

undergraduate students, this phase was an important cycle of the ELM. The low-fidelity

prototype was their first concrete experience (CE) of design. The graduate students

Heuristic Evaluation provided a foundation for reflection (RO). Since the next step was

to begin implementation, they had to apply the feedback from the heuristic evaluation to

the rest of their design (AC and AE).

3.2.2.3 Final Phases

As the course was coming to a close, the instructor returned with additional lectures on

advanced HCI topics—those that were not presented as part of the graduate’s research

topics. Outside of class, the undergraduates spent time developing their high-fidelity

prototype, while the graduates prepared for the usability testing (Fig. 3.1, Phase 5).

Since the graduates and undergraduates were preparing concurrently, the graduates could

get updates on the status of the prototype. They could also offer suggestions to the

undergraduates about providing more depth in certain aspects of the high-fidelity prototype

for testing. Undergraduate groups would then know which other aspects could be left

either incomplete or as a shallow prototype. Many of the graduate students also prepared

monitoring programs which would run concurrently with the prototype, allowing them the

opportunity to analyze their tests more closely.

During the final testing phase (Fig. 3.1, Phase 6), the interaction between the graduates

and undergraduates culminated. Students from lower level CS courses volunteered to

54

Figure 3.2: A user working with the Mini-Mote.

participate for a small grade incentive. Graduate students acted as the facilitators for the

user testing, while the group members recorded data and monitored their prototypes for

errors. This phase fulfilled many of the positive goals for the course to an extent beyond

our expectation.

The final ELM cycle included the undergraduate students implementing their high-fidelity

prototype, and the graduate students implementing a set of user tests (CE). The feedback

for the cycle was the User Testing, but we wanted to be sure that the ELM cycle completed,

so the final report and exit interviews allowed us the opportunity to ensure that students

reflected (RO) and conceptualized (AC) the knowledge gained through user testing.

55

3.3 Example Projects

The 2008 iteration of the course consisted of 30 undergraduates broken into seven small

groups, and seven graduates working individually. All of the undergraduates were Juniors

or Seniors in the CS program. They had also completed a prerequisite of Team Software

Project, a group-based software design and quality assurance course. Six of the seven

graduate students were in the CS graduate program, with the exception from the Electrical

Engineering program. Two of the CS graduate students had taken the undergraduate course

before it was combined with the graduate course.

All of the groups successfully created working prototypes, which were then tested for

usability with cooperation from students in introductory computer science courses. Two

groups included a tactile aspect in their final prototype, allowing the user to test some of

the physical constraints of using the device. The wisdom imparted by user testing was

not limited to these tactile interfaces, though. In a third project, which was completely

simulated on a desktop computer, students studied the difficulties inherent in designing

expected functionality in a novel addition to a well-known device.

56

3.3.1 Mini-Mote

One project with a physical aspect was Mini-Mote, a universal remote-control application

with a dynamic touchscreen interface. The Mini-Mote had built in controls for Televisions,

DVD-players, and VCRs. The intended application is to be customizable for any device

which accepts remote signals. Since the screen size was very small, and was intended for

a human hand, the group developing Mini-Mote limited their menus to four items, one in

each quadrant of the device.

Figure 3.3: Click errors for one of Mini-Mote’s users.

In user testing, the group created a prototype with a touchscreen (10in, 800x400 resolution)

attached as a second monitor to a laptop. As can be seen in Fig. 3.2, the user controlled

the “television” with a touchscreen remote control. They were asked to perform a

series of tasks, such as turning on the TV, changing the channel, even adding a new

device. Meanwhile, a background process counts the users clicks, recording the time and

correctness of the buttons clicked.

There were some small differences between the prototype and the actual device. Since

the resolution was fixed in the device description, and the resolution of the touchscreen

57

was more compact, the device was approximately half the physical size that was intended.

The group chose to use a touch-pen to overcome the difference in size and protect the

touchscreen from damage.

The graduate student for their group collected his experimental data, and created a plot

of time against missed clicks (Fig. 3.3) to determine the probable cause of frustration or

misclicks. Each task was identified by number, while letters represent notes from observers

about actions the user took, questions the user asked, or visual cues of the user’s emotion.

This allowed the graduate student to discern the problems with the device that caused the

most errors.

3.3.2 Location Aware Remote Control (LARC)

Another project with a tactile aspect to their prototype was the Location Aware Remote

Control (LARC). LARC is a server maintenance application which used Radio Frequency

Identification (RFID) cards to decide which server it was controlling. The application used

large icons and very few buttons on the touchscreen to avoid errors. The most interesting

aspect was the use of real RFID cards which represented the user selecting different servers

to make modifications.

The LARC developers chose to implement a “Wizard of Oz” prototype. The user used an

identification card to log in, then moved the RFID reader across a fake server rack with

58

Figure 3.4: User analysis for LARC.

transponders. Then, each user performed a series of tasks, watching the computer screen

for responses, and telling one of the moderators which buttons he pushed. The moderator

performed the actions on the computer, which allowed the user to see the response. This

method of prototyping was chosen to allow the user to understand how the device feels

when operated in its intended environment. Many test users were initially skeptical about

moving the RFID reader around instead of working directly with the laptop, but after they

saw the screen change based on which system they were examining, they recognized the

importance of the physical aspect of this device.

The success of this user testing was primarily due to the graduate student’s preparation. Not

only did they create a background program to record automated timings of events (much

like Mini-Mote in Fig 3.3), the graduate student also was careful to examine the device

59

before the experiment, and make predictions about potential user errors. The graduate

student had prepared observational cues for the group members to look for. This guided

their understanding to find the real problems users faced (Fig. 3.4).

After seeing the results, especially about repeating the “lock” step multiple times, the group

members recognized that they could improve their device. One of the comments made at

the end of the course was the desire to improve their design and test again. A similar

sentiment was shared by other groups as well, including the MP3 Stingray project.

3.3.3 MP3 Stingray

A third group decided to create an interface for an MP3 player, called the MP3 Stingray. As

a common choice for design projects, groups that choose MP3 players are asked to attempt

something novel with their device. To meet this requirement, they created a randomized

playlist generator which selected from sublists based on genre, artist, album, and existing

customized playlists. The generator allows the user to create a mix timeline where the

device chooses randomly from the sublists associated for that time.

Although their task seemed to be very straightforward, the small size of the TDA and the

inexperience of the group members meant that they were required to get past a number of

usability issues. During the Heuristic Evaluations, they were asked to make adjustments

based on almost every heuristic, and though they made significant improvements between

60

Figure 3.5: Task completion time for MP3 Stingray.

their low-fidelity prototype and their high-fidelity prototype, the User Testing revealed

additional problems with their device.

During their observations, they noticed that each user took significantly longer to complete

the tasks than expected. Although users were quicker the second time (Fig. 3.5), evaluations

based on the graduate student and group members’ observations indicated that certain tasks

were not intuitive. The users had simply memorized the steps to complete those tasks,

instead of basing their actions on the ambiguous visual cues from the device.

Despite all of MP3 Stingray’s challenges, the group members seemed more enlightened

at the end of the course; during the exit interview, all of the group members were very

intense in their praise of the graduate students’ feedback and the perspective gained from

user testing. We believe that experiences like this will inspire students to practice usability

evaluation during the design process in the future.

61

3.3.4 Other projects

In the original article[13], we focused on three of the seven projects. These three projects

provided some of the best specific examples of student’s learning from the testing. A short

description of the other four projects are presented here, and the interviews are presented

in Appendix B.

3.3.4.1 Portable Beer Pong Scorer

The Portable Beer Pong Scorer was intended for easy use while intoxicated. It allowed

users to keep score of the common drinking game Beer Pong.

One difficulty faced was setting up the user testing. The students who were asked to

participate in user testing were from introductory courses, so many were under the legal

drinking age. In addition, University policy prohibited alcohol use on campus. Therefore,

the unit tests done for course credit used sober subjects.

Like Mini-mote, Portable Beer Pong Scorer was put onto a real device. In their case, they

used a smart phone, which inspired the use of Android for later iterations of the course (see

Chapter 4).

62

3.3.4.2 Groove on the Move

Like MP3 Stingray, Groove on the Move created an MP3 player designed for a user who

is moving around. To provide a distinct aspect for the device, the group created some

gesture-based controls for the device. Users can select songs to be queued or songs to be

added to a “party mode.”

This group gained some benefit from the evaluation; however, they were focused on the

development of their device rather than the interaction with the graduate students. They said

that waiting for the graduate student feedback , especially from the Heuristic Evaluation,

slowed their progress down.

3.3.4.3 Run Tracker

The RunTracker application was intended to track statistics and distance for a runner

wearing the device. The primary user for the device would be a person exercising outdoors.

During the final interview, this group showed enthusiasm for their project and the

interaction with the graduate students. The group’s first interaction with a graduate student

led them to focus on the user’s experience for their design. Ultimately, their design led to

an experiment that provided them positive usability feedback. One of their responses in the

63

interview was that they wished they had time to complete the project.

3.3.4.4 TDA Maps

The TDA Map group created a GPS device which would provide users with location,

direction and speed, along with nearby points of interest. During the interviews, we

specified that according to the assignment description, they must provide a unique aspect

to their device. Ultimately, their device was similar to modern vehicle GPS systems, but

had a sub-par design.

This group was also the most negative about the experience. Many times during the

interview they complained about waiting on feedback from the graduate students delaying

their production. After the interview, the interviewers discussed whether there was any

indication that these students understood the intent of the course.

3.4 Evaluation and Conclusions

Our goal was to provide two distinct experiences through interacting roles by members of

the combined courses. The undergraduate students took on the role of User Interface design

and implementation, while the graduate students provided the role of evaluation, usability

testing and analysis. A combined graduate and undergraduate HCI course benefited both

64

courses and the student roles from those courses. Each graduate student participated in the

development of several UIs and had the opportunity to conduct usability testing on a unique

UI. Each undergraduate group received feedback on their UI design from several graduate

students, then helped with the usability testing of their UI. Conducting the combined course

in such a manner allowed the undergraduate and graduate students to interact with each

other, exposing the undergraduate students to graduate school life. We hope that this

exposure may encourage more undergraduate students to continue their education on to

graduate school.

Independent exit interviews were conducted with each graduate student and with each

undergraduate group. The questions and notes from these interviews are in Appendix B

and Appendix C Almost every group talked enthusiastically about the usability testing, the

graduate students’ evaluations and what they learned from those. When asked about the

graduates, one group provided a very concise description:

“They [the graduates] had good ideas and helped make our project a little

better. They were sort of like the customer: they had a unique perspective

that we maybe wouldn’t have come up with ourselves.”

This quotation reflects the overall theme of the undergraduate group responses: All but

one of the undergraduate student groups were able to provide a specific positive impact

in either their design process or focus. When asked about limitations, four of the groups

65

indicated no limitations from the graduate interaction, and three groups indicated “minor

slowdowns” and “delays while waiting for [graduate students].”

Many of the graduate students’ user testing observations were overshadowed by the insight

that the undergraduate students gained from simply participating in usability testing. The

group members did not realize how important simple usability issues were before users

began to get confused. The prototyping aspect of the course also gave the students specific

goals. Instead of being finished with the projects, all of the groups had some aspect to their

project which was “faked” to respond to the user’s commands, but represented what the

device would eventually do. A few of the undergraduate students mentioned their desire to

complete the software.

The graduate student experiences helped them better understand the evaluation process,

since they were practicing on developing projects, instead of completed devices. They

also experienced many of the pitfalls that a released product could not provide, including:

delays, incomplete prototypes, and uncooperative developers. Despite these obstacles, all

seven of the graduates produced detailed, interesting documentation regarding the analysis

of their group projects. Even the two graduate students who had taken the undergraduate

course in previous semesters commented that they benefited from taking the graduate

course.

The other aspect of the course that the group members discussed was the graduates’

research presentations. Many undergraduates found the research presentations interesting,

66

and commented on them during the exit interviews. One student said that he “didn’t even

know that there was such a thing as Tangible User Interfaces” until he heard the graduate’s

presentation.

The evidence from interviews indicate that these courses imparted deeper understanding to

the students. The response was well above our expectations. Therefore, we were successful

in meeting our goal: two truly distinct, yet combined courses. We believe that this is largely

due to the experiences of the interactions between the groups and the graduate students, and

the usability testing on high-fidelity prototypes. These two features, student interaction and

high-fidelity user testing, were possible exclusively through the use of combined courses

following an experiential learning model.

3.5 Discussion

Since this course closely followed Kolb’s experiential learning model, we believe it

provides potential answers to our research questions. First, the course provided a unique

user testing experience for both testers and developers. Second, the instructor gained

insight into the amount of additional work that is involved in managing two interactive

experience-based courses. Finally, the three-phase course provided a gradual means

for students to update their mental models about user interface design, while mitigating

negative attitudes. The growth of the course into the course presented in Chapter 4 is a

67

testament to the success of the experiences created through this course.

68

Chapter 4

Adding Unit Testing to an HCI Course

The material for this chapter was adapted from Adding Unit Test Experience to a Usability

Centered Project Course [14]. As described, the course was an extension to the course

presented in Chapter 3. The addition of Unit Testing to the HCI course, as described here,

was attempted in the Spring semester of 2013. Since much of the introductory material

of the original paper was already presented in Chapter 1, it has been removed from this

chapter.

69

4.1 Introduction

This unit testing research is a step in the continual development of the combined graduate

and undergraduate, multi-role Human Computer Interaction courses [63]. As the course

grew, it became necessary for the projects to be more complete. To complement the

usability testing in the course, we decided to add an emphasis on functionality through

unit testing. We used Kolb’s Experiential Learning Model (ELM) [42] to add functional

testing to the course in order to improve the quality of the projects and provide a more

complete testing experience.

The courses began as a combined graduate and undergraduate effort intended to provide

a professional experience for both the graduate students as usability experts and the

undergraduate students as developers [13]. As the original graduate and undergraduate

courses grew, additional elements were added. The original courses’ final product was a

fictional hardware product with intentional restraints. With the advent of Google’s Android

Software Development Kit (Android SDK) [28], students in the course began to develop

for a portable device. As part of a collaborative Citizen Science project, real customers

were added to the course. These customers were scientists with a known desire pushing

students to design to a specific need rather than their own fictional project [54].

It was the Citizen Science project that drove the need for software quality improvement.

70

In the original iterations of the undergraduate course, the focus was on the usability of the

project, and an incomplete project was still an appropriate learning scenario. With real

customers, students had an obligation to have functioning code, and after the initial effort,

it was decided that more emphasis on that functionality must be given. To accomplish this

goal, unit testing was added as a new element to the course.

4.1.1 Unit Testing in Education

One of the common testing methodologies is unit testing. Unit testing is a testing approach

with the following properties: Simplicity, Independence, and Documentation[6]. Tests

focus on a unit, or single piece, of the overall functionality within the program, ensuring

that they work independently, for smoother integration. The unit can vary widely in size,

from a single function, collective behavior of methods within a class, or a group of classes

which work together. By being simple and independent, the result of a unit test should

be consistent for repeatability. Unit testing is often automated, and a benefit of creating

automated tests is that the purposeful thought of creating the tests causes students to avoid

and discover errors quickly. JUnit is a tool for unit test development [7], and is supported

by the Android SDK [28]; therefore, it is an appropriate choice for testing the Android

projects in this course.

Introducing unit testing in an academic environment often involves introducing tools to

71

improve student experience. The JUG tool allows students to see unit test results to provide

feedback in their own code [15]. Saff introduced a tool to allow their IDE to perform testing

continuously, much like current IDEs check for compilation errors while the program is

being written [67]. These tools encourage experiences with unit testing, and demonstrate

the benefit of testing to development. However, these two tools only assist with existing

unit tests, they do not provide students assistance in writing unit tests.

When introducing the construction of unit tests, students need more guidance and

encouragement. Kaner and Padmanabhan explored experiential learning of unit tests,

emphasizing instructor enthusiasm and reporting on some areas where students become

confused [38]. They identified the major confusion elements were “applying a standard

procedure”, “Figuring out (and explaining the choice of) boundary values” and “Identifying

risks and associated error-revealing classes.” Their solution to the confusion was to increase

the models and example of testing.

Some other researchers introduced peer testing to provide enthusiasm for testing. Smith’s

introductory course used competitive peer-testing to encourage testing practices [69].

Students would get points for “breaking” their peers’ code by writing unit tests for

appropriately difficult cases. Smith’s work was based on Clark, who introduced peer group

testing in a project course [17]. Groups were assigned a few students from other groups to

write their tests. Although this is a useful way of introducing unit testing to projects, we felt

that students learning about another group’s distinct project would introduce a much larger

72

time requirement than we intended. We also wanted students to consider the difference

between the functional and interface aspects of their project.

4.1.2 Research Questions

When introducing unit testing to the course, our primary research question was:

Can Unit Testing improve the quality of Human Computer Interaction projects?

However, after we discovered that students were not participating in the unit testing aspects

of the course, we decided to expand the research to two other questions.

When introducing unit testing, what additional steps must be taken to ensure a

positive learning experience?

What potential for regression of students’ unit testing model is possible, and how can

that potential be mitigated?

We decided to refocus our research on learning experiences and model regression because

informal discussions during the course revealed prejudice against unit testing and its

practicality. Our goal is to minimize the possibility of students regressing to those mindsets.

73

4.2 Method

The methodology for this research was similar to the methodology used for earlier additions

to the course [13]. Students were given assignments that encouraged or required them

to actively experience unit testing. The graduate students collected project data on

effectiveness, and the undergraduate students participated in a survey and interview at the

end of the course.

4.2.1 Initial Learning Activity

The ELM indicates that Reflective Observation occurs after feedback. To accomplish the

first cycle, we required students to participate in an initial unit test activity. To help students

get started Android programming, the course required building sample Android projects.

The Android Software Development Kit also contains support for JUnit testing, including

tutorials.

The first unit testing activity for students was to complete the Android JUnit test

tutorials [28], followed by another sample project that extended the ideas of those tutorials.

These sample projects were expected to take a few hours and ensure that students had

their systems set up to handle processing unit tests. These assignments were given to each

74

individual, not to the group, so that each person would be responsible for writing tests.

4.2.2 Unit Testing Lecture

The next step in the course was a lecture discussing unit testing and Test Driven

Development (TDD) (for a more detailed description of these topics, see Section 2.2.2.

This lecture encouraged abstract conceptualization (AC) about the role unit testing plays in

software development. The lecture built off the activities the students participated in, and

offered some indirect feedback to the tutorials.

First, unit testing and TDD are defined and provided as an analogy. Second, a

demonstration provided an example of some pitfalls to avoid when using Android’s JUnit

testing, building off the examples the students did. Next, the lecture reminded students of

an indirect experience with unit testing most of them had earlier in the curriculum [15].

Finally, the lecture emphasized the role of the developers as testers and verifiers.

4.2.3 Assigned Testing

At the next stage of the course, students had a midterm interview with the instructor to

narrow their focus to obtainable goals. After their initial experience into unit testing, but

before they had begun major development into their project, students were assigned to build

75

automated unit tests for one activity (screen) in their application. They were also asked to

leave a different activity without automated testing as a point of comparison. Unit tests for

other areas were left to their discretion.

The goal of dividing the project into tested and untested aspects was to demonstrate the

benefit of unit tests. The activities in the programs had to be divided based on the individual

project, but we took steps to find elements of similar difficulty. We did not require

students to employ TDD since the techniques are usually developed after programmers

are comfortable with test writing. We did encourage experienced testers to use TDD and

asked all students questions about their experiences with TDD.

4.2.4 Usability Testing

Our previous work suggests that students have a certain satisfaction culminating the project

with usability testing. From that idea, we decided to treat it as a functional release. The

usability testing portion of the course provided a deadline for the project, which is the

culmination of the project work. As with many software projects, during final testing,

groups have technical problems with code working incorrectly or missing components. In

previous semesters, the groups would fix the bugs for later usability tests and the graduate

students may make a note distinguishing the “pre-fix” test subjects from the “post-fix”

subjects.

76

To identify and document these functional problems, an additional assignment was added to

the graduate students. They were to develop appropriate bug report forms for the different

projects, and collect data concerning technical problems and functionality issues during

usability testing. Both the graduate students and undergraduate students were responsible

for filling out the bug reports. The completed bug reports can be found in Appendix F.

4.2.5 Learning Evaluation

We used two methods of data collection to evaluate the learning objectives of the unit

testing addition to the course. First, an interview was done with each group to get their

perspective of the unit testing aspects of the course. The interview allowed students

to provide free-form feedback and included discussion and questions related to their

experiences. Students were quite frank in the discussion, and we discovered that some

groups did not do the assigned unit testing.

Students also filled out an anonymous survey, including a self-reported inventory of their

experience. The survey also included some knowledge verification questions, used to

determine what aspects of unit testing students took away from the experience. Finally,

the survey asked questions about their expected future use of unit testing, to ground their

opinions of unit testing. This allowed us to compare groups and evaluate their answers

to questions about usability testing with respect to their experience before and during the

77

course.

4.3 Results

The results for this research showed that the motivation for experiencing unit tests was

insufficient for most of the groups. Unfortunately, that left very little data to evaluate the

effectiveness of the experiential learning. The surveys and interview questions did provide

some insight into the student’s mental model, and we hope that this can be used for a more

successful second attempt.

����� �����	
���
������� ���������� ���������

�

�

�

�

�

��

��

��

��������
� !�
���� "#$�������

�������$���� %�
&��� !�
���
���'���

(������ &���
!�
�

&
�� !�
�
)�����
)�����$	���

��*���$����� ���������

�
�

	
+

�
�

�
*
�

��
�

�
�

�

Figure 4.1: Prior Unit Testing Experience

78

4.3.1 Interviews

Like the group interviews from Chapter 3, we received very frank feedback from the

individual interviews. The interview questions and transcribed answers can be found in

Appendix D.

One of the groups, Stream Features, performed a significant amount of automated unit

testing work. Two other groups also included unit tests, though their implementations were

minimal. The final two groups did not include unit testing. One indicated that they could

not unit test because they had too many abstract objects in their code. The other group did

not create unit tests or participate in unit testing, since their project was incomplete.

The Stream Features project included strong database interaction, and they used unit tests

to verify that their database connections worked properly. They employed TDD, writing

their database tests and functions before they were used in the rest of the project. This

was also the only group whose bug reports were purely cosmetic. The interview revealed

that most of the group members were comfortable with unit testing from a previous course.

They expressed the perspective “... sometimes JUnit testing [feels like] a lot of work that

doesn’t pay off.” That perspective given by a successful group shed some light on the other

groups’ challenges with unit testing.

One member of the Lichen group created a single unit test, and later discussion indicated

79

������������	�
���
���
���
�����
����
���
���
�

�����
���
�����������	�����
��
�����������
�
�����
���
�����������	����

�������
�

�������������
�������

�
���
���	�����
�����

�

�

�

�

�

�

�

�

�

��

!������
���	�"��
�����	
���"�#����$%&�%�����
$�'�!������������((((�) *��+�
�
� *��
 ",,

!
�
�
+
�
��
�
	�
-

�
�
�
�

�

Figure 4.2: Views on the Necessity of Testing

that they had difficulty creating tests for more complex actions. The student who wrote the

single unit test had positive feedback about the process and indicated regret at not writing

the tests sooner. They also indicated that the unit test ran much faster than loading the

emulator. These students did not have the same course experience as the Stream Features

group and expressed a desire for more experience.

The Tracker Team wrote their unit tests after the usability tests were complete but before

the interview. The primary reason they wrote the unit tests was to avoid a grade penalty.

Although the interviews seemed to indicate a positive experience with those students who

used unit testing, we believe there is potential for stronger instructor interaction. The

students who did not use unit testing struggled with time and had many more problems

in their implementations.

80

4.3.2 Surveys

After the course and interviews were complete, students were requested to take an

anonymous survey about their work in the course. Of the 21 students enrolled in the course,

18 responded to the survey. The survey included questions about their own history with

unit testing, their views on testing, and the extent of their activity within their group. The

survey included open-ended questions designed to expand on the multiple choice answers

from other sections. There were also five questions which attempted to evaluate student

understanding of the distinction between the purposes of unit tests and usability tests. See

Appendix E for the questions from the survey.

4.3.2.1 History With Unit Testing

In terms of the ELM, most of the students have an immature mental model of unit testing.

As shown in Figure 4.1, only 1 student reported writing unit tests frequently, and more than

half the students who responded had never written unit tests for a project. Strangely, one

student claimed to have used TDD, but indicated they had not participated in a project with

unit testing or written unit tests. All students were required to take a Team Software Project

course, however, as indicated by the interviews, not all iterations of that course introduced

unit testing.

81

In Figure 4.2, we see that after the HCI course, students have a near unanimous positive

view of the necessity of usability testing. In contrast, the common view of unit testing is that

it is only useful in large projects. The phrasing “an activity required for only large projects”

was used as a common answer when discussing automated testing casually with students. It

was also a common perception among our students, as half the students responded with that

answer. Students have a view of TDD that indicates it is less necessary than unit testing,

with most students indicating that it is optional or a poor use of time.

The survey asked 6 questions about students anticipated use, indicating whether students

would use or recommend different testing methodologies in the future. Overall, students

support usability testing and favor unit testing in a professional environment. In Figure 4.3,

this is represented by the Green and Light Blue bars. However, for personal use (the Dark

Blue and Yellow bars), students are more neutral. Overall, students were neutral toward

TDD in both personal and professional used (Light Blue and Maroon).

4.3.2.2 Inter-Group Activity

In most of the teams except Lichen, one of the team members claimed responsibility for

writing tests. In the interview, only one of the members of the Lichen group reported

writing unit tests, and based on the activity questions, we believe that student was one of

the 3 that did not answer the survey. As discussed earlier, only three teams wrote unit tests,

and of those, only one used TDD. One of the teams wrote their tests after usability testing,

82

which means that they did not get the intended finalizing feedback of the usability tests as

they pertained to the unit tests.

Responses to functionality problem questions indicated that bugs were discovered in

program elements without unit tests. To avoid skew; however, we should only consider

the two groups that wrote unit tests before usability testing. In the Stream Features group,

the group that employed TDD, all four students responded that no functionality problems

were found in unit tested code. Of the three students that responded in the Lichen group,

two indicated that no problems were found in unit tested code, while the third indicated “a

few” problems found in unit tested code, while “most” problems were found in untested

code.

��������	
��
����

��
����

�����
�
�����

��������	�����

�

�

��

��

��

��

��

��

��

���������	��	�������
���	�������	��
������
�	����	���	��	������
��	� �	���	�!	"""	� ��	��#�������	"""	���$����%

&�
'�����	�������	
(������
�

&���	�������	(
������
�

�

	(������
�

&�
'�����	�������	
(���!������
�

&���	�������	(
���!������
�

�

	(
���!������
�

�
�
)
'
�
�	
�
!	
�
��
�
�
�
��

Figure 4.3: Responses to Future Testing Scenarios

83

4.3.2.3 Free-Form Responses

The free-form questions on the survey provided insight into the students roles and opinions

of unit testing.

In the Stream Features group, one of the students indicated that they did not write a

significant amount of code for any program element, and when asked about which elements

were unit tested, they wrote “I have no idea.” Within the Stream Features group, that

student gave the only negative response to unit testing in the open-ended questions. The

other three students wrote about positive experiences using unit testing to improve their

code. In fact, one of the students from Stream Features indicated another element that they

thought should have been unit tested.

In the Beach group (which did not include unit tests), students’ free-form survey responses

indicated that their choice to use anonymous classes prevented unit testing, but that they

each had a desire to include unit testing. This group also had the only student who reported

“frequently” using TDD before the course. This student also provided the only strongly

positive experience of unit testing outside the Stream Features group.

The last question on the survey asked for additional comments, which provided a large

number of negative comments toward unit testing. One student was concerned with writing

tests for GUI elements when they did not have those elements complete until the last

84

minute. A similar statement indicated that unit testing and TDD “have their place”, but are

“difficult to use. . . in projects that are largely GUI based.” Another student said that unit

testing “seemed like a very slow process and difficult to do”, though their indications earlier

in the survey indicated that they had not done unit testing before or during the course. A

third student commented that they did not understand why unit testing was needed, because

it only found a “couple minor bugs”, and “we can do most of our debugging tests by hand.”

As described in the analysis, these comments unknowingly dismiss some major benefits of

unit testing.

4.3.2.4 Understanding Unit vs. Usability Testing

The questions which evaluated student understanding of the purpose for unit tests and

usability tests were scenarios of a business website. The questions were ordered by

increasing complexity. The premise was that students need to verify that they had

completed the described work with appropriate testing. They were to select the type(s)

of testing that would be most appropriate.

Most students answered the first two questions and the final question correctly, though

some students answered “Both unit and usability tests” when one of the types of testing

was inappropriate or excessive.

The third question was difficult for students, it concerned Autofill of street names. The

85

idea behind this question is that students must identify functional aspect of determining a

street name from a partial string, while also recognizing that the way an autofill presents

information is a usability issue. Only 6 of the 18 students identified both the functional and

usability aspects of this scenario.

The fourth question concerned verifying that the text of the website matched a brochure.

In this case, unit testing is inappropriate because verifying the text within the unit test

would be just as cumbersome as manually checking the site. Only 6 students identified the

redundancy of a unit test in this scenario.

Although many of the students answered the easier questions correctly, the students who

did not answer those correctly were also the students who offered the most negative

comments in the open ended section of the survey.

4.4 Analysis

We expected that adding a unit testing experience to a project based HCI course would flow

naturally. Usability testing was already a focus of the course, and functionality had been

a problem in the past. We speculated that adding functionality checks would improve the

overall product. Instead, we discovered that students expected unit testing to be a negative

experience and resisted.

86

The most difficult challenge for the course was ensuring that students experienced unit

testing. Students resisted each stage of the process. During the lecture, an informal show

of hands indicated that less than a third of the students had done the initial tutorial activity.

After the lecture, a few students began arguing about the practicality of unit tests, eventually

acknowledging that they had never participated in a project with unit testing. Near the end

of the semester, during usability testing, only 2 of the 5 projects had used unit testing.

The successes of the groups that participated in unit testing and the opinions provided by

all the students helped formulate answers to our research questions:

Can Unit Testing improve the quality of Human Computer Interaction projects?

Despite the limited data in regards to the effectiveness of unit testing, the group that did

participate fully in the unit testing showed remarkable results, with no functional problems

in their program. Their project also showed meaningful results in the usability tests, since

they could function without problems, they were able to discover more subtle usability

issues than could have been possible with a partially functioning program. In addition,

their program was available for the Citizen Science project that it was intended, providing

a positive experience for the students participating.

When introducing unit testing, what additional steps must be taken to ensure a

positive learning experience?

87

A potential problem with the structure of the course may have been caused by adding

additional experience to a high-intensity project course. Students treated the unit testing

portion of the course as if it were a minimal part of the project, while completing the

project was their primary focus. This perceptual divide implying that unit testing would

delay project completion may be a result of de-emphasis at the curricular level. It may

be the case that a curricular unit testing focus, as proposed by Goldwasser, could improve

student attitudes [27]. In addition, many student’s mental model of unit testing causes them

to believe that test development would delay interface development.

One of the primary means of ensuring a positive learning experience is to emphasize the

more concrete benefits of unit testing. For instance, the Lichen group discovered that unit

tests would run more quickly than the emulator. It is also important to include warnings

and suggestions, such as those provided by the Beach app to avoid anonymous classes.

Finally, we must encourage the idea that TDD is not only possible, but straightforward

for a GUI based application, so long as there is low coupling between the data and the

GUI element (something the Android SDK strongly supports [28]). Emphasis on these

three elements of testing Android programs could prepare and encourage students to have

a positive experience.

What potential for regression of students’ unit testing model is possible, and how can

that potential be mitigated?

88

Based on the differences between responses of groups that experienced unit testing and

those that did not, the biggest potential for model regression is students who choose not

to fully participate in the experience. To mitigate this, the instructor could place a firmer

emphasis on the requirement of unit testing as part of the course and request that students

write tests for code other group members have produced. It is often easier to convince a

programmer to test someone else’s code rather than try to convince them that their code

requires testing [17].

The other possible regression could be caused by confusion of the purpose of unit

testing [38]. If a student’s conviction is that unit testing is only being done for trivial

or subjective aspects of a program, it can cause them to regress. The survey responses

indicated that students had a belief that the only purpose of the unit test was to discover

“minor bugs” and that “hand testing” works better. An emphasis on the scalability and

practicality of automated testing (for instance, that it is faster than loading the emulator)

could encourage more participation. In addition, students might relate to an analogy of

unit test creation as a series of thought exercises about the code. Another area of confusion

might be the tutorial example, its simplicity implies that unit tests must be done for trivial

aspects of a program. To mitigate this, the instructor should demonstrate that the tutorial is

a simplistic example, and follow with a more complex, yet concrete example.

89

4.5 Conclusions

Unit testing can improve the quality of projects in an HCI course, but the challenge lies

in convincing the students that unit testing is valuable. We found students developed a

positive attitude after experiencing usability testing. A stronger curricular and instructor

emphasis on the benefits of unit testing could provide a similar attitude change. Within our

course, the next step is to put structure and emphasis around the unit testing element of the

course. Ultimately, the struggle of including unit testing into the programmer’s knowledge

base is that of participating fully in the experience.

90

Chapter 5

Conclusions

5.1 Review of Questions

Each of the three research opportunities provided insight into the way Experiential

Learning can be applied within Computer Science. By relating the experiences and

expectations to Kolb’s four stages of learning, we can evaluate the successes and

opportunities for development. It is our hope that the pedagogical research done here can

enhance the experiences provided in a Computer Science curriculum.

The first aspect, Concrete Experience (CE), is present at every level, from first year students

through graduate students, driving the classroom learning through activity. Through

provided testing and feedback, undergraduate students are encouraged to participate in

91

Reflective Observation (RO) stage of learning. The higher level courses are then able to

focus on Abstract Conceptualization (AC) by generalizing key experiences into heuristics

and practices. Finally, the cyclic nature of the presented courses offer opportunity for

students to Actively Experiment (AE) with their new-found knowledge, reinforcing their

updated models.

How can the Experiential Learning Model (ELM) be used to incorporate testing

experiences to computer programming courses?

In Chapter 2, the experiences in the course focused mainly on correct programming

implementation through instructor developed unit testing. Students were motivated by

their grade to participate in the Concrete Experience (CE) of the course, but needed fast

feedback to allow Reflective Observation (RO). The JUG tool allowed the instructor to

encourage regular reflection, combining that feedback with lecture material for Abstract

Conceptualization (AC), allowing students to gradually build their mental model. In

addition, since JUG is rooted in JUnit, students had an additional Concrete Experience

(CE) through exposure to industrial testing techniques.

In Chapter 3, we discovered that a multi-role course can help graduate and undergraduate

students learn high level concepts of Human-Computer Interaction. The focus of the

course was on Concrete Experience (CE) and Abstract Conceptualization (AC), which were

successfully implemented. Interacting with various roles allowed students to experience

92

a professional project development environment. Undergraduates then analyzed the

experience of a Heuristic Evaluation alongside a lecture on common usability issues, to

improve their design for Usability Testing. Finally, the undergraduate students could get

the benefit of a real usability test, while graduate students gained experience testing and

analyzing a product.

Chapter 4 allows us to see the potential in Unit Testing experiences as part of a project

course. Students were expected to participate in two Unit Testing experiences (CE), tying

into a lecture for Abstract Conceptualization (AC). Unfortunately, few of the students

participated in both exercises, and our plans did not expect high level undergraduate

students to be as resistant to implementing Unit Testing in the course. Although there were

problems in the course, the students that did participate in unit testing showed a distinct

view of Unit Testing from those who did not. We can use the differences between student

perceptions of Unit Testing to help answer our other two research questions.

When introducing testing experiences, what additional steps must be taken to ensure

a positive learning experience?

In the lower level courses, the most important step that the instructor can take is to

provide strong feedback quickly. Students who have a desire to grow in programming

respond well to fast feedback, and recognize the importance of reinforcing concepts.

The largest obstacles that an instructor must overcome are incorrect and incomplete tests.

93

Incorrect tests cause students to distrust requirements, and incomplete tests give students

the impression that they do not have to complete the program. Finally, the instructor

must be able to balance automated grading with supplemental grading criteria (i.e. coding

standards, time complexity analysis, algorithm correctness). With the JUG system, we

provided feedback twice for each assignment, one with only automated results, and the

second with subjective grade feedback.

In the original HCI class, students were very receptive to Usability Evaluations and Testing.

The instructor for a mixed course was required to spend more time preparing to ensure the

interactions between graduate students and undergraduate students would be positive for

the learning model. In addition, the instructor had to make managerial decisions about

the effectiveness of graduate students’ proposed testing methods in response to student

projects. Later in the course, as additional elements were added, the preparation and

planning also increased. The addition of Unit Testing was designed to be a simple way

to improve the quality of the final products, however, we discovered that additional steps

are needed to increase student enthusiasm for Unit Testing practices.

What potential for model regression is possible, and how can that potential be

mitigated?

In the introductory courses, we found that tight cycles of experience and feedback

create potential for model regression through discouragement. A student who misses a

94

program, or falls behind in the lecture material has difficulty incorporating their incomplete

experiences into their model. In the Data Structures course, where programs build strongly

on previous knowledge, it is important that students be given the opportunity to catch up.

The method we used to mitigate this problem was the "resubmit"—allowing students to get

a small penalty for a late assignment yet keep the momentum of the course and participate

in the experience based learning.

In the Usability Evaluation and Testing for the HCI class, the potential for regression is

when students dismiss the design evaluations. One excuse that students can use is that the

graduate students doing heuristic evaluations are amateur "experts". The way to mitigate

this excuse is to help them recognize that even without experience the graduate students

cite recognized usability principles that their interface is not following. The other potential

regression is to deny Usability Testing results based on the usability test subjects. Often

students see the design flaws but the solution to a usability problem is not obvious, so

developers resort to a "can only work one way" mentality regressing their mental model

about that particular usability issue. Mitigating this regression is difficult, but providing

small usability improvements or alternatives and reinforcing the importance of a positive

user experience can help.

The Unit Testing experience in the HCI class had the most regression, primarily because

students chose not to participate. When the student intentionally ignores the minimal

experience they participate in, they have nothing to reflect upon or conceptualize. The

95

other possible regression can be caused by confusion of the purpose of unit testing. If a

student is convinced that unit testing is only effective if done for trivial or subjective aspects

of a program, it can cause them to regress. To mitigate this, we speculate that an instructor

could introduce various improvements to the course:

† Place a firmer emphasis on the requirement of unit testing as part of the course.

† Request that students write tests for code that other students are writing (similar to

Clark’s method [17])

† Provide analogy of early tutorials to "Hello World" programs, to avoid students

mentally dismissing unit testing as "simplistic"

† Provide additional examples of unit testing with increased complexity and concrete

elements

These mitigation methods can provide the foundation to encourage the developers to

participate in the experience, ultimately improving their model of unit testing.

5.2 Goal-Driven Test Experiences

Overall, the results of this research shows the benefits of using the experiential learning

model in the computer science classroom. Each of the course studies demonstrate that

96

students can gain practical knowledge through experience involving testing. The most

important aspect of these experiences are that they are each driven by instructor goals.

Along with their individual goals, they have a shared goal of exposure and enthusiasm for

the subject material. The major goals for the three research projects are based on testing

experiences.

In the introductory programming courses, the goal was to provide more practice. That goal

drove us to create an automated testing tool that made generating assignment tests easier.

Finally, when introducing Unit Testing to an HCI project, the goal was to improve project

software quality. Those students that participated fully in the unit testing experience had

no functionality errors.

The goal from the Usability Testing was to emphasize the practice and importance of

recognizing the user experience. This goal lead us to introduce various testing experiences

for both graduate students and undergraduate students. Students evaluating each other can

practice what they are learning while demonstrating their techniques to others.

The course goals help define the specific experience, however, the overall goal is to inspire

the students. Unit Testing low level code inspired students to consider all the functionality

when programming. Usability Testing inspired students to think about usability in their

software. Writing Unit Tests inspires students to desire high quality in their completed

software.

97

5.3 Conclusions

In the presented research, providing testing was driven by course-level goals. Our research

questions focused on using Kolb’s Experiential LearningModel (ELM) to meet those goals.

Overall, the three courses offered valuable information for experienced-based learning

practices.

Although the ELM can be used to good effect, there are difficulties associated with

using it to promote testing in a computer science classroom. Integrating test experiences

required more effort on the part of the instructor; however, there were ways, especially

with automation, to reduce that effort. It is also important to design a course with the

understanding of the appropriate goal of test experiences. Ultimately, the most important

part of introducing testing to later courses is mitigating model regression. When using

the ELM, the CS instructor must provide the opportunity, emphasize the importance, keep

students involved, and offer direction in the face of failures.

The Experiential Learning Model provides a means of incorporating new computer science

material into a classroom. Throughout these course-based research projects, we used

experiential learning to include testing practices into various courses in a computer

science curriculum. We were able to improve feedback to students and provide testing

experiences similar to industry. Our results showed that the course changes improved

98

student understanding. When examined together, these projects provided insight into

building strong testing practices into a curriculum. We used the ELM to provide testing

experiences; however, understanding experiential learning can provide insights into many

other aspects of the Computer Science curriculum.

99

References

[1] A. M. Aiken. MOSS: A system for detecting software plagiarism. http://

theory.stanford.edu/~aiken/moss/, 1994.

[2] A. Allowatt and S. H. Edwards. IDE support for test-driven development and

automated grading in both Java and C++. In Proceedings of the 2005 OOPSLA

Workshop on Eclipse Technology Exchange, Eclipse ’05, pages 100–104, New York,

NY, USA, 2005. ACM.

[3] R. Arora, P. Bangalore, and M. Mernik. Developing scientific applications using

generative programming. In Proceedings of the 2009 ICSE Workshop on Software

Engineering for Computational Science and Engineering, SECSE ’09, pages 51–58,

Washington, DC, USA, 2009. IEEE Computer Society.

[4] G. Attardi, A. Cisternino, and A. Kennedy. CodeBricks: Code fragments as building

blocks. In Proceedings of the 2003 ACM SIGPLAN Workshop on Partial Evaluation

101

http://theory.stanford.edu/~aiken/moss/
http://theory.stanford.edu/~aiken/moss/

and Semantics-Based Program Manipulation, PEPM ’03, pages 66–74, New York,

NY, USA, 2003. ACM.

[5] E. G. Barriocanal, M. Ángel Sicilia Urbán, I. A. Cuevas, and P. D. Pérez.

An experience in integrating automated unit testing practices in an introductory

programming course. SIGCSE Bull., 34(4):125–128, dec 2002.

[6] Beck. Test Driven Development: By Example. Addison-Wesley Longman Publishing

Co., Inc., Boston, MA, USA, 2002.

[7] K. Beck. JUnit: Resources for test driven development. http://www.junit.

org/, 1994.

[8] A. Begel and B. Simon. Struggles of new college graduates in their first software

development job. In SIGCSE ’08: Proceedings of the 39th SIGCSE Technical

Symposium on Computer Science Education, pages 226–230, New York, NY, USA,

2008. ACM.

[9] B. Beizer. Software System Testing and Quality Assurance. Van Nostrand Reinhold

Co., New York, NY, USA, 1984.

[10] A. Bertolino. Software testing research: Achievements, challenges, dreams. In 2007

Future of Software Engineering, FOSE ’07, pages 85–103, Washington, DC, USA,

2007. IEEE Computer Society.

102

http://www.junit.org/
http://www.junit.org/

[11] S. Brandle. Automated grading of student programming assignments. J. Comput.

Small Coll., 25:83–84, Oct 2009.

[12] C. Brown. Exploring cooperative learning in an introductory computer programming

course using visual basic. Master’s thesis, University of Missouri-Rolla, Dec. 2005.

[13] C. Brown and R. Pastel. Combining distinct graduate and undergraduate HCI courses:

An experiential and interactive approach. In Proceedings of the 40th ACM Technical

Symposium on Computer Science Education, SIGCSE ’09, pages 392–396, New

York, NY, USA, 2009. ACM.

[14] C. Brown, R. Pastel, M. Seigel, C. Wallace, and L. Ott. Adding unit test experience

to a usability centered project course. In Proceedings of the 45th ACM Technical

Symposium on Computer Science Education, SIGCSE ’14, New York, NY, USA,

2014. ACM.

[15] C. Brown, R. Pastel, B. Siever, and J. Earnest. JUG: A JUnit generation, time

complexity analysis and reporting tool to streamline grading. In Proceedings of the

17th ACM annual conference on Innovation and Technology in Computer Science

Education, ITiCSE ’12, pages 99–104, New York, NY, USA, 2012. ACM.

[16] M.-F. Chen. Integrate experiential learning to simulate a website design project

process. In ACM SIGGRAPH 2008 Talks, SIGGRAPH ’08, pages 15:1–15:1, New

York, NY, USA, 2008. ACM.

103

[17] N. Clark. Peer testing in software engineering projects. In Proceedings of the Sixth

Australasian Conference on Computing Education - Volume 30, ACE ’04, pages

41–48, Darlinghurst, Australia, Australia, 2004. Australian Computer Society, Inc.

[18] D. Crockford. JavaScript Object Notation (JSON). http://www.json.org/,

2006.

[19] K. Czarnecki and U. W. Eisenecker. Generative Programming: Methods, Tools, and

Applications. ACM Press/Addison-Wesley Publishing Co., New York, NY, USA,

2000.

[20] A. M. R. da Cruz and J. ao Pascoal Faria. A metamodel-based approach for automatic

user interface generation. In Proceedings of the 13th International Conference on

Model Driven Engineering Languages and Systems: Part I, MODELS’10, pages

256–270, Berlin, Heidelberg, 2010. Springer-Verlag.

[21] S. H. Edwards. Improving student performance by evaluating how well students test

their own programs. J. Educ. Resour. Comput., 3(3), Sept. 2003.

[22] S. H. Edwards and M. A. P.-Q. nones. Experiences using test-driven development

with an automated grader. J. Comput. Small Coll., 22:44–50, Jan 2007.

[23] S. H. Edwards and M. A. Perez-Quinones. Web-CAT: Automatically grading

programming assignments. In Proceedings of the 13th Annual Conference on

Innovation and Technology in Computer Science Education, ITiCSE ’08, pages

328–328, New York, NY, USA, 2008. ACM.

104

http://www.json.org/

[24] H. Erdogmus, M. Morisio, and M. Torchiano. On the effectiveness of the

test-first approach to programming. Software Engineering, IEEE Transactions on,

31(3):226–237, mar 2005.

[25] S. Fraser, K. Beck, B. Caputo, T. Mackinnon, J. Newkirk, and C. Poole. Test driven

development (TDD). In Proceedings of the 4th International Conference on Extreme

Programming and Agile Processes in Software Engineering, XP’03, pages 459–462,

Berlin, Heidelberg, 2003. Springer-Verlag.

[26] E. F. Gehringer, K. Deibel, J. Hamer, and K. J. Whittington. Cooperative learning:

Beyond pair programming and team projects. SIGCSE Bull., 38(1):458–459, 2006.

[27] M. H. Goldwasser. A gimmick to integrate software testing throughout the

curriculum. SIGCSE Bull., 34:271–275, Mar 2002.

[28] Google. Android software developer kit. http://developer.android.com/about, 2009.

[29] P. Grigorenko, A. Saabas, and E. Tyugu. Visual tool for generative programming.

In Proceedings of the 10th European Software Engineering Conference Held Jointly

with 13th ACM SIGSOFT International Symposium on Foundations of Software

Engineering, ESEC/FSE-13, pages 249–252, New York, NY, USA, 2005. ACM.

[30] B. Hartfield, T. Winograd, and J. Bennett. Learning HCI design: Mentoring project

groups in a course on human-computer interaction. SIGCSE Bull., 24(1):246–251,

1992.

105

[31] F. Heidenreich, J. Johannes, M. Seifert, C. Wende, and B. Marcel. Generating safe

template languages. SIGPLAN Not., 45:99–108, Oct 2009.

[32] J. Hollingsworth. Automatic graders for programming classes. Commun. ACM,

3:528–529, Oct 1960.

[33] D. L. Holt, J. Godfrey, and S. Michael. The case against cooperative learning. Issues

in Accounting Education, 12(1):191–193, 1997.

[34] M. J. Hull, D. Powell, and E. Klein. Infandango: Automated grading for student

programming. In Proceedings of the 16th Annual Joint Conference on Innovation

and Technology in Computer Science Education, ITiCSE ’11, pages 330–330, New

York, NY, USA, 2011. ACM.

[35] P. Ihantola, T. Ahoniemi, V. Karavirta, and O. Seppälä. Review of recent systems for

automatic assessment of programming assignments. In Proceedings of the 10th Koli

Calling International Conference on Computing Education Research, Koli Calling

’10, pages 86–93, New York, NY, USA, 2010. ACM.

[36] D. W. Johnson, R. T. Johnson, and K. A.Smith. Active Learning: Cooperation in the

College Classroom. Interaction Book Company, 1991.

[37] R. R. Johnson. User-Centered Technology: A Rhetorical Theory for Computers and

Other Mundane Artifacts. State University of New York Press, 1998.

106

[38] C. Kaner and S. Padmanabhan. Practice and transfer of learning in the teaching of

software testing. In Proceedings of the 20th Conference on Software Engineering

Education & Training, CSEET ’07, pages 157–166, Washington, DC, USA, 2007.

IEEE Computer Society.

[39] J. Kasurinen, O. Taipale, and K. Smolander. Software test automation in practice:

empirical observations. Adv. Soft. Eng., 2010:4:1–4:13, Jan. 2010.

[40] D. G. Kay. Large introductory computer science classes: Strategies for effective

course management. SIGCSE Bull., 30:131–134, Mar 1998.

[41] D. G. Kay, T. Scott, P. Isaacson, and K. A. Reek. Automated grading assistance

for student programs. In Proceedings of the Twenty-Fifth SIGCSE Symposium on

Computer Science Education, SIGCSE ’94, pages 381–382, New York, NY, USA,

1994. ACM.

[42] D. A. Kolb. Experiential Learning: Experience as the Source of Learning and

Development. Prentice Hall, Englewood Cliffs, NJ, 1984.

[43] H. Koppelman and B. van Dijk. Creating a realistic context for team projects in HCI.

SIGCSE Bull., 38(3):58–62, 2006.

[44] A. F. Kramer and R. M. Schumacher. Laboratory exercises for a

graduate/undergraduate course in human-computer interaction. SIGCHI Bull.,

21(3):71–75, 1990.

107

[45] J. Lazar, J. Preece, J. Gasen, and T. Winograd. New issues in teaching HCI: Pinning a

tail on a moving donkey. In CHI ’02: CHI ’02 Extended Abstracts on Human Factors

in Computing Systems, pages 696–697, New York, NY, USA, 2002. ACM.

[46] B. Lea and C. Brown. A cooperative lecture style and student learning in an

introductory computer programming course. International Journal of Innovation and

Learning, 6(2):192–216, jan 2009.

[47] L. M. Leventhal, J. Barnes, and J. Chao. Term project user interface specifications

in a usability engineering course: Challenges and suggestions. In SIGCSE

’04: Proceedings of the 35th SIGCSE Technical Symposium on Computer Science

Education, pages 41–45, New York, NY, USA, 2004. ACM.

[48] Y.-K. Lim, A. Pangam, S. Periyasami, and S. Aneja. Comparative analysis of high-

and low-fidelity prototypes for more valid usability evaluations of mobile devices.

In NordiCHI ’06: Proceedings of the 4th Nordic Conference on Human-Computer

Interaction, pages 291–300, New York, NY, USA, 2006. ACM.

[49] Y.-K. Lim, E. Stolterman, and J. Tenenberg. The anatomy of prototypes: Prototypes

as filters, prototypes as manifestations of design ideas. ACM Trans. Comput.-Hum.

Interact., 15(2):1–27, 2008.

[50] J. Link and P. Frolich. Unit Testing in Java: How Tests Drive the Code. Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA, 2003.

108

[51] Z. Liu, G. Yang, and L. Cai. Test Suite Cooperative Framework on Software

Quality. In Proceedings of the 6th international conference on Cooperative design,

visualization, and engineering, CDVE’09, pages 289–292, Berlin, Heidelberg, 2009.

Springer-Verlag.

[52] L. Malmi, V. Karavirta, A. Korhonen, and J. Nikander. Experiences on automatically

assessed algorithm simulation exercises with different resubmission policies. J. Educ.

Resour. Comput., 5, Sep 2005.

[53] V. Massol and T. Husted. JUnit in Action. Manning Publications Co., Greenwich,

CT, USA, 2003.

[54] A. Mayer, R. Pastel, C. Wallace, S. Oppliger, and R. Donovan. Environmental

cybercitizens: Engaging citizen scientists in global environmental change through

crowdsensing and visualization. http://www.nsf.gov/awardsearch/

showAward?AWD_ID=1135523, 2011.

[55] D. S. McCrickard, C. M. Chewar, and J. Somervell. Design, science, and engineering

topics?: Teaching HCI with a unified method. In SIGCSE ’04: Proceedings of the

35th SIGCSE Technical Symposium on Computer Science Education, pages 31–35,

New York, NY, USA, 2004. ACM.

[56] M. McCurdy, C. Connors, G. Pyrzak, B. Kanefsky, and A. Vera. Breaking the fidelity

barrier: An examination of our current characterization of prototypes and an example

of a mixed-fidelity success. In CHI ’06: Proceedings of the SIGCHI Conference on

109

Human Factors in Computing Systems, pages 1233–1242, NewYork, NY, USA, 2006.

ACM.

[57] A. Mockus, R. T. Fielding, and J. D. Herbsleb. Two case studies of open source

software development: Apache and mozilla. ACM Trans. Softw. Eng. Methodol.,

11(3):309–346, July 2002.

[58] MTU. Scientific and Technical Communication Courses. http://www.mtu.

edu/humanities/undergraduate/stc/courses/, 2013.

[59] I. Newton. Philosophiae Naturalis Principia Mathematica. J. Societatis Regiae ac

Typis J. Streater, 1687.

[60] J. Nielsen. Heuristic evaluation. pages 25–62, 1994.

[61] R. Pastel. Integrating science and research in a HCI design course. In Proceedings

of the 36th SIGCSE Technical Symposium on Computer Science Education, SIGCSE

’05, pages 31–35, New York, NY, USA, 2005. ACM.

[62] R. Pastel. Student assessment of group laboratories in a data structures course.

Journal Computer Science Colliquim, 22(1):221–230, Oct. 2006.

[63] R. Pastel. Cs 4760. http://www.csl.mtu.edu/cs4760/www/, may 2008.

[64] R. Pastel, C. Brown, M. Woller-Carter, and S. Kumar. Teaching human factors to

graduate and undergraduate computer science students. In Proceedings of the Human

Factors and Ergonomics Society Annual Meeting, volume 56, pages 595–599.

110

http://www.mtu.edu/humanities/undergraduate/stc/courses/
http://www.mtu.edu/humanities/undergraduate/stc/courses/

[65] J. B. Rainsberger and S. Stirling. JUnit Recipes: Practical Methods for Programmer

Testing. Manning Publications Co., Greenwich, CT, USA, 2004.

[66] M. Sabin. A collaborative and experiential learning model powered by real-world

projects. In Proceedings of the 9th ACM SIGITE Conference on Information

Technology Education, SIGITE ’08, pages 157–164, New York, NY, USA, 2008.

ACM.

[67] D. Saff and M. D. Ernst. An experimental evaluation of continuous testing during

development. In Proceedings of the 2004 ACM SIGSOFT International Symposium

on Software Testing and Analysis, ISSTA ’04, pages 76–85, New York, NY, USA,

2004. ACM.

[68] M. Schlee and J. Vanderdonckt. Generative programming of graphical user interfaces.

In Proceedings of the Working Conference on Advanced Visual Interfaces, AVI ’04,

pages 403–406, New York, NY, USA, 2004. ACM.

[69] J. Smith, J. Tessler, E. Kramer, and C. Lin. Using peer review to teach software

testing. In Proceedings of the Ninth Annual International Conference on International

Computing Education Research, ICER ’12, pages 93–98, New York, NY, USA, 2012.

ACM.

[70] S. Thummalapenta, P. Devaki, S. Sinha, S. Chandra, S. Gnanasundaram, D. D.

Nagaraj, and S. Sathishkumar. Efficient and change-resilient test automation: an

industrial case study. In Proceedings of the 2013 International Conference on

111

Software Engineering, ICSE ’13, pages 1002–1011, Piscataway, NJ, USA, 2013.

IEEE Press.

[71] A. Venables and L. Haywood. Programming students NEED instant feedback! In

Proceedings of the Fifth Australasian Conference on Computing Education - Volume

20, ACE ’03, pages 267–272, Darlinghurst, Australia, Australia, 2003. Australian

Computer Society, Inc.

[72] J. Wagner, D. Boisvert, J.-P. Kuilboer, J. Keisler, and P. Bharati. Cross-functional

concentrations merge IT and business concepts. In SIGITE ’05: Proceedings of the

6th Conference on Information Technology Education, pages 179–184, New York,

NY, USA, 2005. ACM.

[73] K. M. Whicker. Cooperative Learning in the Secondary Mathematics Classroom.

University of Memphis, 1995.

[74] M. J. Willshire. A usability focus for an HCI project. J. Comput. Small Coll.,

17(2):50–58, 2001.

[75] T. Xie, J. de Halleux, N. Tillmann, and W. Schulte. Teaching and training

developer-testing techniques and tool support. In Proceedings of the ACM

International Conference Companion on Object Oriented Programming Systems

Languages and Applications Companion, SPLASH ’10, pages 175–182, New York,

NY, USA, 2010. ACM.

112

[76] A.-U.-H. Yasar. Enhancing experience prototyping by the help of mixed-fidelity

prototypes. In Mobility ’07: Proceedings of the 4th International Conference on

Mobile Technology, Applications, and Systems and the 1st International Symposium

on Computer Human Interaction in Mobile Technology, pages 468–473, New York,

NY, USA, 2007. ACM.

113

Appendix A

JUG Survey Questions

Students were told to rate each of the following questions based their impact of your

learning process.

1. Did having frequent assignments (1 / week) help better your understanding?

Very Unhelpful Unhelpful Moderately Helpful Very Helpful

2. Was the difficulty and quantity of code required helpful in your learning?

Very Unhelpful Unhelpful Moderately Helpful Very Helpful

3. Did implementing Data Structures (i.e. Sequences, Queues, Maps, Graphs) help you

better understand those Data Structures?

Very Unhelpful Unhelpful Moderately Helpful Very Helpful

115

4. Did using the Data Structures to Build Algorithms (i.e. Sorting or

BeigeChartreusePages) help you better understand those Data Structures?

Very Unhelpful Unhelpful Moderately Helpful Very Helpful

5. Did programmatic analysis of your code (to create Time Plots) help you better

understand the different time complexities better?

Very Unhelpful Unhelpful Moderately Helpful Very Helpful

6. Did you find that programming to an interface and Unit Tests helped you better

understand the purpose and use of those Data Structures?

Very Unhelpful Unhelpful Moderately Helpful Very Helpful

7. Did annotating and justifying your time and space complexities help you

better understand the strengths and weaknesses of different Data Structure

implementations?

Very Unhelpful Unhelpful Moderately Helpful Very Helpful

8. Are there any aspects of Data Structures that you feel would be good additions to the

course?

9. Are there any specific assignments that you feel were particularly unhelpful?

10. Do you have any additional comments concerning the assignments?

The Auto-Grader and Program Reports

116

Rate each of the following questions based on your perceptions of the grading process.

1. How often did you resubmit your program to attempt to get a better grade?

Infrequently Not often Sometimes Often Frequently

2. How often did the resubmission improve your grade?

Infrequently Not often Sometimes Often Frequently

3. How often did you only make a first submission (without penalty)?

Infrequently Not often Sometimes Often Frequently

4. How often did you only make a second submission (at a -10 penalty)?

Infrequently Not often Sometimes Often Frequently

5. Did the auto-graded tests match your expectations of the requirements?

Infrequently Not often Sometimes Often Frequently

6. Did the preliminary reports (the auto-grader) provide clarification on how your code

should behave?

Infrequently Not often Sometimes Often Frequently

7. How much time (in hours) do you think is appropriate for an assignment?

8. About how much time (in hours) do you think you spent on each assignments for this

course?

117

9. How many days would you expect to have between the return of the auto-graded

report and the due date for resubmission?

10. How many days would you expect between the resubmission and the hand-graded

report?

11. Do you have any additional comments concerning the grade reports?

118

Appendix B

Combined Course Undergraduate

Interview Notes

Each interview was scheduled for approximately 30 minutes. The interview was structured

with 5 sections, directed by questions (enumerated below). Dr. Robert Pastel and

Christopher Brown were present for the entire interview. Student names have been removed

for anonymity.

B.1 Interview Questions

1. What do you think of the pace of the course so far? Why do you feel this way?

119

2. What aspects of your project has working with the graduate students made you aware

of or focused on?

3. How has the "expert" design documentation (the graduate reports) influenced your

design process?

4. What limitations has your project experienced as a result of the graduate interaction?

5. Do you have any suggestions for improving the course in the future?

B.2 Interview Notes

B.2.1 Portable Beer Pong Scorer

What do you think of the pace of the course so far? Why do you feel this way?

The course had a pretty good pace; it wasn’t over or underwhelming; everything was

realistic

The deadlines were confusing, especially when the graduate students were supposed to

have things due.

120

What aspects of your project has working with the graduate students made you aware

of or focused on?

The User task analysis with the graduate student helped with scenarios and use cases.

The graduate student helped us specify our design.

How has the "expert" design documentation (the graduate reports) influenced your

design process?

One graduate student’s Heuristic Evaluation had us repeating "remember the simplicity"

What limitations has your project experienced as a result of the graduate interaction?

Minor slowdowns from communication.

Do you have any suggestions for improving the course in the future?

Get a real device - recommend developer phones for each group about 130 dollars per

phone (this group used their own personal phone to program the assignment)

121

B.2.2 Groove-on-the-Move

What do you think of the pace of the course so far? Why do you feel this way?

"The course was a little fast-paced" There was little time between presentation and review.

What aspects of your project has working with the graduate students made you aware

of or focused on?

We were forced to re-explain the same thing.

Describing it helped bring it into focus.

How has the "expert" design documentation (the graduate reports) influenced your

design process?

Provided clarification.

There were 12 action items, including no shuffle/repeat

There were also 5-6 changes added

122

What limitations has your project experienced as a result of the graduate interaction?

Slowed down the process. The Heuristic Evaluation was too late - after the group meeting.

Do you have any suggestions for improving the course in the future?

Scheduling and forcing us to read the User Task Goal Analysis and Heuristic Evaluation.

B.2.3 Location Aware Remote Control (LARC)

What do you think of the pace of the course so far? Why do you feel this way?

Steady pace of work assigned

there was a good amount of paperwork

What aspects of your project has working with the graduate students made you aware

of or focused on?

one graduate student really helped them outside of the work in meetings

helped shape the direction of the project

123

How has the "expert" design documentation (the graduate reports) influenced your

design process?

Heuristic Evaluation helped a lot

At this point, the students asked about the final paperwork schedule, deterring from the

interview structure.

What limitations has your project experienced as a result of the graduate interaction?

made focus better

(This was not a negative comment—they started talking about the limitations of the device.

When asked again about limitations caused by graduate interaction, they were confused, so

we moved on)

Do you have any suggestions for improving the course in the future?

Clarity of the extent of the implementation

Design is not everything

124

B.2.4 Mini-Mote

What do you think of the pace of the course so far? Why do you feel this way?

The focus of the course was on the design of the interface, there was no reinforcement of

reading.

There was no rushing of the meat of the course.

The course was slow during the last two weeks of presentations and interviews.

What aspects of your project has working with the graduate students made you aware

of or focused on?

We didn’t work with one graduate student.

One graduate student provided good information.

The third graduate student did not provide much feedback.

125

How has the "expert" design documentation (the graduate reports) influenced your

design process?

“They [the graduates] had good ideas and helped make our project a little better. They were

sort of like the customer: they had a unique perspective that we maybe wouldn’t have come

up with ourselves.”

The user task goal analysis made us aware that we had a lot and needed to narrow the focus.

What limitations has your project experienced as a result of the graduate interaction?

not really - the graduate interaction only really helped

Do you have any suggestions for improving the course in the future?

TDA produced a lot of limitations; it is too restrictive.

There should be more leniency or the restrictions more relaxed.

We should choose one of a few project choices for size [scope]

126

B.2.5 MP3 Stingray

This interview was quite short - students were not responsive to probing questions.

What do you think of the pace of the course so far? Why do you feel this way?

Not rushed and not too much work.

What aspects of your project has working with the graduate students made you aware

of or focused on?

fleshing out the ideas of how to do it differently

improved upon our design

How has the "expert" design documentation (the graduate reports) influenced your

design process?

"not much"

127

What limitations has your project experienced as a result of the graduate interaction?

"Not really"

Do you have any suggestions for improving the course in the future?

the course was a neat idea

B.2.6 Run Tracker

What do you think of the pace of the course so far? Why do you feel this way?

The pace was good.

The setup was beneficial and the lectures are helping

What aspects of your project has working with the graduate students made you aware

of or focused on?

One graduate student gave tips to help focus on the user.

With new graduate students, we had to explain the project differently.

128

How has the "expert" design documentation (the graduate reports) influenced your

design process?

"It allowed us to push forward once we came up with the task."

Focus on the user.

What limitations has your project experienced as a result of the graduate interaction?

"Not really"

Do you have any suggestions for improving the course in the future?

More interaction.

Allow time after testing to complete implementation.

129

B.2.7 TDA Map

What do you think of the pace of the course so far? Why do you feel this way?

The course was too slow.

When able to meet, met for 1:30

The course was too fast when we couldn’t meet

The first few weeks we didn’t do much, it was just presentations and interviews.

Assignments are good.

What aspects of your project has working with the graduate students made you aware

of or focused on?

Nothing.

Received some positive feedback, such as noting that buttons should be changed.

Also received some negative comments which were unhelpful.

130

How has the "expert" design documentation (the graduate reports) influenced your

design process?

The documentation forced us to get things done, but hasn’t made the design better.

What limitations has your project experienced as a result of the graduate interaction?

We had delays while waiting for them [graduate students] and them waiting for us.

Do you have any suggestions for improving the course in the future?

Less waiting on others

Didn’t know who to work with

less assignments

The course is lacking in material

There should just be testable material

Improve the clarity of grad students assignments

131

Appendix C

Combined Course Graduate Interview

Notes

Each interview was scheduled for approximately 30 minutes. The interview was structured

with 5 sections, directed by questions (enumerated below). Dr. Robert Pastel and

Christopher Brown were present for the entire interview. Student names have been removed

for anonymity. One graduate student stopped participating in the course and did not do a

final interview.

133

C.1 Interview Questions

1. What do you think of the pace of the course so far? Why do you feel this way?

2. Do you feel that the suggestions and documentation have influenced the groups’

design decisions?

3. Do you feel that you have been getting adequate information about the projects

during the group meetings?

4. Have you experienced any difficulties working with group projects?

5. Do you have any suggestions for improving the course in the future?

C.2 Interview Notes

C.2.1 Graduate Student 1

This student took the undergraduate course the previous year.

134

What do you think of the pace of the course so far? Why do you feel this way?

Pace is fine

It seems like the groups met too much with graduate students.

Got a lot out of XWin in 1 lecture than 3 from last year.

Arrange more work for checkpoints (quizzes)

Do you feel that the suggestions and documentation have influenced the groups’ design

decisions?

In general, don’t know; iterations are so different its hard to tell what the cuases were

design presentation was a surprise

didn’t have much ability to change from association in design phase

Do you feel that you have been getting adequate information about the projects during

the group meetings?

all of them fleshed out in the first week or two

BeerPong wasn’t engaged in the first few design interviews, but going to implement

135

others’ implementation will be tough

Have you experienced any difficulties working with group projects?

none - groups seem to be having a blast.

Limiting to the TDA encourages creativity

Do you have any suggestions for improving the course in the future?

schedule is ambiguous - add more preparation for lecture want to do more (daily) - work

toward goal of usability testing

C.2.2 Graduate Student 2

This student was very interested in the research and was considering expanding on the ideas

from the course

136

What do you think of the pace of the course so far? Why do you feel this way?

I feel that it is consistent with the pace of the undergraduates ability to learn

Graduate student schedule is hectic - wait then rush, but not as much as other classes

samples were good - hard to understand some assignments

Do you feel that the suggestions and documentation have influenced the groups’ design

decisions?

yes - looked at mini-mote and stingray: what they were doing was improvement on existing

tapped into experience consistent with existing implementation

recommendation in planning - think about who would benefit

Do you feel that you have been getting adequate information about the projects during

the group meetings?

I believe that the grads ability to get information depends on the graduate student.

tried to engage in conversation

useful for both

137

parlay into reflective thought

looked at interaction as leadership rather than graduate student with information

some other grads treated the interviews as "just tell me what I need"

Have you experienced any difficulties working with group projects?

Run Tracker - positive and receptive Stingray - not as much back & forth - more defensive

Mini-Mote - lazy and unmotivated - had to halt group talking - unresponsive

Do you have any suggestions for improving the course in the future?

lectures could fit more with course

cut XLib

gestalt pictures were fun

read ahead for more participation

graduate student interaction meeting with different groups

not much interest in concept of doing expansion of UG assignments

better fit to paradigm of close interactions

138

biggest problem - participation beat apathy with regular reinforcement

C.2.3 Graduate Student 3

This student had taken the previous undergraduate HCI course

What do you think of the pace of the course so far? Why do you feel this way?

slow - assignments seem to be well paced and don’t take too much time

Do you feel that the suggestions and documentation have influenced the groups’ design

decisions?

gives a slightly different take to what they were going to do - tweaked

Do you feel that you have been getting adequate information about the projects during

the group meetings?

yes - should have diagrams of design storyboard

139

Have you experienced any difficulties working with group projects?

no

Do you have any suggestions for improving the course in the future?

no lectures on HCI stuff they would apply to their projects

touchscreen usage

don’t feel involved in class

C.2.4 Graduate Student 4

What do you think of the pace of the course so far? Why do you feel this way?

good (enough time) to slow (more than enough time)

140

Do you feel that the suggestions and documentation have influenced the groups’ design

decisions?

no, didn’t implement

ignored or didn’t read documentation

Do you feel that you have been getting adequate information about the projects during

the group meetings?

for some groups (TDA, UTG, Mini-mote) good information

Groove-on-the-Move did not provide enough information

Have you experienced any difficulties working with group projects?

no - it was very good

Do you have any suggestions for improving the course in the future?

communication with groups

clear expectations, especially about assignments

141

C.2.5 Graduate Student 5

What do you think of the pace of the course so far? Why do you feel this way?

its good - lots of interesting information

Do you feel that the suggestions and documentation have influenced the groups’ design

decisions?

not much - first usability goals, not much data

Do you feel that you have been getting adequate information about the projects during

the group meetings?

yes, Heuristic Evaluation problems with groups didn’t understand

Have you experienced any difficulties working with group projects?

none

142

Do you have any suggestions for improving the course in the future?

should be more assignments

C.2.6 Graduate Student 6

What do you think of the pace of the course so far? Why do you feel this way?

going smooth - no problems

Do you feel that the suggestions and documentation have influenced the groups’ design

decisions?

yes, helped UTG and LARC

Do you feel that you have been getting adequate information about the projects during

the group meetings?

yes, from website mainly

143

Have you experienced any difficulties working with group projects?

no

Do you have any suggestions for improving the course in the future?

none

144

Appendix D

Unit Test Experience Interview Notes

Each interview was scheduled for approximately 30 minutes and was recorded. A second

researcher, asking questions about a different subject, was also present. The group members

were assured that the recording was for the use of the researchers only, and would not be

distributed to additional parties. A series of questions were asked during the interview

to encourage discussion on unit testing through their project. Included are notes of the

discussion taken during the interview and after reviewing the recording. Student names

have been removed for anonymity.

145

D.1 Interview Questions

1. Describe the unit testing you did and how you wrote unit tests.

2. Describe how your unit tests were run, and how often.

3. What types of functionality problems did you encounter during usability testing?

4. What was your biggest obstacle for writing unit tests?

5. What did you learn from writing unit tests?

D.2 Interview Notes

D.2.1 Beach

What do you think of the pace of the course so far? Why do you feel this way?

This group did not write automated unit tests.

Because of the lack of unit testing, later questions were asked in a different order.

146

What was your biggest obstacle for writing unit tests?

The group had difficulties doing unit testing due to anonymous classes for buttons and text

fields.

Their project would generate references "on the fly", which they could not access within a

unit test.

What types of functionality problems did you encounter during usability testing?

Email field didn’t do anything - data was not passed correctly

GPS entry didn’t work

There was code to do the GPS entry, but it didn’t work in conjunction with the back button

The program lagged when scrolling through list of data.

Describe how your unit tests were run, and how often.

: The group tested their program by running through process regularly throughout

development.

They needed to use a real phone because emulator couldn’t send e-mails.

Their tests involved setting up beaches with a large number of variables, enter them and

147

send as e-mail.

They would try to break the application. For instance, they would enter a beach, delete it,

then create another with the same name.

Constantly through development, when making a change, they would try to find ways to

break it.

What did you learn from writing unit tests?

: Emulator takes quite a while to load.

With dynamic xml testing, they recognized that a new project with knowledge of unit

testing ahead of time, they would ensure a way to access that data.

They barely finished their project in time.

Dynamic generation is very difficult - Pastel said it would be hard, but they shrugged off -

turned out to be hard.

148

D.2.2 Lichen

What do you think of the pace of the course so far? Why do you feel this way?

Requested Filtration system - was "axed".

Scientist cut number of lichens so that filtration was unnecessary.

Different aspect.

"play" with unit test.

one unit test

compound component which had to inflate

unit tests to ensure that it received the proper input

Describe how your unit tests were run, and how often.

created the component, generated the values expected.

ran using eclipse

frequency: just during development of that page.

ran 3 times over the course of 1 day.

149

What types of functionality problems did you encounter during usability testing?

errors in implementation

bugs - sensitivity of slider bar

two applications - one on morph page, one on species

species page

large list - scroll down and scroll up, input is gone and data underneath would randomize

back button didn’t go back - moved to whatever was selected

activity would crash and bring you to previous page

return to start crashed

What was your biggest obstacle for writing unit tests?

not familiar with unit tests

courses that familiarized with unit testing

knowing what to unit test

could not unit test - buttons forward/back, unit GPS (lock on)

150

plans to unit test list view/adapter

What did you learn from writing unit tests?

handy - way eclipse - passes data to tests

it could handle unit tests without launching emulator, which is slow and clunky

Extra Discussion

Due to some extra time waiting for the other interviewer, we chatted a little more about unit

testing)

Students asked about interface objects that require checking a click event (from response

to question 4), how do you test it?

Interviewer explained that for a click event or other required action, unit tests should fake

the event. First, the test should load the initial page, send the event, then see what the state

is next. Unit tests can be broken down to a lot of different levels, but essentially, a unit test

is designed to create a state as setup, do something, then check the system state afterward.

151

Students asked about using a unit test to "fake" GPS coordinates. Interviewer did not know

technical details about unit testing with an Android’s GPS.

Students asked about unit testing the layout of an activity. Interviewer explained that this is

not possible, because there must be a visual inspection based on the intent of the designer.

In the same way, usability tests are dissimilar to unit tests, since the latter can only test

specific functionality, not general usage.

D.2.3 ROV

This group did not participate in usability testing, and did not "test" their program due to

inadequate support from their scientist (customer). Therefore, Questions 2–4 were skipped,

and question 5 referred to previous experiences with unit testing (including the classroom

exercise).

What do you think of the pace of the course so far? Why do you feel this way?

Group wasn’t able to implement any unit testing - requested testing was on signals sent to

motor.

Group wasn’t able to hook up to ROV.

152

Group didn’t write unit tests for anything.

The project consists of one main file.

The main program relied on video coming from a laptop that didn’t have access to.

They were to generate signals to send to ROV, but had no access to the ROV unit.

They did not do usability test for same reasons.

What did you learn from writing unit tests?

Some of the group members had done unit testing before in other courses, including:

Software Quality Assurance and Team Software Project.

When asked about the experience earlier in the course, none of the group members

remembered the unit test assignment.

D.2.4 Stream Features

What do you think of the pace of the course so far? Why do you feel this way?

This group wrote JUnit tests for their database.

This was the largest piece of their project.

They were asked not to do unit testing on their listview, but that aspect of the program

153

wasn’t included in the final product.

When asked about process, one student said they wrote all the tests, as the "only one who

knew anything about databases."

At the time of writing tests, that student wasn’t sure about the other Activities being

designed for the application. However, they did know what Database function calls would

be, and that it needed to be able to delete rows and create rows on various tables. The

program also needed to recursively create and delete rows in response to modifications in

other tables.

Describe how your unit tests were run, and how often.

The group used JUnit through Eclipse.

They ran the code initially without unit tests to ensure that it was connecting correctly.

They made the Database class, and ran unit tests by calling methods directly.

As activites were put in, those activities would call Database functions indirectly.

Unit tests were run during development as various methods were used.

154

What types of functionality problems did you encounter during usability testing?

no functionality problems - cosmetic problems filed bug reports based on layout designs

the DB is pretty much the entire project

What was your biggest obstacle for writing unit tests?

relearning JUnit done in a previous class

only a few test cases failed initially - fixed

classes that you’ve seen unit testing? Team Software Project

What did you learn from writing unit tests?

really useful for testing SQL-like interfaces, since difficult to look at rows of DB feel like

sometimes JUnit testing is a lot of work that doesn’t pay off other times if you set it up

correctly / something that needs test cases

155

D.2.5 Tracker

*? This group wrote their tests after the usability testing

What do you think of the pace of the course so far? Why do you feel this way?

Text export of routes, data going in matched data coming out of file

wrote based on expandable list object. used generics with export activity scanned output

file - ensured that every output was the same as input

Describe how your unit tests were run, and how often.

eclipse to run

just a couple times at the end

What types of functionality problems did you encounter during usability testing?

2 menus that show up on map. if both were open, they would overlap

156

delete a marker wouldn’t close marker dialog - had to click twice, then it would crash

program taking pictures added a secondmarker instead of adding to existing marker weren’t

getting source correctly for pictures

What was your biggest obstacle for writing unit tests?

familiarizing with unit testing (one person wrote all of them)

What did you learn from writing unit tests?

didn’t learn a lot about the App, just about writing unit tests

learned more about unit testing through lecture

supposed to test kmz exporting, but unable to implement

157

Appendix E

Unit Test Experience Survey Questions

CS4760 Class Testing Survey - Spring 2013

The purpose of this survey is to learn more about your experiences with combining Unit

Testing and Usability Testing. Please read each question carefully and answer them to the

best of your ability. Do not take this survey until usability testing of your app is complete.

During this survey, the following terms will be used:

† Activities: Single pages on the Android device which contribute to the main App.

† Usability Testing: Tests intended to identify usability issues in a user interface. This

primarily refers to the end-of-semester tests that were run by the graduate students in

159

CS 5760.

† Unit Testing: Any repeatable, self-contained test which verifies specific

functionality within a program.

† Test Driven Development (TDD): The practice of writing unit tests before

implementing the functionality that the tests are intended to verify.

Testing Practices prior to CS 4760

The questions in this section ask about projects you have worked on before taking CS

4760. You may recognize situations where you used testing practices without knowing the

terminology involved. Consider these situations when answering the questions, and please

do not consider projects that you worked on after beginning CS 4760.

Before participating in CS 4760, I have ________ participated in projects that used

Unit Testing practices.

1. never

2. seldom

3. occasionally

4. frequently

160

5. regularly

Before participating in CS 4760, I personally ____ write unit tests for projects.

1. never

2. seldom

3. occasionally

4. frequently

5. regularly

Before participating in CS 4760, I have ______ used Test Driven Development (TDD)

practices in projects (where unit tests were written before the functionality was

implemented).

1. never

2. seldom

3. occasionally

4. frequently

5. regularly

161

Unit Testing during CS 4760

The questions and statements in this section ask about specific aspects of Unit Testing

within the CS4760 HCI course. Please address your answers with respect to that specific

part of the course.

Which app did your group make?

† Beach

† Lichen

† ROV

† Stream Features

† Tracker

Were you responsible for writing Unit Tests for any activities?

† Yes

† No

What portion of your group’s project did you personally write unit tests for?

162

1. none

2. a few

3. half

4. most

5. all

Which Activities did you personally write a significant amount of code for?

Which Activities were not unit tested?

Approximately how many unit test methods did your group write for each Activity?

† none

† between 1 to 5

† between 6 to 10

† between 11 to 15

† between 16 to 20

† between 21 to 30

† between 31 to 40

163

† between 41 to 50

† more than 50

What portion of your group’s unit tests were written before the code (Test Driven

Development)?

1. none

2. a few

3. half

4. most

5. all

Bugs and Errors Discovered

The questions in this section refer to functionality problems discovered after the Final

Design Presentation, when the App is intended to be completely functional.

How many functionality problems were discovered before Usability Testing?

† none

164

† between 1 to 5

† between 6 to 10

† between 11 to 15

† between 16 to 20

† between 21 to 30

† between 31 to 40

† between 41 to 50

† more than 50

How many functionality problems were anticipated and fixed while writing Unit

Tests?

† none

† between 1 to 5

† between 6 to 10

† between 11 to 15

† between 16 to 20

† between 21 to 30

165

† between 31 to 40

† between 41 to 50

† more than 50

How many functionality problems were discovered during Usability Testing?

† none

† between 1 to 5

† between 6 to 10

† between 11 to 15

† between 16 to 20

† between 21 to 30

† between 31 to 40

† between 41 to 50

† more than 50

What portion of the functionality problems were discovered in Activities that had Unit

Tests?

166

1. none

2. a few

3. half

4. most

5. all

What portion of functionality problems were discovered in Activities that did not have

unit tests?

1. none

2. a few

3. half

4. most

5. all

Unit Tests vs Usability Tests

The following questions are to provide us with information on identifying the type of testing

to use in various situations. In these scenarios, a Unit Test is an automated program which

167

validates the functionality of a program. A Usability Test presents a paid test subject with

a scenario to evaluate usability concerns. 1

For these questions, imagine that you are contracted to create a website for a local business

that is building an online store to sell âĂIJknickknacksâĂİ. You have already negotiated

a price for the following items, with the understanding that you demonstrate that you have

completed each item.

On the main page there should be a set of featured product images which rotate every

hour or so. Clicking on the image should link to that products information page.

† Unit Tests

† Usability Tests

† Both Unit and Usability Tests

† Neither Unit Tests or Usability Tests

After a user logs in, they should be able to find purchase and tracking information

about a previous order that has already been filled.

† Unit Tests

1Expected answers are in italics, but were not in the original survey

168

† Usability Tests

† Both Unit and Usability Tests

† Neither Unit Tests or Usability Tests

Some of the gift items have custom text for them, specifically names and addresses

of the recipient. You are to have these text boxes propose Autofill suggestions with

common American names and streets.

† Unit Tests

† Usability Tests

† Both Unit and Usability Tests

† Neither Unit Tests or Usability Tests

You are given a paper brochure with descriptions of each of the products (these were

originally mailed to previous customers). The descriptions on the website for each

product should match the brochure’s description.

† Unit Tests

† Usability Tests

169

† Both Unit and Usability Tests

† Neither Unit Tests or Usability Tests

Since many of the items are non-traditional, it is difficult to categorize items.

Therefore, you have been asked to dynamically categorize items based on search terms

and purchase habits of customers. These categories should be provided as links to

groups of items, and be moved based on the frequency they are used.

† Unit Tests

† Usability Tests

† Both Unit and Usability Tests

† Neither Unit Tests or Usability Tests

General Testing

These questions are about your current opinions on unit testing and usability testing. They

also inquire about your expectations for future projects.

How necessary is Unit Testing to software development?

† A poor use of limited time

170

† An optional activity

† An activity required for only large projects

† An activity required for all projects

† A necessary step in all levels of development

How necessary is Usability Testing to user interface development?

† A poor use of limited time

† An optional activity

† An activity required for only large projects

† An activity required for all projects

† A necessary step in all levels of development

How necessary is Test Driven Development to software development?

† A poor use of limited time

† An optional activity

† An activity required for only large projects

171

† An activity required for all projects

† A necessary step in all levels of development

I will use Usability Testing when developing personal projects.

Please indicate your agreement to the above statement, where 1 means strongly disagree, 2

disagree, 3 neutral, 4 agree, and 5 strongly agree.

1. strongly disagree

2. disagree

3. neutral

4. agree

5. strongly agree

I will encourage the use of Usability Testing when developing professional projects.

Please indicate your agreement to the above statement, where 1 means strongly disagree, 2

disagree, 3 neutral, 4 agree, and 5 strongly agree.

1. strongly disagree

172

2. disagree

3. neutral

4. agree

5. strongly agree

I will use Unit Testing when developing personal projects.

Please indicate your agreement to the above statement, where 1 means strongly disagree, 2

disagree, 3 neutral, 4 agree, and 5 strongly agree.

1. strongly disagree

2. disagree

3. neutral

4. agree

5. strongly agree

I will encourage the use of Unit Testing when developing professional projects.

Please indicate your agreement to the above statement, where 1 means strongly disagree, 2

disagree, 3 neutral, 4 agree, and 5 strongly agree.

173

1. strongly disagree

2. disagree

3. neutral

4. agree

5. strongly agree

I will use Test Driven Development when developing personal projects.

Please indicate your agreement to the above statement, where 1 means strongly disagree, 2

disagree, 3 neutral, 4 agree, and 5 strongly agree.

1. strongly disagree

2. disagree

3. neutral

4. agree

5. strongly agree

I will encourage the use of Test Driven Development when developing professional

projects.

174

Please indicate your agreement to the above statement, where 1 means strongly disagree, 2

disagree, 3 neutral, 4 agree, and 5 strongly agree.

1. strongly disagree

2. disagree

3. neutral

4. agree

5. strongly agree

Open Ended Questions

Please write about specific concepts, examples and your feelings that apply for each

question. I recommend that you compose your answers in a separate document and then

paste them into the text field for each question.

Please write about any of your experiences where unit testing helped to improve the

code.

What were the most notable software bugs discovered during Usability Testing, and

how were they handled?

175

Was there any specific code that you thought should be unit tested and was not? Why

should it have been unit tested? Why wasn’t it?

Do you have any additional comments or thoughts on Unit Testing or Test Driven

Development?

176

Appendix F

Unit Test Experience Bug Reports

Note that since there were more graduate students than teams, the "Beach" application had

two graduate students assigned to do usability testing. In addition, each graduate student

was responsible for collecting bug reports and formatting them for their final report. The

reporting of the following bugs have been slightly modified from those original reports.

Names and e-mails have been removed.

F.1 Beach (Graduate Student 1)

Notes recorded by [one of the developers]

Auto get gps button does not work.

177

Gps doesn’t update on some phones until you hide the virtual keyboard.

Data got reset after adding another variable. Data entry→ Back→ Add variable→ Save

& continue → *data is reset*

From edit beach, save and continue button kill data (save and continue button kills data)

Drifter: Check save and return

Drifter: Not calling update on back from

New beach→ Save and continue → Back→ Back

Drifter: proposed fix: Update beach list on back button from edit beach screen or Update

beach list on save and continue press

Scrolling to air temp, some lag issues

e-mail field is useless right now

Bug: Bouncing Submit button on the data record screen

Bug: GPS data wasn’t being saved when moving around screens

1 feet

*Worry over data saving**need to allay fears*

GPS doesn’t update text on empty ok

Led to believe can email from home screen since text entry is there

EMERGENCY GPS data still isn’t saving... on the use case where they change beaches

and come back.

It is a bit slow and laggy

178

F.2 Beach (Graduate Student 2)

Scenario: ___all____

Date & Time: ____17

th April_____

1. Describe how this bug/problem occurred:

Every time when user enter the variable page , it will go time bar and pop out

keyboard , user need to cancel it every time when entering this page.

2. Repeat the same operation , is bug still happen(if it is potential bug)?

Yes , it always happen

3. What is the result this bug/problem lead to ?

Just not convenience

4.The feedback of this bug from app (if it has)Bug

Scenario: ___B&C____

Date & Time: ____19

th April_____

4. Describe how this bug/problem occurred:

App accident quit after screen unlock in variable page

5. Repeat the same operation , is bug still happen(if it is potential bug)?

179

Not happen .

6. What is the result this bug/problem lead to ?

App stop and quit

4.The feedback of this bug from app (if it has)

Sorry , beach app accidently stop

F.3 Lichen

Bug Description

Activity When Bug Occurred

Error Message Actions Taken

Frequency Of Occurrence During Testing

Return to beginning

button crashes activity

Finish Site Screen (Test Air Quality)

Unfortunately, Lichen AQ has stopped

Had users stop before this task

1

180

White text on white background

New Detailed Site

None

Had users bypass this activity

1

Next button fails to do anything

New Simple Site

None

Avoided simple site

1

Data disappears when scrolling

Detail Site

None

Had users manually record rating on paper

1

Wrong image displayed when enlarged

Detail Site

None

None

3

181

F.4 ROV

The ROV group did not participate in usability testing and the associated graduate student

did not file bug reports.

F.5 Stream Features

Report 1.

Date & Time: Apr. 15 2013 13:12

Description of the bug/problem occurring:

Other selection on ____ screen for filling in data is missing free form data entry.

Activities at the time of the problem:

Selecting other.

Report 2. Date & Time: 4-15-13 3.20 pm

Description of the bug/problem occurring:

Focus on some views

Activities at the time of the problem:

Multiple data entry activities (erosion + treatment

182

F.6 Tracker

id

Bug Description

Date Filed

Status

001

Application sometimes crashes when a marker is deleted

04/17/13

Open

002

The edit menu will display over the new marker drawer

04/17/13

Resolved

003

The built in settings button is not functional

04/17/13

Open

183

004

Exiting the application clears data

04/17/13

Open

005

Tutorial persists even if user selects âĂIJNoâĂİ

04/18/13

Open

184

