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Abstract 
 

This thesis analyzes the long-term trend behavior and cyclical components of real 

base metal prices. A decomposition approach is used to separate the real prices of 

base metals into a time trend and cyclical components. In this regard, linear and 

quadratic detrending methods along with Hodrick-Prescott and Baxter-King filters 

are applied to the base metal prices. Linear and quadratic trendlines are good estimates 

of the trend component and easy to interpret if the coefficients of estimated trends are 

significant and the coefficient of determination is relatively high. The Hodrick-

Prescott and Baxter-King filters are good fits to the price series, but they affect the 

cyclical component. Loss of data points and altering the moments of the cyclical 

component are the disadvantages of filtering methods. On the other hand, the linear 

detrending methods are weak in removing unit roots in the series. This study shows 

that the choice of detrending method affects the cyclical component of base metal 

prices, and consequently the identification of cycles depends on the detrending 

method.  
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1. Introduction 

Metal market analysis has been an important field of study in mineral economics and 

finance. Metal supply, demand, pricing and modeling has attracted great attention by 

academicians and researchers. Among the plentiful academic and empirical research 

which has been done over the past 30 years, modeling and forecasting of metal prices 

including base metals, precious metals, steel, minor metals and rare earth minerals 

has been attracting more attention than other aspects of the metals industries such as 

production, consumption, long-run availability, recycling and so on. 

The importance of metal prices stems from the fact that price is the interface of all the 

other features of a metals market. Production decisions and the rate of production are 

highly dependent on metal prices. Companies will reduce their production rate or 

postpone new projects if the market price of the metal is not high enough, because the 

current metal price and expected future prices have strong effects on the profitability 

of extraction, the company’s valuation and the evaluation of new projects to develop 

the production capacity or variation of the production rate. On the demand side, the 

choice of metals used in manufacturing a product is significantly determined by metal 

prices. A higher price for a metal will direct the industry users to search for other 

feasible substitutes. Therefore, long-term trends and fluctuations of metal prices are 

of great interest to producers and consumers of metals. 
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Metal price is also considered an indicator of resource availability (Tilton 2003). The 

important advantages of price over other measures of resource availability include the 

accessibility and reliability of prices. As reserves of a metal become scarce, the price 

increases and motivates the development of new technologies. Furthermore, low 

grade and remote sources of the mineral become economically viable alternatives at 

higher prices.  

This research is focused on non-ferrous base metal prices. The non-ferrous or base 

metals group encompasses industrially used metals like aluminum, copper, nickel, 

zinc, tin, and lead. This group of metals plays an important role in most national 

economies, and their prices have important impacts on the extraction, processing and 

manufacturing sectors (Watkins and McAleer 2004). Metals of this group are 

extensively traded on major commodity exchanges including the London Metal 

Exchange (LME), Commodity Exchange (COMEX) division of Chicago Mercantile 

Exchange (referred as CME Group Inc.), Shanghai Futures Exchange (SHFE) and 

most recently in Multi Commodity Exchange (MCX) in India. One major function of 

these exchanges is price discovery and the other, which is not the focus of this 

research, is hedging against price fluctuations. The LME prices are extensively used 

by different sectors and metal industry participants including mining, refining and 

smelting, manufacturing, recycling, and by traders and investors. As noted by 

Watkins and McAleer (2004), approximately 95% of copper futures trades are 
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executed on the LME and the remaining are on the COMEX and SHFE. Other 

regional markets handle spot trading of non-ferrous metals.  

This research examines base metal prices through different aspects. It gives a broad 

view of spot prices in the long and medium-term. In this regard, base metal prices will 

be analyzed independently of other market variables such as supply, demand and 

inventories. Structural modeling of commodity prices considers the interactions 

between endogenous market variables such as price and quantity demanded with 

some exogenous variable such as industrial production and technological factors 

(Labys 2006). Therefore, the models in this research will examine the LME monthly 

prices of base metals which is the only one freely available and reliable with high 

frequency. Other data and statistics related to the base metals market such as futures 

and options prices, production from different sources, consumption, recycling and 

inventories are also available, but are not used in this research mainly due to low 

frequency and less availability. The other feature of this research is its monthly 

sampling frequency which is consistent with the majority of the econometric and 

statistical models of base metal prices (Watkins and McAleer 2004). This feature 

makes it possible to modify the data and use the results and findings of this study in 

accordance with other economic variables such as inflation and business cycles.  

In this thesis decomposition analysis is used to study the long-term behavior of the 

base metal prices. In this regard, the real prices of base metals are decomposed into 
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time trend and cyclical components. The decomposition analysis in this research is 

concentrated on two aspects of base metal prices, specifically: the effect of the 

detrending method on trend identification, and the impact of the detrending method 

on the cyclical components. Long-term and medium-term price trends and estimation 

of future prices are essential in the metals industry. This study is divided into two 

sections. In the first section, base metals prices are reviewed and analyzed to identify 

trends in the long term. Econometric methods are used to break down the base metal 

prices into time trend and cyclical components. The trend component of price refers 

to any long term upward or downward movements in the prices. In this regard, time 

series of price could be trendless which is indicated by a constant mean over the time 

span. In other words, the stationarity of base metal prices are examined by employing 

regular tests such as the Dickey-Fuller (Dickey and Fuller 1981) test. The results of 

this section are used to identify the best fitted trend in the series of base metal prices. 

The second part of this study is devoted to the review of cyclical component of base 

metal prices. Visual inspection of base metal prices depicts some cycles; peaks and 

troughs are repeated with different durations and amplitudes. The first part of this 

section reviews the detrending approaches to extract the time trend component of a 

time series including linear or quadratic trends along with more sophisticated methods 

such as the Hodrick-Prescott (Hodrick and Prescott 1997) and the Baxter-King 

(Baxter and King 1999) filters. This part of the study presents the effects of 

deterending methods or filtering techniques on the cyclical component of base metal 
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prices. In this regard several characteristics of filters are compared with respect to 

their ability to extract the cycles without any shift or alteration in duration of cycles, 

their power to detect the time trend component, and to eliminate unit roots (Baxter 

and King 1999).  

In previously conducted research, one or several models have been specified and 

estimated for one type or a pool of commodities. By applying sophisticated methods, 

the trend component is identified in the time series of base metal prices more 

accurately, while the cyclical component may be affected by the choice of detrending 

method. There are different, and in some cases opposing theories, regarding trend 

identification in primary commodity prices such as: deterministic upward, downward, 

or U-shape trends. Regardless of the type or direction of the time trend component of 

a time series, the spectral analysis might be sensitive to the deterending method. 

Comparison of the cyclical component of each base metal series reveals the difference 

between deterending methods. However, determination of the most appropriate or 

optimal detrending method is of much interest, but this goal is not perused in this 

research. 

This thesis is laid out in the following order. In the first section, the behavior of base 

metal prices is explained. A brief literature review of long-term trend and cyclical 

behavior of mineral prices is presented in section 3. Detrending and filtering methods 

including linear and quadratic detrending and the Hodrick-Prescott and Baxter-King 
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filters are reviewed in the fourth section. The results of trend identification and the 

properties of detrending methods are presented in section 5. In this section, the 

Augmented Dickey-Fuller (ADF) test and the results of its application to base metal 

prices are illustrated. In the sixth part of this thesis, the effects of the detrending 

method on the cyclical component of base metal prices are discussed. And finally, the 

last section concludes this study. 

2. Behavior of Base Metal Prices 

The behavior of price is ever changing; sometimes in a fraction of minute, sometime 

in a day or it might remain pegged for a while. Price is the result of the interaction 

between supply and demand to balance the amount demanded with the quantity 

supplied of a good or service, so it is subject to alternation by changes in the factors 

affecting supply and demand or it may be distorted by external factors such as market 

structure or government policies. Prices are both cause and effect (Warren and 

Pearson 1933); changes in prices of commodities affect different groups of people, 

institutions and countries, while these groups may affect the prices at the same time. 

Base metal prices including aluminum, copper, zinc, nickel, lead and tin are 

monitored globally. Vast applications of base metals in a variety of manufactured 

products have brought them to attention among producers, consumers and even 

investors. Considering the huge volume and the frequency of physical and financial 

instruments transacted on base metals, competitive and transparent markets give rise 
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to available and reliable prices to the extent that base metal prices are considered as 

an economic indicator showing the situation of global economic activity.  

As noted by Radetzki (2008) metal prices are alternatively determined in auctions, set 

in bilateral contracts or even dictated by small number of major producers or 

consumers depending on the size and trading activity of the market. In this 

classification for commodity price formation, transparency and availability of prices 

decrease with decreasing number of market participants and increasing market 

concentration. Recently, mainly due to declining concentration of production, more 

competitive conditions, and reduction of government intervention (Radetzki 2008) 

the price of metals have been determined, or more specifically discovered in metal 

exchanges, and other alternative trading is highly influenced by the exchanges’ price. 

LME non-ferrous metal prices are considered to be a reliable reference for over-the-

counter physical trading. Today, base metal prices that are discovered in LME and 

COMEX are disseminated all around the world and these prices are the basis of 

transactions in other the spot, futures or forward markets. 

Having a competitive market is a plausible presumption for the majority of base 

metals because of the large number of market participants and high volume of trading 

either in the form of spot or derivatives all around the world. In 2011, for example, 

LME Copper contract was the second largest after the LME Aluminum contract by 

volume of 37.9 million lots traded. Given that a contract is 25 tones grade A copper 
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cathodes, this is equivalent to 947.5 million tons of copper being traded in 2011. 

Comparing the amount of traded contracts on the LME with the world total production 

of 19.8 million tons in 2011 indicates the high volume and significance of the LME 

copper price in this industry.  

The long history of daily trading of base metals in major metal exchanges has made 

their prices available since the beginning of the 20th century. The monthly cash 

settlement price of base metals can be extracted from the London Metal Exchange. 

The availability of monthly prices from the Statistical Office of the United Nations 

Conference on Trade and Development (UNCTADSTAT)1 has determined the time 

span of this study from 1970:1 to 2013:7. This is the source of data for all six base 

metals including high grade aluminum, grade A copper electrolytic wire 

bars/cathodes, nickel, lead, special high grade zinc and tin. The data are not seasonally 

adjusted. 

Real prices of base metals are reviewed over the long-term in this study. The monthly 

data on the US consumer price index (CPI) for all items less food and energy (1982-

84=100)2 from U.S. Bureau of Labor Statistics is used as the deflator in this study. 

Since food and energy are more volatile than other goods, they are excluded to show 

long-term trends or significant changes in the overall value of money. Moreover, food 

                                                           
1 http://unctadstat.unctad.org/ReportFolders/reportFolders.aspx 
2 http://www.bls.gov/cpi/#data 
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and energy prices are more subject to shocks than other goods and services (Lebow 

and Rudd 2006).  

Figures and graphs may reveal some trends or cycles in the series, but further 

statistical analysis is required to identify any trends or cycles beyond personal biases 

or graphical distortions. However, visual inspection of price plots over time is the 

very first step in analyzing almost every time series. According to Labys (2006) the 

possibility that commodity market prices are stochastic gives rise to a large amount 

of risk and uncertainty to the process of market analysis and forecasting. A statistical 

analysis of prices helps to understand the behavior of prices and to develop 

econometrics models in order to construct proper models and forecast the future 

prices more accurately. Such quantitative approach decreases biased judgments in 

analyzing the behavior of price and helps to express forecasting in statistically sound 

models.  
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Figure 1: Base metal nominal and real prices 1970-20133 

 

                                                           
3 Nominal prices of metals have the same data source: 

http://unctadstat.unctad.org/ReportFolders/reportFolders.aspx 
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Figure 1 illustrates the nominal and real prices of base metals from January 1970 to 

August 2013. These are the univariate time series of nominal and real prices of each 

metal over time. Fluctuations are obvious in all the graphs along with slight 

downward trends in the real prices and modest accentuating trends in nominal prices. 

However, even though these metals belong to the same group, their prices 

demonstrate different behavior over this time span. Expansion or contraction of the 

time span may reveal different behavior in base metal prices, but with respect to the 

real prices of base metals, deflated current prices are at the same level now as they 

were in early 1970s except for aluminum. Visual observation of the graphs shows the 

same trends and fluctuations in the nickel, lead and zinc diagrams. The same behavior 

in the price of aluminum and copper is obvious except for the sharp spike in the 

aluminum price in the late 1980s. 

3. Literature review of long-term trend and cyclical behavior in 

mineral prices 

One of the early studies in analyzing the behavior of mineral commodities was 

conducted by Potter and Christy (1962). They indicated that the real price of mineral 

commodities deflated by PPI dropped by 40% between 1870 and 1957. They found 

many short term fluctuations over this period, but little alterations over the long term. 

They also showed that inspecting individual mineral commodities revealed the 

differences in trend of prices better than commodity indices for a group of minerals. 
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In other research, Manthy and Potter (1978) indicated that real prices of natural 

resource commodities follow a linear trend which increase, decline or  stay constant 

in the long term. Barnett and Morse (1963) studied mineral prices and showed that 

real mineral prices were fairly constant in the last quarter of the 19th century. Lewis 

(1954) recommended that commodity prices probably do not exceed their production 

cost in the long term. Research conducted by Slade (1982) revealed that commodity 

prices had a U-shape pattern contrary to Hotelling’s model which had suggested that 

non-renewable minerals real prices should follow an increasing path over time.  

Another important study related to identification of trends in the real prices of primary 

commodities was done by Prebisch and Singer (1950) and gave rise to a hypothesis 

that there had been a negative long-term trend in the prices of primary commodities. 

They believe this trend was probably going to continue into the future. Cuddington 

(1992) reviewed Prebisch-Singer Hypothesis in 26 primary commodity prices and 

showed that prices of 16 commodities were trendless, 5 commodities had positive and 

the remaining had downward trend between 1900 and 1983. He applied the unit root 

test to identify whether the commodity prices are trend stationary, that is, the presence 

of unit root cannot be rejected. The other study by Cuddington and Nülle (2013) has 

explained the long-term behavior of real mineral prices between 1900 to 2010. They 

used band pass filters to extract the time trend component of real mineral prices. They 

relaxed the assumption of constant upward or downward trend in the mineral prices 

and gave some flexibility to the time trend component to undergo gradual changes 
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over time. They believe this feature allows the time trend to capture the changes in 

the mineral industry and shows the interactions between depletion, exploration, 

changes in technology and other influential factors to mineral commodity prices 

(Cuddington and Nülle 2013).  

Comparing to the amount of research which has been done about the long-term trend 

in mineral prices, mineral price cycles have received less attentions (Labys 2006). 

However, cyclical behavior of macroeconomic indicators and duration of business 

cycles has been an attractive topic. The measurement of business cycles has been a 

challenging practice. There are plenty of methods to analyze the cyclical component 

of economic time series and to detect the cycles. One of the early methods to identify 

general business cycles is attributed to Burns and Mitchell (1946). Their procedure in 

cycles and turning points identification has been used extensively and became the 

NBER procedure in identifying business cycles. Bry and Boschan (1971) developed 

a procedure to search for the expansion and contraction in a series. Another seminal 

work in detecting cycles in economic time series is attributed to Harding and Pagan 

(2002). The majority of research about the cycles in commodity prices is about very 

long or super cycles. However, medium-term cycles of about 30 to 50 years have been 

studied recently (Blanchard, Nordhaus et al. 1997, Krugman, Dominquez et al. 1998, 

Solow 2000). In these studies band pass filters have been used in order to identify 

cycles in economic series. Labys, Lesourd et al. (1998) applied the common business 

cycle identification methods on some metal prices and employed time series methods 
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to examine the significance of detected cycles. Average prices of some metals over 

100 year were studied by Davutyan and Roberts (1994). The result of this study 

revealed that there is some degree of regularity in the phases and cycles of the price 

of the majority of studied metals.  Roberts (2009) examined the cyclicality of 

fluctuations in metal prices. He tested duration dependence on phases and full cycles 

of 14 metals and showed there are some degree of cyclicality in metal prices. He also 

compared the duration of expansion and contraction phases and showed that 

contraction phase generally last longer than expansion phase in metal prices.  

All the controversial works of business cycle identification are dependent on the 

practices adopted to extract the cyclical component of time series. Extraction of the 

cyclical component of time series is a complicated task in decomposition analysis 

because the residuals of detrending methods are composed of lower frequency 

cyclical component and higher frequency noises. Therefore, different decomposition 

methods provide different input for spectral analysis of time series. This feature leads 

to lack of a common agreement among researchers about an appropriate or optimal 

method to decompose time series. Canova (1998) believes that different detrending 

methods give rise to the estimation of different cyclical components. He does not 

argue that any of the detrending methods does a superior job in extracting the cyclical 

component than other methods.  
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Much research has been done to model mineral commodity prices as summarized 

above. The results of these studies show that there are some obvious trends for a 

period of time that could be modeled mathematically. However, there is evidence that 

the behavior of mineral commodity prices vary over time. There are several theories 

behind these models that work appropriately over a period of time, but lose their 

reliability in the next period. Mainly due to many uncertainties in different aspects of 

mineral markets such as market structure, mineral resources, short term distortions 

(like wars or government policies) and many other factors postulating a robust theory 

which encompasses all perspectives and aspects of the whole industry or even a single 

commodity does not seem appropriate. The factors affecting the mineral markets and 

their strength are changing over time and this makes the analysis of mineral markets 

very complicated. Although much research has been conducted related to modelling 

and forecasting of mineral prices, there are still more opportunities to apply new 

theories and utilize new methods to achieve the goal of modelling primary commodity 

prices. 

4. Detrending and filtering of base metal prices 

In time series analysis, looking for trend and cyclical components of economic data 

has attracted the attention of economists. Growth theory and long term availability of 

primary commodities are significant examples of the use of trend analysis of 

economic data. On the other hand, fluctuations of macroeconomic indicators and 
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frequencies of business cycles is an example of using spectral analysis to find hidden 

frequencies in time series data. The time series analysis of economic data is important 

for analyzing different theories. For instance, there are three different theories about 

the long term trends in primary commodity prices and some of them are in opposition 

to others. An upward trend (Hotelling 1931), a downward trend (Prebisch and Singer 

1950) or a U shape trend (Slade 1982) are the examples of deterministic trend 

recognition in the prices of primary commodities. On the other hand, spectral analysis 

of economic data is of importance to policy making. It is important to distinguish 

between a change in economic data that is a shift in trend or just a transitory 

movement associated with the cyclical behavior of data (Christiano and Fitzgerald 

2003).   

Cyclical behavior is another feature of commodity prices. This feature of commodity 

prices has also attracted attention from academicians and researchers. Cyclical 

patterns in time series of commodity prices may seem apparent when looking at the 

plot of prices over time, but finding regular and symmetric or asymmetric cycles is a 

cumbersome task to accomplish. Analyzing time series in order to find the cyclical 

patterns is the subject of spectral or frequency domain analysis. In this step, a 

detrended stationary time series is decomposed into the sum of various cycles with 

different frequencies and amplitudes (Christiano and Fitzgerald 2003). In spectral 

analysis, the existence of possible cycles with unknown frequencies is found from the 

series.  
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There are plenty of methods to decompose a time series into trends and cycles. These 

methods include moving averages, differencing, detrending by extracting linear or 

quadratic trend, Hodrick-Prescott (HP) filter and Baxter-King (BK) filter. The time 

trend component could be defined as low frequency fluctuations of time series. Time 

trend component of time series should be extracted prior to the use of spectral analysis 

to look for hidden cycles. Another possible approach to detrend a series is filtering. 

Filters decompose the original series into low frequency component referred as the 

time trend and a higher frequency component referred as cyclical component. A filter 

provides a tool to separate components of a series with different frequencies. In other 

words, filters leave frequencies within a specific band and removes other frequencies 

outside a given band (Christiano and Fitzgerald 2003). Filters are divided into three 

subgroups: low pass filters, high pass filters and band pass filters. Low pass filters 

leave low frequencies and eliminate high frequencies. By using a low pass filter, short 

term fluctuations are removed from the series and the result contains the long term 

trend. A moving average is a filter that leaves low frequencies and reduces the 

significance of high frequency components and creates a smooth series. In other 

words, the residuals of a low pass filter contain high frequency components. On the 

opposite side, high pass filters leave high frequencies and eliminate low frequencies. 

In other words, the residuals of a high pass filter contain low frequency components. 

Consequently, a band pass filter could be set up in a way that leaves desired 

frequencies and removes undesired frequencies into residuals. 
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As mentioned above, band pass filters provide a tool to decompose a time series into 

specified frequencies (Cuddington and Nülle 2013). Low pass filters are generally 

used to analyze the long term trend in time series by eliminating short term 

fluctuations in economic data. The advantage of using low pass filters in reviewing 

long term trends in mineral prices is that it does not assume a constant long term trend 

over time (Cuddington and Nülle 2013). Elimination of this assumption is plausible 

because there are different models regarding to the existence and direction of a long 

term trend in mineral prices. If band pass filters are utilized repeatedly on base metal 

prices, a combination of cyclical components with specified frequencies can be 

extracted from the series of prices. In this regard, the Hodrick-Prescott filter (Hodrick 

and Prescott 1997) and Baxter-King filter (Baxter and King 1999) are applied to base 

metal prices to extract the time trend and cyclical components. The cycle periods of 

cyclical component are defined according to the characteristics of each metal series 

over the time span from 1970 to 2013.  

4.1. Linear detrending 

Linear detrending is one of the most common practices in trend identification. In this 

approach a straight line or a polynomial is fitted to the series. The implementation of 

linear detrending method is based on the OLS regression on time or a quadratic 

function. A Quadratic trendline may result in a better fit depending on the 

characteristics of the series. In trend stationary (TS) time series, the time trend of the 
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series could be modeled as 𝑝𝑡 =  𝛽1 + 𝛽2 ∗ 𝑡𝑖𝑚𝑒 + 𝑒𝑡, where 𝑝𝑡 is the real price of 

base metal (Cuddington 1992).  Another possible alternative approach to detrend non-

stationary or stationary series is curve fitting. In a quadratic curve the time trend of 

the series is modeled as  𝑝𝑡 =  𝛽1 + 𝛽2 ∗ 𝑡𝑖𝑚𝑒 + 𝛽3 ∗ 𝑡𝑖𝑚𝑒2 + 𝑒𝑡.  

Higher order polynomials may result in a better fit, while they can have some effects 

on the cyclical component of time series. Other mathematical functions such as 

exponential or logarithmic functions can also give a good fit to the series, but these 

functions are only able to give a good fit in a limited interval and show unexpected 

behavior beyond it. 

4.2. Hodrick-Prescott filter 

Hodrick-Prescott (HP) filter is a tool to decompose a time series into a growth or trend 

component and a cyclical component. Hodrick and Prescott (1997) proposed this 

procedure to break down a time series into a slowly changing growth or trend 

component and a cyclical component. The main purpose of using this procedure was 

to illustrate cyclical fluctuations in economic variables. They hypothesized economic 

variables are repeatedly fluctuating around their long term trend. In their approach, 

the trend component of an economic time series varies smoothly over time. They 

estimated the trend component and under the assumption of additive series, the 

cyclical component is calculated by subtracting the trend from the observed series. 

file:///C:/Thesis/Final/Final%20Draft-6.docx%23_ENREF_8
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Given time series, such as base metal prices (𝑝𝑡), is comprised of the growth (𝑔𝑡)and 

cyclical (𝑐𝑡) componets.  

𝑝𝑡 = 𝑔𝑡 + 𝑐𝑡                           𝑓𝑜𝑟      𝑡 = 1, 2, 3 , … … . . 𝑇  (1) 

They developed a model to estimate the growth component  

𝑚𝑖𝑛
{𝑔𝑡}𝑡=1

𝑇
{∑ (𝑝𝑡 − 𝑔𝑡)2 + 𝜆 ∑ [(𝑔𝑡 − 𝑔𝑡−1) − (𝑔𝑡−1 − 𝑔𝑡−2)]2𝑇

𝑡=1
𝑇
𝑡=1 }  (2) 

Where 𝑝𝑡, is the observed series or the real base metal prices, and 𝑐𝑡 = 𝑝𝑡 − 𝑔𝑡 

denotes the cyclical component and 𝜆 is the parameter which determines the 

smoothness of the trend component. As 𝜆 approaches larger values, the estimated 

trend component is getting closer to the estimated coefficient of ordinary least square 

(OLS) of linear time trend (Hodrick and Prescott 1997). This is the time coefficient 

OLS regression for a stationary time series. In Hodrick-Prescott filtering, there is a 

trade-off between minimizing the cyclical component and the trend component. There 

is a penalty for the cyclical component of a series if the first term in the equation (2) 

is minimized. On the other hand, minimizing the second part penalizes the variation 

rate of the trend component (Hodrick and Prescott 1997). The value of 𝜆 = 1,600 for 

quarterly data has been recommended by Hodrick and Prescott (1997). Ravn and 

Uhlig (2002) suggest to adjust 𝜆 = 129,600 when working with monthly data.  
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4.3. Baxter-King filter 

Baxter and King (1999) developed a procedure to identify business cycles by applying 

a band pass filter to produce a stationary series. The Baxter-King filter is a technique 

mainly used to study the business cycles by applying a specific moving average 

according to the characteristics of the business cycle. The Baxter-King filter is usually 

used to extract the cyclical component of an economic time series data between 

specified periods. It is a linear filter that removes a two sided moving average out of 

the series and passes the cycles in a defined upper and lower cycle periods. The upper 

and lower range of cycles is set according to how long a cycle lasts. For example, it 

is widely believed that the business cycles endure between 1.5 to 8 years in an 

economy, so the lower and upper limit of the Baxter-King filter should be defined 

according to 6 and 32 if quarterly data is available or 18 to 96 for monthly data (Baxter 

and King 1999). Consequently, the filter removes components that are lower and 

higher than specified frequencies and passes the cyclical component of the series 

between the defined periods. In applying this filter on other economic data, the 

characteristics of the data should be taken into account. This filter does seem useful 

to apply to non-stationary time series with a stochastic time trend, because the 

stochastic time trend is removed by a two-side moving average and the remaining part 

would be stationary. 

The two-sided moving average of Baxter-King creates a new series as: 
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𝑝𝑡
∗ = ∑ 𝑎𝑘𝑝𝑡−𝑘

𝐾
𝑘=−𝐾   (3) 

Where 𝑝𝑡 is the real prices and 𝑎𝑘s are the weights of the moving average. In the case 

of symmetric moving average the sum of weights equals to zero and the passed time 

series would be stationary. This feature makes the Baxter-King filter applicable to 

non-stationary economic data. K is the maximum lead and lag length or truncation. 

Applying this moving average to the series will result in a stationary time series with 

zero mean 

𝑝𝑡 = ∫ 𝜉(𝜔)𝑑𝜔
𝜋

−𝜋
  (4) 

Where, 𝜉(𝜔) is the cyclical or periodic component of the series with 𝜔 frequency. So, 

the filtered series could be written as  

𝑝𝑡
∗ = ∫ 𝛼(𝜔)𝜉(𝜔)𝑑𝜔

𝜋

−𝜋
  (5) 

In which 𝛼(𝜔) = ∑ 𝛼𝑘 exp (−𝑖𝑤𝑘)𝐾
𝑘=−𝐾  is the frequency response of the filter. The 

frequency response shows the extent that 𝑝𝑡
∗ responds to 𝑝𝑡 at 𝜔 frequency with 

respect to the 𝛼(𝜔) which is the weight of random periodic component of 𝜉(𝜔) 

(Baxter and King 1999). It is worth noting that at zero frequency, the weight of the 

periodic component is zero. The cyclical component of BK filter is  

𝑐𝑡 = ∑  𝑏𝑗
𝐾
𝑗=−𝐾 𝑝𝑡−𝑗  (6) 
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Where  𝑏𝑗 are the weights that could be found the inverse Fourier transform of the 

frequency response function as 

𝑏𝑗 =
1

2𝜋
∫ 𝛼(𝜔)𝑒𝑥𝑝 (𝑖𝑤𝑗)𝑑𝜔

𝜋

−𝜋
  (7) 

In an ideal filter, 𝑏𝑗 are 𝑏0 = 𝜔/𝜋 and 𝑏𝑘 = sin (𝑘𝜔)/𝑘𝜋 for K=1, 2, … 

The other important factor in implementing a Baxter-King method on economic data 

is the is the lag length K. Baxter and King believe that by increasing K the 

performance of the filter is also increased, but the loss of 2K observation has a 

negative effect on the performance of the filter. In the choice of K, leakage, 

compression and exacerbation should be taken into account. Leakage refers to the 

state that the filter passes some frequencies that are not supposed to pass through the 

filter. Truncation of a filter can also compress some frequencies (Baxter and King 

1999). Finally, a frequency response of more than one is defined as exacerbation 

which shows the relative significance of the cyclical component in the range of upper 

and limit cycle periods. With increasing K, these problems are diminishing the 

frequency response function. Figure 2 depicts leakage, exacerbation and compression 

of a band pass (BK filter) filter.   
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Figure 2: Frequency response function of a band pass filter 

The dotted line shows the ideal band pass filter between the upper and lower limit 

frequencies. The solid line displays the frequency response function. This is a 

graphical way to choose the upper and lower frequencies which has the least leakage, 

exacerbation and compression problems. 

5. Results

One of the most important features of commodity prices is the identification of trends 

in the long-term. Base metal prices fluctuate like other commodity prices. This 

fluctuation may be trendless or happen around an upward or a downward 

deterministic trend. Identification of trends in mineral prices in the long-term is of 

importance mainly to know about long-term availability of resources and evaluation 
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of mineral projects. Detecting a general direction or a break in the trend of a price for 

a commodity or any class of assets is generally complicated. However, upward trends, 

downward trends and breaking points might seem obvious in a graphical display of 

prices, but these might be spurious and statistically invalid. Identification of authentic 

trends and structural breaks by using econometric modeling and statistical reasoning 

have been developed by several researchers. In the meantime, market practitioners 

and chartists have been using their own analytical tools such as trendlines and 

channels to detect different types of trends. This section presents the application of 

detrending and filtering methods to separate base metal prices into time trend and 

cyclical components.  

5.1. Stationarity of base metal prices 

The time coefficient of trend stationary series of prices are appropriate to assess the 

existence of deterministic trend4. Usually, the traditional Augmented Dickey-Fuller 

(ADF) test is used to test for the existence of unit root in time series. The first step to 

test for the presence of a unit root in a base metal price series is to apply the ADF test 

based on the following model: 

∆𝑝𝑡 = 𝛽1 + 𝛽2𝑡𝑖𝑚𝑒 + 𝛼𝑝𝑡−1 + ∑ 𝑐𝑖∆𝑝𝑡−𝑖
𝑘
𝑖=1 + 𝑒𝑡  (8) 

                                                           
4 Cuddington (1992) regressed an ARMA model on the logarithm of the commodity price to study 

the time trend component in non-stationary series. 
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To test for the presence of a unit root, both intercept and trend are included in the 

ADF test equation. Lag lengths were automatically selected based on Akaike 

Information Criteria (AIC) with the maximum lag length of 10. Table 1 shows the 

results of applying the ADF test on the real base metal prices.  

Table 1: ADF unit root test results 

  Level 1st difference 

   ADF 

statistic 

Prob†  ADF 

statistic 

Prob† 

Aluminum   -4.01 0.008*  - - 

Copper  -2.81 0.193  -6.77 0* 

Nickel  -3.06 0.115  -13.03 0* 

Lead   -1.41 0.855  -6.69 0* 

Tin  -1.82 0.691  -18.59 0* 

Zinc  -4.97 0.000*  - - 

 

† Probabilities are based on the MacKinnon one-sided p-values: 1% (-3.9758)*, 5% (-3.4185) **, 

10% (-3.1317) *** 

Based on the ADF test, the real prices of aluminum and zinc are stationary at 1% level 

of significance, respectively. For the remaining base metals, the presence of unit roots 

in the prices are not rejected. The results of applying ADF test on base metal prices 

indicate that real prices of copper, nickel, lead and tin are difference stationary, 

without considering the effect of possible breaks in the series of base metal prices. 

5.2. Identification of trend in base metal prices 

In this section, long-term trends are identified in the time series of base metal prices. 

Accurate estimation of trend components in the series of prices is of importance 
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because the cyclical components of a price series is based on the identification of 

trends (Cuddington 1992). In a stationary series, a linear trend is a good estimation of 

the long-term trend of base metal prices. A quadratic trend line is fitted on the real 

prices of non-stationary base metal prices. The growth component of HP filter and 

the moving average of BK filter also show the time trend component of base metal 

prices. Since real prices of aluminum and zinc are stationary (Table 1), a linear 

trendline is a good estimate of time trend component. For the remaining base metals, 

the presence of unit roots in the real prices are not rejected (Table 1), so a quadratic 

trendline, the growth component of HP filter or the moving average of BK filter are 

tested to estimate time trend component. Differencing the non-stationary series 

creates a stationary series, but since the time trend component is also removed it is 

not practical in time trend identification.   

Table 2 contains the result of linear and quadratic regression coefficients to identify 

the time trend component of base metal prices. The result shows that the time 

coefficients of linear trendlines are significant at 1% level in the series of aluminum, 

tin and zinc prices.  
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Table 2: Linear and quadratic trendlines 

 Aluminum   Copper 

 Linear Quadratic   Linear Quadratic  

 time time Time^2   time time Time^2 

Coeff -1.674 -3.082 0.003  Coeff. -0.440 -18.853 0.035 

t Stat -18.033 -8.403 3.965  t Stat -1.529 -23.575 23.777 

P-value 0.000 0.000 0.000  P-value 0.127 0.000 0.000 

Adj. R2 0.383 0.400  Adj. R2 0.003 0.521 

         

 Nickel   Lead 

 Linear Quadratic   Linear Quadratic 

 time time Time^2   time time Time^2 

Coeff 1.208 -33.312 0.066  Coeff -0.390 -5.362 0.009 

t Stat 1.324 -10.075 10.781  t Stat -3.946 -16.459 15.762 

P-value 0.186 0.000 0.000  P-value 0.000 0.000 0.000 

Adj. R2 0.001 0.182  Adj. R2 0.027 0.340 

         

 Tin   Zinc 

 Linear Quadratic   Linear Quadratic 

 time time Time^2   time time Time^2 

Coeff -19.604 -62.502 0.082  Coeff -0.786 -4.037 0.006 

t Stat -14.936 -12.774 9.054  t Stat -6.288 -8.427 7.009 

P-value 0.000 0.000 0.000  P-value 0.000 0.000 0.000 

Adj. R2 0.298 0.393  Adj. R2 0.069 0.148 

 

The quadratic time and time2 coefficients are also significant for all base metal prices. 

Along with the significance of the time coefficients, the goodness of fit should also 

be taken into consideration. For example, the time coefficients of linear and quadratic 

trendlines in zinc price are statistically significant. In these cases, relatively low R2 

indicate that the time trend componets do not follow a downward or U-shape patterns. 

In order to determine the trend component of series, linear and quadratic trendlines 
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should be taken into consideration along with the growth component of the HP filter 

and the moving average of the BK filter.   

In order to apply the HP filter to base metal prices, the smoothing factor is set to 

129,600. This is based on the Ravn and Uhlig (2002) recommendation when working 

with monthly data5. Using the monthly prices of base metals, different upper and 

lower cycle periods and truncation lags were tested to find the optimal frequency 

response function. In this regard, minimizing the leakage, exacerbation and 

compression effect was taken into consideration. For the purpose of BK filtering of 

base metals, the truncation lag is K=20 and low and high limits of cycle periods are 

12 and 40 months, respectively. Figure 3 displays the frequency response function of 

Baxter-King filter for base metal prices. 

 

 

                                                           
5 There are other options for monthly data (λ = 14400, 86400) 
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Figure 3: The frequency response function of Baxter-King filter 

 

Figures 4-9 illustrate the time trend component of real base metal prices. In each 

diagram, the upper left is the real price of metal. The second graph shows the linear 

trend and the lower left graph depicts quadratic trendline. The upper right graph shows 

the growth component of the HP filter and the lower right graph displays the moving 

average of the BK filter. 
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Figure 4: Time trend component of aluminum prices 
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Figure 5: Time trend component of copper prices 
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Figure 6: Time trend component of nickel prices 
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Figure 7: Time trend component of lead prices 
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Figure 8: Time trend component of tin prices 
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Figure 9: Time trend component of zinc prices 
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The goodness of fitness could be captured by observing the trendlines and residuals 

which contains the cyclical component, it can be measured by dividing the variance 

of trendline fitted on the series by the variance of observations: 

𝑅2 = 1 −
𝑉𝑎𝑟 (𝑐𝑡)

𝑉𝑎𝑟 (𝑝𝑡)
  (9) 

Where 𝑉𝑎𝑟 (𝑝𝑡) is the variance of observed prices of base metals and 𝑉𝑎𝑟 (𝑐𝑡) is the 

variance of the extracted cyclical component. The lower the 𝑅2 the less the 

significance of time trend component. This measure is identical to the coefficient of 

determination in linear and quadratic trendlines and could be interpreted similarly for 

HP and BK filters. As the flexibility of filters increases from linear to the BK filters 

the significance of the trend component increases (Table 3) and consequently the 

variance or standard deviation of the cyclical component decreases. 

Table 3: The importance of trend component in different methods 

 Linear Quadratic HP BK 

Aluminum 0.38 0.40 0.66 0.90 

Copper 0.00 0.52 0.72 0.91 

Nickel 0.00 0.19 0.60 0.90 

Lead 0.03 0.34 0.74 0.92 

Tin 0.30 0.40 0.92 0.97 

Zinc 0.07 0.15 0.52 0.83 

 

Table 3 shows that linear trendline is a poor fit in the majority of base metals. There 

is an exception for aluminum and tin. Aluminum price is trend stationary, so the linear 

trendline is a good estimation of the time trend component. Figure 4 shows that the 
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growth rate or the long-term trend in aluminum price is negative. The same behavior 

is apparent in the result of quadratic, the HP and the BK filters. This implies a 

downward trend in aluminum price which is consistent with Prebisch-Sanger 

hypothesis. Although a linear trendline gives a relatively good fit to the tin price, the 

same interpretation is not appropriate. There is a significant change from linear and 

quadratic trendlines to the time trend component of the HP and the BK filters and the 

growth component of HP filter looks more like a super cycle between 1970 and 2013 

than resembling a downward trend. The copper price follows a U-shape trend over 

1970 to 2013. The R2 of the quadratic trendline is relatively high and the same pattern 

is apparent in the time trend component of the HP and the BK filters. Figure 5 

illustrates a U-shape pattern in copper price. In order to identify the time trend 

components of nickel (figure 6) and zinc (figure 9), the linear and quadratic trendlines 

are not helpful. This is mainly due to the insignificance of linear time coefficient of 

nickel and low R2 of both linear and quadratic trendlines in nickel and zinc prices. 

The growth component of HP filter does not help in this case.   

6. Discussion 

Once trendlines have been fitted to the base metal prices, they could be considered as 

the time trend component of the series. All trendlines including linear, quadratic, the 

growth component of the HP filter and the moving average of the BK filter that 

captures the long-term variations in the base metal prices should be removed from the 
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series to provide the data for analyzing the cyclical component. The removal of time 

trend component is simply done by subtracting the trend line from observed prices. 

In other words, the cyclical component of a series using a detrending method is the 

residuals of regressing a trendline on the real prices of base metals. The output of 

applying a filter to the real prices of base metals is considered as the cyclical 

component using filtering method.  

It is worth mentioning that the choice of trend component has some effect on the 

cyclical component. Removing the trend component may affect the phases by shifting 

them forward or backward and consequently the overall cycle could be overstated or 

understated. This section reviews and compares the properties of detrending or 

filtering methods. In this regard, each deterending method is compared with other 

methods according to the ability of the detrending method to remove the unit root in 

the series (Baxter and King 1999). The goodness of the method is tested by testing 

the presence of unit roots in the cyclical components. The similarity of extracted 

cyclical components in each metal is also tested by comparing the correlation 

coefficients between the cyclical components extracted by different methods. 

Furthermore, the identified cycles are depicted and the statistics of cycles are 

compared in each metal using different detrending methods. 
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6.1. General properties of detrending methods 

The linear trend is the simplest and most used method to identify the time trend 

component of time series. This method is easy to apply and does not shift the cycles 

or alter the frequency of phases, but it may not be able to remove unit roots from the 

series. This method is applicable to stationary series, but in the existence of a unit root 

or intense variation in the series, a linear trendline is not a good fit and in many cases 

the coefficient of the time variable is not statistically significant. An alternative to the 

linear trend is a quadratic trendline. Detrended series by removing a quadratic 

trendline are also not subject to cycle shifts or cycle frequency alteration. The 

coefficient of determination and significance of time variables determines the 

goodness of fit and should be taken into consideration in order to select a detrending 

method. The HP filter has been used in this study to capture the time trend component 

of base metal prices and identify the cyclical component. The HP filter has the ability 

to remove the unit root by using a two-sided moving average to smooth the series. 

This filter does not shift the cycles, but changes the frequency of cycles. The BK filter 

removes a unit root by a centered two-sided moving average. The BK filter truncates 

the cyclical component by the lag length of 2K. Although the performance of the BK 

filter increases by increasing K, the loss of observation is a disadvantage. If a BK 

filter is used as a band pass filter, it changes the frequency of the cycles. These 

properties are reviewed further in this section. 
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6.2. Removing the unit root 

One of the properties of a good detrending or filtering method is to remove the unit 

root from the series. This is an important feature in non-stationary series. The 

residuals of detrending or filtering method are required to be stationary, because with 

the existence of a unit root in a series the behavior of the series depends on the time 

component and decreases the applicability of spectral analysis (Baxter and King 

1999).  In order to test the stationarity of the decomposed cyclical components of 

filtering, the ADF test is applied. Table 4 presents the t-statistics of ADF test on the 

residuals of detrending methods.  

Table 4: Unit root test of the cyclical components of different methods 

 Linear Quadratic HP BK 

Aluminum -4.01 -4.18 -5.87 -6.26 

Copper -2.81 -4.60 -6.34 -6.98 

Nickel -3.07 -3.34 -6.57 -7.88 

Lead -1.47 -2.95 -5.16 -7.53 

Tin -1.82 -2.53 -6.26 -7.75 

Zinc -4.98 -5.38 -6.86 -7.17 
 

† MacKinnon one-sided critical values: 1% (-2.56), 5% (-1.94), 10% (-1.61) 

The results show the residuals of linear detrending for aluminum, copper, nickel and 

zinc are stationary at 5% level of significance, so this method is applicable to these 

metals. This implies that application of linear detrending to lead and tin is not 

appropriate.    
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6.3. Correlations between the cyclical components 

The difference between correlation coefficients of the cyclical components of base 

metal prices, when detrended by linear, quadratic, HP and BK filtering methods is a 

measure of the difference between detrending methods. In tables 5-10 the correlation 

coefficients of cyclical component of base metal prices are displayed.  

Table 5: Correlation of the cyclical components of aluminum price using different 

methods 

  Linear Quadratic HP BK 

Linear 1.00    

Quadratic 0.99 1.00   

HP 0.86 0.88 1.00  

BK 0.67 0.68 0.83 1.00 

 

 

Table 6: Correlation of the cyclical components of copper price using different 

methods 

  Linear Quadratic HP BK 

Linear 1.00    

Quadratic 0.77 1.00   

HP 0.63 0.85 1.00  

BK 0.50 0.67 0.83 1.00 
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Table 7: Correlation of the cyclical components of nickel price using different 

methods 

  Linear Quadratic HP BK 

Linear 1.00    

Quadratic 0.94 1.00   

HP 0.74 0.84 1.00  

BK 0.59 0.65 0.84 1.00 

 

Table 8: Correlation of the cyclical components of lead price using different 

methods 

  Linear Quadratic HP BK 

Linear 1.00    

Quadratic 0.88 1.00   

HP 0.64 0.78 1.00  

BK 0.49 0.60 0.83 1.00 

 

Table 9: Correlation of the cyclical components of tin price using different methods 

  Linear Quadratic HP BK 

Linear 1.00    

Quadratic 0.95 1.00   

HP 0.49 0.53 1.00  

BK 0.38 0.40 0.84 1.00 

 

Table 10: Correlation of the cyclical components of zinc price using different 

methods 

  Linear Quadratic HP BK 

Linear 1.00    

Quadratic 0.97 1.00   

HP 0.85 0.91 1.00  

BK 0.66 0.71 0.83 1.00 
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The correlation coefficients between the cyclical components extracted by linear and 

quadratic trends are generally high (>0.94) except for the copper price (0.77). This 

shows that the cyclical behavior of real prices detrended by linear methods are very 

similar. The correlations between the residuals of filtering methods are also high 

(>0.83). This is mainly related to similarities of the HP with BK filters. The 

correlation between linear detrending and BK filtering is relatively lower than the 

correlation between linear detrending and HP filtering or quadratic detrending. This 

feature shows the similarity of cyclical components is decreasing as the difference 

between flexibility of methods increases.    

6.4. Differences between the identified cycles in base metal prices 

The focus of this part of research is to identify cycles from the cyclical components 

of base metal prices. The outputs of detrended series provide the data for further 

analysis including identification of price cycles. There are several algorithms to 

identify the cycles in economic data. One of the beginning methods in this regard is 

attributed to Burns and Mitchell (1946). Their procedure in cycles and turning points 

identification has been used extensively and became the NBER procedure in 

identifying business cycles. Bry and Boschan (1971) developed a procedure to search 

for the expansion and contraction in a series. In their terminology a cycle consists of 

an expansion phase from a previous trough to a peak and a contraction is defined as 

the time between a peak to the next trough. In other words, a full cycle goes from a 
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trough to the next trough or from a peak to the next peak (Bry and Boschan 1971). 

Another seminal work in detecting cycles in economic time series is attributed to 

Harding and Pagan (2002). In order to identify the cycles the Harding and Pagan 

(2002) cycle identification method is applied to the cyclical component of base metal 

prices.  
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Figure 10: Real aluminum price and expansion phases 
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Figure 11: Real copper price and expansion phases 
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Figure 12: Real nickel price and expansion phases 
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Figure 13: Real lead price and expansion phases 
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Figure 14: Real tin price and expansion phases 
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Figure 15: Real zinc price and expansion phases 
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Figures 10-15 illustrate in graphical form, the identified cycles including expansion 

and contraction phases with the real price of base metals. The main reason for missing 

phases and turning points in the beginning and end of the graphs is related to the loss 

of data from smoothing. The expansion and contraction phases and their associated 

turning points are detected using the Harding and Pagan (2002) procedure. In this 

method, the relative maximum and minimums are detected in the series and assigned 

as peaks and troughs following these steps: 

1. The output of a filter or the residuals of detrending method provide the data 

for identification of cycles in the base metal prices. Linear and quadratic 

detrending methods, and Hodrick and Prescott (1997) filter and Baxter and 

King (1999) filters are applied to monthly real base metal prices from 1970:1 

to 2013:7 to reveal the cyclical components of base metal prices. 

2. A 12 month window is applied on the cyclical component of base metal prices 

to identify relative maximums such that (𝑝𝑡−12, 𝑝𝑡−11, … . 𝑝𝑡−1) < 𝑝𝑡 and 𝑝𝑡 >

(𝑝𝑡+1, 𝑝𝑡+2, … . 𝑝𝑡+12) and assign them as peaks in the series of prices. 

Troughs are located in the series following the same procedure such that 

(𝑝𝑡−12, 𝑝𝑡−11, … . 𝑝𝑡−1) > 𝑝𝑡 and 𝑝𝑡 < (𝑝𝑡+1, 𝑝𝑡+2, … . 𝑝𝑡+12). 

3. Peaks and troughs should alternate successively. If more than one maximums 

(minimums) are detected in the series, the highest (lowest) would be the 

relative peak (trough) in the cycle and the lower will be suppressed to zero. 
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4. A binary series is created to show the expansion and contraction months by 1 

and 0, respectively. 

In these figures peaks and troughs appear respectively at the right and left ends of 

expansion phases. A full cycle can be measured from a peak to the next peak or a 

trough to the next trough. Visual inspection of the graphs of each metal shows the 

difference between the identified cycles and associated turning points. Since the same 

procedure has been applied to the cyclical components, the difference between 

detected cycles stemmed from the difference between the cyclical components. This 

shows detected cycles have been affected by the choice of the detrending or filtering 

method which has been applied to a series.  

Table 11: Duration of phases in aluminum price using different methods 

  Expansion Contraction 

 Cycle Min Max Mean Stdev Min Max Mean Stdev 

Linear 8 10 52 21.0 14.5 10 65 27.9 16.7 

Quadratic 7 10 52 25.4 19.0 18 65 29.0 16.7 

HP 8 10 63 29.4 19.5 18 49 30.1 11.9 

BK 11 10 80 26.7 22.6 10 41 19.0 9.3 

 

Table 12: Duration of phases in copper price using different methods 

  Expansion Contraction 

 Cycle Min Max Mean Stdev Min Max Mean Stdev 

Linear 6 11 30 20.2 6.62 13 59 37.7 15.6 

Quadratic 7 10 50 31 17.2 17 59 34 14.6 

HP 7 11 50 21.9 13.3 20 59 40 14.5 

BK 8 13 52 25.9 12.8 10 58 32.6 18.2 
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Table 13: Duration of phases in nickel price using different methods 

  Expansion Contraction 

 Cycle Min Max Mean Stdev Min Max Mean Stdev 

Linear 7 15 67 32.0 22.5 10 65 32.6 19.9 

Quadratic 7 15 67 28.6 22.4 19 65 34.6 20.6 

HP 8 15 61 26.6 15.2 14 45 25.8 12.1 

BK 7 10 38 21.7 10.8 22 46 34.0 9.8 

 

Table 14: Duration of phases in lead price using different methods 

  Expansion Contraction 

 Cycle Min Max Mean Stdev Min Max Mean Stdev 

Linear 8 12 89 30.4 24.9 14 69 30.5 20.4 

Quadratic 8 12 54 26.0 13.7 14 83 34.9 27.2 

HP 9 10 53 21.4 14.0 14 47 27.1 13.3 

BK 10 10 61 17.9 15.5 11 57 25.7 15.5 

 

Table 15: Duration of phases in tin price using different methods 

  Expansion Contraction 

 Cycle Min Max Mean Stdev Min Max Mean Stdev 

Linear 10 16 42 28.6 7.6 10 36 20.7 7.6 

Quadratic 10 12 51 28.3 11.0 10 41 21.1 8.5 

HP 10 16 45 25.9 9.1 10 60 27.0 16.2 

BK 7 10 55 24.6 15.3 12 52 30.7 15.8 

 

Table 16: Duration of phases in zinc price using different methods 

  Expansion Contraction 

 Cycle Min Max Mean Stdev Min Max Mean Stdev 

Linear 9 12 52 29.3 15.2 16 55 26.0 14.1 

Quadratic 6 15 47 34.7 12.5 20 68 41.3 18.2 

HP 9 11 47 22.1 13.2 12 58 25.9 16.2 

BK 11 10 87 22.2 23.0 10 27 20.3 5.7 
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Tables 11 to 16 show the behavior of the cyclical component of base metal prices. 

These tables include the minimum, maximum, the average and standard deviation of 

expansion and contraction phases in base metal prices extracted by different 

detrending methods and filters. These tables also show that the number of detected 

cycles in each metal price varies by the detrending method. 

7. Conclusions 

Analyzing the behavior of economic time series is a complicated task. One of the 

main reason for this is the ever changing trend and many frequent fluctuations around 

it. Decomposition analysis of economic time series is the process of extracting a low 

frequency component known as the time trend and a higher frequency component 

which is known as the cyclical component. There are many different methods and 

techniques for decomposing time series into its components. They differ from each 

other mainly in the way they identify the trend, and how they handle the cyclical 

component. In this regard, one has to make assumptions which influence the results 

and analysis. This research is a study of the long-term trend and cyclical fluctuations 

of the real price of base metals. The incentive for choosing time series analysis to 

examine the behavior of base metal prices stems from the existence of several 

different theories about the mineral prices. With the lack of a robust theory about 

commodity price behavior, any effort to model prices leads to different and in some 

cases opposing findings.  



 

62 

 

This research is one among many studies which have been devoted to analyze, model 

and forecast commodity prices. Generally, identification of the time trend component 

and examination of the long-term behavior is getting more complicated as the 

goodness of fit increases in base metal prices. A linear trendline gives a poor fit, but 

interpreting the behavior of the price is apparently easier than an almost perfect fit by 

the application of HP filter or BK filters. As mentioned before, there is a penalty for 

better smoothness of the cyclical component; the smoother the time trend, the more 

variation in the cyclical component. It is worth mentioning that the BK trend 

component is a very good fit to the data series and could hardly be considered as the 

long-term trend component. Moreover, the loss of data points at the end of the sample, 

prevents identification of the most recent behavior in a series. Therefore, a relatively 

good fit by regressing a linear or quadratic trend is more favorable than better fits 

accomplished by applying filters to a series if the time coefficients are statistically 

significant. Less impact on the cyclical component, using the full sample, and the 

easier interpretation of long-term behavior are the advantages of linear and quadratic 

trendlines over the more flexible filtering methods.    

The long-term trend of base metal prices reviewed in this research varies from linear 

and quadratic deterministic trends to flexible HP and BK filters. In this regard, the 

main finding is that it is difficult to determine any particular trend line in base metal 

prices, however, quadratic trendlines give a good fit comparing to other filtering 

methods in copper, lead, tin and zinc prices, which is in agreement with Slade’s 
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model. On the other hand, a negative linear deterministic trend, describes the behavior 

of aluminum price well, which is consistent with Prebisch-Singer thesis. Generally, 

using HP filtering of base metal prices gives a very good fit and the trend component 

has enough flexibility to capture the variability of prices. Moreover, if the smoothness 

parameter is determined appropriately, the trend component would explain the long-

term behavior of price more accurately. 

The other finding of this research is related to the cyclical component of prices. The 

choice of filtering or detrending methods is influential on the cyclical component of 

prices. In this regard, the characteristics of a data series such as volatility should be 

taken into consideration in adjusting the parameters of the filter to be applied. 

Moreover, the cycle identification procedure assumptions including the minimum 

phase and cycle duration, affect the expansion and contraction phases and their 

associated turning points. Given the same procedure to detect the cycles in base metal 

prices, the HP filter has some favorable characteristics over the other detrending and 

filtering methods. The time growth or time trend component of the HP filter captures 

low frequency fluctuations, removes unit roots and does not have a significant impact 

on the cyclical component. The smoothing parameter of the HP filter allows the user 

to adjust it to a desired level depending on the importance of the time trend component 

or cyclical component. This feature of the HP filter is very desirable as identification 

of cycles is highly dependent on the filtering method, its properties and adjustments. 
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Although the effects of different detrending and filtering methods on trend 

identification and cyclical components were reviewed in this thesis, this is by no 

means a complete study. First, other deterending approaches such as fitting 

logarithmic and higher order polynomial trendlines, and other filtering methods such 

as Christiano-Fitzgerald and Butterworth filters were not studied in this research. 

Second, there is no variation in the parameters of applied filters in this study. For 

example, the smoothing parameter of the HP filter was set to 129,600, and for the BK 

filter the truncation lag of K=20 and low and high cycle periods limits of 12 and 40 

months were reviewed in this study, which are the most commonly values based on 

other studies and behavior of base metal prices. Other values will give different results 

which have not been considered in this research. Third, the data sample in this study 

is comprised of only base metal prices which is a small sample in the area of primary 

commodities. Fourth, long-term trend identification suffers from the time span of this 

study. Fifth, this study does not make any conclusion about the characteristics of an 

optimal detrending or filtering methods. In other words, no benchmark or ideal 

method was introduced in this study. Consequently, identification of the best time 

trend component which explains the long-term behavior and will result in the most 

accurate cycles are very subjective and remain as other limitations of this study. These 

limitations could be overcome in future research.   
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