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Abstract 

 

Lastarria volcano (Chile) is located at the North-West margin of the ‘Lazufre’ 
ground inflation signal (37x45 km²), constantly uplifting at a rate of ~2.5 cm/year since 
1996 (Pritchard and Simons 2002; Froger et al. 2007). The Lastarria volcano has the 
double interest to be superimposed on a second, smaller-scale inflation signal and to be 
the only degassing area of the Lazufre signal. In this project, we compared daily SO2 
burdens recorded by AURA’s OMI mission for 2005-2010 with Ground Surface 
Displacements (GSD) calculated from the Advanced Synthetic Aperture Radar (ASAR) 
images for 2003–2010. 

We found a constant maximum displacement rate of 2.44 cm/year for the period 
2003-2007 and 0.80- 0.95 cm/year for the period 2007-2010. Total SO2 emitted is 67.0 
kT for the period 2005-2010, but detection of weak SO2 degassing signals in the Andes 
remains challenging owing to increased noise in the South Atlantic radiation Anomaly 
region.  
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I. Introduction 
 

Space-based remote sensing techniques are used in volcanology to monitor areas 
where ground access is difficult or impossible. Combining different remote-sensing 
techniques has brought new perspectives by allowing a direct comparison between 
several physical parameters for the same area and on the same period of time. 

This study combines sulfur dioxide (SO2) measurements from the Ozone Monitoring 
Instrument (OMI), an ultraviolet-visible spectrometer mounted on the NASA Aura 
satellite, with Ground Surface Displacement (GSD) measurements calculated from 
RADAR images acquired by the Advanced Synthetic Aperture Radar (ASAR) 
instrument, onboard the European Space Agency (ESA) ENVISAT mission. The study 
primarily focuses on a 23.1 x 21 km² area surrounding the Lastarria volcanic system in 
Northern Chile (figure I.1). The following report aims to investigate, on one hand, SO2 
emissions recovered from OMI measurements from 2004 to 2010 and also GSD 
calculated by Interferometric Synthetic Aperdure Radar (InSAR), to investigate volcanic 
processes from 2003 to 2010.  

 
Figure I.1: simplified representation of the Lastarria Volcanic Complex (LVC) including its main 
volcanic units. Digital Elevation Model (DEM) used available for free at http://www.dlr.de/, 
displayed using ENVI 4.3 ® software (http://www.exelisvis.com/). Colored areas made with 
PhotoFiltre (available for free at http://www.photofiltre.com/). 
 

Lastarria volcano (-25.15°N, -68.50°E, 5697 m asl) is the youngest part of the 
Lastarria Volcanic Complex (LVC) (figure I.2), a Quaternary volcanic system located in 
the Central Volcanic Zone of Andes (CVZ), 20 km northward of the Cordón del Azufre 
volcanic system (Naranjo 2010).  These systems lie on the Altiplano-Puna Plateau, 
uplifted by the subduction of the Nazca plate under the South America plate (Oncken et 

http://www.dlr.de/
http://www.exelisvis.com/
http://www.photofiltre.com/
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al. 1999), at the border between Northern Chile and Argentina. Together, the LVC and 
Cordón del Azufre systems are referred as ‘Lazufre’ volcanic system after the large scale 
InSAR survey conducted by Pritchard and Simons (2002) over central Andes using ERS 
data from 1996 to 2000. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure I.2: The Lastarria Volcanic Complex from the North-East. Fumaroles are visible from active 
fumarolic fields located around the volcano crater (picture by Jean-Luc Froger, see annex IV for 
documentation of permission to use this material). 
 
This survey highlighted a large-scale ground deformation signal (45 km x 37 km, 
elliptical, oriented NNE-SSW) underlying the Lazufre system, associated with a 
deformation rate of 1 cm/year in the line-of-sight of the instrument for the period 1996-
2000 (Prichard and Simons 2002). Further InSAR surveys focusing on this deformation 
signal found constant deformation rates of ~2.5 cm/year from March 2003 to May 2005 
(Froger et al. 2007), 3 cm/year for 2003-2006 (Ruch et al. 2008; Ruch et al. 2010) and 3 
to 3.2 cm/year from 2003 to 2008 (Anderssohn et al. 2009). This signal affects an area of 
more than 1100 km², comparable in size with some of the biggest volcanic systems on 
Earth (Ruch et al. 2010). Several models of the inflation source, based on interferometric 
data inversion and modelization, have been proposed. For instance, an ellipsoidal-shape 
reservoir horizontally expanding with an opening rate of ~5 to 8 cm/year (Ruch et al. 
2008; Anderssohn et al. 2009) can explain the observed deformation, as well as a massive 
spherical source or elliptical dislocations (Froger et al. 2007). However, because of the 
lack of constraints the geometry, shape, depth and dynamic of the source remain 
uncertain.  

A second, smaller scale displacement signal has been identified for the first time on 
interferograms spanning the period March 2003 to May 2007, located at the North-West 
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margin of the Lazufre deformation signal and centered on Lastarria volcano (figure I.3, 
Froger et al.2007). 

Modeling of InSAR data suggests a shallow (1000 meter deep) inflating body as a source 
for this inflation (Froger et al. 2007). Displacement rates calculated range from 0.7 to 0.9 
cm/year (Albino et al. 2007) for the period 2003-2007.  

Figure I-3: a. interferogram calculated between March 2003 and June 2005 on Lazufre area. 
White outlines present the large-scale component of the topography and white boxes represent 
areas of extraction. Green triangles highlight the location of Quaternary volcanoes; b. detail of 
the interferogram showing the small-scale displacement is visible on Lastarria volcano (Froger et 
al. 2007, see annex IV for documentation of permission to use this material) 
 

Previous studies of Lazufre and Lastarria deformation signals have been 
conducted on periods covering 24, 27, 36 and 60 months, respectively (Pritchard and 
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Simons 2002; Froger et al. 2007; Ruch et al. 2008; Anderssohn et al. 2009). Both 
inflation signals showed a constant evolution for these periods, suggesting that the two 
deformation signals could be related (Froger et al. 2007). However, each of these results 
was obtained from a single swath and therefore was only able to model the displacements 
in the line-of-sight (LOS) of the satellite. Anderssohn et al. (2009), on the contrary, used 
ENVISAT images acquired in ascending geometry (Image Mode) and descending 
geometry (Wide Swath Mode), but only one interferogram has been obtained for the 
descending mode, limiting the interpretation. These limitations have restricted the 
interpretation of the Lastarria displacement signal in 3 dimensions, as well as its temporal 
evolution.  

Figure I.4: Schematic representation of Lastarria volcano summit area. Down-pointing triangles 
corresponding to fumaroles with temperatures ≤ 96°C while circles represent fumaroles with 
temperatures ≥ 120°C (source: Aguilera et al. 2012, see annex IV for documentation of 
permission to use this material). 

No historical volcanic activity has been recorded in these areas, with the 
exception of persistent fumarolic activity located near the summit of Lastarria volcano 
(de Silva and Francis 1991). Four fumarolic fields have been located and mapped 
(Aguilera and al. 2012) and represent the only degassing point of all the Lazufre system 
(figure I.4). They have been active through historical time (Naranjo 2010), but the 
emplacement of sulfur flows dated to the Holocene period, as well as the presence of 
thermally altered blocks, suggest that more extended fumarolic activity may have 
occurred at different places in the past (Naranjo 1985, Naranjo 1988). 
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A geochemical study of Lastarria’s hydrothermal system, by Aguilera et al. (2012), 
corroborates this hypothesis and proposes a two-step cooling model for Lastarria’s 
hydrothermal system, where superheated vapors of magmatic origin condense at shallow 
depths before reaching the surface.  

In addition, because the area is located in a region where ground access is difficult, 
remote sensing monitoring has been preferred to measure the SO2 emissions and GSD. 
The region is characterized by arid climatic conditions, involving a steady, layered 
atmosphere most part of the year and a little precipitation (127.10 mm of average rainfall 
per year according to sdwebx.worldbank.org/). This represents very favorable conditions 
for space-based monitoring of atmospheric trace gases and GSD by InSAR. 

The Ozone Monitoring Instrument (OMI) is a visible – ultraviolet spectrometer, 
mounted on NASA’s Aura satellite and part of the Earth Observation System (EOS) 
project. The Aura mission is dedicated to studying of atmospheric processes and 
dynamics by providing daily global coverage of the planet, measuring key air quality 
chemical species such as SO2 and O3 
(http://www.nasa.gov/mission_pages/aura/spacecraft/omi.html). OMI has already been 
used to monitor volcanic activity (Carn et al. 2008; Bani et al. 2011) including passive 
volcanic degassing in South America (Carn et al. 2007; McCormick et al. 2012), although 
detection and identification of weak SO2 sources remains challenging (Chance 2002) and 
subject to several limitations. However, climatic conditions in South America and over 
the Altiplano Plateau are favorable to study of low-level SO2 emissions (Carn et al. in 
press).  

In this study, daily SO2 burdens have been extracted from OMI measurements for a 72 
month period (from January 2005 to December 2010). Daily data are summed or 
averaged for different time spans (annual, monthly) to increase the signal-to-noise ratio 
(SNR) and facilitate detection of the signal, as suitable in low-level degassing conditions. 
Maps of SO2 burdens (figure I-5) and associated time-series plots have been produced for 
Lastarria volcano and for four regions recording background noise in the area. 
Limitations in the detection and treatment of the signal have also been considered. Other 
measurements have also been acquired for four additional sites containing copper 
smelters recognized as anthropogenic low-level sources of SO2 and detected by the OMI 
instrument (Carn et al. 2007). This situation brings a perfect opportunity to compare the 
SO2 signal detected from the copper smelters to the emissions from Lastarria’s fumarolic 
fields, and investigate possible seasonal cycles in the SO2 measurements.  

http://www.nasa.gov/mission_pages/aura/spacecraft/omi.html
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Figure I.5: a. Daily maps of SO2 columns in Dobson Units (DU, 1 DU SO2 = 2.69x1016 
molecules/cm2) for May 22th and 16th, 2009 over Lastarria volcano (triangle), recovered from OMI 
pixel measurements and illustrating OMI pixel sizes variations for different days. The vertical 
black line represents the border between Chile and Argentina, and the other black outlines 
represent the contours of salars (source: OMIplot software). b. Cummulative map of SO2 burden 
in tons for 2009 for constant pixel size of 14 km x 14 km (Lastarria volcano symbolized as a 
triangle). 

Lastarria volcano represents therefore a double interest. It is the center of a small-scale 
GSD signal, in the North-West margin of the large Lazufre signal, and it hosts the only 
degassing activity of this area detected from space. In the first part of this project, SO2 
emissions have been investigated for the period January 2005 – December 2010 using 
maps of annual SO2 amounts and time-series of SO2 emissions. Limitations in detection 
and data processing have been considered and investigated before interpreting the total 



12 
 
SO2 amounts and the temporal variations of the signal. In the second part, GSD have 
been calculated from ENVISAT-ASAR instrument measurements. 67 SAR images from 
3 orbital swaths in both ascending and descending modes are used to produce 59 scenes 
representing the retrieved GSD and covering a 89 months period. Interferograms have 
been produced on a small 21 x 23 km² area (figure I.1) surrounding the volcano with an 
unprecedented spatial precision (15 m), in order to constrain the nature of the events 
happening in this area. Results are presented in time-series of the displacement signals for 
each swath/track. Finally, joint interpretation of the two datasets, as well as comparison 
of the SO2 signal at Lastarria volcano with copper smelters, are discussed. 

 

II. Regional and geological settings 
 

The Lastarria - Cordón del Azufre (-25.20°N, -68.50°E) ’Lazufre’ volcanic system is 
located astride Northern Chile and Argentina and is part of the CVZ of the Andes (Froger 
et al. 2007). Volcanism in the CVZ is triggered by the subduction of the Nazca Plate 
under the South American Plate, characterized by discontinuous episodes of shortening, 
important crustal thickening (70 km thick in average according to Wölbern et al. 2009) 
and crustal contamination of magmas (~20 – 30% vol., Trumbull et al. 1999; Schilling 
and Partzsch 2001). In the Central Andes, shortening started in the Eocene and was 
controlled by pre-existing rifting structures (Hongn et al. 2007). The uplift of the 
Altiplano-Puna Plateau (or Altiplano-Puna Volcanic Complex) started 25 Ma ago 
(Allmendiger et al. 1997) and resulted in the ~4000 m altitude highlands underlying the 
LVC, covering 50,000 km² (de Silva 1989). In Late Miocene and Pliocene, emplacement 
of large-scale magmatic chambers at ~17-19 km depth and mechanical failure of the crust 
caused eruptions of large caldera complexes (Budach et al. 2011) associated with the 
deposition of extensive K-rich dacitic ignimbrites (about 10,000 km3 in volume according 
to Silva and Gosnold 2007). Recent (Quaternary) volcanic activity in the CVZ is 
characterized by eruption of smaller-scale stratovolcanoes. 

 
The Cordón del Azufre is one of these Quaternary volcanic complexes covering about 

60 km2 and described by de Silva and Francis (1991). It is characterized by a North-South 
trending ridge of four craters and associated lava flows, an eastern lava field located in 
Argentina and the most recent features, a crater and associated 6 km long blocky lava 
flow dated at 0.3±0.3 Ma (Naranjo and Cornejo 1992).  
The LVC, on the other hand, is composed of 3 distinct volcanic units corresponding to 3 
periods of activity and related to different magma chambers. The activity migrated 
northward between the different phases. Description of the different units is found in 
Naranjo (2010). The first unit is formed by the Negriales de Lastarria, a 1.8 km3 lava 
field composed of numerous andesitic to dacitic lava flows and a late dacitic lava dome. 
It was deposited during Upper Pleistocene, as well as the second unit, the Espolón 
volcanic center (also called Southern Spur), located directly eastward and formed by 3 
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main andesitic blocky lava flows and associated pyroclastic deposits. The more recent 
unit of LVC, the Lastarria volcano sensu strico, is located 3.3 km north from the Espolón 
volcano and the Negriales de Lastarria fields and petrologically and chemically different 
from these previous units (Naranjo 1992). It has been build during Holocene, after a 
period of inactivity, and is characterized by the deposition of andesitic to dacitic lava 
flows and block-and-ash flows caused by explosive activity triggered by magma mixing. 
Discontinuous effusive activity characterizes the LVC Pleistocene period, producing 
pyroclastic deposits containing scorias, lithiques and pumices located in the center part of 
the complex. Finally, late effusive activity is associated with andesitic lava flows and 
pyroclastic deposits. This area is still affected by intense and persistent fumarolic activity 
(Naranjo 1988). 
 
Aguilera et al. (2012) distinguish between ‘hot’ (T≥120°C) and ‘cold’ degassing products 
(T≤96°C) that occur at the same time. They propose a two-step hydrothermal system 
(figure II.1) model to explain this temperature difference, where gases from a deep 
magmatic origin condense at shallow depth before being re-heated and reach the surface.  

 

 

 

 

 

 

 

 

 

 

 

Figure II.1: Schematic representation of the two-steps hydrothermal system at Lastarria volcano 
showing the condensation at shallow depths of magmatic gases and interactions with the aquifer 
(source: Aguilera et al. 2012, see annex IV for documentation of permission to use this 
material) 

Dry fractions of fumarolic SO2 have been calculated using ion chromatography and range 
between 1.17 mmol/mol and 36.2 mmol/mol for both hot and cold fumaroles. However, 
no estimation of the SO2 flux originating from Lastarria’s fumarolic fields is available at 
the time of writing. 
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The volcanic complex is considered as active, although no other volcanic activity has 
been reported during historical times. 

 

III. Datasets and methodology 
 

1. Ozone Monitoring Instrument (OMI) 
 
a. Introduction to OMI 

OMI is mounted onboard the NASA Aura satellite, that flies in the ‘Afternoon 
Constellation’ or ‘A-train’ (http://atrain.nasa.gov/). The A-train is a collaborative project 
consisting of a coordinated group of satellites flying within 15 min to each other on the 
same orbital track and crossing the equator at 1:30 pm ± 15 min (Levelt et al. 2006b). 
They simultaneously image Earth’s surface and atmosphere, recording several different 
parameters and exploring Earth systems and dynamics.  

Aura was launched on July 15th, 2004 and flies within the A-train since then, at 705 km 
altitude with a sun-synchronous, near-polar orbit (inclination angle of 98.1°). It achieves 
14 orbits a day with a repeat cycle of 16 days and although it was designed for a 5-years 
lifetime (Levelt et al. 2006b), it is still operational after more than 8 years.  

OMI is one of the four instruments mounted on the Aura satellite, dedicated to studying 
atmospheric chemistry and dynamics (http://aura.gsfc.nasa.gov/). OMI is a nadir-viewing 
backscattered solar radiation CCD spectrometer built from a collaboration between the 
Netherlands Agency for Aerospace Programs (NIVR), the Finnish Meteorological 
Institute (FMI) and the National Aeronautics and Space Administration (NASA). It 
spectral range is 270 to 500 nm (UV-VIS), divided into 3 channels (UV-1, UV-2 and 
VIS) for accuracy purposes (table III.1). The OMI instrument is equipped with 2 
dimensional CCD detectors that are used to record simultaneously spatial (across track 
direction, 576 pixels) and spectral (along track direction, 780 pixels) information (Levelt 
et al. 2006b). OMI combines a high spectral resolution (between 0.42 and 0.63 nm, 
depending of the wavelength – table III.1) with a good spatial resolution (13x24 km² at 
nadir and about 13x150 km² at the edge of the swath) for a 2600 km wide swath, and 
allows a daily global coverage of the planet.  
 

 

http://atrain.nasa.gov/
http://aura.gsfc.nasa.gov/
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Table III.1: OMI three spectral channels, characteristics and corresponding products (source: 
Levelt et al. 2006b). 

 
The main OMI measurements include atmospheric traces gases (such as O3, SO2, NO2, 
HCHO, BrO, OClO), aerosols, cloud coverage, cloud pressure, and UV radiations from 
Earth’s surface (Levelt et al. 2006a). The Differential Optical Absorption Spectroscopy 
(DOAS) retrieval technique used for some OMI trace gas measurements was first 
introduced in 1976 by U. Platt and D. Perner, and takes advantage of the continuous 
measurement of the spectrum with a high spectral resolution to perform a multiple fit of 
absorption bands for several trace gases (Richter and Wagner 2011). 
 

b. Measurement techniques 

OMI detects a continuous spectrum of backscattered UV-visible (270 to 500 nm) 
coming from Earth’s atmosphere and surface. The energy received is a combination of 
the radiance reflected from Earth’s surface and scattered by the atmosphere and clouds. 
Consequently, retrieval of OMI data comes in two steps. Firstly, the reflectance spectrum 
from Earth’s surface is calculated and secondly, it serves as a basis to apply retrieval 
algorithms.  

(1) Physical principles underlying the measurements 
 

 Reflectance spectrum 

OMI measures the radiance spectrum from Earth’s atmosphere and surface and the solar 
irradiance spectrum directly from space. Then, the radiance spectrum is normalized by 
the solar irradiance to obtain the Earth’s reflectance spectrum (Levelt et al. 2006b), using 
the following: 

𝑅 =  
𝜋𝐼
𝜇0𝐸

 

where R is the reflectance, I the Earth radiance, E the solar irradiance and 𝜇0 the cosine 
of the Solar Zenith Angle (SZA) (OMI SO2 AMF calculations, http://so2.gsfc.nasa.gov/). 
This method, used on a continuous spectrum, allows to measure simultaneously several 

http://so2.gsfc.nasa.gov/
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trace chemical species producing small-scale absorption features, as well as ground 
reflectivity, cloud properties, etc. (Richter and Wagner 2011). The spectrum obtained is 
corrected for the strong Fraunhofer lines, but conserves the small features thanks to the 
Raman scattering effect (Levelt et al. 2006b). All algorithms are based on this reflectance 
spectrum. 

 Atmospheric processes 

For OMI’s spectral range, two main atmospheric processes have to be accounted for: 
absorption of the radiation by atmospheric gases and scattering by air molecules, cloud 
droplets, aerosols, and trace gases.  

Each element or molecule is characterized by a combination of absorption lines that 
forms a specific absorption spectrum. Absorption spectra are known for the main 
atmospheric gases. The presence of elements, within the column of atmosphere traversed 
by the radiation, is determined by comparing a calibrated reference spectrum with the 
recovered reflectance spectrum. This method allows the identification of all elements at 
the same time, but elements with overlapping absorption spectra such as O3 and SO2 
(figure III.1) are differentiated by using specific sets of wavelengths picked to maximize 
absorption differences (Levelt et al. 2006b). 

 

 

 

 

 

 

 

 

 

 

Figure III.1: Comparison of SO2 and O3 absorption cross-section for wavelengths 295 to 345 nm. 
Figure (source: Simon A. Carn, personal communication, see annex IV for documentation of 
permission to use this material). 

Scattering of solar radiation by atmospheric gases is the main source of UV and 
VIS radiations that contribute to the total energy scattered in the direction of the satellite 
(Petty 2006). Different types of scattering occur, depending on two main factors: (1) the 
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particle size relative to the radiation wavelength, (2) the refractive index of the particle 
and of the surrounding medium. The shape and roughness of the particle control the 
direction in which the radiation is scattered. 

In the case of OMI instrument measurements, Rayleigh scattering applies for particles 
with a radius of the order of 10-4µm (i.e. trace gases) while Mie scattering occurs for 
cloud droplets (5 to 50 µm) and aerosols (<0.1 µm to >1µm). In the visible band, clouds 
are a very important source of strong Mie scattering, and can even prevent the reflected 
radiation from underneath to reach the detector. Therefore, cloud coverage has to be 
carefully considered when interpreting data.  

Interactions between radiation and atmospheric components modify the amount of 
radiation received by the instrument and reveal the presence of the elements within the 
column of atmosphere traversed by the radiation. The type and number of each element is 
then retrieved using mathematical algorithms described in the next section. 

(2) Retrieval algorithms 

This section focuses on the retrieval techniques used in SO2 calculations. 
Different techniques and algorithms have been developed specifically for each element, 
and details and calculations can be found in the Ozone Monitoring Instrument (OMI) 
Data User’s Guide (http://so2.gsfc.nasa.gov/). All data retrieved by the OMI instrument 
are sent to the OMI Science Investigator-led Processing System (SIPS) center to be 
processed. Four levels of processing (level 0, 1B, 2 and 3) are available. The OMSO2 
algorithm is used to retrieve SO2 totals from level 1B data and produce level 2 data called 
‘data granules’. They are available for free as Hierarchical Data Format 5 (HDF-EOS5) 
files on the NASA Goddard Earth Science (GES) Data and Information Services Center 
(DISC; http://disc.sci.gsfc.nasa.gov/Aura/OMI/omso2.shtml) (Carn et al. in press). Level 
2 data are geo-located, calibrated radiances presented as orbital swaths and include 
extended information such as ground pixel size, solar and viewing geometry. A data 
granule produced by OMSO2 algorithm has a general name of the form OMI-Aura_L2-
OMSO2_YYYYmMMDDtHHMM-oORBIT_vCOL-2006m1127t164036.he5 and 
contains SO2 amounts calculated for different SO2 profiles.  

OMISO2 algorithms derived from early retrieval techniques such as the Krueger-Kerr 
algorithm, used by Total Ozone Mapping Spectrometer (TOMS) instruments and based 
on 6 discrete band measurements in ultraviolet. Also, the later DOAS method, applied to 
OMI’s predecessors Global  Ozone Monitoring Instrument (GOME) and Scanning 
Imaging Absorption spectrometer for Atmospheric CHartographY (SCIAMACHY) uses 
measurements in a continuous window (315-327 nm) instead, but derived vertical column 
amounts of SO2 by using a Air Mass Factor (AMF) for a single wavelength (Yang et al. 
2007). On the contrary, the Band Residual Difference (BRD) algorithm, developed 
specifically for the OMI instrument, is based on OMI ozone algorithm residual 
differences between 4 discrete wavelengths (310.8, 311.85, 313.2 and 314.4 nm) 
corresponding to either maxima or minima absorption bands of SO2 (Krotkov et al. 

http://so2.gsfc.nasa.gov/
http://disc.sci.gsfc.nasa.gov/Aura/OMI/omso2.shtml
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2006), in order to maximize the detection of small SO2 amounts. The average slant 
column density (SCD), that represents the concentration of trace gases along the path of 
light in the atmosphere, is derived from the SCDs calculated from the wavelength 
differences. The SO2 Vertical Column Density is calculated assuming a constant AMF of 
0.36 (OMI SO2 AMF calculations, http://so2.gsfc.nasa.gov/): 
 

𝑡𝑜𝑡𝑎𝑙𝑆𝑂2 =  
𝑆𝐶𝐷
𝐴𝑀𝐹

 

Finally, the Linear Fit (LF) algorithm, used in this study, extends and improves BRD 
results for high SO2 amounts by considering 6 more wavelengths covering weaker SO2 
absorption bands (Yang et al. 2007). Additionally, in order to convert SO2 slant column 
amounts into vertical column (column density), a realistic value of AMF and vertical SO2 
distribution profiles are used as initial inputs (McCormick et al. 2012). Four prescribed 
profiles of vertical SO2 distribution in the atmosphere are proposed, based on a SO2 
center of mass altitude (CMA) and corresponding to four typical SO2 distributions as a 
function of altitude: the planetary boundary layer (PBL, ~0-2 km, CMA = 0.9 km) used 
by the BRD algorithm, the lower troposphere (TRL, 0-5 km, CMA = 2.5 km), the mid-
troposphere (TRM, 5-10 km, CMA = 7.5 km), and the upper troposphere - lower 
stratosphere (STL, 15-20 km, CMA = 17 km) (OMSO2 Release Specific Information, 
http://so2.gsfc.nasa.gov/). 

The BRD algorithm is used to calculate the PBL SO2 amounts while the LF algorithm is 
used to derive the TRL, SRM and STL amounts (OMSO2 Release Specific Information, 
http://so2.gsfc.nasa.gov/). Both BRD and LF algorithms are derived from the residuals of 
the OMTO3 algorithm. Here, the TRM 5KM SO2 profile has been used, suitable for 
volcanic degassing in the lower troposphere (Carn et al. in press).  

   (3) OMIplot 

OMI derived data used in this study have been processed by OMIplot software. 
OMIplot is an Interactive Data Language (IDL) based graphic tool, optimized to analyze 
and display level 2 OMI SO2 data for volcanic degassing (Carn 2011). It is available for 
free at https://vhub.org/resources/682. Products include daily and monthly maps of SO2 
burdens, expressed in Dobson Units (1 DU = 2.69 x 1016 molecules/cm²), and daily text 
files containing information about several physical parameters, listed in table III.2.  The 
values obtained have been scaled for a constant size of pixel (13 x 13 km²) and are stored 
in daily text files (‘name of extracted area_so2lf_YYYYMMDD.txt’) for each area. 
For more information about OMiplot, see https://vhub.org/resources/682/about).  

http://so2.gsfc.nasa.gov/
http://so2.gsfc.nasa.gov/
http://so2.gsfc.nasa.gov/
https://vhub.org/resources/682
https://vhub.org/resources/682/about
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Table III.2: a. OMIplot output data and signification as displayed in daily text files. DU = Dobson 
Unit (1 DU = 2.69 x 1016 molecules/cm²) 

 

c. Presentation of datasets and methodology 
 

(1) Determination of study areas 
 

The primary goal of this study is to use OMI data to obtain temporal and time 
averaged values of SO2 burdens released at Lastarria volcano. A secondary goal is to 
repeat the same process for four copper smelters in order to compare their SO2 signals 
with the Lastarria signal. In addition, four areas sampling the background noise recorded 
by OMI instrument have been selected to investigate the contribution of background 
noise on retrieved SO2 emissions. Figure III.2 represents the geographic locations of the 
10 selected areas and table III.3 lists their respective coordinates, spatial extend, surface 
areas and specificities. They have been divided into 3 main groups regarding their 
purpose. 
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Figure III.2: location and spatial extend of the 10 sampled areas, divided up in 3 groups. See text 
below for more information and description of the groups. Lastarria volcano is located as a red 
triangle, while other volcanoes are empty triangles and copper smelters are represented as 
diamonds.  Continuous black lines either represent the West coast of Chile – Pacific Ocean, 
frontiers or salars. The background was produced by OMIplot software (Carn 2011), for SO2 
burdens in DU for one day. 

 Group n°1 (red): Lastarria volcano 

Two regions respectively called Lastarria Small (LS) and Lastarria Medium (LM) have 
been extracted in this category. They are both centered on Lastarria volcano (-25.15°N, -
68.50°E) and are used to constrain and investigate the spatial extent of Lastarria SO2 
plume while minimizing the amount of background noise and any external source of SO2. 
LM holds the best representation of the SO2 plume. 

 Group n°2 (green): Background noise 

Background 1 (B1) and Background 2 (B2) are respectively located over land and ocean 
and have the largest surface areas of all the extracted regions. They sample large amounts 
of background noise to avoid local influences. Background 3 (B3) and Background 4 
(B4) have been chosen to facilitate direct comparison with Lastarria Medium. Therefore, 
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they have the same surface area and the same latitude as LM, and are as close as possible 
to LM.  

 Group n°3 (yellow): Copper smelters 

Copper smelters are anthropogenic sources of SO2 generally associated with large ore 
exploitations that are assumed to emit sulfur dioxide at a relatively constant rate on an 
annual time scale. Their SO2 emissions are comparable in magnitude to passive volcanic 
degassing and they are located in the same region as Lastarria volcano, which offer the 
unique opportunity to compare their respective SO2 emissions with the same background 
noise (Carn et al. in press), and assess the impact of seasonal cycles on the SO2 
measurements. Smelter 1 (S1), Smelter 2 (S2) and Smelter 3 (S3) areas are located at 
almost the same latitude as Lastarria volcano and cover smaller areas (ranging from 4.9 
to 6.0 x 104 km²) in order to minimize the contribution of background noise and to avoid 
other close sources of SO2. Smelter 4 (S4) is located southward and has the same surface 
area as Lastarria Medium. 

Table III.3: list of the selected areas, names and associated tags, geographic coordinates (in 
decimal degrees), areas and short description. 
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(2) Data processing and corrections 
 

Further processing of data obtained with OMIplot is necessary, in order to select 
pixels corresponding to ‘true’ SO2 values, as opposed to SO2 values caused by artifacts 
arising from retrieval noise (especially considering low-level degassing). These 
corrections are made using Matlab software. Matlab (© MathWorks, 
www.mathworks.com/products/matlab/ ) is an interactive technical computing language 
suitable for scientific algorithm development, data analysis and data modelization. It has 
been used in this study to produce time-averaged maps of SO2 burdens and to compute 
time-series of SO2 emissions, cloud coverage and reflectivity for all extracted areas. 
Associated scripts are available in annex I. Three distinct steps are distinguished in data 
processing. 
 

 Extraction and selection of pixels  
 

Pixels containing ‘true’ SO2 values are evaluated using criteria described in Carn et al. (in 
press) in order to account with known issues affecting OMI data (see IV. Results and 
main limitations). Issues include the influence of the South Atlantic radiation Anomaly 
(SAA), associated with the occurrence of elevated SO2 values randomly detected for 
single pixels, as well as the influence of cloud coverage. The pertinence of each pixel is 
estimated using the comparison of OMTO3 algorithm residuals retrieved for three 
wavelength differences (respectively 311.9 - 310.8, 313.2 - 311.9 and 314.4 - 313.2 nm) 
that correspond to local extrema (either minima or maxima) of the SO2 absorption 
spectrum. These differences are automatically calculated by OMIplot using the following 
relationship (Carn et al. in press). These differences are called soip1, soip2 and soip3 in 
daily text files produced by OMIplot software (table III.4). For this study, limit values for 
criteria selections were set according to previous experimentations (Carn et al. in press) 
and empirical evaluation of the influence of the selection algorithm used in Matlab script 
(annex I).: 
 

𝑠𝑜𝑖𝑝𝐿𝑖𝑚 = 0 
𝑐𝑙𝑑𝑓𝑟𝑎𝑐𝐿𝑖𝑚 = 0.2 

 
 Unit conversion 

 
All the SO2 values extracted from OMIplot are expressed in Dobson Units (DU), where: 
1 𝐷.𝑈. = 28.48 𝑘𝑔/𝑘𝑚². They are immediately converted in mass (tons) or mass per 
squared kilometers (tons/km²), to estimate the total SO2 released for a single area and to 
compare between different areas, respectively. The conversion is made using: 

𝑚𝑎𝑠𝑠 𝑆𝑂2 = 2.848 ∗ 𝐴 ∗ 10−2 ∗  �[𝑆𝑂2]
𝑁

𝑖=1

= 2.848 ∗ 𝐴 ∗∗ 10−2 [𝑆𝑂2]������� ∗ 𝑁 

where A is the area of a pixel in km², N the number of pixels selected, and [SO2] the SO2 
value in DU. The methodology used to calculate these values implies a spatial average of 
data, followed by a temporal average as illustrated in figure III.3. 

http://www.mathworks.com/products/matlab/


23 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure III.3: Schematic representation of the methodology used in the OMISO2time_series.m 
file to calculate the spatial and temporal averages for SO2 amounts. See further description is the 
text below. 
 
 
For each day, SO2 values (in DU) are obtained from OMIplot text files for each pixel (1) 
within one area. They are associated with values of soip1, soip2, soip3 and cloud fraction 
that are used to select relevant pixels (2) containing ‘true’ SO2 values. Pixels that do not 
match the selection criteria are removed from calculations, and all the remaining pixels 
are either averaged or summed. Thus, two values are obtained at the end of step (3): the 
averaged SO2 value (in tons/km²) that will be used to compare between the different 
areas, and the total mass of SO2 in tons. This constitutes the spatial average. 
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This is followed by a temporal average, where daily SO2 values obtained in step (3) are 
either averaged or summed again. At the end of step (4), four final variables are obtained 
(details in annex I) and used to display and calculate results (for each area): 
 
         - variable 3: total SO2 mass (in tons) produced per month; 
         - variable 4: average SO2 mass (in tons) produced per day; 
         - variable 5: average SO2 mass per surface area (tons/km²) produced per day; 
         - variable 6: total SO2 mass per surface area (tons/km²) produced per month. 
 

 Data display and results 
 
Final products are time-series plots for all of the variables described hereabove, month 
per month, for all areas. Difference is made between total SO2 amounts (tons) calculated 
from variable 3 and mean SO2 values (tons/km²), calculated from variable 5 and used to 
compare different areas. Other results are georeferenced maps of the SO2 burdens (see 
annex I, SO2maps.m), computed by re-defining a fixed grid of pixels and resampling the 
OMIplot SO2 values on this grid. Finally, tables containing correlation values for the 
different zones have been calculated. 
 

2. Interferometric Synthetic Aperture Radar (InSAR) 
 

a. Principles of measurement 

The acronym Radar stands for Radio Detection and Ranging. It is an active 
detection technique using one or several antennas sending electromagnetic pulses in radio 
and microwave wavelengths (1 mm up to 100 m) and recording the backscattered 
radiations. Radar recovering techniques use reflection and scattering properties of 
objects, described by Maxwell equations, as a basis to obtain information about size, 
roughness and distance of targets. Different frequency bands corresponding to various 
ranges of frequencies are historically used in radar detection. Bands X (2.5 – 3.75 cm), C 
(3.75 – 7.5 cm) and L (15 – 30 cm) are used in ground deformation measurements. As an 
active detection technique, radars can be used in both days and nights and measured 
signals are not attenuated by atmospheric components (clouds, fog, aerosols, etc.), 
although interactions with atmospheric components can result in a reduction in radar 
wave velocity.  

Synthetic Aperture Radar (SAR) is a specific imaging radar technique used in 
remote sensing, recording both phase and amplitude of echoes backscattered from the 
ground. The technique dramatically improves the resolution in the azimuth direction 
(Hanssen 2001) and the general image resolution (~ x 1000) with respect to basic radar 
images (Massonnet and Feigl 1998). 
Side-looking radars mounted on satellites, moving in azimuth direction, send pulses of 
radiation in the satellite across-track (range) direction, on a portion of Earth surface or 
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ground cell. SAR method exploits shifts in Doppler effects to differentiate between 
targets located with a same cell and to synthesize a much larger aperture. 

Interferometric Synthetic Aperture Radar (InSAR) is used to study ground 
deformation. The technique exploits the phase difference between two SAR images 
(respectively called ‘master’ for the older image and ‘slave’ for the most recent image) of 
the same area acquired with the same geometry but in different times to produce images 
of the phase differences, or interferograms.  
The phase of each SAR pixel is the sum of two parameters and varies as a function of (1) 
the round trip travel time of the radiation from the satellite to the target and (2) the 
scattering characteristics of each resolution cell. The extreme spatial variability of this 
last contribution makes single phase images appearing noisy and unworkable. 

Subtracting the two phase images comes down to cancel the random phase 
difference for each pixel and only conserves the phase contribution of the wave’s travel. 
If the scattering characteristics of each resolution cell remain constant between the two 
acquisitions, their contributions cancel and one obtains a new image, the interferogram, 
where coherent interferometric fringes express the change in travel time of the radar 
wave. However, any change in the satellite-ground distance (typically target moving 
toward or away from the satellite) will be recorded. Since deformations alter the distance 
between the ground and the satellite, they result in fringe patterns in the interferogram. 
One fringe accounts for 0.5 λ of range change, where λ is the radar wavelength. Satellites 
operating in the C-band (5.6 cm wavelength) such as ASAR-ENVISAT have a minimum 
sensitivity to deformations of 2.3 cm, but can be potentially more sensitive depending on 
the spatial extent of the observed pattern and the temporal coverage of the data.  

Shifts in the position of the satellite change the viewing angle and cause a 
stereoscopic effect in the line-of-sight of the satellite that lead to unwanted fringes 
correlated to the relief. This effect, called orbital contribution, mostly depends on the 
distance between satellite positions that is perpendicular to the looking direction of the 
instrument (perpendicular baseline). Massonnet and Rabaute (1993) define the altitude of 
ambiguity (Aa), that is an inverse function of the perpendicular baseline, as the change in 
elevation between two topographic fringes. Thus, a higher value of altitude of ambiguity 
corresponds to a higher change in elevation between two fringes and to a lower 
sensitivity to topography.  
Changes in atmospheric conditions, in another hand, cause atmospheric contributions and 
additional unwanted fringes. Atmospheric contributions to the interferogram are divided 
between turbulent and stratified atmospheric contributions (Hanssen 2001). Turbulent 
atmospheric contribution corresponds to the local weather patterns that change with 
geographic location and time. Correction of turbulent atmospheric contribution requires 
accurate knowledge of the weather conditions at the time and place of the measurements. 
Modeling of such patterns is challenging and remains one of the principal limiting factors 
in interpreting interferograms. However, the stratified atmospheric contribution describes 
the influence of the vertical distribution of the atmosphere in regards to the influence of 
reflectivity of each layers traversed by the waves. Basically, the stratified atmosphere 
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contribution causes interferometric fringes correlated with the relief, in response to the 
difference of layers traversed by the waves for different relief elevations (Hanssen 2002). 
This contribution can be modeled and corrected. Fortunately, the atmosphere over the 
Altiplano Plateau in Chile and Argentina has a weak turbulent component and is very 
calm and steady, which minimize the bias due to this contribution. 

A more complete review of the InSAR technique can be found in Massonnet and Feigl 
(1998), Bürgmann et al. (2000) and Hanssen (2001).  
 

b. Dataset acquisition 
 
(1) ENVISAT and ASAR systems  

The ENVISAT mission, launched in March 1st 2002 by the European Space 
Agency (ESA) is a polar-orbiting satellite following a sun-synchronous orbit. It flies at 
709 km (±10 km) of altitude with an inclination angle of 98.6°. With a 100.6 minutes 
period (global coverage achieved in 1 to 3 days) and a repeat cycle of 35 days, it has been 
used to image Earth’s atmosphere, land, ice and ocean through the 10 instruments it 
carried onboard, including the Advanced Synthetic Aperture Radar (ASAR) instrument 
(European Space Agency, https://earth.esa.int/). All communications were lost with the 
satellite on April 8th 2012 and although the causes remain unclear, the ENVISAT mission 
officially ended shortly after that.  

The ENVISAT mission follows and inherits from the European Remote Sensing 1 (ERS 
1, 1991) and European Remote Sensing 2 (ERS 2, 1995) missions of ESA. The main 
improvement of ASAR instrument, compared to its predecessors on ERS-1/2, is the 
phased-array antenna that offers the possibility to change between 7 swaths with various 
distances to the satellite and incident angles (Atterna et al. 1998). As a result, ASAR 
offers various acquisition modes in high- (Narrow Swath Mode), medium- (Wide Swath 
Mode), and reduced- (Global Monitoring Mode) resolution. The data acquired in Narrow 
Swath Image Mode (IM) are suitable for interferometric calculations and have been used 
in this study. Depending on the incidence angle, these modes cover swath widths ranging 
from 60 km to 110 km with a spatial resolution of few tens of meters. For a more 
technical review of the ASAR-ENVISAT specifications one can read the online 
documentation available on the ESA web server. 

(2) Datasets 

67 Single Look Complex images (SLC or ASA_IMS_1P from the IM mode of the 
ASAR instrument) have been used for this study, spanning a 87 months period from 
March 2003 to May 2010. The images have been acquired in 3 different swath/track 
combinations (2/282, 2/318 and 6/404) in both ascending and descending mode (table 
III.4). For clarity purpose, SLC images will be further referred using [swath number] 
[track number] _ [absolute orbit number] (i.e. the image acquired in swath 2, track 318, 

https://earth.esa.int/
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orbit 17907 is referred as 2318_17907) and interferograms will be referred as [swath 
number] [track number] _ [absolute master orbit number] _ [absolute slave orbit 
number] where the master image is the oldest one and the slave the youngest one (i.e. the 
interferogram 2318_30933_41955 has been calculated using master image 2318_30399 
and slave image 2318_41955) (complete list of all images found in annex II). 

Images from swath/track 2282 have already been used by Froger et al. (2007), Ruch et al. 
(2008) and Anderssohn et al. (2009) to compute interferograms covering the Lazufre 
signal for the periods March 2003 to May 2005, 2003-2006 and 2003-2008 respectively. 
The same dataset was used in the present study, over an extended period of time up to 
May 2010, and data from two other swath/tracks were added. 

Table III.4: Summary of the main characteristics of the 3 ASAR swath/tracks in this study. 

 
 

c. Data processing 
 

(1) Extraction of the region of interest 

Previous studies used the 90 m STRM DEM distributed for no cost by the National 
Aeronautics and Space Administration (NASA), sometimes sampled to 45 m (Froger et 
al. 2007). Since 2012, the German Aerospace Center (DLR) has released the new 30 m 
version of the TanDEM-X DEM, available for free by registering on the EOWEB server 
(http://www.dlr.de/dlr/en/desktopdefault.aspx/tabid-10212/332_read-817/year-
all/#gallery/1675). The DEM has been obtained from X-band Radar measurement by the 
two satellites of the German TanDEM-X mission (http://www.dlr.de/), covering 
discontinuous 2.5 x 2.5° areas of the globe, including the area surrounding the Lastarria 
volcano. 

http://www.dlr.de/dlr/en/desktopdefault.aspx/tabid-10212/332_read-817/year-all/%23gallery/1675
http://www.dlr.de/dlr/en/desktopdefault.aspx/tabid-10212/332_read-817/year-all/%23gallery/1675
http://www.dlr.de/
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Geographic coordinates of a reduced area (latitude min. -25.25, max. -25.04; longitude 
min. -68.61, max. -68.40) centered on Lastarria volcano have been manually calculated 
for each swath/track and used to extract a 21 x 23 km² area from the SLC images 
corresponding to the area covered by the 30 m SRTM DEM from DLR. The DEM has 
also been oversampled at 15 m. The use of this dataset with higher resolution than the 
previous studies allows more precise interferometric calculations and is better suited for 
the study of small-scale Lastarria deformation signal.  

(2) Calculation of interferograms 

After removing from the calculation process all the images with altitudes of 
ambiguity superior to 20 m, interferograms have been produced using the Differential 
Interferometric Automated Process Applied to Survey Of Nature (Diapason) software, 
developed by the CNES and Altamira Information (Centre National d'Etudes Spatiales 
1996) for each of the three swath/tracks (figure III.4). 

Figure III.4: scheme of the network of interferograms (black lines) obtained for swath 2282 in 
this study.  The scenes used to calculate interferograms are displayed in blue and plotted as a 
function of their acquisition date (considering the earliest image as the reference) and baseline. 

The first series of interferograms calculated had important topographic residuals 
(interferometric fringes correlated to the relief). The process implies radar images 
simulations (or SIMU) calculated from the DEM, which represent the relief as seen by 
the instrument for each different viewing angle. A SIMU is produced for each scene and 
then both SLC and SIMU images are correlated in order to obtain a precise value of Near 
Range (NR). The Near Range is the range value that is the closest to the satellite position. 
A bad correlation between SIMU and SAR images can affect the retrieved value of Near 
Range and cause the observed topographic residuals. For a still unclear reason, Diapason 
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software fails to correctly correlate most of the SIMU-Master combinations for the 
swath-track 2282, so we developed an alternative procedure to pass by this correlation 
and determine the best NR value in another way. We produced three series of 
interferograms and tested a full range of NR values for each scene, in order to find the 
best correlation possible for each SIMU and SAR couple. The validity of each 
interferogram was judged by using the gradient of each interferogram. The Near Range 
value corresponding to the minimum total gradient for each interferogram was selected 
and used for further calculations. 
 

(3) Unwrapping 

After this step, interferograms are unwrapped. Because the phase for each cell is retrieved 
modulo 2π from the satellite measurements, an uncertainty arises from the phase 
measurement when it comes to the estimation of displacements. The ambiguity is 2π for 
the phase, and  𝜑

2𝜋
𝜆 for displacements, where φ is the phase and λ the wavelength. 

Unwrapping process implies to integrate phase gradients over coherent areas to retrieve 
their total deformation and differentiate with incoherent areas in between (Hanssen 
2001). The result is the absolute value of deformation affecting coherent areas. 

(4) Corrections 

The last step of the interferometric calculation is to correct the interferograms from 
orbital residuals, large-scale ground deformation signal from the Lazufre (in this case) 
and atmospheric residuals (stratified atmospheric contribution only). 

All these contributions are removed at once, by modeling and removing a regression 
surface, using a polynomial of the following form: 

𝜑 = 𝛼𝑥7 + 𝛽𝑦7 + 𝛾𝑥6𝑦 + 𝛿𝑥5𝑦2 + 𝜀𝑥4𝑦3 + ⋯+ 𝜃𝑥6 + 𝜗𝑦6 + 𝜇𝑥5𝑦 + 𝜌𝑥4𝑦2
+ 𝜎𝑥3𝑦3 + ⋯+ 𝜏𝑥2 + 𝜔𝑦2 + 𝜁𝑥𝑦 + 𝜂𝑥 + 𝜍𝑦 + 𝜘 

Where x and y are the geographic coordinates, multiplied by various constants 
symbolized as Greek letters, depending on the characteristics of each situation. A linear 
term is added to this polynomial and accounts for the stratified atmospheric contribution, 
along the z-direction (vertical, in red): 

𝜑 = 𝛼𝑥7 + 𝛽𝑦7 + 𝛾𝑥6𝑦 + 𝛿𝑥5𝑦2 + 𝜀𝑥4𝑦3 + ⋯+ 𝜃𝑥6 + 𝜗𝑦6 + 𝜇𝑥5𝑦 + 𝜌𝑥4𝑦2
+ 𝜎𝑥3𝑦3 + ⋯+ 𝜏𝑥2 + 𝜔𝑦2 + 𝜁𝑥𝑦 + 𝜂𝑥 + 𝜍𝑦 + 𝜚𝑧 + 𝜘 

The order of magnitude of the polynomial is chosen empirically from a tradeoff between 
(1) choosing an order high enough to model all the possible scales of signal to remove, 
and (2) do not remove the signal of interest and (3) avoid extended calculations necessary 
to solve a higher-degree polynomial. In addition, in order to avoid correcting and 
removing the signal of interest, the corresponding area is blanked during the inversion 
process used to solve the polynomial. In this study, we used a 7th order polynomial to 
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remove all the undesired contributions. Figure III.5 presents an example of the regression 
surface obtained from the polynomial, representing the contribution of the atmosphere 
and the large-scale Lazufre signal, and the interferogram after correction. The Lastarria 
signal is clearly visible in the center of the image and has not been removed by the 
corrections. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure III.5: (from top to bottom) example of interferogram obtained after step 3 (unwrapping), 
modeled regression surface corresponding to this scene and interferogram after correction with a 
black arrow pointing the recovered signal of interest. 
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(5) Time series calculation 

Finally, time-series of the displacements are calculated and used to present the results for 
each swath. Calculations start with a set of N interferograms (i.e.: A, B, C, D, E, F), that 
can be used to calculate ∑ (𝑁 − 𝑖)𝑁−1

𝑖=1  scenes (where N is the number of interferograms) 
by a matrix inversion process, using a squared matrix of the form: 
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Time series calculation starts with setting the oldest interferogram to zero, as a reference 
for further displacements: 
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In addition, some interferograms can be removed if they are not suitable for calculations 
or if a scene is not represented enough to be constrained in the results. The matrix 
equation can be written as a more compact form as follow:  

�𝛿𝜑� = [𝐷] × [𝜑] 

Where [𝜑] is the matrix containing the scenes (A, B, C, etc.), [𝐷] is the coefficient matrix 
(or design matrix) and �𝛿𝜑� is the matrix containing the interferograms. Then, the scenes 
are found by a network inversion: 

[𝜑] = ([𝐷𝜏] × [𝐷])−1 × [𝐷𝜏] × �𝛿𝜑� 

The result of the inversion calculation is the relative displacement for each scene, relative 
to the first one. Results are plotted as a function of time. 

 

IV. Main limitations and results 
 

1. Ozone Monitoring Instrument (OMI) 
 

a. Limitations 

OMI’s high sensitivity to SO2 (Thomas et al. 2009) has already been exploited to 
record and monitor passive SO2 degassing emissions, and reasonable agreements have 
been found by comparison with ground-based SO2 measurement in several cases (Carn et 
al. 2008; Spinei et al. 2010; Carn and Lopez 2011; Carn et al. 2011). However, detecting 
low-level degassing remains challenging for OMI (Chance 2002) and several limitations 
have to be accounted for. The OMSO2 Release Specific Information document 
(http://so2.gsfc.nasa.gov/) proposes a list of the known limitations of the current OMSO2 
algorithm version (1.1.1). Limitations encountered in this study arise from 3 main 
sources: (1) detection limits of the instrument, (2) uncertainties and errors in retrieval of 
the data by the OMSO2 algorithm and (3) uncertainties in the selection criteria used in the 
Matlab program (annex I). 

(1) Detection limits of the instrument 
 

 South Atlantic radiation Anomaly (SAA) 

Space-based measurements over South America are affected by an increased noise 
caused by the SAA. Flux of energetic particles traverse the inner Van Allen radiation belt 
and interfere with the instrument detection (Carn et al. in press), causing spikes of SO2 
randomly distributed over South America. These spikes are a few pixels in size and but 

http://so2.gsfc.nasa.gov/
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their intensity is comparable to that of weak SO2 sources such as Lastarria or copper 
smelters. However, they are temporally limited to a single overpass and their influence is 
reduced when considering time and spatial averaged data (Carn et al. in press). Thus, 
their influence has been reduced (see III.1.c) by taking the average of all SO2 emissions 
for each day and estimating the total SO2 from the calculated value, and also by 
considering the monthly total SO2 emissions for analysis and interpretation. This method 
increases the signal-to-noise ratio and lowers the detection limit (McCormick et al. 2012). 

 Limit of detection of the OMI instrument 

Although the OMI instrument is suitable for detection of passive volcanic degassing 
(McCormick et al. 2012), the standard deviation corresponding to the TRM profile, in 
normal conditions and for the LF algorithm, is 0.3 DU (8.5 kg/km²) (OMSO2 README 
File, http://so2.gsfc.nasa.gov/). Yet, the daily emissions measured for Lastarria volcano 
(from ranging from 9.8 kg/km² to 22.2 kg/km²) appear to have the same order of 
magnitude, resulting in a very low signal-to-noise ratio (SNR). Thus, it has been 
necessary to estimate the contribution of the background noise on the recovered SO2 
totals. Investigations comprise (1) estimation of the contribution of background noise on 
Lastarria calculated SO2 total mass from B3 and B4 and (2) determination of a temporal 
cyclicity affecting all SO2 measurements for the region using B1 and B2. 

(1) The intensity of the background noise appears to vary locally for different latitudes 
and longitudes. Thus, B3 and B4 areas are used to estimate the local intensity of 
background noise for Lastarria volcano, as they are located East and West of LM area 
respectively and they are recording the same background noise. Averaged SO2 amounts 
(tons/km²) have been calculated on a monthly basis for B3 and B4, and the values have 
been used to estimate the noise contribution to LM measurements (figure IV.1). 

The contribution of background noise to Lastarria Medium SO2 totals is estimated on a 
monthly basis, by direct comparison with the SO2 totals for B3 and B4. However, these 
values do not represent the background noise on Lastarria Medium are, but are 
estimations of local noise intensity on SO2 measurements. Results are expressed as 
percentage of Lastarria total SO2 emissions that can be attributed to noise influence 
(figure IV.1). Estimations of the contribution of the noise range from 39.5% to 72.78% 
for B4 and 58.06% to 79.26% for B3. In other words, SO2 emissions over Lastarria 
Medium area are in average ~25% to ~50% superior to SO2 emissions over neighboring 
empty areas.  

 

http://so2.gsfc.nasa.gov/
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Figure IV.1: a. comparison of average SO2 burdens (tons per km²) produced per day for Lastarria 
Medium (LM), Background 3 (B3) and Background 4 (B4) b. annual B3 and B4 contribution in 
tons of SO2, estimated for the same area as LM. 

(2) Comparison of time-series of average SO2 burdens (tons/km²) for the four background 
areas highlights an annual variation of SO2 recovered amounts (figure IV.2). SO2 
emissions appear to be about 50% higher (minimum) for the months 5, 6 and 7 (May to 
July, corresponding to austral winter) than for the months 11, 12 and 1 (November to 
January, corresponding to austral summer). This variation is observed on all background 
areas, but its effects are stronger on B1 and B2, that sample larger areas. 
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Figure IV.2: time-series of total SO2 burdens (tons) for the four background areas and LM.  

The SO2 signals from the different background regions are correlated, with coefficients 
ranging from 55.6 % for B1/B4 up to 85.5% for B1/B2 (see table V.1 in V.Discussion). A 
hypothesis to explain these annual variations is the influence of cloud coverage, that 
affects the amount of SO2 detected by the instrument (see (2) on next page). 

As a conclusion, SO2 emissions over Lastarria area are in average ~25% to ~50% 
superior to the local noise, which also means that the noise accounts for ~50% to ~75% 
of the recovered SO2 totals for Lastarria area. A strong annual variation in the SO2 
amounts is observed on both large areas (B1 and B2) and smaller areas (B3 and B4) that 
do not contain any source of SO2. These variations, included in the background noise, 
affect the detection of SO2 in this region and are expected to be found on Lastarria SO2 
totals. They can be related with the influence of cloud coverage on SO2 detection. Thus, 
Lastarria SO2 totals are the combination of the original SO2 emissions from Lastarria 
fumaroles, and this local noise contribution. 
 

(2) Retrieval algorithm limitations 
 
 

 Negative SO2 values 

Negatives values of SO2 (generally lower than 1DU in intensity) have been regularly 
observed in daily text files retrieved from OMSO2, for all areas. According to OMSO2 
Release Specific Information document (http://so2.gsfc.nasa.gov/), negative SO2 columns 
of about 1 DU are produced by the OMTO3 ozone retrieval algorithm when high total 
ozone values extend across the ozone profile used for calculations. Although the order of 
magnitude of these residuals might not be significant compared to high-level SO2 

http://so2.gsfc.nasa.gov/
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degassing, they have comparable negatives values to low-level SO2 degassing. Therefore, 
the results obtained must be considered as minimum SO2 emissions.  

 Cloud coverage influence 

Previous studies using OMI measurements (McCormick at al. 2012; Carn et al. in press) 
highlight the influence of cloud coverage over the detection of SO2 emissions. This issue 
is also discussed in the Ozone Monitoring Instrument (OMI) Data User’s Guide 
(http://so2.gsfc.nasa.gov/). Meteorological clouds have different effects of SO2 
measurements depending on the relative position of the clouds and the SO2 layer. 
According to Carn et al. (in press), the presence of meteorological clouds above the SO2 
layer partly masks the SO2 signal at low altitudes and accentuate SO2 precipitation and 
deposition by enhanced wet processes, resulting in an apparent lost of SO2. Conversely, 
the presence of high cloud coverage (over 20%) can also be associated with 
unrealistically high SO2 values and therefore results in an overestimation of the SO2 
amount. In addition, values calculated at clouds’ edges can take false very high negative 
or positive values (OMSO2 Release Specific Information, http://so2.gsfc.nasa.gov/).  

The influence of cloud coverage is observed at two different scales in this study. At first, 
the annual variations of cloud coverage on background areas correspond to annual 
variations of the detected SO2 totals (figure IV.3.a). Austral summer corresponds to 
higher cloud coverage and lower SO2 totals while austral summer corresponds to lower 
cloud coverage and higher SO2 totals. These variations are caused by the influence of 
cloud coverage on the detection of the instrument, and are observed regionally. 

Then, the influence of cloud coverage is also observed in a local scale (over Lastarria 
volcano). The same annual variations are found (elevated values in austral summer, low 
values in austral winter), associated, for cloud fraction values higher than 20%, to drops 
in the SO2 totals (figure IV.3.b). This effect is observed for SO2 emissions in austral 
summer (December-January) 2006, 2007 and 2008.  

These are two aspects of the same influence of cloud fraction on SO2 detection, causing 
strong annual variations of the SO2 detected on a regional scale, and local drops in SO2 
totals recovered for Lastarria volcano. 

 

 

 

 

 

 

http://so2.gsfc.nasa.gov/
http://so2.gsfc.nasa.gov/
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Figure IV.3: a. time-series of total SO2 burdens (in tons) and associated cloud fraction variations 
for B3; b. time-series of total SO2 burdens (in tons) and associated cloud fraction variations for 
LM. 

The second effect of cloud coverage described by Carn et al. (in press) is avoided by 
setting the cldfracLim (see III.1.c) to 20%, so that all the pixels associated with a cloud 
coverage value higher than 20% are not involved in calculations.  

 Reflectivity influence 

The reflectivity of underlying surfaces influences the detection of SO2 by maximizing or 
minimizing the amount of radiation directed toward the instrument (Carn et al. in press). 
Changes in ground reflectivity can therefore cause local variations of the SO2 amount 
detected. The primary cause of variations in ground reflectivity for the studied area is the 
deposition of fresh snow on the ground. Variations of SO2 signal in regards to reflectivity 
have been investigated, but no correlation has been found between reflectivity and SO2 
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emissions for any of the areas. In addition, the uniformity of the landscapes in these high 
altitude plateaus is a great advantage for OMI SO2 retrieval (Carn et al. in press). 

(3) Data selection 

The daily data retrieved from OMIplot are corrected before being plotted using 
the Matlab protocol in annex I. Following the protocol described in Carn et al. (in press), 
each pixel is judged and removed from calculation if it corresponds to a cloud coverage 
superior to 20% or if the soip differences are not satisfied (see section III.1.c). This 
selection protocol allows differentiating between ‘real’ SO2 pixels and ‘false’ SO2 pixels 
created by either high cloud coverage or South Atlantic radiation Anomaly (Carn et al. in 
press). However, the cloud fraction criteria only remove a small amount of pixels, though 
corresponding to very elevated values of SO2 (figure IV.4), while the soip criteria 
(𝑠𝑜𝑖𝑝𝐿𝑖𝑚 = 0) select in average only ~15% of the total number of pixels. However, 
according to Carn et al. (in press), these pixels represent the ‘true’ SO2 signal for each 
day.  

 

 
Figure IV.4: comparison of time-series of SO2 burdens for LM with and without cloud fraction 
correction. 
 
 

b. Results 

The SO2 detected at Lastarria volcano is produced by low-level degassing. 
Because they are very close in intensity to the standard deviation of the instrument and 
have the same order of magnitude that the background noise, the following results are 
subject to some limitations that have to be accounted with, in the reading and 
interpretation. However, using time-averaged plots of the SO2 burdens to increase the 
SNR ratio, and selecting ‘true’ SO2 values in accord with predetermined criteria (Carn et 
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al. in press), permit to obtain significant results. The results of this study are divided in 
three steps. At first, the SO2 signal emitted by Lastarria fumaroles is identified (figure 
IV.5) on maps, as zone of high SO2 concentration, coherent in space and recurrent in 
time. Then, total SO2 burdens are calculated for all areas, giving an estimation of the total 
SO2 emissions for the period studied. Finally, the temporal variations of the signal at 
Lastarria volcano are studied and discussed. 

 
Figure IV.5 presents the maps of total SO2 burdens over LM, B3 and B4 areas. A 
significantly higher amount of SO2 is observed on LM maps (~25% to ~50% superior, on 
monthly totals). This SO2 cloud is located at the same place, close to Lastarria volcano, 
every year covered by the study, and similar feature does not appear on SO2-source free 
areas such as B1, B2, B3 or B4. Therefore, it can be interpreted as the signal of a distinct 
SO2 emission originating for a single source (spatially consistent) regularly degassing 
through time (temporally recurrent).   
 
Then, total SO2 emissions (in tons) have been calculated for each month, then summed or 
averaged year per year and presented in table IV.1 below. Because of the limitations and 
the correction performed to obtain these results, the SO2 totals have to be considered as 
minimum estimations of SO2 emissions. A total SO2 emission of 67.0 kT is found for 
Lastarria Medium on the period 2005-2010. Higher values (114.4 kT and 148.7 kT) are 
found for B1 and B2, as expected for areas covering larger surface areas, but totals found 
for B3 and B4 only represent 40% and 17% of LM SO2 total amount, respectively. 
Additional monthly values are available in annex III for Lastarria Medium area, which 
contains the best estimation of Lastarria’s SO2 plume. 
 
Table IV.1: annual SO2 amounts measured for each area. The units are indicated for each 
column. All the areas have been processed with the same criteria parameters and using the same 
algorithm (OMISO2time_series.m, in annex I). 
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Figure IV.5: annual maps of total SO2 burdens in tons (with constant scale) over LM, B3 and B4 
areas. Lastarria is displayed as a black triangle. Data plotted with the Matlab algorithm 
SO2maps.m in annex I . 
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Finally, monthly values are used to plot time-series of the different variables obtained for 
Lastarria Medium area (figure IV.6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure VI.6: time series of Lastarria Medium area for various parameters calculated from 
OMISO2time_series.m script: a. total SO2 burdens (tons); b. average SO2 burdens 
(tons/km²), c. cloud fraction (%). 

Total SO2 emissions for one month over LM range from 447.82 tons to 2001.87 
tons, which correspond to 18.16 and 96.0 tons/km², respectively. SO2 emissions are not 
constant along the year and vary as a function of time. The annual cycle observed on 
background areas (higher SO2 totals in austral winter and lower SO2 totals in austral 
summer) is not clearly observed on LM time-series. However, this was expected as the 
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SO2 totals over LM are the combination of the background noise and the emissions of 
Lastarria fumaroles. The absence of clear annual variations, caused by the noise, suggests 
that Lastarria fumaroles emissions are strong enough to cover these variations. 
Recovering Lastarria emissions comes down to understand the exact contribution of the 
noise and remove its influence. 

Four local maxima are identified in LM emissions, respectively on May and July 2005 
(~1387 tons produced for each of these months, with an average of ~46 tons/km²), on 
April, May and June 2006 (between ~1500 and ~2000 tons per month, with an average of 
~57.4 tons/km²), on July 2007 (1335 tons, 44.5 tons/km²) and on June and July 2008 
(~1450 tons per month, ~49.5 tons/km²). The maximum monthly emission for 2009 is 
~1000 tons (34.5 tons/km² in June) and ~1048 tons (37.4 tons/km² in August) for 2010.  
Thus, the total SO2 emissions drop by about 50% in 2008-2010 compared to the period 
2005-2007. All the maximum values are reached during austral winter, which is in good 
correlation with the observations made on the influence of cloud coverage (figure IV.6.c). 
Indeed, cloud coverage follows a clear annual cycle over Lastarria area, with elevated 
values (above 20%) in January and December, and values below 10% for austral winter 
months. SO2 values measured for months associated with high cloud coverage are not 
significant because of the influence of cloud coverage on the detection of the instrument 
(see IV.1.a for details).  

Figure IV.7: total SO2 burdens (tons) per month at LM for March to August, every year from 2005 
to 2010. 
 
Thus, the actual SO2 emitted from Lastarria have to be evaluated based on the record 
made in the austral winter months rather than the austral summer months, affected by an 
enhanced errors caused by the higher cloud coverage (figure IV.7). According to these 
results, Lastarria’s total SO2 emissions appear to be constant from 2005 to mid-2008, 
with an average value of ~1200 tons of SO2 detected per month, whilst an average of 
~822 tons of SO2 was detected per month in 2009-2010.  
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It is possible to interpret these variations in two ways. Figure IV.7 can show a constant 
decline in SO2 emissions at Lastarria volcano, continuously from 2005 to 2010. It can 
also show a brutal reduction of the emissions occurring around 2007-2008, while the SO2 
emissions in 2005-2007 stay constant with an average value of about ~1220 tons/month, 
and the emissions from 2008 to 2010 stay also constant with an average of about ~910 
tons/month. However, the low SNR ratio and the important contribution of the 
background do not permit to conclude on this point. 

2. InSAR results 

We obtained 23 scenes from the swath 2282, 16 from the swath 2318 and 20 from the 
swath 6404, covering periods of 2626, 1716 and 1611 days, respectively. An example of 
retrieved displacement map is shown, for each swath, in figure IV.9. Lastarria ground 
displacement signal is observed on each swath, and is in good correlation with previous 
results. It shows positive displacements of the ground in the direction of the satellite for 
all swaths, meaning that the inflation affecting Lastarria volcano area has a 3-dimensional 
component. 

Figure IV.9: example of interferograms illustrating LOS displacements for the three swaths (2282, 
2318 and 6404 from left to right) covering periods of 2626, 1716 and 1611 days, respectively. 
Black lines represent the topographic outline of the relief.   

The center of the inflating area is located North-West of the summit of Lastarria volcano 
sensu strico. Its location is correlated for the different swaths, which means that the 
maximum displacements are taking place at the same geographical location for the three 
measured directions. 
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Figure IV.10: time-series of maximum and mean ground displacements (cm) in the LOS of the 
satellite for the three swaths. 
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Time-series of the displacements have been calculated for each swath in order to estimate 
the rate of displacements and to clarify the temporal evolution of the deformation. Results 
include the maximum and mean displacements rates calculated in a 100 x 200 pixels 
window centered on the location of maximum displacement (figure IV.10) that both 
appear to follow the same trends for each swath. The standard deviations associated with 
each value are derived from the uncertainty arising from the network inversion process 
during time-series calculations (details in III.2.c). 

Mean displacement rates have been calculated on squared areas of 100 x 200 pixels 
containing Lastarria deformation signal. Results respectively range from 0.34 cm/year on 
the period November 2005 to April 2010 for swath 6404, 0.47 cm/year for the same 
period on swath 2318 and 1.11 cm/year from March 2003 to April 2010 on swath 2282. 
The higher value obtained for swath 2282 is partly explained by the larger period of time 
covered by this swath (more than 2600 days and only ~1650 days only for swathes 2318 
and 6404). As a result, swath 2282 is the only one to record the displacements on the 
period 2003-2005 with a sufficient number of measurements to allow interpolating the 
results. The estimated displacement speed for this particular period is 1.52 cm/year for 
swath 2282, while the rate for the period 2007 to 2010 drops to 0.54 cm/year. This last 
value is still higher, yet closer, than the displacement rates found for swathes 22318 and 
6303. 

Maximum displacement rates range from 0.80 cm/year for the swath 2318, 0.95 cm/year 
for the swath 6404 and up to 2.44 cm/year for the first period and 0.94 for the second 
period of the swath 2282. Thus, the large-scale temporal evolution of Lastarria ground 
deformation is characterized by a first period of constant deformation with higher 
displacement speed (1.52 cm/year) from 2003 to about 2007. Then, from 2007-2008 to 
2010, the rate of displacement clearly decreases drops and switch to about 0.50 cm/year 
in the direction of swath 2282 to 1.30 cm/year. However, although the displacement rate 
changed after 2007, the deformation remains constant during this second period at the 
first order. Constant displacements are also observed on swathes 2318 and 6404 that all 
show a similar temporal evolution (close displacement rates) although with lower 
displacement speeds. 

In addition, because the ground displacements are following such a constant evolution, it 
has been possible to use a linear regression fit model for each swath. The results of the 
modeling are found in figure IV.11 with the calculated slopes (in cm/year). Two linear 
regression curves have been used instead of one to fit the variations of swath 2282, and 
both results are shown in figure IV.11.  
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Figure IV.11: time series of the ground displacements in the LOS of the satellite for the swaths 
2318 (green), 6404 (red) and 2282 (blue), and associated standard deviations for a. mean 
displacement rates and b. maximum displacement rates. Linear regression are plotted for each 
swath and the coefficients corresponding to the curves’ equations (Y = aX +b) are displayed in 
colors corresponding to each swath/track, with corresponding displacement rates. Two linear 
regressions have been calculated for the swath 2282, for the periods 2003-2007 and 2007-2010, 
respectively. 

On the contrary, some other variations in the displacements dynamics are observed on a 
smaller scale. These small scale variations are only observed on shorter periods, and do 
not last typically more than a few months. From November 2007 to March 2008, swathes 
2318 and 2282 show the same diminution of the displacement rate, while from December 
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2009 to April 2010, the swathes 6404 and 2318 follow the exact same variation with 
decreasing displacements at first follow by the same period of re-increasing 
displacements. Both diminution and increasing of the displacement occurred at a similar 
rate for the two swaths. However, these variations are small in intensity and may not be 
significant in regards to associated standard deviations. In addition, the poor temporal 
resolution of the interferometric calculations does not allow concluding on a small-scale 
evolution of ground displacements and deformation dynamics at Lastarria volcano. 
 

V. Discussion 
 
 
Interpretation of the results is limited by the issues encountered in SO2 and GSD calculations. 
Further development and investigations on the subject would focus on improving and 
précising the present results, in order to have a better constrain of the SO2 OMI 
measurements in one hand, and to obtain more GSD values from the same database in the 
other hand.  

 Comparison between Lastarria and the copper smelter signals 

The characterization of Lastarria SO2 emissions is challenged by the detection limits of 
the instrument and contribution of background noise to the recorded signal. However, the 
presence of anthropogenic sources of SO2 located in the same region and thus affected by 
a similar noise as Lastarria volcano is a unique opportunity to compare the natural SO2 
signal from Lastarria volcano with anthropogenic SO2 emissions from the copper 
smelters. Because atmospheric SO2 produced by copper smelters originates from 
industrial extraction and treatment of copper, it can be theoretically considered as 
constant on a monthly average. Correlations coefficients have been calculated on monthly 
total SO2 emissions (variable 3) for all areas, and are presented in table V.1.  

Good positive correlations are found between background areas (55.6% to 85.5%), as 
expected as they do not contain any source of atmospheric SO2. The maximum 
correlation (85.5%) found between B2 and B4 was expected as B4 is superimposed to 
B2, as well as the very good correlation between B2 and B1. The high correlation 
between B1 and B2 (82.9 %) confirms the similar variations observed in both these areas, 
and that a general background noise can be estimated from large areas, overwriting the 
local variations. 
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Table V.1: correlation coefficients (in %) calculated on a monthly basis for all areas regarding 
their total SO2 missions (variable 3).  

 
LM has a strong correlation with S1, S2 and S3 as well as with B1, B2 and B3. This is 
coherent with the previous results, as the background noise can contribute for about 50 to 
more than 70% of the SO2 burdens on a month for all these areas.  

 
Strong correlations are found between S1, S2 and S3, while S4 is not correlated with any 
area with the exception of S3. S1, S2 and S3 also show a good correlation with LM and 
background areas. In order to determine which ones of these smelters are suitable for 
comparison with LM emissions, maps of the annual SO2 burdens are plotted for these 
four regions. They show that the SO2 emitted is not differentiated from the background 
noise for S2 and S3. The respective SO2 emissions for S2 and S3 are 2 or 3 times lower in 
intensity than LM, and appear to be lost in the background (figureV.1), and therefore 
variations recorded in these areas are similar to the noise recorded on B1 and B2, causing 
the very high correlation. These areas are not suitable for comparison with Lastarria SO2 
emissions. 
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Figure V.1: annual maps of total SO2 burdens for S1, S2, S3 and S4. Positions of each copper 
smelter (triangle). 
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S4 does not show a good correlation with any of the background areas or the other 
smelters. This smelter is located at 33.5°S latitude, and the local background noise 
appears to be different, yet inferior than in Lastarria area. Therefore, the SO2 cloud 
emitted by S4 is clearly visible on annual maps, although its total SO2 emissions remain 
lower than LM in intensity (0.06 Tg for LM, 0.03 Tg for S4 for the period 2005 to 2010). 
The correlation coefficient between the total emissions for these two areas is 49.2%. 
Variations of monthly emissions of SO2 per unit area confirm this observation (figure 
V.2) and do not show a common tendency or annual correlated signal, which means that 
the instrument is detecting two distinct SO2 signals.  

 Figure V.2: monthly amounts of SO2 emissions in tons/km² for LM and S4. 

However, both these signals are the combination of SO2 emissions from local sources 
(either Lastarria or the smelter) and local background noise (at least 50%). Smelter 4 is 
located far southward from Lastarria volcano, and the interpretation to this de-correlation 
is that the signal is not affected by the same background noise as all the other areas (table 
V.1). Therefore, it is not possible to directly compare S4 and LM emissions without 
determining and correcting the signal from this local influence. 

Smelter 1, finally, is affected by the same background noise as LM and emits a SO2 cloud 
visible on annual maps and distinguished from the noise. Thus, is represents the best 
chance of comparison with LM emissions (figure V.3). The averaged emissions in tons 
per km² appear to be comparable in intensity, although emissions at Lastarria volcano are 
slightly higher. Annual-scale variations of the emissions corresponding to higher values 
in summer and lower values in winter, associated with cloud fraction influence for 
Lastarria volcano and recorded in background areas, are observed on both signals. Thus, 
the correlation observed between these two signals can be partly attributed to the noise 
influence.  
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Figure V.3: time-series of average SO2 burdens for LM and S1. 
 
Differences between the two signals include local peaks in the retrieved signal (i.e. 
November 2007 for S1, March 2009, peak in LM signal not observed in S1, etc.) and 
differences in amplitude changes when the two signals are experiencing similar trends. 
However, interpretation of these differences would require a more complete investigation 
on these two signals. This implies to identify, for both signals, the contribution of the 
background noise on the totals retrieved and on the variations (annual cycle), and to 
characterize the influence of local factors (cloud coverage, reflectivity, winds, etc.). 
Then, a comparison of the two signals, on a monthly basis, would permit to highly their 
differences and thus to retrieve their specific variations. 
 
To conclude, although the comparison between Lastarria and copper smelters emissions 
would be a great contribution to the characterization and the interpretation of SO2 
degassing, it requires further correction of the signal (especially from local influences) 
before being exploitable. Hereabove, we found that a suitable anthropogenic source of 
SO2 have be located in close proximity to the volcano (in the range of hundreds of 
kilometers) to cancel local noise contribution, and would emit a sufficient amount of SO2 
to be distinguished from the noise. 

 
 Limitations encountered with InSAR  

 
Interferograms calculated on Lastarria volcano area, for an extended period of 126 
months, brought new insight on long-term evolution ground displacements occurring at 
Lastarria volcano. Two periods of relatively constant displacements have been identified 
and their respective rates calculated using a liner regression fit. Estimation of the 
displacement rates for the first period is based on 11 measurements from swath 2282 
only. The general trends observed for swathes 2318 and 6404 on the same period, based 
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on 3 and 2 values, respectively, suggest that the displacement rate follow a similar 
variation for the three directions investigated, but a better interpretation would require a 
higher number of data. Unlike OMI daily database, SAR images of the same zone are 
only available every few weeks or months, and this limited temporal density of 
measurements represents one of the main limitations of interferometric measurements.  
Using images from three different swaths increase the density of data available for a 
given period in addition to permit investigation of the displacements in different 
directions. However, 181 interferograms out of the 772 calculated have been removed 
from time-series calculations for accuracy reasons and to assure the reliability of the 
obtained results. 23 scenes of retrieved displacements have been used in time-series 
calculations for the swath 2282 over 30 interferograms available. This loss in temporal 
density of the data can be sort out by examining and re-calculating the interferograms 
concerned before integrating them to the calculations. Therefore, this represents the next 
step in specifying the evolution of Lastarria ground deformation signal, using the same 
database and on the same period, in order to achieve a better interpretation of the results.  
In addition, a further step would be to deduce the eastern and the vertical components of 
the deformations from the directions of the 3 swaths and to perform a principal 
component analysis from the time-series, to have an overview of the deformation signal 
in 3 dimensions. 

 
This study aims to investigate the SO2 emissions associated with Lastarria 

volcano passive degassing, using the high spectral capacities of OMI instrument, to 
characterize their intensity and temporal evolution, in order to compare with ground 
displacements calculated by InSAR on the same area and for the same period. However, 
high uncertainties associated with OMI measurements and recovering of low-level SO2 
emissions have constituted an important limitation in the exploitation and interpretation 
of the data. An estimation of the minimum SO2 mass emitted is possible, but a precise 
characterization of smaller-scale temporal evolution of the emissions remains difficult. 
The presence of a local and global influence of the noise has been evidenced, but further 
investigations are necessary to perform accurate corrections. The presence of 
anthropogenic sources of SO2 such as copper smelters close to Lastarria volcano 
represents a great opportunity to achieve this goal. 

This study gives an overview of the limitations encountered to characterize SO2 
emissions on low-level degassing in this area, and proposes a first overview of the local 
situation. However, more extended studies are necessary before accurate correction and 
interpretation of the OMI results, and this can be helped by the unique opportunity to 
compare anthropogenic and natural SO2 degassing located in the same remote area. 
Achievement of this goal would help developing the use of OMI instrument in regards to 
low-level volcanic degassing. 

In conclusion, although several limitations have been encountered in both methods, 
combined OMI and InSAR results show some common patterns, and two periods of 
respectively high and low degassing and inflation rate have been evidenced. However, 
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further investigations and conclusions on these similarities would require more 
investigations and improvements in both databases. 
 

VI. Conclusion 
 

Lastarria is a quaternary stratovolcano of Northern Chile considered as inactive, 
which only recorded activity consists in persistent fumarolic degassing located near the 
summit area of the volcano. Lastarria is located on the North-West margin the Lazufre 
volcanic system, which is affected since 1998 by a large scale (39 x 45 km²) ground 
deformation signal and has been inflating at a constant rate of ~2.5 cm/year for the period 
1998 to 2008. In 2003, a second, distinct deformation signal has been revealed by InSAR. 
Affecting a 6 km wide area centered on Lastarria volcano itself, it corresponds to an 
inflation with an estimated maximum displacement rate of 0.9 cm/year on the period 
2003 to 2005. The ground deformation was following the same constant evolution as the 
Lazufre signal. 

The present study extend the interferometric measurements from ENVISAT-ASAR 
instrument on a 126 months period from March 2003 to April 2010, using 3 swaths/tracks 
in both ascending and descending modes and using a 15 m oversampled SRTM DEM. 
Two distinct periods of constant displacements have been distinguished in the 
deformation and the corresponding rates have been estimated for each of the periods 
using a linear regression fit. From 2003 to 2007, the ground was deforming with a 
constant rate of 2.44 cm/year. Then, from 2007 to 2010, the maximum inflation rate was 
0.80 cm/year, 0.95 cm/year and 0.94 cm/year for the directions of the 3 swaths recorded 
(2318, 6404 and 2282 respectively).  

At the same time, the SO2 emissions over Lastarria volcano have been recorded on a 72 
months period from January 2005 to December 2010, using the NASA space-based 
spectrometer, Ozone Monitoring Instrument. OMI provided daily records of SO2 burdens 
emitted over Lastarria volcano and surrounding areas. Although monitoring passive 
volcanic degassing remains challenging, the SO2 signal originated from Lastarria volcano 
was clearly identified and differentiated from background noise and corrected from 
known issues. Consequent estimation of total SO2 burden released by Lastarria volcano is 
67.0 kT of SO2 on the total period covered by the study (2005-2010), with 45.2 kT (67 
%) released from 2005 to 2007 corresponding to an average of 35.7 tons/km², and 21.8 
kT released for the period 2007-2010 (26.8 tons/km²). However, monitoring passive 
volcanic and low-level degassing remains challenging and consequently, these values 
represent the minimum estimation of Lastarria SO2 emissions. The important noise 
contribution to the Lastarria signal does not permit to identify a monthly or annual 
cyclicity of the emissions. Further investigations are necessary to investigate the 
relationship and possible dependency of the SO2 emissions and the Ground Surface 
Displacement. 
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VIII. Annexes 

 
Annex I: Matlab programs used to select and display the SO2 time-series and maps from 
OMSO2 data treated by OMIplot. Comprise 5 files: OMISO2time_series.m is used to 
plot time-series, SO2maps.m is used to create maps of annual SO2 burdens over various 
areas and selecZone.m, so2correct.m and soipcorrect.m are functions used in the 
previous programs. 

Annex II: list of all SAR images used for each swath (2282, 2318 and 6404), sorted by 
date (all dates are in MM/DD/YYY format). 

Annex III: detailed list of monthly results calculated for Lastarria Medium area from the 
OMISO2time_series.m program in annex I. 
Annex IV: Documentations of permission to republish materials used in the report 
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