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Abstract 
 

Heuristic optimization algorithms are of great importance for reaching solutions to 

various real world problems. These algorithms have a wide range of applications such 

as cost reduction, artificial intelligence, and medicine. By the term cost, one could imply 

that that cost is associated with, for instance, the value of a function of several 

independent variables. Often, when dealing with engineering problems, we want to 

minimize the value of a function in order to achieve an optimum, or to maximize another 

parameter which increases with a decrease in the cost (the value of this function). The 

heuristic cost reduction algorithms work by finding the optimum values of the 

independent variables for which the value of the function (the “cost”) is the minimum.  

 

There is an abundance of heuristic cost reduction algorithms to choose from. We will 

start with a discussion of various optimization algorithms such as Memetic algorithms, 

force-directed placement, and evolution-based algorithms. Following this initial 

discussion, we will take up the working of three algorithms and implement the same in 

MATLAB.  

 

The focus of this report is to provide detailed information on the working of three different 

heuristic optimization algorithms, and conclude with a comparative study on the 

performance of these algorithms when implemented in MATLAB. In this report, the three 

algorithms we will take in to consideration will be the non-adaptive simulated annealing 

algorithm, the adaptive simulated annealing algorithm, and random restart hill climbing 

algorithm. The algorithms are heuristic in nature, that is, the solution these achieve may 

not be the best of all the solutions but provide a means to reach a quick solution that 

may be a reasonably good solution without taking an indefinite time to implement. 
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1. Heuristic algorithms - Introduction 
 

There are several algorithms at our disposal for cost reduction. We use the term “cost 

reduction” since we often want to minimize the value of a function of several independent 

variables. Such a reduction may be desired in order to either reach an optimum value, 

or to maximize another parameter of interest which increases with this decreasing cost. 

To name a few, Memetic algorithms, simulated annealing, force-directed placement, and 

evolution-based placement are some of the common algorithms that are used in cost 

reduction. The term “placement” broadly refers to the intermediate solution (or result) 

attained at an iterative step as the algorithm executes.  

 

“Placement algorithms can be divided into two major classes: constructive 

placement and iterative improvement. In constructive placement, a method is used 

to build up a placement from scratch; in iterative improvement, algorithms start with 

an initial placement and repeatedly modify it in search of a cost reduction. If a 

modification results in a reduction in cost, the modification is accepted; otherwise it 

is rejected.” [1] 

 

These algorithms are heuristic in nature. That is, these algorithms produce a solution 

that is good enough for arriving to a solution to the problem at hand. There are 

parameters that are used for “tuning” these algorithms to arrive at a solution in the 

shortest possible time. These parameters are specific to individual algorithms that are 

used. Often, there is a tradeoff between the speed of execution of the algorithm and the 

accuracy of the result obtained. 

 

There is a class of hybrid algorithms that combine evolutionary algorithms (evolution-

based placement algorithm listed above is a kind of evolutionary algorithm) and local 

searches and result in what we call as Memetic Algorithms.  

“Memetic Algorithms are class of stochastic global search heuristics in which 

Evolutionary Algorithm based approaches are combined with problem-specific 

solvers. Later local search heuristics techniques are implemented. This hybridisation 

is to either accelerate or to discover good solution from the population where the 

evolution alone would take long time to discover or to reach the solution. Memetic 
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Algorithms use heuristic local searches either approximate method or exact method 

to get the local refined solution from the population.” [2] 

 

Authors in [1] describe the force – directed placement with an analogy to the Hooke’s 

law for the force exerted on stretched springs. While placing the modules, we assume 

that the modules are connected by a net which exerts an attractive force between them. 

The magnitude of this force is directly proportional to the distance between the modules. 

If the modules are allowed to move freely in the system, they would continue to move 

until they settle down at positions where there is a zero resultant force on each module 

and the system achieves a minimum energy state. “Hence, the force-directed placement 

methods are based on moving the modules in the direction of the total force exerted on 

them until this force is zero.” [1] Authors have used the term “modules” for a specific 

application but it is equivalent to considering these modules as results of an optimization 

step. 

 

Algorithms that fall in the genetic algorithm category have been inspired by the natural 

process of evolution. One such algorithm is the Simulated Evolution algorithm (SimE), 

which is a general search strategy for solving a variety of combinatorial optimization 

problems. It operates on a single solution, termed as population, and each population 

consists of elements. The algorithm has three basic steps in one main loop, namely, 

Evaluation, Selection, and Allocation. In the first step, the goodness of each element is 

measured as a single number between ‘0’ and ‘1’ which is indicative of how near the 

element is from its optimal solution. Following this step, Selection is carried out where 

unfit elements (elements that are far from their optimal solution) are selected in the 

current solution. It is because of Selection step that SimE does not get “trapped” at local 

minima since unfit elements are allowed to be a part of the intermediate solution. The 

last step is Allocation. The purpose here is to mutate the population by altering the 

current solution. This step has a high impact on the quality of the solution. [3] 

 

For the purpose of this report, we will consider three algorithms that have been used for 

cost reduction optimizations. Namely, non-adaptive simulated annealing, adaptive 

simulated annealing, and random restart hill climbing will be evaluated in detail. The 

evaluation will cover the working of the algorithms, the pseudocode, MATLAB based 
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implementations of these algorithms, and presentation of the performance comparison 

results from their implementation. 
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2. Non-adaptive simulated annealing 

2.1 Overview 
 

Simulated annealing is a very time consuming algorithm but yields excellent results. The 

algorithm derives its name from metallurgy. Authors in [1] draw an interesting analogy 

between how the algorithm works and how metals are allowed to cool down so as to 

mold them in to the desired shape. A metal that is stressed has an imperfect crystal 

structure. How we bring about the metal to the desired form is to first heat the metal to a 

high temperature then cool it down gradually. In metallurgy, we refer to this as annealing.  

 

At higher temperatures, the atoms in the metal have sufficient kinetic energy to break 

loose from their current incorrect positions. As the material cools down, the atoms slowly 

start getting trapped at the correct lattice positions. However, if we cool down the metal 

rather quickly, the atoms do not get a chance to get to the correct lattice positions and 

defects (due to the atoms being at the incorrect positions) become part of the crystal 

structure. 

 

Simulated annealing algorithm does just that. In this algorithm, we start with an initial 

temperature and a starting configuration, or an initial guess for the solutions that would 

yield an optimal result. On successive iterations, we reduce the temperature and 

determine a configuration that results in an improvement over the current solution. We 

continue to reduce the temperature until we have reached a stopping temperature. The 

details on the working of this algorithm will be discussed in the following section.  

 

It is imperative that the algorithm reaches the global minima of the function and does not 

get stuck at a local minima which may not yield the absolute minimum value, in our case, 

the cost. “Simulated annealing is a stochastic method to avoid getting stuck in local, non-

global minima, when searching for global minima. This is done by accepting, in addition 

to transitions corresponding to a decrease in function value, transitions corresponding to 

an increase in function value. The latter is done in a limited way by means of a stochastic 

acceptance criterion. In the course of the minimization process, the probability of 

accepting deteriorations descends slowly towards zero.” [4] 
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For the purpose of demonstrating the working of this algorithm as implemented in 

MATLAB, we will work with a function which we can assume determines the cost in terms 

of the x and y values of the intermediate solution. The aim is in reaching the global 

minima of this function starting with some initial guess of the x and y independent 

variables. The intent of doing so is to demonstrate the working of this algorithm without 

focusing on the function itself since that may vary depending on the application. 
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2.2 Working of the non-adaptive simulated annealing algorithm 
 

We will look at the working of this algorithm over two sections. We present an abstract 

understanding of how the algorithm works here in this section. In the next section, we 

look at the pseudocode and detail how the algorithm proceeds to achieve the global 

minima of a given function.  

 

To begin with, we start with an initial guess and a starting temperature for the working of 

this algorithm. Specific to our implementation, the initial guess is the x and y values of 

the intermediate solution (or the starting point). We also fix the starting temperature for 

the implementation of the algorithm. Once these are fixed, we set other parameters like 

cooling schedule, maximum consecutive rejections, stopping temperature, etc. We will 

discuss the relevance of each of these parameters in a following section. 

 

The simulated annealing algorithm starts with accepting all moves but with a probability 

of accepting the move. At higher temperatures, the probability of accepting a move is 

higher. However, this probability decreases as the temperature decreases. The moves 

that cause a cost increase are accepted with a probability that decreases with the 

increase in cost.  

 

In most implementations of this algorithm, the acceptance probability is given by exp(–

ΔC/ T), where ΔC is the cost increase. Initially, the temperature is set to a very high value 

so most of the moves are accepted. Acceptance (or rejection) of a move is determined 

by comparing the acceptance probability to a random probability value between 0 and 1. 

At each iteration, the temperature is gradually reduced so the cost increasing moves are 

less likely to be accepted. Toward the end, only moves that cause a cost reduction are 

accepted and the algorithm converges to a low cost configuration. [1] 

 

The fact that moves that result in a cost increase are also accepted (even though with a 

lower probability) ensures that the algorithm does not get “stuck” at a local minima and 

has a “fair” chance of covering all minima before reaching the global minima.  
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It must be pointed out that we use the term “non-adaptive” with our application of the 

simulated annealing algorithm. This simply means that the cooling schedule is fixed. We 

do not vary the cooling schedule on successive iterations. In case of the adaptive 

simulated annealing algorithm, the cooling schedule will be adaptive, that is, it will vary 

as the algorithm executes. The adaptive version of the simulated annealing algorithm 

will be covered in the next section. 

 

Following section will give the reader a better understanding of the working of this 

algorithm since we take the pseudocode of the algorithm in to account. 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

13 
 

2.3 Pseudocode 
 

The simulated algorithm works as per the following pseudocode shown in Figure 2.3.1 

 

 

Figure 2.3.1: Pseudocode for the Simulated Annealing algorithm [1] 

 

We will now analyze the algorithm in greater detail. We first start with the initialization 

using “initialize.” The initialization involves setting the following parameters 

1. Schedule: The cooling schedule. This determines the temperature decrements 

on successive iterations. 

2. MaxConsecutiveRejections: Maximum number of consecutive rejections. 

3. MaxSuccessAtTemperature: Maximum number of successful moves at a given 

temperature. 

4. RandomGenerator: This generates a random configuration from an existing 

configuration.  

5. InitialTemperature: The starting temperature for the simulated annealing 

algorithm. 

6. StoppingTemperature: The stopping temperature for the simulated annealing 

algorithm. Algorithm exits implementation once this temperature has been 

reached. 
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7. MaxTriesAtTemperature: Maximum number of moves that are permitted at a 

particular temperature. 

8. StoppingValue: The stopping value for the simulated annealing algorithm. 

Algorithm exits implementation once this value of the function has been reached. 

 

Following initialization, we generate a random configuration. In case of cost estimates, 

this can be computed using the function that determines the cost based on the x and y 

values of the solution. This is the “cost function.” In our case, this value equals the initial 

cost which we wish to minimize. 

 

Iterative improvements are carried out next. Until the temperature doesn’t reach the 

stopping temperature or until we haven’t reached the limit for maximum successive 

rejections as set by the MaxConsecutiveRejections parameter, we perform moves at 

each temperature. The number of moves at each temperature depends on parameters 

like MaxTriesAtTemperature and MaxSuccessAtTemperature. 

 

We now consider a static situation when we are accepting or rejecting moves at a 

particular temperature. This implies that we have not reached the set limits of 

MaxTriesAtTemperature and MaxSuccessAtTemperature parameters. This is what we 

call the “inner loop criterion.” The new configuration is reached by perturbing the existing 

configuration.  

 

Perturbing the existing configuration is done in a two-step process. First, we generate 

random values for the x and y variables in the neighborhood of the current values. Next, 

we plug in these values in to the cost function that determines the cost based on the new 

values. The difference in costs in evaluated to determine if the new values result in a 

decrease, or an increase in the cost. 

 

There are two scenarios that arise from the perturbation. If the cost decreases, then the 

move is accepted without any consideration to the acceptance probability given by exp(-

ΔC/T) where ΔC is the cost increase and T is the current annealing temperature. 

However, if the cost increases, the move is still accepted with consideration to the 
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acceptance probability. This is what makes the simulated annealing algorithm so special 

– it does not get stuck at a local minima.  

 

Accepting (with or without consideration to the acceptance probability) or rejecting 

moves is done at a particular annealing temperature. Next, we reduce the temperature 

and follow the same procedure as in the previous step. The algorithm concludes 

execution if either the temperature is less than the stopping temperature or if the number 

of consecutive rejections has reached the preset. 

 

. 
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2.4 Parameterization 
 

This section details the parameters we have used for the implementation of the 

Simulated Annealing algorithm. The parameters are generally tuned depending on the 

application. 

 

1. Schedule: Since this is the non-adaptive simulated annealing algorithm, we use 

a fixed value for the cooling schedule. The temperature at the next step is 0.9 

times the current temperature. 

2. MaxConsecutiveRejections: Maximum number of consecutive rejections is set to 

1,000. 

3. MaxSuccessAtTemperature: Maximum number of successful moves at a given 

temperature is set to 20. 

4. RandomGenerator: This generates a random configuration from an existing 

configuration. This is set to the anonymous function: 

 

@(param) (param+(randperm(length(param))==length(param))*randn/100) 

 

Where param is a two-input vector with the current x and y values from the 

solution. The output is again a two member vector with the updated x and y 

values generated using randperm that generates random permutations of 

integers 0 and 1. This is then multiplied by randn that generates normally 

distributed random number and is divided by 100 to keep the new x and y values 

within the neighborhood. 

5. InitialTemperature: The starting temperature for the simulated annealing 

algorithm is set to 1 

6. StoppingTemperature: The stopping temperature for the simulated annealing 

algorithm is set to 1e-8. Algorithm exits implementation once this temperature has 

been reached. 

7. MaxTriesAtTemperature: Maximum number of moves that are permitted at a 

particular temperature is set to 300. 
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8. StoppingValue: The stopping value for the simulated annealing algorithm is set 

to 1. Algorithm exits implementation once this value of the function has been 

reached. In our application, this is a reasonable value for the minimum cost. 

 

Appendix 1 includes the complete code for the non-adaptive simulated annealing 

algorithm. 
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2.5 Algorithm output 
 

The non-adaptive simulated algorithm is implemented using a sample cost function 2x2 

– 4xy + y4 + 2. A 3-Dimensional graph of function f shows that f has two local minima at 

(-1,-1,1) and (1,1,1) and one saddle point at (0,0,2) [5]. This is shown in Figure 2.5.1. 

 

 

 

Figure 2.5.1: Cost function used for simulated annealing implementation [5] 

 

We enter a vector as an initial guess and also a function handle so that the cost can be 

computed at subsequent iterations. The initial guess is a vector that contains the starting 

x and y values. This is shown in Figure 2.5.2 

 

 

Figure 2.5.2: Passing the initial guess and the cost function handle in to the simulated annealing 
algorithm 

 

Once the algorithm is run and it completes execution, we see that the solution converges 

to the minima (the minimum cost) and we get the optimal x and y values for the solution. 
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The annealing algorithm waveforms at successive iterations and the final output are 

shown in Figures 2.5.3 and 2.5.4 respectively. 

 

 

Figure 2.5.3: Simulated annealing algorithm waveforms at successive iterations  

 

 

 

Figure 2.5.4: Output of the simulated annealing algorithm with the minimum cost and the x and 
y values for the solution  

 

The results conform to the known minima for the given function. As is evident in Figure 

2.5.4 the algorithm completes execution once the maximum number of consecutive 

rejections has been reached and not (in this case) because of having reached the 

minimum temperature. 
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3. Adaptive Simulated Annealing 

3.1 Motivation 
 

Iterative improvement algorithms such as Simulated Annealing produce accurate results 

at the cost of enormous computation time. Such time-cost considerations encourage us 

to seek other algorithms that are more efficient. One such enhancement is the Adaptive 

Simulated Annealing (ASA) algorithm. ASA reduces the computation time required to 

reach a solution at the cost of some loss in accuracy of the solution.  

 

Though at times it might not seem like a significant improvement in the computation time 

for relatively simple computations, the computation time is significantly improved for 

complex computations. 

 

Another motivation in choosing the ASA is that we have the choice of going for a 

parameter-free simulated annealing algorithm. Such an advantage is crucial in that we 

can avoid having to deal with setting parameters which ultimately determine both the 

computation time and the accuracy of the results. This benefits the user with results that 

have much less dependence on the parameters, since just a few parameters are used 

for this form of ASA.  

 

What makes ASA different from SA (Simulated Annealing) is that since ASA does not 

require the implementer to tune any parameters, a feedback mechanism is used to adjust 

the annealing temperature rather than using a fixed cooling schedule as in the case of 

SA. The parameters that are set and adjusted are the temperature and the acceptance 

rate. Over the subsequent sections, we will look in to the details of how these parameters 

are set, and the working of the ASA. 
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3.2 Working of the adaptive simulated annealing algorithm 
 

The Simulated Annealing (SA) algorithm works by reaching a state of thermal equilibrium 

to yield globally optimal solutions. This requires a series of annealing steps that cool 

down the temperature. Often, the cooling results in a prohibitively long computation time.  

 

“Lam and Delosme proposed an approximate thermal equilibrium they call D-

equilibrium which balances the trade-off of required computation time and the quality 

of the solution found by the run of SA. Under certain assumptions about the forms 

of the distribution of the cost values and the distribution of cost value changes, they 

analyzed their model and determined the annealing schedule that maintains the 

system in D-equilibrium (i.e., the annealing schedule that optimally balances the 

computational cost / solution quality trade-off). This “optimal” annealing schedule 

adjusts the temperature based on the parameter λ which controls the cost-quality 

trade-off and more importantly based on the current rate of accepted moves. 

Analyzing their annealing schedule, Lam and Delosme determined that the 

temperature is reduced the quickest when the probability of accepting a move is 

equal to 0.44.” [6]  

 

After having made this observation that a faster cooling rate led to a shorter annealing 

run, the size of the neighborhood considered for the moves was allowed to fluctuate to 

match this target move acceptance rate of 0.44 as closely as possible. The idea behind 

this is to either increase the acceptance rate by decreasing the maximum distance from 

the current state or to decrease the acceptance rate by increasing the maximum distance 

from the current state.  

 

Swartz presented a modified version of the Lam and Delosme’s annealing schedule. 

Instead of having a monotonically decreasing temperature, Swartz proposed controlling 

the temperature by continuously increasing and decreasing it on the basis of the 

acceptance rate. Starting with an initial acceptance rate of 1.0, the rate decreases 

exponentially during the first 15% of the run until it reaches 0.44. Following this, it 

remains nearly constant for the next 50% of the run and then it exponentially decreases 

to 0 by the end of the run. 
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Boyan presented an approach similar to Swartz’s where a feedback mechanism was 

used to adapt the temperature in order to track the theoretical “optimal” acceptance rate. 

Doing so had the advantage of not having to modify the neighborhood function during 

the search. This made the “Modified Lam” annealing schedule problem - independent. 

[7] 

 

Unlike the SA algorithm, we don’t use the temperature as a stopping criterion. Instead, 

we use the maximum number of evaluations of the cost calculations as the criteria for 

stopping the algorithm. Note that this value may be changed by the user. 

 

In the following section, we present the pseudocode for the ASA algorithm and run 

through the steps followed therein. 
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3.3 Pseudocode 
 

The simulated algorithm works as per the following pseudocode shown in Figure 3.3.1 

 

 

Figure 3.3.1: Pseudocode for the Adaptive Simulated Annealing algorithm [6] 

 

Let us take a detailed look at how the algorithm is implemented. We begin with 

generating an initial state based on the initial x and y values provided to the function. 

Next, the initial temperature is set to a value of 0.5 and initial accept rate to 0.5. We set 

a reasonably higher value for Evalsmax, i.e., the maximum number of evaluations that 

will be carried out.  

 

Once inside the iterative loop, we carry out one iteration at a time until the number of 

operations has reached Evalsmax or until the algorithm reaches convergence. At each 

iteration, we choose a neighborhood value of S (the current values) and evaluate the 
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cost function, in our case the cost as a result of these neighborhood values. If the new 

cost is less than the current cost, accept the move with an increased acceptance rate. If 

the cost will increase as a result of this move, the move is accepted depending on the 

probability that decreases with increasing cost. However, if the cost increase is 

significant, the move is rejected. This is fairly similar to the SA algorithm. 

 

What differentiates between the ASA from the SA algorithm is that we allow the current 

temperature to fluctuate based on the AcceptRate and the LamRate (LamRate is the 

“target” acceptance rate). As per the idea of the ASA, we try to stick to a probability of 

accepting moves to 0.44 so that the temperature reduces the fastest and results in a 

shorter convergence time. This is controlled by the part of the code shown in Figure 

3.3.2.  

 

 

Figure 3.3.2: Controlling the temperature based on the LamRate and AcceptRate 

 

Appendix 1 provides the complete MATLAB code for the Adaptive Simulated Annealing 

algorithm. 
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3.4 Algorithm output 
 

As in the case of the non-adaptive SA algorithm, we use the sample cost function 2x2 – 
4xy + y4 + 2. A 3-Dimensional graph of function f shows that f has two local minima at (-
1,-1,1) and (1,1,1) and one saddle point at (0,0,2) [5]. This is shown in Figure 3.4.1.  

 

 

Figure 3.4.1: Cost function used for simulated annealing implementation [5] 

 

We enter a vector as an initial guess and also a function handle so that the cost can be 

computed at subsequent iterations. The initial guess is a vector that contains the starting 

x and y values. This is shown in Figure 3.4.2 

 

 

Figure 3.4.2: Passing the initial guess and the cost function handle in to the adaptive simulated 
annealing algorithm 
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Once the algorithm is run and it completes execution, we see that the solution converges 

to the minima (the minimum cost) and we get the optimal x and y values for the solution. 

The annealing algorithm waveforms at successive iterations and the final output are 

shown in Figures 3.4.3 and 3.4.4 respectively. 

 

 
 

Figure 3.4.3: Adaptive Simulated Annealing algorithm waveforms at successive iterations  
 

 

 
 

Figure 3.4.4: Output of the simulated annealing algorithm with the minimum cost and the x and 
y values for the solution  

 
 

We notice from the results that the Adaptive Simulated Annealing algorithm converges 

reasonably faster than the SA algorithm at the cost of some accuracy in the results. This 

is the tradeoff that the user has to account for between the convergence time and the 

accuracy of the solution. Detailed performance comparisons are provided in a 

subsequent section. 
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4. Random restart hill climbing  

4.1 Overview 
 

The classical hill climbing algorithm (also called gradient descent algorithm) is often used 

in finding the optimal points of a given function. In our case, the cost function is what is 

of interest to us for which we want to determine the optimum x and y values that yield 

the minimum cost. 

 

Though simulated annealing and adaptive simulated annealing are the usual choice in 

seeking the minimum value of the cost function, the hill climbing algorithm with suitable 

enhancement(s) can also be employed to accomplish this task. 

 

The classical hill climbing algorithm yields the optimum points of a function. Since we 

are interested in the global minima, the hill climbing algorithm with suitable 

enhancements is used to do so. But what is the need of an enhancement to this 

algorithm? The downside of the classical hill climbing algorithm is that it yields only local 

minima while we seek the global minima. Hence, the classical hill climbing algorithm will 

not work for this task.  

 

Some of the variants of the hill climbing algorithm are the stochastic hill climbing [8] and 

the random restart hill climbing. In this implementation, the random restart hill climbing 

algorithm is used to find the optimum x and y values and thereby minimize the value of 

the cost function. Just like simulated annealing and adaptive simulated annealing, we 

start with an initial guess and iteratively move toward the optimal solution. In the following 

section, we will review the working of the adaptation made to the hill climbing algorithm. 
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4.2 Working of the random restart hill climbing algorithm 
 

Before proceeding with discussing how the random restart hill climbing algorithm works, 

it would be helpful to discuss how the classical hill climbing algorithm works. We start 

with a cost function (assume a function of two variables f(x,y), referred to as f) and an 

initial starting point x0,y0.  

 

First, we compute the gradient of f at x0,y0 in terms of the partial derivatives. The gradient 

is given as 

 

∇𝑓 = (
𝜕𝑓

𝑑𝑥
) 𝑖 + (

𝜕𝑓

𝜕𝑦
) 𝑗            (1) 

 

Where the 𝜕 terms are the partial derivatives of f at the current x and y values and i and 

j are unit vectors along the x and y directions respectively. This implies that we first 

calculate the partial derivatives of f and multiply those with i and j as in the equation 

above. Suppose now we fix our new points 

 

xi+1 = xi + h∇𝑓i  

yi+1 = yi + h∇𝑓i                                   (2) 

 

We now have the new (neighborhood) points only in terms of one unknown, namely h. 

The h is what we refer to as the step size. We now express fi+1 in terms of only one 

unknown h. Next, we take the derivate of the cost (or objective) function f with respect to 

h and get a function in terms of h alone, say r(h). To determine what should be the step 

size h so as to minimize the cost function, we only need to find the roots of r(h) and plug 

the obtained value of h back in equation (2) to get the neighborhood points xi+1 and yi+1. 

If the roots are not real, we start off with a random initial condition and carry out iterative 

searches starting from that point. 

 

Based on the new points, we follow the same procedure again until we reach a point 

where the gradient of the cost function is zero. This indicates that a critical point is 

reached; a point beyond which further improvisation is not possible.  
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Having reached a critical point, we have implemented the classical form of the hill 

climbing algorithm. However, this may not necessarily be the global minima since there 

is a chance that a local minima could have been reached. This is not desirable since we 

seek a global minima. 

 

Of the several alternatives available, we implement the RRHC (Random Restart Hill 

Climbing) algorithm. Once a local minima has been reached, do not let it terminate. 

Instead, we begin the search starting from a random initial condition (x0’, y0’) and 

iteratively seek improvement by implementing another local search with this initial 

condition. Whenever a local minima is reached, the x and y values are stored along with 

the function value. 

 

The procedure of starting with random initial conditions up on arrival at a local minima is 

carried out repeatedly until the preset number of maximum number of iterations is 

reached. Once the limit is reached, we look through the stored results and output the x 

and y values that provided us the least value of the cost function. This is the result of the 

random restart hill climbing algorithm. Appendix 1 provides the complete MATLAB code 

of the Random Restart Hill Climbing Algorithm. 
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4.3 Pseudocode 
 

The Random Restart Hill Climbing algorithm works as per the pseudocode shown in 

Figure 4.3.1 

 

 

Figure 4.3.1: Pseudocode for the Random Restart Hill Climbing algorithm 

 

Let us take a detailed look at how the algorithm is implemented. We begin with 

generating an initial state based on the initial x and y values provided to the function. 

Next, we symbolically get points xi+1 and yi+1 in terms of h, the step size and express the 

cost function in terms of h alone. It must be noted though that an approach other than 

symbolic differentiation might be required for cases where either the nature of the cost 
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function is not known, or to account for the possibility of the cost function not being 

differentiable at all or not being differentiable at certain points of interest. We take the 

derivative of the cost function with respect to h and solve it for h. Using this step size 

value, we compute the next iteration point xi+1 = xi + h 
𝜕𝑓

𝑑𝑥
 and yi+1 = yi + h 

𝜕𝑓

𝜕𝑦
. The same 

procedure is carried out until the gradient of f ▽f is not zero. If, however, ▽f is zero, the 

current x and y values are the critical points and we store these points, along with the 

value of f at these points in a results table.  

 

Since we reach a critical point when ▽f is zero, we want to ensure that this is indeed the 

global minima and not a local minima. To achieve this objective, we start the same 

iterative improvement from a randomly chosen point and see where this point takes us 

in terms of reaching the critical point. This is illustrated in Figure 4.3.2. Since the 

algorithm Hill Climbing algorithm is restarted from randomly chosen points, we call this 

the Random Restart Hill Climbing algorithm. 

 

 

Figure 4.3.2: Random Restart of the Hill Climbing algorithm 
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The procedure is repeated until the maximum number of iterations is reached. Once this 

limit is reached, we scan through the stored results and report the x and y values that 

yield the minimum value of the cost function. The limit is determined empirically. This 

becomes the result of the implementation of this algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

33 
 

4.4 Algorithm output 
 

As in the case of the previous algorithms, we use the sample cost function 2x2 – 4xy + 
y4 + 2. A 3-Dimensional graph of function f shows that f has two local minima at (-1,-1,1) 
and (1,1,1) and one saddle point at (0,0,2) [5]. This is shown in Figure 4.4.1.  
 

 

Figure 4.4.1: Cost function used for simulated annealing implementation [5] 

 

We enter a vector as an initial guess and also the cost function so that the cost can be 

computed at subsequent iterations. The initial guess is a vector that contains the starting 

x and y values. This is shown in Figure 4.4.2 

 

 

Figure 4.4.2: Passing the initial guess and the cost function in to the random restart hill climbing 
algorithm 
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Once the algorithm is run and completes execution, we see a list of critical points. These 

points are of interest to us. Just before the algorithm terminates, we output the result 

based on the minimum value of the cost function. The random restart gradient descent 

algorithm waveforms at successive iterations and the final output are shown in Figures 

4.4.3 and 4.4.4 respectively. 

 

 

Figure 4.4.3: Random restart hill climbing algorithm waveforms at successive iterations  

 

 

Figure 4.4.4: Output of the random restart hill climbing algorithm with the minimum cost and the 
x and y values for the solution  

 

Since we have the set of results with local minima at (-1,-1) and (1,1) we can set 

additional filters so as to yield non-negative x and y values. Note that the third value in 

the results table indicates the value of the cost function at the given x and y values.  
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5. Performance comparison 
 

Based on the settings chosen for the three algorithms, each algorithm was tested for its 

performance with three different functions. We present a detailed performance 

comparison of these algorithms followed by a concluding section. 

 

5.1 Performance comparison with a cost function of two variables 
 

We use the sample cost function 2x2 – 4xy + y4 + 2. The solution results for all the three 

algorithms are given in Tables 5.1.1, 5.1.2, and 5.1.3. The error is evaluated taking the 

known minimum function value as 1.0.  

 

Simulated Annealing algorithm 

 x y 
minimum function 

value 
Error (%) 

Trail 1 1.0000 1.0000 1.0000 0.0000 

Trail 2 1.0000 1.0000 1.0000 0.0000 

Trail 3 1.0000 1.0000 1.0000 0.0000 

Trail 4 1.0000 1.0000 1.0000 0.0000 

Trail 5 1.0000 1.0000 1.0000 0.0000 

Trail 6 1.0000 1.0000 1.0000 0.0000 

Trail 7 1.0000 1.0000 1.0000 0.0000 

Trail 8 1.0000 1.0000 1.0000 0.0000 

Trail 9 1.0000 1.0000 1.0000 0.0000 

Trail 10 1.0000 1.0000 1.0000 0.0000 

Average 1.0000 1.0000 1.0000 0.0000 

Table 5.1.1: Solution from the SA algorithm for a cost function of two independent variables x, 
and y 
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Adaptive Simulated Annealing algorithm 

 x y 
minimum function 

value 
Error (%) 

Trail 1 1.0219 0.9987 1.0011 0.1100 

Trail 2 1.1427 1.0316 1.0288 2.8800 

Trail 3 1.0663 1.0176 1.0060 0.6000 

Trail 4 1.0349 1.0619 1.0177 1.7700 

Trail 5 1.1524 1.0736 1.0357 3.5700 

Trail 6 1.0329 1.0047 1.0017 0.1700 

Trail 7 0.9711 0.9577 1.0072 0.7200 

Trail 8 1.0469 1.0101 1.0031 0.3100 

Trail 9 0.9707 0.9977 1.0015 0.1500 

Trail 10 0.9763 1.0202 1.0055 0.5500 

Average 1.0416 1.0174 1.0108 1.0800 

Table 5.1.2: Solution from the ASA algorithm for a cost function of two independent variables x, 
and y 

 

Random Restart Hill Climbing algorithm 

 x y minimum function value Error (%) 

Trail 1 1.0000 1.0000 1.0000 0.0000 

Trail 2 -1.0000 -1.0000 1.0000 0.0000 

Trail 3 -1.0000 -1.0000 1.0000 0.0000 

Trail 4 1.0000 1.0000 1.0000 0.0000 

Trail 5 1.0000 1.0000 1.0000 0.0000 

Trail 6 -1.0000 -1.0000 1.0000 0.0000 

Trail 7 -1.0000 -1.0000 1.0000 0.0000 

Trail 8 -1.0000 -1.0000 1.0000 0.0000 

Trail 9 -1.0000 -1.0000 1.0000 0.0000 

Trail 10 -1.0000 -1.0000 1.0000 0.0000 

Average -0.4000 -0.4000 1.0000 0.0000 

Table 5.1.3: Solution from the RRHC algorithm for a cost function of two independent variables 
x, and y 
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Figure 5.1.1 shows a plot of computation time of all the algorithms for 10 trials each. 

 

 

Figure 5.1.1: Computation time (sec.) for 10 tries of the three algorithms 
 

Table 5.1.4 aims to provide information on the tradeoff between percentage error (hence 

accuracy) and computation time in each of the three algorithms 

 

 Simulated Annealing 
Adaptive Simulated 

Annealing 
Random Restart Hill 

Climbing 

 Error (%) time (sec.) Error (%) time(sec.) Error (%) time(sec.) 

Trail 1 0.0000 11.8725 0.1100 8.3083 0.0000 107.0738 

Trail 2 0.0000 14.2725 2.8800 8.2298 0.0000 111.5707 

Trail 3 0.0000 7.4209 0.6000 8.1175 0.0000 111.9641 

Trail 4 0.0000 8.1256 1.7700 8.1117 0.0000 114.8540 

Trail 5 0.0000 12.8865 3.5700 8.0961 0.0000 117.4197 

Trail 6 0.0000 9.1926 0.1700 8.1202 0.0000 119.5169 

Trail 7 0.0000 14.5878 0.7200 8.0581 0.0000 121.1676 

Trail 8 0.0000 12.8568 0.3100 8.2373 0.0000 127.4931 

Trail 9 0.0000 24.6004 0.1500 8.0896 0.0000 132.2677 

Trail 10 0.0000 7.5052 0.5500 8.2354 0.0000 119.4661 

Average 0.0000 12.3321 1.0830 8.1604 0.0000 118.2794 

 
Table 5.1.4: Computation time (sec.) vs. percentage error of the three algorithms for the given 

cost function of two independent variables 
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Figure 5.1.2 shows a scatter plot of the computation time (sec.) vs. percentage error 

(hence accuracy) tradeoff in each of the three algorithms. The points with a glow 

represent the average computation time (sec.) vs. average error (%) for each algorithm’s 

implementation. 

 

 

Figure 5.1.2: Computation time (sec.) vs. percentage error (hence accuracy) tradeoff in each of 
the three algorithms. 
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5.2 Performance comparison with a cost function of three variables 
 

We use the sample cost function x2 + y2 + z2. The solution results for all the three 

algorithms are given in Tables 5.2.1, 5.2.2, and 5.2.3. The error is evaluated taking the 

known minimum function value as 0.0 since this function represents the volume of a 

sphere. 

 

Simulated Annealing algorithm 

 x y z 
minimum function 

value 
Error (%) 

Trail 1 -4.30e-05 5.32e-06 5.48e-06 1.91e-09 0.0000 

Trail 2 1.57e-07 3.37e-05 -8.28e-06 1.21e-09 0.0000 

Trail 3 -1.98e-06 2.07e-05 3.58e-07 4.35e-10 0.0000 

Trail 4 -4.80e-06 -5.81e-06 -3.33e-06 6.78e-11 0.0000 

Trail 5 6.16e-06 3.27e-05 -4.77e-05 3.38e-09 0.0000 

Trail 6 -2.26e-05 -4.74e-06 9.48e-05 9.52e-09 0.0000 

Trail 7 5.79e-06 2.47e-06 -1.03e-06 4.06e-11 0.0000 

Trail 8 3.85e-05 4.83e-06 4.49e-07 1.50e-09 0.0000 

Trail 9 4.69e-08 5.23e-06 4.43e-05 1.99e-09 0.0000 

Trail 10 2.91e-07 -5.75e-07 -5.95e-05 3.54e-09 0.0000 

Average -2.15e-06 9.39e-06 2.56e-06 2.36e-09 0.0000 

Table 5.2.1: Solution from the SA algorithm for a cost function of three independent variables x, 
y, and z 
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Adaptive Simulated Annealing algorithm 

 x y z 
minimum function 

value 
Error (%) 

Trail 1 -0.0122 0.0897 0.1514 0.0311 3.1100 

Trail 2 0.0166 0.3772 0.0833 0.1495 14.9500 

Trail 3 0.0927 0.2953 0.0348 0.0970 9.7000 

Trail 4 0.0447 0.0673 -0.0234 0.0071 0.7100 

Trail 5 -0.0142 0.2292 0.0474 0.0550 5.5000 

Trail 6 -0.0395 0.2485 0.0017 0.0633 6.3300 

Trail 7 -0.0046 -0.0289 -0.0005 0.0009 0.0857 

Trail 8 0.0796 0.6125 0.0352 0.3827 38.2700 

Trail 9 0.0269 0.1638 -0.0313 0.0285 2.8500 

Trail 10 -0.0528 0.4458 0.1669 0.2293 22.9300 

Average 0.0137 0.2500 0.0465 0.1044 10.4400 

Table 5.2.2: Solution from the ASA algorithm for a cost function of three independent variables 
x, y, and z 

 

Random Restart Hill Climbing algorithm 

 x y z 
minimum function 

value 
Error (%) 

Trail 1 0.0000 0.0000 0.0000 0.0000 0.0000 

Trail 2 0.0000 0.0000 0.0000 0.0000 0.0000 

Trail 3 0.0000 0.0000 0.0000 0.0000 0.0000 

Trail 4 0.0000 0.0000 0.0000 0.0000 0.0000 

Trail 5 0.0000 0.0000 0.0000 0.0000 0.0000 

Trail 6 0.0000 0.0000 0.0000 0.0000 0.0000 

Trail 7 0.0000 0.0000 0.0000 0.0000 0.0000 

Trail 8 0.0000 0.0000 0.0000 0.0000 0.0000 

Trail 9 0.0000 0.0000 0.0000 0.0000 0.0000 

Trail 10 0.0000 0.0000 0.0000 0.0000 0.0000 

Average 0.0000 0.0000 0.0000 0.0000 0.0000 

Table 5.2.3: Solution from the RRHC algorithm for a cost function of three independent 
variables x, y, and z 
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Figure 5.2.1 shows a plot of computation time of all the algorithms for 10 trials each. 

 

 

Figure 5.2.1: Computation time (sec.) for 10 tries of the three algorithms 
 

Table 5.2.4 aims to provide information on the tradeoff between percentage error (hence 

accuracy) and computation time in each of the three algorithms. 

 

 Simulated Annealing 
Adaptive Simulated 

Annealing 
Random Restart Hill 

Climbing 

 Error (%) time(sec.) Error (%) time(sec.) Error (%) time(sec.) 

Trail 1 0.0000 13.2846 3.1100 9.3280 0.0000 82.3744 

Trail 2 0.0000 10.4691 14.9500 9.2858 0.0000 81.9271 

Trail 3 0.0000 16.0278 9.7000 9.2807 0.0000 85.4474 

Trail 4 0.0000 19.6527 0.7100 9.4716 0.0000 85.2702 

Trail 5 0.0000 14.2018 5.5000 9.4105 0.0000 89.2661 

Trail 6 0.0000 17.2582 6.3300 9.3741 0.0000 88.1859 

Trail 7 0.0000 16.8966 0.0857 9.5158 0.0000 88.7392 

Trail 8 0.0000 17.2577 38.2700 9.4201 0.0000 86.2815 

Trail 9 0.0000 21.5238 2.8500 10.0450 0.0000 93.5806 

Trail 10 0.0000 12.6871 22.9300 9.3865 0.0000 85.3771 

Average 0.0000 15.9259 10.4436 9.4518 0.0000 86.6450 

 
Table 5.2.4: Computation time (sec.) vs. percentage error of the three algorithms for the given 

cost function of three independent variables 
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Figure 5.2.2 shows a scatter plot of the computation time (sec.) vs. percentage error 

(hence accuracy) tradeoff in each of the three algorithms. The points with a glow 

represent the average computation time (sec.) vs. average error (%) for each algorithm’s 

implementation. 

 

 

Figure 5.2.2: Computation time (sec.) vs. percentage error (hence accuracy) tradeoff in each of 
the three algorithms. 
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5.3 Performance comparison with a cost function of four variables 
 

We use the sample cost function (2w2 – 4wx + x4 + 2)*(2y2 – 4yz + z4 + 2). The solution 

results for all the three algorithms are given in Tables 5.3.1, 5.3.2, and 5.3.3. The error 

is evaluated taking the known minimum function value as 1.0. 

 

Simulated Annealing algorithm 

 w x y z 
minimum function 

value 
Error (%) 

Trail 1 1.0000 1.0000 -1.0000 -1.0000 1.0000 0.0000 

Trail 2 1.0000 1.0000 -1.0000 -1.0000 1.0000 0.0000 

Trail 3 1.0000 1.0000 -1.0000 -1.0000 1.0000 0.0000 

Trail 4 1.0000 1.0000 -1.0000 -1.0000 1.0000 0.0000 

Trail 5 1.0000 1.0000 -1.0000 -1.0000 1.0000 0.0000 

Trail 6 1.0000 1.0000 -1.0000 -1.0000 1.0000 0.0000 

Trail 7 1.0000 1.0000 -1.0000 -1.0000 1.0000 0.0000 

Trail 8 1.0000 1.0000 -1.0000 -1.0000 1.0000 0.0000 

Trail 9 1.0000 1.0000 -1.0000 -1.0000 1.0000 0.0000 

Trail 10 1.0000 1.0000 -1.0000 -1.0000 1.0000 0.0000 

Average 1.0000 1.0000 -1.0000 -1.0000 1.0000 0.0000 

Table 5.3.1: Solution from the SA algorithm for a cost function of four independent variables w, 
x, y, and z 

 

 

 

 

 

 

 

 

 

 

 



 

44 
 

Adaptive Simulated Annealing algorithm 

 w x y z 
minimum function 

value 
Error (%) 

Trail 1 1.1072 1.0052 -0.9071 -0.9738 1.0327 3.2700 

Trail 2 1.0764 0.9977 -0.6883 -0.8921 1.1387 13.8700 

Trail 3 1.0246 0.9841 -0.8870 -0.9478 1.0221 2.2100 

Trail 4 0.9245 1.0302 -1.0296 -0.9989 1.0280 2.8000 

Trail 5 0.9951 0.9799 -0.8949 -0.9394 1.0198 1.9800 

Trail 6 1.0509 1.0231 -0.8316 -0.9106 1.0455 4.5500 

Trail 7 0.9807 1.0058 -1.0396 -1.0193 1.0038 0.3800 

Trail 8 0.9998 0.9796 -0.8535 -0.8864 1.0507 5.0700 

Trail 9 0.9755 1.0065 -1.0176 -0.9904 1.0039 0.3900 

Trail 10 0.9630 0.9885 -0.9836 -0.9546 1.0114 1.1400 

Average 1.0098 1.0001 -0.9133 -0.9513 1.0357 3.5700 

Table 5.3.2: Solution from the ASA algorithm for a cost function of four independent variables w, 
x, y, and z 

 

Random Restart Hill Climbing algorithm 

 w x y z 
minimum function 

value 
Error (%) 

Trail 1 -1.0000 -1.0000 1.0000 1.0000 1.0000 0.0000 

Trail 2 -1.0000 -1.0000 1.0000 1.0000 1.0000 0.0000 

Trail 3 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 

Trail 4 1.0000 1.0000 -1.0000 -1.0000 1.0000 0.0000 

Trail 5 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 

Trail 6 1.0000 1.0000 -1.0000 -1.0000 1.0000 0.0000 

Trail 7 -1.0000 -1.0000 1.0000 1.0000 1.0000 0.0000 

Trail 8 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 

Trail 9 1.0000 1.0000 -1.0000 -1.0000 1.0000 0.0000 

Trail 10 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 

Average 0.4000 0.4000 0.4000 0.4000 1.0000 0.0000 

Table 5.3.3: Solution from the RRHC algorithm for a cost function of four independent variables 
w, x, y, and z 
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Figure 5.3.1 shows a plot of computation time of all the algorithms for 10 trials each. 

 

 

Figure 5.3.1: Computation time (sec.) for 10 tries of the three algorithms 
 

Table 5.3.4 aims to provide information on the tradeoff between percentage error (or 

accuracy) and computation time in each of the three algorithms 

 

 Simulated Annealing 
Adaptive Simulated 

Annealing 
Random Restart Hill 

Climbing 

 Error (%) time(sec.) Error (%) time(sec.) Error (%) time(sec.) 

Trail 1 0.0000 120.2330 3.2700 10.8771 0.0000 175.3429 

Trail 2 0.0000 120.9094 13.8700 10.5780 0.0000 171.8625 

Trail 3 0.0000 121.5211 2.2100 10.5127 0.0000 169.7304 

Trail 4 0.0000 119.1562 2.8000 10.6375 0.0000 180.2140 

Trail 5 0.0000 129.1668 1.9800 11.3135 0.0000 180.2062 

Trail 6 0.0000 128.1730 4.5500 11.7564 0.0000 185.0980 

Trail 7 0.0000 130.7918 0.3800 11.1606 0.0000 184.5443 

Trail 8 0.0000 119.3853 5.0700 11.1768 0.0000 198.1524 

Trail 9 0.0000 127.3835 0.3900 11.7708 0.0000 204.0424 

Trail 10 0.0000 124.3711 1.1400 10.9535 0.0000 200.5978 

Average 0.0000 124.1091 3.5660 11.0737 0.0000 184.9791 

Table 5.3.4: Computation time (sec.) vs. percentage error of the three algorithms for the given 
cost function of four independent variables 
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Figure 5.3.2 shows a scatter plot of the computation time (sec.) vs. percentage error 

(hence accuracy) tradeoff in each of the three algorithms. The points with a glow 

represent the average computation time (sec.) vs. average error (%) for each algorithm’s 

implementation. 

 

 

Figure 5.3.2: Computation time (sec.) vs. percentage error (hence accuracy) tradeoff in each of 
the three algorithms. 
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6. Conclusions 
 

As is evident from the computation time plots, RRHC is the computationally most 

expensive algorithm among the three. The computation times for SA and ASA algorithms 

are comparable when working with functions of two or three independent variables. 

However, the difference is significant when working with a function of four independent 

variables. 

 

SA and RRHC algorithms deliver higher accuracy in comparison to the ASA algorithm. 

This is evident from the scatter plots for these three algorithms for each of the tested 

functions. The tradeoff is that SA and RRHC algorithms take more computation time 

when compared to the ASA algorithm. 

 

Also, it was noted that the RRHC was not able to trace out all the possible optimal 

solutions in the same number of iterations when implemented on the function of four 

variables. What this implies is that more iterations may be necessary for RRHC for 

relatively complex functions. 

 

Given the performance comparison of the three algorithms and their individual accuracy 

vs. computation time tradeoffs, it is up to the implementer to decide which of the three 

algorithms would best suit the task at hand. 
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Appendix 1 
 

Main file in MATLAB (for function of two variables): 

%%%%%%%%%%%%%%% Rohit A. Bhatia %%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%% EE 5991 | Heuristic Optimization Algorithms 

%%%%%%%%%%%%%%% 

  
clearvars; %clear all variables from MATLAB workspace 
clc; 
GlobalResults  = []; 
comparisonLimit = 10; 
results = []; 

  
%sample function from 

http://www.analyzemath.com/calculus/multivariable/maxima_minima.html 
testFunction = @(x,y)(2*x.^2 - 4*x*y + y.^4 + 2); 
ruleFunction = @(c)testFunction(c(1),c(2));       % function handle 
initialGuess = [1 5];                             % initial guess for 

x and y coordinates - 
tempUserOpt = []; 
for performaceComp = 1:1:comparisonLimit 
    [SimulatedAnnealingResults] = 

anneal_rev1(ruleFunction,initialGuess); % Simmulated Annealing 

algorithm implementation (rev1) 
    completeResult = horzcat(SimulatedAnnealingResults); 
    [AdaptiveSimulatedAnnealingResults] = 

AdaptiveAnneal_rev1(ruleFunction,initialGuess); % Adaptive Simmulated 

Annealing algorithm implementation (rev1) 
    completeResult = horzcat(completeResult, 

AdaptiveSimulatedAnnealingResults); 
    [RandomRestartHCResults] = 

randomRestartHillClimbing_2var_rev1(testFunction,initialGuess); 
    completeResult = horzcat(completeResult, RandomRestartHCResults); 
    GlobalResults = [GlobalResults;completeResult]; 
end 
[comparisonGenerated, computationTimeInformation] = 

PerformaceComparision(GlobalResults,comparisonLimit); 
[reportGenerated] = 

ReportOnTable(GlobalResults,computationTimeInformation,comparisonLimit

); 

 

Main file in MATLAB (for function of three variables): 

%%%%%%%%%%%%%%% Rohit A. Bhatia %%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%% EE 5991 | Heuristic Optimization Algorithms 

%%%%%%%%%%%%%%% 

  
clearvars; %clear all variables from MATLAB workspace 
clc; 
GlobalResults  = []; 
comparisonLimit = 10; 
results = []; 
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testFunction_3var = @(x,y,z)(x.^2 + y.^2 + z.^2);  
ruleFunction = @(c)testFunction_3var(c(1),c(2),c(3));       % function 

handle 
initialGuess = [-1 3 1];                             % initial guess 

for x, y and z coordinates - 
tempUserOpt = []; 
for performaceComp = 1:1:comparisonLimit 
    [SimulatedAnnealingResults] = 

anneal_3var_rev1(ruleFunction,initialGuess); % Simmulated Annealing 

algorithm implementation (rev1) 
    completeResult = horzcat(SimulatedAnnealingResults); 
    [AdaptiveSimulatedAnnealingResults] = 

AdaptiveAnneal_3var_rev1(ruleFunction,initialGuess); % Adaptive 

Simmulated Annealing algorithm implementation (rev1) 
    completeResult = horzcat(completeResult, 

AdaptiveSimulatedAnnealingResults); 
    [RandomRestartHCResults] = 

randomRestartHillClimbing_3var_rev1(testFunction_3var,initialGuess); 
    completeResult = horzcat(completeResult, RandomRestartHCResults); 
    GlobalResults = [GlobalResults;completeResult]; 
end 
display('Fetch Results Now!'); 
[comparisonGenerated, computationTimeInformation] = 

PerformaceComparision_3var(GlobalResults,comparisonLimit); 
[reportGenerated] = 

ReportOnTable_3var(GlobalResults,computationTimeInformation,comparison

Limit); 

 

Main file in MATLAB (for function of four variables): 

%%%%%%%%%%%%%%% Rohit A. Bhatia %%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%% EE 5991 | Heuristic Optimization Algorithms 

%%%%%%%%%%%%%%% 

  
clearvars; %clear all variables from MATLAB workspace 
clc; 
GlobalResults  = []; 
comparisonLimit = 10; 
results = []; 

  
testFunction_4var = @(w,x,y,z)((2*w.^2 - 4*w*x + x.^4 + 2)*(2*y.^2 - 

4*y*z + z.^4 + 2)); 
% based on x and y coordinates of the module being placed 
ruleFunction = @(c)testFunction_4var(c(1),c(2),c(3),c(4));       % 

function handle 
initialGuess = [1 1 -1 0];                             % initial guess 

for w, x, y and z coordinates - 
tempUserOpt = []; 
for performaceComp = 1:1:comparisonLimit 
    [SimulatedAnnealingResults] = 

anneal_4var_rev1(ruleFunction,initialGuess); % Simmulated Annealing 

algorithm implementation (rev1) 
    completeResult = horzcat(SimulatedAnnealingResults); 
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    [AdaptiveSimulatedAnnealingResults] = 

AdaptiveAnneal_4var_rev1(ruleFunction,initialGuess); % Adaptive 

Simmulated Annealing algorithm implementation (rev1) 
    completeResult = horzcat(completeResult, 

AdaptiveSimulatedAnnealingResults); 
    [RandomRestartHCResults] = 

randomRestartHillClimbing_4var_rev1(testFunction_4var,initialGuess); 
    completeResult = horzcat(completeResult, RandomRestartHCResults); 
    GlobalResults = [GlobalResults;completeResult]; 
end 
[comparisonGenerated, computationTimeInformation] = 

PerformaceComparision_4var(GlobalResults,comparisonLimit); 
[reportGenerated] = 

ReportOnTable_4var(GlobalResults,computationTimeInformation,comparison

Limit); 

 

Non-adaptive simulated annealing algorithm implementation in MATLAB: 

%%%%%%%%%%%%%%% Rohit A. Bhatia %%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%% EE 5991 Algorithm - 1 %%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%% Simulated Annealing %%%%%%%%%%%%%%%%%%%%%%% 

  
% >> PROCEDURE Simulated_ Annealing 
% Above indicates the beginning of the algorithm implementation 
% >> 1 initialize; 

  
function [reportResults] = anneal_rev1(ruleFunction, 

parentParam,userOpt) 
% arrays for holding data 
plot_fVal = []; 
plot_minVal = []; 
plot_temp = []; 
tempPlot_diff = []; 
solutionUpdateRow = []; 
solutionMatrix = []; 
reportResults = zeros(1,5); 
% The following piece of code is used for initialization. 
% Default parameters for Simmulated Annealing algorhtim 
% length(param) returns 
% randperm(length(param)) randomly returns [1 2] per the definition of 
% randperm. randperm(length(param)) == length(param) randomly returns 

[1 0] 
% per definition of == operator the result is then multiplied with 
% "randn/100" and added to the previous value of input parameter to 

get the 
% updated value. 

  
defaultParam = struct(... 
    'Schedule', @(T) (0.9 * T),... 
    'MaxConsecutiveRejections', 1000,... 
    'MaxSuccessAtTemperature', 20,... 
    'RandomGenerator', @(param) 

(param+(randperm(length(param))==length(param))*randn/100),... 
    'InitialTemperature', 1,... 
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    'StoppingTemperature', 1e-8,... 
    'MaxTriesAtTemperature', 300,... 
    'StoppingValue', 0); 

  
%verification of input: 
if ~nargin 
    minimum = defaultParam; 
    return 
elseif nargin < 2 
    error('Please input user options.'); 
elseif nargin < 4 
    userOpt = defaultParam; 
else 
    if ~isstruct (userOpt) 
        error('"userOpt" is not a structure. Using default 

options...'); 
    end 
    structFormat = 

{'Schedule','MaxConsecutiveRejections','MaxSuccessAtTemperature','Rand

omGenerator',... 
        

'InitialTemperature','StoppingTemperature','MaxTriesAtTemperature','St

oppingValue'}; 
    for count = 1:1:length(structFormat) 
        if ~isfield(userOpt,structFormat{count}) 
            userOpt.(structFormat{count}) = 

defaultParam.(structFormat{count}); 
        end 
    end 
end 

  
% Initialization 
UpdatedCoordinates = userOpt.RandomGenerator;      % generates random 

solution 
InitTemp = userOpt.InitialTemperature;        % initial temperature 
StoppingTemp = userOpt.StoppingTemperature;         % stopping 

temperature 
CoolSched = userOpt.Schedule;        % cooling schedule for annealing 
MinFunc = userOpt.StoppingValue;          % minimum value of Function 
MaxConsRej = userOpt.MaxConsecutiveRejections; % maximum consecutive 

rejections 
MaxTryAtT = userOpt.MaxTriesAtTemperature; % maximum tries at a 

temperature 
MaxSucAtT = userOpt.MaxSuccessAtTemperature; % maximum success at a 

temperature 

  
% Initialize counters 
trialCountAtT = 0;     % iteration counter 
successCountAtT = 0;   % success counter 
finishedFlag = 0;   % flag to indicate that a soultion has been 

reached OR that the program needs to end execution 
consecRejCount = 0; % consecutive rejection count at a particular 

temperature 
temp = InitTemp;    % temperature initialized to Initial Temperature 

preset 
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initialLength = ruleFunction(parentParam); % initial wire length is 

computed based on the initial guess parameters 
oldLength = initialLength; % initialize oldLength; will be updated on 

successive iterations 
funcCallCount = 0; % number of times this function was called 
annealCount = 0; % number of times annealing was done 
k = 1 ; % Boltzmann constant 
%draw = 0; 
%% Figure control parameter for graph: 

  
fig1 = figure; 
set(fig1,'name','PLOT OF SIMMULATED ANNEALING ALGORITHM (NON-

ADAPTIVE):','numbertitle','off') 
Results = []; 
hList1 = uicontrol(fig1,'Style','text','Position',[600 5 400 75]); 

  
%% time / performance calculation 
tic; 
% >> 3 WHILE stopping. criterion (loop. count, temperature) = FALSE 
%% 
while ~finishedFlag 
    trialCountAtT = trialCountAtT + 1; 
    currentParam = parentParam; 
    % >> 4 WHILE inner.loop.criterion = FALSE 
    % We do the annealing if the we have reached the maximum number of 

tries 
    % at a particular temperature OR is the number of successful moves 

is 
    % greater than or equal to the preset for maximum success count at 

a 
    % particlar temperature. This is based on the additional condition 

that 
    % the algorithm isn't terminated due to the temperature going 

below the 
    % stopping temperature OR the consecutive rejection count doesn't 

exceed 
    % the preset for Maximum Consecutive Rejections 
    if trialCountAtT >= MaxTryAtT || successCountAtT >= MaxSucAtT 
        if temp <= StoppingTemp || consecRejCount >= MaxConsRej 
            finishedFlag = 1; 
            funcCallCount = funcCallCount + trialCountAtT; 
            break; 
        else 
            % >> 13 temperature <- schedule(loop_count, temperature); 

%cooling is done 
            temp = CoolSched(temp); 
            annealCount = annealCount + 1; 
            funcCallCount = funcCallCount + trialCountAtT; 
            trialCountAtT = 1; %set trialCountAtT back to 1 because we 

just reduced the temperature 
            successCountAtT = 1; %set successCountAtT back to 1 

because we just reduced the temperature 
        end 
    end 
    % >> 5 new_configuration <-  perturb(configuration); 
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    % This is specific to the wire length implementation. This is 

where the 
    % layout equation will come in and we will optimize it. 
    newParam = UpdatedCoordinates(currentParam); 
    newLength = ruleFunction(newParam); 
    diff = newLength - oldLength; 

     
    % If new length is less than the minimum value of Length as set 

then we 
    % set the oldLength to the value of the newLength and parentParam 

as 
    % the value obtained for newParam 
    if (newLength < MinFunc) 
        parentParam = newParam; 
        oldLength = newLength; 
        break 
    end 

     
    % if f(x0) - f(x1) > 0 (in other words the function value 

decreases, 
    % then we replace initial guess with the new guess i.e. 

parentParam = 
    % newParam and oldLength = newLength and count that as a success 

and 
    % reset the consecutive rejection count 
    if (oldLength - newLength > 0) 
        parentParam = newParam; 
        oldLength = newLength; 
        successCountAtT = successCountAtT + 1; 
        consecRejCount = 0; 
    else 
        % if f(x0) - f(x1) < 0 (in other words the function value does 

NOT 
        % decrease AND we still replace x0 with x1 BUT with the 

probability 
        % given by exp(-1 * diff)/k * temp 
        if (rand < exp(-1 * diff)/k * temp) 
            parentParam = newParam; 
            oldLength = newLength; 
            successCountAtT = successCountAtT + 1; 
            % if the acceptance probability is low, then we reject the 

move 
        else 
            consecRejCount = consecRejCount + 1; 
        end 
    end 

     
    % Plotting data used only if one iteration is performed for 

performance 
    % comparision 
    plot_fVal = [plot_fVal;oldLength;]; 
    plot_minVal = [plot_minVal;parentParam]; 
    plot_temp = [plot_temp;temp]; 
    tempPlot_diff = [tempPlot_diff;diff]; 
    solutionUpdateRow = [parentParam(1) parentParam(2) oldLength]; 
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    solutionMatrix = [solutionMatrix;solutionUpdateRow]; 

     
    % Reporting the results on the figure 
    Results {1,1} = strcat ('Solution for x: 

',num2str(parentParam(1))); 
    Results {1,2} = strcat ('Solution for y: 

',num2str(parentParam(2))); 
    Results {1,3} = strcat ('Current cost: ',num2str(oldLength)); 
    Results {1,4} = strcat ('Current temperature: ',num2str(temp)); 
    Results {1,5} = strcat ('Number of annealing steps: 

',num2str(annealCount)); 
    set(hList1,'String',Results);  % Displays 5 lines, one result per 

line 
end 
%% Plotting the results 
set([fig1],'handlevisibility','on'); 
set(0,'CurrentFigure',fig1); 
subplot(2,3,1); plot(plot_minVal) 
title('Optimum X and Y coordinates') 
subplot(2,3,2);plot(plot_fVal) 
title('Minimum cost') 
subplot(2,3,3);plot(plot_temp) 
title('Temperature') 
subplot(2,3,4);plot(tempPlot_diff) 
title('Result difference on successive iterations') 
drawnow; 

  
%% Reporting the results 
minimum = parentParam; 
fval = oldLength; 
elapsedTime = toc; 
reportResults(1,1) = minimum(1); 
reportResults(1,2) = minimum(2); 
reportResults(1,3) = fval; 
reportResults(1,4) = annealCount; 
reportResults(1,5) = elapsedTime; 
end 

 

Adaptive simulated annealing algorithm implementation in MATLAB: 

%%%%%%%%%%%%%%% Rohit A. Bhatia %%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%% EE 5991 Algorithm - 2 %%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%% Adaptive Simulated Annealing %%%%%%%%%%%%%% 

  
% >> PROCEDURE Adaptive Simulated Annealing 
% Above indicates the beginning of the algorithm implementation 
% SimulatedAnnealing with Modified Lam Annealing Schedule 

  
function [reportResults] = AdaptiveAnneal_rev1(ruleFunction, 

parentParam,userOpt) 
% time / performance calculation 
totalFunctionTime  = tic; 
% arrays for holding data 
plot_fVal = []; 
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plot_minVal = []; 
plot_temp = []; 
plot_resultDiff = []; 
plot_AcceptRate = []; 
plot_LamRate = []; 
solutionUpdateRow = []; 
solutionMatrix = []; 
reportResults = zeros(1,5); 

  
% The following piece of code is used for initialization. 
% Default parameters for Adaptive Simmulated Annealing algorhtim 
% length(param) returns 2 
% randperm(length(param)) randomly returns [1 2] per the definition of 
% randperm. randperm(length(param)) == length(param) randomly returns 

[1 0] 
% per definition of == operator. The result is then multiplied with 
% "randn/100" and added to the previous value of input parameter to 

get the 
% updated value. 
% 2 T <-  0:5 

  
% Set initial temperature and the random generator function 
defaultParam = struct(... 
    'RandomGenerator', @(param) 

(param+(randperm(length(param))==length(param))*randn/100),... 
    'InitialTemperature', 0.5); 
%verification of input: 
if ~nargin 
    minimum = defaultParam; 
    return 
elseif nargin < 2 
    error('Please input a user options.'); 
elseif nargin < 4 
    userOpt = defaultParam; 
else 
    if ~isstruct (userOpt) 
        error('"userOpt" is not a structure. Using default 

options...'); 
    end 
    structFormat = {'RandomGenerator','InitialTemperature'}; 
    for count = 1:1:length(structFormat) 
        if ~isfield(userOpt,structFormat{count}) 
            userOpt.(structFormat{count}) = 

defaultParam.(structFormat{count}); 
        end 
    end 
end 

  
% 1 S <-  GenerateInitialState 
% Initialize values / counters 
UpdatedCoordinates = userOpt.RandomGenerator;      % generates random 

solution 
InitTemp = userOpt.InitialTemperature;        % initial temperature 
temp = InitTemp;    % temperature initialized to Initial Temperature 

preset 
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initialLength = ruleFunction(parentParam); % initial wire length is 

computed based on the initial guess parameters 
oldLength = initialLength; % initialize oldLength; will be updated on 

successive iterations 
annealCount = 0; % number of times annealing was done 

  
% 3 AcceptRate <- 0.5 
AcceptRate = 0.5; % Acceptance rate initialized to 0.5 for Adaptive 

Simulated Annealing (ASA) algorithm 
EvalsMax = 4500; 
currentParam = parentParam; 

  
%% Figure control parameter for graph: 
fig2 = figure; 
set([fig2],'handlevisibility','on'); 
set(0,'CurrentFigure',fig2); 
set(fig2,'name','PLOT OF SIMMULATED ANNEALING ALGORITHM 

(ADAPTIVE):','numbertitle','off') 
Results = []; 
hList2 = uicontrol(fig2,'Style','text','Position',[433 5 400 90]); 

  
%% 

  
% 4 for i from 1 to Evalsmax 
for i=1:1:EvalsMax 
    %while ~flagStop 
    currentParam = parentParam; 
    % 5 S' <-  PickRandomState(Neighborhood(S)) 
    newParam = UpdatedCoordinates(currentParam); 
    newLength = ruleFunction(newParam); 
    diff = newLength - oldLength; 
    % 6 if Cost(S') < Cost(S) 
    % S <- S' {Note: accepting a move} 
    % AcceptRate  <- 1/500(499.AcceptRate + 1) 
    if (diff < 0) 
        parentParam = newParam; 
        oldLength = newLength; 
        AcceptRate = 1/500*(499*AcceptRate + 1); 
        % else 
        % r <- Random(0; 1) 
        % if r < e(Cost(S) - Cost(S'))/T 
        % S <- S' {Note: accepting a move} 
        % AcceptRate <- 1/500(499.AcceptRate + 1) 
    else 
        if (rand < exp((-1*diff)/temp)) 
            parentParam = newParam; 
            oldLength = newLength; 
            AcceptRate = 1/500*(499*AcceptRate + 1); 
        else 
            % else 
            % {Note: rejecting a move} 
            % AcceptRate <- 1/500(499.AcceptRate) 
            AcceptRate = 1/500*(499*AcceptRate); 
        end 
    end 
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    % 7 if i/Evalsmax < 0.15 then LamRate <- 0.44 + 0.56 * 560^-

i/Evalsmax/0.15 
    if i/EvalsMax < 0.15 
        LamRate = 0.44 + 0.56 * 560^(-1*i/EvalsMax/0.15); 
    else 
        % 8 if 0.15 <= i/Evalsmax < 0.65 then LamRate <- 0.44 
        if i/EvalsMax < 0.65 
            LamRate = 0.44; 
        else 
            % 9 if 0.65 <= i/Evalsmax then LamRate <- 0.44 * 
            % 440^-(((i/Evalsmax)-0.65)/0.35) 
            LamRate = 0.44 * 440^- (((i/EvalsMax)-0.65)/0.35); 
        end 
    end 

     
    % 10 if AcceptRate > LamRate 
    %       T <- 0.999T 
    %    else 
    %       T <- T/0.999 
    %    end 
    if AcceptRate > LamRate 
        temp = 0.999*temp; 
        annealCount = annealCount + 1; 
    else 
        temp = temp / 0.999; 
        annealCount = annealCount + 1; 
    end 

     

     
    %% Update Results: 
    % Plotting data used only if one iteration is performed for 

performance 
    % comparision 
    plot_fVal = [plot_fVal;oldLength]; 
    plot_minVal = [plot_minVal;parentParam]; 
    plot_temp = [plot_temp;temp]; 
    plot_resultDiff = [plot_resultDiff;diff]; 
    plot_AcceptRate = [plot_AcceptRate;AcceptRate]; 
    plot_LamRate = [plot_LamRate; LamRate]; 
    solutionUpdateRow = [parentParam(1) parentParam(2) oldLength]; 
    solutionMatrix = [solutionMatrix;solutionUpdateRow]; 

     
    % Reporting the results on the figure 

     
    Results {1,1} = strcat ('Solution for x: 

',num2str(parentParam(1))); 
    Results {1,2} = strcat ('Solution for y: 

',num2str(parentParam(2))); 
    Results {1,3} = strcat ('Current cost: ',num2str(oldLength)); 
    Results {1,4} = strcat ('Current temperature: ',num2str(temp)); 
    Results {1,5} = strcat ('LamRate: ',num2str(LamRate)); 
    Results {1,6} = strcat ('AcceptRate: ',num2str(AcceptRate)); 
    set(hList2,'String',Results);  % Displays 6 lines, one result per 

line 
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end 
%% Plotting the results 
set([fig2],'handlevisibility','on'); 
set(0,'CurrentFigure',fig2); 
subplot(3,3,1); plot(plot_minVal) 
title('Optimum X and Y coordinates') 
subplot(3,3,2);plot(plot_fVal) 
title('Minimum cost') 
subplot(3,3,3);plot(plot_temp) 
title('Temperature') 
subplot(3,3,4);plot(plot_resultDiff) 
title('Result difference on successive iterations') 
subplot(3,3,5);plot(plot_AcceptRate) 
title('Accept Rate') 
subplot(3,3,6);plot(plot_LamRate) 
title('LamRate') 

  
%% Reporting the results 
minimum = parentParam; 
elapsedTime = toc (totalFunctionTime); 
reportResults(1,1) = parentParam(1); 
reportResults(1,2) = parentParam(2); 
reportResults(1,3) = oldLength; 
reportResults(1,4) = annealCount; 
reportResults(1,5) = elapsedTime; 
end 

 

Random Restart Hill Climbing algorithm implementation in MATLAB (for function of two 

variables): 

%%%%%%%%%%%%%%% Rohit A. Bhatia %%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%% EE 5991 Algorithm - 3 %%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%% Random Restart Hill Climbing %%%%%%%%%%%%%% 

  
function [reportResults] = 

randomRestartHillClimbing_2var_rev1(testFunction,initialGuess) 
reportResults = ones(1,5); 
syms x y a b h; %symbols for calculating derivative etc. 
nextIterationPoint = initialGuess; 
internalFunctionUpdate = testFunction; 
fValUpdate = []; 
pointsUpdate = []; 
resultsMemory = zeros(1,3); 
intermediateResult = zeros(1,3); % For concatenating results to form 

the results matrix 
zeroReplaced = 0; 
matchFound = 0; 
iterationLimit = 1000; 
Results = []; 
% To generate random moves / preturb algorithm when "stuck" at a local 
% minima 
RandomMove = 

@(param)(param+(randperm(length(param))==length(param))*randn*5);%,... 
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fig3 = figure; 
set([fig3],'handlevisibility','on'); 
set(0,'CurrentFigure',fig3); 
set(fig3,'name','RANDOM - RESTART HILL CLIMBING 

ALGORITHM','numbertitle','off') 
hList3 = uicontrol(fig3,'Style','text','Position',[5 350 150 200]); 

  
% time / performance calculation 
totalFunctionTime_2  = tic; 

  
% RRGD code: 
for i=1:1:iterationLimit 
    computeFuncVal = subs(testFunction, {x,y}, 

{nextIterationPoint(1),nextIterationPoint(2)}); 
    if i == 1 
        minFuncVal = computeFuncVal 
    end 
    fValUpdate = [fValUpdate;computeFuncVal]; 
    pointsUpdate = [pointsUpdate;nextIterationPoint]; 
    % Compute partial derivates (symbolic) 
    derX_symb = diff(internalFunctionUpdate,x); 
    derY_symb = diff(internalFunctionUpdate,y); 

     
    % Substitute derivative with current coordinates to calculate 

partial 
    % derivatives 
    derX = 

subs(derX_symb,{x,y},{nextIterationPoint(1),nextIterationPoint(2)}); 
    derY = 

subs(derY_symb,{x,y},{nextIterationPoint(1),nextIterationPoint(2)}); 

     
    % Determine next coordinates based on current coordinates and h 
    % (symbolic) 
    nextIterationPoint_X = sym(nextIterationPoint(1) + h*derX); 
    nextIterationPoint_Y = sym(nextIterationPoint(2) + h*derY); 

     
    % Determine function value in terms of h alone, not x and / or y 
    updateFuncVal = subs(internalFunctionUpdate, {x,y}, 

{nextIterationPoint_X,nextIterationPoint_Y}); 

     
    % Find derivative of the function with respect to h 
    derF = diff(updateFuncVal,h); 

     
    % Find the root 
    solvedH = solve(derF,h); 

     
    [rowsResults columnsResults] = size(resultsMemory); 
    if(derF ~= 0) 
        for scanH= 1:1:length(solvedH) 
            if double(imag(solvedH(scanH))) == 0 
                hFinal = real(solvedH(scanH)); 
            end 
        end 
        nextIterationPoint(1) = nextIterationPoint(1) + hFinal*derX; 
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        nextIterationPoint(2) = nextIterationPoint(2) + hFinal*derY; 

         
    else 
        if i ~= 1 
            % Scan through the matrix if a value has been replaced, 

else 
            % just store it in the matrix 
            if (zeroReplaced == 1) 
                for scanResults = 1:1:rowsResults 
                    if (resultsMemory(scanResults,1)== 

nextIterationPoint(1)) 
                        if (resultsMemory(scanResults,2)== 

nextIterationPoint(2)) 
                            matchFound = 1; 
                            break; 
                        else 
                            matchFound = 0; 
                        end 
                    else 
                        matchFound = 0; 
                    end 
                    if (scanResults == rowsResults) 
                        if matchFound == 0 
                            intermediateResult(1,1) = 

nextIterationPoint(1); 
                            intermediateResult(1,2) = 

nextIterationPoint(2); 
                            intermediateResult(1,3) = computeFuncVal; 
                            resultsMemory = 

[resultsMemory;intermediateResult]; 
                        end 
                    end 
                end 
            else 
                resultsMemory(1,1) = nextIterationPoint(1); 
                resultsMemory(1,2) = nextIterationPoint(2); 
                resultsMemory(1,3) = computeFuncVal; 
                zeroReplaced = 1; 
            end 
            nextIterationPoint = RandomMove(nextIterationPoint); 
        end 
    end 

     
    if i == iterationLimit 
        elapsedTime = toc (totalFunctionTime_2); 
        for scanResultsMatrix = 1:1:rowsResults 
            if scanResultsMatrix == 1 
                reportResults(1,1) = resultsMemory(1,1); 
                reportResults(1,2) = resultsMemory(1,2); 
                reportResults(1,3) = computeFuncVal; 
                reportResults(1,4) = iterationLimit; 
            else 
                if (resultsMemory(scanResultsMatrix,3) < 

reportResults(1,3)) 
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                    reportResults(1,1) = 

resultsMemory(scanResultsMatrix,1); 
                    reportResults(1,2) = 

resultsMemory(scanResultsMatrix,2); 
                    reportResults(1,3) = 

resultsMemory(scanResultsMatrix,3); 
                    reportResults(1,4) = iterationLimit; 
                end 
            end 
        end 
    end 
end 
reportResults(1,5) = elapsedTime; 
%% Plotting the results 
set([fig3],'handlevisibility','on'); 
set(0,'CurrentFigure',fig3); 
subplot(2,1,1);plot(pointsUpdate) 
title('New Points') 
subplot(2,1,2); plot(fValUpdate) 
title('Function Value') 

  
%% Reporting the results on the figure 
Results {1,1} = strcat ('Solution for x: 

',num2str(nextIterationPoint(1))); 
Results {1,2} = strcat ('Solution for y: 

',num2str(nextIterationPoint(2))); 
Results {1,3} = strcat ('Current cost: ',num2str(computeFuncVal)); 
Results {1,4} = strcat ('Local Minima: ',num2str(resultsMemory)); 
Results {1,5} = strcat ('Current minimum: 

',num2str(intermediateResult)); 
set(hList3,'String',Results);  % Displays 5 lines, one result per line 
end 

 

Random Restart Hill Climbing algorithm implementation in MATLAB (for function of three 

variables): 

%%%%%%%%%%%%%%% Rohit A. Bhatia %%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%% EE 5991 Algorithm - 3 %%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%% Random Restart Hill Climbing %%%%%%%%%%%%%% 

  
function [reportResults] = 

randomRestartHillClimbing_3var_rev1(testFunction,initialGuess) 
reportResults = ones(1,6); 
syms x y z a b c h; %symbols for calculating derivative etc. 
nextIterationPoint = initialGuess; 
internalFunctionUpdate = testFunction; 
fValUpdate = []; 
pointsUpdate = []; 
resultsMemory = zeros(1,4); 
intermediateResult = zeros(1,4); % For concatenating results to form 

the results matrix 
zeroReplaced = 0; 
matchFound = 0; 
iterationLimit = 1000; 
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Results = []; 
% To generate random moves / preturb algorithm when "stuck" at a local 
% minima 
RandomMove = 

@(param)(param+(randperm(length(param))==length(param))*randn*5);%,... 

  
fig3 = figure; 
set([fig3],'handlevisibility','on'); 
set(0,'CurrentFigure',fig3); 
set(fig3,'name','RANDOM - RESTART HILL CLIMBING 

ALGORITHM','numbertitle','off') 
hList3 = uicontrol(fig3,'Style','text','Position',[5 350 150 200]); 

  
% time / performance calculation 
totalFunctionTime_2  = tic; 

  
% RRGD code: 
for i=1:1:iterationLimit 
    computeFuncVal = subs(testFunction, {x,y,z}, 

{nextIterationPoint(1),nextIterationPoint(2),nextIterationPoint(3)}); 
    if i == 1 
        minFuncVal = computeFuncVal 
    end 
    fValUpdate = [fValUpdate;computeFuncVal]; 
    pointsUpdate = [pointsUpdate;nextIterationPoint]; 
    % Compute partial derivates (symbolic) 
    derX_symb = diff(internalFunctionUpdate,x); 
    derY_symb = diff(internalFunctionUpdate,y); 
    derZ_symb = diff(internalFunctionUpdate,z); 

     
    % Substitute derivative with current coordinates to calculate 

partial 
    % derivatives 
    derX = 

subs(derX_symb,{x,y,z},{nextIterationPoint(1),nextIterationPoint(2),ne

xtIterationPoint(3)}); 
    derY = 

subs(derY_symb,{x,y,z},{nextIterationPoint(1),nextIterationPoint(2),ne

xtIterationPoint(3)}); 
    derZ = 

subs(derZ_symb,{x,y,z},{nextIterationPoint(1),nextIterationPoint(2),ne

xtIterationPoint(3)}); 

     
    % Determine next coordinates based on current coordinates and h 
    % (symbolic) 
    nextIterationPoint_X = sym(nextIterationPoint(1) + h*derX); 
    nextIterationPoint_Y = sym(nextIterationPoint(2) + h*derY); 
    nextIterationPoint_Z = sym(nextIterationPoint(3) + h*derZ); 

     
    % Determine function value in terms of h alone, not x and / or y 
    updateFuncVal = subs(internalFunctionUpdate, {x,y,z}, 

{nextIterationPoint_X,nextIterationPoint_Y,nextIterationPoint_Z}); 

     
    % Find derivative of the function with respect to h 
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    derF = diff(updateFuncVal,h); 

     
    % Find the root 
    solvedH = solve(derF,h); 

     
    [rowsResults columnsResults] = size(resultsMemory); 
    if(derF ~= 0) 
        for scanH= 1:1:length(solvedH) 
            if double(imag(solvedH(scanH))) == 0 
                hFinal = real(solvedH(scanH)); 
            end 
        end 
        nextIterationPoint(1) = nextIterationPoint(1) + hFinal*derX; 
        nextIterationPoint(2) = nextIterationPoint(2) + hFinal*derY; 
        nextIterationPoint(3) = nextIterationPoint(3) + hFinal*derZ; 
    else 
        if i ~= 1 

             
            % Scan through the matrix if a value has been replaced, 

else 
            % just store it in the matrix 
            if (zeroReplaced == 1) 
                for scanResults = 1:1:rowsResults 
                    if (resultsMemory(scanResults,1)== 

nextIterationPoint(1)) 
                        if (resultsMemory(scanResults,2)== 

nextIterationPoint(2)) 
                            if (resultsMemory(scanResults,3)== 

nextIterationPoint(3)) 
                                matchFound = 1; 
                                break; 
                            else 
                                matchFound = 0; 
                            end 
                        else 
                            matchFound = 0; 
                        end 
                    else 
                        matchFound = 0; 
                    end 
                    if (scanResults == rowsResults) 
                        if matchFound == 0 
                            intermediateResult(1,1) = 

nextIterationPoint(1); 
                            intermediateResult(1,2) = 

nextIterationPoint(2); 
                            intermediateResult(1,3) = 

nextIterationPoint(3); 
                            intermediateResult(1,4) = computeFuncVal; 
                            resultsMemory = 

[resultsMemory;intermediateResult]; 
                        end 
                    end 
                end 
            else 
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                resultsMemory(1,1) = nextIterationPoint(1); 
                resultsMemory(1,2) = nextIterationPoint(2); 
                resultsMemory(1,3) = nextIterationPoint(3); 
                resultsMemory(1,4) = computeFuncVal; 
                zeroReplaced = 1; 
            end 
            nextIterationPoint = RandomMove(nextIterationPoint); 
        end 
    end 

     
    if i == iterationLimit 
        elapsedTime = toc (totalFunctionTime_2); 
        for scanResultsMatrix = 1:1:rowsResults 
            if scanResultsMatrix == 1 
                reportResults(1,1) = resultsMemory(1,1); 
                reportResults(1,2) = resultsMemory(1,2); 
                reportResults(1,3) = resultsMemory(1,3); 
                reportResults(1,4) = computeFuncVal; 
                reportResults(1,5) = iterationLimit; 
            else 
                if (resultsMemory(scanResultsMatrix,4) < 

reportResults(1,4)) 
                    reportResults(1,1) = 

resultsMemory(scanResultsMatrix,1); 
                    reportResults(1,2) = 

resultsMemory(scanResultsMatrix,2); 
                    reportResults(1,3) = 

resultsMemory(scanResultsMatrix,3); 
                    reportResults(1,4) = 

resultsMemory(scanResultsMatrix,4); 
                    reportResults(1,5) = iterationLimit; 

                     
                end 
            end 
        end 
    end 
end 
reportResults(1,6) = elapsedTime; 
%% Plotting the results 
set([fig3],'handlevisibility','on'); 
set(0,'CurrentFigure',fig3); 
subplot(2,1,1);plot(pointsUpdate) 
title('New Points') 
subplot(2,1,2); plot(fValUpdate) 
title('Function Value') 

  
%% Reporting the results on the figure 
Results {1,1} = strcat ('Solution for x: 

',num2str(nextIterationPoint(1))); 
Results {1,2} = strcat ('Solution for y: 

',num2str(nextIterationPoint(2))); 
Results {1,3} = strcat ('Solution for z: 

',num2str(nextIterationPoint(3))); 
Results {1,4} = strcat ('Current Wire Length: 

',num2str(computeFuncVal)); 
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Results {1,5} = strcat ('Local Minima: ',num2str(resultsMemory)); 
Results {1,6} = strcat ('Current minimum: 

',num2str(intermediateResult)); 
set(hList3,'String',Results);  % Displays 5 lines, one result per line 
end 

 

Random Restart Hill Climbing algorithm implementation in MATLAB (for function of four 

variables): 

%%%%%%%%%%%%%%% Rohit A. Bhatia %%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%% EE 5991 Algorithm - 3 %%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%% Random Restart Hill Climbing %%%%%%%%%%%%%% 

  
function [reportResults] = 

randomRestartHillClimbing_4var_rev1(testFunction,initialGuess) 
reportResults = ones(1,7); 
syms w x y z a b c d h; %symbols for calculating derivative etc. 
nextIterationPoint = initialGuess; 
internalFunctionUpdate = testFunction; 
fValUpdate = []; 
pointsUpdate = []; 
resultsMemory = zeros(1,5); 
intermediateResult = zeros(1,5); % For concatenating results to form 

the results matrix 
zeroReplaced = 0; 
matchFound = 0; 
iterationLimit = 1000; 
Results = []; 
% To generate random moves / preturb algorithm when "stuck" at a local 
% minima 
RandomMove = 

@(param)(param+(randperm(length(param))==length(param))*randn*5);%,... 

  
fig3 = figure; 
set([fig3],'handlevisibility','on'); 
set(0,'CurrentFigure',fig3); 
set(fig3,'name','RANDOM - RESTART HILL CLIMBING 

ALGORITHM','numbertitle','off') 
hList3 = uicontrol(fig3,'Style','text','Position',[5 350 150 200]); 

  
% time / performance calculation 
totalFunctionTime_2  = tic; 

  
% RRGD code: 
for i=1:1:iterationLimit 
    computeFuncVal = subs(testFunction, {w, x,y,z}, 

{nextIterationPoint(1),nextIterationPoint(2),nextIterationPoint(3),nex

tIterationPoint(4)}); 
    if i == 1 
        minFuncVal = computeFuncVal 
    end 
    fValUpdate = [fValUpdate;computeFuncVal]; 
    pointsUpdate = [pointsUpdate;nextIterationPoint]; 
    % Compute partial derivates (symbolic) 
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    derW_symb = diff(internalFunctionUpdate,w); 
    derX_symb = diff(internalFunctionUpdate,x); 
    derY_symb = diff(internalFunctionUpdate,y); 
    derZ_symb = diff(internalFunctionUpdate,z); 

     
    % Substitute derivative with current coordinates to calculate 

partial 
    % derivatives 
    derW = 

subs(derW_symb,{w,x,y,z},{nextIterationPoint(1),nextIterationPoint(2),

nextIterationPoint(3),nextIterationPoint(4)}); 
    derX = 

subs(derX_symb,{w,x,y,z},{nextIterationPoint(1),nextIterationPoint(2),

nextIterationPoint(3),nextIterationPoint(4)}); 
    derY = 

subs(derY_symb,{w,x,y,z},{nextIterationPoint(1),nextIterationPoint(2),

nextIterationPoint(3),nextIterationPoint(4)}); 
    derZ = 

subs(derZ_symb,{w,x,y,z},{nextIterationPoint(1),nextIterationPoint(2),

nextIterationPoint(3),nextIterationPoint(4)}); 

     
    % Determine next coordinates based on current coordinates and h 
    % (symbolic) 
    nextIterationPoint_W = sym(nextIterationPoint(1) + h*derW); 
    nextIterationPoint_X = sym(nextIterationPoint(2) + h*derX); 
    nextIterationPoint_Y = sym(nextIterationPoint(3) + h*derY); 
    nextIterationPoint_Z = sym(nextIterationPoint(4) + h*derZ); 

     
    % Determine function value in terms of h alone, not x and / or y 
    updateFuncVal = subs(internalFunctionUpdate, {w,x,y,z}, 

{nextIterationPoint_W,nextIterationPoint_X,nextIterationPoint_Y,nextIt

erationPoint_Z}); 

     
    % Find derivative of the function with respect to h 
    derF = diff(updateFuncVal,h); 

     
    % Find the root 
    solvedH = solve(derF,h); 

     
    [rowsResults columnsResults] = size(resultsMemory); 
    if(derF ~= 0) 
        for scanH= 1:1:length(solvedH) 
            if double(imag(solvedH(scanH))) == 0 
                hFinal = real(solvedH(scanH)); 
            end 
        end 
        nextIterationPoint(1) = nextIterationPoint(1) + hFinal*derW; 
        nextIterationPoint(2) = nextIterationPoint(2) + hFinal*derX; 
        nextIterationPoint(3) = nextIterationPoint(3) + hFinal*derY; 
        nextIterationPoint(4) = nextIterationPoint(4) + hFinal*derZ; 
    else 
        if i ~= 1 
            % Scan through the matrix if a value has been replaced, 

else 
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            % just store it in the matrix 
            if (zeroReplaced == 1) 
                for scanResults = 1:1:rowsResults 
                    if (resultsMemory(scanResults,1)== 

nextIterationPoint(1)) 
                        if (resultsMemory(scanResults,2)== 

nextIterationPoint(2)) 
                            if (resultsMemory(scanResults,3)== 

nextIterationPoint(3)) 
                                if (resultsMemory(scanResults,4)== 

nextIterationPoint(4)) 
                                    matchFound = 1; 
                                    break; 
                                else 
                                    matchFound = 0; 
                                end 
                            else 
                                matchFound = 0; 
                            end 
                        else 
                            matchFound = 0; 
                        end 
                    else 
                        matchFound = 0; 
                    end 
                    if (scanResults == rowsResults) 
                        if matchFound == 0 
                            intermediateResult(1,1) = 

nextIterationPoint(1); 
                            intermediateResult(1,2) = 

nextIterationPoint(2); 
                            intermediateResult(1,3) = 

nextIterationPoint(3); 
                            intermediateResult(1,4) = 

nextIterationPoint(4); 
                            intermediateResult(1,5) = computeFuncVal; 
                            resultsMemory = 

[resultsMemory;intermediateResult]; 
                        end 
                    end 
                end 
            else 
                resultsMemory(1,1) = nextIterationPoint(1); 
                resultsMemory(1,2) = nextIterationPoint(2); 
                resultsMemory(1,3) = nextIterationPoint(3); 
                resultsMemory(1,4) = nextIterationPoint(4); 
                resultsMemory(1,5) = computeFuncVal; 
                zeroReplaced = 1; 
            end 
            nextIterationPoint = RandomMove(nextIterationPoint); 
        end 
    end 

     
    if i == iterationLimit 
        elapsedTime = toc (totalFunctionTime_2); 
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        for scanResultsMatrix = 1:1:rowsResults 
            if scanResultsMatrix == 1 
                reportResults(1,1) = resultsMemory(1,1); 
                reportResults(1,2) = resultsMemory(1,2); 
                reportResults(1,3) = resultsMemory(1,3); 
                reportResults(1,4) = resultsMemory(1,4); 
                reportResults(1,5) = computeFuncVal; 
                reportResults(1,6) = iterationLimit; 
            else 
                if (resultsMemory(scanResultsMatrix,5) < 

reportResults(1,5)) 
                    reportResults(1,1) = 

resultsMemory(scanResultsMatrix,1); 
                    reportResults(1,2) = 

resultsMemory(scanResultsMatrix,2); 
                    reportResults(1,3) = 

resultsMemory(scanResultsMatrix,3); 
                    reportResults(1,4) = 

resultsMemory(scanResultsMatrix,4); 
                    reportResults(1,5) = 

resultsMemory(scanResultsMatrix,5); 
                    reportResults(1,6) = iterationLimit; 
                end 
            end 
        end 
    end 
end 
reportResults(1,7) = elapsedTime; 
%% Plotting the results 
set([fig3],'handlevisibility','on'); 
set(0,'CurrentFigure',fig3); 
subplot(2,1,1);plot(pointsUpdate) 
title('New Points') 
subplot(2,1,2); plot(fValUpdate) 
title('Function Value') 

  
%% Reporting the results on the figure 
Results {1,1} = strcat ('Solution for w: 

',num2str(nextIterationPoint(1))); 
Results {1,2} = strcat ('Solution for x: 

',num2str(nextIterationPoint(2))); 
Results {1,3} = strcat ('Solution for y: 

',num2str(nextIterationPoint(3))); 
Results {1,4} = strcat ('Solution for z: 

',num2str(nextIterationPoint(4))); 
Results {1,5} = strcat ('Current Wire Length: 

',num2str(computeFuncVal)); 
Results {1,6} = strcat ('Local Minima: ',num2str(resultsMemory)); 
Results {1,7} = strcat ('Current minimum: 

',num2str(intermediateResult)); 
set(hList3,'String',Results);  % Displays 5 lines, one result per line 
end 
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Performance comparison in MATLAB: 

function [compPlotGenerated, plotTime] = 

PerformaceComparision(inputTable, comparisonLimit) 

  
fig4 = figure; 
set(fig4,'name','Performance Comparison','numbertitle','off') 

  
%% Performance Comparison 
plotTime = []; 
addToMatrix = []; 
for iterationCount = 1:1:comparisonLimit 
    set([fig4],'handlevisibility','on'); 
    set(0,'CurrentFigure',fig4); 
    addToMatrix(1,1) = inputTable(iterationCount,5); 
    addToMatrix(1,2) = inputTable(iterationCount,10); 
    addToMatrix(1,3) = inputTable(iterationCount,15); 
    if (iterationCount == 1) 
        plotTime = addToMatrix; 
        plotTime = [plotTime;plotTime]; 
    else 
        plotTime = [plotTime;addToMatrix]; 
    end 
end 

  
plot (plotTime); 
xlabel('Trial Count'); 
ylabel('Computation time (seconds)'); 
hold on; 
for markPointCount = 1:1:comparisonLimit 
    plot (markPointCount+1,plotTime(markPointCount+1,1),'Xb'); 
    hold on; 
    plot (markPointCount+1,plotTime(markPointCount+1,2),'Xg'); 
    hold on; 
    plot (markPointCount+1,plotTime(markPointCount+1,3),'Xr'); 
    hold on; 
end 

  
legend_1 = legend('Simulated Annealing','Adaptive Simulated 

Annealing','Random Restart Hill Climbing'); 
compPlotGenerated = 1; 
return 
end 

 

Report generation in MATLAB: 

 
function [reportGenerated] = 

ReportOnTable(inputGlobalTable,inputTimeTable,comparisonLimit) 

  
fig5 = figure; 
set(fig5,'name','Report','numbertitle','off','Position',[50 213 1266 

300 ]) 
% Framework for reporting results: 
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specificAlgoResult = zeros(3,5); 
inputTimeTableCorrected = inputTimeTable; 
inputTimeTableCorrected(1,:)=[]; 
alg1TimeTotal = 0; 
alg2TimeTotal = 0; 
alg3TimeTotal = 0; 
% SA performance tables 
xCordTotalSA = 0; 
yCordTotalSA = 0; 
fValTotalSA = 0; 
xCordAvgSA = 0; 
yCordAvgSA = 0; 
fValAvgSA = 0; 
xCordTableSA = []; 
yCordTableSA = []; 
fValTableSA = []; 
completeTableSA = []; 
% ASA performance tables 
xCordTotalASA = 0; 
yCordTotalASA = 0; 
fValTotalASA = 0; 
xCordAvgASA = 0; 
yCordAvgASA = 0; 
fValAvgASA = 0; 
xCordTableASA = []; 
yCordTableASA = []; 
fValTableASA = []; 
% RRHC performance tables 
xCordTotalHC = 0; 
yCordTotalHC = 0; 
fValTotalHC = 0; 
xCordAvgHC = 0; 
yCordAvgHC = 0; 
fValAvgHC = 0; 
xCordTableHC = []; 
yCordTableHC = []; 
fValTableHC = []; 
rnamesT2_3_4 = []; 

  

  
for algoScan = 1:1:15 
    if algoScan <= 5 
        specificAlgoResult(1,algoScan) = inputGlobalTable 

(1,algoScan); 
    else 
        if algoScan <= 10 
            specificAlgoResult(2,algoScan-5) = inputGlobalTable 

(1,algoScan); 
        else 
            specificAlgoResult(3,algoScan-10) = inputGlobalTable 

(1,algoScan); 
        end 
    end 
end 
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%Table 
for forrnamesT2_3_4 = 1:1:comparisonLimit 
    if forrnamesT2_3_4 < 10 
        rnamesT2_3_4 = [rnamesT2_3_4;strcat({'Trial '},{' 

'},num2str(forrnamesT2_3_4))]; 
    else 
        rnamesT2_3_4 = [rnamesT2_3_4;strcat({'Trial 

'},num2str(forrnamesT2_3_4))]; 
    end 
    if forrnamesT2_3_4 == comparisonLimit 
        rnamesT2_3_4 = [rnamesT2_3_4;strcat('Average',{' '})]; 
    end 
end 

  
for averageTime = 1:1:comparisonLimit 
    alg1TimeTotal = alg1TimeTotal + 

inputTimeTableCorrected(averageTime,1); 
    alg2TimeTotal = alg2TimeTotal + 

inputTimeTableCorrected(averageTime,2); 
    alg3TimeTotal = alg3TimeTotal + 

inputTimeTableCorrected(averageTime,3); 
end 
avgTime1 = alg1TimeTotal / comparisonLimit; 
avgTime2 = alg2TimeTotal / comparisonLimit; 
avgTime3 = alg3TimeTotal / comparisonLimit; 

  
addAverageRow = [avgTime1 avgTime2 avgTime3]; 

  
for positioningTable = 1:1:comparisonLimit 
    % form SA table 
    xCordTableSA = 

[xCordTableSA;inputGlobalTable(positioningTable,1)]; 
    xCordTotalSA = xCordTotalSA + 

inputGlobalTable(positioningTable,1); 
    yCordTableSA = 

[yCordTableSA;inputGlobalTable(positioningTable,2)]; 
    yCordTotalSA = yCordTotalSA + 

inputGlobalTable(positioningTable,2); 
    fValTableSA = [fValTableSA;inputGlobalTable(positioningTable,3)]; 
    fValTotalSA = fValTotalSA+ inputGlobalTable(positioningTable,3); 
    % form ASA table 
    xCordTableASA = 

[xCordTableASA;inputGlobalTable(positioningTable,6)]; 
    xCordTotalASA = xCordTotalASA + 

inputGlobalTable(positioningTable,6); 
    yCordTableASA = 

[yCordTableASA;inputGlobalTable(positioningTable,7)]; 
    yCordTotalASA = yCordTotalASA + 

inputGlobalTable(positioningTable,7); 
    fValTableASA = 

[fValTableASA;inputGlobalTable(positioningTable,8)]; 
    fValTotalASA = fValTotalASA+ inputGlobalTable(positioningTable,8); 
    % form RRHC table 
    xCordTableHC = 

[xCordTableHC;inputGlobalTable(positioningTable,11)]; 
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    xCordTotalHC = xCordTotalHC + 

inputGlobalTable(positioningTable,11); 
    yCordTableHC = 

[yCordTableHC;inputGlobalTable(positioningTable,12)]; 
    yCordTotalHC = yCordTotalHC + 

inputGlobalTable(positioningTable,12); 
    fValTableHC = [fValTableHC;inputGlobalTable(positioningTable,13)]; 
    fValTotalHC = fValTotalHC+ inputGlobalTable(positioningTable,13); 

     
    if positioningTable == comparisonLimit 
        % form complete SA results table 
        xCordAvgSA = xCordTotalSA / comparisonLimit; 
        yCordAvgSA = yCordTotalSA / comparisonLimit; 
        fValAvgSA = fValTotalSA / comparisonLimit; 
        xCordTableSA = [xCordTableSA;xCordAvgSA]; 
        yCordTableSA = [yCordTableSA;yCordAvgSA]; 
        fValTableSA = [fValTableSA ;fValAvgSA]; 
        completeTableSA = horzcat(xCordTableSA, yCordTableSA, 

fValTableSA); 
        % form complete ASA results table 
        xCordAvgASA = xCordTotalASA / comparisonLimit; 
        yCordAvgASA = yCordTotalASA / comparisonLimit; 
        fValAvgASA = fValTotalASA / comparisonLimit; 
        xCordTableASA = [xCordTableASA;xCordAvgASA]; 
        yCordTableASA = [yCordTableASA;yCordAvgASA]; 
        fValTableASA = [fValTableASA ;fValAvgASA]; 
        completeTableASA = horzcat(xCordTableASA, yCordTableASA, 

fValTableASA); 
        % form complete RRHC results table 
        xCordAvgHC = xCordTotalHC / comparisonLimit; 
        yCordAvgHC = yCordTotalHC / comparisonLimit; 
        fValAvgHC = fValTotalHC / comparisonLimit; 
        xCordTableHC = [xCordTableHC;xCordAvgHC]; 
        yCordTableHC = [yCordTableHC;yCordAvgHC]; 
        fValTableHC = [fValTableHC ;fValAvgHC]; 
        completeTableHC = horzcat(xCordTableHC, yCordTableHC, 

fValTableHC); 
    end 
end 
cnamesT1_2_3 = {'X-coordinate','Y-coordinate','Minimum Wire Length'}; 
rnamesT1 = {'Simulated Annealing','Adaptive Simulated 

Annealing','Random-Restart Gradient Descent'}; 
cnamesT2 = {'Simulated Annealing','Adaptive Simulated 

Annealing','Random-Restart Gradient Descent'}; 
dipslayTimeData = [inputTimeTableCorrected;addAverageRow]; 

  
height_T1_2_3 = 18*comparisonLimit +40; 
t4height = 18*comparisonLimit +40; 
YoffsetT1_2_3 = 768 / 2; 
t4Yoffset = YoffsetT1_2_3 - (t4height + 30); 

  

  
t1 = 

uitable('Parent',fig5,'Data',completeTableSA,'ColumnName',cnamesT1_2_3

,... 
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    'RowName',rnamesT2_3_4,'Position',[131 YoffsetT1_2_3 365 

height_T1_2_3]); 
t2 = 

uitable('Parent',fig5,'Data',completeTableASA,'ColumnName',cnamesT1_2_

3,... 
    'RowName',rnamesT2_3_4,'Position',[501 YoffsetT1_2_3 365 

height_T1_2_3]); 
t3 = 

uitable('Parent',fig5,'Data',completeTableHC,'ColumnName',cnamesT1_2_3

,... 
    'RowName',rnamesT2_3_4,'Position',[871 YoffsetT1_2_3 365 

height_T1_2_3]); 
t4 = 

uitable('Parent',fig5,'Data',dipslayTimeData,'ColumnName',cnamesT2,... 
    'RowName',rnamesT2_3_4,'Position',[393 t4Yoffset 555 t4height]); 

  
% Table Titles 
headingYOffset_1_2_3 = YoffsetT1_2_3 + height_T1_2_3 + 5; 
headingYOffset_4 = t4Yoffset + t4height + 5; 
uicontrol('Style','text','Position',[131 headingYOffset_1_2_3 300 

15],'String','X and Y coordinates and wire length for SA algorithm'); 
uicontrol('Style','text','Position',[501 headingYOffset_1_2_3 300 

15],'String','X and Y coordinates and wire length for ASA algorithm'); 
uicontrol('Style','text','Position',[871 headingYOffset_1_2_3 300 

15],'String','X and Y coordinates and wire length for RRHC 

algorithm'); 
uicontrol('Style','text','Position',[393 headingYOffset_4 300 

15],'String','Algorithm compuation time (seconds)'); 
reportGenerated = 1; 
return 
end 
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