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Abstract

In 1970 Clark Benson published a theorem in the Journal of Algebra stating a congruence

for generalized quadrangles. Since then this theorem has been expanded to other specific

geometries. In this thesis the theorem for partial geometries is extended to develop new

divisibility conditions for the existence of a partial geometry in Chapter 2. Then in Chapter

3 the theorem is applied to higher dimensional arcs resulting in parameter restrictions on

geometries derived from these structures. In Chapter 4 we look at extending previous

work with partial geometries with α = 2 to uncover potential partial geometries with

higher values of α . Finally the theorem is extended to strongly regular graphs in Chapter

5. In addition we obtain expressions for the multiplicities of the eigenvalues of matrices

related to the adjacency matrices of these graphs. Finally, a four lesson high school level

enrichment unit is included to provide students at this level with an introduction to partial

geometries, strongly regular graphs, and an opportunity to develop proof skills in this new

context.
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Chapter 1

Introduction

In the most general sense, geometry is the branch of mathematics dealing with properties

and relationships between points, lines, and figures in space according to a specific set of

assumptions. In school, the geometry studied is generally that of Euclid, where there are

infinitely many points on each line, and infinitely many lines. This geometry rests on five

assumptions or postulates.

• Any two points define a line segment.

• Any line segment can be extended indefinitely to be a line.

• Given any line segment a circle can be constructed having the segment as its radius

and one endpoint as its center.

• All right angles are congruent.
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• If two lines intersect a third so that the sum of the interior angles on one side is less

than two right angles, then the original two lines intersect each other on that side.

However, it is possible to change the basic assumptions, and limit the system to a finite

number of points and lines. Geometries consisting of sets of objects referred to as points

and lines along with an incidence relation between them are called point line geometries.

It is sometimes possible to create a visual representation of a point line geometry showing

all of the points and lines in their proper relationship to each other. However as the

number of points increases, such a representation becomes increasingly complex. Another

visualization tool that may be helpful is a point graph. In this context a graph is a

collection of vertices and edges. In a point graph associated with a geometry each vertex

represents a point in the geometry. The edges of the graph indicate collinearity. That is,

the edges of the graph connect points that are incident to the same line, or collinear. When

there are only two points on each line, the point graph and the visual representation of the

geometry are identical. However, when there are more points on each line, the graph and

visual representation are not the same. Figure 1.1 shows the visual representation of a

geometry on the left and its associated point graph on the right. Note that each line in the

geometry becomes a triangle in the graph.

The relationships in the graph can be summarized in an adjacency matrix. This is an n×n

matrix A, where ai j = 1 if points i and j are collinear and 0 otherwise. Closely related to

this is an n×m incidence matrix, D, where ai j = 1 if the ith point is incident with the jth

2
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1
2

3

F

ED

C

D E

F
C

A

B B

A

Figure 1.1: The visual representation of a geometry with 6 points and 4

lines and its accompanying graph

line. Using these matrices allows us to make use of linear algebra techniques to further

explore the geometry. The incidence matrix and adjacency matrix for the geometry and

point graph in Figure 1.1 are shown in Figure 1.2.

1 2 3 4 A B C D E F
A
B
C
D
E
F

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 0 0

1 0 1 0

0 1 1 0

1 0 0 1

0 1 0 1

0 0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎦

A
B
C
D
E
F

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 1 1 1 0

1 0 1 1 0 1

1 1 0 0 1 1

1 1 0 0 1 1

1 0 1 1 0 1

0 1 1 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

Figure 1.2: The incidence matrix for the geometry and the adjacency matrix

for the graph.

Another technique for studying the structure of a particular geometry is to examine the

actions of automorphisms on the points of the geometry. In the context of a geometry, an

automorphism is a mapping that permutes the points and lines while preserving incidence.

In general, automorphisms may permute all of the points or leave some points fixed.
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1.1 Partial Geometries and Strongly Regular Graphs

Partial geometries were introduced by R.C. Bose in a paper published in the Pacific Journal

of Mathematics in 1963[4]. In this paper he not only defined the concept and gave some

examples, but also related them to strongly regular graphs and partially balanced designs.

In this thesis we will look at the parameters defining a partial geometry and present some

conditions for their existence. Partial geometries are a type of point line geometry, a triple

(P,L, I), where P and L are disjoint sets referred to as points and lines, respectively, and I

is an incidence relation indicating when a point is on, or incident to, a line. There are four

axioms that define a partial geometry:

• Any two points are incident with at most one line.

The remaining three axioms define the three parameters, s, t, and α , that specify the

relationships between the numbers of points and lines. The geometry is then referred to

as a pg(s, t,α).

• There are s+1 points on each line.

• There are t +1 lines incident with every point.

• Given a point, x, and a line, L, which are not incident, there are α lines incident with

x that are also incident with points on L.

4



L

x

Figure 1.3: α = 4

Examples of partial geometries can be found in some simple shapes. Consider the following

simple examples:

pg(2, 2, 2)pg(2, 1, 1)pg(1, 1, 2)pg(1, 1, 1)

Figure 1.4: Some simple partial geometries.

When the parameters become larger, the visual representation of the geometry often

becomes more complex. In some cases “lines" must be drawn as curves in order to satisfy

the parameters. A classic example of this is a pg(2,2,1) which is called a generalized

quadrangle. It is shown in Figure 1.5 along with its accompanying point graph.

In this geometry, each of the colored arcs is a line. There are a total of 15 points and 15

lines in this partial geometry. In the graph, each geometry line becomes a triangle and there

are 15 of these colored triangles in the graph. In general, partial geometries with α = 1 are

5



srg(15, 6, 1, 3)pg(2, 2, 1)

Figure 1.5: The generalized quadrangle and its point graph.

called generalized quadrangles. This generalized quadrangle is the first of the examples

presented that is classified as a proper partial geometry. That is, a partial geometry with

α < min(s, t). The latter portions of this paper will deal with proper partial geometries, but

first we present another example of a non-proper partial geometry.

An n×n array may be filled as follows. The main diagonal is empty. The upper triangular

portion is filled with consecutive integers. The lower triangular portion is then the reflection

of the upper across the empty diagonal. Each row of the array is considered a line, while

the integers are considered as points. Thus each line has n−1 points, and each point occurs

on exactly 2 lines. Choosing any point and a line that does not contain it, there are always

two points that are collinear with the chosen point. For example, in the array below, 7 is not

on the first line, but 7 and 1 are collinear as are 7 and 4. Geometries created in this fashion

have parameters (n− 1,1,2) (see e.g. [4]). A visual representation of this geometry and

the associated point graph are also shown for comparison with the array.

Creating a visual representation of an entire partial geometry becomes more difficult as the

parameters increase. However, the point graph of a partial geometry is always a strongly

6
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3
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10
98
765
4321

3

4

5

6

78

10

9

1

10

9

85

1

4

2

7

2

3

6

Figure 1.6: An array, its geometry and the associated point graph.

regular graph. Such a graph is described by four parameters: v,k,λ , and μ and is denoted

as srg(v,k,λ ,μ). The parameter v is the number of vertices in the graph, while k is the

degree of each vertex, or the valency of the graph. The parameter λ gives the number of

vertices that are jointly adjacent to any two adjacent vertices. Finally, μ is the number of

vertices that are jointly adjacent to any two nonadjacent vertices.

pg(2, 1, 2)pg(2, 1, 2)srg(6, 4, 2, 4)srg(5, 2, 0, 1)

D

E

B

F

D

ED C

B

D

E

A

C

B

F

A

E

A

C
F

B

C

A

Figure 1.7: Examples of strongly regular graphs and partial geometries.

The simple pentagon in Figure 1.7 is a strongly regular graph, but cannot be the visual

representation of a partial geometry. Interpreting it as a geometry there are two points on

each line and two lines incident with each point, but the α condition is not met and so this is

not a partial geometry. Consider point A and line DC. Neither point D or C is collinear with

A. But if we consider point A with line BC, there is one point, namely B, that is collinear

7



with A. The next graph above is called an octahedral graph. It is clearly a strongly regular

graph. There is more than one way to interpret this figure as a representation of a geometry.

If we consider the edges of the graph as lines, then there are two points on each line, four

lines through each point, but no constant value of α . Comparing point A with lines BC

and DF makes this clear. However, if we instead consider each of the colored triangles as

our lines, then each line has three points and each point is on two lines. Now there is a

constant α value of two. Point A is not on line CEF , but it is on lines ABC and ADE. So

this figure may also be interpreted as a visual representation of pg(2,1,2). Another visual

representation of this same geometry is shown on the far right. Here each line is indicated

by a unique color.

It is easy to verify that the point graphs of each of the partial geometries presented thus

far is strongly regular. In fact, many strongly regular graphs are known, but only a select

number of these are point graphs of partial geometries.

The relationship described in the following theorem can help to determine which, if any,

partial geometry may be associated with the strongly regular graph. This relationship is

frequently stated, but generally offered without proof [5] which is why we present a detailed

proof here.

Theorem 1 The point graph of a pg(s, t,α) is a

srg
(
(s+1)

(
st +α

α

)
,s(t +1),s−1+ t(α −1),α(t +1)

)
.

8



Proof. It is simplest to prove these relationships for a srg(v,k,λ ,μ) beginning with the

expression for k, followed by μ , then λ , and finally v. Throughout the proof let p1 be a

point collinear with a chosen point p and p2 be a point noncollinear with p. Also let P1 be

the number of points of type p1 for any given point p. Likewise, let P2 be the number of

points of type p2 for any given point p.

• The number, k, of vertices adjacent to any given vertex. The number of vertices

p1

t + 1 lines
s points

p

Figure 1.8: Determining the value of k.

adjacent to a given vertex is the number of points collinear with a given point p. There

are t+1 lines incident with each point and s points on each line that are collinear with

p. So there are s(t +1) points collinear with a given point. Hence there are s(t +1)

vertices adjacent to each vertex.

• The number, μ , of vertices commonly adjacent to two nonadjacent vertices. The

number of vertices commonly adjacent to two nonadjacent vertices is the same as

the number of points collinear with two noncollinear points. Let p and p2 be two

noncollinear points. There are t +1 lines through p2. None of them are incident with

p. On each one there are α points that are collinear with p. So there are a total of

9



p2

α

t + 1 lines

p

Figure 1.9: Determining the value of μ .

α(t + 1) points that are collinear with p and p2 and thus there are α(t + 1) vertices

that are commonly adjacent to two nonadjacent vertices.

• The number, λ , of vertices commonly adjacent to 2 adjacent vertices. The number

s - 1 points

α  - 1 points

t  lines

p

p1

Figure 1.10: Determining the value of λ .

of vertices commonly adjacent to 2 adjacent vertices is the same as the number of

points that are collinear with two given collinear points p and p1. Since each line

contains s+1 points, there are s−1 more points on the line containing p and p1 that

10



are collinear to both.

There are t lines through p1, omitting the line containing p and p1. Each of these

lines contains α points that are collinear with p. However p1 is on each of these

lines. So there are α − 1 points on each of the t lines that are collinear to the two

given collinear points. This makes a total of s− 1+ t(α − 1) vertices commonly

adjacent to 2 adjacent vertices.

• The number, v, of vertices.

The vertices of the point graph are the points of the geometry. Selecting any point

p, the remaining points are of two types; points, p1, that are collinear with p, and

points, p2, that are not collinear with p. We will count the pairs (p1, p2) where p1 is

collinear with p2 in two ways.

p1

t + 1 lines
s points

p

p1

s + 1 - α points

t  lines

s points

p

Figure 1.11: p1 : s(t +1) p2 : t(s+1−α) for each p1.

First, from the first part of the proof we know there are there are s(t + 1) possible

points p1. Then for each of these p1 points there are t lines that are not incident with

p. Each of these lines has α points that are collinear with p and s+ 1−α points

11



that are not. These s+1−α points are all possible points p2. So there are s+1−α

points, p2, on each of these t lines. Because two lines intersect in at most one point,

none of these points is double counted. Thus for each p1 there are t(s+1−α) points

p2. The total number of pairs of points (p1, p2) is s(t +1) · t(s+1−α).

For the second counting method we know from the second part of the proof that for

any point p2 there are α(t + 1) choices for p1. Thus the total number of pairs of

points (p1, p2) is α(t +1)P2, where P2 is the number of points of type p2. Equating

p

p2 p2

α

t + 1 lines

p

Figure 1.12: p2 : P2 p1 : α(t +1) for each p2.

the two counts and solving for P2 gives the following:

st(t +1)(s+1−α) = P2α(t +1)

P2 =
st(s+1−α)

α

The total number of points is now 1+P1 +P2 = 1+ s(t +1)+
st(s+1−α)

α

12



Simplifying, we get

1+ s(t +1)+
st(s+1−α)

α
=

α +αst +αs+ st(s+1)−αst
α

=
α(s+1)+ st(s+1)

α

= (s+1)
(α + st)

α

This proves the point graph of a pg(s, t,α) is strongly regular with parameters

srg
(
(s+1)

(
st +α

α

)
,s(t +1),s−1+ t(α −1),α(t +1)

)
. �

This relationship between strongly regular graphs and partial geometries enables us to

make use of information about the associated graph to further investigate the parameters

of the partial geometry. We will need some results concerning the adjacency matrix and

incidence matrix in the next chapter.

1.2 Properties of the adjacency matrix

For any graph, G of order n, the adjacency matrix is an n×n square matrix where each row

and column corresponds to a vertex of G. Let the vertices be denoted as v1,v2, . . . ,vn. The

entries, ai j, of this matrix are defined as ai j =

⎧⎪⎪⎨
⎪⎪⎩

1 if vi is adjacent to v j

0 otherwise

.

An incidence matrix for a finite point line geometry is an n × m matrix where n

is the number of points and m is the number of lines. Let the points be denoted

by x1,x2, . . . ,xn and the lines by l1, l2, . . . , lm. Each entry, ai j is defined as ai j =

13



⎧⎪⎪⎨
⎪⎪⎩

1 if xi is incident to l j

0 otherwise

. So the number of 1’s in a column is the number of points

incident to a line. As an example, consider the partial geometry pg(1,1,1), its incidence

matrix, and the adjacency matrix for the graph associated with this geometry.

4

1

3

2

a b

cd

a b c d
a
b
c
d

⎡
⎢⎢⎣

0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0

⎤
⎥⎥⎦

1 2 3 4

a
b
c
d

⎡
⎢⎢⎣

1 0 0 1

1 1 0 0

0 1 1 0

0 0 1 1

⎤
⎥⎥⎦

Figure 1.13: A geometry, its incidence matrix and the adjacency matrix for

the graph.

The first row of the adjacency matrix A shows that point a is collinear with points b and d.

The first row of the incidence matrix D shows that point a is incident with lines 1 and 4.

Note that while an adjacency matrix is always square, an incidence matrix is only square

if the number of points is equal to the number of lines. However, if the incidence matrix

is multiplied by its transpose, the product is square and symmetric. Using the incidence

matrix above as an example, we see the symmetric product in Figure 1.14.

  

DDT =

1 0 0 1
1 1 0 0
0 1 1 0
0 0 1 1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

1 1 0 0
0 1 1 0
0 0 1 1
1 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

2 1 0 1
1 2 1 0
0 1 2 1
1 0 1 2

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

Figure 1.14: The product of an incidence matrix and its transpose is

symmetric.

14



The entries in this resulting matrix are the dot products of the ith row of D and the jth

column of DT . Ones in the ith row of D represent lines incident to the ith point, while ones

in the jth column of DT represent lines that are incident to the jth point. When i �= j, this

product will either be one if the two points are incident to the same line, or zero if they are

not. The product cannot be more than one as this would mean the two points were incident

to more than one line. Therefore, the off-diagonal elements of DDT are either one or zero

and are copies of the corresponding entries in A. If i = j, the product gives the number

of lines incident to a single point. The product of the incidence matrix and its transpose

will be used in the proof of Theorem 4. We define this product formally as follows: Let

D be an m× n incidence matrix for a partial geometry. Then DDT
i j =

m
∑

i=1

n
∑
j=1

di jdT
ji. Also,

DDT
ii = t + 1,DDT

i j = ai j where ai j is the element of the adjacency matrix for the graph

associated with the partial geometry. Next we consider some properties of the adjacency

matrix beginning with a frequently stated equation involving the matrix and the parameters

of a strongly regular graph[5].

Lemma 2 The adjacency matrix of a strongly regular graph srg(v,k,λ ,μ) satisfies the

equations A2+(μ −λ )A+(μ −k)I = μJ and AJ = kJ where I is the identity matrix and J

is the all-1-matrix.

Proof. Let A be the n× n adjacency matrix for a strongly regular graph. Let ni j be the

i jth entry in the product matrix AJ. Then because J is the all-1-matrix, ni j is the number

of vertices adjacent to vertex i. Because the graph is regular, this value is constant and is

simply k. Thus AJ = kJ.
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Consider the matrix A2. Let a(2)i j represent the entry in row i and column j. Because A

is square and symmetric, this entry is the dot product of two vectors. Thus it sums the

number of vertices commonly adjacent to vertex i and vertex j. If i = j this is simply k. If

vertex i and vertex j are adjacent, then a(2)i j = λ . If they are not adjacent, a(2)i j = μ . This

same matrix can also be created by the following steps. First multiply λA. This replaces

all of the ones in A with λ which is the value we want in the final result. Next we add

μJ to replace the zeros with the desired value. However, we have added μ to everything,

so we subtract μA to remove this additional count from the entries representing adjacent

vertices and return those values back to λ . Now the only thing to create is the proper values

on the diagonal. To do this, we subtract μI and add kI. This first zeros the diagonal and

then replaces the zeros with k as required. Thus the matrix λA−μJ −μA−μI + kI = A2.

Rearranging this equation we get A2 +(μ −λ )A+(μ − k)I = μJ as desired.

�

We will also need to work with the eigenvalues of the adjacency matrix.

Lemma 3 The eigenvalues of the adjacency matrix of a strongly regular graph

srg(v,k,λ ,μ) are k and two others, r and l, with the property that r + l = μ − λ and

rl = μ − k.

Proof. From the equation AJ = kJ we see that k is an eigenvalue for A.

Because A is symmetric, the eigenvectors of A will be orthogonal [11]. Let v be an

eigenvector of A, not associated with the eigenvalue k. By orthogonality, its dot product
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with any other eigenvector will be zero [11]. This means kJv = 0. Dotting the equation

A2+(μ −λ )A+(μ −k)I = kJ on both sides with v we get A2v+(μ −λ )Av+(μ −k)Iv =

kJv = 0. If θ is the eigenvalue associated with v, then Av = θv. Thus the equation can

be written as θ 2v+(μ − λ )θv+(μ − k)Iv = 0 or (θ 2 +(μ − λ )θ +(μ − k)I)v = 0. So

θ must satisfy the equation θ 2 + (μ − λ )θ + (μ − k) = 0. Let r, l be the roots of this

quadratic equation. With a leading coefficient of one, the sum of the roots is the opposite

of the linear coefficient. So r+ l = λ −μ . The product of the roots is the constant term so

rl = μ − k. �

With this background established we now apply these ideas to Benson’s theorem and

develop new divisibility conditions for partial geometries.
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Chapter 2

Benson’s theorem for special cases

In 1969 Benson proved a series of lemmas dealing with automorphisms of generalized

quadrangles (partial geometries with α = 1) [2]. The properties of the adjacency matrix

of the graph associated with the partial geometry are used in establishing these lemmas.

An automorphism of a geometry is a bijection, or one-to-one and onto mapping, of points

that sends lines to lines. Thus it preserves incidence. The automorphisms form a group

under composition as the identity mapping is an automorphism, each automorphism has

an inverse, and composition of mappings is associative. When a geometry is acted on by

an automorphism, the actions on the points can be expressed as a matrix. For instance,

the geometry below left becomes the one below center after a 90◦ clockwise rotation. The

matrix in Figure 2.1 is a representation of this automorphism.

In Figure 2.1 the "1" in the first row, second column of the matrix indicates that the point

originally labeled a is now in the position originally occupied by the point labeled b. This
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d c

ba
a b c d

a
b
c
d

⎡
⎢⎢⎣

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

⎤
⎥⎥⎦

Figure 2.1: An automorphism of a graph and the permutation matrix.

matrix is an example of a permutation matrix. A permutation matrix is an n×n matrix that

has exactly one 1 in each row and column and zeros elsewhere. Multiplying a matrix M

on the left by a permutation matrix P results in interchanging the rows of M according to

how P differs from the identity matrix. For instance the permutation matrix above results

from replacing the first row of I with the second row. The permutation moves point a to the

former location of point b. Similarly, the second row of I has been replaced by the third row

in forming P, and point b moves to the former location of point c. Ones along the diagonal

of P thus represent points that are mapped to themselves by the automorphism. The sum

of the diagonal elements of a matrix is called the trace of the matrix. The trace is also the

sum of the eigenvalues of the matrix [11]. We will make use of both interpretations of the

trace shortly.

One result of Benson was that if Pθ is the permutation matrix for the automorphism θ

of a generalized quadrangle, and M = A + (t + 1)I, then trace(Pθ M) = (t + 1) f + g =

(1 + s)(1 + t) + z(s + t) where z ∈ Z. Here f is the number of fixed points under the

automorphism and g is the number of points that are collinear with their images under θ .

This result has been extended for partial geometries by De Winter in 2005 [10] and for
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partial quadrangles by Temmermans in 2010 [15]. A partial quadrangle is specified by

three parameters, s, t,μ . Here s and t are the same as for a partial geometry. However, in a

partial quadrangle, given a line and a point not incident with the given line, there are either

no points on the line collinear with the given point or there is exactly one point on the line

collinear with the given point. Thus for some point-line pairs the value of α is zero while

for other point-line pairs, the value of α is one. The value of μ is a constant such that for

any pair of non-collinear points, a and b, there are exactly μ points collinear with both a

and b. An expanded version of DeWinter’s proof for partial geometries is presented below

as it forms the basis for the ideas that follow.

Theorem 4 Let S be a partial geometry pg(s, t,α) and let θ be any automorphism of S .

Denote by f the number of fixed points of S under θ and by g the number of points x of S

for which x �= xθ ∼ x, i.e. x is collinear with xθ , where xθ denotes the image of x under θ .

Then

(1+ t) f +g ≡ (1+ s)(1+ t)(mod s+ t −α +1)

Proof. Let P be the point set of S , and let A be the adjacency matrix of S . Because the

point graph of a partial geometry is a strongly regular graph we know that A satisfies

A2 +(μ −λ )A+(μ − k)I = μJ and Ak = kJ (2.1)

By Lemma 3 we know that the eigenvalues of A are k,r, and l, where r+ l = λ −μ and rl =

μ − k. In addition, for pg(s, t,α), the corresponding strongly regular graph has parameters
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v=(s+1) st+α
α ,k = s(t+1),λ = s−1+t(α−1),μ =α(t+1). Equation (1) then becomes:

A2 +(α(t +1)− s+1− t(α −1))A+(α(t +1)− s(t +1))I = α(t +1)J

A2 +(α − s+ t +1)A+(t +1)(α − s)I = α(t +1)J

Using the values from above, the first eigenvalue of A, that is, k, becomes s(t + 1). The

remaining eigenvalues are computed as follows:

r+ l = s−1+ t(α −1)−α(t +1) = s−α − t −1

rl = α(t +1)− s(t +1) = (α − s)(t +1)

Solving the first equation for r and substituting into the second:

r = s−α − t −1− l

(s−α − t −1− l) l = (α − s)(t +1)

0 = l2 +(1− s+α + t) l +(α − s)(t +1)

Solving for l using the quadratic formula:

l =
s−α − t −1±

√
(1− s+α + t)2 −4(α − s)(t +1)

2

=
s−α − t −1±

√
(1+ s−α + t)2

2

= s−α,−t −1

Because r and l are defined symmetrically, we have without loss of generality,

r = s−α, l =−t −1.
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The multiplicities of the eigenvalues are then a0 = 1,a1,a2 where a1 and a2 can be

determined from the following system of equations:

⎧⎪⎪⎨
⎪⎪⎩

k+a1r+a2l = 0

a1 +a2 = v−1

The first equation comes from the fact that the sum of the eigenvalues is the trace and the

trace of A is zero. The second equation comes from the fact that there are n real eigenvalues

for a symmetric real n×n matrix, and n = v.

We can replace k,r, l, and v with their equivalent values in terms of s, t, and α to get the

following:

⎧⎪⎨
⎪⎩

s(t +1)+a1(s−α)+a2(−t −1) = 0 (2.2)

a1 +a2 =
s2t + sα + st

α
(2.3)

Multiplying the second equation in (2.3) by (s−α) and then subtracting the first equation

from this result, we get

a2(s+ t +1−α) =
(s−α)(s2t + sα + st)+ sα(t +1)

α

Expanding the numerator on the right, collecting like terms, and then factoring we get:

a2(s+ t +1−α) =
s(st +α)(s+1−α)

α
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Finally solving for a2 we get

a2 =
s(st +α)(s+1−α)

α(s+ t +1−α)

Substituting this back in (2.3) and solving for a1 we get

a1 =
st(s+1)(t +1)

α(s+ t +1−α)
.

Let D denote the incidence matrix of S and define M = DDT . As discussed earlier, the

diagonal elements indicate the number of lines incident to a single point. In a partial

geometry this is always t+1. So the diagonal elements all have this value. The off-diagonal

elements are either 0 or 1 and are copies of the corresponding entries in the adjacency

matrix. Therefore M = DDT = A+(t +1)I.

Adding (t + 1)I to A also adds t + 1 to the eigenvalues of A, so the eigenvalues of M

are s(t + 1)+ (t + 1) = (s+ 1)(t + 1),s−α +(t + 1),−t − 1+(t + 1) = 0, with the same

multiplicities as before.

We now consider an automorphism of the geometry, θ , its permutation matrix, Q, and the

product QM. Let xi represent the ith point. Then Q is the matrix with qi j = 1 if xθ
i = x j and 0

otherwise. That is, if the image of xi under θ is x j, then there will be a 1 in the i jth position

of Q. Thus Q is a permutation matrix showing how the points of the geometry are permuted

by the automorphism, θ . We claim QM = MQ. At this point we follow the original

method used by Benson and others. Later we will see an alternate method which allows
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further generalizations. To begin, consider the matrix R that shows the automorphism as a

permutation of the lines. The product DR permutes the lines of S as each entry in DR is

the dot product of a row of D indicating the lines incident with a particular point and the

column of Q indicating the permutation. Thus the product works in the same way as QD

only with the lines. So QD = DR. Multiplying on the left by Q−1 we get D = Q−1DR.

Then taking the transpose of this we get DT = RT DT (Q−1)T . Now since M = DDT , then

QM = QDDT = DR(RT DT (Q−1)T ). As Q and R and both permutation matrices each has

only one 1 in each row and column. This means they are both orthogonal matrices. As such,

each matrix is its own inverse and also its own transpose. Thus QT = Q−1 and likewise,

RT = R−1. So QM = D(RRT )DT (Q−1)T = DDT Q = MQ as claimed. Also, if θ has order

n, then (QM)n = QnMn = Mn because Qn is the identity.

Now consider the set of eigenvalues, δi, i = 1,2, . . . ,v, of QM. Then QMxi = δixi for some

corresponding eigenvector xi. Multiplying on the left by QM gives (QM)2xi = QMδixi =

δiQMxi = δ 2
i x. Continuing to multiply by QM leads to (QM)nxi = δ n

i xi or Mnxi = δ n
i x.

Now suppose γi, i = 1,2, . . . ,v, is the set of eigenvalues of M, and let p(x) = xn. Then the

eigenvalues of p(M) = Mn are p(γi) = γn
i [12]. So the set of eigenvalues of Mn represented

by δ n
i is the same as the set of eigenvalues represented by γn

i . Thus the eigenvalues of QM

are the eigenvalues of M multiplied by the appropriate roots of unity.

We also know that (QM)J = (MQ)J = M(QJ) = MJ. This is because Q is a matrix with

only one nonzero entry in each row and column and multiplying this by J, the all one

matrix simply returns J. Because MJ = (s+ 1)(t + 1)J it follows that (s+ 1)(t + 1) is an
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eigenvalue of QM with multiplicity 1. Also, as M was defined by M = A+(t + 1)I, the

eigenvalues of M and thus QM, up to roots of unity, are the eigenvalues of A plus t +1. So

one of the remaining eigenvalues of QM is −t −1+ t +1 = 0 with multiplicity a2.

The remaining possible eigenvalues are obtained by multiplying s+ t −α + 1 by each of

the dth primitive roots of 1, where d is any divisor of n, the order of the automorphism

θ . Because each of the dth primitive roots has the same multiplicity,1 these multiplicities

depend only on d, not on the individual primitive roots. Let ad represent the multiplicity

of each of the eigenvalues associated with the dth roots. The sum of all of the dth primitive

roots of unity is an integer, μ(d) where

μ (d) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 d is square free and has an even number of prime factors

−1 d is square free and has an odd number of prime factors

0 d is not square free

The trace of a matrix is the sum of the eigenvalues, so trace(QM) = ∑
d|n

ad(s+ t +α −

1)μ(d) + (s+ 1)(t + 1). This is clearly congruent to (s+ 1)(t + 1) (mod s+ t +α − 1).

However, the trace(QM) is also equal to (t +1) f +g as each entry on the diagonal of QM

is t +1 if the corresponding point is fixed and 1 if the corresponding point is mapped to a

collinear point by the automorphism. To see this, recall that M = (t +1)I+A. So when we

multiply QM, if the ith point is fixed, then (QM)ii = t +1. If the point is not fixed, then the

single one in the ith row of Q will not match with the t + 1 on the diagonal of M, but will

1[15]“Lemma 1.2.1 Suppose that ξ and ξ ′ are both primitive dth roots of unity, with d a divisor of n, and let

λ be an integer eigenvalue of M. If at least one of ξ λ and ξ ′λ is an eigenvalue of QM, then they both are

and they have the same multiplicity."
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instead match with a one elsewhere in the ith column of M if and only if the the ith point is

being mapped to a collinear point.

Therefore, (t +1) f +g ≡ (s+1)(t +1) (mod s+ t +α −1). �

In her dissertation, Temmermans generalized Benson’s theorem for various structures such

as generalized hexagons, octagons, dodecagons, and various types of designs [2]. We now

look at more specific instances of automorphisms.

2.1 Automorphisms of prime order

The previous proof resulted in a congruence. However, if we consider only automorphisms

of prime order, we can reach additional results. Specifically, we can determine expressions

for the multiplicities of the eigenvalues which will then yield new divisibility conditions on

the parameters of a partial geometry.

Theorem 5 Given a partial geometry pg(s, t,α) acted upon by an

automorphism of prime order, n, the matrix QM as defined in the proof

of Theorem 4 has eigenvalues with multiplicities a1 and a2 as follows:

a1 =
α(n−1)((t +1) f +g)+(s+1)(t +1)(st −α(n−1))

αn(s+ t +1−α)

a2 =
(s+1)(t +1)(st +α)−α((t +1) f +g)

αn(s+ t +1−α)

Proof. In the proof of Theorem 4 we obtained the equation ∑
d|n

ad(s+ t+1−α)μ(d)+(s+

1)(t + 1) = (t + 1) f + g where ad is the multiplicity of the eigenvalue multiplied by the

primitive dth root of unity, and μ(d) is the sum of the dth roots of unity. When n is prime,
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this summation has only two terms, a1(s+t+1−α)+a2μ(n)(s+t+1−α) where μ(n) is

the sum of the primitive nth roots of unity. But when n is prime, μ(n) =−1. The equation

with n prime then becomes

a1(s+ t +1−α)−a2(s+ t +1−α)+(s+1)(t +1) = (t +1) f +g.

We also know that the eigenvalue (s+ t +1−α) has multiplicity
st(s+1)(t +1)

α(s+ t +1−α)
. So the

sum of the multiplicities of the individual eigenvalues related to this one must be this same

value. In the case of n prime, this gives us the equation

a1 +(n−1)a2 =
st(s+1)(t +1)

α(s+ t +1−α)
(2.4)

We solve this system of equations:

⎧⎪⎪⎨
⎪⎪⎩

a1α(s+ t +1−α)−a2α (s+ t +1−α) = α(t +1) f +αg−α(s+1)(t +1)

a1α(s+ t +1−α)+a2α(n−1)(s+ t +1−α) = st(s+1)(t +1)

Subtracting the first equation from the second gives:

a2αn(s+ t +1−α) = st(s+1)(t +1)+α(s+1)(t +1)−α(t +1) f −αg,

or a2 =
(s+1)(t +1)(st +α)−α((t +1) f +g)

αn(s+ t +1−α)
(2.5)
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Substituting this back into equation (2.4) we get

a1 +(n−1)
(s+1)(t +1)(st +α)−α((t +1) f +g)

αn(s+ t +1−α)
=

st(s+1)(t +1)

α(s+ t +1−α)

After subtracting and simplifying we get the desired result:

a1 =
(s+1)(t +1)(st −α(n−1))+α(n−1)((t +1) f +g)

αn(s+ t +1−α)
(2.6)

�

Using these expressions we can create more expressions for specific cases.

2.2 Sharply transitive abelian group of automorphisms

One special type of group of automorphisms is a sharply transitive abelian group. A sharply

transitive group contains a unique automorphism mapping each point to every other point.

That is, for any two points xi and x j there is exactly one g in the group G, that maps xi

to x j. Consequently, there is only one element of the group that maps any point to itself.

Because the group must contain the identity, which maps all points to themselves, there

is only one element of G that fixes any points. So elements of G either fix all points or

fix no points. Under the action of such a group, the values of f and g in the equation

a1(s+ t + 1−α)− a2(s+ t + 1−α)+ (s+ 1)(t + 1) = (t + 1) f + g take on only specific
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values. If the automorphism is the identity then f = v and g = 0. In all other cases f = 0.

Furthermore, for any nonidentity automorphism, all points will be either collinear with

their images or none will. To see this, consider a point x and an automorphism θ such

that x is collinear with its image under θ ,xθ ∼ x. Because this group of automorphisms is

sharply transitive, there is an element of the the group that maps x to any y in the geometry.

Let φ be the element such that xφ = y. Then (xθ )φ ∼ xφ . Because the group is abelian we

get xθφ = xφθ = yθ . So y ∼ yθ . Thus if one point is mapped to a collinear point, all points

are mapped to collinear points. Hence, there are two possible values for g; either g = 0

or g = v = (s+ 1)
st +α

α
. For an automorphism of prime order we create the following

summary of results. We also include the results for the symmetric case when s = t as

this case is of interest later in this thesis. Because each of these values must be integer,

these expressions provide us with divisibility conditions for partial geometries that admit a

sharply transitive abelian group of automorphisms.

Table 2.1
Divisibility conditions for a partial geometry when acted on by a sharply

transitive abelian group of automorphisms.

s �= t a1 a2

g = 0
(s+1)(t +1)(α + st −nα)

αn(s+ t +1−α)

(s+1)(t +1)(st +α)

αn(s+ t +1−α)

g = (s+1)

(
st +α

α

)
t(s+1)(s(n+ t)−α(n−1))

αn(s+ t +1−α)

t(s+1)(st +α)

αn(s+ t +1−α)

s = t a1 a2

g = 0
(t +1)2(t2 −αn+α)

αn(2t +1−α)

(t +1)2(t2 +α)

αn(2t +1−α)

g = (s+1)

(
st +α

α

)
t(t +1)(t(n+ t)−α(n−1))

αn(2t +1−α)

t(t +1)(t2 +α)

αn(2t +1−α)
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Notice that the value of n, the order of the automorphism, is in the denominator of each of

these multiplicity values. Because we are only considering prime orders of automorphisms,

this means that this prime must be a factor of the numerator in each case. This divisibility

condition may provide further insight for the cases considered in the next section of this

paper.
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Chapter 3

Maximal arcs and their generalizations

3.1 Maximal arcs

3.1.1 Construction of the partial geometry T ∗
2 (K)

A finite projective plane is a point-line geometry that satisfies three conditions:

• any two points are incident with exactly one line

• any two lines intersect in exactly one point

• there is a set of four points such that no three points are incident to the same line.

From these axioms it can be deduced that there are the same number of points on each line

as there are lines through any point. This value is denoted as q+ 1 where q is referred to

as the order of the projective plane. The simplest example of a projective plane is the Fano
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plane. Here the incidence matrix shows clearly that for any two points (rows), there is only

7

3 1

2

4

6 5

G

B

F

D

EC

A
1 2 3 4 5 6 7

A
B
C
D
E
F
G

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 1 0 0 0

0 0 1 0 0 1 1

0 1 1 0 1 0 0

1 0 0 0 1 0 1

1 1 0 0 0 1 0

0 1 0 1 0 0 1

0 0 0 1 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Figure 3.1: The Fano plane and its incidence matrix.

one common line (column) and for any two lines (columns) there is only one point (row)

incident to both. There is also at least one set of four points (rows) such as A,B,D,F where

no line (column) is common to more than two of these points. The incidence matrix also

makes it clear the projective plane is of order 2 as each line has three points and each point

is on three lines.

A {k;d}-arc, K, is a set of k points in a projective plane of order q, where d is the maximum

number of points in the set that are collinear. In the following discussion we exclude

d = 0,1,q,q+ 1 as these are trivial cases. If d = 0 there are no points in the arc and if

d = 1 there is only one point in K. If d = q then there is only one point on each line outside

of the arc. Any two points outside of the arc determine a line. Then because this leaves

d − 1 more points on the line, they must also lie outside the arc. So this line contains all

of the points that are not in the arc. Thus there is one line outside the arc and all other

points inside. Finally if d = q+1, the arc contains the entire projective plane. For the more

interesting values of d, we determine a bound on k.
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≤ d - 1

q + 1 K

Figure 3.2: Determining an upper bound for k.

First consider any point in the arc. There are q+1 lines incident with this point. On each

of these lines there are at most an extra d−1 distinct points in the arc. So the total number

of points in the arc is at most (q+ 1)(d − 1)+ 1 where we have added back the point in

common to the set of lines. So k ≤ (q+1)(d−1)+1[17]. When this is an equality, the arc

is called maximal. Thus a maximal arc is a nonempty set of k points in the projective plane

such that any line intersects the set in either 0 or d points. Expanding the equality we get

k = qd −q+d.

d

d

d

K

Figure 3.3: The points in K are in groups of size d in a maximal arc.

As the k points in the arc can be divided into groups of size d, we know that d must be a

factor of k and consequently a factor of qd −q+d. Therefore d must divide q. (see Figure

3.3.)

Let q be a prime power and define PG(n,q) to be the geometry where the points are
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one-dimensional vector spaces in V (n+1,q), the lines are two-dimensional vector spaces

in V (n + 1,q), and in general, k-spaces are the (k + 1)-dimensional vector spaces in

V (n+ 1,q). Here V (n+ 1,q) is the vector space with rank n+ 1 over q elements. For

instance, PG(2,q) is a projective plane of order q. Consider a maximal arc K in PG(2,q)

and consider PG(2,q) as a subgeometry of PG(3,q). Define a geometry T ∗
2 (K) where

• the points of the geometry are the points of PG(3,q)�PG(2,q),

• the lines of the geometry are the lines of PG(3,q) meeting PG(2,q) in a single point

of K.

Lemma 6 T ∗
2 (K) is a partial geometry pg(q−1,(q+1)(d −1),d −1) (see e.g.[16][17]).

Proof. There are q points on each line so s = q− 1. In the three-dimensional projective

s + 1 = q

K
d - 1 K

α = d - 1

L

MK

t + 1 = (q + 1)(d - 1) + 1

q + 1

d - 1

x

Figure 3.4: Determining the parameters for T ∗
2 (K)

space, every two points are collinear. So any point in the space below K reaches each point

in K. Thus the number of lines through any point is the same as the number of points in

the arc. Because the arc is maximal, this means t = k−1 = (q+1)(d−1). Consider a line
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L of this geometry and a point x of the geometry, not on L. Then L and x span a plane that

intersects PG(2,q) in a line M. The intersection M∩L is a point in K. Hence, M intersects

K in d − 1 more points. Each one of these points is also on a line through x in the plane

spanned by x and L. The line L intersects each of these d − 1 lines. Therefore, α = d − 1

and T ∗
2 (K) is a partial geometry.

�

3.1.2 Applying Benson’s Theorem

In the proof of Theorem 5 the expressions obtained for the multiplicities of the eigenvalues

were valid for any partial geometry. Using the values s = q− 1, t = (q+ 1)(d − 1), and

α = d −1 we can get expressions for the multiplicities for the eigenvalues associated with

this partial geometry. A next natural question is to see if these expressions can provide a

simpler proof of previously known conclusions. For instance, it has been proven, that there

are no maximal arcs in PG(2,q) when q is odd [1], while numerous examples of maximal

arcs when q is even are known [7].

Consider automorphisms in the form of dilations from one fixed point so f = 1. Then

the remaining points on the lines emanating from this fixed point are mapped to collinear

points. Because there are t + 1 = (q + 1)(d − 1) + 1 lines and q − 1 points on each

line that are mapped to collinear points, then g = (q − 1)(q + 1)(d − 1) + (q − 1) or

g = (q2 − 1)(d − 1) + (q− 1). Making the substitutions for s, t,α in (2.6) and (2.5) we

get a1 = a2 =
(q2 −1)(d −q+dq)

dn
. Because the dilations form a cyclic group of order
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q− 1, any automorphism in the group must have an order that is a factor of q− 1. As we

are considering only automorphisms of prime order, this means n is a prime divisor of

q−1. So a1 = a2 are guaranteed to be integers and unfortunately the divisibility conditions

provide no additional insight here.

3.2 Generalized maximal arcs

3.2.1 Construction of the partial geometry S(M)

Consider an m-dimensional equivalent of an arc in an n-dimensional space. To make this

concept clearer, we first redefine the original maximal arc. In PG(2,q) the set of points

can be thought of as a set of PG(0,q) in a PG(2,q). Each line is a PG(0+ 1,q). Then a

maximal arc is a set of PG(0,q) such that every PG(0+ 1,q) that contains one of those

PG(0,q) intersects or contains exactly α other ones. We now have a definition that extends

easily to higher dimensions. A generalized maximal arc, M in PG(n,q) is a set of disjoint

PG(m,q) ⊆ PG(n,q) such that every PG(m+ 1,q) containing a PG(m,q) ∈M intersects

exactly α others. We hope to find a relationship between the parameters m and n. DeClerck,

Delanote, Hamilton, and Mathon [6] examined a specific case of these structures and found

that 2m+1 ≤ n ≤ 3m+2. We hope to establish a similar relation for the more general case.

Consider a generalized maximal arc, M consisting of PG(m,q) in PG(n,q). Embed

PG(n,q) in a PG(n+1,q) and define a geometry S(M) as follows:
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• the points of the geometry are the points of PG(n+1,q)\PG(n,q).

• the lines of the geometry are the [m + 1] spaces that intersect the PG(n,q) in an

element of M.

Lemma 7 S(M) is a partial geometry pg(qm+1 −1, | M |,α).

Proof. There are qm+1 points in each line of S(M) i.e [m + 1] space of PG(n + 1) \

PG(n,q), so s+ 1 = qm+1 is constant. The number of lines through a point is the number

of elements ([m] spaces) in M, so this is also a constant value, t + 1 =| M |. Let L be

a line of S(M). (This is an [m+ 1] space in the projective space.) Let x be a point of

the geometry not on this line. Together, x and L span a [m+ 2] space in PG(n+ 1,q) that

intersects PG(n,q) in a [m+1] space, M.

The intersection of M and L is an element of M. Hence, M intersects exactly α other

p2 p3
p1

L1 L3L2

M [m]
[m][m]

[m]

[m + 1]

[m + 2]

[n]

[n + 1]

α

L

x

[m]

[m + 1]

[m + 2]

[n]

[n + 1]

L

x

[m + 1]

[m]

[m + 1]

[m + 2]

[n]

[n + 1]

L

x

Figure 3.5: The relationship between the spaces.

elements of M . Let p1, p2, ..., pα be points, one in each of these other elements of M.

Then x and each pi define a line, L1,L2, ...,Lα . These Li now intersect L in exactly
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α points. Hence in the geometry S the point x is collinear with exactly α points on L.

Therefore, S(M) is indeed a partial geometry. �

3.2.2 Applying Benson’s Theorem

Next we establish a necessary condition on α and t.

Lemma 8 In the partial geometry S(M),α(qn−m −1) = t(qm+1 −1).

Proof. Using the construction as above, we fix M, an element of M. We will count, in two

ways, the number of points p such that p is in an element of M, distinct from M. First note

that M contains t elements distinct from M. Each of these elements ([m] spaces) contains

qm+1 −1

q−1
points. Thus there are t

qm+1 −1

q−1
choices for p. For a second count, observe that

every [m+ 1] space containing M contains exactly α of the points we are counting. As

there are
qn−m −1

q−1
such [m+1] spaces, and these spaces intersect exactly in M, we obtain

α
qn−m −1

q−1
choices for p. Therefore, α(qn−m −1) = t(qm+1 −1). �

We next derive necessary conditions for the existence of a generalized maximal arc. Note

that these conditions are the same as the ones obtained in [6]. However, the result here is

much stronger than that of [6] as we do not require the generalized maximal arc to satisfy

the rather restrictive extra geometric condition as in [6]).

Theorem 9 If S(M) is constructed from PG(m,q)’s in PG(n,q) where q is a power of
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some prime, p, then n = 2m + 1 +
m+1

r+1
for some r, a non-negative integer, and α =

(pk −1)(qm+1 −1)

qn−2m−1 −1
where 0 < pk < qn−2m−1.

We will prove this through a series of lemmas. First though we recall some of the key

relationships.

s+1 = qm+1,
st +α

α
= qn−m, (s+1)

(
st +α

α

)
= qn+1

Clearly s+1 | st +α
α

so s+1 | st +α.

Then adding and subtracting t on the right we get

s+1 | st +α + t − t = t(s+1)+α − t.

Thus s+1 | α − t and similarly s+1 | t −α which is positive as α < t for a proper partial

geometry. We can now write t = z(s+ 1)+α for some z ∈ Z. This expression will prove

useful in the next lemma.

Lemma 10 In the partial geometry S(M), zqm+1 +α +1 ≡ 0 (mod pk).

Proof. According to Benson’s Theorem there exists an automorphism without fixed points

that has g = 0 and one that fixes all points so that g = v = qn+1. Hence the relationship
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(1+ t) f +g ≡ (s+1)(t +1)(mod s+ t +1−α) becomes

(s+1)(t +1)≡

⎧⎪⎪⎨
⎪⎪⎩

qn+1

0

(mod s+ t +1−α).

Replacing t +1 with z(s+1)+α +1 we get

(s+1)(z(s+1)+α +1)≡

⎧⎪⎪⎨
⎪⎪⎩

qn+1

0

(mod s+ z(s+1)+1)

which reduces to

z(s+1)+α +1 ≡

⎧⎪⎪⎨
⎪⎪⎩

qn+1−m−1

0

(mod z+1).

Now because z(s+ 1)+α + 1 ≡ qn−m and z(s+ 1)+α + 1 ≡ 0(mod z+ 1), we can say

qn−m ≡ 0(mod z+1). Thus z+1 | qn−m. So z+1 is a power of p. We let z+1 = pk,k > 0.

Thus we can now rewrite the congruence z(s+1)+α +1 ≡ 0(mod z+1) as zqm+1 +α +

1 ≡ 0(mod pk). �

Lemma 11 In the partial geometry S(M),α +1 ≡ 0(mod pk)

Proof. We begin by rewriting the congruence zqm+1 +α +1 ≡ 0(mod pk) as follows:

0 ≡−zqm+1 −qm+1 +qm+1 −α −1 ≡ 0(mod pk).
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Factoring to expose the quantity z+1

0 ≡ qm+1 −qm+1(z+1)−α −1(mod pk).

Now because z+1 = pk this becomes

qm+1 −α −1 ≡ 0(mod pk)

or qm+1 − (α +1)≡ 0(mod pk).

Consider the relationship between pk and qm+1. If qm+1 < pk, then 0 < qm+1 − (α +1)<

pk. Since qm+1 − (α + 1) ≡ 0(mod pk), then α + 1 must be equal to qm+1. But this is a

contradiction as α +1 < s+1 = qm+1.

Therefore qm+1 ≥ pk and the congruence qm+1 − (α +1)≡ 0(mod pk) implies that

α +1 ≡ 0(mod pk). �

We can now write α +1 = ypl where p � y, l ≥ k, and pl ≤ qm+1.

Lemma 12 In the partial geometry S(M),

pkqm+1 − pk −qm+1 = yplqn−2m−1 −qn−2m−1 − ypl

Proof. Recall the following relationships:

z = pk −1, s = qm+1 −1, α = ypl −1, t =
α(qn−m −1)

s
.

We now rewrite the equation z(s+1)+α = t, in terms of p and q as

(pk −1)qm+1 + ypl −1 = (ypl −1)
qn−m −1

qm+1 −1
.
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Multiplying both sides by qm+1 −1:

(pk −1)(q2m+2 −qm+1)+ yplqm+1 − ypl −qm+1 +1 = yplqn−m −qn−m − ypl +1

Expanding and collecting like terms:

pkq2m+2 − pkqm+1 −q2m+2 = yplqn−m −qn−m − yplqm+1.

Dividing both sides by qm+1:

pkqm+1 − pk −qm+1 = yplqn−2m−1 −qn−2m−1 − ypl. (3.1)

�

We next consider the relationship between l and k.

Lemma 13 Under the conditions of Lemma 12, l = k.

Proof. Recall now that p divides q. Also recall pl < qm+1.

In Lemma 11 we established that l ≥ k. Now suppose l > k.

Consider (3.1) mod pl . Since pl < qm+1 this equation becomes the congruence pk ≡

qn−2m−1(mod pl). But because k < l, we know pk �≡ 0(mod pl). Thus qn−2m−1 < pl . So

since both pk and qn−2m−1 are less than pl , then they must be equal. That is, pk = qn−2m−1.
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Substituting this in (3.1) we get

qn−m −qn−2m−1 −qm+1 = yplqn−2m−1 −qn−2m−1 − ypl

Combining like terms and then factoring gives us:

qm+1(qn−2m−1 −1) = ypl(qn−2m−1 −1)

This implies that qm+1 = ypl . But this is the same as s+ 1 = α + 1 which is not possible

as α < s. Therefore, l = k. Note that qn−2m−1 − 1 �= 0. If it were, then the congruence

pk ≡ qn−2m−1(mod pl) would imply pk ≡ 1(mod pl) which is not possible. �

Now (3.1) becomes

pkqm+1 − pk −qm+1 = ypkqn−2m−1 −qn−2m−1 − ypk. (3.2)

Before considering the relationship between pk and qn−2m−1 we prove a general lemma.

Lemma 14 The expression
(qa −1)(qb −1)

qc −1
is integer valued if and only if either qc −1 |

qa −1 or qc −1 | qb −1.

Proof. (⇐) is obvious,

(⇒) Let α = gcd(a,c) and β = gcd(b,c).

Then gcd(qa −1,qc −1) = qα −1 and gcd(qb −1,qc −1) = qβ −1.

Now if gc −1 | (ga −1)(gb −1), then gc −1 | (gα −1)(gβ −1) = gα+β −gα −gβ +1.
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This implies that α +β > c. Without loss of generality, we can then assume α > c
2 . But

we know gα −1 | gc −1 because α | c. The only way to satisfy both of these conditions is

for α = c. This implies qc −1 | qa −1. By symmetry, if β = c, then qc −1 | qb −1. Thus

(qa −1)(qb −1)

qc −1
is integer valued if and only if either qc −1 | qa −1 or qc −1 | qb −1. �

We now turn to the relationship between n and m.

Lemma 15 Under the conditions of Lemma 13, 2m+1 < n ≤ 2.5m+1.5 or n = 3m+2.

Proof. We investigate this by considering the relationship between pk and qn−2m−1 as

separate cases.

Suppose pk = qn−2m−1. Making this substitution in (3.2) we get

qn−m −qm+1 −qn−2m−1 = ypkqn−2m−1 −qn−2m−1 − ypk.

Combining like terms and factoring leads us to

qm+1(qn−2m−1 −1) = ypk(qn−2m−1 −1).

So qm+1 = yqn−2m−1 which implies y = 1 and thus n = 3m+2.

In this case α = qm+1−1= s which though not a proper partial geometry, is still acceptable

as an upper limit on n.

Suppose pk < qn−2m−1

We now use a result from De Winter [8] that allows us to assume without loss of generality

that q is prime, or equivalently, that p = q. We know that a PG(n,q) is in one to one
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correspondence with the (n+ 1)-dimensional vector space V (n+ 1,q) over the finite field

Fq as each vector line in V (n+ 1,q) determines a point in PG(n,q). If q = pd then Fq

is itself a d-dimensional vector space over Fp. Hence V (n+ 1,q) can be thought of as

a d(n+ 1)-dimensional vector space V (d(n+ 1), p) over Fp. This is then in one to one

correspondence to the (d(n+ 1)− 1)-dimensional projective space PG(d(n+ 1)− 1, p).

This field reduction as described in [8] provides a natural map from substructures of

PG(n,q) to substructures of PG(d(n+ 1)− 1, p). In our case, every PG(m,q) ⊂ PG(n,q)

will naturally be mapped to some PG(d(m+1)−1, p)⊂ PG(d(n+1)−1, p). The special

case of a more general result from [8] states that:

If K is a generalized maximal arc consisting of PG(m,q) in PG(n,q), then the image of

K under field reduction is a generalized maximal arc consisting of PG(d(m+1)−1, p) in

PG(d(n+1)−1, p). Moreover, this image has the same α value as K.

It is worth noting that replacing n with d(n+1)−1 and m with d(m+1)−1, the original

statement in the theorem remains the same after some simplification. Now we can assume

without loss of generality that p = q. Doing this (3.1) becomes

qm+1+k −qm+1 −qk = yqk+n−2m−1 −qn−2m−1 − yqk.

Dividing by qk we get

qm+1 −qm+1−k −1 = yqn−2m−1 −qn−2m−1−k − y. (3.3)
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Solving this equation for y we get

y =
qm+1 −qm+1−k +qn−2m−1−k −qn−2m−1 +qn−2m−1 −1

qn−2m−1 −1
.

Note that by adding and subtracting qn−2m−1 in the numerator we now have an expression

that can be simplified to

y = 1+
(qk −1)(qm+1−k −qn−2m−1−k)

qn−2m−1 −1
.

Using the assumption that k < n−2m−1 we can factor further to get

y = 1+
qn−2m−1−k(qk −1)(q3m−n+2 −1)

qn−2m−1 −1
.

Using lemma(14) and the fact that k �= 0 we conclude that either

qn−2m−1 −1 | qk −1 or qn−2m−1 −1 | q3m−n+2 −1.

By assumption, k < n−2m−1 so that means qn−2m−1 −1 | q3m−n+2 −1.

Thus n−2m−1 | 3m−n+2 and either n−2m−1 ≤ 3m−n+2 or 3m−n+2 = 0. Solving

for n we get n ≤ 2.5m+1.5 or n = 3m+2.

So while not giving a precise relationship between n and m, we do have a bound on the value

of n for any given m. We also have a divisibility condition that we can use to determine sets

of values n,m,k that satisfy all of our assumptions. For example, if we consider n = 2.5m+
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1.5, the values n = 9,m = 3,k = 1 satisfy both n−2m−1 | 3m−n+2 and k < n−2m−1.

Other sets are listed in Table 3.1:

Table 3.1
sets of values for n,m and k

n m n−2m−1 k 3m−n+2

9 3 2 1 2

14 5 3 1 3

14 5 3 2 3

19 7 4 1 4

19 7 4 2 4

19 7 4 3 4

13 5 2 1 4

20 8 3 1 6

20 8 3 2 6

Now using the value for y obtained above, we can rewrite the values of s, t,α .

s = qm+1 −1, t = α
qn−m −1

qm+1 −1
, α +1 = yqk ⇒ α =

(qk −1)(qm+1 −1)

qn−2m−1 −1
.

In the case of n = 3m+2, these expressions become

s = qm+1 −1, t = α(qm+1 −1), α = (qk −1).

Each of the sets of values above produce integer values for s, t,α as well as satisfying

the divisibility conditions discussed earlier. Thus while not disproving the existence of

geometries with k < n− 2m− 1, we have limited the possibilities for this range of values
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by the divisibility condition, n−2m−1 | 3m−n−2. We can also express this condition as

the equation r(n−2m−1) = 3m−n−2 for some r ∈Z. Solving for n we get n = 2m+1+

m+1

r+1
. While offering no new information, it presents us with another way to view the same

information allowing us to place the value for n in the interval 2m+1 < n ≤ 2.5m+1.5 or

n = 3m+2.

The final case to consider is if pk > qn−2m−1. Again we assume without loss of generality,

that p = q. Also, note that now 3m+2 ≥ n or equivalently, m+1 ≥ n−2m−1.

Beginning with qm+1+k −qm+1−qk = yqk+n−2m−1−qn−2m−1−yqk as before, this time we

divide by qn−2m−1 to get

q−n+3m+2+k −q−n+3m+2 −qk−n+2m+1 = yqk −1− yqk−n+2m+1.

Solving for y gives us

y =
q−n+3m+2+k −q−n+3m+2 −qk−n+2m+1 +1

qk −qk−n+2m+1
.

Adding and subtracting qk in the numerator this becomes

y = 1+
q−n+3m+2+k −q−n+3m+2 +1−qk

qk −qk−n+2m+1
.

which we can factor to be

y = 1+
(qk −1)(q−n+3m+2 −1)

qk−n+2m+1(qn−2m−1 −1)
.

The fact that 3m+ 2 ≥ n ensures that the exponent in the numerator is positive. Now the

numerator of this fraction is not a power of q so we have reached a contradiction as y will

not be an integer under our assumption. Thus the assumption that k > n− 2m− 1 cannot

be true.
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Therefore, either n = 3m+2 or 2m+1 < n ≤ 2.5m+1.5 where n−2m−1 | 3m−n−2.

�

Proof of Theorem 9

By Lemma 10 and 11 we know α + 1 = ypk. The equation from Lemma 12 with

the substitution from Lemma 13 leads us to the equation pkqm+1 − qm+1 − pk =

ypkqn−2m−1 −qn−2m−1 − ypk. Lemma 15 leads us to the conclusion that either n = 3m+2

and α = qk − 1 which is not a proper partial geometry, or α =
(pk −1)(qm+1 −1)

qn−2m−1 −1
and

the consequence that n = 2m+ 1+
m+1

r+1
for some non-negative integer r, proving the

theorem. �
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Chapter 4

Partial geometries with an abelian

Singer group

In this section we begin by turning our focus from the properties of a partial geometry

and the adjacency matrix of its point graph to looking at partial geometries and groups of

automorphisms acting on those geometries. Specifically we focus on the actions of sharply

transitive abelian groups. Sharply transitive groups automorphisms acting on geometries

are generally referred to as Singer groups in honor of James Singer who studied the actions

of such groups on projective planes [14].

Assume S is a proper partial geometry and G is an abelian group of automorphisms

acting sharply transitively on it. First note that if an element of G fixes one point, then

it fixes all points and thus is the identity. Then considering non-identity automorphisms,

the value of f in Theorem 4 is zero. Using this information Theorem 4 gives us
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the congruence (s + 1)
(st +α)

α
≡ (s + 1)(t + 1)(mod s + t + 1 − α). If we then

consider g ∈ G such that no point is mapped to a collinear point, Theorem 4 gives us

(s+1)(t +1)≡ 0 (mod s+ t +1−α).

4.1 Classifying partial geometries based on stabilizer size

Next consider how many elements of G stabilize any line in S. We know that the identity

stabilizes everything in the geometry. So | StabG(L) | is at least 1. To determine what other

values there are for | StabG(L) |, assume g∈ StabG(L), and let x be a point on L. Then xg, the

image of x under g, is also on L and Lg = L. Let y = xh for some h ∈ G�{id} with xh on L

and distinct from both x and xg. We can then express L as 〈x,xg〉. Applying h to this second

expression of L gives us 〈xh,xgh〉. However because G is an abelian group, we can also

write this as 〈xh,xhg〉. But this is the same as 〈y,yg〉= L. Thus h also stabilizes L. Because

there are s+1 points on L, | StabG(L) |= s+1. Thus | StabG(L) |= 1 or | StabG(L) |= s+1.

These observations led DeWinter to classify the partial geometries with an abelian Singer

group into three types: "spread type if | StabG(L) |= s+1 for each line L of S;. . . rigid type

if | StabG(L) |= 1 for each line L of S;. . . mixed type otherwise" [10].

Concerning pairs (S,G), of the spread-type, where S is the geometry and G is a sharply

transitive group of automorphisms acting on the geometry, DeWinter [9] showed in a

separate paper that when α = 1, every finite generalized quadrangle that admits an abelian
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Singer group is of spread-type. In [10] he characterized the geometries with α = 2 that are

of spread type. Cases of α > 2 have not yet been studied at this level of detail.

Another consideration for pairs (S,G) of this type is to generalize the results to higher

dimensional spaces. The partial geometries discussed in the previous chapter are all

examples of this spread type.

Pairs (S,G) of the mixed type have been considered by DeWinter [10] as well as Leung,

Ma, and Schmidt [13]. The latter group made great progress toward proving there are no

partial geometries of the mixed-type for α = 2. However no work has been done with

larger values of α .

4.1.1 Possible parameters for rigid type geometries

Concerning (S,G) pairs of the rigid type, it has been proven that there is only one proper

partial geometry, pg(5,5,2) when α = 2 [10] . We will expand on the methods used in that

proof to discover possible parameters for geometries when α > 2. In the rigid case, we can

deduce an additional relationship between the parameters s and t. Consider a line L with

points p0, p1, p2, ..., ps on L. Because the group of automorphisms is sharply transitive,

there is a gi ∈ G such that pgi
i = p0 for each i = 0,1,2, ...,s. Then because there are

s+ 1 points on a line, there are s+ 1 lines through p0 that are the image of L under the

corresponding gi. Now if t > s there are more lines through p0. Thus the t + 1 lines

through p0 can be split into groups of size s+1 and t +1 = x(s+1) for some integer x.
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p0

s + 1 lines

s + 1 lineslgi

lgs

l

Figure 4.1: The lines through p0 are in groups of size s+1

Combining this equation with the condition from Theorem 4, (s+ 1)(t + 1) ≡ 0 (mod s+

t +1−α) gives us the congruence

x(s+1)2 ≡ 0 (mod (x+1)(s+1)− (1+α)).

From this congruence we can determine a bound on the value of s for any given value of α .

Multiplying by (x+1)2

x((x+1)(s+1))2 ≡ 0 (mod (x+1)(s+1)− (1+α))

Subtracting (α +1)2x

x((x+1)(s+1))2 − (α +1)2x ≡−(α +1)2x (mod (x+1)(s+1)− (1+α))
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Factoring as a difference of squares

x((x+1)(s+1)− (α +1))((x+1)(s+1)+(α +1))

≡ −(α +1)2x (mod (x+1)(s+1)− (1+α)).

Because (x+1)(s+1)− (α +1)≡ 0 (mod (x+1)(s+1)− (1+α)) we get

(α +1)2x ≡ 0 (mod (x+1)(s+1)− (1+α)).

So (α +1)2x ≥ (x+1)(s+1)− (1+α) = sx+ x+ s−α .

Subtracting x

((α +1)2 −1)x ≥ sx+(s−α).

We know α <min(s, t) so s−α > 0. Thus for ((α+1)2−1)x to be greater than sx+(s−α)

we must have s < (α +1)2 −1. So for any chosen α , we can find the values of s and t that

form a potential partial geometry. The Mathematica code below searches for these sets of

parameters and also prints the parameters of their associated strongly regular graphs.

For[α = 2,α < 9,α++,

For[s = α +1,s < (α +1)2,s++,c = Ceiling[(α +1)2/(s+1)−1];

For[x = 1,x ≤ (s−α)∗ c
/
((α +1)2 − (s+1)∗ c

)
,x++,

If[Mod[(α +1)2 ∗ x,(s+1)∗ x+ s−α] == 0, t = (s+1)∗ x−1;

If[Mod[(s+1)∗ (t +1),s+ t −α +1] == 0,v = (s+1)∗ (s∗ t +α)/α;
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If[Mod[v,s+ t −α +1] == 0,k = s∗ (t +1);λ = s−1+ t ∗ (α −1); μ = α ∗ (t +1);

Heading={"s","t",”α”,"x",‖,"v","k",”λ”,”μ”}

Print[MatrixForm[{Heading,{s, t,α,x,”‖”,v,k,λ ,μ}}]];

If[PrimeNu[v] == 1,

Print[v=Superscript@@@FactorInteger[v]],

Print[v=CenterDot@@(Superscript@@@FactorInteger[v])]]]]]]]]

Table 4.1 shows the sets produced for 2 ≤ α ≤ 8.

Looking at the sets of values in Table 4.1 prompted the following Lemmas.

Table 4.1
Values of s, t,α for potential partial geometries.

s t α x v k λ μ
5 5 2 1 81 = 34 30 9 12

11 23 3 2 1024 = 210 264 56 72

14 14 4 1 750 = 2 ·3 ·53 210 55 60

19 59 4 3 5625 = 32 ·54 1140 195 240

29 119 5 4 20736 = 28 ·34 3480 504 600

27 27 6 1 3430 = 2 ·5 ·73 756 161 168

34 69 6 2 13720 = 23 ·5 ·73 2380 378 420

41 209 6 5 60025 = 52 ·74 8610 1085 1260

55 335 7 6 147456 = 214 ·32 18480 2064 2352

44 44 8 1 10935 = 37 ·5 1980 351 360

62 188 8 3 91854 = 2 ·38 ·7 11718 1377 1512

71 503 8 7 321489 = 38 ·72 35784 3591 4032

Lemma 16 μ is always even.

Proof. μ = α(t +1)

If s is odd, then t must be odd. This is because t+1
s+1 = x must be an integer and if s+ 1 is

58



even, then t +1 must also be even. So μ = α(t +1) is even.

Suppose s is even.

Case 1: Assume t is even. Then (s+1)(t +1) is odd. If (s+1)(t +1)≡ 0(mod s+ t +1−

α), then s+ t +1−α must also be odd. This implies α is even. Thus μ = α(t +1) is even.

Case 2: Assume t is odd. Then μ = α(t +1) is even.

So μ is always even. �

Lemma 17 For every even value of α there is a set of parameters for a potential partial

geometry (s = t, t,α).

Proof. Let α be even and s = t.

Then (t +1)
t2 +α

α
≡ 0 (mod 2t +1−α) and (t +1)2 ≡ 0 (mod 2t +1−α), so

(t +1)
t2 +α

α
≡ (t +1)2 (mod 2t +1−α).

Multiplying by α we get

(t +1)(t2 +α)≡ α(t +1)2 (mod 2t +1−α).

Then subtracting we get

(t +1)(t2 +α −α(t +1))≡ 0 (mod 2t +1−α).
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Simplifying this gives us

t(t +1)(t −α)≡ 0 (mod 2t +1−α).

Suppose t �≡ 0 (mod 2t +1−α). Then we may rewrite the congruence as

t2 +(1−α)t −α ≡ 0 (mod 2t +1−α).

Multiplying by (α −1) we get

t2(α −1)− t(α −1)2 −α(α −1)≡ 0 (mod 2t +1−α).

When working in (mod 2t + 1−α) we have α − 1 = 2t. So we can rewrite the above

congruence as:

t2(α −1)− t(α −1)2 −2αt ≡ 0 (mod 2t +1−α).

Then factoring out t we get

t(t(α −1)− (α −1)2 −2α)≡ 0 (mod 2t +1−α).
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Once again removing the factor of t, and then expanding and simplifying this becomes

(α −1)t −α2 −1 ≡ 0 (mod 2t +1−α).

Now we know α is even, so let α = 2k.

Then α −2 = 2(k−1), and after multiplying by t we get

(α −2)t = 2(k−1)t.

Now substituting α −1 for 2t, this becomes

(α −2)t = (k−1)(α −1).

But k−1 =
α −2

2
so we get

(α −2)t =
α2 −3α +2

2
.

Now (α − 1)t = (α − 2)t + t. We can use this along with the expression for (α − 2)t to

rewrite our equivalence as:

t +
α2 −3α +2

2
−α2 −1 ≡ 0 (mod 2t +1−α).
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This simplifies to

t − α2 +3α
2

≡ 0 (mod 2t +1−α).

Therefore t =
α2 +3α

2
is a solution for t whenever α is even. Thus for every even value

of α , there is a set of parameters for a potential partial geometry (s = t, t,α). �

The sets of values in Table 4.1 were also investigated using the expressions for the

eigenvalues and each produced integer values when each prime factor of v was used as

n. Each set also satisfied the congruences from Theorem 4.

Of the values in the table, only the first set (5,5,2) is currently known to be a partial

geometry. Because there are an infinite set of possible parameters in the s = t case, we

choose to investigate the potential pg(14,14,4) in the hopes that insights gained there might

be of use in the larger class. So we hypothesize the existence of pg(14,14,4) and try to

deduce its structure.

4.2 Observations on a hypothetical geometry

Let S denote the point set of the pg(14,14,4) and G an abelian automorphism group acting

regularly on the points of S. That is, each element of G maps points of S to other points in S.

Let x be a fixed point in S and identify x with id ∈ G. Also, identify the point y ∈ S with the

unique g in G such that xg = y. This gives us a one-to-one correspondence between S and G.

So now instead of working with S, we will work with G. This geometry is associated with
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a srg(750,210,55,60). Factoring the number of vertices as 2 ·3 ·53 gives our first insights

into the structure. As any fixed point can be mapped to each of the 750 points, there are

also 750 elements of G. Let D denote the set of all elements of G that are collinear with the

identity, id. That is, the automorphisms that map x to points collinear with x. We can thus

create an image to help us understand the relationships as below:

g14

g3g2g1id

Figure 4.2: The set D

Observation 1 There is one element of order 2 and it is not in D.

We know there is one element of order 2 as 2 is a factor in the order of D. There is

only one such element because of the structure of finite abelian groups. The prime

factorization 2 · 3 · 53 means this group is either Z2 ×Z3 ×Z53 or Z2 ×Z3 ×Z5 ×Z52 or

Z2 ×Z3 ×Z5 ×Z5 ×Z5. In any of these cases, there is only one factor of order 2. Suppose

g1 is the point with order 2 and is in D. Applying g1 to the points on the first line id is

mapped to g1 and g1 is mapped to id. Thus all of the points on the line remain fixed. This

is not allowed and thus the point of order 2 cannot be in D.
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Observation 2 There is one element of order 3.

Again by the same reasoning as in observation 1, we know this because 3 is a factor

of the number of vertices. We do not know yet whether or not the element of order 3 is in D.

Observation 3 Let L be a line through id and let its remaining points be g1,g2, . . . ,g14.

Then the g−1
i are two by two collinear.

Let g−1
j act on L. Because g−1

j g j = id and g−1
j gi = gig−1

j , we know that gig−1
j ∼ id. Now

let g−1
i act on gig−1

j and id. This tells us that g−1
j ∼ g−1

i . Now suppose g−1
i ∼ g−1

j ∼ g−1
k .

gi-1

gi-1 gigj-1( )=gj-1

gj-1

gigj-1

g14

gi
gj

g1
id

Figure 4.3: The action of g−1
j and then g−1

i

Let gi act on these points. Then id ∼ gig−1
j ∼ gig−1

k were all on a line. But gig−1
j ,gig−1

k are

on distinct lines through id. Therefore the original three points are not on a line and the

gj
-1 ≠ gk

-1

gigk
-1

gigj
-1

gk
-1

gj
-1

gi
-1id

Figure 4.4: The action of gi on inverses.
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g−1
i are two by two collinear.

Observation 4 Two points, g and h are collinear if and only if g−1h ∈ D.

⇒

Suppose g ∼ h on L. Let g−1 act on L. Then g �→ id and h �→ g−1h. so g−1h ∼ id and

g−1h ∈ D.

g-1h

Lgid
h

g-1h

L*

g
id

h

Figure 4.5: The action of g−1. The action of g.

⇐

Suppose g−1h ∈ D. Then g−1h ∼ id on some line L∗. Let g act on L∗. Then g−1h �→ h, and

id �→ g so g ∼ h.

Observation 5 For all j = 1,2, . . . ,14, gi ∼ gig−1
j .

We know that id ∼ g−1
j . Let gi act on this line. Then gi ∼ gig−1

j .

Observation 6 If g is the unique element of order 3 and g ∈ D, then g2 ∈ D. If g /∈ D, then
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id,g,g2 are not collinear.

If g ∈ D, then g ∼ id on some L. Let g act on L. Then g2 ∼ g. Because g2 = g−1 we have

g2 ∈ D.

Suppose g /∈ D, then clearly id �∼ g and id �∼ g2. If g ∼ g2 then when g acts on that line, we

get g2 ∼ id which is a contradiction. Thus no two of id,g,g2 are collinear.

Observation 7 There are points on L with even order �= 2.

Let i be the unique element of order 2. Because this is a geometry, there is an associated

strongly regular graph. For this graph μ = α(t + 1) = 60. Thus there are 60 points

collinear with both i and id. These 60 points are thus in D. Let g be one of these 60 points.

If it has even order, then we are done. If g has odd order, then we know that ig is also one

of the 60 points under consideration. Assume g has order 2k+ 1. Then the lowest order

possible for ig is 2(2k+1). This means ig is a point of even order and because ig is in D it

must be on some L. Therefore, there must be points on L with even order.

Observation 8 If a point g in D has order 5, then either g,g4 ∈ D or g,g2,g3,g4 ∈ D.

Suppose g has order 5 and is in D. Then g4 = g−1. Thus g4 ∈ D. Likewise (g2)−1 = g3. So

if g2 ∈ D,g3 ∈ D. Thus either we have a complete graph for these five points, or just g,g4

in D.
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Observation 9 If a point g in D has order 6, then g,g5 = g−1 ∈ D. If the point of order 3 is

in D, then g2,g4 are also in D.

Suppose g has order 6 and is in D. Then g5 = g−1. Thus g5 is in D. If the unique point of

order 3 is in D, then (g2)−1 = g4 so both g2 and g4 are in D.

It was hoped that just as in the pg(5,5,2) case that a series of observations like these would

either lead to a construction of a pg(14,14,4) or to disproving its existence. However at

this point we did not succeed and there is no conclusion yet as to whether pg(14,14,4)

does exist. Further investigation is necessary to make this determination.
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Chapter 5

A Benson type theorem for strongly

regular graphs

The discussion of the previous chapters has focused on the application of Benson’s

Theorem to partial geometries. However, the proof of Theorem 4 did not actually rely on

the properties of the geometry, so now we return to the theorem and consider it as applied

to a strongly regular graph. First we need to determine expressions for the eigenvalues in

terms of the parameters of a strongly regular graph.
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5.1 Eigenvalues for a strongly regular graph

Recall from Lemma 3 that the eigenvalues of the adjacency matrix were the solutions to

the equation

θ 2 +(μ −λ )θ +(μ − k) = 0. (5.1)

Previously we obtained specific expressions for these eigenvalues in terms of s, t,α as our

focus was on partial geometries. Now we determine expressions for these eigenvalues

in terms of the parameters for a strongly regular graph. As before, we know that one

eigenvalue will be k. If we solve equation (5.1) in terms of k,μ,λ using the quadratic

formula we obtain the two additional eigenvalues. Let ν1,ν2,ν3 represent the eigenvalues.

ν1 = k

ν2 =
1

2

(
λ −μ +

√
(λ −μ)2 +4(k−μ)

)

ν3 =
1

2

(
λ −μ −

√
(λ −μ)2 +4(k−μ)

)

We know that the sum of the multiplicities of the eigenvalues is v, and also that the sum

of the eigenvalues is the trace of the adjacency matrix. If m1,m2,m3 are the multiplicities,
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these conditions give us the following system of equations:

m1 +m2 +m3 = v

k+m2ν2 +m3ν3 = 0

To solve this system, we multiply the first equation by ν2 and subtract to get

ν2 − k+m3(ν2 −ν3) = vν2.

Solving for m3 gives us m3 =
k+ν2(v−1)

ν2 −ν3
.

Substituting back in the first equation and solving for m2 we get m2 =
−ν3(v−1)− k

ν2 −ν3
.

Finally substituting for ν2 and ν3 gives the multiplicities in terms of k,λ ,μ .

m1 = 1

m2 =
1

2

(
v−1− 2k+(v−1)(λ −μ)√

(λ −μ)2 +4(k−μ)

)

m3 =
1

2

(
v−1+

2k+(v−1)(λ −μ)√
(λ −μ)2 +4(k−μ)

)

In almost all cases, the eigenvalues are integers. The exception occurs in the case of the

conference graph where 2k− (v−1)(λ −μ) = 0. In this graph k =
v−1

2
,λ =

v−5

4
,μ =

v−1

4
which leads to

√
(λ −μ)2 +4(k−μ) =

√
v.

Automorphisms of graphs are much like those for geometries. However, in the case of
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graphs, edges are mapped to edges, while for a geometry, lines must be mapped to lines,

the automorphisms for geometries are a subset of those for the accompanying strongly

regular graph. In Figure 5.1 note that an automorphism of the geometry on the left requires

that lines are mapped to lines. This means in the accompanying graph, that each set of a

single color of edges must be mapped to another set of singly colored edges. In general, an

automorphism of a graph simply requires that edges be mapped to edges.

srg(9, 6, 3, 6)

pg(2, 2, 2)

D
E

F

H

B

IG

CA

A
B

C

D

E

F
G

H

I

Figure 5.1: pg(2,2,2) and its point graph

5.2 The generalized theorem

The conditions for Benson’s Theorem in fact only require a strongly regular graph, so

we can generalize this theorem to include automorphisms of strongly regular graphs as

well. Suppose φ is an automorphism of the graph G with order n. Then there is a v× v

permutation matrix P corresponding to this automorphism. In a strongly regular graph,

PA = AP [3] where A is the adjacency matrix of the graph, and also Pn = I where I is

the v× v identity matrix. Again we let f represent the number of vertices fixed by the
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automorphism and g be the number of vertices mapped to adjacent vertices by φ . We can

now state a generalization of Theorem 4.

Theorem 18 Let G be a strongly regular graph srg(v,k,λ ,μ) that is not a conference

graph, and let φ be an automorphism of order n of G. Let μ(d) denote the sum of the

primitive dth roots of unity. Then for every integer r and all divisors d of n, there are

nonnegative integers ad and bd such that

k− r+∑
d|n

adμ(d)(ν2 − r)+∑
d|n

bdμ(d)(ν3 − r) =−r f −g.

As a consequence, the following congruence holds:

k−ν2 ≡−ν2 f +g(mod ν3 −ν2).

Proof. Let M be the matrix M = A − rI. Because A has integer eigenvalues, so does

M. These eigenvalues are τ0 = k − r,τ1 = ν2 − r, and τ2 = ν3 − r as subtracting r from

the diagonal elements of A subtracts r from each of the eigenvalues. The multiplicities

are still as above, m1,m2,m3. Because PA = AP, we note that PM = MP and hence,

(PM)n = PnMn = Mn as before. Likewise it again follows that the eigenvalues of PM

are the eigenvalues of M multiplied by the appropriate nth roots of unity. The sum of each

row of an adjacency matrix for a regular graph is k, so the sum of the elements of each row

of M is k− r. If PM is multiplied by an all-one vector, J, the product will be a vector with

each entry equal to k− r. In other words, PMJ = (k− r)J. So k− r is an eigenvalue for PM
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with multiplicity m1 = 1. Now let d be a (positive) divisor of n, and let ξd be a primitive

dth root of unity. The eigenvalues of M are integers. Thus the eigenvalues of PM are these

integers multiplied by roots of unity. By the same Lemma noted in Theorem 4, each of

ξd(ν2 − r) will have the same multiplicity, dependent only on d. Denote this multiplicity

by ad . In the same way the multiplicity of the eigenvalue ξd(ν3 − r) will only depend on

d. Denote this multiplicity by bd . The sum of the primitive dth roots of unity is μ(d). We

now obtain an equation similar to that in Theorem 4.

trace(PM) = k− r+∑
d|n

adμ(d)(ν2 − r)+∑
d|n

bdμ(d)(ν3 − r).

On the other hand, the trace of PM must equal −r f + g as each entry on the diagonal of

PM is −r if the corresponding vertex is fixed and 1 if the corresponding vertex is mapped

to a collinear vertex by the automorphism. Therefore, we get

k− r+∑
d|n

adμ(d)(ν2 − r)+∑
d|n

bdμ(d)(ν3 − r) =−r f +g.

Setting r = ν2 we obtain

k−ν2 ≡−ν2 f +g(mod ν3 −ν2),

proving the theorem. �

We can also use this result to obtain expressions for the multiplicities of the eigenvalues.
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When φ is an automorphism of prime order, p of G, setting r = ν3 we obtain the equation

k− ν3 + ∑
d|p

adμ(d)(ν2 − ν3) = −ν3 f + g. Because p is prime, we have μ(p) = −1 and

μ(1) = 1. Also we know that a1 + ap = m2. These observations give us the following

system of equations in a1 and ap:

⎧⎪⎪⎨
⎪⎪⎩

a1(ν2 −ν3)−ap(ν2 −ν3) =−ν3( f −1)+g− k

a1 +(p−1)ap = m2

Multiplying the second equation by (ν2 −ν3) and subtracting from the first equation gives

us

−ap p(ν2 −ν3) =−ν3( f −1)+g− k−m2(ν2 −ν3).

Solving for ap we get ap =
ν3( f −1)−g+ k+m2(ν2 −ν3)

p(ν2 −ν3)
.

Then substituting the expressions in terms of k,v,λ ,μ this gives us

ap =
−2g+( f − v)

(
λ −μ −

√
(λ −μ)2 +4(k−μ)

)
2p
√

(λ −μ)2 +4(k−μ)
.

Now a1 = m2 −ap(p−1), so we obtain the following expression for a1.

a1 =
2g(p−1)−2pk− ( f (p−1)+ v− p)

(
λ −μ −

√
(λ −μ)2 +4(k−μ)

)
2p
√

(λ −μ)2 +4(k−μ)
.

These values should be nonnegative integers so calculating these values can give insight as

to whether or not specific strongly regular graphs admit certain automorphisms.
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Chapter 6

Summary and future work

The major results of this thesis can be stated as follows:

• In Chapter 2 we developed expressions for the multiplicities of the eigenvalues of

the matrix M = A+(t + 1)I where A is the adjacency matrix of the point graph of

a partial geometry when that partial geometry is acted upon by an automorphism of

prime order.

Theorem 5 Given a partial geometry pg(s, t,α) acted upon by an

automorphism of prime order, n, the matrix QM as defined in the proof

of Theorem 4 has eigenvalues with multiplicities a1 and a2 as follows:

a1 =
α(n−1)((t +1) f +g)+(s+1)(t +1)(st −α(n−1))

αn(s+ t +1−α)

a2 =
(s+1)(t +1)(st +α)−α((t +1) f +g)

αn(s+ t +1−α)
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• In Chapter 3 we developed necessary conditions for the existence of a generalized

maximal arc.

Theorem 9 If S(M) is constructed from PG(m,q)’s in PG(n,q) where q is a power

of some prime, p, then n = 2m+ 1+
m+1

r+1
for some r, a non-negative integer, and

α =
(pk −1)(qm+1 −1)

qn−2m−1 −1
where 0 < pk < qn−2m−1.

• In Chapter 4 we found a list of potential rigid-type partial geometries.

Table 4.1
Values of s, t,α for potential partial geometries.

s t α x v k λ μ
5 5 2 1 81 = 34 30 9 12

11 23 3 2 1024 = 210 264 56 72

14 14 4 1 750 = 2 ·3 ·53 210 55 60

19 59 4 3 5625 = 32 ·54 1140 195 240

29 119 5 4 20736 = 28 ·34 3480 504 600

27 27 6 1 3430 = 2 ·5 ·73 756 161 168

34 69 6 2 13720 = 23 ·5 ·73 2380 378 420

41 209 6 5 60025 = 52 ·74 8610 1085 1260

55 335 7 6 147456 = 214 ·32 18480 2064 2352

44 44 8 1 10935 = 37 ·5 1980 351 360

62 188 8 3 91854 = 2 ·38 ·7 11718 1377 1512

71 503 8 7 321489 = 38 ·72 35784 3591 4032
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• In Chapter 5 we proved a Benson type theorem for strongly regular graphs.

Theorem 18 Let G be a strongly regular graph srg(v,k,λ ,μ) that is not a conference

graph, and let φ be an automorphism of order n of G. Let μ(d) denote the sum of the

primitive dth roots of unity. Then for every integer r and all divisors d of n, there are

nonnegative integers ad and bd such that

k− r+∑
d|n

adμ(d)(ν2 − r)+∑
d|n

bdμ(d)(ν3 − r) =−r f −g.

As a consequence, the following congruence holds:

k−ν2 ≡−ν2 f +g(mod ν3 −ν2).

In the future I would like to continue to investigate some of the potential

rigid-type geometries listed in Chapter 4 beginning with more work on the potential

pg(14,14,4). A determination as to the existence of this partial geometry could

provide insight into the infinite family of potential rigid-type partial geometries with

s = t. I would also like to continue to work on ways to bring material of this nature

down to students at the pre-college level. The adventure of discovering mathematics

is a grand one and I hope to impart some of the joy to younger students, encouraging

them to pursue this adventure in their future.
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Appendix A

Partial geometries and strongly regular
graphs - an enrichment unit for high
school

The following document is a four lesson unit to be used as an enrichment to the standard

curriculum. In the typical mathematics sequence students have little exposure to finite

geometries. Proof is often limited to the two-column format and students are rarely asked

to first create a conjecture before proving it. By providing an opportunity to explore a

new topic and make conjectures, this unit aims to broaden the student’s horizons as to

what mathematics is and how it is done. The unit begins with a summary of mathematics

involved. This includes a discussion of geometry in general along with information on

partial geometries and strongly regular graphs. Following this introductory material, each

lesson consists of information and a lesson plan for the teacher, a worksheet of examples

and exercises for the student, and solutions for the exercises. The exercises are designed to

be done in groups, and culminate in the proof of the relationship between the parameters

of a partial geometry and its strongly regular graph.
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Introduction and Background Mathematics

In the most general sense, geometry is the branch of mathematics dealing with properties

and relationships between points, lines, and figures in space according to a specific set

of assumptions. In school, the geometry studied is generally that of Euclid, where there

are infinitely many points on each line, and infinitely many lines. However, it is possible

to change the basic assumptions, and limit the system to a finite number of points and

lines. Working with a finite set of points and lines provides an opportunity for students to

conjecture and develop proof skills in a different setting. Extending these ideas beyond the

typical models of points and lines to include algebraic objects such as variables and graphs

also provides an opportunity to generalize and see the power of mathematics. Geometries

consisting of sets of objects referred to as points and lines along with an incidence relation

between them are called point line geometries. Every geometry has a set of axioms,

or postulates, from which theorems and properties are deduced. The familiar Euclidean

geometry rests on five such postulates:

1. Any two points define a line segment.

2. Any line segment can be extended indefinitely to be a line.

3. Given any line segment a circle can be constructed having the segment as its radius

and one endpoint as its center.

4. All right angles are congruent.

5. If two lines intersect a third (called a transversal) so that the sum of the interior angles

on one side of the third line is less than two right angles, then the original two lines

intersect each other on that side.

The fifth postulate is equivalent to the statement that given a line and a point not on that

line there is exactly one line parallel to the given line through the given point. However, it

is possible to create a geometry with a different set of axioms. Many such systems exist

including the non-Euclidean geometries that accept the first four postulates and contradict

the fifth by either allowing for an infinite number of parallels through a point or allowing

none. If we limit ourselves to a finite point-line geometry, we can create systems with a

simpler set of axioms. For instance, the following postulates define a partial geometry in

terms of three parameters, s, t, and α .

1. There are s+1 points on every line.

2. There are t +1 lines incident with every point.

3. Through any two points there is at most one line.
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4. Given a line and a point not on that line, there are α points on the line that are

collinear with the given point.

Because the three values, s, t,α , describe the partial geometry we refer to a specific partial

geometry as pg(s, t,α), substituting specific values for each partial geometry.

While it is not necessary or even practical to create diagrams of all partial geometries, it

is helpful to look at some simple examples. For instance a triangle is a representation of

pg(1,1,2). There are 1+ 1 = 2 points on each line, 1+ 1 = 2 lines through each point,

and each point not on a line is collinear with 2 points on that line. Notice that point A is

collinear with B and C, so α is 2.

pg(1, 1, 2)

C

A

B

A simple rectangle is also representation of a partial geometry, pg(1,1,1). If we include

the diagonals, then the we have pg(1,2,2).

pg(1, 1, 1) pg(1, 2, 2)

B BA

DD

A

CC

None of these is the representation of a proper partial geometry however, because to be

proper, α must be less than both s and t. The next figure is called a generalized quadrangle

and it is a representation of the proper partial geometry pg(2,2,1). In this figure, each

colored arc or line segment represents a line. Note that there are 2+1 = 3 points on each

line. Only the points marked as such are actually points. Other apparent intersections do

not represent points of the geometry. Because visual representations of most proper partial

geometries become rather complex, in this unit most of the geometries students will work

with will not be proper.
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pg(2, 2, 1)

L

M

N

O K

A

E

D

F

H

G

I C

J B

Graphs are one tool used to provide insight into a geometry. In this context a graph is a

collection of vertices and edges, not the familiar Cartesian graph of a function. Each vertex

represents a point in the geometry. The edges of the graph indicate collinearity. Every pair

of collinear points is connected by an edge. If two vertices are connected by an edge, they

are called adjacent. The graph below has four vertices and six edges.

BA

D C
Each vertex of a graph has a degree associated with it. The degree is the number of edges

that meet at that vertex. In the graph above, each vertex has degree three. When all vertices

have the same degree, the graph is called regular. The graph above is an example of a

3-regular graph because each vertex has degree three.

Simple polygons, such as a rectangle or triangle, are examples of 2-regular graphs, so

2-regular graphs are possible for all numbers of vertices. However, it is not possible to

create all values of regular graphs for every number of vertices. For n vertices to have a

k-regular graph, the value of nk must be even. This is because nk counts k edges at each

of n vertices, thus counting each edge twice. When there is an odd number of vertices, the

only k-regular graphs are thus only those where k is even.

3-regular is
not possible

2-regular 4-regular

5-regular4-regular3-regular2-regular
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There is a regular graph associated with every partial geometry. When there are only two

points on each line, the graph and geometry look the same. However, when there are more

than two points on each line the graph and the geometry are visually different. Suppose

there are three points on each line. That means that in the graph these three points must

all be adjacent to each other. That is, they form a triangle in the graph. The graph for the

generalized quadrangle shows this. In the geometry, the points A,B,C were collinear. In

the graph notice that they form a triangle. Every other set of three collinear points in the

geometry corresponds to a similarly colored triangle in the graph.

L

M
N

O

D

C

F
E

H

G

J

I

A

B

K

For a somewhat simpler example of this consider the following geometry and its graph.

D

F

EH

G

A

I

B

E F

H

D

B

I

C

G

A
C

Some regular graphs are also classified as strongly regular. This implies further conditions.

First, any two adjacent vertices, or vertices connected by an edge, are commonly adjacent

to the same number of vertices. Similarly, any two non-adjacent vertices will always have

the same number of common neighbors. The graph, srg(v,k,λ ,μ), is defined by four

parameters,

• v: number of vertices

• k: degree of graph

• λ (lambda): number common neighbors of adjacent vertices

• μ (mu): number of common neighbors of non-adjacent vertices

For example, in the graph below, any two adjacent vertices are both adjacent to two other

vertices. For A and B these common neighbors are C and D. While two non-adjacent
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vertices such as A and F have four common neighbors, B,C,D, and E.

srg(6, 4, 2, 4)

D

E

A

C

B

F

Each partial geometry has an accompanying strongly regular

graph. However, only some strongly regular graphs are related to partial geometries. The

parameter values for a partial geometry and its associated strongly regular graph are closely

related. In the final lesson of this unit students will prove the theorem:

Theorem 19 The point graph of a pg(s, t,α) is a strongly regular graph with parameters
(v,k,λ ,μ) =

(( st+α
α
)
,s(t +1),s−1+ t(α −1),α(t +1)

)
.

The proof is not trivial. Students will use diagrams to help in their reasoning as they

prove each part of this relationship. Many students do not have much experience writing

paragraph proofs, but in future mathematics courses, most work is done in an expository

fashion. Each section of the proof makes use of diagrams to aid in reasoning. This is

also a technique that is often used as a mathematician seeks new understanding. Thus the

experience of working through this major proof provides insight into future mathematical

techniques.
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Lesson 1: What is a Geometry?

Begin this lesson with a discussion by asking “What is geometry?” Guide the discussion

to create a definition of geometry that is the most basic possible: a study of points, lines,

and the relationships between them. All of the other things mentioned, such as triangles,

congruence, circles, proof, are simply expansions of the relationships between points and

lines. Then ask “What is a point?” Here students will probably offer up the standard image

of an infinitely small “dot” or location. Suggest the possibility of a point as an idea, that

other things can represent points other than dots. Recall that a point is an undefined term

in Euclidean geometry. Anything can be used to represent a point, a dot, a letter, a number,

a person. Finally ask, “What is a line?” By now students may have the idea that you want

them to think more broadly. They may offer more creative interpretations. Be open to all

ideas. Based on what we use to represent a point, this can help determine what represents a

line. For instance, if people represent points, then the relationship of friends on Facebook

might represent a line. Another example is to think of rooms as points and doors between

rooms are lines connecting the points. The idea is to get the students to begin to think more

abstractly about the concepts of points and lines. In this lesson, points and lines will be

represented in many ways, and the idea of incidence will also be defined accordingly. They

will be working with a finite number of points and must remember that any two points can

only be on one line. Work through the following examples as a class.

Example 1

What is the smallest number of points you need to make 3 lines with 2 points on every

line? Can you represent your answer in more than one way?

Let students work on this in groups for a few minutes and then present solutions. Look

for the smallest number of points, that is, three. The solution can be represented as a

triangle. If no one has another representation, suggest the following idea. Let the points be

represented by a,b,c. The lines are the combinations of two letters, ab,ac,bc. Using this

representation, pick a point, a, and a line not containing a, that is, bc. How many of the

points on bc are collinear with a? Students should readily see that both points on bc are

collinear with a. Is this true if you pick any point and line not containing that point?

Example 2

What is the smallest number of points you need so that each point is on two lines, each line

contains two points, and for any point and line not containing that point, only one point

is collinear with the given point? Try and make both a picture and a letter representation
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of this situation. If students are puzzled as to how to begin, suggest they try to satisfy the

conditions with three points. If they cannot, then add a fourth point and try again. Keep

adding one point at a time until you are able to meet the conditions.

This should be a rectangle for the visual representation. Using letters, if the points are

a,b,c,d, then the lines are ab,bc,cd,da. Students should then complete the remaining

exercises in small groups. Share answers with the rest of the class as time permits.
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What is a Geometry?

Example 1

What is the smallest number of points you need to make 3 lines with 2 points on every line?

Can you represent your answer in more than one way?

Example 2

What is the smallest number of points you need so that each point is on two lines, each line

contains two points, and for any point and line not containing that point, only one point is

collinear with the given point? Try and make both a picture and a letter representation of

this situation.

Picture Letters
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In Your Group

1. Create both a picture representation and a letter representation of a geometry where

each point is on three lines, there are two points on each line, and for any point and

line not containing that point, two points are collinear with the given point. (Hint:

you can do this with four points.)

2. Another way to create a geometry is to use a table like the one below. Notice that the

table is symmetric across the empty diagonal. Each box above the diagonal contains

a unique letter.

 A B C 

A  D E 

B D  F 

C E F  

Here each of the rows represents a line and each letter represents a point. So there

are four lines, each with three points. Create a geometry using a table with five rows

and five columns.

     
     
     
     
     

(a) List each of the lines using the letters.
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(b) Choose any point and a line that does not contain that point. How many points

on the line are collinear with the chosen point.

(c) Creating a visual representation of the geometry you just created is rather tricky

so instead, try to create a visual representation of the 6-point geometry in the

given table above. Keep in mind that one of the ”lines” may need to curve in

order to make the geometry complete.

3. Create a letter representation of the geometry that has three points on every line, two

lines through every point, and for any point and line not containing that point, only

one point is collinear with the given point. Do not try to make a drawing of this

system, just create a letter representation. (Hint: you only need 9 points and 6 lines.)
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Lesson 1 answers

In your group

1. Here each line is shown in a different color.

pg(1, 2, 2)

BA

D C

2. The table is shown below.

 A B C D 

A  E F G 

B E  H I 

C F H  J 

D G I J  

(a) lines: ABCD,AEFG,BEHI,CFHJ,DGIJ

(b) There are two points that are collinear. For instance, A is not on line BEHI, but

A and B are collinear as are A and E.

(c) The geometries for both the 4×4 and 5×5 grid are shown below:

B

F

D

E

A

C

J
IHE

A

D

G

B

C

F

3. One representation might consist of these lines: abc,de f ,ghi,adg,beh,c f i. While

the problem did not ask for a figure, one is given below.

pg(2, 1, 1)

E F

H

D

B

I

CA

G
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Lesson 2: Graphs

Introduce the lesson by discussing the fact that each of the geometries discussed so far

also can be represented by a graph. This is not like the graph of a function, but a different

sort of graph. Display a graph similar to the one below for the purposes of defining the

vocabulary associated with a graph. When a line has only two points, the graph is the same

as the geometry. However, when there are more points on a line, the graph will look very

different from the visual representation of the geometry. Use the geometry from exercise 3

in the previous lesson to illustrate this. Use a set of letters from one of the groups. Look

the lines that contain the letter A. In a picture of the geometry, you would see two lines.

But on the graph, you will need to have an edge going from A to each of the other points on

those lines. Ask students to determine how many vertices will be connected, or adjacent,

to A on the graph. They should see that four points will be adjacent to A. Then go on to the

examples to introduce the idea of degree.

Example 1

A graph consists of a set of edges and vertices. This graph has six vertices and ten edges.

The number of edges that meet at a vertex is called the degree of that vertex. The vertex

A has degree two while vertex D has degree four. Have students name the degrees of the

remaining vertices.

D

CB

A

F E
If every vertex has the same degree, the graph is said to be regular. Have students try to

turn this graph into a regular graph by adding edges. A possible solution is shown below.

E

D

CB

A

F
This is now a regular graph of degree four. More edges can also be added to make the graph

regular with degree five.
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Example 2

Graphs can be drawn on any number of vertices. Is it possible to draw a regular graph using

two vertices? What degree is each vertex? What types of regular graphs can you draw using

three vertices? What if you use four vertices? Let students experiment and introduce the

terminology of k-regular graphs. Students should discover that with two vertices you can

make a 1-regular graph while with three vertices you can only make a 2-regular graph.

Using four vertices they should be able to make both a 2-regular graph and a 3-regular

graph.

3-regular2-regular2-regular1-regular

In the exercises students will investigate the relationship between the number of vertices

and the possible regular graphs. They will also discover that a partial geometry has a regular

graph and begin to investigate the connection between the degree of the regular graph and

the parameters of the geometry.
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Lesson 2: What is a Graph?

Example 1

D

CB

A

F E
What is the degree of each vertex in the graph shown?

Add edges to the graph to make it regular. What is its degree now?

Example 2

Graphs can be drawn on any number of vertices.

Is it possible to draw a regular graph using two vertices? What degree is each vertex?

Draw all of the regular graphs using three vertices. What degree is each vertex?

Draw all of the regular graphs using four vertices. What are the degrees of each vetex?
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In your group

1. In Example 2 you considered regular graphs on 2, 3, and 4 vertices. What happens if

you have more vertices?

(a) Using five vertices draw an example of each type of regular graph possible.

(b) Repeat for six vertices.

(c) What types of regular graphs are possible for seven vertices? Explain.

(d) What types of regular graphs are possible for eight vertices? Explain.

(e) What types of regular graphs are possible for n vertices? Explain.
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2. Every geometry has an associated graph. In the visual representation of the

geometry, all points on a line are shown on the same line. When you create

the graph, all points that are on a line in the geometry are adjacent in the graph.

B

F

D

E

A

C

(a) In the geometry above A,B, and C are on a line. In the graph A will be adjacent

to B and also to C. What other points will be adjacent to A in the graph?

(b) Draw the graph associated with this geometry.

(c) Is the graph regular? If so, what is its degree?

3. Below is a visual representation of another geometry. Will the associated graph be

regular? If so, what is its degree? Explain how how you determined this value.

J
IHE

A

D

G

B

C

F
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Lesson 2 Answers

In your group

1. (a) Regular graphs on five vertices:

3-regular is
not possible

2-regular 4-regular

(b) Regular graphs on six vertices:

5-regular4-regular3-regular2-regular

(c) On seven vertices the only regular graphs are 2-regular, 4-regular, and 6-regular.

(d) On eight vertices all regular graphs from 2-regular through 7-regular are

possible.

(e) On n vertices all regular graphs from 2-regular through (n − 1)-regular are

possible when n is even. When n is odd, only the even valued regular graphs are

possible. Suppose n is odd and you want to make a 3-regular graph. Then each

vertex must have 3 edges meeting at it. This makes a total of 3n edges. But

because each edge touches two vertices, the total of 3n counts each edge twice.

So 3n must be an even number. However, since n was also odd, that means 3n
is odd. This is a contradiction. Thus it is impossible to have a 3-regular graph

on an odd number of vertices. The same problem occurs whenever you try to

make an odd-regular graph on an odd number of vertices.
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2. (a) A will also be adjacent to D and E.

(b) Two possible graphs are shown below.

D

C

F

E

A

D

E
F

B

C

A B

(c) The graph is 4-regular.

3. The graph will be 6-regular. Consider a point such as A. It is collinear with six

other points. So it will be adjacent to six points in the graph. Because this is true

for any point, it means the graph will be 6-regular. Another way to consider this is

as follows: There are four points on each line so any point will be adjacent to three

other points from that line. There are two lines through each point so a given point

will be adjacent to three points on each of two lines, making the vertex degree six

and the graph is 6-regular.
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Strongly Regular Graphs

In this lesson students will look more closely at properties of some regular graphs and

begin to make connections between graphs and geometries. The specific type of regular

graphs that we will focus on are called strongly regular graphs. These graphs are regular

but are not complete. A complete graph contains all possible edges so that every vertex

is adjacent to every other vertex. Strongly regular graphs have two additional parameters

λ (lambda), the number of common neighbors to two adjacent vertices, and μ (mu), the

number of common neighbors to two non-adjacent vertices. Complete graphs are excluded

from this discussion as all vertices are adjacent and it makes no sense to talk about a

value of μ for them. The values of v(number of vertices), k(degree), λ and μ in the graph

associated with a geometry are determined by the parameters of the geometry (s, t,α).
In this lesson students will hypothesize the relationship for the values of k and μ . The

relationships for v and λ are more complicated and students verify these relationships in

the examples. In Lesson 4 students will prove their conjectures.

Introduce the lesson by presenting the graph from example 1 in the previous lesson.

D

CB

A

F E
Now consider two adjacent vertices in this graph, for example B and C. Ask “how many

vertices are adjacent to both of these vertices?” Only vertex D is adjacent to both. We say

that B and C have one common neighbor. Ask “how many common neighbors do D and F
have?” In this case they have two, C and E. Next look at two non-adjacent vertices such

as A and D. Ask “how many common neighbors do these vertices have?” Two, vertex B
and F . Now move on to considering regular graphs. Start with a very basic graph such as

a rectangle. Identify the number of vertices and the degree. Now determine the number

of common neighbors to any two adjacent vertices. In this case the value is zero. Also

determine the number of common neighbors to any two nonadjacent vertices to be one.

B

D

A

C
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Example 1

D

EF

C

A

D

E
F

B

C

A B

Present these graphs and have students determine the values of the four parameters

(v,k,λ ,μ). Answer: (6,4,2,4). Then discuss how this is actually the same graph. If

you have Geometers Sketchpad or similar software, consider creating the first graph and

then letting students manipulate it into the second form. Uncovering the geometry from the

graph is not possible without making some assumptions. So assume ABC is a line in the

geometry. What are the other lines? Each triangle in the figure might be considered a line,

but remember, any two points can be on at most one line. So ABD cannot be a line since A

and B are already on one line. The remaining lines are ADE, BDF, and CEF. Try making

a different initial assumption such as ABD is a line. Ask “What are the other lines now?”

Students should find the other lines to be BCF , DEF , and ACE. This last one may be a bit

more difficult to identify.

Example 2

Every partial geometry can be described by three parameters. They refer to the number of

points on each line, the number of lines incident to each point, and the number of points on

a line that are collinear with a point not on the line. Consider the geometry pictured here.

B

F

D

E

A

C

This is referred to as pg(2,1,2). The first value is s. There are s+1 points on each line. The

second value is t. There are t +1 lines through every point. The final value is α . There are

2 points on each line that are collinear with any point not on the line. This graph associated

with this partial geometry is the one in Example 1. What are the values of s, t, and α for
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the geometry represented by this figure?

B

D

A

C
Answer pg(1,1,1). Be careful to remember that there are s+ 1 points on a line, not s. In

this case the representation of the geometry is the same as the graph associated with the

geometry. What are the four parameters for this graph? Answer (4, 2, 0, 2)
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Lesson 3: What are Strongly Regular Graphs?

Example 1

These are two strongly regular graphs.

D

EF

C

A

D

E
F

B

C

A B

(a) What are the values of v,k,λ , and μ for each graph?

(b) Look the graph on the left and think about the geometry that might be associated with

it. Suppose there are three points on each line of the geometry and ABC is a line. What

are the other lines in the geometry?

Example 2

Every partial geometry can be described by three parameters; s, t, and α (alpha). There are

s+1 points on each line. There are α points on each line that are collinear with any point

not on the line. This is written as pg(s, t,α).

(a) What are the values of s, t, and α for each geometry pictured here?
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B

F

D

E

A

C

B

D

A

C

(b) The second geometry is also a strongly regular graph. What are the four parameters

for this graph?

In your group

1. Decide if each graph below is strongly regular. If it is, identify the parameters v,k,λ ,
and μ .
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2. Consider each of the geometries pictured below.

L

M

N

O K

A

E

D

F

H

G

I C

J B

B

E D E F

H

B

F

H

D

B

I

C

C

D

A

IG

CA

G

A

B

A

C

(a) Identify the values of s, t, and α for each partial geometry.

(b) Find v,k,λ , and μ for the graph associated with each geometry. Record your

results below. 

s  t α v k λ μ 
       
       
       
       
       

(c) Look at the values in your table. How can you find the value of k from the

values of s and t? How can you find the value of μ from the values of t and α?
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Lesson 3 answers

In your group

1. srg(5,2,0,1),srg(10,2,0,1), not a strongly regular graph, a regular graph of degree

five but with no single value for λ .

2. (a) pg(1,1,2), pg(2,1,1), pg(2,2,2), pg(1,2,2), pg(2,2,1)

(b)

s t α v k λ μ 
1 1 2 3 2 1  
2 1 1 9 4 1 2 
2 2 2 9 6 3 6 
1 2 2 4 3 2  
2 2 1 15 6 1 3 

(c) k = s(t +1),μ = α(t +1)
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Lesson 4: Proving the Connections

In the previous lesson students conjectured that k = s(t + 1) and μ = α(t + 1). In this

lesson picture proofs are presented and students must explain the reasoning displayed,

completing the proof. The formulas for v and λ are more complicated and students will

be led through this reasoning. The major result of this proof is that any partial geometry

has an associated strongly regular graph and we can determine the parameters of that graph

from the parameters of the geometry. However, the converse is not always true. There

are many strongly regular graphs that do not correspond to a partial geometry. In trying

to determine if a set of parameters creates a partial geometry, one can find the associated

graph parameters. The adjacency matrix of this graph must also meet specific conditions

for the partial geometry to exist. This use of indirect proof means the techniques of graph

theory and linear algebra can provide insight into geometry. Trying to prove the existence

or nonexistence of a geometry directly can be much more difficult. While none of these

more advanced techniques are discussed in the student materials, it is worth discussing

the use of indirect proof. In addition, many questions about partial geometries remain

unanswered and are an area of active mathematical research. While it may seem that this

field has little practical application, it has recently been discovered that the principles and

theorems about partial geometries apply to some molecular structures. 1 Knowledge about

partial geometries may provide insight in this field.

Introduce the lesson by reviewing the conjectures from the day before. Also review the

definition of α . A clear understanding of all of the parameters will make the proofs much

easier. Let the students work and struggle together to write the proofs. Encourage them

to use complete sentences and to read their work aloud, making sure everyone believes the

explanation to be clear and complete.

1M.Klin, G.Tinhofer (editors). A special issue of the journal MATCH, "Algebraic Combinatorics in

Mathematical Chemistry", v.40, 1999
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What are the Connections?

Theorem 20 The point graph of a pg(s, t,α) is a strongly regular graph with parameters
(v,k,λ ,μ) =

(
(s+1)

( st+α
α
)
,s(t +1),s−1+ t(α −1),α(t +1)

)
.

You will prove this in four parts, starting with those that you worked with in lesson 3. The

pictures shown provide outlines for the proofs of each part. In each case p represents a

point, p1 is a point collinear with p, and p2 is a point that is not collinear with p.

Part 2

k = s(t +1). Use the picture below to help you prove this part of the theorem.

p1

t + 1 lines
s points

p
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Part 4

μ = α(t +1). Use the picture below to help you prove this part of the theorem.

p2

α

t + 1 lines

p
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Part 3

λ = s−1+ t(α −1). Use the picture below to help you prove this part of the theorem.

p1

s + 1 - α points

t  lines

s points

p
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Part 1:

v = (s+1)
( st+α

α
)
. This is the most difficult part of the proof. To do this you will count the

number of vertices in two different ways and then use algebra to actually solve for the total.

As above, p1 represents a point collinear with p, and p2 represents a point not collinear

with p. For any point p you already know the number of possible points p1. Call that

number P1. P1 = .

p1

t + 1 lines
s points

p

Use the picture below to find the number of p2 points for each of the p1 points.

p1

s + 1 - α points

t  lines

s points

p

The total number of points of type p2 points is P2. The total number of pairs of points

(p1, p2) is P1 ·P2 =

115



You already know μ , the number of points collinear with p and any point p2. So for any

given p2 you know P1 = μ = .

Now the number of pairs (p1, p2)is P1 ·P2 = P2 · .

Set these two expressions for P1 ·P2 equal to each other and solve for P2.

Now the total number of points P = 1+P1 +P2. Here P1 is the number of points collinear

with p. You found this value at the beginning of this part. The 1 represents the chosen point

p.

Use your expressions for P1 and P2 to find P. Simplify to get the desired result.
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Lesson 4 answers

Part 2

The number of vertices adjacent to a given vertex is the number of points collinear with a

given point p. There are t +1 lines incident with each point and s points on each line that

are collinear with p. So there are s(t +1) points collinear with a given point. Hence there

are s(t +1) vertices adjacent to each vertex.

Part 4

The number of vertices commonly adjacent to two nonadjacent vertices is the same as the

number of points collinear with two noncollinear points. Let p and p2 be two noncollinear

points. There are t + 1 lines through p2. None of them are incident with p. On each one

there are α points that are collinear with p. So there are a total of α(t +1) points that are

collinear with p and p2 and thus there are α(t +1) vertices that are commonly adjacent to

two nonadjacent vertices.

Part 3

The number of vertices commonly adjacent to 2 adjacent vertices is the same as the number

of points that are collinear with two given collinear points p and p1. Since each line contains

s+1 points, there are s−1 more points on the line containing p and p1. There are t lines

through p1, omitting the line containing p and p1. Each of these lines contains α points

that are collinear with p. However p1 is on each of these lines. So there are α − 1 points

on each of the t lines that are collinear to the two given collinear points. This makes a total

of s−1+ t(α −1) vertices commonly adjacent to 2 adjacent vertices.

Part 1

P1 = s(t +1) from Part 2.

For each of these P1 points there are t lines that are not incident with p. Each of these

lines has α points that are collinear with p and s+ 1−α points that are not. So there

are s+ 1−α points, p2, on each of these t lines. Because two lines intersect in at most

one point, none of these points is double counted. Thus for each p1 there are t(s+1−α)
points p2.
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The total number of pairs of points (p1, p2) is s(t +1)t(s+1−α).

For the second counting method, there are P1 = α(t +1) points collinear with p and p2.
So the number of pairs (p1, p2) is P1 ·P2 = P2 ·α(t +1).

Equating the two counts and solving for P2 we get

s(t +1) · (s+1−α) = P1 ·α(t +1)

P2 =
s(t +1) · t(s+1−α)

α(t +1)
=

st(s+1−α)

α

So the total number of points is

P = 1+P1 +P2

= 1+ s(t +1)+
st(s+1−α)

α

=
α + stα + sα + s2t + st − stα

α

=
α + sα + s2t + st

α

=
α(s+1)+ st(s+1)

α

=
(s+1)(α + st)

α

= (s+1)

(
st +α

α

)
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