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Abstract

In this thesis we study weak isometries of Hamming spaces. These are permutations of

a Hamming space that preserve some but not necessarily all distances. We wish to find

conditions under which a weak isometry is in fact an isometry. This type of problem was

first posed by Beckman and Quarles for Rn. In chapter 2 we give definitions pertinent to our

research. The 3rd chapter focuses on some known results in this area with special emphasis

on papers by V. Krasin as well as S. De Winter and M. Korb who solved this problem for

the Boolean cube, that is, the binary Hamming space. We attempted to generalize some of

their methods to the non-boolean case. The 4th chapter has our new results and is split into

two major contributions. Our first contribution shows if n = p or p < n
2 , then every weak

isometry of Hn
q that preserves distance p is an isometry. Our second contribution gives a

possible method to check if a weak isometry is an isometry using linear algebra and graph

theory.
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Chapter 1

Introduction

An isometry of a metric space is a bijection of the metric space that preserves distances

between elements. A weak isometry is not surprisingly a weaker version of an isometry:

it is a permutation of a metric space that preserves certain prescribed distances (but not

necessarily all distances). The study of weak isometries originates from the paper On

Isometries of Euclidean Spaces by Beckman and Quarles [1]. There the authors show in

the real Euclidean space Rn, n > 1 and finite, preserving a single distance results in an

isometry. Subsequently other Beckman-Quarles like problems have been studied in both

infinite and finite metric spaces.

We wish to prove discrete Beckman-Quarles like theorems for non-boolean Hamming

spaces. Our problem focuses on when does having a single preserved distance imply that

all distances must be preserved.

We initially tried to use methods that originated from the papers of V. Krasin [6], [7] and
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S. De Winter and M. Korb [5], but discovered that new methods were needed as the old

methods did not easily translate to the non-boolean case.

We provide two approaches. The first approach is combinatorial. The main idea is to

find substructures that have to be preserved by a weak isometry and then to combine these

substructures to prove that a weak isometry in fact must preserve distance 1, from which it

then follows that the weak isometry in fact is an isometry. In order to do this we used the

theory of Bose-Mesner algebras related to Hamming spaces.

Our second approach uses linear algebra. The main idea here is to prove that the so-called

adjacency matrix of our Hamming space commutes with the permutation matrix of our

weak isometry. This then implies that the weak isometry must be an isometry.

Before turning to our new results we first provide necessary definitions in the next chapter,

and give a short overview of some known results in Chapter 3.
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Chapter 2

Definitions

We will now define key terms to be used throughout the paper.

Definition: A metric on a set S is a non-negative function d : S×S→ R+ (describing the

distance between points of the given set) satisfying the following:

• triangle inequality d(x,y)+d(y,z)≥ d(x,z) for all x,y,z ∈ S;

• d is symmetric, that is d(x,y) = d(y,x) for all x,y ∈ S;

• d(x,y) = 0 if an only if x = y.

Example: An example of a metric is the Euclidean distance on Rn. The Euclidean distance

between two points p = (p1, p2, . . . , pn) and q = (q1,q2, . . . ,qn) is defined as d(p,q) =

d(q, p) =
√

∑
n
i=1(qi− pi)2.

Definition: A metric space (S,d) is a set S along with a metric d on S.

3



In this paper will the metric space we will focus on is the Hamming space equipped with

the Hamming distance. We provide the definitions below.

Definition: The q-ary Hamming cube or Hamming space denoted Hn
q is the set of words

Zn
q of length n from an alphabet of size q.

When q is 2, this space is also called the Boolean cube.

Addition and subtraction can be defined in a natural way on Hn
q , namely component wise

and modulo q.

Definition: The set of indices of the non-zero positions of a word w in Hn
q is called the

support of w.

Definition: The size of the support of a word in Hn
q is called the Hamming weight of the

word.

Definition: The Hamming distance between two words x and y in Hn
q is the number of

positions in which x and y differ.

Claim: The n-dimensional Hamming space Hn
q equipped with Hamming distance is a

metric space.

We only need to show the triangle inequality holds as symmetry and zero distance comes

directly from the definition of Hamming distance.

Let x,y,z ∈ Hn
q .

Triangle inequality: Show d(x,y)+d(y,z)≥ d(x,z) for all x,y,z ∈ Hn
q .

4



Let d(x,y) = a, and d(y,z) = b. So x and y differ in a set P1 of a positions. Also y and z

differ in a set of P2 of b positions. So

d(x,z)≤ |P1∪P2|= |P1|+ |P2|− |P1∩P2| ≤ a+b.

Definition: An isometry is a bijective map f between two metric spaces (S,d) and (S′,d′)

that preserves distances. So d(x,y) = d′( f (x), f (y)) for all x,y ∈ S.

Definition: If (S,d) = (S′,d′) then the isometry is called an isometry of (S,d).

Definition: Let (S,d) be a metric space. Let D ⊆ R+ be the image of d (all possible

distances). A weak-isometry or P-isometry of (S,d) is a permutation f of S such that there

is a P⊆ D, P 6= /0 with the property that d(x,y) = d( f (x), f (y)) if d(x,y) ∈ P. Note that if

P = D, then this is exactly the definition of an isometry.

Definition: A p-weak isometry or simply a p-isometry is an weak isometry that only

preserves distance p, where p is a single non-negative value.

We will now introduce some specific non-standard terminology that will turn out to be

useful in our proofs in Chapter 4.

Definition: In Hn
q the layer of weight k denoted Lk is the subset of Hn

q of all words of weight

k.

Definition: In Hn
q the cloud of weights a through b denoted C(a,b) is the subset of Hn

q of

all words whose weight is at least a and at most b. The cloud of weight at least a denoted

C(a) is the subset of Hn
q of all words whose weight is at least a.

5



For our linear algebraic approach we will need to provide a short discussion of the graphs

and matrix algebras that are associated to each Hn
q . This is done below.

Definition: A (finite) graph G = (V,E) is a finite set V the elements of which are called

vertices together with a set E of unordered pairs of vertices {x,y} called edges where

x 6= y ∈V . If {x,y} is an edge we say that x and y are adjacent.

Definition: The adjacency matrix A of a graph G is the square matrix whose columns and

rows are labeled by the vertices of G and is such that Ai j equals 1 if vertex i is adjacent to

vertex j, and zero otherwise.

Definition: A path in a graph is a sequence of edges {v1,v2},{v2,v3}, . . . ,{vk − 1,vk}

adjoining a sequence of vertices {v1, . . . ,vk}. A path that starts at a vertex a and ends at a

vertex b is called a path between vertices a, b.

Definition: The length of a path is the number of edges in the path.

Definition: The distance between two vertices is the length of the shortest path between

them.

Definition: The diameter of a connected graph is the maximal distance between two

vertices in the graph.

Definition: We say a graph is connected if there is a path between vertices a,b ∈V for all

a,b ∈V .

Definition: The valency of a vertex is the number of vertices adjacent to it.

Definition: A vertex is said to be a neighbor of another vertex if the vertices are adjacent.

6



Definition: A graph is called regular when every vertex of the graph has the same valency.

Given a Hamming space Hn
q a graph Γ(H) can be constructed as follows: the vertices of

Γ(H) are the words of Hn
q , and two vertices are adjacent if the corresponding words are at

distance 1. It turns out this graph has many nice properties.

Definition: A distance regular graph of diameter d is a regular graph of valency k and

diameter d for which there exist integers bi and ci, i = 0,1, . . . ,d, such that for any two

vertices v1 and v2 at distance i from each other there are exactly bi neighbors of v2 at

distance i + 1 from v1, and there exactly ci neighbors of v2 at distance i− 1 from v1. The

sequence

(b0,b1, . . . ,bd−1;c1,c2, . . . ,cd)

is called the intersection array of the graph. It is obvious that b0 = k, bd = 0, c0 = 0 and

c1 = 1. Finally, one typically defines ai = k−bi− ci. Hence, with the above notation ai is

the number of neighbors of v2 at distance i from v1.

Given a distance regular graph G with diameter d a square (d + 1)× (d + 1) tridiagonal

matrix can be built

B :=



a0 b0 0 . . . 0 0

c1 a1 b1 . . . 0 0

0 c2 a2 . . . 0 0

...
...

...
...

...

0 0 0 . . . ad−1 bd−1

0 0 0 . . . cd ad
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called the intersection matrix. It is easy to see that a0 = c0 = bd = 0, and ai + bi + ci = k

thus b0 = k, where k is the valency of our distance regular graph. The intersection matrix

is useful when dealing with distance regular graphs as the d + 1 distinct eigenvalues of B

are also eigenvalues of the adjacency matrix A of the graph G [4].

Example: The graph Γ(H) is an example of a distance regular graph. It has intersection

matrix

B =



0 n(q-1) 0 . . . 0 0

1 . . . . . . . . . ...

0 . . . (n-i)(q-1) 0 0

... . . . i i(q-2) . . . 0

0 0 . . . . . . (q-1)

0 · · · 0 0 n n(q-2)



.

Given a distance regular graph G of diameter d, d− 1 related graphs G2,G3, . . . ,Gd can

be constructed as follows: the graph Gi has the same vertices as G, and two vertices are

adjacent if and only if they are at distance i in G. Now let A0 = I, let A1 = A be the adjacency

matrix of G, and let Ai be the adjacency matrix of Gi, i = 2,3, . . . ,d. These matrices satisfy

the following properties [4]:

(i) ∑
d
i=0 Ai = J;

(ii) Ai = AT
i ;

8



(iii) AiA j = ∑
d
k=0 pk

i jAk;

for certain numbers pk
i j.

It can be shown (see [4]) that these matrices generate a (d + 1)-dimensional commutative

algebra of symmetric matrices.

Definition: The Bose−Mesner algebra A of a distance regular graph is the matrix algebra

A generated by the matrices A0,A1, . . . ,Ad . This algebra first appears in [3].

9



Chapter 3

Known Results

3.1 Beckman and Quarles’ result

In this section we describe the result and proof technique from the original Beckman and

Quarles paper On Isometries of Euclidean Spaces [1], as this provides the starting point

for looking at weak isometries. The main result in their paper is that any transformation of

Euclidean n-space Rn, with 2≤ n < ∞, which preserves a single nonzero distance must be a

Euclidean motion (isometry) of Rn onto Rn. Hence, every p-isometry of Rn is an isometry.

From our perspective the important thing to be taken away from their paper is the idea of

looking for preserved substructures.

After normalization one can assume in Rn
q that a given p-isometry is in fact a 1-isometry. In

[1] the authors start by showing that every 1-isometry of Rn
q must map equilateral triangles

to equilateral triangles.

10



Next they show that a rhombus is preserved as a structure. Using the equilateral triangles

to build a rhombus with distance 31/2 between two opposite points, it follows that distance

31/2 is preserved.

Gaining momentum the next structure in [1] that is considered is a regular hexagon with unit

sides. This along with what we know about the rhombi and distance 31/2 being preserved

allows the preservation of distance 2 by constructing a hexagon with rhombi. Once distance

two has been preserved it is possible to prove that all integral distances are preserved.

Moving to more complex structures the next thing Beckman and Quarles show is that a unit

circle and its center will be transformed into a unit circle and its center. Using this result

they then shown that a plane is transformed into a plane. This finally allows them to prove

that all distances are preserved. We finish up our discussion of the Beckman and Quarles’

paper with their main theorem which states:

Theorem 1 (Beckman And Quarles, [1]) Let T be a transformation (possibly many-valued)

of Rn (2 ≤ n < ∞) into itself. Let d(p,q) be the distance between points p and q of Rn,

and let T p, T q be any images of p and q, respectively. If there is a length a > 0 such

that d(T p,T q) = a whenever d(p,q) = a, then T is a Euclidean transformation of Rn onto

itself.

11



3.2 The result of Krasin for the Boolean cube

It is now natural to try to generalize Theorem 1 to other metric spaces, and to provide

explicit examples of weak isometries. However all of our attempts failed. We will focus

on Hamming spaces equipped with the Hamming distance. This study was initiated by

Krasin in [6, 7] in the case of the Boolean cube and completed (for the Boolean cube) by

De Winter and Korb in [5]. Before turning our attention to the non-boolean case in the next

chapter we will review the known results for the Boolean cube.

The key idea in [6, 7] is to study the words of weight p at distance p from a given word

of weight 2k. Now the number of words at distance p and of weight p from an arbitrary

word v of weight 2k is denoted by Ap
2k (this is called the p-power of v and only depends on

the weight of v). Once these p-powers have been computed Krasin proceeds to show via

counting arguments which p-isometries are necessarily isometries. We describe his method

in some more detail as we tried to generalize it for non-boolean Hamming spaces.

Krasin computes Ap
2k as

( k
2k

)( p−k
n−2k

)
if k ≤ min{p,n− p}, and zero otherwise. This is then

used to show that when p is odd and p /∈ {n−1
2 ,n+1

2 ,n
2 ,n} we have Ap

2 = Ap
2k if and only if

k = 1. This in turn implies that every p-isometry of Hn
2 with p odd and p /∈ {n−1

2 ,n+1
2 ,n

2 ,n}

preserves distance 2. Combining the fact that distance 2 is preserved with the fact that

distance p which is odd is preserved we can conclude that every p-isometry with p odd and

p /∈ {n−1
2 ,n+1

2 ,n
2 ,n} is also necessarily a 1-isometry and hence an isometry (see Lemma 2

below).

12



3.3 The weak-isometries of the Boolean cube

Krasin provided some examples of weak isometries that are not isometries for p ∈

{n−1
2 ,n+1

2 ,n
2 ,n} or p even. In [5] De Winter and Korb provided a complete classification of

all weak isometries of Hn
2 . We will briefly describe their results below.

The first lemma in [5] shows that a 1-isometry of Hn
2 is an isometry. We will now prove

this is true for any q-nary Hamming space.

Lemma 2 Let φ be a 1-isometry of a q-ary Hamming space, Then φ is an isometry.

Proof. If φ is a 1-isometry, then φ is equivalent with a permutation of the vertices of the

graph Γ(H) which maps edges to edges, and hence preserves the distance between any two

vertices. Consequently φ preserves all distances and hence is an isometry of Hn
q . �

In the second lemma of [5] we see a proof showing for n > 4 every 2-isometry preserves

all even distances. The proof is similar to that of Lemma 1 and relies on the fact that in the

binary case the graph Γ2(H) is not connected.

The remainder of [5] focuses on classifying all remaining P-isometries where P is a subset

of {n−1
2 , n

2 , n+1
2 ,n}

⋃
ε , where ε is the set of non-zero even integers smaller then n. The

main result is that every P-isometry of Hn
2 that is not an isometry is one of the following

weak isometry types:

• n-isometries;

13



• even-isometries;

• {n
2 ,n}-isometries;

• n+1
2 -isometries;

• {n−1
2 , n+1

2 ,n}-isometries.

For each of the cases a complete description of these P-isometries is obtained.

A somewhat remarkable consequence is that there are no n−1
2 -isometries that are not a

P-isometry where {n−1
2 }( P.

The class of n-isometries is an obvious result with φ being a permutation of the pairs

{c,1+ c} This comes from there being only one word at distance n from a word c, namely

1+ c.

The class of even isometries is covered by analyzing the action of a 2-isometry on the

connected components of the graph Γ2(H). This is fairly easy and analogues to the

classification of isometries of Hn
2 .

From the third lemma in [5] which states every {p,n}-isometry is a {p,n− p,n}-isometry

we know that every {n
2}-isometry is actually a {n

2 ,n}-isometry. Thus we know from the

class of n-isometries that φ permutes the pairs {c,1 + c}. From this the authors show that

φ induces a nice action on the words of weight less than n
2 , and the words of weight n

2 with

a zero in the first position. By studying this induced action De Winter and Krasin obtain

a complete classification of {n
2 ,n}-isometries. It turns out that the cases n = 4k + 2 and

n = 4k are slightly different.

14



The class of n+1
2 -isometries is handled by embedding Hn

q into Hn
q+1 and then showing that

every n+1
2 -isometry of Hn

q induces a specific {n+1
2 ,n + 1}-isometry of Hn+1

q . Using the

classification of {n
2 ,n}-isometries then yields the classification of n+1

2 -isometries.

The last class is of {n−1
2 , n+1

2 ,n}-isometries and is classified by finding which of the

n+1
2 -isometries isometries are also n-isometries. Which then provides the complete

classification of weak isometries of the Boolean cube. We do not mention here explicitly

what all these mappings look like as some of these are rather long and complicated

expressions (which we will not need in the rest of this paper).

The papers [6],[7], and [5] are not the only publications on discrete versions of the

Beckman-Quarles theorem. Beckman-Quarles type theorems and finite subsets of R2 have

been studied in [8], Beckman-Quarles type theorems for finite geometries have been the

topic of [2],. . .

15



Chapter 4

New Results

4.1 Trying to generalize Krasin’s method

In this chapter we discuss generalizations of the result of Krasin [6, 7] for Hamming spaces

over larger alphabets. A first natural approach is to try a direct generalization of Krasin’s

methods. The idea behind this approach is to show that given a word of weight w, the

number of words of weight p at distance p from this word is distinct for different values of

w. This implies that every p-isometry that fixes the zero word must map words of weight 1

to words of weight 1. This can be used to prove that every p-isometry is in fact an isometry.

We show in 3 the case q = 3 and n < 2p why such an approach fails. Considering higher

values of q and including the case n≥ 2p only makes things worse.
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Lemma 3 Let Hn
q be the n-dimensional q-ary hamming space. When n < 2p and q = 3,

the number of words of weight p at distance p from a fixed word of weight x is

min{b x
2 c,n−p}

∑
a0=max{0,x−p}

(
x−a0

a0

)(
x
a0

)(
n− x

p− x+ao

)
2p−x+a0 .

Proof. Let {0,1,2} be the alphabet of q = 3 symbols. Consider an arbitrary fixed word w

of weight x. Without loss of generality we can choose w to have a 1 in the first x positions

and 0 in the remaining n− x positions. Now let z be an arbitrary word of weight p and

at distance p from w. Let a0 be the number of zeros in z where w has a one in the same

position, similarly let a1 and a2 be the number of ones or twos in z where w has a one in

the same position. Lastly let a∗ be the number of nonzero positions in z where w has a zero

in the same position. Then our two words look as follows.

x

w :
︷ ︸︸ ︷
1 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·1 0 · · · · · · · · · · · · · · · · · · ·0

z : 0 · · · · · · · ·0︸ ︷︷ ︸ 1 · · · · · ·1︸ ︷︷ ︸ 2 · · · · · ·2︸ ︷︷ ︸
a0 a1 a2

∗· · · · · · · ∗︸ ︷︷ ︸ 0 · · · · · · ·0

a∗
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From this we derive:

a1 +a2 +a∗ = p (4.1)

a1 +a2 +a0 = x (4.2)

a2 +a0 +a∗ = p (4.3)

From (4.1) and (4.2) we see that ao = a1. By replacing a1 with a0 equations (4.1) and (4.3)

become equivalent. Also equation (4.2) becomes 2a0 + a2 = x. If we subtract our new

equation from equation (4.3) we see that a∗− a0 = p− x. It follows that a∗ is larger then

a0 if and only if the weight x of w is greater then p. When this happens p− x + a0 ≥ 0 or

a0 ≥ x− p.

So for a fixed a0 and x we have that a1, a2 and a∗ are determined. Thus given x possible

positions of z that contribute to a0 we have
( x

a0

)
choices. Then we have

(x−a0
a0

)
choices

for possible positions contributing to a1, because a1 = a0. Now we see that positions

contributing to a2 are given once we choose the a0 and a1 positions. Also we have(n−x
a∗

)
2a∗ choices for positions and value of the nonzero position contributing to a∗ (recall

our alphabet has size 3). However we know that a∗ = p− x + a0 so by substitution this

becomes
( n−x

p−x+a0

)
2p−x+a0 . So for a fixed a0 the number of words of weight p at distance p

to our word w is
(x−a0

a0

)( x
a0

)( n−x
p−x+ao

)
2p−x+a0 . Now by summing over all possible a0 we will

get the total number of words of weight p at distance p from our word w. So then we just
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need to figure out what values our ao can take and sum over them. We know 2a0 ≤ x from

(2) above thus our a0 can take integer values from 0 to b x
2c. However we have to be careful

here, because we also know that a0 ≤ n− p from the fact that n− p is the number of all

positions in our word z with the value 0. Also we know if x > p then a0 = x− p+a∗. This

shows a0 starts at max{0,x− p}. So we get that max{0,x− p} ≤ a0 ≤min{b x
2c,n− p}. So

we get as desired that the number of words of weight p at distance p from a fixed word of

weight x is ∑
min{b x

2c,n−p}
a0=max{0,x−p}

(x−a0
a0

)( x
a0

)( n−x
p−x+ao

)
2p−x+a0 . �

Corollary 4 When n < 2p and q = 3 the number of words of weight p at distance p from

a fixed word of weight one is
(n−1

p−1

)
2p−1.

Proof. Using Lemma 3 we get that (using x = 1)

min{b x
2c,n−p}

∑
a0=0

(
x−a0

a0

)(
x
a0

)(
n− x

p− x+ao

)
2p−x+a0

=
(

1
0

)(
1
0

)(
n−1

p−1+0

)
2p−1+0 =

(
n−1
p−1

)
2p−1. �

As a next step one would want to show that ∑
min{b x

2c,n−p}
a0=max{0,x−p}

(x−a0
a0

)( x
a0

)( n−x
p−x+ao

)
2p−x+a0 can

only equal
(n−1

p−1

)
2p−1 when x = 1 (as this would prove that a p-isometry has to map words

of weight 1 to words of weight 1). However, analyzing this sum of products of binomials
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proved to be very difficult. Furthermore, even if one would succeed for this specific case,

things would only get more complicated over larger alphabets. This is the reason why we

looked for different approaches to our problem.

4.2 Combinatorial approach

We obtained a complete solution in the cases, n > 2p and n = p. And we developed a

method for studying the cases n≤ 2p. We start by discussing the cases n > 2p.

Lemma 5 Let ϕ be a p-isometry of Hn
q fixing 0 and let 2p < n. Then the layers of weight

kp ≤ n are preserved as a set, and the clouds C((k− 1)p + 1, kp− 1), kp ≤ n are also

preserved set-wise.

Proof. We start by noticing only words of weight p have distance p from 0. Let w be in

Lp. Then

p = d(ϕ(0),ϕ(w)) = d(0,ϕ(w)).

Thus wt(ϕ(w)) = p. This tells us then that ϕ(w) is in Lp. So we can see that Lp is preserved

as a set under ϕ . Then C(1, p−1)∪C(p+1, 2p−1)∪L2p are the only remaining words of

our Hamming space that are at distance p from some word in Lp. So C(1, p−1)∪C(p+1,

2p−1)∪L2p is preserved as a set under ϕ . Let C(2p+1, n) be all words of weight greater

than 2p. We know C(2p + 1, n) is not empty since n > 2p. We also know C(2p + 1,

n) must be preserved as a set under ϕ as the complement of C(2p + 1, n) is preserved.
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Because words in C(p+1, 2p−1) and L2p are at distance p from some words in C(2p+1,

n) while words in C(1, p−1) are not, we see that C(1, p−1) is preserved set-wise as well

as C(p + 1,2p− 1)∪L2p. Next notice that words in L2p can never be at distance p from

words in C(1, p− 1) while every word in C(p + 1, 2p− 1) is. Therefore both C(p + 1,

2p−1) and L2p are preserved as sets.

Now we wish to show that Lkp and C((k− 1)p + 1, kp− 1) are preserved set-wise when

kp ≤ n. So let us assume that kp ≤ n and that L(k−1)p and C((k− 2)p + 1, (k− 1)p− 1)

are preserved set-wise. Then immediately we see words in C((k− 2)p + 1, (k− 1)p− 1)

are at distance p from words in in C((k− 1)p + 1, kp− 1) but not from words in Lpk or

C(kp+1, n), so C((k−1)p+1, kp−1) is preserved set-wise by ϕ . Now words in L(k−1)p

are at distance p from words in Lpk but not from words in C(kp+1, n). Hence ϕ must map

words from Lkp to words in Lkp. This tells us Lkp is preserved set-wise. So by induction

we have shown that the layers of weight kp are preserved as a set, as well as the clouds

C((k−1)p+1, kp−1). �

Lemma 6 Let 2p < n. Two words of weight p are disjoint if and only if there exists a

unique word of weight 2p at distance p from both words.

Proof. We start by showing the forward implication. Suppose α and β are disjoint

words of weight p. Let γ = α + β . Now, because α and β are disjoint we have that

wt(γ) = wt(α)+ wt(β ) = 2p. Also notice that d(γ,α) = d(γ,β ) = p. So γ is a word of

weight 2p at distance p from α and β . Now let δ also be a word of weight 2p at distance p
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from α and β . Then δ shares p common non-zero positions with α and similarly with β .

However, both α and β only have p non-zero positions. Thus δ = α + β = γ . So γ is the

unique word of weight 2p at distance p from both α and β .

Now we will show the second part of our bi-conditional statement. Suppose there exists a

unique word γ of weight 2p at distance p from two given words α,β of weight p at distance

p from γ . Then γ must share p non-zero positions with α . Now to maintain uniqueness

the additional p non-zero positions from β must not share any positions with α’s non-zero

positions. Then we know from this that the intersection of the supports of α and β is the

empty set. Thus α and β are disjoint. �

Corollary 7 Let ϕ be a p-isometry fixing 0 and let 2p < n. Then ϕ maps disjoint words of

weight p to disjoint words of weight p.

Proof. Let α and β be the two disjoint words of weight p. Then by the previous lemma we

know there exists a unique word γ of weight 2p that is at distance p from both α and β . By

Lemma 5 ϕ maps α and β to words of weight p and γ to a word of weight 2p. Furthermore,

as ϕ is a p-isometry ϕ(α) and ϕ(β ) will be such that ϕ(γ) is the unique word of weight 2p

at distance p from both. Hence, again by the previous lemma, ϕ(α) and ϕ(β ) are disjoint.

�

Lemma 8 Under the assumption 2p < n, a word w in C(1, p− 1)∪C(p + 1,2p− 1) is

even if and only if there are two words x1 and x2 such that wt(x1) = wt(x2) = p,d(x1,w) =

d(x2,w) = p and x1 and x2 are disjoint. Otherwise the word is odd.
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Proof. We start showing that for an even word w there are two words x1 and x2 such that

wt(x1) = wt(x2) = p,d(x1,w) = d(x2,w) = p and x1 and x2 are disjoint. Let w be a word

of weight 2k in C(1, p−1)∪C(p+1,2p−1). Then we can construct two words x1 and x2

using the simple construction shown below (note that n≥ 2p is necessary here):

2k

w :

︷ ︸︸ ︷
∗· · ·∗ ∗ · · ·∗ 0 · · · · · · ·0 0 · · · · · · ·0

x1 : ∗· · ·∗ 0 · · ·0 ∗· · · · · · · ∗ 0 · · · · · · ·0

x2 : 0 · · ·0︸ ︷︷ ︸ ∗· · ·∗︸ ︷︷ ︸
k k

0 · · · · · · ·0︸ ︷︷ ︸ ∗· · · · · · · ∗︸ ︷︷ ︸
p− k p− k

Where * represent non-zero positions.

So all even words in C(1, p− 1)∪C(p + 1,2p− 1) have words x1 and x2 in Lp where

d(x1,w) = d(x2,w) = p and x1 and x2 are disjoint.

Next we show that an odd word w in C(1, p−1)∪C(p+1,2p−1) will not allow for words

x1 and x2 in Lp such that d(x1,w) = d(x2,w) = p and x1 and x2 are disjoint. Assume for

contradiction that for some word w of weight 2k+1 in C(1, p−1)∪C(p +1,2p−1) there

exists two disjoint words x1 and x2 in layer Lp such that d(x1,w) = d(x2,w) = p. Now by

comparing these three words we can see a few key relations shown below.
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2k

w :
︷ ︸︸ ︷
∗ · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ∗ 0 · · · · · · · · · · · · · · · · · · ·0

x1 : 0 · · · · · · · · · · · · · ·0︸ ︷︷ ︸ + · · ·+︸ ︷︷ ︸ ∗· · ·∗︸ ︷︷ ︸
a b c

∗· · · · · · · ∗︸ ︷︷ ︸ 0 · · · · · · ·0︸ ︷︷ ︸
d e

x2 : + · · ·+︸ ︷︷ ︸ ∗· · ·∗︸ ︷︷ ︸ 0 · · · · · · · · · · · · · ·0︸ ︷︷ ︸
b′ c′ a′

0 · · · · · · ·0︸ ︷︷ ︸ ∗· · · · · · · ∗︸ ︷︷ ︸
e′ d′

Where * represent non-zero positions and + is a non-zero, non-* position.

a+b+ c = 2k +1 a′+b′+ c′ = 2k +1

b+ c+d = p b′+ c′+d′ = p

a+b+d = p a′+b′+d′ = p

b′+ c′ ≤ a b+ c≤ a′

So then

2k +1− (b′+ c′) = a′ and 2k +1− (b+ c) = a.

Now by substitution we have

2k +1−a′ ≤ a and 2k +1−a≤ a′
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giving then that

2k +1≤ a+a′.

Now with out loss of generality assume a≥ a′, then k +1≤ a. This implies

k ≥ b+ c since a+b+ c = 2k +1.

Hence

d ≥ p− k as b+ c+d = p or d = p− (b+ c).

Thus

a+b+d ≥ k +1+ p− k +b≥ p+1+b > p.

This contradicts that a + b + d = p, so for a word of odd weight w in C(1, p− 1)∪C(p +

1,2p− 1) there exists no two disjoint words x1 and x2 that are both at distance p from w

and x1. �

Corollary 9 Let ϕ be a p-isometry of Hn
q fixing 0 and let 2p < n. Then even and odd words

in C(1, p−1) and C(p + 1,2p−1) are mapped to even and odd words in C(1, p−1) and

C(p+1,2p−1) respectively.

Proof. From Lemma 8 we know that even and odd words in C(1, p−1)∪C(p+1,2p−1)

satisfy specific properties that must be preserved by ϕ (because by Corollary 7 disjoint

words of weight p are mapped to disjoint words of weight p) , thus even and odd words

in C(1, p− 1)∪C(p + 1,2p− 1) are preserved set-wise. However, we also know from
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Lemma 5 that words from C(1, p− 1) and C(p + 1,2p− 1) are preserved set-wise. Thus

even and odd words in C(1, p−1) and C(p+1,2p−1) are mapped to even and odd words

in C(1, p−1) and C(p+1,2p−1) respectively. �

Lemma 10 Let ϕ be a p-isometry of Hn
q fixing 0 and let 2p < n, then ϕ preserves words of

weight 1.

Proof. In the case where p is odd, let p = 2k + 1. Notice that the only words at distance

p from a word of weight 1 in C(p+1,2p−1) are words of weight p+1 = (2k +1)+1 =

2k+2. So all words at distance p from a word of weight 1 in C(p+1,2p−1) are even. Now

let us look at words in C(2, p− 1). All these words are at distance p from both even and

odd words in C(p+1,2p−1). By Corollary 9 the parity of the words under consideration

must be preserved by ϕ . It follows that words of weight 1 are mapped to words of weight

1.

In the same way, replacing even by odd and odd by even, we see that when p is even, words

of weight 1 are mapped to words of weight 1. �

Theorem 11 Let ϕ be a p-isometry of Hn
q , and let 2p < n. Then ϕ is an isometry.

Proof. Let a and c be words such that d(a,c) = 1. Let us assume by way of contradiction

that d(ϕ(a),ϕ(c)) 6= 1. Let ϕ(a) = b. Then we construct the p-isometry ψ := τ−b ◦ϕ ◦ τa

where τ−b and τa are translations defined by τa(w) = w + a and τ−b(w) = w− b for all
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words w. Now we can see

ψ(0) = τ−b ◦ϕ ◦ τa(0) = τ−b ◦ϕ(a) = τ−b(b) = 0.

So ψ is a p-isometry that fixes 0. Then we see the following:

d(τ−b ◦ϕ(a),τ−b ◦ϕ(c)) 6= 1

d(τ−b ◦ϕ ◦ τa(0),τ−b ◦ϕ ◦ τa(c−a)) 6= 1

d(ψ(0),ψ(c−a)) 6= 1

d(0,ψ(c−a)) 6= 1

However we also have that d(c,a) = 1 implies that d(c−a,0) = d(0,c−a) = 1. Now, since

p-isometries that fix 0 preserve words of weight 1 by Lemma 10, we have d(ψ(0),ψ(c−

a)) = 1. So then we also have d(0,ψ(c−a)) = 1. This is a contradiction. So we get that ϕ

preserves distance 1 between words, thus, by Lemma 2, ϕ is an isometry. �

Lemma 12 Let ϕ be a p-isometry of Hn
q fixing 0 and let p = n. Then ϕ preserves words of

weight 1.

Proof. Let ϕ be an n-isometry that fixes 0 and let a be a word of weight x. Then if we count

the number of words of weight n at distance n from a we get (q−2)x(q−1)n−x. So then the

number of words of weight n at distance n from a word of weight 1 is (q−2)1(q−1)n−1.
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Let us assume that for some word of weight y, we have

(q−2)y(q−1)n−y = (q−2)1(q−1)n−1

(q−2)y−1 = (q−1)y−1(
q−1
q−2

)y−1

= 1

Then clearly y = 1. Now we know that n-isometries that fix 0 preserve Ln. Hence if there

are k words of weight n at distance n from a given word w, then there should also be k

words of weight n at distance n from ϕ(w). So ϕ preserves words of weight 1. �

Theorem 13 Let ϕ be a p-isometry of Hn
q . If p = n then ϕ is an isometry.

Proof. Let a and c be words such that d(a,c) = 1. Let us assume by way of contradiction

that d(ϕ(a),ϕ(c)) 6= 1. Let ϕ(a) = b. Then we construct the p-isometry ψ := τ−b ◦ϕ ◦ τa

where τ−b and τa are translations defined by τa(w) = w + a and τ−b(w) = w− b for all

words w. Now we can see

ψ(0) = τ−b ◦ϕ ◦ τa(0) = τ−b ◦ϕ(a) = τ−b(b) = 0.

So ψ is a p-isometry that fixes 0. Then we see the following:
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d(τ−b ◦ϕ(a),τ−b ◦ϕ(c)) 6= 1

d(τ−b ◦ϕ ◦ τa(0),τ−b ◦ϕ ◦ τa(c−a)) 6= 1

d(ψ(0),ψ(c−a)) 6= 1

d(0,ψ(c−a)) 6= 1

However we also have that d(c,a) = 1 implies that d(c−a,0) = d(0,c−a) = 1. Now, since

n-isometries that fix 0 preserve words of weight 1 by Lemma 12, we have d(ψ(0),ψ(c−

a)) = 1. So then we also have d(0,ψ(c−a)) = 1. This is a contradiction. So we get that ϕ

preserves distance 1 between words, thus, by Lemma 2, ϕ is an isometry. �

4.3 Linear algebraic approach

As we did not succeed in generalizing the ideas from the previous results to also incorporate

the cases 2p≥ n (with the exception of p = n) we tried to develop an alternative approach

to the initial problem. This approach is based on an underlying algebraic structure: the

Bose-Mesner algebra. It is possible to construct a distance regular graph Γ(H) from Hn
q as

follows. The vertex set V of Γ(H) is the set of all words of the Hamming space, and two

vertices are adjacent if and only if the corresponding words are at distance 1 in Hn
q . Then

Γ(H) is a distance regular graph with well known parameters, see e.g. [4]. As explained

in the introduction every distance regular graph gives rise to a matrix algebra: the so called
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Bose-Mesner algebra.

We will first provide a short discussion of certain elements in this algebra. This is based on

[4].

Let Γi(H) be the graph with vertices the words from Hn
q in which two vertices are adjacent

if and only if the corresponding words are at distance i in Hn
q . Also let Ai be the adjacency

matrix of Γi(H). We have Γ1(H) = Γ(H) and we will write A for A1. It is important to note

that Γi(H) is only guaranteed to be a distance regular graph when i = 1.

Now A generates a closed so-called Bose-Mesner algebra A , where A = {α0I + α1A +

. . .+ αnAn}. We want to explain Ap = fp(A) is a polynomial of degree p in A (belonging

to A ). We will first show how each Ai is constructed recursively. The diameter of Γ(H) is

clearly n, and from [4] we know that the intersection array of ai, bi, and ci is given by:

ai = i(q−2)

bi = (n− i)(q−1)

ci = i

The following key formulas (also from [4]) provide the key to what we want to show.

A0 = I,A1 = A,

AAi = ci+1Ai+1 +aiAi +bi−1Ai−1 (i = 0, . . . ,n)
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A0 +A1 + . . .+An = J,

where J is the all one matrix.

It is important to note that A−1 = An+1 = 0 and that b−1 and cn+1 are unspecified. From

the above it is obvious that Ap is a polynomial in our matrix A. We can rewrite the above

key formula as follows

ci+1Ai+1 = (A−aiI)Ai−bi−1Ai−1 (i = 0, . . . ,n).

So we can see inductively that Ak can be written as a polynomial of degree at most k in A.

As for all l < k, Al has a 0 in position i j if d(i, j) = k, and (Ak)i, j must have a 1 in position

i j if d(i, j) = k, we see that Ak is a polynomial of degree exactly k in A. Hence Ap is a

polynomial of degree p in A and obviously belongs to A .

Given the above basic properties we can build up our approach to p-isometries of Hn
q . Let ρ

be a p-isometry of Hn
q , and let P be the corresponding permutation matrix, that is, (P)i j = 1

if vertex i is mapped to vertex j, and equals 0 otherwise. Then ρ induces an automorphism

of Γp(H). Hence PApP−1 = Ap. What we want to show then is that PApP−1 = Ap implies

PAP−1 = A which would prove that ρ is an isometry of Hn
q . Now Ap defines in a natural

way a subset of A , namely Ap = {a0I + a1Ap + . . . + akAk
p}, where k + 1 is the degree

of the minimal polynomial of Ap. Let us for a moment assume that n = k, and for ease

of notation let us consider Ap as a polynomial in A of degree n instead of p (that is, a

polynomial of degree n with the highest n− p coefficients equal to 0). If we let A = x1,
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A2 = x2, . . . , An = xn be independent variables, we can form a series of linear equations

with n unknowns using the Ai
p

A1
p = α01I +α11x1 +α21x2 + . . .+αn1xn

A2
p = α02I +α12Ax1 +α22x2 + . . .+αn2xn

...

An
p = α0nI +α1nx1 +α2nx2 + . . .+αnnxn

This gives us n linear equations and n unknowns. Now these equations must be linearly

independent or our minimal polynomial for Ap would be of degree less than n which

would be a contradiction as we are assuming n = k. Since our linear equations are linearly

independent we can solve for x1 = A. Thus we can express A as an expression of our

A1
p, . . . ,A

n
p. Therefore we get as a consequence that A = Ap. If Ap = A then A ∈ Ap

and since PBP−1 = B, ∀B ∈Ap this implies PAP−1 = A. Hence our problem is reduced to

showing that n = k.

Hence, if we can show that n = k for a given p would prove that every p-isometry is an

isometry. Below we describe a method to prove this, at least in certain cases.

From the above we do know that

Ai = fi(A) (i = 0, . . . ,n+1)
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where the fi are polynomials of degree i defined recursively by

f−1(x) = 0, f0(x) = 1, f1(x) = x,

ci+1 fi+1(x) = (x−ai) fi(x)−bi−1 fi−1(x) (i = 0, . . . ,n).

Now we really want to prove that Ap,A2
p, . . . ,A

n
p are linearly independent. A sufficient

condition for this to be true is that Ap has n + 1 distinct eigenvalues. However, as Ap =

fp(A) the eigenvalues of Ap are the images under fp of the eigenvalues of A. From [4] we

know the n+1 eigenvalues of A are (q−1)n−qi for i = 0, . . . ,n. Hence the eigenvalues of

Ap are

γi = fp(λi) for i = 0, . . . ,n.

If all γi are distinct, then indeed by the above every p-isometry would be an isometry.

We first give two examples.

Example 1:

Let n=9, q=3, and p = 7, Then we wish to check if A7 has 10 distinct eigenvalues.

We are given that f−1(x) = 0, f0(x) = 1, f1(x) = x. Using these we will recursively build

all fi(x) up to f7(x) in order to find A7 as a polynomial in A. Recall

ci+1 fi+1(x) = (x−ai) fi(x)−bi−1 fi−1(x) (i = 0, . . . ,n).
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So starting with c2 f2(x) we have:

c2 f2(x) = 2 f2(x)

= (x−a1) f1(x)−b0 f0

= (x−1)x−18∗1

= x2− x−18

so if we now divide by c2 = 2 we have

f2(x) =
1
2

x2− 1
2

x−9.

Continuing in the same way we obtain:

f3(x) =
x3

6
− x2

2
−8x+6

f4(x) =
x4

24
− x3

4
− 27x2

8
+

37x
4

+27

f5(x) =
x5

120
− x4

12
− 7x3

8
+

23x2

4
+

86x
5
−36

f6(x) =
x6

720
− x5

48
− 7x4

48
+

101x3

48
+

37x2

10
− 143x

4
−15

f7(x) =
x7

5040
− x6

240
− x5

80
+

25x4

48
+

11x3

40
− 297x2

20
+

619x
70

+54
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Now evaluating f7(x) at A we get

A7 =
A7

5040
− A6

240
− A5

80
+

25A4

48
+

11A3

40
− 297A2

20
+

619A
70

+54.

This matrix A7 is our desired Ap so now all that is left is to find the eigenvalues γi of A7

by evaluating f7 at λi, the 10 eigenvalues of A. Now we know that λi = (q− 1)n− qi for

i = 0, . . . ,n. So in our example the distinct eigenvalues of A are

{18,15,12,9,6,3,0,−3,−6,−9}.

Hence we find that the eigenvalues of A7 are

{4608,−768,−96,144,−48,−24,54,−57,48,−36}.

These eigenvalues are all distinct, and so we can conclude that every 7-isometry is indeed

an isometry when n = 9 and q = 3.

Example 2:

Let n=10, q=3, and p = 7, Then we wish to check if A7 has 11 distinct eigenvalues.

We are given that f−1(x) = 0, f0(x) = 1, f1(x) = x. Using these we will recursively build

all fi(x) up to f7(x) in order to find A7 as a polynomial in A. Recall

ci+1 fi+1(x) = (x−ai) fi(x)−bi−1 fi−1(x) (i = 0, . . . ,n).
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So starting with c2 f2(x) we have:

c2 f2(x) = 2 f2(x)

= (x−a1) f1(x)−b0 f0

= (x−1)x−20∗1

= x2− x−20

so if we now divide by c2 = 2 we have

f2(x) =
1
2

x2− 1
2

x−10.

Continuing in the same way we obtain:

f3(x) =
x3

6
− x2

2
−9x+

20
3

f4(x) =
x4

24
− x3

4
− 31x2

8
+

125x
12

+35

f5(x) =
x5

120
− x4

12
− 25x3

24
+

79x2

12
+

358x
15
− 140

3

f6(x) =
x6

720
− x5

48
− 3x4

16
+

355x3

144
+

749x2

120
− 97x

2
− 280

9

f7(x) =
x7

5040
− x6

240
− x5

48
+

91x4

144
+

4x3

15
− 1301x2

60
+

191x
63

+
280
3
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Now evaluating f7(x) at A we get

A7 =
A7

5040
− A6

240
− A5

48
+

91A4

144
+

4A3

15
− 1301A2

60
+

191A
63

+
280
3

.

This matrix A7 is our desired Ap so now all that is left is to find the eigenvalues γi of A7

by evaluating f7 at λi, the 11 eigenvalues of A. Now we know that λi = (q− 1)n− qi for

i = 0, . . . ,n. So in our example the distinct eigenvalues of A are

{20,17,14,11,8,5,2,−1,−4,−7,−10}.

Hence we find that the eigenvalues of A7 are

{15360,−768,−768,240,96,−120,24,69,−120,132,−120}.

Unfortunately these eigenvalues are not all distinct, and we cannot conclude that every

7-isometry is indeed an isometry when n = 10 and q = 3.
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By writing a mathematica program to compute when the eigenvalues of Ap are distinct and

then running over multiple values of n, p, and q we get the following tables. Note here if

there is a value of true in a cell then this represents that the eigenvalues of Ap are distinct.

This then shows for that n, p, and q the p-isometry is also an isometry. However if the

value is false in the cell then we know that the eigenvalues are not distinct. This does not

mean that for this given n, p, and q our p-isometry can not be an isometry. It merely means

that this method came up inconclusive.

We start by looking at the distinctness for n = {3, . . . ,12}. This is since n = 1 and n = 2 are

uninteresting cases and are covered by lemmas already and known to result in isometries.

Our p values go from 2 to 11 since p = 1 and p = n are known to result in isometries. Now

in this first group of tables we check when q = {3, . . . ,7} this is our first five q values.
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Table 4.1
q = 3

q=3 p = 2 3 4 5 6 7 8 9 10 11
n = 3 True

4 False False
5 True False True
6 True True True True
7 False False True False False
8 True True True True True True
9 True True True True True True True
10 False False False False False False False False
11 True False True True False True False False True
12 True True True True True True True True True True

Table 4.2
q = 4

q=4 p = 2 3 4 5 6 7 8 9 10 11
n = 3 False

4 True True
5 False False False
6 True True True True
7 False True False True False
8 True True True True True True
9 False False True False True False False
10 True True True True True True True True
11 False True False True False True False True False
12 True True True True True True True True True True
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Table 4.3
q = 5

q=5 p = 2 3 4 5 6 7 8 9 10 11
n = 3 True

4 True True
5 True True True
6 False False True False
7 True True True True True
8 True True True True True True
9 True True True True True True True
10 True True True True True True True True
11 False False True False True True True False False
12 True True True True True True True True True True

Table 4.4
q = 6

q=6 p = 2 3 4 5 6 7 8 9 10 11
n = 3 True

4 False True
5 True False True
6 True True True True
7 False False True True False
8 True True True True True True
9 True True True True True True True
10 False False False False True False False True
11 True False False True False True True True True
12 True True True True True True True True True True
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Table 4.5
q = 7

q=7 p = 2 3 4 5 6 7 8 9 10 11
n = 3 True

4 True True
5 True True True
6 True True True True
7 True True True True True
8 False False False True True False
9 True True True True True True True
10 True True True True True True True True
11 True True True True True True True True True
12 True True True True True True True True True True
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Notice that as q gets larger we see that slowly our values for our given n and p are true

more often then false. The first case where we have all true for a given n, p, and q is when

q = 13. However this is not to say that for all values this will hold as we could raise our n

and p respectively to show that eventually false values will come back. This can be seen in

our next two tables where q = 13.

Table 4.6
q = 13

q=13 p = 2 3 4 5 6 7 8 9 10 11
n = 3 True

4 True True
5 True True True
6 True True True True
7 True True True True True
8 True True True True True True
9 True True True True True True True
10 True True True True True True True True
11 True True True True True True True True True
12 True True True True True True True True True True

Table 4.7
q = 13

q=13 p = 2 3 4 5 6 7 8 9 10 11
n = 3 True

4 True True
5 True True True
6 True True True True
7 True True True True True
8 True True True True True True
9 True True True True True True True
10 True True True True True True True True
11 True True True True True True True True True
12 True True True True True True True True True True
13 True True True True True True True True True True
14 False False True True True True True True True True

42



Lastly we look to larger values of q to see if this behavior continues and it does. Notice that

we have distinct eigenvalues for our values of n and p where q is between 100 and 105.

Table 4.8
q = 100

q=100 p = 2 3 4 5 6 7 8 9 10 11
n = 3 True

4 True True
5 True True True
6 True True True True
7 True True True True True
8 True True True True True True
9 True True True True True True True

10 True True True True True True True True
11 True True True True True True True True True
12 True True True True True True True True True True

Table 4.9
q = 101

q=101 p = 2 3 4 5 6 7 8 9 10 11
n = 3 True

4 True True
5 True True True
6 True True True True
7 True True True True True
8 True True True True True True
9 True True True True True True True

10 True True True True True True True True
11 True True True True True True True True True
12 True True True True True True True True True True
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Table 4.10
q = 102

q=102 p = 2 3 4 5 6 7 8 9 10 11
n = 3 True

4 True True
5 True True True
6 True True True True
7 True True True True True
8 True True True True True True
9 True True True True True True True

10 True True True True True True True True
11 True True True True True True True True True
12 True True True True True True True True True True

Table 4.11
q = 103

q=103 p = 2 3 4 5 6 7 8 9 10 11
n = 3 True

4 True True
5 True True True
6 True True True True
7 True True True True True
8 True True True True True True
9 True True True True True True True

10 True True True True True True True True
11 True True True True True True True True True
12 True True True True True True True True True True
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Table 4.12
q = 104

q=104 p = 2 3 4 5 6 7 8 9 10 11
n = 3 True

4 True True
5 True True True
6 True True True True
7 True True True True True
8 True True True True True True
9 True True True True True True True

10 True True True True True True True True
11 True True True True True True True True True
12 True True True True True True True True True True

Table 4.13
q = 105

q=105 p = 2 3 4 5 6 7 8 9 10 11
n = 3 True

4 True True
5 True True True
6 True True True True
7 True True True True True
8 True True True True True True
9 True True True True True True True

10 True True True True True True True True
11 True True True True True True True True True
12 True True True True True True True True True True
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Chapter 5

Summary and future work

The major results of this thesis can be stated as follows:

• In chapter 4 section 2 we used combinatorics to show that when n = p or n ≥ 2p a

p-isometry of Hamming space Hn
q , q > 2, is in fact an isometry

Theorem 11 Let ϕ be a p-isometry of Hn
q , q > 2, and let 2p < n. Then ϕ is an

isometry.

Theorem 13 Let ϕ be a p-isometry of Hn
q , q > 2. If p = n then ϕ is an isometry.

• In chapter 4 section 3 we developed a process to determine, for given values of n,

p, and q, whether the adjacency matrix Ap of the distance-p-graph of the distance

regular graph Γ(H) associated to Hn
q has n + 1 distinct eigenvalues. Whenever Ap

has n+1 distinct eigenvalues, we know that a p-isometry of Hn
q must be an isometry.

If we do not obtain n + 1 distinct eigenvalues no new information pertaining to the
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p-isometries of Hn
q is obtained.

In the future we would like to continue to look at the following question: “When does the

matrix Ap have n + 1 distinct eigenvalues?”. We would be interested in using Algebra to

possibly find conditions on p, n, and q that would guarantee this to be true. As a special

case of this we would like to prove that when q≥ n, Ap has n+1 distinct eigenvalues.
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