
Michigan Technological University Michigan Technological University 

Digital Commons @ Michigan Tech Digital Commons @ Michigan Tech 

Dissertations, Master's Theses and Master's 
Reports - Open 

Dissertations, Master's Theses and Master's 
Reports 

2013 

STUDY OF SPARK IGNITION ENGINE COMBUSTION MODEL FOR STUDY OF SPARK IGNITION ENGINE COMBUSTION MODEL FOR 

THE ANALYSIS OF CYCLIC VARIATION AND COMBUSTION THE ANALYSIS OF CYCLIC VARIATION AND COMBUSTION 

STABILITY AT LEAN OPERATING CONDITIONS STABILITY AT LEAN OPERATING CONDITIONS 

Hao Wu 
Michigan Technological University 

Follow this and additional works at: https://digitalcommons.mtu.edu/etds 

Copyright 2013 Hao Wu 

Recommended Citation Recommended Citation 
Wu, Hao, "STUDY OF SPARK IGNITION ENGINE COMBUSTION MODEL FOR THE ANALYSIS OF CYCLIC 
VARIATION AND COMBUSTION STABILITY AT LEAN OPERATING CONDITIONS", Master's report, Michigan 
Technological University, 2013. 
https://doi.org/10.37099/mtu.dc.etds/662 

Follow this and additional works at: https://digitalcommons.mtu.edu/etds 

http://www.mtu.edu/
http://www.mtu.edu/
https://digitalcommons.mtu.edu/
https://digitalcommons.mtu.edu/etds
https://digitalcommons.mtu.edu/etds
https://digitalcommons.mtu.edu/etd
https://digitalcommons.mtu.edu/etd
https://digitalcommons.mtu.edu/etds?utm_source=digitalcommons.mtu.edu%2Fetds%2F662&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.37099/mtu.dc.etds/662
https://digitalcommons.mtu.edu/etds?utm_source=digitalcommons.mtu.edu%2Fetds%2F662&utm_medium=PDF&utm_campaign=PDFCoverPages


 

 

 

 

STUDY OF SPARK IGNITION ENGINE COMBUSTION 
MODEL FOR THE ANALYSIS OF CYCLIC VARIATION AND 

COMBUSTION STABILITY AT LEAN OPERATING 
CONDITIONS 

 

 

By 

Hao Wu 

 

 

 

A REPORT 

Submitted in partial fulfillment of the requirements for the degree of 

MASTER OF SCIENCE 

In Mechanical Engineering 

 

MICHIGAN TECHNOLOGICAL UNIVERSITY 

2013 

 

© 2013 Hao Wu



 

 

 

This report has been approved in partial fulfillment of the requirements for the Degree of 
MASTER OF SCIENCE in Mechanical Engineering. 

 

 

Department of Mechanical Engineering-Engineering Mechanics 

  

 Report Advisor: Dr. Bo Chen  

 Committee Member: Dr. Jeffrey D. Naber 

 Committee Member: Dr. Chaoli Wang 

 Department Chair: Dr. William W. Predebon 

 



iii 
 

CONTENTS 

 
LIST OF FIGURES ............................................................................................................ v 

LIST OF TABLES ............................................................................................................. vi 

ACKNOWLEDGEMENTS .............................................................................................. vii 

ABSTRACT ..................................................................................................................... viii 

1 INTRODUCTION AND MOTIVATION .................................................................. 1 

2 LITERATURE REVIEW ........................................................................................... 4 

2.1 LEAN COMBUSTION ANALYSIS ................................................................... 4 

2.2 FUNDAMENTAL COMBUSTION MODEL ..................................................... 5 

2.3 TWO-ZONE HEAT RELEASE MODEL ........................................................... 7 

2.4 CYCLIC VARIATION IN ENGINE COMBUSTION ....................................... 8 

3 MEAN-VALUE FUNDAMENTAL COMBUSTION MODEL FOR SPARK-
IGNITION ENGINE ......................................................................................................... 10 

3.1 MODEL DESCRIPTION ................................................................................... 10 

3.1.1 TURBULENT ENTRAIMENT AND EDDY-BURN MODEL ................ 10 

3.1.2 COMBUSTION VARIABLES ................................................................... 12 

3.1.3 FLAME GEOMETRY ................................................................................ 16 

3.1.4 TWO-ZONE THERMODYNAMIC MODEL ........................................... 19 

3.2 MODEL CALIBRATION.................................................................................. 22 

3.2.1 MODELING & CALIBRATION ENVIRONMENT ................................. 22 

3.2.2 ENGINE AND OPERATING PARAMETERS USED IN SIMULATION
 23 

3.2.3 CALIBRATION OF MODEL PARAMETERS ......................................... 24 

3.3 MODEL VALIDATION AND EXPERIMENTAL TEST RESULTS.............. 30 

3.3.1 ENGINE TEST MATRIX .......................................................................... 30 

3.3.2 VALIDATION RESULTS AND DISCUSSIONS ..................................... 31 

4 STUDY CYCLIC VARIATION USING DEVELOPED COMBUSTION MODEL
 38 

4.1 CYCLIC VARIATION IN ENGINE COMBUSTION ..................................... 38 



iv 
 

4.2 CYCLIC VARIATION IN COMBUSTION SIMULATION ........................... 44 

4.3 COMBUSTION STABILITY ANALYSIS ....................................................... 56 

5 CONCLUSIONS AND FUTURE WORKS ............................................................. 61 

REFERENCES ................................................................................................................. 63 

APPENDIX A ................................................................................................................... 65 

APPENDIX B ................................................................................................................... 67 

 

  



v 
 

LIST OF FIGURES 

Figure 3.1: ......................................................................................................................... 12 
Figure 3.2: ......................................................................................................................... 18 
Figure 3.3: ......................................................................................................................... 21 
Figure 3.4: ......................................................................................................................... 26 
Figure 3.5: ......................................................................................................................... 27 
Figure 3.6: ......................................................................................................................... 28 
Figure 3.7: ......................................................................................................................... 29 
Figure 3.8: ......................................................................................................................... 32 
Figure 3.9: ......................................................................................................................... 32 
Figure 3.10:. ...................................................................................................................... 34 
Figure 3.11:. ...................................................................................................................... 34 
Figure 3.12:. ...................................................................................................................... 36 
Figure 3.13: ....................................................................................................................... 36 
Figure 3.14:. ...................................................................................................................... 37 
Figure 4.1: ......................................................................................................................... 39 
Figure 4.2: ......................................................................................................................... 39 
Figure 4.3: ......................................................................................................................... 40 
Figure 4.4: ......................................................................................................................... 40 
Figure 4.5:. ........................................................................................................................ 41 
Figure 4.6: ......................................................................................................................... 42 
Figure 4.7: ......................................................................................................................... 43 
Figure 4.8: ......................................................................................................................... 44 
Figure 4.9: ......................................................................................................................... 46 
Figure 4.10:. ...................................................................................................................... 48 
Figure 4.11:. ...................................................................................................................... 49 
Figure 4.12:. ...................................................................................................................... 50 
Figure 4.13:. ...................................................................................................................... 50 
Figure 4.14:. ...................................................................................................................... 51 
Figure 4.15:. ...................................................................................................................... 52 
Figure 4.16:. ...................................................................................................................... 53 
Figure 4.17:. ...................................................................................................................... 54 
Figure 4.18:. ...................................................................................................................... 57 
Figure 4.19:. ...................................................................................................................... 57 
Figure 4.20:. ...................................................................................................................... 59 
Figure 4.21:. ...................................................................................................................... 59 
Figure 4.22:. ...................................................................................................................... 60 
Figure 4.23:. ...................................................................................................................... 60 



vi 
 

 

LIST OF TABLES 

Table 3.1: Engine information and operating conditions used for simulation .................. 24 

Table 3.2: Adjustable model parameters .......................................................................... 25 

Table 3.3: Matrix of operation conditions of engine tests ................................................ 30 

Table 3.4: Lambda sweep test conditions in simulation ................................................... 33 

Table 3.5: Comparisons of CA10, CA50 and CA90 between experimental data and 

simulation results .............................................................................................................. 35 

Table 4.1: Amounts of introduced variation sources of engine inputs and parameters .... 45 

Table 4.2: Other variation sources and their amount introduced in combustion model ... 47 

Table 4.3: Variances of introduced variation sources in simulations of under different 

lean conditions .................................................................................................................. 48 

Table 4.4: COV of IMEP of simulation and experimental results .................................... 55 

 

 

  



vii 
 

ACKNOWLEDGEMENTS 

 
Firstly I will thank my advisor Dr. Bo Chen for her advices of this report and opportunity 

she provided for me to work in IC engine area. I would also thank Dr. Naber and Dr. 

Wang for joining in the committee and providing me valuable opinion. 

Thanks to all the lab mates in Intelligent Mechantronics and Embedded Systems Lab with 

whom I have shared unforgettable time of study, work and life together. Thank all the 

friends in Michigan Technological University for their help and encouragement in life 

and work during these two years.  

I appreciate the graduate research assistants who work in the Advance IC Engines Lab. 

Their precious engine experimental data give me irreplaceable help to complete this 

report. 

The most people I need to thank are my parents who gave me their best and firm support 

and encouragement to my study abroad. I will always remember their devotion to me and 

use the effort of hard working to bring them hope in return. 

  



viii 
 

ABSTRACT 

 
A fundamental combustion model for spark-ignition engine is studied in this report. The 

model is implemented in SIMULINK to simulate engine outputs (mass fraction burn and 

in-cylinder pressure) under various engine operation conditions. The combustion model 

includes a turbulent propagation and eddy burning processes based on literature [1]. The 

turbulence propagation and eddy burning processes are simulated by zero-dimensional 

method and the flame is assumed as sphere. To predict pressure, temperature and other 

in-cylinder variables, a two-zone thermodynamic model is used. The predicted results of 

this model match well with the engine test data under various engine speeds, loads, spark 

ignition timings and air fuel mass ratios. The developed model is used to study cyclic 

variation and combustion stability at lean (or diluted) combustion conditions. Several 

variation sources are introduced into the combustion model to simulate engine 

performance observed in experimental data. The relations between combustion stability 

and the introduced variation amount are analyzed at various lean combustion levels. 

 

  



1 
 

1 INTRODUCTION AND MOTIVATION 

For more than one century internal combustion (IC) engine has been a major power 

source for automobile. However, the limited fossil fuel resource available in the world 

and the restricted emission standards make IC engine development more challenging to 

meet fuel and emission requirements. In the observation of experimental results, spark-

ignition engine has better fuel economy and NOx emission in lean or diluted combustion 

conditions since in-cylinder temperature during combustion is reduced while maintaining 

same level of output power. However, lean condition will cause combustion stability to 

deteriorate. Such deterioration, once increasing to a certain level, some engine metrics 

become worse and then fuel economy follows. Consequently the engine efficiency could 

be improved by operating in lean condition but the concern about combustion stability 

limits its effect. 

The information of mass fraction burned (MFB) is important in the analysis of engine 

combustion. Such information could be obtained with the in-cylinder pressure data which 

could be real-time captured through in-cylinder pressure transducers and rapid data 

acquisition/analysis systems. The indicated mean effective pressure (IMEP) is an 

indicator of combustion output power. This is calculated by integrating pressure with 

chamber instant volume. And from the MFB versus crank angle curves the information of 

heat release and burn duration could be known. Those are metrics used for analysis of 

combustion. From test results of consecutive combustion cycles the cyclic variation could 

be found in the pressure data, and also will be in the MFB ones. The statistic indicator 

that is coefficient of variance (COV) of IMEP is usually used to represent the stability of 

combustion. Such indicator could be rapidly calculated by analyzer with instantaneous 

pressure data.  

To study lean combustion and its stability, a fundamental combustion model including 

physical processes of combustion and heat release should be very helpful. With the 

availability of different kinds of optical combustion engines or vessels and rapid imaging 

or signal measurement facilities, many researchers ([2-5]) have worked in observing the 

process of combustion under different conditions and deriving the expression of 
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combustion variables. Base on the accessibility of such combustion variables and the 

visible processes of combustion flame propagation, researchers ([1, 5-8]) have built 

combustion model in spark-ignition (SI) engine including physical relations like turbulent 

flame propagation and eddy burned processes to predict the fuel mass burned rate.   

For the modeling of mass fraction burned curves, empirical functions like Wiebe function 

are widely used with several parameters to be adjusted. Such methods could be 

convenient to use to predict heat release curve for individual cycle. However, 

fundamental combustion model has the advantage to apply under wide range of operation 

conditions due to physical-based relations are included in the model. The heat release 

information is the result of many complicated processes. Even if there is empirical 

expression to model MFB information, the parameters of the expression probably have 

no apparent trends or relations with the change of operation conditions. The combustion 

models introduced in this report are developed to express flame structure and burning 

process with the results of experimental observation. The model accuracy depends on the 

chosen of parameters in both the relations of the model and the combustion 

environmental conditions. The predicted results through combustion model can match the 

engine tests ones perfectly with well calibrated parameters in one case. Under different 

operation conditions that are considered in the model, it should still have the ability to 

predict approximate results for each. 

Besides the mean value trends changes along with the changing of operation condition, 

the cycle-to-cycle variation in measured in-cylinder pressure histories also changes 

especially under different lean or diluted levels. The variations also exist in the MFB 

curves calculated from the pressure signals. Study the features of cyclic variations in the 

combustion processes could be helpful and somehow necessary to understand lean 

combustion and the lean limits come from instability. Such variations may be resulted by 

not only the fluctuations of inputs or environment but also the random natures of flame 

propagation and combustion. One advantage of fundamental combustion model is that the 

random natures could be considered and simulated in the model to predicting outputs 

with cyclic variations. That provides the availability to introduce variation sources with 
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reasonable variance amount in purpose of obtaining in-cylinder pressure results with 

same cyclic variance level as that of experimental data. 

A fundamental combustion model should have ability to predict MFB, in-cylinder 

pressure values and other intermediate variables. Some of them may not be easily 

observed from experiments under a wide range of operation condition. The qualified 

model could help to provide physical explanations of lean combustion phenomena, to 

help researchers understand how lean condition and combustion stability affect the fuel 

economy. If the combustion model is good enough to precisely simulate engine 

performance while changing engine inputs, it could also help to test engine strategy to see 

if it fulfills the control requirements. 

In this report, a historical developed fundamental combustion model is studied and 

implemented. The performance of the developed combustion model is compared with 

several engine test data set under different operation conditions. The presented model 

includes turbulent propagation and eddy burned model introduced in [9] for mass burned 

prediction. And a two-zone thermodynamic model in [10] is used for in-cylinder 

pressure, mass density and temperature prediction. By introducing the randomness in 

combustion variables and engine inputs, model is able to simulate the cyclic variations of 

in-cylinder pressure data of consecutive cycles. The features of combustion instability of 

lean combustion are studied with the simulation results from this model.  
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2 LITERATURE REVIEW 

2.1 LEAN COMBUSTION ANALYSIS 

Ayala et al. [11] analyze the features of lean combustion for SI engine under wide range 

of operation conditions. A general phenomenon is that both engine efficiency and the 

COV of IMEP increase as lambda value (lean level) increases. The COV of IMEP 

increases slowly at the beginning, and after a certain lean point is reached, it raises 

sharply. At the same time, the engine efficiency decreases after the lambda point where 

combustion stability becomes to deteriorate. In paper [11], combustion metrics such as 

burned durations are analyzed based on engine experimental results over wide range of 

operation conditions. The authors found that the peak engine efficiency corresponding to 

about 30 deg of 10~90% burn duration in all test. The tests also show that 2% COV of 

IMEP, which is often used as the stability threshold, is corresponding to about 40 deg of 

0~10% burn duration. The effect of cyclic combustion variability is also studied since it 

is closely related to the efficiency change with lambda. Base on the analysis of burn 

duration and IMEP of lean combustion with fixed average load, following features are 

found. (1) The distribution of 10~90% burn duration is close to a normal distribution 

when the lean level is low and the cyclic variation increases as lean level increases while 

the distribution becomes asymmetric. (2) The distributions of 0~10% burn duration keep 

normal distribution even though the combustion becomes more unstable. However the 

average value of 0~10% changes significantly as lean level increases. (3) The skew like 

distribution of 10~90% burn duration also appears in the distribution of IMEP. There are 

small amount of cycles with extremely small IMEP values which correspond to large 

10~90% burn duration. These cycles are bad combustion cycles (partial burned or 

misfire) which reduce the efficiency of engine. 

Ayala et al. [1] continues to study the feature of lean combustion with engine test data 

and the fundamental combustion model they implemented. For the case of three 

individual tests if two of them have same bias in opposite directions at the beginning of 

the combustion, their deviations to the third one become large and unequal at the end of 

combustion. This is why 10~90% burn duration varies significantly at very lean 
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condition. They also conclude that the cycle-to-cycle variability of combustion has close 

relation with the early growth of flame. This is also found from the distribution of 0~10% 

burn durations since their average values under different lean conditions change 

significantly. The major cause of the slow mass burning at the early stage of combustion 

is found due to the long eddy burning time under lean combustion with the help of 

developed combustion model. 

 

2.2 FUNDAMENTAL COMBUSTION MODEL 

The combustion model implemented in this report includes turbulent flame propagation 

and eddy burning process. Heywood introduces the turbulence flow with three 

characteristic scale lengths in IC engine combustion chamber in his book [12]. The 

integral macro scale ( L ) is the largest scale and reflects the size of turbulent eddies. Its 

length is affected by the system boundary such as the piston height for IC engine 

environment. The Kolmogorov scale ( Kl ) is the smallest scale and reflects the size of the 

vortex tube. In presented model, the burning time of such small length is assumed to be 

instantaneous. The third scale is Taylor microscale ( mλ ) which is the universe size of 

small cells inside the integral eddies. This scale is important to the combustion model 

since its size reflects the turbulent condition and affects the eddy burning time. The 

length of microscale has been defined as a function of integral scale and Reynolds 

number. 

Blizard and Keck [6] developed the original turbulent entrainment model. The flame 

propagation speed eu  is assumed slowly varying and the mass burned rate is derived with 

assumption of exponential eddy burning time, as shown in equations (1) and (2). The 

flame geometry is assumed as spherical surface. The flame area and volume are 

expressed as integrals of circle length and area of transversal surface with chamber 

height. The expression of mass burned fraction is finally obtained by solving first order 
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differential equations including (1), (2), flame geometry expressions and a 

thermodynamic model. 

 f u f em A uρ=   (1)  

( )( )' /

0
1 '

t t t
b u f e f bm e A u dt m mτ ρ τ− −= − = −∫   (2)  

Tabaczynski, et al. [7] modify their previous combustion model. The mass entrainment 

speed ( eu ) is proportionally related to the turbulent intensity which is derived as a 

function of unburned mass density ( uρ ) during the combustion. Then the eddy 

entrainment speed is expressed as function of mass density as shown in equation (3). 

They also give a detail solution to calculate the eddy burning time ( bτ ) according to the 

single eddy burning process.  

1/3

,
,

u
e e r

u r

u u ρ
ρ

 
=   

 
  (3)  

In [8], they refine their model by adding laminar flame speed term in the flame 

entrainment speed ( LS ) in equation (4). They also modify the eddy burning time as the 

microscale length divided by laminar flame speed shown as equation (5). That is because 

the expression they solved in the previous work does not work well to express the eddy 

burning time during the procedure of flame development and the flame propagation 

might be in developing state for most of the combustion. The predicted MFB results from 

the refined model match well with experimental data under different conditions of EGR, 

lambda and spark time. 

( )'e u f Lm A u Sρ= +  (4)  
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LS
λτ =  (5)  

Beretta, Rashidi and Keck [13] add a laminar burning term in the mass burning rate 

calculation shown in equation (6) since they have observed the dependence of the 

burning rate on the laminar flame speed in the early combustion stage. Then, one of the 

authors Keck [5] modifies this model by adding a exponential term in the turbulent part 

of mass entrainment rate calculation. The modified expression of mass entrainment rate is 

shown as equation (7). This exponential term is to describe the initial growth of the flame 

before the first eddy close to ignition site is burned. The time constant 1τ  represents 

burning time of the first eddy. 

e b
b u f L

b

m mm A Sρ
τ
−

= +  (6)  

11
t

e u b T u b Lm A u e A Sτρ ρ
− 

= − +  
 

  (7)  

Ayala [1, 9] uses the above modified model in his research. In his dissertation he also 

express the exponential term of early flame growth with flame radius scale instead of 

time scale, and he get better results. In addition he uses turbulent intensity as the main 

turbulent entrainment speed and tries different correlations which express that as 

functions of mass density ( uρ ). The model implemented in this report is based on this 

model, so more details will be introduced in the next chapter.  

 

2.3 TWO-ZONE HEAT RELEASE MODEL 

The turbulent propagation model considers physical variables of burned and unburned 

gas. Variables such as in-cylinder pressure, mass density and temperature are necessary 
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to solve the equations and to calculate other combustion variables such as turbulent 

intensity and laminar flame speed. 

Guezennec, et al. [10] use the two-zone (burned and unburned zones) model to predict 

variables during combustion with in-cylinder pressure data. The model covers the process 

from the intake valves closing to exhaust valves opening. Both of the burned and 

unburned zones have their individual temperature, mass and volume, but the pressure is 

same all around the chamber. The heat transfer to the chamber wall or piston is 

considered and it is assumed no heat transfer between two zones. As a result this two-

zone model predicts more reasonable mass fraction burned values and it makes more 

variables are available to be accessed. Yeliana, et al. [14] compares the performance of 

single-zone and two-zone heat release models in an ethanol and gasoline blended fuel 

engine. Both heat transfer and crevice volume factors are considered in the models. 

  

2.4 CYCLIC VARIATION IN ENGINE COMBUSTION 

Cycle-to-cycle variation exits in the combustion process as presented in real engine tests. 

This variation is more severe under lean or diluted conditions.  

Rashidi [15] studies the cycle-to-cycle variation with photographs taken from a 

transparent piston engine. A period from the spark occurrence to a formed stabilized 

flame kernel is observed and defined as ignition delay. From the observation, the 

variations of both the length of the period and the time of its formation exist among 

consecutive combustion cycles. The shapes of flame fronts right after the stabilized 

flames are different due to the variation of the flow velocities. It is also concluded that 

the length of this flame stabilization period could be influenced by the turbulent structure, 

and it is also the major cause of cyclic variation of the combustion process. The variation 

of the main part of the flame propagation is also affected by the turbulent velocity and 

structure. 
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Keck et al. [5] study the early flame development process with an optical combustion 

chamber piston engine. From the observation of several combustion tests, it is found that 

the real flame kernels have random locations around the spark plug and their distribution 

has different trends under different mixtures of flow conditions. The authors conclude 

that the randomness of the early flame kernel is one of the major causes of the cyclic 

combustion variation. Also, the variations of burning speed and the first eddy size after 

ignition play the essential roles to the fluctuation of early stage combustion. The initial 

burning speed is mainly laminar flame speed and it is affected by the mixture situation 

near the spark site. The variation of first eddy size is caused by the fluctuation of 

turbulent structure of each cycle.  

Aghdam et al. [16] summarize several cyclic variation sources and include the fluctuation 

of turbulent flow into their combustion model. The cyclic variations of engine 

combustion could be easily observed from in-cylinder pressure, combustion phasing and 

combustion duration. However, the origins of cyclic variations may come from (1) the 

turbulent intensity, (2) engine inputs (lambda, air flow, et al), (3) the mixture composition 

near the spark plug and (4) the spark ignition process. The authors observe the peak 

pressure versus peak pressure location (crank angle) scatters and their distributions 

comparing with those from engine data. By adjusting the variation level of the turbulent 

fluctuations, the model could simulate engine outputs with similar variations to those of 

experimental data.  
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3 MEAN-VALUE FUNDAMENTAL COMBUSTION MODEL FOR 
SPARK-IGNITION ENGINE 

In this chapter, a fundamental combustion model is implemented combining with two-

zone thermodynamic model. The predicted results of the model are compared with engine 

test data recorded by ACAP data acquisition system developed by the DSP Technology 

Inc. It is used for a Ford Ecoboost 3.5L V6 DI gasoline engine. The performance of the 

model is tuned by changing some model parameters and unmeasured engine inputs. 

3.1 MODEL DESCRIPTION 

The fundamental combustion model presented in this report is a turbulent propagation 

and eddy burning model to predict the mass burned rate. Unlike some of the early works 

that are achieved by solving differential equations, the presented model is achieved by 

writing in discrete form with basic Euler integral method. No iterations are needed to 

improve the solution. Besides, the variables of unburned gas are predicted with two-zone 

thermodynamic model and the geometry of flame is assumed spherical with growing 

radius. 

3.1.1 TURBULENT ENTRAIMENT AND EDDY-BURN MODEL 

The turbulent entrainment model described in [9] is employed. The turbulent flame 

entrains the unburned gas from a spherical surface with the rate related to the laminar 

flame speed and turbulent intensity. Unburned gas in or out of flame has turbulent 

structure, so it can be described with the three characteristic lengths. The unburned gas 

entrained into the flame will be burned with laminar flame speed in the unit of microscale 

length ( mλ ). Equations (8) to (10) are the expressions of the combustion model. 

1' 1
t

e
u e L

dm A S u e
dt

τρ
−  

= + −      
 (8) 
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b e b
u e L

b

dm m mA S
dt

ρ
τ
−

= +   (9) 

m
b

LS
λτ =   (10) 

Equation (8) is the expression of entrainment mass ( em ) rate which contains a laminar 

burning component ( LS ) and a turbulent propagation one ( 'u ). The unburned mass 

density ( uρ ) multiplies by the entrained flame front area ( eA ) represents the entrained 

volume of each step. The turbulent propagation component is multiplied by an 

exponential term to describe the development of early flame growth of the combustion 

cycle. The value of the exponential term increases from zero to full turbulent intensity. 

With a time constant ( 1τ ) defined as burning time of the first eddy after ignition. As 

shown in Figure 3.1, the turbulent intensity reaches around 2/3 of full scale at time equal 

to the time constant bτ =10. The shorter the time constant is, the quicker the turbulent 

propagation dynamics is. In the presented model, the time constant is chosen one fifth of 

the original value which results in much quicker exponential term. The value of this time 

constant affects the flame propagation speed significantly. However, the definition of this 

parameter is not firmly defined in previous research. So, it will be a tunable parameter for 

the presented model. The selection of this parameter’s value will be discussed in the 

model calibration section.  
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Figure 3.1: Growing of exponential term with time constant of 10ms 

Equation (9) describes the calculation of burned mass ( bm ) rate. The first component is 

the laminar mass burning occurred in front of the flame surface. The second component, 

which is the major part, represents the burning of unburned gas entrained by the flame. 

The denominator is the characteristic time ( bτ ), the eddy burning time expressed by 

equation (10). The definition of the eddy burning time is the time to burn up a single cell 

of Taylor microscale length ( mλ ) with laminar flame speed ( LS ). The ratio of the 

entrained unburned mass ( e bm m− ) to the eddy burning time is the component of mass 

burned rate inside the entrained gas fuel mixture.  

 

3.1.2 COMBUSTION VARIABLES 

From the description of combustion model, it is clear that the mass burning rate is 

estimated by modeling the turbulent movement and eddy burning process. To accomplish 

this model the correlations of the variables including laminar flame speed, turbulent 

intensity and turbulent microscale length need to be known. The values of these variables 

changes as the environmental condition changes. Their relations have been derived and 

summarized from experimental observation of combustion by many researches. In this 

section the correlations of these variables used in the presented model are introduced.  
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3.1.2.1 LAMINAR FLAME SPEED 

The speed of laminar flame is comparatively easier to detect from combustion 

experiments in laminar conditions. This is because the propagation of laminar is 

smoother comparing with turbulence and it basically traces the radial direction of 

combustion. There are many forms of expressions of laminar flame speed with 

environmental variables. For the presented model, the form presented by Rhodes and 

Keck [2] is used and introduced here. 

The value of laminar flame speed usually depends on environmental condition including 

temperature ( uT ), pressure ( p ), fuel type and diluted level ( lambda , egr  or res ). Rhodes 

and Keck [2] gave the expression of laminar flame speed as equation (11). 

( )0
0 0

u
L L n

T pS S f res
T p

α β
   

=    
   

 (11) 

In the expression, 0T and 0p are temperature and pressure of reference condition and their 

values are chosen as 298K and 101kPa respectively. The laminar flame speed in the 

reference condition ( 0LS ) relates to equivalence ratio (ratio of actual AFR to 

stoichiometric AFR) and fuel type. The values of 0LS , α  and β  are modeled from the 

fitted curves of experimental data versus equivalence ratio. Their expressions are shown 

in equations (12)-(14). The coefficients in equation (12) and the forms of equations (13) 

and (14) are specific for gasoline engine condition. 

( )2
0 30.5 54.9 1.21LS φ= − −  (12) 

3.512.4 0.271α φ= −  (13) 

2.770.357 0.14β φ= − +  (14) 
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The last term in equation (11) is a function of fuel diluted fraction. In study [2] a distinct 

correlation between laminar flame speed and diluents fraction is observed from 

experimental tests with different equivalence ratios and environmental conditions. The 

expression of nf  for gasoline combustion condition is shown in equation (15). The 

variable res   in (15) is percentage of exhaust diluents gas including both residual gas 

fraction and exhaust gas recirculation (EGR). 

0.7331 2.06nf res= −  (15) 

 

3.1.2.2 TURBULENT INTENSITY 

Turbulent intensity is considered as the main component of flame propagation speed and 

has significant influence in the gas entrainment and burning rate. Turbulent flow is more 

complicated than laminar one and it is more difficult to observe its relation to 

environmental variables. In the presented model, the turbulent flow is assumed having no 

specific direction (isotropic) in the engine combustion chamber.  

The turbulent intensity expression in equation (16) is used papers [1] and [7]. The 

subscript 0 represents the variables at time of ignition. The turbulent intensity after 

ignition is a function of unburned mass density. This expression is derived from the 

conservation of angular momentum of individual integral eddy derived by equation (17)

.where the large eddy length scale ( L ) is expressed as function of unburned mass density. 

1
3

0
0

' ' u

u

u u ρ
ρ

 
=  

 
 (16) 

1
3

0
0

u

u

L L ρ
ρ

 
=  

 
 (17) 
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The initial turbulent intensity 0'u  was assumed to be proportional to the mean piston 

speed in the model introduced in [8]. However, Keck [3] summarized the relation of 

initial turbulent intensity expressed as equation (18) with groups of experimental data. In 

equation (18) the initial turbulent intensity is a function of the mean piston speed ( pu ) 

and the ratio of unburned mass density to the mass density of inlet gas (mass density after 

intake valve closing). After implementing this equation into the presented model, it is 

found that the root square term in equation (18) may not be appropriate comparing with 

Ecoboost data. To provide the flexibility of the developed model, the parameter C  and 

the order of the density ratio are adjustable for the model calibration.  

1
2

0
0' u

p

in

u C u ρ
ρ

 
= ⋅ ⋅ 

 
 (18) 

 

3.1.2.3 TURBULENCE MICROSCALE LENGTH 

The turbulence microscale length also called Taylor microscale length ( mλ ) illustrates the 

size of dissipative cells in turbulent eddies. In the combustion model, the value of 

microscale length is necessary for the calculation of eddy burning time in equation (10). 

Tennekes [17] gives the definition of the ratio of Taylor microscale length to turbulent 

integral length ( L ) as a function of Reynolds number ( tRe ) in equation (19). 

0.5Rem
tC

L
λ −= ⋅  (19) 

'Re u
t

u Lρ
µ

=  (20) 

Equation (20) is the definition of Reynolds number for gas flow in the engine combustion 

chamber. The velocity of flow is represented by turbulent intensity 'u  and the 

characteristic dimension is represented by turbulence integral length ( L ). The dynamic 
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viscosity of flow ( µ ) is related to environmental temperature. Substituting the 

expressions of turbulent intensity after ignition in equations (16) and (17) and assuming 

that the integral length is proportional to the chamber height ( )h θ , the microscale length 

could be expressed as equation (21). The subscript 0 represents the parameter values at 

spark ignition. Constant 'C  is an adjustable parameter for model calibration.  

1
2

0.5

1 5
12 6

' 0 3
0

0

Re
'

1
'

m t
u

u
u

LC L C
u

hC
u

µλ
ρ

µ ρ
ρ

−  
= ⋅ ⋅ = ⋅ 

 

   ⋅
= ⋅   

   

  (21) 

 

 

3.1.3 FLAME GEOMETRY 

In the presented model, the flame front is assumed spherical surface based on the 

conclusions of several experimental observations without swirl ([3], chapter 9 of [12]). 

Many researchers (discussed in literature review) have built their combustion models 

with such assumption. The ignition locates in the center of cylinder head for Ford 

Ecoboost gasoline engine. For the purpose of simplified calculation the electrodes of 

spark plug are assumed just in the plane of the cylinder head in the model. The radius of 

the flame propagates with the same speed as gas entrainment speed: laminar burning 

speed and turbulent intensity with exponential development factor at early stage. The 

flame entrained area and volume will be calculated with semi-spherical surface and 

volume equations (22) and (23).  

22 rA spheresemi π=−  (22) 
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3

3
2 rV spheresemi π=−  (23) 

For the condition in engine combustion chambers, since combustion starts close to the top 

dead center (TDC), the flame front will reach the piston head firstly and then chamber 

wall while propagating. The process of flame geometry development is shown in Figure 

3.2. Figure 3.2 (a) is the early stage of flame formation and the flame is half of sphere. 

From the observation of early flame formation in [5] the shape of flame at that stage 

covers around the spark plug and is equivalent to sphere. Due to the small area or volume 

of the flame at this stage, is does not induce much changes of in-cylinder pressure and 

heat release. Soon after the ignition the flame will reach piston head as shown in Figure 

3.2 (b) and it will mainly propagate along with the radial direction until reaching the 

chamber wall shown in Figure 3.2 (c). During (b) and (c) stages, the flame shapes are 

partial semi-spheres and the calculations of their surface areas and volumes are shown in 

equations (24) and (25). For the condition of (c) the flame is not only “cut” from bottom 

but also side. At the end of propagation, the flame fully fills the combustion chamber as 

shown in Figure 3.2 (d). The flame front area becomes zero and the volume becomes the 

maximum. Usually, the energy released from combustion increases the most quickly 

during this period.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 3.2: Flame geometry propagation process in engine combustion chamber, (a) the 
early state, (b) flame front reaches piston head, (c) flame front reaches cylinder wall, (d) 

flame and burned gas fully fill the combustion chamber. 

rhA spherepartial π2=−  (24) 

32

3
1 hhrV spherepartial ππ −=−  (25) 

The intersection between flame and chamber wall is considered not only for the flame 

geometry aspect but also for the contact area between flame and chamber wall (including 

cylinder head and piston). The amount of energy from heat transfer to chamber wall or 
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piston is closely related to the contact area, the detail will be discussed in the next 

section. The method to calculate contact area is apparent after determining the geometry 

of combustion flame. It is needed to mention that when the flame fully fills the chamber 

in stage (d), the contact area will be the inner surface area of the combustion chamber.   

3.1.4 TWO-ZONE THERMODYNAMIC MODEL 

To implement the fundamental combustion model, some thermodynamic variables in the 

combustion chamber need to be determined. A two-zone thermodynamic model is used to 

determine the values of these variables, including mass density, in-cylinder pressure and 

temperature. This model is based on the First Law of thermodynamics in equation (26) 

and ideal gas law in equation (27). 

dU Q Wδ δ= −  (26) 

pV mRT=  or p RTρ=   (27) 

When the intake valve closes, the value of gas mass density is related to the pressure and 

temperature of intake manifold which are the inputs of combustion model. The first stage 

is the polytropic process between the intake valve closing and ignition occurrence. The 

whole stage takes place in the compression stroke and energy exchanges only by heat 

transferring from chamber wall. The in-cylinder pressure is estimated with apparent heat 

release formula in equation (28)  which is derived from the first law in equation (26). 

1
1 1

Q p dV V dpγδ
γ γ

= ⋅ + ⋅
− −   (28) 

The energy change Qδ  is composed of chemical heat release from combustion and heat 

transfer to chamber wall. In the stage before ignition there is no chemical heat release and 

only heat transfer effect of unburned zone is counted. The heat capacity ratio γ  is the 

adiabatic index. Heat transfer is already considered in the apparent heat change ( Qδ ), 
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otherwise the heat capacity ration ( γ ) value in equation (28) could be replaced by 

polytropic coefficient which is usually smaller.  

The estimation of heat transfer amount of each crank angle step is expressed in equation 

(29) according paper [5]. The direction of heat transfer calculated by equation (29) is 

from unburned gas to chamber wall. Since this model is crank angle-based, engine speed 

( N ) needs to be considered to convert from time-based equation. The heat transfer 

constant hth  could be determined from Woschni’s work [18] in equation (30). 

( ) /ht contact ht walldQ A h T T N= −  (29) 

0.2 0.8 0.8 0.53
ht hth C d p w T− −= ⋅ ⋅ ⋅ ⋅  (30) 

In equation (30), d  is the characteristic length and it is engine cylinder bore length here, 

p  and T  are in-cylinder pressure and temperature respectively, w  is the characteristic 

speed and the mean piston speed is used. The constant htC  is an adjustable parameter for 

model calibration. Woschni gave a value of 110 for parameter htC  as recommendation. 

However, due to the different usage of hth  (divided by engine speed in the present 

model), its value should be in various scales. The detail of tuning this parameter will be 

discussed in the model calibration section. 

The second stage starts from ignition and ends with the opening of exhaust value. The 

second stage ends when all chemical energy releases out. Without more chemical heat 

release, it returns to polytropic process in the cylinder like the first stage. The model of 

this stage is considered two-zone: burned and unburned zone as shown in Figure 3.3. The 

two-zone model follows the first law of thermodynamics and the fuel loss in crevice is 

not considered. 
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Figure 3.3: Schematic diagram of two-zone combustion thermodynamic model. 

 

The two zones have differences in all states except with the same pressure during all 

time. The value of unburned mass density is necessary for the estimation of flame 

propagation and mass burned rate in equations (8) and (9). Pressure and temperature in 

unburned area are also needed for the estimation of other variables in combustion. 

Temperature in burned area could be used to approximate determine the heat capacity 

information ( pc vc γ ). Equation (31) is the expression of energy distribution of two-zone 

model based on first law of thermodynamics in equation (26).  

 
( )

( ) ( ), , /

b LHV c
b vb b u vu u b vb b vu u

u ht u u wall b ht b b wall

m Qm c dT m c dT m c T c T
AFR

A h T T A h T T N pdV

δ ηδ ⋅
+ + − =

 − − + − − 
 (31) 

b  and u  in the subscripts represent variables in burned and unburned zones, respectively. 

The left side of equation (31) is the internal energy change of one discrete step for the 

whole chamber. The third term represents the internal energy change of the burned mass 

in current step. In the right side, the first term is the chemistry energy released from the 

fuel with a combustion efficiency term ( cη ). All the mass variables in the model are mass 

of gas mixture without fuel because it is hard to trace the mass density with direct 

injection (DI) fuel delivery method as Ecoboost has, and the injection time and 

vaporization percentage are not considered. That is the reason that only air fuel ratio 
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(AFR) is listed in the denominator of first term in the right. Second term is the heat 

transfer amount of both zones and the expression has been discussed previously. 

The mass densities of both zones are hard to estimate during the early combustion. The 

mass and volume of burned gas are small so the part between burned gas and flame front 

could not be neglected. To find approximate value of unburned mass density, equation 

(32) which is derived from features of adiabatic process is used. Temperature of 

unburned zone can be calculated accordingly with ideal gas law in equation (27). Then 

only one variable which is the temperature of burned zone is unknown in equation (31). 

2 2

1 1

p
p

γ
ρ
ρ

 
=  
 

 (32) 

The volume of burned zone is assumed the same as the spherical flame volume with the 

calculation method described in previous section. One limitation is that the area between 

the burned and unburned zones (entrained in flame and not burned) is not considered. As 

studied by Keck [3], there is small difference between the burned surface and the flame 

surface which depends on the turbulent microscale length. In the presented model, they 

are assumed the same for simplification since there is no rigid accuracy requirement in 

the estimation of the geometries of two zones.  

 

3.2 MODEL CALIBRATION 

The parameters of combustion model need to be adjusted to predict proper output values 

that fit to experimental results under specific engine combustion condition. Increase the 

number of adjustable parameters increases the degree of freedom and also the difficulty 

of the model tuning.  

 

3.2.1 MODELING & CALIBRATION ENVIRONMENT 
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The presented combustion model is written in SIMULINK graphical programming 

environment for ease of modification and calibration. The MATLAB/SIMULINK has 

strong computational power and user friendly interface for parameterization and 

programming. The inputs of engine operation and the parameters of engine model are 

defined in an initial MATLAB .m file. The experimental data acquired by ACAP system 

are logged and loaded as .mat data file into MATLAB workspace. These experimental 

data are used as a base for the calibration of model parameters. The combustion .mdl file 

in SIMULINK can be integrated with other sub-systems of vehicle or control strategies 

for engine or vehicle tests.  

3.2.2 ENGINE AND OPERATING PARAMETERS USED IN 

SIMULATION 

Table 3.1 lists the engine information and operating conditions used for simulation. The 

left column contains the engine specific information and the right column gives the 

values of operating variables. The “Res (%)” represents the percentage of residual gas 

fraction. The residual gas is the gases that remain in the cylinder after the exhaust stroke 

has been completed and the recirculated gas from intake pipe during the overlap between 

intake valve opening and exhaust valve closing. Unlike EGR value, the residual gas 

fraction cannot be measured from oxygen sensors mounted on intake and exhaust pipes. 

Fox [19] gives the estimation method for the residual gas fraction of a gasoline engine. 

However, some of parameters for the estimation are not available yet. The value of 15% 

is assumed in the simulation. The values of lower heating value (LHV) and AFR at 

stoichiometric condition are selected as those values provided in the appendix of 

Heywood’s book [12]. The temperature of chamber wall is chosen based on the average 

values of engine dyno test data. The temperature of inlet gas (T_inlet) influences the total 

mass amount taken into the combustion. Its value is presumed based on the in-cylinder 

pressure matching with experimental results.  
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Table 3.1: Engine information and operating conditions used for simulation 

Clearance Volume 
(L/ l) 

0.5827 Res (%) 15 
Bore (mm) 92.5 LHV (KJ/g) 44 

Stroke (mm) 86.7 AFR (stoi) 14.6 
Compression Ratio 10 T_inlet (K) 338 
Spark Plug Position central T_wall (K) 360 

 

 

3.2.3 CALIBRATION OF MODEL PARAMETERS  

The combustion model parameters that need to adjust are listed in Table 3.2. Initial 

values of these parameters are selected for the combustion simulation. The simulation 

results are compared with engine test data from Ford Ecoboost 3.5L V6 gasoline engine 

to find appropriate set of parameter values. The major outputs need to be matched are the 

in-cylinder pressure and mass fraction burned (MFB). The experimental MFB values are 

estimated from engine pressure data by two-zone model in equation (28). Additional 

combustion metrics such as CA50 (crank angle degree at 50% MFB), 0~10% and 

10~90% burn durations are also required to be properly predicted. 
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Table 3.2: Adjustable model parameters 

Parameters Expression/Description 

1const  
'

0 1'
uind

u
p

in

u const u ρ
ρ

 
= ⋅ ⋅ 

 
 

'uind  

2const  ( )
1 5

12 6
3

2 0
0

1
'm u

u

h SI
const

u
µ

λ ρ
ρ

⋅   
= ⋅   

  
 

nτ  /' 1 b

t
ne

u e L
dm A S u e
dt

ττρ
−  

= + −      
 

htC  
0.80.2 0.8 0.53

pht hth C B p u T− −= ⋅ ⋅ ⋅ ⋅  

cγ  eγ  
Heat capacity ratios of compression and 

expansion strokes 

cη  
Combustion efficiency 

 

 

CALIBRATION OF PARAMETERS: 1const  AND 2const  

The MFB values are sensitive to the turbulent intensity and microscale length. The 

related parameters could be calibrated based on how well the simulation results match to 

the engine test results. Parameters 1const  and 2const  are the most direct factors to 

influence the turbulent intensity and microscale length. The secondary important 

parameters, 'uind  is initially chosen to be 1/3 as recommended in [3] and nλ  is chosen to 

be 5 as discussed earlier.  

The predicted curves of entrained mass and burned mass versus crank angle during 

combustion for one test are shown in Figure 3.4. The entrainment process ends when the 
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flame fully fills the combustion chamber. At this moment some of mixture entrained in 

flame is still burning with laminar flame speed. So the burned mass reaches the final 

value later than the entrained mass. 

 

 

Figure 3.4: Entrained and burned mass history during combustion by simulation, 2000 
rpm, 5 bar BMEP, lambda = 1, MBT 

The parameter 1const  influences the phase of the entrained mass curve since the 

turbulent intensity is the major impact factor of the mass entrainment speed. Large 

turbulent intensity leads early completion of mass entrainment and indirectly advances 

mass burning curve. The parameter 2const  relates to the microscale length and the eddy 

burning time. Large microscale length results in long eddy burning time and the entrained 

mass will burn slowly. Usually, the mass burning has the maximum rate when the 

entrainment ends. This can be seen from the equation (9) since the largest difference 

between the entrained mass and burned mass occurs at the end of entrainment. So, the 

crank angle at end of entrainment could be or close to the maximum heat release rate 
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point. Figure 3.5 (a) compares the simulated heat release rate during combustion with the 

experimental heat release rate curve which is estimated from pressure data. Figure 3.5 (b) 

compares the simulated het release with experimental result. The heat release values are 

the mean values of 300 consecutive combustion cycles. 

 

  

(a) (b) 

Figure 3.5: Predicted and experimental heat release rate and hear release data, 2000 rpm, 
5 bar BMEP, lambda = 1, MBT. 

The simulated maximum heat release rate point is advanced comparing with that of 

experimental data. This may be caused by a sudden end of mass entrainment in the 

simulation. In addition, unable to simulate the trend of mass burning rate correctly after 

the entrainment ends could be another reason to cause this mismatch. The simulated heat 

release curve is close to the experimental result as shown in Figure 3.5 (b). 

 

CALIBRATION OF GAMMA, htC  AND cη  

To appropriately predict heat release, the acceptable in-cylinder pressure data are needed. 

If the heat release information is successfully simulated but there is an apparent 

difference between the simulated in-cylinder pressures and experimental data, it means 
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that some parameters related to total released energy are not well chosen. The parameters 

related to total released energy include combustion efficiency ( cη ), heat transfer ( htC  

wallT ), inlet gas temperature ( inT ) and heat capacity ratio ( cγ  eγ ). 

The combustion efficiency can be referred from figure 3-9 of Heywood’s book [12] as a 

function of equivalence ratio for gasoline engine. The heat capacity ratio (gamma) of 

adiabatic process generally depends on the temperature and composition of gas mixture. 

The gamma value in compression stroke can be adjusted by the pressure curve before 

spark ignition. In expansion stroke, the value is lower due to high temperature and more 

product of combustion in the mixture. The amount of heat transfer can be referred from 

some universal energy distributions for general gasoline engines, for example, on page 27 

of [20]. The temperature of inlet gas is a direct parameter to predict the overall amount of 

gas mass for each cycle. All these parameters need to be chosen to make in-cylinder 

pressure values close to experimental data while predicting reasonable intermediate 

variables. Figure 3.6 and Figure 3.7 show the energy distribution of one combustion cycle 

and predicted in-cylinder pressure predicted from simulation. 

 

Figure 3.6: Energy distribution of one combustion cycle, 2000 rpm, 5bar BMEP, lambda 
= 1, MBT. 
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Figure 3.7: Predicted in-cylinder pressures vs. crank angle during combustion comparing 
with experimental results, 2000 rpm, 5 bar BMEP, lambda = 1, MBT. 

 

CALIBRATION OF 'uind  AND nτ  

The additional tunable parameters are related to the rate of turbulence development 

process and the initial turbulent intensity at spark ignition. The parameters 'uind  and nτ  

(see in Table 3.2) have influences on these two aspects. Their values of these parameters 

are calibrated by fitting the simulation results with experimental ones in different 

operation conditions (speed, load, spark advance and lambda).  

The parameter 'uind  is the order of the ratio of unburned mass density to mass density of 

inlet gas as shown in equation (18). Its value affects the turbulent intensity at the 

beginning of combustion. Based on comparison of simulation results with experimental 

data, the index 'uind  is calibrated to be 1/6 to give proper prediction of heat release rate. 

The parameter τn  is the denominator of the time constant in equation (8). Its value 

relates to the turbulence development rate. Theoretically, the developing turbulent 
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intensity grows fully when the first eddy completes burning. As discussed previously, the 

value of τn  is chosen to be 5 to speed up turbulent propagation. 

 

3.3 MODEL VALIDATION AND EXPERIMENTAL TEST RESULTS 

3.3.1 ENGINE TEST MATRIX 

The simulation results, including predicted MFB and in-cylinder pressure values under 

different operation conditions are compared with experimental data to validate the model 

performance. The experimental data are collected from cylinder #1 of Ford Ecoboost 

3.5L V6 gasoline engine by in-cylinder pressure sensors and an ACAP combustion 

analyzer. The measured in-cylinder pressure data are relative change of pressure values, 

which to be “shifted” by referencing the absolute intake manifold pressure. The 

experimental heat release information is calculated from pressure data using equation 

(28).  

Table 3.3: Matrix of operation conditions of engine tests 

TEST 

No. 
RPM BMEP 

(bar) 

MAP 

(KPa) 

SA 

(dATDC) 
λ  

EGR 

(%) 
cη  

IVC 

(aBDC) 
cγ  eγ  

1240 1500 2.62 45.9 -31(MBT) 1.0 0 0.85 30 1.31 1.26 

1241 1500 2.62 42.0 -17 1.0 0 0.85 10 1.31 1.26 

1254 1500 2.62 46.7 -45 1.0 0 0.85 20 1.31 1.26 

1640 2000 5.0 66.4 -35 1.0 0 0.88 10 1.31 1.26 

1647 2000 5.0 82.8 -33 1.35 0 0.95 15 1.31 1.28 

 

Table 3.3 lists the engine test conditions for the validation of combustion model. The 

fourth column of table includes the values of intake manifold absolute pressure (MAP) 
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which is an indication of engine load. The electronic throttle angle is chosen to maintain 

the required brake mean effect pressure (BMEP) output. The spark advance (SA) is the 

crank angle of spark ignition. Maximum brake torque (MBT) point is chosen by adjust 

the CA50 around 7~9 deg after top dead center (ATDC). For each engine test condition, 

the mean value of in-cylinder pressure data of 300 consecutive combustion cycles is used 

to calculate experimental heat release and use these values to compare with simulation 

results. 

 

3.3.2 VALIDATION RESULTS AND DISCUSSIONS 

Spark timing is commonly used for combustion phase control. After calibration of model 

parameters, the simulation results of the combustion model are well matched with 

experimental data over a wide range of spark timing range. Figure 3.8 and Figure 3.9 

show the simulated results of MFB and in-cylinder pressure at three spark timing 

conditions. These figures demonstrate that the simulated MFB and in-cylinder pressure 

values fit well with experimental data. 
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Figure 3.8: Comparison of MFB between predicted results and experimental data under 
different spark advances, test 1240, 1241 and 1254, 1500 rpm, 2.62 bar. 

 

 

Figure 3.9: Comparison of in-cylinder pressure between predicted results and 
experimental data under different spark advances, test 1240, 1241 and 1254, 1500 rpm, 

2.62 bar. 
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To validate the performance of the combustion model at lean combustion situation, a set 

of lambda sweep tests are performed. Table 3.4 lists the parameters gamma and 

combustion efficiency values used in the simulation. In lambda sweep tests, the lambda 

value varies from 1 to 1.35 with 0.05 as increment. The engine runs at 2000 rpm and 5 

bar BMEP. The heat capacity ratio in expansion process ( eγ ) is chosen based on the in-

cylinder temperature reduction and the air composition in the mixture. The values of the 

combustion efficiency cη  are referred from figure 3-9 of Heywood [12] with the 

consideration of matching the experimental pressure results. Figure 3.10 and Figure 3.11 

show the comparison of simulated MFB and pressure with experimental results. The 

simulation results match the experimental data properly with the calibrated parameter 

values. 

Table 3.4: Lambda sweep test conditions in simulation   

TEST Lambda 
eγ  cη  

1640 1.0 1.26 0.85 

1641 1.05 1.26 0.90 

1642 1.1 1.26 0.90 

1643 1.15 1.27 0.92 

1644 1.2 1.27 0.95 

1645 1.25 1.27 0.95 

1646 1.3 1.28 0.95 

1647 1.35 1.28 0.95 
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Figure 3.10: Comparison of MFB vs. crank angle with experimental data of test 1640 
(lambda = 1.0) and 1647 (lambda = 1.35). 

 

Figure 3.11: Comparison of in-cylinder pressure vs. crank angle with experimental data 
of test 1640 (lambda = 1.0) and 1647 (lambda = 1.35). 
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Table 3.5 compares crank angle positions after TDC of 10% MFB (CA10), 50% MFB 

(CA50) and 90% MFB (CA90) between simulation and experimental data. The model 

resolution is 1 crank angle degree to match the sample rate of the data acquisition system 

in this case. The precise values of CA 10, CA50 and CA90 are found using interpolation 

of the MFB data points. Burn duration 0~10% is the period from spark ignition to 10% 

MFB and it represents the length of early combustion stage. Burn duration 10~90% is the 

period from 10% to 90% MFB and it represents the length of main combustion stage. 

Figure 3.12 to Figure 3.14 show the comparisons of CA50, 0~10% and 10~90% burn 

duration respectively. 

 

 

Table 3.5: Comparisons of CA10, CA50 and CA90 between experimental data and 
simulation results 

TEST Lambda SI 

(ATDC) 

CA10 CA50 CA90 
Exp Sim Exp Sim Exp Sim 

1640 1.00 -35 -4.9 -4.3 7.8 6.8 22.7 21.6 

1641 1.05 -32 -2.6 -2.5 10.6 9.2 26.2 26.2 

1642 1.10 -32 -2.7 -2.5 10.6 9.8 26.0 28.5 

1643 1.15 -32 -2.6 -3.0 10.8 9.5 27.5 29.9 

1644 1.20 -33 -2.9 -3.7 11.0 9.4 27.3 32.0 

1645 1.25 -32 -1.2 -2.7 13.5 11.3 32.6 37.0 

1646 1.30 -29 1.2 -0.8 17.3 14.1 38.0 44.3 

1647 1.35 -27 3.4 1.7 20.6 17.8 44.9 52.0 
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Figure 3.12: Comparison of CA50 values between simulation results and experimental 
data, tests 1640 to 1647 (lambda sweep). 

 

Figure 3.13: Comparison of 0~10% burn duration values between simulation results and 
experimental data, tests 1640 to 1647 (lambda sweep). 
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Figure 3.14: Comparison of 10~90% burn duration values between simulation results and 
experimental data, tests 1640 to 1647 (lambda sweep). 

 

From the comparisons in the table and figures, some conclusions could be made. Overall, 

the simulation results of burn durations represent proper trend comparing with 

experimental observations. The prediction of combustion model has better agreement 

with experimental data when lambda is around 1 since parameters are tuned with 

stoichiometric condition. The deviation increases while combustion becomes leaner. The 

estimation errors for 0~10% burn durations are less than that of 10~90% burn duration.  
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4 STUDY CYCLIC VARIATION USING DEVELOPED 
COMBUSTION MODEL 

As discussed in literature review, cycle-to-cycle variation exists in the combustion of IC 

engines. The variation may be caused by several reasons. Except the variation of engine 

operation conditions, some other variation sources in the combustion may exist. In this 

chapter, the original variation sources are introduced in to complete the combustion 

model and their influence is validated through the comparison of cyclic variation between 

simulation results and that exists in experimental results. 

4.1 CYCLICVARIATION IN ENGINE COMBUSTION 

To analyze combustion variability, the test conditions, including intake manifold 

pressure, temperature, spark, valve timing and fuel delivering amount are fixed in the 

engine tests. The data starts to be recorded when the intake manifold and engine coolant 

temperatures are stable. The electronic throttle position is fixed to maintain intake 

pressure. The fuel injectors are controlled to deliver fuel with the amount based on the 

intake air mass. Although all the test inputs are controlled with small amount of 

variations, the variation of the observed in-cylinder pressure curves is substantial.  

Figure 4.1 gives the time-based intake manifold pressures of 600 successive combustion 

cycles captured by ACAP system. The pressure values have relative high fluctuation with 

a mean value around 62.5 KPa. Figure 4.2 and Figure 4.3 show the cyclic variation of 

intake pressure and MFB for the cylinder #1 in test 1640 (2000 rpm, 5 bar BMEP, 

lambda = 1, MBT). Figure 4.4 and Figure 4.5 show the cyclic variation of intake pressure 

and MFB in test 1647 (2000 rpm, 5 bar BMEP, lambda = 1.35). Comparing with these 

figures, we can see that the cyclic variation is enlarged when engine runs leaner (lambda 

= 1.35). 
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Figure 4.1: Intake manifold pressure measured by ACAP system, test 1640, 600 cycles, 
2000 rpm, 5 bar BMEP, lambda = 1, MBT. 

 

Figure 4.2: Cyclic variation in measured pressure vs. crank angle curves of 600 cycles, 
test 1640, 2000 rpm, 5 bar BMEP, lambda = 1, MBT. 
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Figure 4.3: Cyclic variation in MFB vs. crank angle curves, test 1640, 600 cycles, 2000 
rpm, 5 bar BMEP, lambda = 1, MBT. 

 

Figure 4.4: Cyclic variation in measured pressure vs. crank angle curves of 600 cycles, 
test 1647, 2000 rpm, 5 bar BMEP, lambda = 1.35. 
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Figure 4.5: Cyclic variation in MFB calculated by measured data vs. crank angle curves 
of 600 cycles, test 1647, 2000 rpm, 5 bar BMEP, lambda = 1.35. 

 

The cyclic variations are reflected in in-cylinder pressure and can be indicated by COV of 

IMEP which is calculated by equation (33) [12]. Indicated mean effect pressure values 

illustrate the effective work from the combustion of each cycle. It is the work produced in 

each cycle divided by the clearance volume as shown in equation (34). The COV of 

IMEP values of engine tests at different lean combustion levels are shown in Figure 4.6. 

( )( ) 100%
( )

std IMEPCOV IMEP
avg IMEP

= ×    (33) 

d

pdV
IMEP

V
= ∫  (34) 
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Figure 4.6: COV of IMEP vs. lambda from test results, test 1640 to 1647, average of 600 
cycles, 2000 rpm, 5 bar BMEP, 0% EGR. 

 

Figure 4.6 illustrates a very common phenomenon that the COV of IMEP keeps low near 

lambda = 1 but increase rapidly when passing a certain lean point. From the combustion 

burning process, the MFB curves in Figure 4.3 and Figure 4.5 show that the variation of 

mass fraction burned appears from the start of combustion. The variation keeps 

increasing during the progress of combustion. The analysis results in Ayala [1] reveal that 

the periods from ignition to burning 10% of the mass (10% burn duration) obey a normal 

distribution as shown in Figure 4.7 (a) and (b). The normal distribution demonstrates the 

initial combustion variation nature. As the combustion continues, the variation of burning 

duration becomes larger in amount and also gradually losses the symmetry. It is more 

obvious in the case of high lean condition. For the advanced combustion cycles, their 

deviations from average cycle are not large. However, for the retarded ones, their 

deviations in early stage could lead worse and worse situation for fuel burning in the rest 

of combustion period. In severe cases like the MFB curves in Figure 4.5, the partial mass 

burning of some of the cycles may occur which will lead inefficient use of fuel. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 4.7: (a) 0~10 % burn duration (b) 0~10% burn duration distribution, (c)10~90% 
burn duration (d) 10~90% burn duration distribution, test 1640, 600 cycles, 2000 rpm, 5 

bar BMEP, lambda = 1. 

 

In stoichiometric condition, the variation of MFB curves is relative small, and the 

deviation increases slowly as combustion continues. For the lean operation as shown in 

Figure 4.8, the variation s for both 0~10% and 10~90% burn duration are increased. The 

distribution of 10~90% burn duration shows obvious asymmetry. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 4.8: (a) 0~10 % burn duration (b) 0~10% burn duration distribution, (c) 10~90% 
burn duration (d) 10~90% burn duration distribution, test 1647, 600 cycles, 2000 rpm, 5 

bar BMEP, lambda = 1.35. 

 

4.2 CYCLIC VARIATION IN COMBUSTION SIMULATION 

With cyclic variation observed in engine test results, some fluctuation sources could be 

introduced into the combustion model in order to generate simulation results with similar 
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variations pattern. The simulation results are compared with lambda sweep engine test 

data 1640 to 1647.  

In the experiment test engine inputs are maintained to be constant, most of them have 

little fluctuation or are insensitive to the in-cylinder pressure values. The fluctuations are 

introduced by adding a normal noise source with individual input sources in the 

SIMULINK model. The major fluctuation input is the intake pressure values. For test 

1640 stoichiometric condition the variation of intake manifold pressure is measured and 

shown in Figure 4.1. The presumed fluctuation sources and their variance are listed in 

Table 4.1. The simulated pressure curves introduced with only these fluctuation sources 

is shown in Figure 4.9. Figure 4.9 (a) is the peak in-cylinder pressure (PP) of each cycle 

versus its location (PPL). The PP vs. PPL scatter plot describes the variation of in-

cylinder pressure values.  

The variation in pressure curves of successive cycles is simulated with the introduced 

fluctuations. However comparing with the variation of experimental results the variation 

is not large enough, even under the stoichiometric condition where cyclic variation is 

small. From PP vs. PPL scatter, it is found that with the introduced variation the model 

succeeds to simulate enough deviation in the peak pressure values. However, it fails to 

simulate the variation in combustion phase aspect. In lean combustion condition, the 

variations of these introduced inputs are not changed much but from the experimental 

results there is much more variation in both peak pressure values and phases. 

Table 4.1: Amount of introduced variation sources of engine inputs and parameters  

Variation Item (reference value) Variance 

Intake manifold pressure (60) 0.5 

Actual AFR (1.0) 1e-5 

Gamma (1.3) 1e-5 

Residual gas fraction (0.15) 1e-2 

Combustion efficiency (0.85) 1e-5 
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(a) (b) 

Figure 4.9: (a) Simulated pressure vs. crank angle curves (b) PP vs. PPL scatter, 
introduced with input fluctuations only, test 1640, 300 cycles, 2000 rpm, 5 bar BMEP, 

lambda = 1. 

 

To better match experimental data, additional fluctuation sources need to be considered. 

Aghdam et al. [16] introduce fluctuation in turbulence into the fundamental combustion 

model. The peak pressure vs. peak pressure location scatter matches that of experimental 

result but the peak pressure points have too regular linear positions. In reality turbulent 

flow has the variation nature. The turbulent flow structure is influenced by parameters 

such as piston speed, mass density, pressure and temperature, so the turbulent level is 

indirectly affected by lean combustion level. To further simulate the combustion 

variation, the initial variations in the fuel burning speed and the early flame development 

need to be considered.  

From the expressions of fundamental combustion model described previously, the 

laminar burning speed ( LS ) and the eddy burning time ( bτ ), these parameters are related 

to the fuel burning rate. The exponential factor with time constant ( b nττ ) related to eddy 

burning time is used to express the growth of the early flame. In SIMULINK model the 

introduction of variation is by adding normal noise sources to the calculations of eddy 
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burning time bτ and the parameter 1 / nτ  in the time constant. An assumed correlation 

value is set for these two random factors. 

Based on the research [15] there is correlation between the duration of early flame 

formation and burning rate. The combustion cycle with longer early flame development 

period should have more probability with longer eddy burning time. The generation of 

two correlated random values can be achieved through equation (35). 1rand  and 2rand

are two independent random vectors. 

1 1

2
2 1 21corr corr

x rand

x P rand P rand

=

= ⋅ + − ⋅
  (35) 

Table 4.2: Additional variation sources and their amount introduced into the combustion 
model 

Variation Items Variance 

Turbulent flow ( 'u ) 1e-3 

Eddy burning time ( bτ ) 5e-3 
Flame development factor ( τn ) 1e-3 
Correlation 0.6 

 

Table 4.2 lists the additional variation sources that are introduced in the simulation of test 

1640 (lambda = 1). Figure 4.10 the PP vs. PPL scatter shows well matching of the 

simulation results. With the consideration of variation source of eddy burning time, the 

simulated variation of peak pressure point exists in the combustion phase aspect. To 

further validate the effort of this method, the simulations under lean combustion 

conditions are tested. The variances of the introduced values vary. They are adjusted to 

make matching pp vs. ppl scatters comparing with experimental results. The calibrated 

parameters are listed in Table 4.3. 
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Figure 4.10: PP vs. PPL scatters of simulation and experimental results, introduced with 
all fluctuation sources listed in Table 4.1 and Table 4.2 in simulation, test 1640, 600 

cycles, lambda = 1. 

Table 4.3: Variances of introduced variation sources under different lean conditions 

Test 1640 1642 1645 1647 

Lambda 1.0 1.1 1.25 1.35 

Eddy burning time ( bτ ) 3e-3 5e-3 8e-3 1.5e-2 

Flame development ( nτ ) 4e-3 4e-3 5e-3 5e-3 

 

The simulation results of PP vs. PPL scatters in different lean combustion level are 

shown in Figure 4.11 to Figure 4.13. Overall, the simulated variations in pressure match 

well with those of experimental data except DC shift. The variances are calibrated by 

comparing the variation in MFB curves with that of experimental results. From the 

calibrated variance values, it is observed that the variance of eddy burning time ( bτ ) 

needs to be increased significantly as the lean level increases to make the simulation 

result match. It can be concluded that the burning time in lean combustion condition is 
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not only large in average value but also has large variation which may be the major 

impact factor of combustion stability.   

 

Figure 4.11: PP vs. PPL scatters of simulation and experimental results, introduced with 
all fluctuation sources in simulation, test 1642, 600 cycles, lambda = 1.1. 
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Figure 4.12: PP vs. PPL scatters of simulation and experimental results, introduced with 
all fluctuation sources in simulation, test 1645, 600 cycles, lambda = 1.25. 

 

Figure 4.13: PP vs. PPL scatters of simulation and experimental results, introduced with 
all fluctuation sources in simulation, test 1647, 600 cycles, lambda = 1.35. 
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The 0~10% and 10~90% burn durations of simulation results and experimental data are 

also compared. For stoichiometric case the simulated and experimental MFB curves of 

600 cycles are shown in Figure 4.14. For the lean condition, the MFB curves of 600 

cycles under the highest lean condition that in comparison are shown in Figure 4.15. The 

cyclic variation in simulated MFB results is calibrated to imitate that of experimental 

MFB curves by adjusting the variances added on flame development rate ( nτ ) and eddy 

burning time ( bτ ) shown in Table 4.3. The early MFB distribution range is affected by 

both variations of nτ  and bτ . The main MFB distribution range is affected by the 

variation of bτ . From the MFB history curves the simulated variation in MFB is similar 

to experimental ones. The detail distribution can be reflected by the comparison of burn 

duration distribution. The comparisons of burn duration distribution of stoichiometric and 

severe lean cases are shown in Figure 4.16 and Figure 4.17 separately. 

 

 

 
(a) 

 
(b) 

Figure 4.14: (a) MFB curves of simulation results (b) MFB curves of experimental data, 
600 cycles, 2000 rpm, 5 bar, lambda = 1.0. 
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(a) 

 
(b) 

Figure 4.15: (a) MFB curves of simulation results (b) MFB curves of experimental data, 
600 cycles, 2000 rpm, 5 bar, lambda = 1.35. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4.16: (a) Distribution of 0~10% burn duration of simulation results (b) distribution 
of 0~10% burn duration of experimental data (c) distribution of 10~90 burn duration of 
simulation results (d) distribution of 10~90% burn duration of experimental data, 600 

cycles, 2000 rpm, 5 bar, lambda = 1.0. 
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(a) 

 
(b) 

 
(c)  

(d) 
Figure 4.17: (a) Distribution of 0~10% burn duration of simulation results (b) distribution 
of 0~10% burn duration of experimental data (c) distribution of 10~90 burn duration of 
simulation results (d) distribution of 10~90% burn duration of experimental data, 600 

cycles, 2000 rpm, 5 bar, lambda = 1.35. 

 

In stoichiometric case, the distribution of simulated MFB has high similarity with 

experimental data in early stage (0~10% burn duration in Figure 4.16 (a) and (b)). 

However, the 10~90% burn duration distribution from simulation has larger average 

value and range than that of experimental data shown in Figure 4.16 (c) and (d). That 

may be caused by the simulation error in the end part of MFB curves during combustion. 

In lean condition, the 0~10% burn duration is not as concentrated as the experimental 

distribution shown in Figure 4.17 (a) and (b). The range of 10~90% burn duration 
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distribution is approximately similar to the experimental one shown in Figure 4.17 (c) 

and (d). However, the asymmetry of the long burn duration direction in the experimental 

10~90% distribution is not successfully simulated. 

Another important indicator of combustion stability is the COV of IMEP. Table 4.4 lists 

all the COV of IMEP calculated from the simulated pressures and experimental pressure 

data with the fluctuation parameters with values discussed above. The COV of IMEP 

values of the simulation with the introduced variation sources are all higher than that of 

experimental data. If select the fluctuation parameter values to have similar COV of 

IMEP, the range of the pp vs. ppl scatter is not wide enough. This is perhaps because of 

the limit of the combustion model to simulate precise pressure curves. Figure 4.14 (a) 

shows the MFB curves of simulation results whose peak pressure scatter matches with 

experimental data. Figure 4.14 (b) shows the MFB curves calculated from the 

experimental pressures. It can be seen that the difference between distributions of 

simulated MFB curves and experimental ones are not as large as the different between 

their COV of IMEP. This issue needs to be further studied in the future by improving the 

accuracy of the combustion model. 

 

Table 4.4: COV of IMEP of simulation and experimental results 

TEST Lambda COV IMEP (sim) COV IMEP (exp) 

1640 1.0 3.6092% 1.3429% 

1642 1.1 5.9191% 1.6200% 

1645 1.25 9.2299% 3.8090% 

1647 1.35 16.3712% 7.9659% 

 

 

 

 



56 
 

4.3 COMBUSTION STABILITY ANALYSIS 

For the lean combustion conditions, the burning duration is enlarged because of the slow 

laminar burning speed. The heat release has more space to vary because of the longer 

combustion duration. Another major cause of combustion stability should be the variation 

during the early flame formation, in which the laminar speed is the major part of flame 

propagation. The simulation results show the probability of large amount of variation in 

the early combustion under lean conditions. Comparing the MFB curves in Figure 4.3 

and Figure 4.5, it is found that is much larger in lean condition (lambda = 1.35).  

Figure 4.3 and Figure 4.5 show the variations in MFB curves of stoichiometric and lean 

(lambda = 1.35) conditions. The stoichiometric MFB curves have better stability. Most of 

stoichiometric combustion have short burn duration and the phase located around MBT 

point with CA50 around 7~9 deg ATDC. On the other hand, the MFB curves in lean 

conditions are worse in stability. A lot of them have late phase and slow burning rate.  

To study the effect of cyclic variation causes, the calibrated variance value of the flame 

development variation source in the lean condition (lambda = 1.35) is included for the 

simulation in the stoichiometric condition. Figure 4.18 (a) shows the MFB results of the 

simulation and the experimental MFB curves are shown in Figure 4.18 (b). Similarly, the 

variance value of eddy burning time calibrated in stoichiometric condition is introduced 

in the simulation of lean combustion condition (lambda = 1.35). Figure 4.19 (a) shows 

the simulation results and the experimental MFB curves of lean condition (lambda = 

1.35) are shown in Figure 4.19 (b). From the results of the first simulation, it is found that 

even though with large variation in the early stage of combustion, stoichiometric 

condition provides relatively fast burning environment which restricts the growth of 

deviation. In the second simulation, even though under the severe lean combustion 

condition, the MFB curves concentrate while combustion proceeding and the very late 

and partial burn cycles are avoided. 



57 
 

  

(a) (b) 

Figure 4.18: (a) MFB curves of simulation introduced with large variance in early flame 
burning (b) experimental data, test 1640, 600 cycles, lambda = 1. 

  

(a) (b) 

Figure 4.19: (a) MFB curves of simulation introduced with small variance in eddy 
burning time (b) experimental result, test 1647, 600 cycles, lambda = 1.35. 
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The combustion efficiency is also studied for stable combustion. Spark-ignition engines 

achieve the maximum efficiency when spark ignition is set at the MBT point. The MBT 

cycle has the pressure versus chamber volume curve most similar to that of ideal 

combustion model. The ideal combustion cycle of SI engine uses that all of the energy 

from fuel releases at the TDC point to raise in-cylinder pressure. The cycles that vary 

from the MBT cycle have lower efficiency [12].  

An indicator of combustion efficiency or fuel economy is the specific fuel consumption 

(sfc) expressed in equation (36). In the presented combustion model, sfc of each cycle is 

calculated with the fuel mass estimated by intake pressure, temperature and the actual 

AFR etc.  

fm
sfc

Power
=



   (36) 

By choosing the optimal spark ignition timing the combustion could be controlled in 

MBT phase. Most of the cycles could operate around MBT phase if the combustion is 

stable. For combustion with large variation, the phases of more cycles are deviated from 

the required MBT phase. Consequently the efficiency loss increases when the variation 

becomes large. Figure 4.20 to Figure 4.23 show the sfc distributions from simulation 

results under different lean combustion conditions. The sfc values of most cycles locate 

on the left side of the distribution in stable combustion condition. Only small amount of 

cycles have large differences. However, in the lean combustion condition, the number of 

cycles with large sfc values increases and also their deviations from the lowest sfc cycle 

is increased. Comparing these figures the width of the distribution range increases as the 

increasing of lean combustion level. 
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Figure 4.20: Distribution of sfc calculated from simulation result, test 1640, lambda = 1. 

 

Figure 4.21: Distribution of sfc calculated from simulation result, test 1642, lambda = 1.1. 
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Figure 4.22: Distribution of sfc calculated from simulation result, test 1645, lambda = 
1.25. 

 

Figure 4.23: Distribution of sfc calculated from simulation result, test 1647, lambda = 
1.35. 
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5 CONCLUSIONS AND FUTURE WORKS 

A zero-dimensional fundamental combustion model proposed by several authors is 

studied and implemented in Simulink to simulate in-cylinder pressure for a Ford 

Ecoboost 3.5L central ignited SI engine. The combustion process is described as 

turbulent flame propagation and large eddy burning with laminar flame speed. With 

assumption of spherical flame geometry and using two-zone thermodynamic model, the 

presented combustion model is able to predict mass density temperature and pressure 

variables. The simulation results of in-cylinder pressure and MFB are approximately 

matched with engine experimental data under various operation conditions. 

The cyclic variation of consecutive combustion cycles exists in in-cylinder pressure 

traces. This variation increases when an engine operates in leaner combustion conditions. 

This phenomenon could be simulated by introducing variation sources of engine 

parameters, eddy burning time and the early flame development rate. The variance values 

are chosen to make peak pressure scatter match that of experimental result. The calibrated 

variation values of different lean level simulations reveals that the variations of eddy 

burning time and early flame development rate increase in lean combustion conditions. 

Cyclic variation caused by the early deviation and growth during the long combustion 

period leads efficiency losses due to the wide range of sfc distribution. 

For the future work, physical explanations of fuel economy increase before the lean limit 

can be explored with the combustion model. Further analysis needs more capable 

combustion model. The combustion model includes laminar flame speed in the flame 

propagation. Actually simulation result shows dominant turbulent propagation speed 

from very start of combustion. The effect of laminar flame speed in the early flame 

formation needs to be studied and evolved into the combustion model. In addition, the 

presented model needs to be validated with experimental data of more operation 

conditions. More detail of engine conditions such as residual gas fraction and ignition 

process could be considered in the simulation. The presented combustion model also 

needs to be modified to simulate more precise mass burn rate and in-cylinder pressure in 

lean combustion conditions. The eddy burning rate during the last half of combustion 
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needs to be refined to predict more precise mass burning rate values. The amounts of 

variation sources introduced in the multi-cycle simulation under different lean levels need 

to be quantified. Comparisons of other combustion matrices and under more operation 

conditions are needed. And also further study of the variation source and amounts 

introduced in the model is needed to simulate the asymmetry of 10~90% burn duration 

distribution under lean conditions.  
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APPENDIX A 

MATLAB SCRIPTURE OF COMBUSTION MODEL SETUP 

 

%% SETUP FOR COMBUSTION MODEL SIMULATION IN SIMULINK 
%  
% Hao Wu 
% 
  
clear all; close all; clc; 
  
load V_CA.mat;   % load volume [L], crank angle [deg] 
%% Load Engine Data 
%%SI sweep, 1500 rpm, 2.62 bar, TEST1019~1031 20%EGR, 1240~1255 0%EGR 
% load('../../SI_sweep_result/TEST1240.mat'); 
%%Lambda sweep, 2000 rpm, 5 bar, TEST 1640~1648 
load('../../lambda_sweep_result/TEST1647.mat'); 
%%EGR sweep, 1000 rpm, 1.5 bar, TEST 995~1003 
% load('../../EGR_sweep_result/TEST997.mat'); 
%%Other data 
% load('../../../EGR_sweep/other_result/2000_2_0.mat','Prf','SI','CA100'); 
IND = 1:600; 
  
%% INPUTS 
NN = length(IND);                 % cycle number 
N = 2000;               % engine speed [rpm] 
P_in = 66.3832;             % intake manifold pressure 
% BMEP = 5;               % BMEP [bar] 
EGR = 0;                % EGR [%] 
lambda = 1.0;             
dt = 60/N/360;          % sample rate 
CA = -179:540;          % crank angle (dATDC) 
SI = -35;               % spark ignition 
 
%% LOOKUP TABLE 
lambda_map = 1.0:0.05:1.35; 
n_c = [0.85 0.85 0.87 0.91 0.93 0.95 0.95 0.95]; 
load air_voscosity_converge.mat;  % Mu_0 vs. T_0 
  
%% GENERAL PARAMETERS 
Ti = 358;               % intake manifold temperature [K] 
R = 0.287;              % pV = mRT [KJ/(kg.K)] 
  
%% ENGINE PARAMETERS 
AFR_stoi = 14.6;        % 14.6 
rc = 1.31;              % heat capacity ratio, compression stroke 
re = 1.26;              % heat capacity ratio, expansion stroke  
nc = rc;                % compression polytropic coeff; 
ne = re;                % expansion polytropic coeff;  
cv_u = 0.72;  % [KJ/(kg.K)] 
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cv_b = 0.8;   % [KJ/(kg.K)] 
IVC = 10 - 180;               % intake value close, dABDC 
EVO = 0 +180;        % exhaust value open, dABDC 
IVO = 320 +180;        % intake value open, dABDC 
LHV = 44*1000;          % lower heating value [J/g] 
T_wall = 360;           % wall (coolant) temperature 
  
%% GEOMETRY PARAMETERS 
L = 0.0867;             % length of stroke [m] 
B = 0.0925;             % length of bore   [m] 
l = 0.15268;            % connecting rod length [m] 
CR = 10;                % compression ratio 
Vd = 3.496;             % displacement [L] 
H = V/(pi*(B*1000/2)^2)*1e6;  % distance between pistion head to cylinder head [mm] 
  
%% VARIATIONS 
var_Ti = 0;     
var_Pi = 0.5;   
var_lambda = 1e-5;    
var_N = 0;      
var_n_c = 1e-5;    
var_res = 1e-2;    
var_gamma = 1e-5;   
var_const1 = 1e-3;    
var_const = 0;       
var_lambda1 = 2e-2;     
var_SL = 5e-3; 
var_SI = 0; 
  
%% SEEDS 
seed_lambda1 = round(rand(1)*1e3); 
seed_SL = round(rand(1)*1e3); 
p_corr = 0.6; 
  
%% MODEL PARAMETERS 
%%assumption 
res = 15;               % residual [%] 
%%Heat transfer 
c_ht = 0.008;           % constant of heat transfer coefficient 
%%model parameters 
const1 = 1.8;      
u0_ind = 1/6; 
const2 = 1;             % u constant 
const = 16.5;             % constant of Taylor microscale lambda_m 
lambda1 = 5;            % tao_b/lambda1 
%%For laminar speed SL 
n = 2; 
fn_a = 4.70617; 
fn_b = -4.06185; 
  
%% RUN SIMULATION 
sim('combustion_model_simulation.mdl'); 
%% PLOT 
simulation_results; 
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APPENDIX B 

GRAPIC PROGRAM OF COMBUSTION MODEL IN SIMULINK ENVIRONMENT 

 

 
 

Appendix 1: First layer of fundamental combustion model in SIMULINK graphic design 
environment. 
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	ABSTRACT
	1 INTRODUCTION AND MOTIVATION
	For more than one century internal combustion (IC) engine has been a major power source for automobile. However, the limited fossil fuel resource available in the world and the restricted emission standards make IC engine development more challenging ...
	The information of mass fraction burned (MFB) is important in the analysis of engine combustion. Such information could be obtained with the in-cylinder pressure data which could be real-time captured through in-cylinder pressure transducers and rapid...
	To study lean combustion and its stability, a fundamental combustion model including physical processes of combustion and heat release should be very helpful. With the availability of different kinds of optical combustion engines or vessels and rapid ...
	For the modeling of mass fraction burned curves, empirical functions like Wiebe function are widely used with several parameters to be adjusted. Such methods could be convenient to use to predict heat release curve for individual cycle. However, funda...
	Besides the mean value trends changes along with the changing of operation condition, the cycle-to-cycle variation in measured in-cylinder pressure histories also changes especially under different lean or diluted levels. The variations also exist in ...
	A fundamental combustion model should have ability to predict MFB, in-cylinder pressure values and other intermediate variables. Some of them may not be easily observed from experiments under a wide range of operation condition. The qualified model co...
	In this report, a historical developed fundamental combustion model is studied and implemented. The performance of the developed combustion model is compared with several engine test data set under different operation conditions. The presented model i...

	2 LITERATURE REVIEW
	2.1 LEAN COMBUSTION ANALYSIS
	Ayala et al. [11] analyze the features of lean combustion for SI engine under wide range of operation conditions. A general phenomenon is that both engine efficiency and the COV of IMEP increase as lambda value (lean level) increases. The COV of IMEP ...
	Ayala et al. [1] continues to study the feature of lean combustion with engine test data and the fundamental combustion model they implemented. For the case of three individual tests if two of them have same bias in opposite directions at the beginnin...

	2.2 FUNDAMENTAL COMBUSTION MODEL
	The combustion model implemented in this report includes turbulent flame propagation and eddy burning process. Heywood introduces the turbulence flow with three characteristic scale lengths in IC engine combustion chamber in his book [12]. The integra...
	Blizard and Keck [6] developed the original turbulent entrainment model. The flame propagation speed  is assumed slowly varying and the mass burned rate is derived with assumption of exponential eddy burning time, as shown in equations  and . The flam...
	Tabaczynski, et al. [7] modify their previous combustion model. The mass entrainment speed () is proportionally related to the turbulent intensity which is derived as a function of unburned mass density () during the combustion. Then the eddy entrainm...
	In [8], they refine their model by adding laminar flame speed term in the flame entrainment speed () in equation . They also modify the eddy burning time as the microscale length divided by laminar flame speed shown as equation . That is because the e...
	Beretta, Rashidi and Keck [13] add a laminar burning term in the mass burning rate calculation shown in equation  since they have observed the dependence of the burning rate on the laminar flame speed in the early combustion stage. Then, one of the au...
	Ayala [1, 9] uses the above modified model in his research. In his dissertation he also express the exponential term of early flame growth with flame radius scale instead of time scale, and he get better results. In addition he uses turbulent intensit...

	2.3 TWO-ZONE HEAT RELEASE MODEL
	The turbulent propagation model considers physical variables of burned and unburned gas. Variables such as in-cylinder pressure, mass density and temperature are necessary to solve the equations and to calculate other combustion variables such as turb...
	Guezennec, et al. [10] use the two-zone (burned and unburned zones) model to predict variables during combustion with in-cylinder pressure data. The model covers the process from the intake valves closing to exhaust valves opening. Both of the burned ...

	2.4 CYCLIC VARIATION IN ENGINE COMBUSTION
	Cycle-to-cycle variation exits in the combustion process as presented in real engine tests. This variation is more severe under lean or diluted conditions.
	Rashidi [15] studies the cycle-to-cycle variation with photographs taken from a transparent piston engine. A period from the spark occurrence to a formed stabilized flame kernel is observed and defined as ignition delay. From the observation, the vari...
	Keck et al. [5] study the early flame development process with an optical combustion chamber piston engine. From the observation of several combustion tests, it is found that the real flame kernels have random locations around the spark plug and their...
	Aghdam et al. [16] summarize several cyclic variation sources and include the fluctuation of turbulent flow into their combustion model. The cyclic variations of engine combustion could be easily observed from in-cylinder pressure, combustion phasing ...


	3 MEAN-VALUE FUNDAMENTAL COMBUSTION MODEL FOR SPARK-IGNITION ENGINE
	In this chapter, a fundamental combustion model is implemented combining with two-zone thermodynamic model. The predicted results of the model are compared with engine test data recorded by ACAP data acquisition system developed by the DSP Technology ...
	3.1 MODEL DESCRIPTION
	The fundamental combustion model presented in this report is a turbulent propagation and eddy burning model to predict the mass burned rate. Unlike some of the early works that are achieved by solving differential equations, the presented model is ach...
	3.1.1 TURBULENT ENTRAIMENT AND EDDY-BURN MODEL
	The turbulent entrainment model described in [9] is employed. The turbulent flame entrains the unburned gas from a spherical surface with the rate related to the laminar flame speed and turbulent intensity. Unburned gas in or out of flame has turbulen...
	Equation  is the expression of entrainment mass () rate which contains a laminar burning component () and a turbulent propagation one (). The unburned mass density () multiplies by the entrained flame front area () represents the entrained volume of e...
	Figure 3.1: Growing of exponential term with time constant of 10ms
	Equation  describes the calculation of burned mass () rate. The first component is the laminar mass burning occurred in front of the flame surface. The second component, which is the major part, represents the burning of unburned gas entrained by the ...

	3.1.2 COMBUSTION VARIABLES
	From the description of combustion model, it is clear that the mass burning rate is estimated by modeling the turbulent movement and eddy burning process. To accomplish this model the correlations of the variables including laminar flame speed, turbul...
	3.1.2.1 LAMINAR FLAME SPEED
	The speed of laminar flame is comparatively easier to detect from combustion experiments in laminar conditions. This is because the propagation of laminar is smoother comparing with turbulence and it basically traces the radial direction of combustion...
	The value of laminar flame speed usually depends on environmental condition including temperature (), pressure (), fuel type and diluted level (, or). Rhodes and Keck [2] gave the expression of laminar flame speed as equation .
	In the expression, and are temperature and pressure of reference condition and their values are chosen as 298K and 101kPa respectively. The laminar flame speed in the reference condition () relates to equivalence ratio (ratio of actual AFR to stoichio...
	The last term in equation  is a function of fuel diluted fraction. In study [2] a distinct correlation between laminar flame speed and diluents fraction is observed from experimental tests with different equivalence ratios and environmental conditions...
	3.1.2.2 TURBULENT INTENSITY
	Turbulent intensity is considered as the main component of flame propagation speed and has significant influence in the gas entrainment and burning rate. Turbulent flow is more complicated than laminar one and it is more difficult to observe its relat...
	The turbulent intensity expression in equation  is used papers [1] and [7]. The subscript 0 represents the variables at time of ignition. The turbulent intensity after ignition is a function of unburned mass density. This expression is derived from th...
	The initial turbulent intensity  was assumed to be proportional to the mean piston speed in the model introduced in [8]. However, Keck [3] summarized the relation of initial turbulent intensity expressed as equation  with groups of experimental data. ...
	3.1.2.3 TURBULENCE MICROSCALE LENGTH
	The turbulence microscale length also called Taylor microscale length () illustrates the size of dissipative cells in turbulent eddies. In the combustion model, the value of microscale length is necessary for the calculation of eddy burning time in eq...
	Equation  is the definition of Reynolds number for gas flow in the engine combustion chamber. The velocity of flow is represented by turbulent intensity  and the characteristic dimension is represented by turbulence integral length (). The dynamic vis...

	3.1.3 FLAME GEOMETRY
	In the presented model, the flame front is assumed spherical surface based on the conclusions of several experimental observations without swirl ([3], chapter 9 of [12]). Many researchers (discussed in literature review) have built their combustion mo...
	For the condition in engine combustion chambers, since combustion starts close to the top dead center (TDC), the flame front will reach the piston head firstly and then chamber wall while propagating. The process of flame geometry development is shown...
	Figure 3.2: Flame geometry propagation process in engine combustion chamber, (a) the early state, (b) flame front reaches piston head, (c) flame front reaches cylinder wall, (d) flame and burned gas fully fill the combustion chamber.
	The intersection between flame and chamber wall is considered not only for the flame geometry aspect but also for the contact area between flame and chamber wall (including cylinder head and piston). The amount of energy from heat transfer to chamber ...

	3.1.4 TWO-ZONE THERMODYNAMIC MODEL
	To implement the fundamental combustion model, some thermodynamic variables in the combustion chamber need to be determined. A two-zone thermodynamic model is used to determine the values of these variables, including mass density, in-cylinder pressur...
	or
	When the intake valve closes, the value of gas mass density is related to the pressure and temperature of intake manifold which are the inputs of combustion model. The first stage is the polytropic process between the intake valve closing and ignition...
	The energy change  is composed of chemical heat release from combustion and heat transfer to chamber wall. In the stage before ignition there is no chemical heat release and only heat transfer effect of unburned zone is counted. The heat capacity rati...
	The estimation of heat transfer amount of each crank angle step is expressed in equation  according paper [5]. The direction of heat transfer calculated by equation  is from unburned gas to chamber wall. Since this model is crank angle-based, engine s...
	In equation ,  is the characteristic length and it is engine cylinder bore length here,  and  are in-cylinder pressure and temperature respectively,  is the characteristic speed and the mean piston speed is used. The constant  is an adjustable paramet...
	The second stage starts from ignition and ends with the opening of exhaust value. The second stage ends when all chemical energy releases out. Without more chemical heat release, it returns to polytropic process in the cylinder like the first stage. T...
	Figure 3.3: Schematic diagram of two-zone combustion thermodynamic model.
	The two zones have differences in all states except with the same pressure during all time. The value of unburned mass density is necessary for the estimation of flame propagation and mass burned rate in equations  and . Pressure and temperature in un...
	and  in the subscripts represent variables in burned and unburned zones, respectively. The left side of equation  is the internal energy change of one discrete step for the whole chamber. The third term represents the internal energy change of the bu...
	The mass densities of both zones are hard to estimate during the early combustion. The mass and volume of burned gas are small so the part between burned gas and flame front could not be neglected. To find approximate value of unburned mass density, e...
	The volume of burned zone is assumed the same as the spherical flame volume with the calculation method described in previous section. One limitation is that the area between the burned and unburned zones (entrained in flame and not burned) is not con...


	3.2 MODEL CALIBRATION
	The parameters of combustion model need to be adjusted to predict proper output values that fit to experimental results under specific engine combustion condition. Increase the number of adjustable parameters increases the degree of freedom and also t...
	3.2.1 MODELING & CALIBRATION ENVIRONMENT
	The presented combustion model is written in SIMULINK graphical programming environment for ease of modification and calibration. The MATLAB/SIMULINK has strong computational power and user friendly interface for parameterization and programming. The ...

	3.2.2 ENGINE AND OPERATING PARAMETERS USED IN SIMULATION
	Table 3.1 lists the engine information and operating conditions used for simulation. The left column contains the engine specific information and the right column gives the values of operating variables. The “Res (%)” represents the percentage of resi...
	Table 3.1: Engine information and operating conditions used for simulation

	3.2.3 CALIBRATION OF MODEL PARAMETERS
	The combustion model parameters that need to adjust are listed in Table 3.2. Initial values of these parameters are selected for the combustion simulation. The simulation results are compared with engine test data from Ford Ecoboost 3.5L V6 gasoline e...
	Table 3.2: Adjustable model parameters
	CALIBRATION OF PARAMETERS:  AND
	The MFB values are sensitive to the turbulent intensity and microscale length. The related parameters could be calibrated based on how well the simulation results match to the engine test results. Parameters  and  are the most direct factors to influe...
	The predicted curves of entrained mass and burned mass versus crank angle during combustion for one test are shown in Figure 3.4. The entrainment process ends when the flame fully fills the combustion chamber. At this moment some of mixture entrained ...
	Figure 3.4: Entrained and burned mass history during combustion by simulation, 2000 rpm, 5 bar BMEP, lambda = 1, MBT
	The parameter  influences the phase of the entrained mass curve since the turbulent intensity is the major impact factor of the mass entrainment speed. Large turbulent intensity leads early completion of mass entrainment and indirectly advances mass b...
	Figure 3.5: Predicted and experimental heat release rate and hear release data, 2000 rpm, 5 bar BMEP, lambda = 1, MBT.
	The simulated maximum heat release rate point is advanced comparing with that of experimental data. This may be caused by a sudden end of mass entrainment in the simulation. In addition, unable to simulate the trend of mass burning rate correctly afte...
	CALIBRATION OF GAMMA,  AND
	To appropriately predict heat release, the acceptable in-cylinder pressure data are needed. If the heat release information is successfully simulated but there is an apparent difference between the simulated in-cylinder pressures and experimental data...
	The combustion efficiency can be referred from figure 3-9 of Heywood’s book [12] as a function of equivalence ratio for gasoline engine. The heat capacity ratio (gamma) of adiabatic process generally depends on the temperature and composition of gas m...
	Figure 3.6: Energy distribution of one combustion cycle, 2000 rpm, 5bar BMEP, lambda = 1, MBT.
	Figure 3.7: Predicted in-cylinder pressures vs. crank angle during combustion comparing with experimental results, 2000 rpm, 5 bar BMEP, lambda = 1, MBT.
	CALIBRATION OF  AND
	The additional tunable parameters are related to the rate of turbulence development process and the initial turbulent intensity at spark ignition. The parameters  and  (see in Table 3.2) have influences on these two aspects. Their values of these para...
	The parameter  is the order of the ratio of unburned mass density to mass density of inlet gas as shown in equation . Its value affects the turbulent intensity at the beginning of combustion. Based on comparison of simulation results with experimental...


	3.3 MODEL VALIDATION AND EXPERIMENTAL TEST RESULTS
	3.3.1 ENGINE TEST MATRIX
	The simulation results, including predicted MFB and in-cylinder pressure values under different operation conditions are compared with experimental data to validate the model performance. The experimental data are collected from cylinder #1 of Ford Ec...
	Table 3.3: Matrix of operation conditions of engine tests
	Table 3.3 lists the engine test conditions for the validation of combustion model. The fourth column of table includes the values of intake manifold absolute pressure (MAP) which is an indication of engine load. The electronic throttle angle is chosen...

	3.3.2 VALIDATION RESULTS AND DISCUSSIONS
	Spark timing is commonly used for combustion phase control. After calibration of model parameters, the simulation results of the combustion model are well matched with experimental data over a wide range of spark timing range. Figure 3.8 and Figure 3....
	Figure 3.8: Comparison of MFB between predicted results and experimental data under different spark advances, test 1240, 1241 and 1254, 1500 rpm, 2.62 bar.
	Figure 3.9: Comparison of in-cylinder pressure between predicted results and experimental data under different spark advances, test 1240, 1241 and 1254, 1500 rpm, 2.62 bar.
	To validate the performance of the combustion model at lean combustion situation, a set of lambda sweep tests are performed. Table 3.4 lists the parameters gamma and combustion efficiency values used in the simulation. In lambda sweep tests, the lambd...
	Table 3.4: Lambda sweep test conditions in simulation
	Figure 3.10: Comparison of MFB vs. crank angle with experimental data of test 1640 (lambda = 1.0) and 1647 (lambda = 1.35).
	Figure 3.11: Comparison of in-cylinder pressure vs. crank angle with experimental data of test 1640 (lambda = 1.0) and 1647 (lambda = 1.35).
	Table 3.5 compares crank angle positions after TDC of 10% MFB (CA10), 50% MFB (CA50) and 90% MFB (CA90) between simulation and experimental data. The model resolution is 1 crank angle degree to match the sample rate of the data acquisition system in t...
	Table 3.5: Comparisons of CA10, CA50 and CA90 between experimental data and simulation results
	Figure 3.12: Comparison of CA50 values between simulation results and experimental data, tests 1640 to 1647 (lambda sweep).
	Figure 3.13: Comparison of 0~10% burn duration values between simulation results and experimental data, tests 1640 to 1647 (lambda sweep).
	Figure 3.14: Comparison of 10~90% burn duration values between simulation results and experimental data, tests 1640 to 1647 (lambda sweep).
	From the comparisons in the table and figures, some conclusions could be made. Overall, the simulation results of burn durations represent proper trend comparing with experimental observations. The prediction of combustion model has better agreement w...



	4 STUDY CYCLIC VARIATION USING DEVELOPED COMBUSTION MODEL
	As discussed in literature review, cycle-to-cycle variation exists in the combustion of IC engines. The variation may be caused by several reasons. Except the variation of engine operation conditions, some other variation sources in the combustion may...
	4.1 CYCLIC VARIATION IN ENGINE COMBUSTION
	To analyze combustion variability, the test conditions, including intake manifold pressure, temperature, spark, valve timing and fuel delivering amount are fixed in the engine tests. The data starts to be recorded when the intake manifold and engine c...
	Figure 4.1 gives the time-based intake manifold pressures of 600 successive combustion cycles captured by ACAP system. The pressure values have relative high fluctuation with a mean value around 62.5 KPa. Figure 4.2 and Figure 4.3 show the cyclic vari...
	Figure 4.1: Intake manifold pressure measured by ACAP system, test 1640, 600 cycles, 2000 rpm, 5 bar BMEP, lambda = 1, MBT.
	Figure 4.2: Cyclic variation in measured pressure vs. crank angle curves of 600 cycles, test 1640, 2000 rpm, 5 bar BMEP, lambda = 1, MBT.
	Figure 4.3: Cyclic variation in MFB vs. crank angle curves, test 1640, 600 cycles, 2000 rpm, 5 bar BMEP, lambda = 1, MBT.
	Figure 4.4: Cyclic variation in measured pressure vs. crank angle curves of 600 cycles, test 1647, 2000 rpm, 5 bar BMEP, lambda = 1.35.
	Figure 4.5: Cyclic variation in MFB calculated by measured data vs. crank angle curves of 600 cycles, test 1647, 2000 rpm, 5 bar BMEP, lambda = 1.35.
	The cyclic variations are reflected in in-cylinder pressure and can be indicated by COV of IMEP which is calculated by equation  [12]. Indicated mean effect pressure values illustrate the effective work from the combustion of each cycle. It is the wor...
	Figure 4.6: COV of IMEP vs. lambda from test results, test 1640 to 1647, average of 600 cycles, 2000 rpm, 5 bar BMEP, 0% EGR.
	Figure 4.6 illustrates a very common phenomenon that the COV of IMEP keeps low near lambda = 1 but increase rapidly when passing a certain lean point. From the combustion burning process, the MFB curves in Figure 4.3 and Figure 4.5 show that the varia...
	Figure 4.7: (a) 0~10 % burn duration (b) 0~10% burn duration distribution, (c)10~90% burn duration (d) 10~90% burn duration distribution, test 1640, 600 cycles, 2000 rpm, 5 bar BMEP, lambda = 1.
	In stoichiometric condition, the variation of MFB curves is relative small, and the deviation increases slowly as combustion continues. For the lean operation as shown in Figure 4.8, the variation s for both 0~10% and 10~90% burn duration are increase...
	Figure 4.8: (a) 0~10 % burn duration (b) 0~10% burn duration distribution, (c) 10~90% burn duration (d) 10~90% burn duration distribution, test 1647, 600 cycles, 2000 rpm, 5 bar BMEP, lambda = 1.35.

	4.2 CYCLIC VARIATION IN COMBUSTION SIMULATION
	With cyclic variation observed in engine test results, some fluctuation sources could be introduced into the combustion model in order to generate simulation results with similar variations pattern. The simulation results are compared with lambda swee...
	In the experiment test engine inputs are maintained to be constant, most of them have little fluctuation or are insensitive to the in-cylinder pressure values. The fluctuations are introduced by adding a normal noise source with individual input sourc...
	The variation in pressure curves of successive cycles is simulated with the introduced fluctuations. However comparing with the variation of experimental results the variation is not large enough, even under the stoichiometric condition where cyclic v...
	Table 4.1: Amount of introduced variation sources of engine inputs and parameters
	Figure 4.9: (a) Simulated pressure vs. crank angle curves (b) PP vs. PPL scatter, introduced with input fluctuations only, test 1640, 300 cycles, 2000 rpm, 5 bar BMEP, lambda = 1.
	To better match experimental data, additional fluctuation sources need to be considered. Aghdam et al. [16] introduce fluctuation in turbulence into the fundamental combustion model. The peak pressure vs. peak pressure location scatter matches that of...
	From the expressions of fundamental combustion model described previously, the laminar burning speed () and the eddy burning time (), these parameters are related to the fuel burning rate. The exponential factor with time constant () related to eddy b...
	Based on the research [15] there is correlation between the duration of early flame formation and burning rate. The combustion cycle with longer early flame development period should have more probability with longer eddy burning time. The generation ...
	Table 4.2: Additional variation sources and their amount introduced into the combustion model
	Figure 4.10: PP vs. PPL scatters of simulation and experimental results, introduced with all fluctuation sources listed in Table 4.1 and Table 4.2 in simulation, test 1640, 600 cycles, lambda = 1.
	Table 4.3: Variances of introduced variation sources under different lean conditions
	Figure 4.11: PP vs. PPL scatters of simulation and experimental results, introduced with all fluctuation sources in simulation, test 1642, 600 cycles, lambda = 1.1.
	Figure 4.12: PP vs. PPL scatters of simulation and experimental results, introduced with all fluctuation sources in simulation, test 1645, 600 cycles, lambda = 1.25.
	Figure 4.13: PP vs. PPL scatters of simulation and experimental results, introduced with all fluctuation sources in simulation, test 1647, 600 cycles, lambda = 1.35.
	Figure 4.14: (a) MFB curves of simulation results (b) MFB curves of experimental data, 600 cycles, 2000 rpm, 5 bar, lambda = 1.0.
	Figure 4.15: (a) MFB curves of simulation results (b) MFB curves of experimental data, 600 cycles, 2000 rpm, 5 bar, lambda = 1.35.
	Figure 4.16: (a) Distribution of 0~10% burn duration of simulation results (b) distribution of 0~10% burn duration of experimental data (c) distribution of 10~90 burn duration of simulation results (d) distribution of 10~90% burn duration of experimen...
	Figure 4.17: (a) Distribution of 0~10% burn duration of simulation results (b) distribution of 0~10% burn duration of experimental data (c) distribution of 10~90 burn duration of simulation results (d) distribution of 10~90% burn duration of experimen...
	Table 4.4: COV of IMEP of simulation and experimental results

	4.3 COMBUSTION STABILITY ANALYSIS
	For the lean combustion conditions, the burning duration is enlarged because of the slow laminar burning speed. The heat release has more space to vary because of the longer combustion duration. Another major cause of combustion stability should be th...
	Figure 4.3 and Figure 4.5 show the variations in MFB curves of stoichiometric and lean (lambda = 1.35) conditions. The stoichiometric MFB curves have better stability. Most of stoichiometric combustion have short burn duration and the phase located ar...
	To study the effect of cyclic variation causes, the calibrated variance value of the flame development variation source in the lean condition (lambda = 1.35) is included for the simulation in the stoichiometric condition. Figure 4.18 (a) shows the MFB...
	Figure 4.18: (a) MFB curves of simulation introduced with large variance in early flame burning (b) experimental data, test 1640, 600 cycles, lambda = 1.
	Figure 4.19: (a) MFB curves of simulation introduced with small variance in eddy burning time (b) experimental result, test 1647, 600 cycles, lambda = 1.35.
	The combustion efficiency is also studied for stable combustion. Spark-ignition engines achieve the maximum efficiency when spark ignition is set at the MBT point. The MBT cycle has the pressure versus chamber volume curve most similar to that of idea...
	An indicator of combustion efficiency or fuel economy is the specific fuel consumption (sfc) expressed in equation . In the presented combustion model, sfc of each cycle is calculated with the fuel mass estimated by intake pressure, temperature and th...
	By choosing the optimal spark ignition timing the combustion could be controlled in MBT phase. Most of the cycles could operate around MBT phase if the combustion is stable. For combustion with large variation, the phases of more cycles are deviated f...
	Figure 4.20: Distribution of sfc calculated from simulation result, test 1640, lambda = 1.
	Figure 4.21: Distribution of sfc calculated from simulation result, test 1642, lambda = 1.1.
	Figure 4.22: Distribution of sfc calculated from simulation result, test 1645, lambda = 1.25.
	Figure 4.23: Distribution of sfc calculated from simulation result, test 1647, lambda = 1.35.
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