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Abstract 

The dissipation of high heat flux from integrated circuit chips and the 

maintenance of acceptable junction temperatures in high powered electronics 

require advanced cooling technologies.  One such technology is two-phase cooling 

in microchannels under confined flow boiling conditions. In macroscale flow 

boiling bubbles will nucleate on the channel walls, grow, and depart from the 

surface.  In microscale flow boiling bubbles can fill the channel diameter before the 

liquid drag force has a chance to sweep them off the channel wall.  As a confined 

bubble elongates in a microchannel, it traps thin liquid films between the heated 

wall and the vapor core that are subject to large temperature gradients.  The thin 

films evaporate rapidly, sometimes faster than the incoming mass flux can replenish 

bulk fluid in the microchannel.  When the local vapor pressure spike exceeds the 

inlet pressure, it forces the upstream interface to travel back into the inlet plenum 

and create flow boiling instabilities.  Flow boiling instabilities reduce the 

temperature at which critical heat flux occurs and create channel dryout.  Dryout 

causes high surface temperatures that can destroy the electronic circuits that use 

two-phase micro heat exchangers for cooling.   

Flow boiling instability is characterized by periodic oscillation of flow regimes 

which induce oscillations in fluid temperature, wall temperatures, pressure drop, and 

mass flux.  When nanofluids are used in flow boiling, the nanoparticles become 

deposited on the heated surface and change its thermal conductivity, roughness, 
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capillarity, wettability, and nucleation site density.  It also affects heat transfer by 

changing bubble departure diameter, bubble departure frequency, and the 

evaporation of the micro and macrolayer beneath the growing bubbles.   

Flow boiling was investigated in this study using degassed, deionized water, and 

0.001 vol% aluminum oxide nanofluids in a single rectangular brass microchannel 

with a hydraulic diameter of 229 µm for one inlet fluid temperature of 63°C and two 

constant flow rates of 0.41 ml/min and 0.82 ml/min.  The power input was adjusted 

for two average surface temperatures of 103°C and 119°C at each flow rate.  High 

speed images were taken periodically for water and nanofluid flow boiling after 

durations of 25, 75, and 125 minutes from the start of flow.  The change in regime 

timing revealed the effect of nanoparticle suspension and deposition on the Onset of 

Nucelate Boiling (ONB) and the Onset of Bubble Elongation (OBE).  Cycle 

duration and bubble frequencies are reported for different nanofluid flow boiling 

durations.  The addition of nanoparticles was found to stabilize bubble nucleation 

and growth and limit the recession rate of the upstream and downstream interfaces, 

mitigating the spreading of dry spots and elongating the thin film regions to increase 

thin film evaporation. 

1 Introduction 
Efficient thermal-fluid systems are needed to minimize energy waste and reduce 

emission of the green-house gases that are responsible for global warming.  An 
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ever-increasing growth of industries in the developing world demands improved 

heat exchange systems with heat removal capacities well above the present limit of 

250 W/cm
2
 in order to limit the carbon footprint and satisfy domestic and 

international regulations.  Nanoparticles suspended in different base fluids can alter 

the momentum and heat transfer characteristics of the velocity and thermal 

boundary layers by significantly increasing the liquid viscosity and thermal 

conductivity.  Additions of nanoparticles have been found to effectively improve the 

Critical Heat Flux (CHF) at which nucleate boiling transitions to film boiling.  An 

increase in CHF can result in the design of more efficient and compact heat 

exchangers for the nuclear and chemical industries, Heating, Ventilation and Air-

Conditioning (HVAC) systems, electronic systems, high heat flux lasers, X-rays and 

optical devices. 

1.1 Motivation 

Computers and specialized electronic devices have become a vital part of life in 

many countries around the world.  As these devices continue to advance, both in 

capability and compactness, thermal management is becoming a limiting factor in 

electronics design.  The advancement of computing technology has been growing 

exponentially for more than three decades, following a trend identified by Gordon 

Moore in 1965.  Moore’s law describes a doubling in the number of transistors that 

can be placed on an integrated circuit every two years.  The average power density 
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of single-core microprocessors is expected to increase from 100 W/cm
2
 in 2005 to 

1000 W/cm
2
 by 2015 [Krishnan, et al., 2007].   

As the need for advanced processing and data storage technology advances, data 

centers are becoming an indispensable resource in nearly every sector of the 

economy, such as manufacturing, universities, financial services, and government 

institutions.  The energy consumed by data centers represents almost 2% of the 

world electricity consumption and is growing by 15% annually.  As the cooling 

process becomes the major part of data center operating costs, advancement in 

cooling technology is critical for the reduction of greenhouse gas emissions such as 

CO2  [Thome and Cioncolini, 2010]. 

The dissipation of high heat flux from integrated circuit chips and the 

maintenance of acceptable junction temperatures require advanced cooling 

technologies.  Micro heat exchangers have become one of the most effective cooling 

techniques for high-power density, compact applications [Zhao and Lu, 2002].  

They are used in high-speed processor chips, microprocessors, high-powered lasers, 

cutting-edge power and switching devices, and lightweight cooling applications like 

satellites, avionics, and portable computers [Qu and Mudawar, 2004]. 

Two-phase flow in micro heat exchangers can achieve significantly higher heat 

flux than single phase flow due to the latent heat of vaporization.  Heat transfer 

coefficients for flow boiling in microchannels can exceed 100,000 W/m
2
 ºC, 

compared to 10,000 W/m
2
 ºC for single-phase flow [Kandlikar, et al., 2006].  

Different mechanisms govern flow boiling heat transfer on a microscale because 
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surface tension and intermolecular forces dominate gravity forces [Kandlikar, 

2004]. 

Heat is dissipated from a surface during boiling by two modes: latent and 

sensible heat transfer.  Latent heat transfer corresponds to the energy required to 

transform a liquid into a gas.  Sensible heat transfer corresponds to the energy that is 

removed by a liquid during direct conduction or convection.  In pool boiling, the 

vapor bubbles that form near the heated surface merge together and contract, 

drawing cooler liquid toward the wall and enhancing sensible heat transfer 

[Mukherjee and Dhir, 2004].   

In macroscale flow boiling, bubbles will nucleate on the channel walls, grow, 

and depart from the surface when they reach a critical departure radius that is 

determined by buoyancy and bulk flow drag forces.  In microscale flow boiling, 

gravity is generally negligible and bubbles can fill the channel diameter before the 

liquid drag force has a chance to sweep them off of the channel wall.  As a confined 

bubble elongates in the channel, it traps thin liquid films between the heated wall 

and the vapor core that are subject to large temperature gradients [Mukherjee and 

Kandlikar, 2005].  The thin films evaporate rapidly, sometimes faster than the 

incoming mass flux can replenish bulk fluid in the microchannel.  The enhancement 

of latent heat transfer causes an explosion of vapor pressure.  When the local vapor 

pressure spike exceeds the inlet pressure, it can force the upstream interface to travel 

back into the inlet plenum and create flow boiling instabilities [Kandlikar, et al., 

2001]. 
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Flow boiling instabilities can reduce the temperature at which critical heat flux 

occurs and create channel dryout.  Dryout causes high surface temperatures that can 

destroy the electronics that two-phase micro heat exchangers are used to cool.  The 

mechanisms behind flow boiling instability, bubble nucleation, and bubble growth 

must be understood in order to better design micro heat exchangers.  

Several innovations have been shown to reduce flow instabilities; these include 

introducing pressure drop elements at the channel inlet, manufacturing artificial 

nucleation sites at desired locations inside the microchannels, using diverging 

channels to aid in bubble evacuation, using a porous membrane to allow vapor to 

exit the microchannel side wall, and using a triangular or trapezoidal channel cross 

section to allow for stable annular flow.  However, each of these solutions has 

inherent drawbacks such as increased power consumption, difficulty to 

manufacture, and decreased surface area to volume ratio.   

Suspending nanoparticles of sizes below 50 nm in fluids can enhance convective 

heat transfer; these nanoparticle suspensions are called nanofluids [Choi, 1995].  

The nanofluids are considered as next generation heat transfer fluids because they 

present improved heat transfer properties as compared to pure liquids.  The large 

surface area-to-volume ratio of the nanoparticles helps to enhance the stability of the 

suspensions.  If effectively employed, the nanofluids can aid in the development of 

compact heat exchangers capable of removing ultra-high heat flux.   

The main advantages of two-phase cooling are very high heat transfer 

coefficients at low vapor quality, increase of heat transfer coefficient with heat flux, 
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and nearly constant footprint temperature due to the combined effects of a decrease 

in saturation temperature and heat transfer coefficient along the channel length.  

Thin film evaporation around the microbubbles generated during flow boiling is 

further enhanced by nanoparticles that significantly increase thermal conductivity of 

the thin film as well as the wettability of the microchannel surfaces. 

1.2 Objectives 

The objective of the current study is to increase nucleation site density and the 

lateral wicking of fluids into the thin film regions of the evaporating meniscus by 

adding nanoparticles to the two-phase boiling process in a single microchannel.  

Increased wicking of fluids into the thin film regions will counteract the evaporation 

recoil force at the triple point and cause a slower recession of the liquid interface 

due to the dry patch under a vapor bubble growing more slowly. 

The current study aims to prove that the effect of surface modifications due to 

nanoparticle deposition will cause an advantageous change in the flow regime 

transition cycle for the stabilization of microchannel flow boiling.  Two independent 

values of surface temperature and flow rate are tested to prove that flow regime 

transition is more stable at lower surface temperatures and higher flow rates. 

2 Literature Review 
An in-depth understanding of bubble and contact line dynamics and surface and 

fluid property modifications is necessary for the design of compact heat exchangers 
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that utilize the flow boiling of nanofluids.  Wall heat transfer inside microchannels 

during flow boiling is primarily achieved by thin film evaporation and nucleate 

boiling mechanisms at the receding and advancing contact regions, respectively, of 

the elongated vapor bubbles.  Detailed numerical calculations [Mukherjee, 2007] 

show that flow boiling in microchannels is inherently a conjugate heat transfer 

problem and the bulk of the heat flow takes place through the channel sidewalls into 

the liquid film surrounding the bubbles.  The current project is aimed to improve 

nanofluid-based two-phase heat exchanger efficiency in order to reduce energy 

consumption and significantly lessen the emission of green house gases and the 

carbon footprint of a host of electronics and related industries. 

2.1 Flow Regime Transition 

     Huo et al. reported six different flow patterns for flow boiling in small diameter 

tubes of 2.01 mm to 4.26 mm in diameter: dispersed bubble flow, bubbly flow, slug 

flow, churn flow, annular flow, and mist flow [Huo et al., 2004].  Dispersed bubble 

flow is generally not distinguished from bubbly flow in microchannels due to the 

small channel diameter.  When departed bubbles are carried downstream, they 

coalesce and form vapor plugs.  Under conditions of high wall superheat, the bubbly 

flow regime quickly becomes slug flow and eventually annular flow [Lu and Pan, 

2008].  If wall superheat is high enough, the channel will dry out and surface 

temperatures will soar. 
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     Flow regimes generally alternate in a cyclic pattern during flow boiling in 

microchannels.  Wu and Cheng observed three unstable boiling modes for water in a 

parallel channel micro heat exchanger having channels of trapezoidal cross-section 

and a hydraulic diameter of 186μm:  (1) liquid/two-phase alternating flow (LTAF), 

(2) continuous two-phase flow (CTF), and (3) liquid/two-phase/vapor alternating 

flow (LTVAF) [2004]. 

After the onset of nucleate boiling, the pressure drop across the microchannels 

suddenly increased due to the generation of vapor bubbles.  The increase in pressure 

drop caused a decrease in mass flux, which in turn decreased the pressure drop.  

This scenario explains the oscillation of pressure and mass flux.  During the interval 

when mass flux was increased, the constant wall heat flux was insufficient to boil 

the coolant and single-phase liquid appeared.  When the mass flux decreased again, 

the constant heat flux boiled the coolant and two-phase flow or vapor phase 

appeared again.  Large amplitude, long period oscillations of coolant and wall 

temperatures resulted from the alternating appearance of flow patterns during LTAF 

and LTVAF boiling modes. 

2.2 Forces Acting at the Liquid-Vapor Interface 

Flow reversal in a microchannel occurs due to rapid bubble growth when the 

combined effects of vapor pressure and evaporation momentum-change at the 

upstream liquid-vapor interface overcome the combined effects of the incoming 
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liquid pressure, the incoming liquid inertia, and the capillary forces that act at the 

contact line (see Figure 2.2.1).  

Equation 1 shows the balance of forces per unit length acting at the liquid-vapor 

interface. 

   MvapPSliqIliqP FFFFFF  ,,,interface           Equation 1 

FP,liq is due to the pressure of incoming liquid, FI,liq is due to the inertia of the 

incoming liquid, FS is due to the surface tension (capillary forces) at the interface, 

FP,vap is due to the vapor pressure, and FM is due to the evaporation momentum 

change.  The incoming liquid pressure and capillary forces remain fairly constant, 

but the local vapor pressure and evaporation momentum-change at the upstream 

interface both increase as a vapor bubble grows. 

As the fluid evaporates at the liquid-vapor interface, the difference in densities 

between the two phases causes the vapor molecules to leave the interface at a much 

higher velocity than the liquid molecules traveling toward it.  The resulting change 

in momentum creates an evaporation momentum force on the liquid vapor interface.  

The force per unit length due to the evaporation momentum change at the interface 

is given by 

vlv

M

D

h

q
F



2











                      Equation 2 

Where q is the wall heat flux, hlv is the latent heat of evaporation, D is the hydraulic 

diameter, and ρv is the density of the vapor phase.   
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Figure 2.2.1: Forces acting at the liquid-vapor interface for confined 

flow boiling.  Thin film evaporation plays a dominant role in interface 

movement when flow is confined. 

Fluid molecules in the bulk liquid form chemical bonds with one another, which 

contain a certain amount of binding energy.  Molecules at the surface of the liquid 

vapor interface cannot form as many bonds because there are much fewer molecules 

in the vapor phase.  The lack of chemical bonds at the liquid-vapor interface results 

in a higher energy for the surface molecules.  This energy is called surface tension, 
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and causes the interface to take on some curvature, depending on the make-up of the 

liquid, the vapor, and the solid surface at a microchannel wall [Bruus, 2008].  

Surface tension creates a force at the triple-point contact line around the perimeter 

of the channel.  The force per unit length due to surface tension is given by 

 cosSF
                          Equation 3 

Where σ is the surface tension and θ is the contact angle. 

Since the vapor in a growing bubble has a much lower density than the liquid, it 

forces the liquid molecules away from it.  The inertia of the liquid molecules acts to 

suppress the growth of a vapor bubble.  When the liquid is moving through the 

channel at velocity V, the force per unit length at the interface due to the inertia of 

the fluid is given by 

l

lI

DG
DVF




2
2 

                 Equation 4 

Where G is the mass flux and ρl is the density of the liquid phase.  If the local vapor 

pressure in the bubble overcomes the inlet pressure and forces the upstream 

interface toward the channel inlet, the inertia force takes a different form, but still 

acts against the movement of the interface due to the necessity to accelerate the 

liquid. 

The buoyancy force acting on a bubble due to gravity is given by 



16 

 

  2gDF vlg  
                   Equation 5 

Where g is acceleration due to gravity.  This force is generally negligible compared 

to the other forces that act on the bubble and may be neglected when dealing with 

confined flow in microchannels.  Viscous forces also play a role in bubble motion 

because moving interfaces causes liquid to flow.  Viscous forces always act in the 

opposite direction as the fluid motion.  If a slug of liquid is being forced upstream or 

downstream by a moving interface, friction will act to impede the interface motion. 

The pressure drop across a curved interface can be derived as a function of 

surface tension and curvature using an energy minimum condition for the free 

surface energy and solving for the pressure drop.  The result is the Young-Laplace 

equation, 











21

11

RR
Psurface                      Equation 6 

R1 and R2 are the characteristic radii of curvature for the surface; the radius of 

curvature in a direction is taken as positive when the surface is concave as seen 

from the gas, and as negative when it is convex as seen from the gas.  For a 

meniscus in contact with a solid surface in a microchannel, there is a surface tension 

associated with each of the solid/liquid, solid/gas, and liquid/gas interfaces.  The 

liquid and gas phases adjust to balance the surface tension forces and an angle is 

formed between the liquid/gas interface and the solid surface.  The contact angle, θ, 
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is measured through the liquid at the point where the three phases meet.  Accounting 

for the change in curvature of a meniscus in a microchannel due to the contact 

angle, the radius of curvature can be calculated using trigonometry as: 

i

i
i

a
R

cos


                           Equation 7 

Where ai is the half-dimension of surface i that makes contact with the meniscus.  If 

the microchannel is round, ai is the radius of the tube.  Inserting Equation 7 into 

Equation 6, the change in pressure across a liquid-vapor interface in a rectangular 

microchannel can be calculated by 














2

2

1

1 coscos

aa
Psurface              Equation 8 

From Equation 8, it can be seen that capillary forces are affected by the surface 

wettability (θi), the channel dimensions (ai), and the value of surface tension (σ), 

which can vary with temperature and surfactant concentration. 

The wetting properties of a surface for a given liquid can affect the motion of a 

vapor bubble by modifying the solid/liquid interfacial energy, which changes the 

balance between solid/liquid, solid/gas, and liquid/gas surface tension forces.  If a 

gradient in wettability exists in a microchannel, it can induce bubble motion from 

the more hydrophobic region to the more hydrophilic region [Squires and Quake, 

2005].  This effect has been used to transport CO2 bubbles in micro-direct methanol 
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fuel cells to remove it from the system and to create a self-pumping methanol 

delivery system [Meng and Kim, 2009]. 

The magnitude of surface tension depends on fluid temperature and can depend 

on surfactant concentration if one is present.  When a temperature gradient is 

present in a microchannel, the capillary forces acting along the interfaces of a vapor 

bubble can become unbalanced and induce bubble motion.  In the case of flow 

boiling, conjugate heat transfer between channels can create temperature gradients 

along the width and length of a microchannel, and conjugate heat transfer between 

the heated wall and the non-uniformly evaporating liquid can create temperature 

gradients along the axis of a microchannel [Mukherjee, 2007].  Temperature 

gradients also exist along the liquid-vapor interface due to the motion of sub-cooled 

liquid around a bubble that is growing off of a super-heated channel wall.  

Temperature gradients along the liquid-vapor interface create a surface tension 

gradient force, known as the Marangoni force, 

MaranF                            Equation 9 

This force is responsible for the Marangoni effect, which is characterized by the 

circulation of liquid around the base of a bubble or interface.  The Marangoni effect 

can also be induced by inhomogeneities of surfactant concentration, which create a 

surface tension gradient along the liquid-vapor interface [Kostarev, et al., 2006].   

Chamarthy et al. [2008] studied the convection patterns present in an 

evaporating meniscus of methanol in three circular glass tubes at room temperature 
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with diameters of 75, 200, and 400 µm.  A toroidal vortex was observed near the 

meniscus interface; it was symmetric in the 75 µm tube, slightly asymmetric in the 

200 µm tube, and very asymmetric in the 400 µm tube.  These results indicate that 

Marangoni convection may play a significant role in vapor bubble growth during 

flow boiling in microchannels due to the effects of transient conduction around the 

base of a growing vapor bubble and the resulting change in local fluid temperature 

near the liquid-vapor interface away from the heated wall. 

As can be seen in Equation 6, curvature is the key parameter in determining the 

magnitude of pressure drop across a liquid-vapor interface.  Since pressure drop is 

inversely proportional to the radius of curvature, a confined bubble with unequal 

radii of curvature at the left and right interfaces will move in the direction of 

increasing radius.  Assuming a constant contact angle, the curvature of an interface 

is determined by the channel diameter.  Bubble motion can be induced in a 

microchannel by introducing a gradient in channel diameter.  Parallel channel test 

sections with diverging cross-section channels have been shown to stabilize flow 

boiling in microchannels by forcing the vapor bubbles in the direction of divergence 

[Lee and Pan, 2008; Lu and Pan, 2008].  

Kandlikar [2004] proposed two new non-dimensional groups to relate the 

magnitude of the evaporation momentum force acting at the liquid vapor interface to 

inertial and surface tension forces. 
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


                        Equation 11 

K1 represents the ratio of evaporation momentum force to the inertia force; a high 

value of K1 indicates that the evaporation momentum forces are dominant and are 

likely to alter interface movement.  K2 represents the ratio of the evaporation 

momentum force to the surface tension force.  The non-dimensional group K2 

governs the movement of the interface at the contact line.  A high value of K2 

indicates that the evaporation momentum force will cause the interface to overcome 

the retaining surface tension force and bubble movement will occur. The contact 

angle is not included in the ratio for K2, although it may involve more complex 

dependence on dynamic contact angle and surface orientation.   

Derjaguin [1992] provided the basic mechanism of the thin film behavior by 

showing that the net effect, at the macroscopic level, of solid-liquid interactions is a 

reduction of pressure of the liquid interface relative to the pressure of the 

equilibrium vapor phase.  He argued that the disjoining action could explain the 

deviation from the laws of hydrostatics that exists in a thin wetting film.  There is an 

extensive amount of literature available on thin film evaporation.  Peter C. Wayner, 

Jr. developed a widely accepted model for the behavior of the liquid meniscus.  He 

modeled the meniscus using some well-established techniques and created a set of 
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governing equations that can be used to predict the fluid dynamics and heat transfer 

of a liquid meniscus.  He also hypothesized that the steady evaporating meniscus 

can be used to sustain very high heat fluxes [Dasgupta, et al., 1994; Dasgupta, et al., 

1993; Potash and Wayner, 1972; Sujanani and Wayner, 1992; Wayner and LaCroix, 

1976].   

Mukherjee and Kandlikar [2006] numerically simulated a moving evaporating 

meniscus and obtained details of the heat transfer and fluid flow near the contact 

region.  The heat transfer from the wall was found to be the highest near the 

advancing contact region due to transient heat conduction.  Jacobi and Thome 

[2002] presented a model for heat transfer during elongated bubble flow regime 

inside a microchannel.   The model assumed thin-film evaporation to be the 

dominant heat transfer mechanism.  The model required judicious choice of two 

important parameters: the effective nucleation superheat and the initial thin film 

thickness.  Mukherjee [2009] recently compared heat transfer mechanisms present 

during flow boiling inside microchannels with nucleate pool boiling and a moving 

evaporating meniscus.  It was concluded that thin film evaporation is the primary 

heat transfer mechanism during flow boiling inside microchannels though it gave 

rise to an apparent notion of presence of nucleate boiling mechanism.   

During microlayer evaporation, flow and heat transfer are coupled with the 

capillary force, intermolecular interactions (disjoining pressure), and fluid surface 

interactions (wetting phenomena).  The structural disjoining pressure is a long-range 

force that acts normal to the wall and arises due to the ordering of particles in the 
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confinement of the thin film region, as opposed to their greater freedom of motion 

in the bulk liquid.  The arrangement of the particles gives rise to an excess pressure 

in the film, which has an oscillatory decay profile with the film thickness.  The 

structuring force introduced by the addition of nanoparticles to the thin film region 

of an evaporating meniscus exhibits an improved spreading capability of nanofluids 

in confined spaces and has been observed to change the macroscopic contact angle 

of a liquid droplet, stabilize liquid films, and lift an oil droplet from a wall in an 

aqueous solution.  The enhanced spreading capability can increase the rewetting 

ability of a fluid in boiling.  The concept of structural disjoining pressure could be 

used to explain microlayer dynamics such as the pinning of the contact line of a 

meniscus.  The difference between thermal nanofluids and pure liquids lies in the 

zone where the conventional disjoining pressure becomes negligible and the 

structural disjoining pressure becomes important [Wen, 2008]. 

2.3 Bubble Dynamics 

Flow boiling instability can be attributed at the most basic level to rapid bubble 

growth.  In order to attenuate instability during flow boiling in microchannels, 

bubble nucleation and growth must be well understood.  Kandlikar [2004] 

determined that the role of the convective boiling mechanism is diminished in 

microchannels and that heat transfer is dominated by nucleate boiling.  Yen et al. 

[2006] found that nucleate boiling was the dominant form of heat transfer for vapor 

qualities less than 0.4 in both square and circular microchannels, and that the local 
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heat transfer coefficient was significantly higher for nucleate boiling than for 

convective boiling.  Due to the high heat transfer coefficient in microchannels, the 

bulk liquid is heated much faster than in macrochannels and may become 

superheated before the phase change process takes place [Kandlikar, 2006].  A 

superheated environment leads to rapid bubble growth, which contributes to flow 

boiling instability.  Controlling bubble nucleation and growth rate by initiating the 

phase change process before the bulk liquid is overheated can greatly enhance micro 

heat exchanger performance. 

The minimum wall superheat required to induce nucleation rapidly increases as 

the channel diameter and the nucleation cavity radius decreases [Kandlikar, 2004; 

Peng, et al., 1998].  In order to design effective micro heat exchangers, surface 

properties should be chosen so that a maximum number of microcavities will have 

an optimal radius to nucleate vapor bubbles.  The critical nucleation cavity radii are 

determined by assuming that bubble growth will occur when the coldest liquid 

temperature encountered on the interface exceeds the saturation temperature 

corresponding to the vapor pressure inside the bubble [Kandlikar, 2006].  Assuming 

a linear temperature gradient in the liquid from the channel wall, this occurs at the 

top of the bubble. 

Kandlikar et al. [1997] performed a numerical simulation of a bubble growing in 

a minichannel and determined that the location of the streamline at y=ys is at 

y=1.1rb.  Based on this finding, the minimum and maximum cavity radii that will 
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nucleate vapor bubbles for a given wall superheat is given by
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Where the thickness of the liquid sublayer is given by δt=kL/h.  The critical 

radius that will nucleate bubbles first for a given surface temperature and subcooling 

is found by setting the radical in Equation 13 equal to zero.  The wall superheat 

required to nucleate bubbles for a given cavity radius is given by 
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     Equation 13 

Using the above criteria, one can estimate the effects of surface roughness and 

artificially fabricated nucleation cavities on micro heat exchanger performance.  

Peng et al. [1998] presented minimum heat flux and wall superheat criteria for 

bubble nucleation as a function of channel hydraulic diameter.  Li and Cheng [2004] 

showed that nucleation temperature decreased as the contact angle increased.  High 

mass flow rates were shown to suppress bubble nucleation, whereas high heat fluxes 

were shown to promote bubble nucleation.  Yen et al. [2006] observed that the 

corners of a square cross-section channel were observed to act as effective active 

nucleation sites. 

Li et al. [2004] identified two bubble growth trends for bubble radii less than the 

channel diameter:  linear growth, suggesting the bubble growth is inertia controlled, 

and growth that follows the square root of time, indicating that the growth may be 

diffusion controlled.  Lee et al. [2004] reported bubble growth rate to be isotropic 
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for bubble radii smaller than the channel diameter.  As the bubble radius grew larger 

than the channel diameter, it was limited by both top and bottom walls and was 

significantly affected by the flow drag.   

Chang and Pan [2007] observed bubble growth in parallel microchannels after 

the bubble reached the channel diameter.  A bubble would nucleate, evolve into a 

bubble slug, detach from the wall, and grow exponentially in the streamwise 

direction as it was swept downstream by the incoming liquid.  While attached to the 

wall, surface tension tended to keep the bubble in place and elongate the bubble by 

counteracting with the drag of the bulk flow.  When the bubble detached from the 

wall, it decreased in length due to a change in shape before continuing to grow.  

Bubble length was observed to grow exponentially.  Lee and Pan [2008] observed 

bubble growth rate in a diverging cross-section channel to be higher than for a 

uniform cross-section channel. 

Edel and Mukherjee [2009] observed that bubble growth rates in a single 

microchannel for radii larger than the channel diameter varied about a mean that 

increased with increasing wall superheat.  The increase in local fluid pressure from 

an expanding bubble suppressed the growth of a neighboring bubble.  Wang and 

Cheng, [2009] observed the acceleration of liquid flow around two growing vapor 

bubbles due to the decrease in effective cross-sectional area.  Hetsroni et al. [2003] 

and [2004] reported temporal variation of bubble size in both streamwise and 

spanwise directions.  Revellin et al. [2008] observed that bubbles travel faster as 

they grow in size, until they reach a certain length when the velocity plateaus and 



26 

 

remains constant.  A difference in elongated bubble velocity and length explains the 

merging of vapor bubbles in a microchannel.  Mukherjee and Dhir [2004] showed 

that the merger of multiple vapor bubbles in nucleate pool boiling increased the wall 

heat transfer by trapping a liquid layer between the bubble bases during merger and 

by drawing cooler liquid towards the wall during contraction after merger.   

2.4 Stability Considerations 

Flow boiling instability is characterized by periodic oscillation of flow regimes 

which induce oscillations in fluid temperature, wall temperatures, pressure drop, and 

mass flux.  Chang and Pan [2007] used flow reversal into the inlet plenum as the 

criterion to identify the existence of instability.  There are two main phenomena that 

contribute to flow boiling instability:  parallel channel instability and upstream flow 

loop compressibility.  It is advantageous to consider the channel pressure drop 

demand curve in analyzing the effects of each type of instability.  At high mass flux, 

liquid single-phase flow exists and the pressure drop increases with mass flux.  As 

the mass flux decreases and the heat flux is held constant, the Onset of Nucleate 

Boiling (ONB) occurs and two-phase flow is initiated.  As mass flux decreases 

further, the pressure decreases until the Onset of Flow Instability (OFI) occurs and 

the pressure drop begins to increase with decreasing mass flux.  In this region, the 

flow is not necessarily unstable, but may be susceptible to instability if the pump is 

not able to supply sufficient pressure to compensate perturbations in mass flux.  
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When mass flux is decreased further, eventually the flow will transition to single-

phase vapor and the pressure drop will decrease with decreasing mass flux again. 

A channel is susceptible to flow excursion (or Ledinegg) instability when the 

slope of the demand pressure drop-mass flux curve is smaller in magnitude than the 

loop supply pressure drop-mass flux curve [Zhang, et al., 2009], 
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When a constant displacement pump such as a syringe pump is used, the slope 

of the pump supply curve is almost infinite because the mass flow rate is fixed 

regardless of pressure drop.  In most cases, however, there is a small amount of 

tubing between the pump and the channel and the channel is often connected to 

other parallel channels using common inlet and outlet headers.  These factors 

influence the slope of the pump supply curve experienced at the inlet of a given 

channel because they introduce upstream flow compressibility and channel-to-

channel interactions. 

In a single-channel test section with no upstream compressibility, the pump 

supply curve can be applied directly to the channel inlet.  As a bubble grows in the 

channel, mass flux backs up in the inlet header and forces the bubble out of the 

channel.  When multiple channels are introduced, the mass flux in adjacent channels 

can increase to compensate for the decreased mass flux in a channel with an 

expanding bubble.  This effectively decreases the magnitude of the pump supply 
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curve slope for a given channel because the pressure increase that would be 

experienced by a given channel is dissipated in adjacent channels which compensate 

the pressure rise by an increase in local mass flux.  Considering a constant 

displacement pump, a single channel would have an infinite-slope pump supply 

curve, whereas a test section with an infinite number of parallel channels would 

have a zero-slope pump supply curve.  In the case of infinite channels, any local 

pressure spike that exceeds the constant pressure drop between headers would cause 

flow instability.  Channel-to-channel instability thus increases with increasing 

number of channels.   

Flow loop compressibility can be introduced to a system through compliant 

tubing, movement of rigid components, trapped gas bubbles, and large liquid 

volumes where minute changes in fluid density may become significant.  If 

compressibility exists upstream of an expanding bubble in a microchannel, the mass 

flux and pressure drop experienced by the microchannel can vary when the local 

pressure spikes due to vapor production.  Instability due to upstream flow loop 

compressibility can be understood by considering the accumulation of fluid in the 

flow loop upstream of the microchannel and the effect of changing mass flux on 

heat transfer to the fluid. 

Lee and Yao [2009] studied system instability due to flow loop compressibility 

in evaporative microchannels using a flow loop that consisted of a constant 

displacement pump, a buffer tank that allowed the accumulation of fluid, a constant 
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heat flux pre-heater, and a parallel-channel test section.  The system instability 

process was described sequentially as follows: 

1. When the experiment was started, liquid flowed through the test section and 

the heaters were turned off so that all of the channels were occupied by single phase 

liquid flow. 

2. The test section heaters were turned on and the bulk temperature of the 

liquid was increased beyond the saturation temperature near the exit.  The wall 

temperatures exceeded the limit for incipient boiling and the boiling process began 

in the microchannels. 

3. As the boiling occurred, the pressure drop across the channels increased and 

raised the pressure of the inlet header.  As a result, the buffer tank gradually filled 

with liquid while the flow through the test section was reduced.  Since the pre-

heater provided a constant heat flux, the bulk temperature of the fluid at the inlet 

increased and the boiling became more severe.  This positive-feedback scenario was 

self-propelling. 

4. When the tank was fully pressurized, fluid could no longer enter it and the 

flow rate through the test section increased back to that of the supply pump.  If 

stable conditions were achieved at this point, the flow would become equilibrated 

and steady state conditions would be reached. 

5. If unstable conditions existed, the bubbles would back up into the inlet 

header and warm the surrounding fluid.  When the liquid film of the elongated 

bubbles dried up, the channels were occupied by single-phase vapor and little vapor 
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expansion occurred.  The pressure drop decreased again so that the mass flux in the 

channel increased and the bubbles were washed away by incoming liquid. 

6. The increase in mass flux caused the bulk fluid temperature at the inlet to 

decrease due to the constant heat flux pre-heater.  The decrease in bulk fluid 

temperature and the increase in mass flux caused the vapor generation in the 

channel to decrease and the flow became primarily single-phase liquid. 

7. After the excess liquid in the buffer tank was mostly discharged, the tank 

pressure diminished and the flow rate through the microchannel decreased.  This 

increased the bulk fluid temperature at the inlet and allowed the fluid to heat up in 

the channel and re-initiate incipient boiling. 

8. The boiling caused the fluid to accumulate in the tank again and the cycle 

repeated. 

Upstream flow loop compressibility instability is also called flow regime 

transition instability because the transition of flow regimes is responsible for the 

oscillation in flow parameters.  Oscillations in surface temperatures, fluid 

temperatures, pressure drop, and mass flux have been directly correlated with flow 

regimes and help explain the transient phenomena [Wang and Cheng, 2008; Lee and 

Yao, 2009; Huh, et al., 2007; Wang, et al., 2007; Wu and Cheng, 2004; Xu, et al., 

2005].  Long-period oscillations have been associated with upstream compressibility 

instability, whereas short-period oscillations have been associated with channel-to-

channel and rapid bubble growth instabilities.  Alternating flow boiling regimes 

create oscillations in coolant temperature, wall temperature, pressure drop, and mass 



31 

 

flux.  A Fast Fourier Transform, performed by Lee et al. [2006] has shown the 

temperature and pressure fluctuations that occur in Microchannel flow boiling to be 

periodic in nature with a single dominant frequency. 

     Díaz and Schmidt [2007] found that the amplitude and frequency of temperature 

oscillations depend on both the operating parameters and the vapor quality.  The 

oscillations were found to increase with increasing heat flux and with decreasing 

mass flux.  Pronounced instability in the wall temperature was observed for low 

qualities, oscillating at low frequencies.  Amplitude was found to be greatest in the 

subcooled boiling region just before nucleate boiling begins.  The amplitude was 

found to decrease significantly with increasing vapor quality.  Huh et al. [2007] 

found that fluctuations in wall temperature were exactly out of phase with both mass 

flux and heat flux. 

     Wu and Cheng [2003] carried out a study of periodic boiling in two sets of 

trapezoidal microchannels, one set with a hydraulic diameter of 431 μm and one set 

with a hydraulic diameter of 160 μm.  For the 431 μm diameter channels, the inlet 

water temperature fluctuated the most (amplitude ≈ 70˚C) and the outlet water 

temperature fluctuated the least (amplitude ≈ 10˚C), with the wall temperatures 

fluctuating somewhere in-between the two (amplitude ≈ 20-50˚C).  For the 160μm 

diameter channels, the inlet water temperature fluctuated the most (amplitude ≈ 

65˚C) and the outlet water temperature did not fluctuate at all.  The wall 

temperatures decayed along the flow direction, from about 45˚C near the inlet to 

about 10˚C near the outlet.  The fluctuation period for the small channels was found 
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to be 141 seconds, compared to only 31 seconds for the larger channels.  The 

boiling mode near the exit of the channel was alternating bubbly flow, elongated 

bubbly/slug flow, semi-annular flow, and annular/mist flow.  The boiling mode in 

the middle of the microchannel was alternating bubbly flow, elongated bubbly/slug 

flow, and semi-annular flow.  All of the wall temperatures and the inlet temperature 

oscillate in-phase due to periodic reversed flow. 

     Wang et al. [2007] carried out an experiment in silicon microchannels of 

trapezoidal cross-section and 186 μm diameter for two test sections:  one with eight 

parallel channels and one with a single channel of the same geometry.  It was found 

that the oscillation period of the temperature was dependant only on the heat-to-

mass flux ratio and completely independent of the heat flux.  However, the 

oscillation periods were much longer for the single channel (around 10 to 80 

seconds) than those for the multiple channel test section (around 2.5 to 9.8 seconds).  

It is also interesting to note that the relationship between oscillation period of 

temperature and heat-to-mass flux ratio was linear for the parallel microchannels 

and parabolic for the single microchannel. 

     Individual bubbles have a greater effect on parameters such as pressure 

fluctuations in microchannels due to their small internal volume.  Zhang et al. 

[2005] observed pressure fluctuations having the same frequency as the bubble 

departure frequency.  These transient pressure fluctuations that are induced by 

bubble nucleation are significantly higher than what have been observed on a macro 

scale.  The frequency of pressure fluctuations was found to increase with increasing 
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heat flux, but was independent of the mass flux for both parallel microchannels and 

a single microchannel [Wang et al., 2007].  The amplitude of pressure drop 

oscillations can be used as an index for the appearance of reversed flow [Chang and 

Pan, 2007]. 

     Wu and Cheng [2003] observed that mass flux fluctuated with respect to time, 

having the same period as the temperature and pressure fluctuations.  A phase lag 

occurred between the pressure drop and mass flux oscillations.  Barber et al. [2008] 

identified three time scales apparent in the pressure and temperature measurements 

for flow boiling in a single rectangular microchannel of diameter 727 μm.  The 

small amplitude/short-period fluctuations are apparently due to the dynamic bubble 

instabilities during two-phase flow.  This finding is similar to that of Wu and Cheng 

[2003]. 

     The magnitude of the temperature fluctuations at this time scale is approximately 

16˚C and the magnitude of the pressure fluctuation is approximately 25 mbar.  The 

average fluctuation of the heat transfer coefficient was 500-700 W/m
2
K.  As 

expected, the heat transfer coefficient is at its maximum when the average 

temperature is at its minimum. As can be seen, the fluctuations for each of the three 

different time scales have smaller amplitudes for smaller periods.  The existence of 

large amplitude/long period oscillation and small amplitude/short period oscillation 

has been verified by Xu et al. [2005], using the power spectral density (PSD) 

technique. 
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2.5 Influence of Nanofluids 

A number of excellent review papers related to heat transfer using nanofluids 

have been published recently [Daungthongsuk and Wongwises, 2007; Godson, et 

al., 2010; Kakac and Pramuanjaroenkij, 2009; Wang and Mujumdar, 2008 a; Wang 

and Mujumdar, 2008 b; Wen, et al., 2009].  They show that addition of 

nanoparticles essentially enhances thermal conductivity of the mixture.  The 

effective conductivity of nanofluids can be affected by mechanisms of particle 

motion such as dispersion of suspended particles, intensification of turbulence, 

Brownian motion, thermophoresis, and diffusiophoresis.  Thermophoresis causes a 

force to be exerted on a nanoparticle in the presence of a temperature gradient; the 

particles travel in direction of decreasing temperature.  Diffusiophoresis (osmo-

phoresis) occurs when particles migrate from lower concentration to higher 

concentration.  Brownian motion, thermophoresis, and diffusiophoresis are 

significant in the absence of turbulent eddies [Buongiorno, 2006].  When nanofluids 

are used in flow boiling, the nanoparticles become deposited on the surface and 

change its thermal conductivity, roughness, capillarity, wettability, and nucleation 

site density.  These parameters influence bubble growth and triple line dynamics. 

The addition of nanoparticles to a working fluid can significantly increase heat 

exchanger performance due to the non-linear increase in thermal conductivity of the 

nanofluid.  The increase in heat transfer performance is speculatively attributed to 

the nanoparticle interactions with the channel walls and the surrounding fluids; the 

nanoparticles serve as heat carriers and collide with the channel walls, disturbing the 
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boundary layer and moving across the bulk fluid.  This movement flattens the fluid 

temperature profile and increases the temperature gradient near the wall which 

increases the heat transfer rate [Wu et al., 2009]. 

Thermal resistance has been shown to be significantly lowered for single phase 

flow by more than 28% for log-mean temperature difference [Ho, et al., 2010].  The 

use of nanofluids has also been found to increase performance by reducing the fin 

thermal resistance [Bhattacharya, et al., 2009].  The convective heat transfer 

coefficient of single phase flow with nanofluids has been found to increase by as 

much as 70% [Ho, et al., 2010] and becomes more appreciable at higher Reynolds 

number [Jung, et al., 2009].   

The pressure drop penalty for the addition of nanofluids has been shown to be 

negligible with respect to the increase in heat exchange performance.  With 

concentrations of 0.15 vol% and 0.26 vol% alumina nanoparticles in water, pressure 

drop has been shown to increase by 3-4.2% and 3.4-5.5%, respectively [Wu, et al., 

2009].  Although the increase in thermal conductivity enhances heat exchanger 

performance, the relative decrease in the specific heat of the nanofluid plays a 

counteracting role and can increase both fluid and wall temperatures [Lee and 

Mudawar, 2007]. 

The thermal conductivity of a nanofluid is affected by particle size, particle 

aspect ratio, particle composition, and fluid temperature.  The relative size of the 

particle with respect to the roughness of the heating surface also plays an important 

role in understanding boiling behavior [Godson, et al., 2010].  Flow boiling CHF 
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enhancement has been shown to increase with mass flux and nanoparticle 

concentration.  The maximum CHF enhancements for 0.001 vol%, 0.01 vol%, and 

0.1 vol% alumina (Al2O3) nanofluids have been observed at 33%, 44%, and 53%, 

respectively [Kim, S. J., et al., 2009].  CHF enhancements of alumina nanofluids 

were observed by a different study to be almost unchanged within margin of error 

for concentrations from 0.001 vol% to 0.1 vol%; it was concluded that the effects of 

deposition may already be saturated at 0.001 vol% [Kim, T. I., et al., 2010].  The 

addition of 1% polyolester and 0.02 vol% CuO particles to R-134a has been found 

to have no apparent effect on heat transfer coefficient, but concentrations of 1% 

polyolester and 0.04 vol% or 0.08 vol% CuO increased the heat transfer coefficient 

by 42-82% [Henderson, et al., 2010].  A 1 vol % alumina addition to water caused 

catastrophic failure during two-phase flow due to the clogging of channels by 

nanoparticle deposition [Lee and Mudawar, 2007].   

Particle composition can also have a large effect on CHF enhancement.  

Maximum flow boiling enhancements for alumina, zinc oxide, and diamond 

nanofluids were 53%, 53%, and 38%, respectively [Kim, S. J., et al., 2010].  Pool 

boiling CHF enhancements for alumina, zirconia, and silica nanofluids are 52%, 

75%, and 80%, respectively [Kim, S. J., et al., 2007]. 

The boiling curve for nanofluid pool boiling has been found to be shifted to the 

right due to nanoparticle deposition [Xue, et al., 2007].  Nanoparticle deposition can 

affect nucleate boiling heat transfer coefficient via alteration of surface thermal 

conductivity, roughness, capillary wicking, wettability, and nucleation site density 
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[Kim, S. J., et al., 2010].  It can also affect heat transfer by changing bubble 

departure diameter, bubble departure frequency, and the evaporation of the micro 

and macrolayer beneath the growing bubbles [Ahn, et al., 2010].  Significant CHF 

enhancement has been found to occur for pure water on a nanoparticle fouled 

surface [Kim, H., et al., 2010].  Decrease in contact angle due to nanoparticle 

fouling is observed for both pure water and nanofluids after nanofluid boiling, 

indicating that the change was due to the surface properties and not the effects of 

nanoparticles in the liquid [Kim, S. J., et al., 2007].   

A threefold increase in CHF has been shown to be possible for nanofluids in 

pool boiling [You, et al., 2003].  Results show that the key parameter to explain 

enhanced flow boiling CHF is the improved surface wettability due to nanoparticle 

deposition.  The CHF data seem to be well correlated to the contact angle of the 

nanofluid-boiled surface regardless of flow velocity.  The effects of surface 

modification and flow velocity have been found to be independent of each other.  

Ahn, Kim et al. observed CHF enhancement for a no-flow condition to be about 

50%, whereas for low-flow velocities it is ~25% and at increased flow velocities it 

increased to ~42% [Ahn, et al., 2010]. 

Hypotheses for the mechanism causing CHF on a heater surface fall into four 

major categories: Hydrodynamic instability theory, macrolayer dryout theory, 

hot/dry spot theory, and bubble interaction theory. Hot/dry spot theory assumes 

CHF occurs when the evaporation recoil force that causes a meniscus to recede 

becomes larger than the surface tension force that drives the meniscus to advance 
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and rewet the hot/dryspot.  This theory predicted an increase in CHF for a nanofluid 

pool boiling experiment of around 73%, which was very close to the experimental 

observations and could link the enhancement in CHF to the increased surface 

wettability [Kim, S. J., et al., 2007].  Hot/dry spot theory incorporated with the 

microhydrodynamics of the evaporating meniscus is a very plausible mechanism to 

explain the CHF enhancement in nanofluid pool boiling.  The surface modification 

due to nanoparticle deposition has been shown to improve the stability of the 

evaporating meniscus enough to withstand a twofold increase in evaporation recoil 

force at higher superheat and heat flux [Kim, H., et al., 2010]. 

Effective contact angles have been observed to be reduced from 83º to 20º after 

nanoparticle fouling [Kim, S. J., et al., 2009].  A decrease in contact angle can 

decrease the active nucleation site density and reduce the heat transfer coefficient.  

This effect could be countered by the number of microcavities that the porous layer 

creates [Kim, S J., et al., 2007].  Depending on range of cavity diameter and depth, 

nucleation site density ratio can range from ~0.7 to ~1.9 [Kim, S. J., et al., 2009].  

Surface roughness does not show a significant effect on CHF values because the 

sensitivity of vapor bubble growth on active nucleation site density is very weak 

near peak heat flux [Ahn, et al., 2010]. 

Analysis of Young’s equation suggests that the enhancement in wettability is a 

result of both an increase in adhesion tension and an increase in surface roughness.  

The roughness of the nanoparticle coated surface has been found to increase by 

twenty times that of pure water and the total area increased by five times [Kim, S. J., 
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et al., 2007].  When particles are deposited on the surface, an increase in effective 

contact area enhances the capillarity of the surface and causes the lateral wicking of 

fluids into the dry region beneath a growing vapor bubble, which delays the 

irreversible growth of hot spots and enhances CHF.  The estimated heat flux gain 

based on capillary liquid supply alone was found to be of the same order of 

magnitude as the heat flux gained by the wettability effect in a pool boiling 

experiement of nanofluids on a wire.  The measure of capillarity for surfaces with 

the same apparent contact angle correlated well with experimental values of CHF 

increase [Kim and Kim, 2007]. 

Wall temperatures have been observed to decrease at heat fluxes close to CHF in 

pure water pool boiling on a nanoparticle fouled surface due to the temperature 

activation of submicrometer cavities in the porous coating or the removal of 

nanoparticles revealing new cavities [Kim, H., et al., 2010].  Flow boiling CHF of 

pure water on nanoparticle coated specimens was higher than the value of pure 

water on a bare surface but lower than that of the nanofluids.  A significant amount 

of nanoparticles were detached from the surface during flow boiling of pure water; 

the surface roughness decreased from 1740 nm to 756 nm and the contact angle 

increased from ~10º to 45º [Ahn, et al., 2010].  The heat transfer to nanofluids in 

pool boiling with a rough heater surface increased by ~70%, whereas a smooth 

heater surface caused heat transfer degradation by ~45% [Narayan, et al., 2007].  

This shows that nanoparticle detachment during flow boiling could influence CHF. 
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Nanoparticle coating also affects thermal effusivity, which is a representative 

parameter for transient heat conduction within a heater.  Higher effusivity means the 

heater material can allow the hot/dry spot to be dissipated more effectively [Ahn, et 

al., 2010].  The presence of nanoparticles also affects the burnout mode during CHF 

by making it more localized due to the increased wettability and mitigating the 

propagation of hot spots [Kim, S. J., et al., 2008]. 

The flow boiling heat transfer coefficient of CuO/R113 nanofluid was found to 

be higher than that of pure R113 refrigerant by up to 29.7%, possibly due to the 

enhancement of heat transfer by reduction of the boundary layer height due to the 

disturbance effect of nanoparticles and the formation of a molecular adsorption 

layer on the surface of the nanoparticles [Peng, et al., 2009].  Reversal of the heat 

transfer coefficient versus heat flux curve at high heat fluxes has been observed and 

it was conjectured that this reversal is due to the accumulation of nanoparticles on 

the test section surface [Kim, S. J., et al., 2010]. 

Heat transfer coefficients for nucleate pool boiling with nanofluids have been 

shown in literature to be higher, lower or unchanged from that of pure water.  CHF 

on the other hand is always increased for even very low concentrations of 

nanoparticles [Henderson, et al., 2010].  These discrepancies may be attributed to 

poorly characterized/ reported factors such as initial surface roughness, presence of 

surfactants, agglomeration of particles, and surface contamination, among others. 

[Kim, S. J., et al., 2007].  
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The effect of nanoparticle suspension in the bulk liquid can thin the thermal 

boundary layer around the wall and cause a reduction in the number of active 

nucleation sites.  The presence of nanofluids may also affect the cavity radius 

distribution function and the distribution of cavity mouth angle [Wen, 2008].  

Nanoparticle suspensions in liquid have been shown to reduce bubble departure 

volume by 25% and increased bubble departure frequency by ~1/3 in adiabatic gas 

flows.  This is believed to be due to a 7% reduction in surface tension by gold 

nanofluids.  It may also be influenced by the dynamics of the triple line, such as 

improved wetting ability and pinning.  It is likely that the changes in triple line 

dynamics were due to variation in the solid surface tensions and affinity for solid 

substrate due to the presence of nanoparticles [Vafaei and Wen, 2010].  Reduction 

of surface tension has been found to be as high as 50% for bismuth telluride-based 

nanofluids and as low as 3% for alumina nanoparticle-based nanofluids [Vafaei, et 

al., 2009].  Negligible particle deposition was observed for forced convection single 

phase flow [Wu, et al., 2009] and adiabatic two phase experiments, indicating that 

the change in triple line dynamics was due to particle suspension in the liquid and 

not through solid surface modification for the flow conditions studied in these 

experiments [Vafaei and Wen, 2010]. 

In microlayer evaporation, flow and heat transfer are coupled with the capillary 

force, intermolecular interactions (disjoining pressure), and fluid surface 

interactions (wetting phenomena).  In nanofluids, a structural disjoining pressure 

arises due to the presence of nanoparticles suspended in the extended microlayer of 
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an evaporating meniscus.  The extended microlayer has a thickness between one and 

a few nanoparticle diameters, where the wetting and dynamics of the interface are 

determined by the effects of evaporation, vapor recoil, capillary force, and the 

structural disjoining pressure.  The structural disjoining pressure is a long range 

force that acts normal to the wall.  It arises due to the ordering of particles in the 

confinement of the thin film region, as opposed to their greater freedom of motion 

in the bulk liquid.  The structuring force exhibits an improved spreading capability 

of nanofluids in confined spaces and has been observed to change the macroscopic 

contact angle of a liquid droplet, stabilize liquid films, and lift an oil droplet from a 

wall in an aqueous solution.  The enhanced spreading capability can increase the 

rewetting ability of a fluid in boiling [Wen, 2008].  

3 Methods 
The flow loop consisted of a syringe pump, an in-line heater, a microfluidic tee 

for liquid inlet temperature measurement, and a microchannel test section (Figure 

3.1).  The syringe pump provided a constant flow rate of de-gassed, de-ionized 

water or 0.001 vol% alumina nanofluids.  After the syringe pump, the water was 

passed through a constant heat flux in-line resistive heater consisting of a metal tube 

with insulation and resistive heating wire wrapped around it in order to adjust the 

inlet temperature to the microchannel.  A microfluidic tee was located after the in-

line heater, with a 0.25 mm, type T thermocouple submersed in the flow to measure 
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the fluid inlet temperature (TC1).  After the microchannel test section, the water was 

discharged into a beaker. 

The microchannel test section consisted of a single microchannel cut into a 400 

micron-thick piece of brass using a micro-milling machine.  The cross-section was 

slightly trapezoidal, with the bottom of the trench about 40 microns smaller than the 

top of the trench.  The nominal rectangular cross-section dimensions were 266 µm 

deep by 201 µm wide, giving a hydraulic diameter of 229 µm.  The channel was 

25.4 mm long with 7 mm of uncut brass surrounding it on all sides.   

A microheater was placed behind the brass with three 0.25 mm, type T 

thermocouples located directly underneath the channel on the brass surface, between 

the microheater and the brass (TC2, TC3, TC4).  Water was introduced into the 

microchannel through a polycarbonate face plate which was bolted in-place with a 

steel back plate that sandwiched the microchannel, microheater, and insulation 

between it and the faceplate (Figure 3.2).  The thermocouple attached to the steel 

back plate (TC5) was used to determine the overall heat flux into the microchannel 

by interpolating heat loss readings for the dry microchannel and subtracting from 

the overall heat input as measured by the laboratory power supply. 

Before the experiment, de-ionized water was de-gassed by rapid 

depressurization, using the procedure reported in Steinke and Kandlikar [2004].  

The procedure was repeated five times to ensure that bubble formation was due to 

the onset of nucleate boiling rather than degassing.  Alumina nanofluids were added 

to the water after the degassing process so that the final concentration was 0.001 
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vol%.  The nanoparticle suspension was manufactured by Sigma-Aldrich and 

purchased online from Nanostructured and Amorphous Materials, Inc.  The 

nanoparticles are 30 nm +/- 10 nm in size and made of aluminum oxide.  They come 

suspended in water at 20 wt% and were diluted using volumetric measurement to 

0.001 vol%.  The nanofluid mixture was shaken in a beaker before use to ensure that 

the concentration was uniform throughout the mixture.  Uncertainty on the final 

nanofluid concentration is +/- 0.00001 vol% as calculated from manufacturer 

specifications. 

 

Figure 3.1:  Experimental flow loop.  Tests were performed at flow rates 

of Re = 100 and Re = 200 for different heat fluxes, corresponding to 

average surface temperatures of 103°C and 119°C for each flow rate.  

Inlet fluid temperature was held at a constant 63°C ± 1°C for all test 

conditions.  [Edel and Mukherjee, 2012] 
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The syringe pump was operated at two constant flow rates of 0.41 ml/min and 

0.82 ml/min, which corresponds to liquid Reynolds numbers of 100 and 200 using 

the saturation temperature of water at atmospheric pressure.  The power input to the 

in-line heater was adjusted so that the inlet temperature was a constant 63ºC +/- 

1.0ºC.  The power input to the microchannel was adjusted so that the average 

surface temperature was a constant 103ºC or 119ºC over the duration of water and 

nanofluid flow boiling.  Data were taken during the transient process of nanoparticle 

deposition and flow boiling over a total duration of 160 minutes for each nanofluid 

flow boiling case.  Measurements were taken for water after 60 minutes of flow 

boiling. 

Conditions were considered to be at steady state when the temperature measured 

by the thermocouple on the outside of the test section (TC5) was constant for a full 

ten minutes; this generally occurred after about 20 min of running the experiment 

due to the thermal mass of the test section.  A fiber-optic cold light source 

illuminated the microchannel and high speed video was recorded at 10,000 fps over 

the downstream half of the mirochannel at flow boiling durations of 25, 75, and 125 

minutes after the start of flow.  Temperature readings were taken every 100 ms 

using a laboratory data acquisition system and averaged over 1 second intervals. 

Channel width and height were measured using an interferometric microscope.  

Uncertainty on channel width was approximately +/- 24 µm; uncertainty on channel 

depth was approximately +/- 1.7 µm.  Bottom surface roughness was approximately 

0.1 µm.  Experimental uncertainty for the thermocouple measurements is 
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approximately +/- 1°C on an absolute temperature scale, and +/- 0.1°C 

thermocouple-to-thermocouple. Temperatures have been reported to 1°C accuracy. 

 

Figure 3.2:  Schematic of the test section.  Thermocouples were placed 

at three locations under the brass microchannel and at one location on 

the back of the test section assembly.  [Edel and Mukherjee, 2012] 

4 Results and Discussion 

4.1 Location of the Onset of Bubble Elongation (OBE) 

For an average surface temperature of 105°C, an inlet temperature of 64°C, and 

a Reynolds number of 200 an upstream progression of bubble elongation was visible 

(see Figure 4.1.1).  The bubbles would slide along the wall and travel downstream at 

a speed close to the liquid flow rate.  As the local surface temperature increased in 

time, the bubbles would grow faster and eventually the Onset of Bubble Elongation 

(OBE) would be reached before the bubbles exited the microchannel.   
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Figure 4.1.1:  Images of the upstream progression of the Onset of 

Bubble Elongation (OBE) for water at Re = 200, Ts,avg = 105°C, Tin = 

64°C.  Black indicates liquid and white indicates vapor in the 

microchannel.  Bubbles started elongating near the channel outlet after 

the bubbly flow regime transitioned to bubble-slug flow.  After the 

bubbles start evacuating the microchannel the location of OBE moves 

further and further upstream.  [Edel and Mukherjee, 2011] 

Once a bubble started to elongate near the exit of the channel, it would slow the 

flow of liquid or possibly even reverse the flow of liquid, causing the higher 

temperature liquid to reside in the microchannel for a longer period of time.  This 

created a progression of OBE that would start near the channel exit and slowly 

move further and further upstream. 

Figure 4.1.2 shows a measurement of OBE location versus time from the start of 

the elongation sequence at the channel exit (distance from inlet = 25 mm).  Bubbles 

started elongating near the exit and then began to elongate further and further 

upstream as time progressed.  Two different progression rates can be seen in Figure 

4.1.2; one that corresponds to a flow regime oscillation pattern of liquid/two-

phase/vapor and one that corresponds to an oscillation pattern of two-phase/vapor.   
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The different rates of progression in this case indicate the effects of conjugate 

heat transfer from the stationary thermal mass of the test section to the fluid in the 

microchannel.  As the flow alternated from vapor back to liquid, two different flow 

patterns were observed.  In the first flow pattern, the channel would flood with 

liquid and slowly change to two-phase flow as the liquid in the channel was heated 

past the saturation temperature (see Figure 4.1.3).  The flow would eventually 

become annular and then dry out.  In the second flow pattern, two-phase flow would 

start occurring before the liquid phase could fully flood the microchannel and would 

continue until annular flow and dryout were reached (see Figure  4.1.4). 

 

Figure 4.1.2:  Location of OBE versus time for water at Re = 200, Ts,avg = 

105°C, Tin = 64°C.  For the liquid/two-phase/vapor flow regime 

transition pattern the location of OBE moved upstream at a slower 

progression rate than for the two-phase/vapor flow regime transition 

pattern.  [Edel and Mukherjee, 2011] 
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In the first case, the liquid was allowed to dissipate the temperature of the 

sidewalls before the OBE sequence started, creating a lower instantaneous surface 

temperature and a lower progression rate.  In the second case, the channel walls did 

not have time to cool down before the start of OBE.  The higher instantaneous 

surface temperature caused an increased rate of progression of OBE in the upstream 

direction. 

 

Figure 4.1.3:  Liquid/two-phase/vapor flow pattern.  Black indicates 

liquid and white indicates vapor in the microchannel.  Liquid appears 

exclusively in the microchannel before bubbly flow transitions to 

vapor.  [Edel and Mukherjee, 2011] 

 

Figure 4.1.4:  Two-phase/vapor flow pattern.  Black indicates liquid and 

white indicates vapor in the microchannel.  The bubbly flow regime 

appears before the microchannel can completely flood and the flow 

regime transitions from bubbly to annular without the appearance of 

single-phase liquid in the entire viewing window.  [Edel and Mukherjee, 

2011] 
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Records of the location of OBE for water and after different durations of 

nanofluid flow boiling are given in Figure 4.1.5 at different flow rates and surface 

temperatures.  For Re = 100 and Ts = 103°C the distributions of OBE are somewhat 

irregular for water and become more repeatable with the addition of nanoparticles.   

 

Figure 4.1.5:  Records for the location of OBE as measured from the 

inlet for (a) Re = 100, Ts = 103ºC, (b) Re = 100, Ts = 119ºC, (c) Re = 200, 

Ts = 103ºC, (d) Re = 200, Ts = 119ºC.  The progression of OBE location 

occurs less rapidly as nanoparticles deposit on the microchannel 

surface.  This is seen for both flow rates at the lower surface 

temperature.  When the flow rate was increased from Re = 100 to Re = 

200 the progression rate occurred less rapidly for the lower average 

surface temperature. 
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OBE regularity increases with surface temperature, flow rate, and nanofluid 

flow boiling duration for all cases.  Flow regime transition occurs more rapidly at 

higher wall surface temperatures for both flow rates.  The duration of a typical flow 

regime transition cycle increases drastically with flow rate at Ts = 103°C, whereas 

the duration decreases slightly with flow rate at Ts = 119°C.  The behavior of flow 

transition at different surface temperatures changes with flow rate due to the effect 

of nucleation site availability on the upstream progression rate of OBE.  A higher 

frequency of ONB causes the progression of OBE location to occur faster at higher 

surface temperatures, changing the overall length of the flow transition cycle.  For a 

flow rate of Re = 100, the progression of OBE location occurs slower with the 

deposition of nanoparticles due to a decrease in the progression rate of the upstream 

interface as lateral wicking of liquid into the thin film regions increased thin film 

evaporation.  The overall duration of two-phase flow is highest with respect to 

overall cycle duration at the highest flow rate of Re = 200 and the lowest surface 

temperature of Ts = 103°C.  This case exhibits the slowest progression rate of OBE 

location. 

Figure 4.1.6 shows histograms for the location of OBE with respect to the 

channel inlet for water and after different durations of nanofluid flow boiling for 

different flow rates and surface temperatures.  The normality of OBE distribution 

increases with an increase in channel surface temperature for both flow rates.  The 

distribution of OBE location tends to spread out and centralize toward the 

downstream end of the microchannel with nanofluid flow boiling for all cases.  The 
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spreading out of the distribution represents a more stable flow regime transition 

cycle due to the regularity of surface temperature oscillations.   

 

Figure 4.1.6:  Histograms for the location of OBE as measured from the 

inlet for (a) Re = 100, Ts = 103ºC, (b) Re = 100, Ts = 119ºC, (c) Re = 200, 

Ts = 103ºC, (d) Re = 200, Ts = 119ºC.  The location of OBE tended to 

spread out as nanoparticles deposited on the microchannel surface.  

The histograms centralized further downstream as nanofluid flow 

boiling continued. 
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The distributions tend to centralize near the downstream end of the 

microchannel due to the higher liquid temperatures in this region.  These histograms 

are indicative of stabilized bubble growth with respect to instantaneous local surface 

temperature at the channel walls. 

4.2 Bubble Growth Rates 

As heat flux increases, the number of bubbles that simultaneously nucleate on 

the channel walls increases.  These bubbles disrupt flow and create local pressure 

spikes that can influence the growth of adjacent bubbles.  Bubble interaction 

depends on local fluid temperatures and pressures, proximity of nucleation sites to 

each other and to the inlet and outlet plenums, and upstream and downstream flow 

compressibility. 

Figure 4.2.1 (a) depicts an example of interaction effects between two growing 

vapor bubbles.  Flow is in the right-to-left direction, as indicated by the arrow.  In 

this image sequence, the rapid growth of an elongating vapor bubble suppresses the 

growth of a nearby vapor bubble that has not yet reached the channel diameter.  

Both bubbles continuously increase in size from t = 0 ms until t = 3.67 ms, when the 

larger bubble reaches the channel diameter.  At this point the smaller bubble is 143 

μm in size.  The larger bubble then rapidly expands and causes the smaller bubble to 

contract from t = 3.67 ms until t = 6.67 ms, when it reaches a minimum size of 112 

μm.  The smaller bubble then begins to grow again from t = 6.67 ms until t = 8.00 

ms, when the two bubbles merge into one large vapor slug. 
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Figure 4.2.1:  Bubble growth rates for water; (a) Image sequence of 

bubble interaction, (b) equivalent diameter of interacting bubbles.  The 

growth of one vapor bubble is suppressed by the elongation of a 

neighboring vapor slug. 

Figure 4.2.1 (b) shows the equivalent diameter of each bubble from Figure 4.2.1 

(a), from the time that the larger bubble is less than half the channel diameter until 

the time when the two bubbles merge.  The equivalent diameter is calculated 

assuming a sphere of equal volume.  Bubble 1 grows linearly with time until it 

reaches the channel diameter, represented by a dotted line.  The bubble then begins 

to elongate and trap thin films of liquid around the vapor core that are subject to 

high thermal gradients.  The thin film evaporation creates an explosion of vapor 

pressure that causes the larger bubble to grow exponentially and induces a spike in 

local pressure which causes the smaller bubble to compress.  The smaller bubble 

decreases in size until the thermal boundary layer that surrounds the larger bubble is 

pushed into it, increasing the local fluid temperature and causing it to grow again.  
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The smaller bubble continues to grow until the liquid-vapor interfaces meet and the 

bubbles merge. 

Figure 4.2.2 shows the equivalent diameter of several elongated vapor bubbles 

under the same flow rate (Re = 200) and inlet fluid temperature (80°C) for three 

different values of wall surface temperature.   

 

Figure 4.2.2:  Bubble growth rates for water at different surface 

temperatures and Tin = 80°C, Re = 200.  Bubble growth rate increases 

with average surface temperature and becomes exponential after OBE 

for all temperatures.  The microchannel hydraulic diameter is 229 µm.  

[Edel and Mukherjee, 2011] 

The equivalent diameter was calculated assuming a sphere of equal volume.  

The bubble growth was measured during the time period from when the bubbles 

were half the channel diameter until they were about four times longer than the 

channel diameter.  The bubble growth curves are aligned so that at time t = 0 ms 
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each bubble is approximately 100 µm in diameter.  These bubbles were determined 

to be due to the Onset of Nucleate Boiling (ONB) and not dissolved gas since the 

fluid was de-gassed before the experiment. 

For a local surface temperature of 100.9°C, it took approximately 19 ms for a 

bubble to grow from 100 µm in diameter to about 700 µm equivalent diameter.  

When local surface temperature was increased to 102.2°C, it took approximately 13 

ms to reach this size.  When local surface temperature was increased further to 

103.7°C, it took only 9 ms for the bubble to reach this size. 

As wall superheat was increased, the temperature gradient in the thin films 

surrounding the vapor core also increased.  Increased vapor generation from the 

higher heat flux through the thin film regions forced the upstream and downstream 

interfaces away from the bubble center and elongated the thin film regions.  

Elongation of the thin films increased the surface area of the liquid vapor interface, 

thereby adding to the vapor generation rate and causing the bubbles to grow faster.  

Bubble growth was somewhat linear for the early stages of growth, before the 

bubbles reached the channel diameter, and then became exponential as the bubbles 

started to elongate and trap thin films between the heated wall and vapor core. 

The effect of mass flux on bubble growth is depicted in Figure 4.2.3.  These 

bubbles were measured at Reynolds numbers of 100 and 200 for an inlet 

temperature of 80°C and an average surface temperature of 102°C.   
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Figure 4.2.3:  Bubble growth rates for water at different mass fluxes 

and Tin = 80°C, Ts,avg = 102°C.  Bubble growth rate was slower for Re = 

200 than for Re = 100 before OBE.  Growth rates become exponential 

after OBE for both flow rates.  Microchannel hydraulic diameter is 229 

µm.  [Edel and Mukherjee, 2011] 

The bubble growth rates differ the most for the time period before the bubble 

reaches the channel diameter.  For the higher flow rate, the mass flux causes the 

thermal boundary layer at the wall to be thinner, exposing the bubble to lower liquid 

temperatures in the faster flowing center of the microchannel.  The increased flow 

drag also pushes the bubbles further downstream and sweeps them away from the 

sidewalls.  After the bubbles reach the channel diameter, thin film evaporation 

begins to dominate the effect of incoming mass flux and the bubbles grow at very 

similar rates regardless of mass flux. 
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The thin film lengths for the three bubbles depicted in Figure 4.2.2 are shown in 

Figure 4.2.4 (a) for comparison to the corresponding bubble length.  The reported 

film length is the combined length of the upstream and downstream thin film 

regions.  It can be seen from Figure 4.2.4 (a) that the thin films do indeed elongate 

as the bubble grows, and that they maintain a combined length that is about half of 

the overall bubble length.  This relationship may vary depending on the coolant 

type, channel material, and surface characteristics of the microchannel. 

 

Figure 4.2.4:  Bubble lengths and thin film dissipation for water; (a) 

Comparison of combined thin film length to overall bubble length, (b) 

average thin film latent heat dissipation for three values of wall surface 

temperature.  The thin films elongate with interface recession.  The 

amount of heat dissipated in the thin film regions increases with slug 

growth. 

The average thin film latent heat dissipation for the three cases shown in Figure 

4.2.4 (a) was calculated by measuring the volume change of the vapor in the 

microchannel over time and is reported in Figure 4.2.4 (b).  Thin film evaporation 
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was assumed to be the dominant heat transfer mechanism since both the upstream 

and downstream interfaces quickly receded from the nucleation site after the bubble 

reached the channel diameter.  As can be seen, the average thin film heat dissipation 

increases with increasing surface temperature.  The rate of heat removal also 

increases as the thin films become longer.  Although the thin films grow to 

approximately the same length for all three cases, the maximum heat dissipation is 

much higher for increased surface temperatures due to a theoretically larger 

temperature gradient across the thickness of the thin films. 

Figure 4.2.5 shows the bubble growth measurements for water on a clean 

surface at Re = 100, Tin = 68°C, and q” = 260 kW/m
2
.  The upper plot shows the 

bubble measurements with respect to the beginning of the cycle, whereas the bottom 

plot shows the bubble measurements with respect to the time at which each bubble 

is half the size of the channel diameter.  By comparing the order of bubbles, it can 

be seen that there is no definite correlation between bubble order and growth rate for 

water on a clean surface after the first bubble. 
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Figure 4.2.5:  Bubble growth measurements for water on a clean 

surface at Re = 100, Tin = 68°C, and q” = 260 kW/m2 with times aligned 

to 0 ms for (a) the start of channel flooding and (b) the time at which 

the bubble diameter is half that of the microchannel.  The legend 

shows bubble order in the given cycle.  The growth rate of each bubble 

is not dependent on bubble order.  [Edel and Mukherjee, 2012] 

Figure 4.2.6 shows the bubble growth measurements after 125 minutes of 

nanofluid flow boiling.  The earliest bubbles grow the slowest and the later bubbles 

grow increasingly faster.  The first bubbles that appear form near the channel exit.  

The subsequent bubbles form further and further upstream as time advances.  Due to 

the negative temperature gradient present along the visible half of the microchannel 

length, the bubbles that form further from the exit experience higher local surface 
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temperatures and grow at a consistently increasing rate.  Since this is not as visible 

at lesser deposition times, it is evident that the effect of the deposited nanoparticles 

stabilized the bubble growth rate with respect to local surface temperature. 

 

Figure 4.2.6:  Bubble growth measurements after 125 minutes of 

nanofluid flow boiling at Re = 100, Tin = 68°C, and q” = 260 kW/m2 with 

times aligned to 0 ms for (a) the start of channel flooding and (b) the 

time at which the bubble diameter is half that of the microchannel.  

Bubbles grow slower early in the flow cycle and faster as time 

progresses.  [Edel and Mukherjee, 2012] 

4.3 Flow Regime Transition Cycle Images 

After steady state operation was reached for Re = 100 and Ts = 103ºC, water 

would flood the microchannel, heat up, and boil over the downstream end of the 

microchannel, which was observed with the high speed camera.  For water on a 
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clean surface, bubbles would appear at nucleation sites distributed over the 

downstream end of the channel (Fig. 4.3.1 a).  There was very little evidence of a 

repeatable trend as far as nucleation location is concerned in the axial direction; in 

other words, bubbles would form wherever the local surface temperature exceeded 

the minimum nucleation temperature and several nucleation sites would stay active 

due to advantageous surface properties such as surface roughness or cavities.  The 

same progression of OBE was observed as was reported in Edel and Mukherjee 

[2011].  Bubbles started nucleating in the liquid before the microchannel fully 

flooded and the appearance of vapor in most of the visible channel length was 

observed during two-phase flow.  A single flow cycle was not distinct and flooding 

would occur unexpectedly during the flow regime transition cycle. 

After 25 minutes of nanofluid flow boiling, the nanoparticles that deposited on 

the channel surface increased the nucleation site density and caused the location of 

bubble growth to be much more consistent and repeatable cycle-to-cycle (Fig. 4.3.1 

b).  The microchannel completely flooded before bubble growth began and the 

microchannel was mostly full of liquid during two-phase flow.  The bubbles would 

nucleate first near the exit where the liquid was hottest.  As the liquid continued to 

heat up, the nucleation sites moved more and more upstream in a consistent pattern 

and the cycle would repeat after the subsequent dryout and flooding. 
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Figure 4.3.1:  Image sequences for Re = 100, Tin = 63°C, and Ts = 103ºC 

for (a) water on a clean surface, and after (b) 25 minutes of nanofluid 

flow boiling, (c) 75 minutes of nanofluid flow boiling, and (d) 125 

minutes of nanofluid flow boiling.  Black indicates liquid and white 

indicates vapor in the microchannel.  Liquid occupied a larger region 

of the microchannel length as nanofluid flow boiling continued, 

indicating a slower rise in surface temperature during a given flow 

cycle.  [Edel and Mukherjee, 2013] 

The same pattern of bubbles nucleating downstream and then progressing 

upstream was observed for nanofluid flow boiling after 75 minutes of operation 

(Fig. 4.3.1 c).  However, the active nucleation sites caused OBE to progress 

upstream faster and less bubbles formed per flow regime transition cycle.  The 

cycles would repeat regularly as with the case of 25 minutes nanofluid flow boiling 
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duration.  In other words, the channel would flood, ONB would occur, and OBE 

would progress from channel exit to inlet before channel dryout. 

The flow regime transition cycle was significantly elongated after 125 minutes 

of nanofluid flow boiling (see Fig. 4.3.1 d).  The channel would completely flood 

before bubble growth, as before, and the progression of OBE occurred from exit to 

inlet, as before.  However, the progression of OBE occurred much slower than in 

the previous cases, indicating an increase in mass transfer into the thin film regions 

of the evaporating meniscus.  More liquid appears in the image sequence because 

the thin film evaporation at the upstream interface would dissipate heat faster and 

cause less of the bulk fluid to evaporate over channel length.  An increase in the 

liquid appearing in the microchannel indicates a slower increase in local surface 

temperature due to the dissipation of the bulk liquid during two-phase flow. 

Figure 4.3.2 (a) shows a typical flow transition cycle at Re = 100 and Ts = 119ºC 

for water on a clean surface.  ONB occurs almost immediately after the channel 

starts to flood and the constant elongation of bubbles prevents the channel from 

completely flooding at any time during the flow transition cycle.  The upstream 

interface takes on different shapes for this case, with the behavior approaching 

annular flow near the end of the liquid phase in the microchannel before t = 9.0 ms.  

After t = 9.0 ms, the rate at which evaporation cools the microchannel surface has 

decreased the local surface temperature enough to support a typical microlayer 

evaporation scenario and caused the interface to take on a spherical shape, as with 

Re = 100 and Ts = 103ºC.   
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Figure 4.3.2:  Image sequences for Re = 100, Tin = 63°C, and Ts = 119ºC 

for (a) water on a clean surface, and after (b) 25 minutes of nanofluid 

flow boiling, (c) 75 minutes of nanofluid flow boiling, and (d) 125 

minutes of nanofluid flow boiling.  Black indicates liquid and white 

indicates vapor in the microchannel.  The microchannel does not fully 

flood for water on a clean surface.  After 125 minutes of nanofluid flow 

boiling the microchannel fully floods with liquid before OBE occurs.  

[Edel and Mukherjee, 2013] 

The rate at which the upstream interface evaporates eventually exceeds the 

liquid flow rate and the upstream interface recedes beyond the upstream end of the 

view window, leading to channel dryout.  The change in the shape of the interface in 



66 

 

this case is indicative of a decrease in local surface temperature during two-phase 

flow while the liquid is evaporating near the upstream interface.  Once the channel 

cooled enough, a typical shaped microlayer appeared and the annular flow behavior 

was attenuated. 

The flow regime transition cycle was significantly elongated after 25 minutes of 

nanofluid flow boiling at Re = 100, Ts = 119ºC (Fig. 4.3.2 b).  The microchannel is 

flooded past the center point of the visible section of the microchannel before ONB 

occurrs for this case, indicating that the instantaneous local surface temperature is 

lower during the period of channel flooding.  ONB occurrs before the microchannel 

is completely flooded and the shape of the upstream interface is spherical for almost 

all cases, indicating that the increase in surface wettability and capillarity due to 

nanoparticle deposition enhances the wicking of liquid into the mirolayer region of 

the evaporating meniscus and cools the microchannel more effectively.  One 

appearance of semi-annular flow occurrs at t = 28 ms when an upstream vapor 

bubble causes the liquid velocity at the downstream end of the liquid slug to exceed 

the rate at which a typical microlayer can dissipate liquid and the shape of the 

liquid-vapor interface takes on a perturbed shape as for the case of water on a clean 

surface. 

After 75 minutes of nanofluid flow boiling, the channel completely floods 

before ONB occurrs (Fig. 4.3.2 c).  OBE takes place from channel exit to inlet as 

was seen with nanofluid flow boiling at Re = 100 and Ts = 103ºC.  The flow regime 

transition cycle is elongated from 37 ms of two-phase flow to 46 ms of two-phase 
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flow.  More microbubbles are observed in the liquid phase, indicating an increase in 

nucleation site density on the channel surface with the deposition of nanoparticles.  

The upstream interface takes on a spherical shape for all images shown, which 

indicates superior cooling ability of the evaporating meniscus during two-phase 

flow. 

Figure 4.3.2 (d) shows a typical flow regime transition cycle after 125 minutes 

of nanofluid flow boiling at Re = 100 and Ts = 119ºC.  ONB occurrs before the 

channel is completely flooded, but then stops as cool liquid is pushed over the 

heated surface and decreases the superheat of available nucleation cavities.  ONB 

starts again at t = 21 ms when the progression of OBE continues from exit to inlet 

until channel dryout.  The two-phase portion of the cycle is enlongated from 46 ms 

to 73 ms.  Less bubbles are observed to form, which indicates that the evaporation 

heat transfer is more efficient due to the increased mass flux of liquid into the thin 

film region.  The increased amount of water seen in the image sequences after 

nanofluid flow boiling is also indicative of increased mass flux into the thin film 

regions during two-phase flow.  There is less liquid visible in the image sequences 

for Ts = 119ºC than for Ts = 103ºC because the higher surface temperatures 

evaporate the liquid earlier in the flow cycle for the higher heat flux. 

A typical flow transition cycle for Re = 200 and Ts = 103°C is shown in Figure 

4.3.3 (a) thru (c) for water on a clean surface and after 25 minutes and 75 minutes of 

nanofluid flow boiling, respectively.   
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Figure 4.3.3:  Image sequences for Re = 200, Tin = 63°C, and Ts = 103ºC 

for (a) water on a clean surface, and after (b) 25 minutes of nanofluid 

flow boiling, and (c) 75 minutes of nanofluid flow boiling.  Black 

indicates liquid and white indicates vapor in the microchannel.  The 

upstream interface moves toward the inlet at a slower pace after 125 

minutes of nanofluid flow boiling. 

Liquid completely wets the surfaces before ONB for all cases.  The complete 

wetting of the microchannel for water represents a stabilization of flow with an 

increase in flow rate while maintaining the same average surface temperature as for 

Figure 4.3.1.  The increased nucleation site density after 75 minutes of nanofluid 

flow boiling causes more bubbles to form and grow per cycle, which decreases 

instantaneous surface temperature and increases the duration of two-phase flow with 

respect to channel dryout and overall cycle length.  The increased duration of two-
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phase flow represents a more stable flow transition cycle when nanoparticles are 

added to the flow. 

Typical flow regime transition cycles at Re = 200 and Ts = 119°C are shown in 

Figure 4.3.4 (a) thru (c) for water on a clean surface and after 25 minutes and 75 

minutes of nanofluid flow boiling, respectively.  Bubbles start to nucleate and 

elongate before the channel completely floods for all cases.  The higher surface 

temperature with respect to the previous case causes the upstream interface to start 

receding during the flooding period for water, as seen in Figure 4.3.2 (a) at t = 03 

ms.  The interface profile is convex rather than concave for this flow rate and 

surface temperature due to the high rate of evaporation at the channel surfaces.  The 

cooling of the channel walls by evaporation eventually dominates the evaporation 

process at t = 05 ms to the point of where the interface profile straightens out and 

the channel continues to flood.  ONB and OBE occur during channel flooding and 

causes the channel to dryout after t = 21 ms.  The addition of nanoparticles in parts 

(b) and (c) stabilizes the surface temperatures enough to eliminate the initial 

interface recession during flooding and causes ONB and OBE to occur more 

regularly as the liquid enters the microchannel.  The increased nucleation site 

density causes more bubbles to form and grow per cycle, decreasing the 

instantaneous channel surface temperature and increasing the duration of two-phase 

flow with respect to overall cycle duration. 
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Figure 4.3.4:  Image sequences for Re = 200, Tin = 63°C, and Ts = 119ºC 

for (a) water on a clean surface, and after (b) 25 minutes of nanofluid 

flow boiling, and (c) 75 minutes of nanofluid flow boiling.  Black 

indicates liquid and white indicates vapor in the microchannel.  The 

upstream interface moves toward the inlet at a slower pace after 125 

minutes of nanofluid flow boiling. 

4.4 Phase Records 

A record of the phases appearing at the channel outlet is given in Figure 4.4.1 

(a) thru (d) for water on a clean surface and for different durations of nanofluid flow 

boiling at Re = 100 and Ts = 103ºC.  A value of one represents single phase vapor 

appearing at the outlet and a value of zero represents single phase liquid appearing 

at the outlet.   
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Figure 4.4.1:  Liquid/Vapor phase record of single phase flow at the 

channel outlet for Re = 100, Tin = 63°C, and Ts = 103ºC for (a) water (b) 

nanofluids 25 minutes, (c) nanofluids 75 minutes, and (d) nanofluids 

125 minutes.  The black line indicates two-phase flow and the grey line 

indicates channel dryout.  Two-phase flow persists over a greater 

percentage of the flow cycle as nanoparticles deposit on the 

microchannel surface.  [Edel and Mukherjee, 2013] 

The dark line starts when flooding occurs and there is a delay before ONB, 

OBE, and liquid appearing at the channel outlet.  The diagrams end in grey, which 

signifies the time that the downstream end of the microchannel is fully dried out.  

Each plot is scaled so that one flow regime transition cycle is the same length in the 

figure.  The scaling allows the portions of the flow cycle to be compared in terms of 

the percentage of total cycle length rather than actual duration in milliseconds.  The 

cycle shown is characteristic for the flow regimes.   
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The amount of time that the channel is dried out initially increases and then 

decreases with nanofluid flow boiling.  After 125 minutes duration the amount of 

time the channel dries out is still higher for nanofluids than for water.  The duration 

of two phase flow oscillation at the outlet, shown as the duration over which the line 

is changing from zero to one or vice versa, initially decreases when nanofluids are 

added to the flow.  This duration then increases with nanofluid flow boiling from 25 

minutes to 125 minutes duration.  The total amount of liquid leaving the channel 

outlet continually increased with flow boiling duration.  A larger amount of liquid 

appearing at the outlet signifies a slower rise in local wall temperature during two 

phase flow.  Slower instantaneous surface temperature rise during two-phase flow is 

indicative of a higher evaporative heat transfer coefficient at the upstream interface 

due to the increased mass transfer into the thin film regions introduced by the 

enhanced capillarity from nanoparticle deposition.  After 75 minutes of nanofluid 

flow boiling, the duration of channel dryout begins to decrease due to enhanced thin 

film evaporation. 

Figure 4.4.2 (a) thru (d) shows the phase records for water and different flow 

boiling durations at Re = 100 and Ts = 119ºC.  For water on a clean surface, almost 

no liquid appears at the exit due to the high surface temperatures with respect to the 

flow rate.  The overall duration of two-phase flow increases with nanoparticle 

deposition as seen before, indicating more efficient cooling of the channel walls 

during two-phase flow.   
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Figure 4.4.2:  Liquid/Vapor phase record of single phase flow at the 

channel outlet for Re = 100, Tin = 63°C, and Ts = 119ºC for (a) water (b) 

nanofluids 25 minutes, (c) nanofluids 75 minutes, and (d) nanofluids 

125 minutes.  The black line indicates two-phase flow and the grey line 

indicates channel dryout.  Single-phase vapor occupies the 

microchannel for a smaller percentage of the flow cycle as nanofluid 

flow boiling continues.  [Edel and Mukherjee, 2013] 

Individual durations of liquid flow at the outlet increase with time in one cycle 

due to surface temperature increase, as before.  It takes longer for liquid flow to 

appear at the outlet for the case of Re = 100 and Ts = 119ºC than it did for the case 

of Re = 100 and Ts = 103ºC.  The duration of dryout continually decreases with 

nanofluid flow boiling. 

The phase record for water and different durations of nanofluid flow boiling at 

Re = 200 and Ts = 103°C is shown in Figure 4.4.3 (a) thru (d).  The overall 
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durations of two-phase flow for this case are longer than for the previous cases of 

lower flow rate.  The durations of dryout are shorter for this case as well.   

 

Figure 4.4.3:  Liquid/Vapor phase record of single phase flow at the 

channel outlet for Re = 200, Tin = 63°C, and Ts = 103ºC for (a) water (b) 

nanofluids 25 minutes, and (c) nanofluids 75 minutes.  The black line 

indicates two-phase flow and the grey line indicates channel dryout.  

The flow oscillates more rapidly between single-phase liquid and 

single-phase vapor at the outlet after 75 minutes of nanofluid flow 

boiling. 

The overall length of two-phase flow increases with nanoparticle deposition as 

before.  The duration of dryout decreases after only 25 minutes of nanofluid flow 

boiling duration for this case, which is shorter than the previous cases at 75 minutes 

duration.  Liquid flow at the outlet appears much earlier in the cycles than for the 

previous cases with lower flow rates. 

Figure 4.4.4 (a) thru (c) shows the phase records for Re = 200 and Ts = 119°C.  

The overall duration of two-phase flow for water is higher for this case than for the 
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case of Re = 100 and Ts = 103°C.  The phases at the outlet oscillate between liquid 

and vapor much more rapidly for this case than for previous cases of lower flow rate 

and/or surface temperatures.   

 

Figure 4.4.4:  Liquid/Vapor phase record of single phase flow at the 

channel outlet for Re = 200, Tin = 63°C, and Ts = 119ºC  for (a) water (b) 

nanofluids 25 minutes, and (c) nanofluids 75 minutes.  The black line 

indicates two-phase flow and the grey line indicates channel dryout.  

Two-phase flow occupies the microchannel for a smaller percentage of 

the flow cycle when flow rate and surface temperature are increased as 

compared to previous trials. 

The duration of channel dryout initially decreases for 25 minutes nanofluid flow 

boiling duration and then increases at 75 minutes duration.  The total duration of 

dryout for this case is shorter after 75 minutes of nanofluid flow boiling than it is for 

water.  The overall length of channel dryout is higher for this case than for previous 

cases. 
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Figure 4.4.5:  Percentage of flow cycle occupied by single phase flow 

for Re = 100 and (a) Ts = 103°C and (b) Ts = 119°C as a function of 

nanofluid flow boiling duration.  The flow boiling duration of zero 

corresponds to water flow boiling on a clean surface.  More liquid 

appears at the microchannel outlet as nanofluid flow boiling continues 

due to the slower rise in surface temperatures during two-phase flow. 

The total durations of liquid and vapor flow at the channel outlet are given in 

Figure 4.4.5 in terms of the percentage of the total cycle duration for Re = 100 and 

different surface temperatures.  The duration of liquid flow at the outlet continually 

increases with nanofluid flow boiling duration for both cases.  More liquid appears 

at the outlet for Ts = 103°C than for Ts = 119°C for all durations.  The increase in 

the appearance of liquid at the outlet with nanoparticle deposition is indicative of 

more efficient evaporative cooling at the channel walls during two-phase flow. 



77 

 

4.5 Cycle Duration and Bubble Frequencies 

The average duration of each flow transition cycle for water (duration = 0 min) 

and after different durations of nanofluid flow boiling is shown in Figure 4.5.1 at 

different flow rates and average surface temperature.  At the average surface 

temperature of Ts = 103°C, the cycle duration initially decreases with the addition of 

nanoparticles due to the effect of increased nucleation site density on the upstream 

progression rate of OBE location.  For the higher surface temperature of Ts = 119°C, 

the cycle duration continually increases with the addition of nanoparticles due to a 

slower rise in surface temperatures as increased wicking of liquids into the thin film 

regions of the evaporating menisci increases thin film evaporative cooling.  The 

cycle duration ends at a higher value for nanofluid flow boiling than for water in all 

cases.  Increased cycle duration is accompanied by an increase in two-phase flow 

duration with respect to overall cycle duration in all cases. 
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Figure 4.5.1:  Length of flow regime transition cycle at different mass 

flow rates using water (0 min) and nanofluids for (a) Ts = 103ºC, and (b) 

Ts = 119ºC.  The duration of the flow regime transition cycle increases 

with nanofluid flow boiling duration due to a slower rise in surface 

temperatures during two-phase flow. 

The frequency of ONB is given in Figure 4.5.2 at different values of surface 

temperature and flow rate for water on a clean surface and after different durations 

of nanofluid flow boiling.  For the lower surface temperature of 103ºC, both ONB 

frequency and OBE frequency initially increase with the addition of nanoparticles 

due to an increase in nucleation site density.  The frequencies then decrease with 

nanofluid flow boiling duration due to the enhanced cooling effect of thin film 
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evaporation on the rate of surface temperature increase due to enhanced wicking of 

liquids along the microchannel surface. 

 

Figure 4.5.2:  Bubble frequency at different average surface 

temperatures with water (0 min) and nanofluids for (a) ONB frequency 

at Ts = 103ºC, (b) OBE frequency at Ts = 103ºC, (c) ONB frequency at 

Ts = 119ºC, and (d) OBE frequency at Ts = 119ºC.  The frequency of 

ONB decreases as nanofluid flow boiling continues because the 

deposition of nanoparticles causes a slower procession rate of the 

upstream interface and cools the microchannel surface more 

effectively. 
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The frequency of ONB and OBE continually decrease for Re = 100 and Ts = 

119ºC because the effect of nanoparticle deposition on nucleation site density is 

already saturated for the higher surface temperature and the effect of lateral wicking 

on thin film evaporation dominates the propagation rate of OBE location in the 

upstream direction.  For Re = 200 and Ts = 119ºC the effect of increased mass flow 

rate suppresses ONB and the initial increase in ONB and OBE frequency is again 

visible when nanoparticles are added to the flow.  After 25 minutes, the frequencies 

again decrease due to enhanced thin film evaporation as nanoparticles deposit on the 

microchannel surface. 

4.6 Future Work 

For a nanofluid concentration of 0.01 vol% alumina Nanofluids, the progression 

of OBE location in the upstream direction periodically stopped at one main location 

along the microchannel length and the bubbles continually elongated near that site, 

at approximately 18 mm from the channel inlet (see Figure 4.6.1).  The 

centralization of OBE location at one point in the microchannel indicates that 

channel dryout could effectively be mitigated when the microchannel length is half 

full of liquid and half full of vapor.  Adding Nanofluids to a multiple microchannel 

test section with a concentration of 0.01 vol% alumina Nanofluids will stabilize 

channel-to-channel instability and should mitigate the periodic dryout of 

microchannels due to the effect of lateral surface wicking on interface stability.   
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Figure 4.6.1:  Records for the location of OBE as measured from the 

inlet for Re = 100, Ts = 103°C, and a nanofluid concentration of 0.01 

vol%.  After 150 minutes of nanofluid flow boiling OBE location tended 

to centralize at 18 mm from the channel inlet. 

This could lead to a spreading out of the range over which OBE occurs similar 

to the results from this study for a Reynolds number of 200 and an average surface 

temperature of 119°C.  Both the mitigation of channel dryout and the spreading out 

of the evaporating menisci over the microchannel length will lead to more constant 
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heat flux footprints for micro-heat exchangers and reduce the local formation of 

hotspots. 

In the future, I would like to stay in the area and pursue the research with the 

goals of integrating two-phase cooling in microchannels into a micro-processor 

motherboard fabricated with microchannels in the back side for stacking in a 3-

dimensional microprocessor architecture.  With the expansion of motherboard 

fabrication into a stacked architecture, the number of transistors in one core and the 

number of registers in one core can be increased 100 fold without having to 

parallize code for multiple cores and take up more room in the computer tower.  

Furthermore, the 3-D microprocessor cores would be able to be integrated into a 

larger multi-core setup that utilizes multiple core processing with more powerful 

cores.  The number of microchannels should be adjusted so that stable interface 

evaporation can be achieved in all or most microchannels in a micro heat exchanger.  

The length to diameter aspect ratio should be high enough to allow two-phase flow 

to occur over the majority of the micro heat exchanger surface.  Increasing computer 

capability and efficiency using two-phase flow will lead to a smaller carbon 

footprint for data centers and will open new doors to numerical modeling on multi-

scale models. 
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5 Conclusions 
Flow boiling was investigated in this study using degassed, deionized water, and 

0.001 vol% aluminum oxide nanofluids in a single rectangular brass microchannel 

with a hydraulic diameter of 229 µm for one inlet fluid temperature of 63°C and two 

constant flow rates of 0.41 ml/min and 0.82 ml/min.  The power input was adjusted 

for two average surface temperatures of 103°C and 119°C at each flow rate.  High 

speed images were taken periodically for water and nanofluid flow boiling after 

durations of 25, 75, and 125 minutes from the start of flow.   

The microchannel test section consisted of a single microchannel cut into a 400 

micron-thick piece of brass using a micro-milling machine.  The nominal 

rectangular cross-section dimensions were 266 µm deep by 201 µm wide, giving a 

hydraulic diameter of 229 µm.  The channel was 25.4 mm long with 7 mm of uncut 

brass surrounding it on all sides.  The following conclusions can be drawn from the 

current study: 

 The progression of the location of OBE in the upstream direction occurrs more 

slowly for a flow regime transition cycle of liquid/two-phase/vapor than for a 

flow regime transition cycle of two-phase/vapor. 

 The progression of the location of OBE in the upstream direction occurrs more 

slowly for lower surface temperatures and higher flow rates. 
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 The deposition of nanoparticles on the microchannel surface causes the range in 

the location of OBE to spread out over microchannel length and centralize 

downstream. 

 Bubbles grow more rapidly with increased surface temperature and decreased 

flow rate.  Bubble growth rate becomes more repeatable with respect to local 

surface temperatures as nanoparticles deposit on the microchannel surface. 

 The flow regime transition cycle changes from two-phase/vapor to liquid/two-

phase/vapor with the addition of nanoparticles for Re = 100 because the 

enhanced surface capillarity due to surface modifications causes the 

microchannel wall surface temperature to increase less rapidly during each flow 

cycle. 

 The increase in nucleation site density as nanoparticles deposit on the 

microchannel surface has the greatest effect on flow boiling stability at lower 

surface temperatures, where the effect of temperature on nucleation site density 

is not already saturated by a high excess temperature and microcavity 

availability is critical to the nucleation of microbubbles. 

 A decrease in the duration of channel dryout with the deposition of nanoparticles 

is clearly visible for Re = 100 and Ts = 119°C because the slower rise in surface 

temperature due to enhanced thin film evaporation has a greater effect on cycle 

duration and the frequency of ONB. 

 For an alumina nanoparticle concentration of 0.01 vol% the location of OBE 

tended to centralize at one location along the microchannel length, indicating 



85 

 

that the deposition of nanoparticles stabilizes flow regime transition and causes 

the visible portion of the microchannel to be half full of liquid and half full of 

vapor. 

 The use of nanofluids to stabilize flow boiling in microchannels can mitigate 

channel dryout and thereby attenuate the oscillation of surface temperatures that 

causes the overall footprint temperature of the microchannel heat exchanger to 

soar.  
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