameter to

get the
% updated value.

defaultParam = struct(...
 'Schedule', @(T) (0.9 * T),...
 'MaxConsecutiveRejections', 1000,...
 'MaxSuccessAtTemperature', 20,...
 'RandomGenerator', @(param)

(param+(randperm(length(param))==length(param))*randn/100),...
 'InitialTemperature', 1,...

51

 'StoppingTemperature', 1e-8,...
 'MaxTriesAtTemperature', 300,...
 'StoppingValue', 0);

%verification of input:
if ~nargin
 minimum = defaultParam;
 return
elseif nargin < 2
 error('Please input user options.');
elseif nargin < 4
 userOpt = defaultParam;
else
 if ~isstruct (userOpt)
 error('"userOpt" is not a structure. Using default

options...');
 end
 structFormat =

{'Schedule','MaxConsecutiveRejections','MaxSuccessAtTemperature','Rand

omGenerator',...

'InitialTemperature','StoppingTemperature','MaxTriesAtTemperature','St

oppingValue'};
 for count = 1:1:length(structFormat)
 if ~isfield(userOpt,structFormat{count})
 userOpt.(structFormat{count}) =

defaultParam.(structFormat{count});
 end
 end
end

% Initialization
UpdatedCoordinates = userOpt.RandomGenerator; % generates random

solution
InitTemp = userOpt.InitialTemperature; % initial temperature
StoppingTemp = userOpt.StoppingTemperature; % stopping

temperature
CoolSched = userOpt.Schedule; % cooling schedule for annealing
MinFunc = userOpt.StoppingValue; % minimum value of Function
MaxConsRej = userOpt.MaxConsecutiveRejections; % maximum consecutive

rejections
MaxTryAtT = userOpt.MaxTriesAtTemperature; % maximum tries at a

temperature
MaxSucAtT = userOpt.MaxSuccessAtTemperature; % maximum success at a

temperature

% Initialize counters
trialCountAtT = 0; % iteration counter
successCountAtT = 0; % success counter
finishedFlag = 0; % flag to indicate that a soultion has been

reached OR that the program needs to end execution
consecRejCount = 0; % consecutive rejection count at a particular

temperature
temp = InitTemp; % temperature initialized to Initial Temperature

preset

52

initialLength = ruleFunction(parentParam); % initial wire length is

computed based on the initial guess parameters
oldLength = initialLength; % initialize oldLength; will be updated on

successive iterations
funcCallCount = 0; % number of times this function was called
annealCount = 0; % number of times annealing was done
k = 1 ; % Boltzmann constant
%draw = 0;
%% Figure control parameter for graph:

fig1 = figure;
set(fig1,'name','PLOT OF SIMMULATED ANNEALING ALGORITHM (NON-

ADAPTIVE):','numbertitle','off')
Results = [];
hList1 = uicontrol(fig1,'Style','text','Position',[600 5 400 75]);

%% time / performance calculation
tic;
% >> 3 WHILE stopping. criterion (loop. count, temperature) = FALSE
%%
while ~finishedFlag
 trialCountAtT = trialCountAtT + 1;
 currentParam = parentParam;
 % >> 4 WHILE inner.loop.criterion = FALSE
 % We do the annealing if the we have reached the maximum number of

tries
 % at a particular temperature OR is the number of successful moves

is
 % greater than or equal to the preset for maximum success count at

a
 % particlar temperature. This is based on the additional condition

that
 % the algorithm isn't terminated due to the temperature going

below the
 % stopping temperature OR the consecutive rejection count doesn't

exceed
 % the preset for Maximum Consecutive Rejections
 if trialCountAtT >= MaxTryAtT || successCountAtT >= MaxSucAtT
 if temp <= StoppingTemp || consecRejCount >= MaxConsRej
 finishedFlag = 1;
 funcCallCount = funcCallCount + trialCountAtT;
 break;
 else
 % >> 13 temperature <- schedule(loop_count, temperature);

%cooling is done
 temp = CoolSched(temp);
 annealCount = annealCount + 1;
 funcCallCount = funcCallCount + trialCountAtT;
 trialCountAtT = 1; %set trialCountAtT back to 1 because we

just reduced the temperature
 successCountAtT = 1; %set successCountAtT back to 1

because we just reduced the temperature
 end
 end
 % >> 5 new_configuration <- perturb(configuration);

53

 % This is specific to the wire length implementation. This is

where the
 % layout equation will come in and we will optimize it.
 newParam = UpdatedCoordinates(currentParam);
 newLength = ruleFunction(newParam);
 diff = newLength - oldLength;

 % If new length is less than the minimum value of Length as set

then we
 % set the oldLength to the value of the newLength and parentParam

as
 % the value obtained for newParam
 if (newLength < MinFunc)
 parentParam = newParam;
 oldLength = newLength;
 break
 end

 % if f(x0) - f(x1) > 0 (in other words the function value

decreases,
 % then we replace initial guess with the new guess i.e.

parentParam =
 % newParam and oldLength = newLength and count that as a success

and
 % reset the consecutive rejection count
 if (oldLength - newLength > 0)
 parentParam = newParam;
 oldLength = newLength;
 successCountAtT = successCountAtT + 1;
 consecRejCount = 0;
 else
 % if f(x0) - f(x1) < 0 (in other words the function value does

NOT
 % decrease AND we still replace x0 with x1 BUT with the

probability
 % given by exp(-1 * diff)/k * temp
 if (rand < exp(-1 * diff)/k * temp)
 parentParam = newParam;
 oldLength = newLength;
 successCountAtT = successCountAtT + 1;
 % if the acceptance probability is low, then we reject the

move
 else
 consecRejCount = consecRejCount + 1;
 end
 end

 % Plotting data used only if one iteration is performed for

performance
 % comparision
 plot_fVal = [plot_fVal;oldLength;];
 plot_minVal = [plot_minVal;parentParam];
 plot_temp = [plot_temp;temp];
 tempPlot_diff = [tempPlot_diff;diff];
 solutionUpdateRow = [parentParam(1) parentParam(2) oldLength];

54

 solutionMatrix = [solutionMatrix;solutionUpdateRow];

 % Reporting the results on the figure
 Results {1,1} = strcat ('Solution for x:

',num2str(parentParam(1)));
 Results {1,2} = strcat ('Solution for y:

',num2str(parentParam(2)));
 Results {1,3} = strcat ('Current cost: ',num2str(oldLength));
 Results {1,4} = strcat ('Current temperature: ',num2str(temp));
 Results {1,5} = strcat ('Number of annealing steps:

',num2str(annealCount));
 set(hList1,'String',Results); % Displays 5 lines, one result per

line
end
%% Plotting the results
set([fig1],'handlevisibility','on');
set(0,'CurrentFigure',fig1);
subplot(2,3,1); plot(plot_minVal)
title('Optimum X and Y coordinates')
subplot(2,3,2);plot(plot_fVal)
title('Minimum cost')
subplot(2,3,3);plot(plot_temp)
title('Temperature')
subplot(2,3,4);plot(tempPlot_diff)
title('Result difference on successive iterations')
drawnow;

%% Reporting the results
minimum = parentParam;
fval = oldLength;
elapsedTime = toc;
reportResults(1,1) = minimum(1);
reportResults(1,2) = minimum(2);
reportResults(1,3) = fval;
reportResults(1,4) = annealCount;
reportResults(1,5) = elapsedTime;
end

Adaptive simulated annealing algorithm implementation in MATLAB:

%%%%%%%%%%%%%%% Rohit A. Bhatia %%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%% EE 5991 Algorithm - 2 %%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%% Adaptive Simulated Annealing %%%%%%%%%%%%%%

% >> PROCEDURE Adaptive Simulated Annealing
% Above indicates the beginning of the algorithm implementation
% SimulatedAnnealing with Modified Lam Annealing Schedule

function [reportResults] = AdaptiveAnneal_rev1(ruleFunction,

parentParam,userOpt)
% time / performance calculation
totalFunctionTime = tic;
% arrays for holding data
plot_fVal = [];

55

plot_minVal = [];
plot_temp = [];
plot_resultDiff = [];
plot_AcceptRate = [];
plot_LamRate = [];
solutionUpdateRow = [];
solutionMatrix = [];
reportResults = zeros(1,5);

% The following piece of code is used for initialization.
% Default parameters for Adaptive Simmulated Annealing algorhtim
% length(param) returns 2
% randperm(length(param)) randomly returns [1 2] per the definition of
% randperm. randperm(length(param)) == length(param) randomly returns

[1 0]
% per definition of == operator. The result is then multiplied with
% "randn/100" and added to the previous value of input parameter to

get the
% updated value.
% 2 T <- 0:5

% Set initial temperature and the random generator function
defaultParam = struct(...
 'RandomGenerator', @(param)

(param+(randperm(length(param))==length(param))*randn/100),...
 'InitialTemperature', 0.5);
%verification of input:
if ~nargin
 minimum = defaultParam;
 return
elseif nargin < 2
 error('Please input a user options.');
elseif nargin < 4
 userOpt = defaultParam;
else
 if ~isstruct (userOpt)
 error('"userOpt" is not a structure. Using default

options...');
 end
 structFormat = {'RandomGenerator','InitialTemperature'};
 for count = 1:1:length(structFormat)
 if ~isfield(userOpt,structFormat{count})
 userOpt.(structFormat{count}) =

defaultParam.(structFormat{count});
 end
 end
end

% 1 S <- GenerateInitialState
% Initialize values / counters
UpdatedCoordinates = userOpt.RandomGenerator; % generates random

solution
InitTemp = userOpt.InitialTemperature; % initial temperature
temp = InitTemp; % temperature initialized to Initial Temperature

preset

56

initialLength = ruleFunction(parentParam); % initial wire length is

computed based on the initial guess parameters
oldLength = initialLength; % initialize oldLength; will be updated on

successive iterations
annealCount = 0; % number of times annealing was done

% 3 AcceptRate <- 0.5
AcceptRate = 0.5; % Acceptance rate initialized to 0.5 for Adaptive

Simulated Annealing (ASA) algorithm
EvalsMax = 4500;
currentParam = parentParam;

%% Figure control parameter for graph:
fig2 = figure;
set([fig2],'handlevisibility','on');
set(0,'CurrentFigure',fig2);
set(fig2,'name','PLOT OF SIMMULATED ANNEALING ALGORITHM

(ADAPTIVE):','numbertitle','off')
Results = [];
hList2 = uicontrol(fig2,'Style','text','Position',[433 5 400 90]);

%%

% 4 for i from 1 to Evalsmax
for i=1:1:EvalsMax
 %while ~flagStop
 currentParam = parentParam;
 % 5 S' <- PickRandomState(Neighborhood(S))
 newParam = UpdatedCoordinates(currentParam);
 newLength = ruleFunction(newParam);
 diff = newLength - oldLength;
 % 6 if Cost(S') < Cost(S)
 % S <- S' {Note: accepting a move}
 % AcceptRate <- 1/500(499.AcceptRate + 1)
 if (diff < 0)
 parentParam = newParam;
 oldLength = newLength;
 AcceptRate = 1/500*(499*AcceptRate + 1);
 % else
 % r <- Random(0; 1)
 % if r < e(Cost(S) - Cost(S'))/T
 % S <- S' {Note: accepting a move}
 % AcceptRate <- 1/500(499.AcceptRate + 1)
 else
 if (rand < exp((-1*diff)/temp))
 parentParam = newParam;
 oldLength = newLength;
 AcceptRate = 1/500*(499*AcceptRate + 1);
 else
 % else
 % {Note: rejecting a move}
 % AcceptRate <- 1/500(499.AcceptRate)
 AcceptRate = 1/500*(499*AcceptRate);
 end
 end

57

 % 7 if i/Evalsmax < 0.15 then LamRate <- 0.44 + 0.56 * 560^-

i/Evalsmax/0.15
 if i/EvalsMax < 0.15
 LamRate = 0.44 + 0.56 * 560^(-1*i/EvalsMax/0.15);
 else
 % 8 if 0.15 <= i/Evalsmax < 0.65 then LamRate <- 0.44
 if i/EvalsMax < 0.65
 LamRate = 0.44;
 else
 % 9 if 0.65 <= i/Evalsmax then LamRate <- 0.44 *
 % 440^-(((i/Evalsmax)-0.65)/0.35)
 LamRate = 0.44 * 440^- (((i/EvalsMax)-0.65)/0.35);
 end
 end

 % 10 if AcceptRate > LamRate
 % T <- 0.999T
 % else
 % T <- T/0.999
 % end
 if AcceptRate > LamRate
 temp = 0.999*temp;
 annealCount = annealCount + 1;
 else
 temp = temp / 0.999;
 annealCount = annealCount + 1;
 end

 %% Update Results:
 % Plotting data used only if one iteration is performed for

performance
 % comparision
 plot_fVal = [plot_fVal;oldLength];
 plot_minVal = [plot_minVal;parentParam];
 plot_temp = [plot_temp;temp];
 plot_resultDiff = [plot_resultDiff;diff];
 plot_AcceptRate = [plot_AcceptRate;AcceptRate];
 plot_LamRate = [plot_LamRate; LamRate];
 solutionUpdateRow = [parentParam(1) parentParam(2) oldLength];
 solutionMatrix = [solutionMatrix;solutionUpdateRow];

 % Reporting the results on the figure

 Results {1,1} = strcat ('Solution for x:

',num2str(parentParam(1)));
 Results {1,2} = strcat ('Solution for y:

',num2str(parentParam(2)));
 Results {1,3} = strcat ('Current cost: ',num2str(oldLength));
 Results {1,4} = strcat ('Current temperature: ',num2str(temp));
 Results {1,5} = strcat ('LamRate: ',num2str(LamRate));
 Results {1,6} = strcat ('AcceptRate: ',num2str(AcceptRate));
 set(hList2,'String',Results); % Displays 6 lines, one result per

line

58

end
%% Plotting the results
set([fig2],'handlevisibility','on');
set(0,'CurrentFigure',fig2);
subplot(3,3,1); plot(plot_minVal)
title('Optimum X and Y coordinates')
subplot(3,3,2);plot(plot_fVal)
title('Minimum cost')
subplot(3,3,3);plot(plot_temp)
title('Temperature')
subplot(3,3,4);plot(plot_resultDiff)
title('Result difference on successive iterations')
subplot(3,3,5);plot(plot_AcceptRate)
title('Accept Rate')
subplot(3,3,6);plot(plot_LamRate)
title('LamRate')

%% Reporting the results
minimum = parentParam;
elapsedTime = toc (totalFunctionTime);
reportResults(1,1) = parentParam(1);
reportResults(1,2) = parentParam(2);
reportResults(1,3) = oldLength;
reportResults(1,4) = annealCount;
reportResults(1,5) = elapsedTime;
end

Random Restart Hill Climbing algorithm implementation in MATLAB (for function of two

variables):

%%%%%%%%%%%%%%% Rohit A. Bhatia %%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%% EE 5991 Algorithm - 3 %%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%% Random Restart Hill Climbing %%%%%%%%%%%%%%

function [reportResults] =

randomRestartHillClimbing_2var_rev1(testFunction,initialGuess)
reportResults = ones(1,5);
syms x y a b h; %symbols for calculating derivative etc.
nextIterationPoint = initialGuess;
internalFunctionUpdate = testFunction;
fValUpdate = [];
pointsUpdate = [];
resultsMemory = zeros(1,3);
intermediateResult = zeros(1,3); % For concatenating results to form

the results matrix
zeroReplaced = 0;
matchFound = 0;
iterationLimit = 1000;
Results = [];
% To generate random moves / preturb algorithm when "stuck" at a local
% minima
RandomMove =

@(param)(param+(randperm(length(param))==length(param))*randn*5);%,...

59

fig3 = figure;
set([fig3],'handlevisibility','on');
set(0,'CurrentFigure',fig3);
set(fig3,'name','RANDOM - RESTART HILL CLIMBING

ALGORITHM','numbertitle','off')
hList3 = uicontrol(fig3,'Style','text','Position',[5 350 150 200]);

% time / performance calculation
totalFunctionTime_2 = tic;

% RRGD code:
for i=1:1:iterationLimit
 computeFuncVal = subs(testFunction, {x,y},

{nextIterationPoint(1),nextIterationPoint(2)});
 if i == 1
 minFuncVal = computeFuncVal
 end
 fValUpdate = [fValUpdate;computeFuncVal];
 pointsUpdate = [pointsUpdate;nextIterationPoint];
 % Compute partial derivates (symbolic)
 derX_symb = diff(internalFunctionUpdate,x);
 derY_symb = diff(internalFunctionUpdate,y);

 % Substitute derivative with current coordinates to calculate

partial
 % derivatives
 derX =

subs(derX_symb,{x,y},{nextIterationPoint(1),nextIterationPoint(2)});
 derY =

subs(derY_symb,{x,y},{nextIterationPoint(1),nextIterationPoint(2)});

 % Determine next coordinates based on current coordinates and h
 % (symbolic)
 nextIterationPoint_X = sym(nextIterationPoint(1) + h*derX);
 nextIterationPoint_Y = sym(nextIterationPoint(2) + h*derY);

 % Determine function value in terms of h alone, not x and / or y
 updateFuncVal = subs(internalFunctionUpdate, {x,y},

{nextIterationPoint_X,nextIterationPoint_Y});

 % Find derivative of the function with respect to h
 derF = diff(updateFuncVal,h);

 % Find the root
 solvedH = solve(derF,h);

 [rowsResults columnsResults] = size(resultsMemory);
 if(derF ~= 0)
 for scanH= 1:1:length(solvedH)
 if double(imag(solvedH(scanH))) == 0
 hFinal = real(solvedH(scanH));
 end
 end
 nextIterationPoint(1) = nextIterationPoint(1) + hFinal*derX;

60

 nextIterationPoint(2) = nextIterationPoint(2) + hFinal*derY;

 else
 if i ~= 1
 % Scan through the matrix if a value has been replaced,

else
 % just store it in the matrix
 if (zeroReplaced == 1)
 for scanResults = 1:1:rowsResults
 if (resultsMemory(scanResults,1)==

nextIterationPoint(1))
 if (resultsMemory(scanResults,2)==

nextIterationPoint(2))
 matchFound = 1;
 break;
 else
 matchFound = 0;
 end
 else
 matchFound = 0;
 end
 if (scanResults == rowsResults)
 if matchFound == 0
 intermediateResult(1,1) =

nextIterationPoint(1);
 intermediateResult(1,2) =

nextIterationPoint(2);
 intermediateResult(1,3) = computeFuncVal;
 resultsMemory =

[resultsMemory;intermediateResult];
 end
 end
 end
 else
 resultsMemory(1,1) = nextIterationPoint(1);
 resultsMemory(1,2) = nextIterationPoint(2);
 resultsMemory(1,3) = computeFuncVal;
 zeroReplaced = 1;
 end
 nextIterationPoint = RandomMove(nextIterationPoint);
 end
 end

 if i == iterationLimit
 elapsedTime = toc (totalFunctionTime_2);
 for scanResultsMatrix = 1:1:rowsResults
 if scanResultsMatrix == 1
 reportResults(1,1) = resultsMemory(1,1);
 reportResults(1,2) = resultsMemory(1,2);
 reportResults(1,3) = computeFuncVal;
 reportResults(1,4) = iterationLimit;
 else
 if (resultsMemory(scanResultsMatrix,3) <

reportResults(1,3))

61

 reportResults(1,1) =

resultsMemory(scanResultsMatrix,1);
 reportResults(1,2) =

resultsMemory(scanResultsMatrix,2);
 reportResults(1,3) =

resultsMemory(scanResultsMatrix,3);
 reportResults(1,4) = iterationLimit;
 end
 end
 end
 end
end
reportResults(1,5) = elapsedTime;
%% Plotting the results
set([fig3],'handlevisibility','on');
set(0,'CurrentFigure',fig3);
subplot(2,1,1);plot(pointsUpdate)
title('New Points')
subplot(2,1,2); plot(fValUpdate)
title('Function Value')

%% Reporting the results on the figure
Results {1,1} = strcat ('Solution for x:

',num2str(nextIterationPoint(1)));
Results {1,2} = strcat ('Solution for y:

',num2str(nextIterationPoint(2)));
Results {1,3} = strcat ('Current cost: ',num2str(computeFuncVal));
Results {1,4} = strcat ('Local Minima: ',num2str(resultsMemory));
Results {1,5} = strcat ('Current minimum:

',num2str(intermediateResult));
set(hList3,'String',Results); % Displays 5 lines, one result per line
end

Random Restart Hill Climbing algorithm implementation in MATLAB (for function of three

variables):

%%%%%%%%%%%%%%% Rohit A. Bhatia %%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%% EE 5991 Algorithm - 3 %%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%% Random Restart Hill Climbing %%%%%%%%%%%%%%

function [reportResults] =

randomRestartHillClimbing_3var_rev1(testFunction,initialGuess)
reportResults = ones(1,6);
syms x y z a b c h; %symbols for calculating derivative etc.
nextIterationPoint = initialGuess;
internalFunctionUpdate = testFunction;
fValUpdate = [];
pointsUpdate = [];
resultsMemory = zeros(1,4);
intermediateResult = zeros(1,4); % For concatenating results to form

the results matrix
zeroReplaced = 0;
matchFound = 0;
iterationLimit = 1000;

62

Results = [];
% To generate random moves / preturb algorithm when "stuck" at a local
% minima
RandomMove =

@(param)(param+(randperm(length(param))==length(param))*randn*5);%,...

fig3 = figure;
set([fig3],'handlevisibility','on');
set(0,'CurrentFigure',fig3);
set(fig3,'name','RANDOM - RESTART HILL CLIMBING

ALGORITHM','numbertitle','off')
hList3 = uicontrol(fig3,'Style','text','Position',[5 350 150 200]);

% time / performance calculation
totalFunctionTime_2 = tic;

% RRGD code:
for i=1:1:iterationLimit
 computeFuncVal = subs(testFunction, {x,y,z},

{nextIterationPoint(1),nextIterationPoint(2),nextIterationPoint(3)});
 if i == 1
 minFuncVal = computeFuncVal
 end
 fValUpdate = [fValUpdate;computeFuncVal];
 pointsUpdate = [pointsUpdate;nextIterationPoint];
 % Compute partial derivates (symbolic)
 derX_symb = diff(internalFunctionUpdate,x);
 derY_symb = diff(internalFunctionUpdate,y);
 derZ_symb = diff(internalFunctionUpdate,z);

 % Substitute derivative with current coordinates to calculate

partial
 % derivatives
 derX =

subs(derX_symb,{x,y,z},{nextIterationPoint(1),nextIterationPoint(2),ne

xtIterationPoint(3)});
 derY =

subs(derY_symb,{x,y,z},{nextIterationPoint(1),nextIterationPoint(2),ne

xtIterationPoint(3)});
 derZ =

subs(derZ_symb,{x,y,z},{nextIterationPoint(1),nextIterationPoint(2),ne

xtIterationPoint(3)});

 % Determine next coordinates based on current coordinates and h
 % (symbolic)
 nextIterationPoint_X = sym(nextIterationPoint(1) + h*derX);
 nextIterationPoint_Y = sym(nextIterationPoint(2) + h*derY);
 nextIterationPoint_Z = sym(nextIterationPoint(3) + h*derZ);

 % Determine function value in terms of h alone, not x and / or y
 updateFuncVal = subs(internalFunctionUpdate, {x,y,z},

{nextIterationPoint_X,nextIterationPoint_Y,nextIterationPoint_Z});

 % Find derivative of the function with respect to h

63

 derF = diff(updateFuncVal,h);

 % Find the root
 solvedH = solve(derF,h);

 [rowsResults columnsResults] = size(resultsMemory);
 if(derF ~= 0)
 for scanH= 1:1:length(solvedH)
 if double(imag(solvedH(scanH))) == 0
 hFinal = real(solvedH(scanH));
 end
 end
 nextIterationPoint(1) = nextIterationPoint(1) + hFinal*derX;
 nextIterationPoint(2) = nextIterationPoint(2) + hFinal*derY;
 nextIterationPoint(3) = nextIterationPoint(3) + hFinal*derZ;
 else
 if i ~= 1

 % Scan through the matrix if a value has been replaced,

else
 % just store it in the matrix
 if (zeroReplaced == 1)
 for scanResults = 1:1:rowsResults
 if (resultsMemory(scanResults,1)==

nextIterationPoint(1))
 if (resultsMemory(scanResults,2)==

nextIterationPoint(2))
 if (resultsMemory(scanResults,3)==

nextIterationPoint(3))
 matchFound = 1;
 break;
 else
 matchFound = 0;
 end
 else
 matchFound = 0;
 end
 else
 matchFound = 0;
 end
 if (scanResults == rowsResults)
 if matchFound == 0
 intermediateResult(1,1) =

nextIterationPoint(1);
 intermediateResult(1,2) =

nextIterationPoint(2);
 intermediateResult(1,3) =

nextIterationPoint(3);
 intermediateResult(1,4) = computeFuncVal;
 resultsMemory =

[resultsMemory;intermediateResult];
 end
 end
 end
 else

64

 resultsMemory(1,1) = nextIterationPoint(1);
 resultsMemory(1,2) = nextIterationPoint(2);
 resultsMemory(1,3) = nextIterationPoint(3);
 resultsMemory(1,4) = computeFuncVal;
 zeroReplaced = 1;
 end
 nextIterationPoint = RandomMove(nextIterationPoint);
 end
 end

 if i == iterationLimit
 elapsedTime = toc (totalFunctionTime_2);
 for scanResultsMatrix = 1:1:rowsResults
 if scanResultsMatrix == 1
 reportResults(1,1) = resultsMemory(1,1);
 reportResults(1,2) = resultsMemory(1,2);
 reportResults(1,3) = resultsMemory(1,3);
 reportResults(1,4) = computeFuncVal;
 reportResults(1,5) = iterationLimit;
 else
 if (resultsMemory(scanResultsMatrix,4) <

reportResults(1,4))
 reportResults(1,1) =

resultsMemory(scanResultsMatrix,1);
 reportResults(1,2) =

resultsMemory(scanResultsMatrix,2);
 reportResults(1,3) =

resultsMemory(scanResultsMatrix,3);
 reportResults(1,4) =

resultsMemory(scanResultsMatrix,4);
 reportResults(1,5) = iterationLimit;

 end
 end
 end
 end
end
reportResults(1,6) = elapsedTime;
%% Plotting the results
set([fig3],'handlevisibility','on');
set(0,'CurrentFigure',fig3);
subplot(2,1,1);plot(pointsUpdate)
title('New Points')
subplot(2,1,2); plot(fValUpdate)
title('Function Value')

%% Reporting the results on the figure
Results {1,1} = strcat ('Solution for x:

',num2str(nextIterationPoint(1)));
Results {1,2} = strcat ('Solution for y:

',num2str(nextIterationPoint(2)));
Results {1,3} = strcat ('Solution for z:

',num2str(nextIterationPoint(3)));
Results {1,4} = strcat ('Current Wire Length:

',num2str(computeFuncVal));

65

Results {1,5} = strcat ('Local Minima: ',num2str(resultsMemory));
Results {1,6} = strcat ('Current minimum:

',num2str(intermediateResult));
set(hList3,'String',Results); % Displays 5 lines, one result per line
end

Random Restart Hill Climbing algorithm implementation in MATLAB (for function of four

variables):

%%%%%%%%%%%%%%% Rohit A. Bhatia %%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%% EE 5991 Algorithm - 3 %%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%% Random Restart Hill Climbing %%%%%%%%%%%%%%

function [reportResults] =

randomRestartHillClimbing_4var_rev1(testFunction,initialGuess)
reportResults = ones(1,7);
syms w x y z a b c d h; %symbols for calculating derivative etc.
nextIterationPoint = initialGuess;
internalFunctionUpdate = testFunction;
fValUpdate = [];
pointsUpdate = [];
resultsMemory = zeros(1,5);
intermediateResult = zeros(1,5); % For concatenating results to form

the results matrix
zeroReplaced = 0;
matchFound = 0;
iterationLimit = 1000;
Results = [];
% To generate random moves / preturb algorithm when "stuck" at a local
% minima
RandomMove =

@(param)(param+(randperm(length(param))==length(param))*randn*5);%,...

fig3 = figure;
set([fig3],'handlevisibility','on');
set(0,'CurrentFigure',fig3);
set(fig3,'name','RANDOM - RESTART HILL CLIMBING

ALGORITHM','numbertitle','off')
hList3 = uicontrol(fig3,'Style','text','Position',[5 350 150 200]);

% time / performance calculation
totalFunctionTime_2 = tic;

% RRGD code:
for i=1:1:iterationLimit
 computeFuncVal = subs(testFunction, {w, x,y,z},

{nextIterationPoint(1),nextIterationPoint(2),nextIterationPoint(3),nex

tIterationPoint(4)});
 if i == 1
 minFuncVal = computeFuncVal
 end
 fValUpdate = [fValUpdate;computeFuncVal];
 pointsUpdate = [pointsUpdate;nextIterationPoint];
 % Compute partial derivates (symbolic)

66

 derW_symb = diff(internalFunctionUpdate,w);
 derX_symb = diff(internalFunctionUpdate,x);
 derY_symb = diff(internalFunctionUpdate,y);
 derZ_symb = diff(internalFunctionUpdate,z);

 % Substitute derivative with current coordinates to calculate

partial
 % derivatives
 derW =

subs(derW_symb,{w,x,y,z},{nextIterationPoint(1),nextIterationPoint(2),

nextIterationPoint(3),nextIterationPoint(4)});
 derX =

subs(derX_symb,{w,x,y,z},{nextIterationPoint(1),nextIterationPoint(2),

nextIterationPoint(3),nextIterationPoint(4)});
 derY =

subs(derY_symb,{w,x,y,z},{nextIterationPoint(1),nextIterationPoint(2),

nextIterationPoint(3),nextIterationPoint(4)});
 derZ =

subs(derZ_symb,{w,x,y,z},{nextIterationPoint(1),nextIterationPoint(2),

nextIterationPoint(3),nextIterationPoint(4)});

 % Determine next coordinates based on current coordinates and h
 % (symbolic)
 nextIterationPoint_W = sym(nextIterationPoint(1) + h*derW);
 nextIterationPoint_X = sym(nextIterationPoint(2) + h*derX);
 nextIterationPoint_Y = sym(nextIterationPoint(3) + h*derY);
 nextIterationPoint_Z = sym(nextIterationPoint(4) + h*derZ);

 % Determine function value in terms of h alone, not x and / or y
 updateFuncVal = subs(internalFunctionUpdate, {w,x,y,z},

{nextIterationPoint_W,nextIterationPoint_X,nextIterationPoint_Y,nextIt

erationPoint_Z});

 % Find derivative of the function with respect to h
 derF = diff(updateFuncVal,h);

 % Find the root
 solvedH = solve(derF,h);

 [rowsResults columnsResults] = size(resultsMemory);
 if(derF ~= 0)
 for scanH= 1:1:length(solvedH)
 if double(imag(solvedH(scanH))) == 0
 hFinal = real(solvedH(scanH));
 end
 end
 nextIterationPoint(1) = nextIterationPoint(1) + hFinal*derW;
 nextIterationPoint(2) = nextIterationPoint(2) + hFinal*derX;
 nextIterationPoint(3) = nextIterationPoint(3) + hFinal*derY;
 nextIterationPoint(4) = nextIterationPoint(4) + hFinal*derZ;
 else
 if i ~= 1
 % Scan through the matrix if a value has been replaced,

else

67

 % just store it in the matrix
 if (zeroReplaced == 1)
 for scanResults = 1:1:rowsResults
 if (resultsMemory(scanResults,1)==

nextIterationPoint(1))
 if (resultsMemory(scanResults,2)==

nextIterationPoint(2))
 if (resultsMemory(scanResults,3)==

nextIterationPoint(3))
 if (resultsMemory(scanResults,4)==

nextIterationPoint(4))
 matchFound = 1;
 break;
 else
 matchFound = 0;
 end
 else
 matchFound = 0;
 end
 else
 matchFound = 0;
 end
 else
 matchFound = 0;
 end
 if (scanResults == rowsResults)
 if matchFound == 0
 intermediateResult(1,1) =

nextIterationPoint(1);
 intermediateResult(1,2) =

nextIterationPoint(2);
 intermediateResult(1,3) =

nextIterationPoint(3);
 intermediateResult(1,4) =

nextIterationPoint(4);
 intermediateResult(1,5) = computeFuncVal;
 resultsMemory =

[resultsMemory;intermediateResult];
 end
 end
 end
 else
 resultsMemory(1,1) = nextIterationPoint(1);
 resultsMemory(1,2) = nextIterationPoint(2);
 resultsMemory(1,3) = nextIterationPoint(3);
 resultsMemory(1,4) = nextIterationPoint(4);
 resultsMemory(1,5) = computeFuncVal;
 zeroReplaced = 1;
 end
 nextIterationPoint = RandomMove(nextIterationPoint);
 end
 end

 if i == iterationLimit
 elapsedTime = toc (totalFunctionTime_2);

68

 for scanResultsMatrix = 1:1:rowsResults
 if scanResultsMatrix == 1
 reportResults(1,1) = resultsMemory(1,1);
 reportResults(1,2) = resultsMemory(1,2);
 reportResults(1,3) = resultsMemory(1,3);
 reportResults(1,4) = resultsMemory(1,4);
 reportResults(1,5) = computeFuncVal;
 reportResults(1,6) = iterationLimit;
 else
 if (resultsMemory(scanResultsMatrix,5) <

reportResults(1,5))
 reportResults(1,1) =

resultsMemory(scanResultsMatrix,1);
 reportResults(1,2) =

resultsMemory(scanResultsMatrix,2);
 reportResults(1,3) =

resultsMemory(scanResultsMatrix,3);
 reportResults(1,4) =

resultsMemory(scanResultsMatrix,4);
 reportResults(1,5) =

resultsMemory(scanResultsMatrix,5);
 reportResults(1,6) = iterationLimit;
 end
 end
 end
 end
end
reportResults(1,7) = elapsedTime;
%% Plotting the results
set([fig3],'handlevisibility','on');
set(0,'CurrentFigure',fig3);
subplot(2,1,1);plot(pointsUpdate)
title('New Points')
subplot(2,1,2); plot(fValUpdate)
title('Function Value')

%% Reporting the results on the figure
Results {1,1} = strcat ('Solution for w:

',num2str(nextIterationPoint(1)));
Results {1,2} = strcat ('Solution for x:

',num2str(nextIterationPoint(2)));
Results {1,3} = strcat ('Solution for y:

',num2str(nextIterationPoint(3)));
Results {1,4} = strcat ('Solution for z:

',num2str(nextIterationPoint(4)));
Results {1,5} = strcat ('Current Wire Length:

',num2str(computeFuncVal));
Results {1,6} = strcat ('Local Minima: ',num2str(resultsMemory));
Results {1,7} = strcat ('Current minimum:

',num2str(intermediateResult));
set(hList3,'String',Results); % Displays 5 lines, one result per line
end

69

Performance comparison in MATLAB:

function [compPlotGenerated, plotTime] =

PerformaceComparision(inputTable, comparisonLimit)

fig4 = figure;
set(fig4,'name','Performance Comparison','numbertitle','off')

%% Performance Comparison
plotTime = [];
addToMatrix = [];
for iterationCount = 1:1:comparisonLimit
 set([fig4],'handlevisibility','on');
 set(0,'CurrentFigure',fig4);
 addToMatrix(1,1) = inputTable(iterationCount,5);
 addToMatrix(1,2) = inputTable(iterationCount,10);
 addToMatrix(1,3) = inputTable(iterationCount,15);
 if (iterationCount == 1)
 plotTime = addToMatrix;
 plotTime = [plotTime;plotTime];
 else
 plotTime = [plotTime;addToMatrix];
 end
end

plot (plotTime);
xlabel('Trial Count');
ylabel('Computation time (seconds)');
hold on;
for markPointCount = 1:1:comparisonLimit
 plot (markPointCount+1,plotTime(markPointCount+1,1),'Xb');
 hold on;
 plot (markPointCount+1,plotTime(markPointCount+1,2),'Xg');
 hold on;
 plot (markPointCount+1,plotTime(markPointCount+1,3),'Xr');
 hold on;
end

legend_1 = legend('Simulated Annealing','Adaptive Simulated

Annealing','Random Restart Hill Climbing');
compPlotGenerated = 1;
return
end

Report generation in MATLAB:

function [reportGenerated] =

ReportOnTable(inputGlobalTable,inputTimeTable,comparisonLimit)

fig5 = figure;
set(fig5,'name','Report','numbertitle','off','Position',[50 213 1266

300])
% Framework for reporting results:

70

specificAlgoResult = zeros(3,5);
inputTimeTableCorrected = inputTimeTable;
inputTimeTableCorrected(1,:)=[];
alg1TimeTotal = 0;
alg2TimeTotal = 0;
alg3TimeTotal = 0;
% SA performance tables
xCordTotalSA = 0;
yCordTotalSA = 0;
fValTotalSA = 0;
xCordAvgSA = 0;
yCordAvgSA = 0;
fValAvgSA = 0;
xCordTableSA = [];
yCordTableSA = [];
fValTableSA = [];
completeTableSA = [];
% ASA performance tables
xCordTotalASA = 0;
yCordTotalASA = 0;
fValTotalASA = 0;
xCordAvgASA = 0;
yCordAvgASA = 0;
fValAvgASA = 0;
xCordTableASA = [];
yCordTableASA = [];
fValTableASA = [];
% RRHC performance tables
xCordTotalHC = 0;
yCordTotalHC = 0;
fValTotalHC = 0;
xCordAvgHC = 0;
yCordAvgHC = 0;
fValAvgHC = 0;
xCordTableHC = [];
yCordTableHC = [];
fValTableHC = [];
rnamesT2_3_4 = [];

for algoScan = 1:1:15
 if algoScan <= 5
 specificAlgoResult(1,algoScan) = inputGlobalTable

(1,algoScan);
 else
 if algoScan <= 10
 specificAlgoResult(2,algoScan-5) = inputGlobalTable

(1,algoScan);
 else
 specificAlgoResult(3,algoScan-10) = inputGlobalTable

(1,algoScan);
 end
 end
end

71

%Table
for forrnamesT2_3_4 = 1:1:comparisonLimit
 if forrnamesT2_3_4 < 10
 rnamesT2_3_4 = [rnamesT2_3_4;strcat({'Trial '},{'

'},num2str(forrnamesT2_3_4))];
 else
 rnamesT2_3_4 = [rnamesT2_3_4;strcat({'Trial

'},num2str(forrnamesT2_3_4))];
 end
 if forrnamesT2_3_4 == comparisonLimit
 rnamesT2_3_4 = [rnamesT2_3_4;strcat('Average',{' '})];
 end
end

for averageTime = 1:1:comparisonLimit
 alg1TimeTotal = alg1TimeTotal +

inputTimeTableCorrected(averageTime,1);
 alg2TimeTotal = alg2TimeTotal +

inputTimeTableCorrected(averageTime,2);
 alg3TimeTotal = alg3TimeTotal +

inputTimeTableCorrected(averageTime,3);
end
avgTime1 = alg1TimeTotal / comparisonLimit;
avgTime2 = alg2TimeTotal / comparisonLimit;
avgTime3 = alg3TimeTotal / comparisonLimit;

addAverageRow = [avgTime1 avgTime2 avgTime3];

for positioningTable = 1:1:comparisonLimit
 % form SA table
 xCordTableSA =

[xCordTableSA;inputGlobalTable(positioningTable,1)];
 xCordTotalSA = xCordTotalSA +

inputGlobalTable(positioningTable,1);
 yCordTableSA =

[yCordTableSA;inputGlobalTable(positioningTable,2)];
 yCordTotalSA = yCordTotalSA +

inputGlobalTable(positioningTable,2);
 fValTableSA = [fValTableSA;inputGlobalTable(positioningTable,3)];
 fValTotalSA = fValTotalSA+ inputGlobalTable(positioningTable,3);
 % form ASA table
 xCordTableASA =

[xCordTableASA;inputGlobalTable(positioningTable,6)];
 xCordTotalASA = xCordTotalASA +

inputGlobalTable(positioningTable,6);
 yCordTableASA =

[yCordTableASA;inputGlobalTable(positioningTable,7)];
 yCordTotalASA = yCordTotalASA +

inputGlobalTable(positioningTable,7);
 fValTableASA =

[fValTableASA;inputGlobalTable(positioningTable,8)];
 fValTotalASA = fValTotalASA+ inputGlobalTable(positioningTable,8);
 % form RRHC table
 xCordTableHC =

[xCordTableHC;inputGlobalTable(positioningTable,11)];

72

 xCordTotalHC = xCordTotalHC +

inputGlobalTable(positioningTable,11);
 yCordTableHC =

[yCordTableHC;inputGlobalTable(positioningTable,12)];
 yCordTotalHC = yCordTotalHC +

inputGlobalTable(positioningTable,12);
 fValTableHC = [fValTableHC;inputGlobalTable(positioningTable,13)];
 fValTotalHC = fValTotalHC+ inputGlobalTable(positioningTable,13);

 if positioningTable == comparisonLimit
 % form complete SA results table
 xCordAvgSA = xCordTotalSA / comparisonLimit;
 yCordAvgSA = yCordTotalSA / comparisonLimit;
 fValAvgSA = fValTotalSA / comparisonLimit;
 xCordTableSA = [xCordTableSA;xCordAvgSA];
 yCordTableSA = [yCordTableSA;yCordAvgSA];
 fValTableSA = [fValTableSA ;fValAvgSA];
 completeTableSA = horzcat(xCordTableSA, yCordTableSA,

fValTableSA);
 % form complete ASA results table
 xCordAvgASA = xCordTotalASA / comparisonLimit;
 yCordAvgASA = yCordTotalASA / comparisonLimit;
 fValAvgASA = fValTotalASA / comparisonLimit;
 xCordTableASA = [xCordTableASA;xCordAvgASA];
 yCordTableASA = [yCordTableASA;yCordAvgASA];
 fValTableASA = [fValTableASA ;fValAvgASA];
 completeTableASA = horzcat(xCordTableASA, yCordTableASA,

fValTableASA);
 % form complete RRHC results table
 xCordAvgHC = xCordTotalHC / comparisonLimit;
 yCordAvgHC = yCordTotalHC / comparisonLimit;
 fValAvgHC = fValTotalHC / comparisonLimit;
 xCordTableHC = [xCordTableHC;xCordAvgHC];
 yCordTableHC = [yCordTableHC;yCordAvgHC];
 fValTableHC = [fValTableHC ;fValAvgHC];
 completeTableHC = horzcat(xCordTableHC, yCordTableHC,

fValTableHC);
 end
end
cnamesT1_2_3 = {'X-coordinate','Y-coordinate','Minimum Wire Length'};
rnamesT1 = {'Simulated Annealing','Adaptive Simulated

Annealing','Random-Restart Gradient Descent'};
cnamesT2 = {'Simulated Annealing','Adaptive Simulated

Annealing','Random-Restart Gradient Descent'};
dipslayTimeData = [inputTimeTableCorrected;addAverageRow];

height_T1_2_3 = 18*comparisonLimit +40;
t4height = 18*comparisonLimit +40;
YoffsetT1_2_3 = 768 / 2;
t4Yoffset = YoffsetT1_2_3 - (t4height + 30);

t1 =

uitable('Parent',fig5,'Data',completeTableSA,'ColumnName',cnamesT1_2_3

,...

73

 'RowName',rnamesT2_3_4,'Position',[131 YoffsetT1_2_3 365

height_T1_2_3]);
t2 =

uitable('Parent',fig5,'Data',completeTableASA,'ColumnName',cnamesT1_2_

3,...
 'RowName',rnamesT2_3_4,'Position',[501 YoffsetT1_2_3 365

height_T1_2_3]);
t3 =

uitable('Parent',fig5,'Data',completeTableHC,'ColumnName',cnamesT1_2_3

,...
 'RowName',rnamesT2_3_4,'Position',[871 YoffsetT1_2_3 365

height_T1_2_3]);
t4 =

uitable('Parent',fig5,'Data',dipslayTimeData,'ColumnName',cnamesT2,...
 'RowName',rnamesT2_3_4,'Position',[393 t4Yoffset 555 t4height]);

% Table Titles
headingYOffset_1_2_3 = YoffsetT1_2_3 + height_T1_2_3 + 5;
headingYOffset_4 = t4Yoffset + t4height + 5;
uicontrol('Style','text','Position',[131 headingYOffset_1_2_3 300

15],'String','X and Y coordinates and wire length for SA algorithm');
uicontrol('Style','text','Position',[501 headingYOffset_1_2_3 300

15],'String','X and Y coordinates and wire length for ASA algorithm');
uicontrol('Style','text','Position',[871 headingYOffset_1_2_3 300

15],'String','X and Y coordinates and wire length for RRHC

algorithm');
uicontrol('Style','text','Position',[393 headingYOffset_4 300

15],'String','Algorithm compuation time (seconds)');
reportGenerated = 1;
return
end

74

References

[1] K. Sahookar and P. Mazumder, "VLSI Cell Placement Techniques," ACM Computing
Surveys, vol. 23, 1991.

[2] V. .R, P. S. .S, L. .R, and Kumaravel, "Evolutionary Algorithmical Approach for VLSI Physical
Design-Placement Problem," ACEEE Int. J. on Electrical and Power Engineering, vol. 2,
2011.

[3] S. M. Sait, M. I. Ali, and A. M. Zaidi, "Multiobjective VLSI Cell Placement Using Distributed
Simulated Evolution Algorithm," 2005.

[4] A. Dekkers and E. Aarts, "Global optimization and simulated annealing," Mathematical
Programming, vol. 50, pp. 367-393, 1991.

[5] A. Dendane, "Maxima and Minima of Functions of Two Variables," 2013.
[6] V. A. Cicirello, "On the Design of an Adaptive Simulated Annealing Algorithm."
[7] J. A. Boyan, "Learning Evaluation Functions for Global Optimization," PhD thesis, 1998.
[8] A. Juels and M. Wattenbergy, "Stochastic Hillclimbing as a Baseline Method for Evaluating

Genetic Algorithms," 1984.

	A COMPARATIVE STUDY OF HEURISTIC OPTIMIZATION ALGORITHMS
	Recommended Citation

	Table of Contents
	Acknowledgements
	Abstract
	1. Heuristic algorithms - Introduction
	2. Non-adaptive simulated annealing
	2.1 Overview
	2.2 Working of the non-adaptive simulated annealing algorithm
	2.3 Pseudocode
	2.4 Parameterization
	2.5 Algorithm output
	3. Adaptive Simulated Annealing
	3.1 Motivation
	3.2 Working of the adaptive simulated annealing algorithm
	3.3 Pseudocode
	3.4 Algorithm output
	4. Random restart hill climbing
	4.1 Overview
	4.2 Working of the random restart hill climbing algorithm
	4.3 Pseudocode
	4.4 Algorithm output
	5. Performance comparison
	5.1 Performance comparison with a cost function of two variables
	5.2 Performance comparison with a cost function of three variables
	5.3 Performance comparison with a cost function of four variables
	6. Conclusions
	Appendix 1
	References

