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Preface 
This dissertation “Sustainable Energy Production in the United States: Life Cycle 

Assessment of Biofuels and Bioenergy” centers on the environmental life cycle analysis 

of biofuels derived from renewable feedstocks. This Ph.D. research is unique in that 

within one body of work is contained analyses of multiple pathways for biofuel and 

bioenergy (electricity generation) production from diverse biomass feedstocks.  These 

liquid biofuel products include pyrolysis oil, renewable diesel, hydroprocessed renewable 

jet, and electricity generation from feedstocks such as lignocellulosic biomass as well as 

renewable fats and oils.  In addition to these pathways, this dissertation research 

investigated direct land use change emissions of greenhouse gases associated with forest 

based biofuel and bioenergy using a forest carbon budget model.  Finally, this 

dissertation research studied depolymerization of hemicellulose using a modeling 

framework for hydrolysis under dilute acid conditions.  

 

Life cycle assessment (LCA) of renewable diesel (RD) and hydroprocessed jet fuels 

(HRJ) are from a collaboration between Michigan Technological University and 

researchers at UOP LLC. All the studies were conducted in consultation with my Ph.D. 

advisor Professor David Shonnard from MTU and Mr. Tom Kalnes from UOP LLC. 

Chapter 2 researches the LCA of pennycress derived RD and HRJ, which was published 

in the journal Biomass and Bioenergy (Elsevier) in 2013. Chapter 3 is the LCA of 

jatropha derived RD and HRJ, which is based on the study conducted to support UOP and 

Global Clean Energy Holdings (GCEH) combined efforts for the EPA Petition for 

Evaluation of New Renewable Fuels and Pathways. Chapter 4 is a review of the 

greenhouse gas emissions of hydroprocessed jet fuels from renewable oils and fats. This 

work was published in the International Journal of Environmental Science and 

Engineering Research (IJESER) in 2012.  

 

LCAs of pyrolysis oil and pyrolysis oil derived biofuels and bioenergy are results from a 

collaboration between Michigan Technological University, UOP and Envergent 
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Technologies (a joint venture between UOP and Ensyn). Pyrolysis oil produced from 

sawmill residues and used in a heating application was studied and documented in 

Chapter 5, which is being prepared for submission to Energy & Fuels journal. Chapter 6 

is the LCA of pyrolysis oil derived electricity, which was published in Renewable Energy 

(Elsevier) in 2011. Chapter 7 is the LCA of pyrolysis gasoline and diesel produced from 

lignocellulosic biomass.  

 

Direct land use change impacts associated with forest based biofuel and bioenergy 

production and use is presented in Chapter 8.  This project was studied in consultation 

with Professor David Shonnard and Dr. Robert Froese (PhD committee member, 

SFRES). Stephen Kull of Natural Resources Canada and Robert Handler also provide 

valuable assistance for me to understand the Carbon Budget Model of the Canadian 

Forest System (CBM-CFS 3) model. This work will be submitted to a peer-reviewed 

journal for publication.  

 

Chapter 9 represents the work of using depolymerization model to describe the kinetic 

reaction of hemicellulose hydrolysis under dilute acid conditions. The experiment method 

was adjusted from the work performed by two former students Jill Jensen and Juan 

Morinelly. Sheri Kopka (Mercer School, Mercer.WI), Susan Stoll (Pine River Middle 

School, LeRoy, MI), and Lloyd Hilger (Hanover-Horton Middle School, Horton, MI); all 

teachers participating in the NSF-funded Research Experience for Teachers (RET) 

program at MTU, helped with the experiments in the laboratory.  

 

Finally, all the future work proposed in this dissertation are summarized in Chapter 10.  

 

With the kind permission of both IJESER and Elsevier (Appendix D), previously 

published materials have been reproduced for use in this dissertation.  
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Abstract 
The United States of America is making great efforts to transform the renewable and 

abundant biomass resources into cost-competitive, high-performance biofuels, 

bioproducts, and biopower. This is the key to increase domestic production of 

transportation fuels and renewable energy, and reduce greenhouse gas and other pollutant 

emissions.  

 

This dissertation focuses specifically on assessing the life cycle environmental impacts of 

biofuels and bioenergy produced from renewable feedstocks, such as lignocellulosic 

biomass, renewable oils and fats. The first part of the dissertation presents the life cycle 

greenhouse gas (GHG) emissions and energy demands of renewable diesel (RD) and 

hydroprocessed jet fuels (HRJ). The feedstocks include soybean, camelina, field 

pennycress, jatropha, algae, tallow and etc. Results show that RD and HRJ produced 

from these feedstocks reduce GHG emissions by over 50% compared to comparably 

performing petroleum fuels. Fossil energy requirements are also significantly reduced.  

 

The second part of this dissertation discusses the life cycle GHG emissions, energy 

demands and other environmental aspects of pyrolysis oil as well as pyrolysis oil derived 

biofuels and bioenergy. The feedstocks include waste materials such as sawmill residues, 

logging residues, sugarcane bagasse and corn stover, and short rotation forestry 

feedstocks such as hybrid poplar and willow. These LCA results show that as much as 

98% GHG emission savings is possible relative to a petroleum heavy fuel oil. Life cycle 

GHG savings of 77 to 99% were estimated for power generation from pyrolysis oil 

combustion relative to fossil fuels combustion for electricity, depending on the biomass 

feedstock and combustion technologies used. Transportation fuels hydroprocessed from 

pyrolysis oil show over 60% of GHG reductions compared to petroleum gasoline and 

diesel. The energy required to produce pyrolysis oil and pyrolysis oil derived biofuels and 

bioelectricity are mainly from renewable biomass, as opposed to fossil energy. Other 

environmental benefits include human health, ecosystem quality and fossil resources.  
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The third part of the dissertation addresses the direct land use change (dLUC) impact of 

forest based biofuels and bioenergy. An intensive harvest of aspen in Michigan is 

investigated to understand the GHG mitigation with biofuels and bioenergy production. 

The study shows that the intensive harvest of aspen in MI compared to business as usual 

(BAU) harvesting can produce 18.5 billion gallons of ethanol to blend with gasoline for 

the transport sector over the next 250 years, or 32.2 billion gallons of bio-oil by the fast 

pyrolysis process, which can be combusted to generate electricity or upgraded to gasoline 

and diesel. Intensive harvesting of these forests can result in carbon loss initially in the 

aspen forest, but eventually accumulates more carbon in the ecosystem, which translates 

to a CO2 credit from the dLUC impact. Time required for the forest-based biofuels to 

reach carbon neutrality is approximately 60 years.  

 

The last part of the dissertation describes the use of depolymerization model as a tool to 

understand the kinetic behavior of hemicellulose hydrolysis under dilute acid conditions. 

Experiments are carried out to measure the concentrations of xylose and xylooligomers 

during dilute acid hydrolysis of aspen. The experiment data are used to fine tune the 

parameters of the depolymerization model. The results show that the depolymerization 

model successfully predicts the xylose monomer profile in the reaction, however, it 

overestimates the concentrations of xylooligomers. 
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1. Chapter1: Introduction 
1.1. Background 

The United States consumed 97.3 Quads of energy in 2011, of which almost forty percent 

was provided by petroleum import1. Petroleum also serves as the dominant energy source 

for transportation sector, which was responsible for approximately 30 percent of total 

energy demand1. Also, the heavy dependence on foreign sources of petroleum poses a 

threat to national energy security.  The current reliance almost exclusively on resources 

that will eventually be depleted is also another motivation to develop renewable forms of 

energy.  The use of renewable sources of fuels has great potential to help solve this 

problem2. In addition, domestic renewable energy can lower the trade deficit, help 

generate jobs and revenues2, and most importantly, reduce greenhouse gas (GHG) 

emissions3. Because of the strategic, economic, social and environmental benefits of 

biofuels compared to petroleum, the United States government has been promoting 

research leading to the increased use of biofuels. The Energy Independence and Security 

Act of 2007 (EISA)4 mandates annual use of 36 billion gallons of renewable 

transportation fuel by 2022, which includes corn ethanol, cellulosic ethanol and biodiesel 

of 15, 16 and 5 billion gallons respectively. Forest land and agricultural land in the U.S 

can provide 368 and 998 million dry tons of biomass annually, sufficient to provide 30% 

or more of the country’s petroleum consumption with modest changes in land use and 

current forest and agricultural practices5.  

  

1.2. PhD research objective 

This PhD research contains four major components. The first component is the life cycle 

assessment (LCA) of renewable diesel (RD) and hydroprocessed jet fuels (HRJ) 

produced from renewable oils and fats. LCAs of RD and HRJ from various feedstocks 

such as camelina, jatropha, rapeseed, palm, tallow, and others are conducted and 

compared to literature and publicly available models, such as the GREET and GHGenius. 

The second component of this research is LCA of biofuels and bioenergy from fast 

pyrolysis of lignocellulosic biomass. Environmental impacts of pyrolysis oil produced 
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from forest and agricultural byproducts are evaluated. Electricity and transportation fuels 

produced from pyrolysis oil are also studied. Land use change (LUC) impact associated 

with forest-based bioenergy was evaluated in the third component. In the last component, 

a kinetic model is proposed to describe the reaction kinetics of hemicellulose hydrolysis 

in dilute acid condition.  

 

Specific objectives of this PhD research are listed as follows: 

1. Evaluate the greenhouse gas (GHG) emission and energy demands of RD and HRJ 

produced from renewable oils and fats. 

2. Present a review of current LCAs of HRJ available in literature and LCA models; 

identify the key drivers of GHG emissions in order to propose recommendations for 

improving the carbon footprint of future renewable jet fuel production. 

3. Evaluate the GHG emission, energy demands and other environmental impacts of bio-

oils and bioenergy from fast pyrolysis of lignocellulosic biomass, including pyrolysis oil, 

electricity and transportation fuels from logging residues, sawmill residues, and short 

rotation forestry. 

4. Estimate the current harvest of Michigan forest for conventional timber industry, 

propose an intensive harvest scenario to produce extra feedstock for biofuel and 

bioenergy production; estimate the carbon stock change in the Michigan forest due to 

intensive harvest 

5. Design and conduct experiment to obtain data of xylose and xylooligomers 

concentrations during dilute acid hydrolysis; develop a kinetic model to describe the 

hemicellulose hydrolysis reaction 

 

1.3. Dissertation outline 

This dissertation comprises of 10 chapters. The first chapter identifies the motivation of 

the research and development of biofuels and bioenergy industry. Chapter 2-3 present the 

life cycle GHG emissions and energy demands of RD and HRJ produced from field 

pennycress and jatropha respectively. Chapter 4 is a review of the life cycle GHG 

emissions of HRJ from renewable oils and fats, including soybean, camelina, rapeseed, 
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algae, corn oil, tallow, etc. Chapter 5-7 discuss the life cycle GHG emissions, energy 

demands and other environmental aspects of pyrolysis oil, pyrolysis oil derived electricity 

and pyrolysis oil derived transportation fuels. Chapter 8 estimates the land use change 

(LUC) impact of forest based biofuels and bioenergy. Intensive harvest of aspen forest in 

Michigan is investigated as an example for potential biofuel and bioenergy production. 

Chapter 9 reports the experiments of hemicellulose hydrolysis under dilute acid 

conditions. It also describes the use of depolymerization model as a tool to understand the 

kinetic behavior of hemicellulose hydrolysis under dilute acid conditions. Chapter 10 

summarizes the future work proposed in this dissertation.  
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2. Chapter 2: A Life Cycle Assessment of Pennycress (Thlaspi 

arvense L.) Derived Jet Fuel and Diesel1

2.1. Introduction 

 

2.1.1. Sustainable Energy and transportation biofuels 

The Energy Independence and Security Act of 2007 (EISA) mandates the use of 136 

million cubic meter of renewable transportation fuel by 20224. The European Emissions 

Trading Scheme (ETS) is also encouraging the international production of renewable jet 

fuel6. ASTM D7566 was approved on July 1st 2011, which allows blending of 

hydroprocessed renewable jet fuel (HRJ) (also referred to as SPK (synthetic paraffinic 

kerosene) from Hydroprocessed Esters and Fatty Acids, HEFA) up to 50 % (volume 

fraction) with D1655 jet fuels7, thus facilitating a commercial pathway to sustainable 

aviation fuels.   

 

2.1.2. Field pennycress as an energy crop 

Field Pennycress (Thalaspi arvense L.)  is a winter annual native to Eurasia and now 

widely distributed throughout temperate North America8. It germinates in the fall and 

forms its early vegetative stage characterized by a low-growing rosette that protects it 

from low temperatures and drying winds as it over-winters. The plant flowers in the 

spring, sets seeds and is harvested before typical summer crops (soybean) are planted. 

Thus, it has the potential to be grown as a winter crop between traditional summer crops 

to produce renewable biomass for fuel production9.  Pennycress is a prolific seed 

producer, with seed yields of 1.5 Mg/ha from test plots in North Dakota having been 

reported10. In Illinois, Isbell reported that wild type strains planted in prepared ground 

resulted in seed yields of 900 kg/ha to over 2,352 kg/ha11.  Current commercial strains 

with genetically improved research lines are now exceeding 2,463 kg/ha12 indicating that 

higher yields are possible. The harvested pennycress seeds contain oil up to a mass 

                                                 
1 This chapter has been published in Biomass & Bioenergy. Figure D-1 shows copyright clearance allowing 
for use in dissertation. Citation: Fan J, Shonnard DR, Kalnes TN, Johnsen PB, Rao S. A life cycle 
assessment of pennycress (Thlaspi arvense L.) -derived jet fuel and diesel. Biomass and Bioenergy, 
Available online 26 February 2013 http://dx.doi.org/10.1016/j.biombioe.2012.12.040 
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fraction of 36% of the seed,  nearly twice the amount as soybeans13 and comparable to 

other high yield oil producing plants such as camelina14. This high oil content (similar to 

other commercial renewable oils) and fatty acid profile (high contents of unsaturated fatty 

acids as shown in Table 2.1) make pennycress oil acceptable for biodiesel production14 

and a potentially attractive feedstock for  conversion to drop-in hydrocarbon fuels. As 

useful applications for pennycress meal develop, the oil is a candidate to become a 

sustainable alternative for advanced biofuels production. The remaining de-oiled 

presscake has an inherently high energy content of 9,554 Btu/lb dry basis13 (22.2 MJ/kg), 

suitable for direct combustion or gasification for energy production. The presscake has 

also been demonstrated to produce a uniquely stable bio-oil when subjected to 

thermochemical conversion using fast pyrolysis13. While traditionally considered 

unsuitable for animal feed due to the presence of glucosinolates14,15, pennycress 

presscake contains only sinigrin which is present in several other food plants such as 

horseradish and brown mustard16. Sinigrin has little or no biological activity17, but there 

is concern that enzymatic hydrolysis by myrosinase could produce the toxic compound 2-

propenyl allyl isothiocyanate (AITC). However, temperatures produced in seed crushing 

denature myrosinase preventing AITC formation and by extension oxazolidene-2-thione 

(OZTs) known to cause nutritional problems in animals (Vaughn SF, USDA, personal 

comunication July 20, 2011).  Majak et al18 considered the potential that glucosinolate 

hydrolysis by microorganisms of the rumen could produce AITC or allyl thiocyanate 

(ATC) in the absence of plant derived myrosinase. Sinigrin incubated for 2-6 hours in 

bovine rumen fluid did not release detectable amounts of AITC or ATC. The authors 

conclude that the sinigrin aglycone can only be generated by specific thioglucosidases of 

plant origin18. In animal feeding studies, Shires19 concludes that pennycress seeds cooked 

and extracted can be feed at relatively high levels without appreciable risk associated 

with glucosinolates. In fact, pennycress seed meal with its beneficial crude protein 

content of 31 %20 has been fed successfully to sheep21. The meal is also considered as 

animal feed by one group of Canadian researchers in their pennycress biorefinery 

strategy22.  
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Table 2.1: Fatty acid profile of field pennycress oil, camelina oil and jatropha oil 

fatty acid composition a field pennycress oil14 Camelina oil23 jatropha oil24 

C14:0 0.1 0.1 0-0.1 

C16:0 3.1 6.8 14.1-15.3 

C16:1 9c 0.2 trace 0-1.3 

C18:0 0.5 2.7 3.7-9.8 

C18:1 9c 11.1 18.6 34.3-45.8 

C18:1 11c 1.5 1.1  

C18:2 9c 12c 22.4 19.6 29-44.2 

C18:3 9c 12c 15c 11.8 32.6  

C20:0 0.3 1.5 0-0.3 

C20:1 11c 8.6 12.4  

C20:2 11c 14c 1.6 1.3  

C22:0 0.6 0.2 0-0.2 

C22:1 13c 32.8 2.3  

C22:2 13c 16c 0.7 

 

 

C22:3 13c 16c 19c 0.3 

 

 

C24:1 15c 2.9 trace  
a for example, C18:1 9c means an 18 carbon fatty acid chain with one double bond located at 

carbon 9 

 

Field pennycress has a relatively early harvest date compared to other winter annual oil 

seed crops, which makes a two-crop rotation with soybean possible25. It is currently 

proposed to be grown as a winter annual in the Midwest (Zone 5A, 5B and 6A in Figure 

2.1) on unused land following the corn harvest and prior to the spring planting of 

soybeans. This means that farmers can continue to grow corn and soybeans in the 

traditional way but add this new crop in the winter allowing them to earn additional 

income with underutilized land and equipment assets. Approximately 16.2 million ha of 

land are available each year for the winter production of pennycress26 under this strategy 
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with no impact to the food supply or critical wildlife habitats. As an energy crop, 

pennycress has the potential to produce approximately 15 million cubic meter of liquid 

transportation fuels per year27 while providing farmers with 4 billion US dollars ($4*109) 

in extra revenue and creating 23,000 new jobs26. The pennycress cultivation strategy 

being implemented by the farmers across Illinois and the surrounding area is shown in the 

Figure 2.2. 

 

 
Figure 2.12 28: Pennycress production area across Midwest (Zone 5A, 5B and 6A)  

 

                                                 
2 2 This figure was downloaded from United States Department of Agriculture (USDA) website 
http://planthardiness.ars.usda.gov/PHZMWeb/. Information presented on the USDA Web site is considered 
public domain information and may be freely distributed or copied. Clearance is available from USDA 
Policies and Links and shown in Figure D.2. 
http://www.usda.gov/wps/portal/usda/usdahome?navtype=FT&navid=POLICY_LINK 

http://planthardiness.ars.usda.gov/PHZMWeb/�
http://www.usda.gov/wps/portal/usda/usdahome?navtype=FT&navid=POLICY_LINK�
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Figure 2.2: Cultivation scheme of field pennycress implemented by the farmers across 

Illinois and the surrounding area. 

 

Western Illinois University29 has conducted preliminary field trials examining the impact 

of the presence or absence of pennycress as a previous crop on soybean yields. Soybeans 

were drilled into pennycress stubble for five consecutive weeks from mid-May to late 

June. Soybean following pennycress and soybean following fallow ground (control) were 

triplicated on the same Ipava soil type. Observations of soybean plant growth, flowering 

and pod formation in fields planted after the spring pennycress harvest all appear to be 

normal. Soybean yields were slightly higher following pennycress production for all 

planting dates possibly due to increased soil moisture thought to be caused by soil cover. 

No significant changes have been found in oil constituents or protein profiles between 

soybean following pennycress and the control. Therefore from these preliminary results, 

we assume that pennycress will not raise any concerns over food security or negative 

indirect land use change (iLUC) impact due to food (soybean) productivity decrease.   

 

2.1.3. Process Technology Overview for Drop-In Hydrocarbon Biofuels  

The UOP/Eni EcofiningTM process and the UOP Renewable Jet Fuel process hydrogenate 

and deoxygenate triglyceride and/or free fatty acid containing feedstocks such as 

vegetable oils and animal fats. The resulting normal paraffins are then isomerized and/or 

hydrocracked to yield drop-in hydrocarbon biofuels. A block flow diagram of the 
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EcofiningTM process30 is shown in Figure 2.3. The feedstock is catalytically converted to 

high quality transportation fuels by a series of optimized hydrodeoxygenation, 

decarboxylation, hydroisomerization and hydrocracking reactions. The biofuel products 

are then recovered from the reactor effluent using commercially proven separation and 

fractionation technology. The excess hydrogen provided to the reactor system is 

recovered and recycled back to the reactor to minimize net hydrogen consumption and 

maintain a minimum required hydrogen partial pressure. Make-up hydrogen is added to 

the process to balance both chemical consumption and solution losses31.  

 
Figure 2.33 30: EcofiningTM process flow diagram   

 

The renewable diesel (RD) and HRJ produced by these processes show comparable 

compositions and combustion properties to Fischer Tropsch (FT) syndiesel and SPK. The 

RD exhibits superior properties of low density, substantially higher cetane number and 
                                                 
3 3 This figure was downloaded from UOP Honeywell website http://www.uop.com/hydroprocessing-
ecofining/. Honeywell International Inc. authorizes documents published online for personal or non-
commercial use. The clearance is available from http://honeywell.com/Pages/TermsConditions.aspx and 
shown in Figure D.3. 
 

http://www.uop.com/hydroprocessing-ecofining/�
http://www.uop.com/hydroprocessing-ecofining/�
http://honeywell.com/Pages/TermsConditions.aspx�
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excellent storage stability compared to biodiesel and petroleum diesel32. Based on 

engineering correlations (Ellig YE, UOP internal correspondence November 11, 2011), 

the RD from pennycress oil will meet the ASTM D975 specification (Table 2.2).   

 

Table 2.2: Properties of Ecofining RD compared to ASTM D975-08 specs33 

 

RD ASTM Spec Test Method 

Flash Point (°C) 71 52 min ASTM 93 

Distillation (°C) 292.6 282 min; 338 max ASTM D86 

Kinetic Viscosity, 40°C (cst) 2.835 1.9 min; 4.1 max ASTM D445 

Ash (mass fraction, %) <0.0001 0.01 max ASTM D5453 

Sulfur (mg kg-1) <3.0 15 max ASTM D483 

Cetane Number >66 40 min ASTM D613 

Cloud Point (°C) -8 

 

ASTM D2500 

 

Likewise, the HRJ derived from pennycress oil is expected to meet all the stringent 

specifications required for use as a jet fuel at blends up to 50 % (volume fraction)34 

(Table 2.3). Significant quantities of HRJ have been produced by UOP to support the 

rigorous testing and protocols required for aviation fuel certification when introducing a 

new fuel to the aviation fuel supply chain (lab testing, fit for purpose testing, 

component/rig testing and finally flight testing). An updated list of successfully 

completed commercial test flights is provided in Table 2.4. In addition to these 

commercial test flights, HRJ derived from camelina and jatropha, blended with 50 % 

(volume fraction) petroleum-based jet fuel, have been flight-tested by the United States 

Air Force and Navy including the United States Air Force Thunderbirds35. Several other 

military test flights have been completed and the aircraft certified for operation on HRJ 

blends. The tests and flight demonstrations confirm that the HRJ meets stringent engine 

fuel composition and performance specifications such as ASTM D756636 and Annex 

A237.  
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Table 2.3: Properties of HRJ at 50 Percent Blend with Petroleum Jet Fuel34 

 

Jet A/Jet 

A-1a ANZb CALc JALd 

Acidity (KOH), mg/g 0.1 0.002 0.001 0.002 

Sulfur (mass fraction, %) 0.3 <0.015 <0.0001 0.0403 

Flash point, °C 38 45 45 44.5 

Density at 15°C, kg m-3 775 to 840 779 780 789 

Freezing point, °C -40/-47 -62.5 -61 -55.5 

Viscosity -20°C, mm2/s 8 3.606 3.817 4.305 

Net heat of combustion, 

MJ/kg 42.8 43.6 43.7 43.5 

JFTOTe, Temperature °C  260 300 300 300 

Existent gum, mg/ml 0.07 0.01 <0.01 <0.01 
aJet A: US specification for jet fuel; Jet A-1: international specification for jet fuel outside of 

North America 
bANZ: Air New Zealand 
cCAL: Continental Airlines 
dJAL: Japan Airlines 
eJFTOT: Jet Fuel Thermal Oxidation Tester 
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Table 2.4: Commercial Aviation Test Flights 

Airline Partner Date Feed 

Air New Zealand 

(ANZ) 

Honeywell/UOP, Boeing, 

Rolls Royce, Terasol 
Dec 30, 2008 

Jatropha 

 

Continental 

Airlines (CAL) 

Honeywell/UOP, Boeing, 

CFM, Sapphire 
Jan 7, 2009 

Jatropha/

Algal 

Japan Airlines 

(JAL) 

Honeywell/UOP, Boeing, 

Pratt & Whitney, Sustainable 

Oils 

Jan 30, 2009 

Jatropha/

Algal 

KLM Honeywell/UOP, Boeing, GE Nov 23, 2009 Camelina 

TAM, Brazil 
Honeywell/UOP, Airbus, 

CFM 
Nov 23, 2010 

Jatropha 

Interjet, Mexico 
Honeywell/UOP, Airbus, 

CFM 
Apr 01, 2011 

Jatropha 

Honeywell, USA 

(Corporate Jet) 

Honeywell/UOP, Gulfstream, 

Sustainable Oils 
Jun 17, 2011 

Camelina 

Boeing, USA 
Honeywell/UOP, Boeing, 

Sustainable Oils 
Jun 19, 2011 

Camelina 

Interjet, Mexico Honeywell/UOP, Airbus, Jul 21, 2011 Jatropha 

Aeroméxico Honeywell/UOP, Boeing, GE Aug 2, 2011 Jatropha 

 

The yield of RD (and HRJ) has been shown to be relatively insensitive to feedstock 

source. Close to 100 % (volume fraction) yield of deoxygenated diesel range product was 

observed in UOP pilot data of various feedstocks, including soybean, jatropha, canola 

and tallow33. Based on similarities in oil properties such as oxygenate content and current 

engineering correlations, conversion of pennycress oil is expected to achieve similar 

yields when the same technology is applied (Ellig YE, UOP internal correspondence 

November 11, 2011). 
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2.1.4. Research objective 

Life cycle assessment (LCA) studies have been conducted to estimate the life cycle GHG 

emissions from renewable diesel and aviation fuels38-40, but pennycress is a relatively 

new biomass feedstock which has not been thoroughly investigated yet. One goal of this 

study is to determine the life cycle GHG emissions, cumulative energy demand (CED), 

and fossil energy demand (FED) of pennycress-derived RD and HRJ fuel as produced by 

the EcofiningTM and Renewable Jet Fuel processes, and compute the GHG savings per 

MJ of fuel compared to petroleum-based jet fuels and diesel. Another goal is to explore 

the impacts of model assumptions and parameter uncertainty in the calculation of GHG 

emissions.  A variety of methodology approaches will be investigated, such as system 

expansion, energy allocation, and market value allocation because different international 

biofuels organizations recommend different approaches for the co-products within the 

system.  A series of scenario analyses will probe the effects of various LCA inputs: N 

fertilizer application rate, N content in crop residues, source of hydrogen for oil 

upgrading, and direct land use change (dLUC).    

 

2.2. LCA methods: Scope, Functional Unit, Inventory, and Impact Assessment 

The baseline pathway diagram of this LCA study is illustrated in Figure 2.4. The scope of 

this study encompasses the entire life cycle from pennycress cultivation and raw 

materials acquisition through the production and use of the fuels in vehicles and aircraft 

operations. The pennycress is grown in the Midwestern United States as a winter annual. 

After harvesting, the pennycress seeds are transported by truck to a centralized 

processing facility where the oil is recovered and a de-oiled meal co-product is generated 

for use as a secondary energy source or animal feed. The oil is then transported 322 km 

by rail to a hydroprocessing plant as a source of renewable feedstock for HRJ and RD 

production. Transport of the final fuel product to market was included over a distance of 

120 km by truck. Inventory data for pennycress cultivation, transportation, and oil 

recovery were provided by Arvens Technology Inc.  Data for conversion of the 

pennycress oil to HRJ and RD were obtained from engineering design data supplied by 
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UOP. All the inventory data were assembled based on energy content of 1 MJ of final 

fuel product, which was the functional unit of this LCA.  

 
Figure 2.4: Pathway diagram of pennycress RD and HRJ LCA study 

 

The software used for this LCA was SimaPro 7.241, which contains a large database of 

inventory data for material, chemical, and energy inputs. Inventory data is from the 

Ecoinvent database42, which is comprised of mostly European data that has close 

technology relevance to U.S. production, but whenever possible, these ecoprofiles were 

adjusted for U.S. conditions; for example electricity generation was modeled using a 

combination of current U.S. grid electricity primary energy sources43. The GHG impact 

assessment method used was the IPCC 2007 GWP 100a V1.01 method44 whose output is 

in g CO2 equivalents for all of the GHG emissions using global warming potentials 

(GWP) of 1 for CO2, 25 for CH4, 298 for N2O. GWPs for refrigerants, solvents, and other 

compounds were included in the analysis.  The cumulative and fossil energy demand are 

calculated by using Cumulative Energy Demand 1.07 method in the SimaPro, the results 

include non-renewable fossil (coal, oil, natural gas) and nuclear energy use, renewable 

biomass energy use, and other renewable energy sources, which include solar, 

geothermal, and hydroelectric power, which are given as the amount of process energy 

inputs (MJ) along the life cycle per unit of energy in the fuel products. 

 

2.2.1. Pennycress cultivation and seed transport 

The data inputs for chemicals and fuels consumed during pennycress cultivation and 

harvest stages provided by Arvens Inc. are tabulated in Table 2.5. Pennycress seeds are 

broadcasted using an airplane into standing corn field prior to corn harvesting. The 

aviation fuel profile was created in SimaPro using GHG burdens of petroleum jet fuels 
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obtained from a recent U.S. Department of Energy (DOE) study45. The nutrients removed 

by pennycress harvesting are assumed to be compensated by applying fertilizers to the 

field as part of a general nutrient management strategy by the farmers. The elemental 

composition of harvested seed was provided by the A&L Great Lakes Laboratories and 

shown in Table 2.6. Pennycress requires limited chemical inputs for productive 

cultivation. Insect pressure is insignificant due to its natural chemistry as a member of the 

mustard family and the temperatures of the growing season thus limiting an insecticide 

requirement. A pennycress seed yield of 2242 kg/ha was assumed in this study, which is 

within the range of seed yields reported in the cited literature10-12. Pennycress seeds are 

harvested by traditional combines with grain heads when mass fraction of seed moisture 

reaches 12 % in June. After harvesting, the pennycress seeds are transported by truck to 

the oil processing facility, distance of 80 km has been chosen to maximize logistics while 

providing sufficient production acreage.  
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Table 2.5: Energy and Fertilizer Inputs per kg Seeds for Cultivation and Harvesting 

(Arvens) 

Diesel, low-sulfur, at 

regional storage 0.00382 kg harvest machine 

Ammonium sulfate, as N, 

at regional storehouse 0.038 kg  

Fertilizer (P2O5) 0.019 kg  

Potassium chloride, as 

K2O, at regional storehouse 0.014 kg  

N2O emission from N 

fertilizer 0.038*0.01325*44/28 kg 

1.325 % of N in 

fertilizer emitted 

as N in N2O 

N2O emission from crop 

residues 0.0076*0.01225*44/28 kg 

1.225 % of N in 

crop residues 

emitted as N in 

N2O 

CO2 emission from diesel 

combustion 0.00382*3.172 kg 

Diesel 

combustion 

emission 3.172 kg 

CO2 eq/kg 

GHG emissions from 

petroleum aviation fuel 0.001*88.01*44 g CO2 eq 

Airplane fuel 

requirement 0.001 

kg kg-1, jet fuel 

emission 88.01 g 

CO2 eq/MJ 
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Table 2.6: Elemental composition data of harvested seed (A&L Great Lakes 

Laboratories) 

 

Analysis result 

(dry basis) 

Crop nutrient removal 

(kg/kg seeds) 

Nitrogen, N  3.810% 0.038 

Sulfur, S  0.895% 0.009 

Phosphorus, P 0.839% 0.019 (P2O5) 

Potassium, K 1.140% 0.014 (K2O) 

 

N2O emission (both direct and indirect) from pennycress farming was estimated using 

emission factors from the Intergovernmental Panel on Climate Change (IPCC). IPCC46 

estimates conversion rate of 1 % (mass fraction of N in the various nitrogen-containing 

compounds) for direct N2O emissions from soil, indirect N2O emission include 

volatilization of NH3 and NOx from the soil to the air and leaching and runoff of nitrate 

into water streams. Volatilization amount for soil nitrogen is 10 %, with 1 % of 

volatilized nitrogen converted from N in volatilized nitrogen compounds to N in N2O 

emissions. The leaching and runoff rate of soil nitrogen is estimated to be 30 %, with 

0.75 % of N converted to N in N2O emission. Therefore, 1.325 % (1 % + 10 % × 1 % +30 

% × 0.75 %) of N in fertilizer and 1.225 % (1 %+30 % × 0.75 %) of N in crop residues 

are emitted to atmosphere as N in N2O. The total amount of N in crop residues 

(aboveground and belowground) per kg of pennycress seed harvested can be calculated 

by the IPCC Tier 1 approach46, as shown in Equation 2.1. We used the default factors of 

“grains” (one crop type listed in the IPCC document) to represent pennycress because 

crops in this major crop type have the most similar properties (plant size and growth 

habits) compared to pennycress. The ratio of aboveground residues to harvested yield is 

1.09, and aboveground biomass has a nitrogen mass content of 0.6 %. The mass of 

belowground biomass is approximately 22 % of that of aboveground biomass, with a 

nitrogen mass content of 0.9 %. A range of N content in crop residues were also applied 

to investigate their impact on the life cycle GHG emissions, the results are given in the 

sensitivity analyses section below.  
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0.88 (dry matter fraction)*(1.09 *0.006 +0.22 *1.09*0.009) =0.0076 kg kg-1         Eq.2.1 

 

2.2.2. Oil extraction and upgrading 

The pennycress oil accounts for 34 % of total seed mass, of which 29 % is extracted by 

mechanical crushing using the Dox/Hivex™ System with a seed capacity of 100 t d-1 to 

250 t d-1; the remainder residue oil (5 %) is left in the presscake. 59.62 kWh (including 

presses, conveyor, cake grinder, air compressor, etc) of electricity (assuming Illinois grid 

mix47) is consumed to crush one t of pennycress seed. Temperature of 82.2 °C is achieved 

by friction and compression, which is high enough to denature the enzyme myrosinase. 

Solvent extraction operation is not considered as it must operate on very large volumes 

(beyond the supply of pennycress) to be economically feasible. If solvent extraction is 

applied, there is a first crush to fracture the seed hull and break oil bodies and release 

some oil. During this first crush temperatures do reach the critical deactivation 

temperature.  The oil is transported 322 km by rail to a centralized biofuels production 

plant to produce HRJ and RD.  

 

Pennycress oil is catalytically converted to renewable fuels by combination of 

hydrogenation, deoxygenation, isomerization and hydrocracking reactions. The H2 

required in these reactions is assumed to be produced from natural gas in a steam 

methane reforming (SMR) plant since it is the most common method48. Electricity (U.S 

grid mix47 assumed for production in the U.S) and natural gas are also consumed in the 

process to power pumps and compressors and provide the process heat requirement. 

Small amounts of other renewable fuels are also produced as co-products, including fuel 

gas, naphtha and liquefied “petroleum” gas (LPG). Conversion inputs for our study were 

obtained from confidential UOP design data. Similar inputs have been reported by others 

in published studies38,39, which are summarized in Tables 2.7 and 2.8 to provide a 

reasonable degree of tranparency without comprising confidential data. The final fuel 

products (RD and HRJ) are assumed to be distributed to consumers within a radius of 120 

km, which was estimated by the average distance between the fuel terminals49 in the 

Midwest states (Iowa, Illinois and Indiana). 
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Table 2.7:  Inputs and outputs of RD production (per kg of RD) 

 

renewable oils38 a soybean oil39 

 

low baseline high 

 Inputs 

    Oil (kg) 1.21 1.19 1.16 1.17 

H2 (kg) 0.018 0.0323 0.044 0.032 

electricity (kWh) 0.045 0.053 0.061 0.061 

natural gas (kJ) 250.8 247.2 242 244.1 

Co-productsb 

    HRJ (kJ) 

    propane mix (kJ) 1115.3 2611.4 2690.9 2548.6 

LPG (kJ) 

    naphtha (kJ) 

    a: renewable oils include pure vegetable oils, recycles products, animal fats and pyrolysis oil 

b: confidential data not shown 
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Table 2.8: Inputs and outputs of HRJ production (per kg of HRJ) 

 

renewable oils38 a 

 

low baseline high 

Inputs 

   Oil (kg) 1.73 1.71 1.67 

H2 (kg) 0.037 0.058 0.075 

electricity (kWh) 0.032 0.042 0.052 

natural gas (kJ) 179.7 193.1 204.9 

Co-productsb 

   RD (kJ) 

   propane mix (kJ) 1601.5 3784.7 3863.4 

LPG (kJ) 

   naphtha (kJ) 19944.3 19942.9 19991 

a renewable oils include pure vegetable oils, recycles products, animal fats and pyrolysis oil 

b: confidential data not shown 

 

2.2.3. Co-products credits 

Various co-products are produced during the life cycle of pennycress RD and HRJ, 

including protein products such as presscake, and energy products such as renewable fuel 

gas, renewable LPG and steam. Both system expansion and allocation approaches were 

applied to account for these co-products. Due to the multiple applications of the various 

co-products, inventory can be allocated on the basis of both energy content and market 

value, and therefore a sensitivity analysis was included to investigate the impacts of 

various allocation methods, which is a required allocation principle stated in the ISO 

1404150.   

2.2.3.1. System expansion (displacement) approach 

The ISO 1404150 recommends using system expansion approach to deal with co-

products. The U.S.EPA51 also states that this is the preferred method for life-cycle energy 

and GHG analyses in its analysis of the Renewable Fuel Standard Program.  This method 

was applied to assign the energy and GHG credits to the co-products. Based on promising 
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study with sheep21, the pennycress cake is envisioned by Arvens as animal feed, 

displacing soybean meal. The soybean meal credit of -0.405 kg CO2 eq /kg was 

calculated based on a USDA report52 for soybean cultivation, and NREL biodiesel 

study53 for soybean transport, milling/crushing impacts. Renewable fuel gas, LPG and 

naphtha produced along with the diesel/jet products were assumed to displace natural gas, 

propane and petroleum naphtha, respectively. Renewable diesel is produced as a co-

product in the HRJ production process, and it is assumed to displace petroleum diesel. 

The credits were estimated using ecoprofiles in SimaPro7.2 and avoided combustion 

emissions.  

 

2.2.3.2. Energy and Market Value Allocation  

In the energy allocation (EA) scenario, all the co-products along the life cycle, including 

the presscake produced after oil extraction, and renewable fuels produced in the biofuels 

production process, were considered as energy sources. The energy allocation method 

was used in accordance with the European Renewable Energy Directive54 to distribute the 

environmental burden among various products and co-products along the life cycle. At 

the pennycress oil extraction stage, inventory data from pennycress cultivation up to and 

including oil extraction were allocated to pennycress oil and co-product presscake. 

Allocation to oil = (A * LHVA)/(A * LHVA + B * LHVB), where A is the mass flow rate 

of output oil from the seed extraction step, B is mass flow rate of cake, LHV is lower 

heating value, and subscripts A and B are pennycress oil and cake, respectively. A similar 

calculation was performed at the RD and HRJ production stages considering the co-

products produced at that stage. The allocation factors of all the products and co-products 

are shown in Table 2.9.  

 

In the market value allocation (MVA) scenario, the energy and emission burdens of 

products and co-products along the pennycress RD and HRJ life cycle were allocated 

based on their market values. A value of 200 $/t for the pennycress presscake is assumed 

based on the 30 % crude protein content21 which is equivalent to the corn dried distillers 

grains currently selling for the same price. The market value of pennycress oil was 
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assumed to be the same as soybean oil (we have been told by biodiesel producers that 

they will offer prices equal to soybean oil due to pennycress’s perceived benefit in cold 

flow properties). The market prices of soybean oil, RD, HRJ, fuel gas, LPG were 

obtained from the GREET model55. Price of naphtha was set as 1 $ kg-1 based on ICIS 

Pricing56. Table 2.9 summarizes the energy content and market value of all the products 

and co-products in the life cycle of RD and HRJ production. The LHV and prices of 

pennycress oil and presscake were provided by Arvens, Inc. The LHV of fuel products 

were provided by UOP.  

 

Table 2.9: LHV, market values, and allocation factors (as %) of products and co-products 

 LHV (MJ/kg) 

Market value 

($/kg) 

Energy 

allocation 

factor (%) 

Market value 

allocation 

factor (%) 

Oil extraction     

Pennycress oil 36.6 0.846 44.6 63.3 

Pennycress cake 18.6 0.22 55.4 36.7 

Fuel production     

RD 44 1.21 79.1 85.6 

HRJ 44 1.21 51.8 57.8 

Fuel gas 46.9 0.383   

LPG 46.6 0.663   

Naphtha 44.9 1   

 

2.3. LCA Results and discussions 

2.3.1. GHG emissions  

The life cycle GHG emission results of pennycress RD and HRJ are benchmarked to the 

petroleum fuels baseline obtained from the DOE study45 in Figure 2.5. The total GHG 

emissions are labeled above each bar. In accordance with the EPA Renewable Fuel 

Standard (RFS2)51 and the Low Carbon Fuels Standard (LCFS) of California57, the net 
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CO2 emissions of renewable fuels at the combustion stage are considered carbon neutral 

because CO2 is sequestered by photosynthesis during the growth of biomass. The GHG 

reductions of RD compared to petroleum diesel range from 56 % to 85 %, depending on 

how the co-products are credited. The displacement method yields the most favorable 

results because of two reasons: the soy meal displaced by presscake represents a 

significant GHG credit, and the co-products of the conversion process have much lower 

carbon intensity than the fossil fuels they displace. Pennycress cultivation is the leading 

GHG contributor. N fertilizer and N2O emissions from fertilizer and crop residues 

account for the majority (>85%) of cultivation emissions. Fuel production is second 

largest GHG contributor, the emissions are mainly from H2 production, and other utilities 

such as electricity and steam are responsible for approximately 10% of fuel production 

emissions. Oil extraction is the third largest component, which accounts for 1.4 to 2.3 g 

CO2 eq/MJ when allocation methods were applied, but the emission could increase if 

solvent extraction is employed in the future. The impact of electricity for oil crushing on 

total GHG emissions is very low, therefore, electricity grid profiles from other Midwest 

states were not included in the sensitivity analyses.  For the MVA method, because of the 

high market value of pennycress oil, the majority of emission burdens from cultivation 

and oil extraction are allocated to the oil, thus the life cycle GHG emissions of RD 

calculated by this method is the highest among the three methods. The results of 

pennycress HRJ show a similar trend. The HRJ results show slightly less GHG reductions 

compared to RD for the allocation approach, mainly because more pennycress oil, and 

other materials such as hydrogen and water, are required to produce the same amount of 

HRJ. However, a larger amount of oil requirement also means more presscake produced 

per MJ of HRJ. In addition, the HRJ production process yields more co-products (fuel 

gas, propane and naphtha), offering more CO2 credits when displacement approach was 

applied.  

 

 

 



 
 

24 
 

 
Figure 2.5: Life cycle GHG emissions of pennycress RD and HRJ, comparing to 

petroleum fuels. 

 

2.3.2. Energy demand results (CED; FED) 

Figure 2.6 shows the CED results of pennycress-derived RD and HRJ, comparing to the 

petroleum baseline. The net energy demand results are labeled above each bar. The CED 

consists of four parts; non-renewable fossil and nuclear energy use, renewable biomass 

energy use, and other renewable energy sources, which include solar, geothermal, and 

hydroelectric power. The total energy demand of RD and HRJ calculated by energy 

allocation method are comparable to their petroleum counterparts, while the other two 

methods generate higher CED results. For the market allocation method, more energy 

flow is assigned to the pennycress oil because of its higher price than the co-product 

presscake. Thus the final fuel products have higher CED than the results generated by the 

energy allocation method. But the majority of the energy demands are from renewable 

biomass, the renewable fuels require substantially less fossil energy than petroleum fuels 

through the life cycle, as shown in Figure 2.7.   
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Figure 2.6: The CED results of pennycress RD and HRJ, compared to petroleum fuels. 

 

When analyzing the FED impacts, it is worthwhile to note at which point in the processes 

that the energy is actually consumed. Therefore the FED has been broken into seven 

process stages; cultivation/RMA (raw material acquisition), feedstock transportation, oil 

extraction and transportation, fuel production, distribution, and use. For petroleum diesel 

and jet, most of the fossil energy is embodied in the fuel itself, as shown by the large fuel 

use segment in their bars on Figure 2.7. For the renewable fuels, fuel production stage is 

responsible for most of the fossil energy use, because of the electricity and natural gas 

used to power the oil-to-biofuel conversion process. Cultivation is the second largest 

contributor due to the use of petroleum diesel and aviation fuel.  
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Figure 2.7: The FED results of pennycress RD and HRJ, compared to petroleum fuels. 

 

2.4. Sensitivity analyses 

2.4.1. N fertilizer application rate 

In the base case study, ammonium sulfate fertilizer is used to meet both nitrogen and 

sulfur requirement. The amount of fertilizer was calculated by the elemental composition 

of pennycress seeds. Because N2O from N fertilizer and crop residues is a potent GHG 

pollutant which has a significant impact on the total GHG emission results, a sensitivity 

analysis on the N fertilizer application rate is included. The amount of N fertilizer applied 

to soil was increased and decreased by 50 %, respectively (0.019 kg/kg and 0.057 kg/kg), 

and then entered into the SimaPro.  The life cycle GHG emissions of this sensitivity 

analysis are shown in the Figure 2.8. The N fertilizer application rate has a significant 

impact (>20%) on the life cycle GHG emissions, especially when system expansion 

approach was applied.  

-0.1 0.3 0.4 -0.7 0.3 
0.4 

1.25 1.21 

-1.5 

-1.0 

-0.5 

0.0 

0.5 

1.0 

1.5 

RD (disp) RD (MVA) HRJ (EA) Petroleum Diesel 

M
J (

in
pu

t)
/M

J (
ou

tp
ut

) 

Fuel Combustion Fuel Transport 

Fuel Production Oil Transport 

Oil Extraction and Refining Feedstock Transport 

Feedstock Cultivation, RMA 



 
 

27 
 

 
Figure 2.8: Life cycle GHG emissions of pennycress RD and HRJ, various N application 

rates. 

 

2.4.2. N content in crop residues 

The IPCC presents default factors to calculate crop residue nitrogen (N) content of eight 

major crop types. In this scenario, N content in crop residues were calculated by 

substituting those default factors in Equation 2.1. The N content in seeds calculated 

(excluding root crops and perennial as they are very different from pennycress in crop 

properties) range from 0.005 to 0.01 kg/kg, and were used for this sensitivity analysis. 

The GHG emissions results of this sensitivity analysis are illustrated in Figure 2.9. No 

significant impact (<2 %) on the life cycle environmental burdens of renewable fuels 

were observed when allocation approaches were applied. System expansion approach 

yields larger variations, but the GHG emission reductions (CO2 eq) of renewable fuels are 

still above the 50 % threshold mandated by the EPA4.   
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Figure 2.9: Life cycle GHG emissions of RD and HRJ with different N content in seed 

residues. 

 

2.4.3. Oil degumming 

The crude pennycress oil, if crushed carefully, can meet the requirements for fuel 

production, which has been confirmed by the fuel production companies who purchase 

the crude oil (sources are not disclosed due to confidential business relationships).  

However, gums consist mainly of phosphatides may be present in the crude vegetable oils 

obtained by screw pressing and solvent extraction, which can increase refining loss due to 

their strong emulsifying action58 59. In this scenario, a water degumming step was 

included, 0.5 MJ of natural gas is used to heat 1kg of crude pennycress oil, which was 

estimated by the degumming energy requirement reported in literature60. The additional 

energy requirement results in GHG increase of 0.22 to 0.97 g CO2 eq /MJ, depending on 

how the co-products are credited, which are insignificant compared to the overall GHG 

emissions.  
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2.4.4. H2 source (natural gas fed SMR vs. integrated H2 production) 

In the baseline analysis, H2 is produced from natural gas using SMR. Data for steam 

reforming of methane was derived from an ecoprofile in SimaPro and augmented with 

CO2 released upon steam reforming.  The carbon intensity (CO2 eq) of H2 was calculated 

as 11.4 kg/kg, similar to what was reported by Spath and Mann48. In the integrated 

scenario H2 is produced using co-products from the biofuel conversion process such as 

fuel gas, propane and butane (renewable LPG) and naphtha instead of natural gas as the 

steam reforming feedstock. The CO2 released in the integrated reformer is not climate 

active because the carbon is from a renewable biomass source. A small amount of 

electricity and cooling water is also used in the integrated H2 plant. The remainders of the 

co-products after integrated H2 production are assumed to displace their corresponding 

petroleum fuels. For the allocation methods, the results of this sensitivity analysis (Figure 

2.10) show reduced GHG emissions (-4 to -6.3 g CO2 eq./MJ) of pennycress RD and 

HRJ. It is because the SMR plant uses co-products of the biofuel production process as 

feedstocks, and these co-products have much lower GHG intensity than natural gas. 

However, displacement approach yields the opposite trend, the GHG emissions increase 

by 3.9 and 6.1 g CO2 eq./MJ for RD and HRJ, respectively, as it is because less GHG 

emissions are credited to the life cycle, due to the consumption of co-products in the 

integrated H2 plant.  

 



 
 

30 
 

 
Figure 2.10: Life cycle GHG emissions of RD and HRJ with different H2 sources. 

 

2.4.5. Biodiesel production from pennycress oil 

Vegetable oils have been used to produce biodiesel by transesterification of these 

feedstocks, where in the oils react with methanol (or ethanol) in the presence of sodium 

hydroxide, and produce fatty acid methyl esters (FAME) and glycerin61. Pennycress has 

shown promise to replace edible vegetable oils as biodiesel feedstock, while the biodiesel 

product  exhibits a high cetane number of 59.8 and excellent low temperature properties 

(cloud point of -10°C), meeting the United States biodiesel standard ASTM D675114.  

 

A separate LCA case was developed to investigate the relative impact of biodiesel 

production using pennycress oil as feedstock. The inventory inputs of biodiesel 

production (Table 2.10) were obtained from Arvens and literatures52,53. In this case, only 

the energy allocation method was applied to calculate the GHG credits of co-products 

along the life cycle, which include presscake after oil extraction. In accordance with the 

European Renewable Energy Directive54, zero GHG emission was assigned to the crude 
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glycerin produced by transesterification reaction. All the environmental burdens at the 

biodiesel production stage were allocated to biodiesel itself.  Because methanol from 

natural gas is used to produce biodiesel, biodiesel contains fossil carbon atoms, and 0.15 

kg of fossil CO2 is emitted when 1 kg of biodiesel is combusted (assuming all carbon in 

methanol converts to CO2), which converts to biodiesel combustion emission of 4.02 g 

CO2 eq./MJ. As illustrated in Figure 2.11, the pennycress oil derived biodiesel has a GHG 

intensity (28.4 g MJ-1 CO2 eq.) similar to pennycress RD produced using natural gas 

derived hydrogen but a higher intensity when compared to RD using integrated H2 

production and energy allocation.  

 

Table 2.10: Inventory inputs of pennycress BD production (per kg of BD) 

Materials/Assemblies 

 Pennycress oil  1.0374 kg  

 Methanol, at regional storage 0.11 kg 

 Sodium hydroxide, at plant 0.02 kg 

 Hydrochloric acid, at plant 0.021 kg 

 Water, completely softened, at plant 19.773 kg cooling water 

Water, completely softened, at plant 4.8 kg chilled water 

Water, completely softened, at plant 0.025 kg process water 

Processes 

  U.S electricity mix 7.1/1000*2.204 kWh 

 CO2 emission from biodiesel 

combustion 0.11/32*44 kg 

Fossil C in 

methanol 

Steam, for chemical processes, at plant 0.258 kg 
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Figure 2.11: Life cycle GHG emission of pennycress oil derived biodiesel, comparing to 

pennycress RD. 

 

2.4.6. Land use change (LUC)  

In this study we cite evidence that the winter annual and double cropping strategy for the 

production of pennycress does not compete with food crops for land, does not decrease 

subsequent soybean crop yields, and thus is not expected to result in indirect land use 

change (iLUC) impacts. However, the GHG results from our study should be 

reconsidered when multi-year and large-scale field cultivation of pennycress occurs in 

rotation with corn and soybeans. Should yields post pennycress cultivation indicate yield 

differences from control trials, then the iLUC impacts must be incorporated. The direct 

LUC impact due to pennycress cultivation is under investigation. The carbon stock 

change is expected to be small or negative because of the envisioned farming strategy: 
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broadcast planting of pennycress without soil disturbance in the fall, followed by no-till 

soybeans in the spring, and in the second spring, minimal-till corn. The soil data for the 

last two years (given in Table 2.11) confirm that very little change occurs in soil 

properties, especially the organic matter values. Therefore, we did not include the dLUC 

impact in this study as it is expected to be negligible, although ongoing studies are in 

place to confirm this assumption.  

 

Table 2.11: Soil data of pennycress/soybean rotation for the last two years 

 Soil 

pH 

Organic 

matter 

(%) 

P (kg/ha) K (kg/ha) Mg 

(kg/ha) 

Ca 

(kg/ha) 

CEC 

meq/100g 

Fallow-

soybean 

6.3 2.2 

89.7 361.0 928.3 7234.7 

22 

pennycress-

soybean 

6.3 2 

53.8 316.2 1180.6 6508.2 

21.2 

Fallow-

soybean 

6.5 2.5 

60.5 423.8 837.5 7648.4 

21.9 

pennycress-

soybean 

7.1 2.3 

56.1 338.6 797.1 6881.6 

18.7 

10yr-avg for 

plot 10 

6.55 2.5 

93.7    

19.9 

 

2.5. Future work 

For future work, multi-year and large-scale field cultivation of pennycress in rotation 

with corn and soybeans is needed to be studied to understand the sustainability of soil 

properties and confirm the iLUC assumptions. Field measurements of soil carbon stocks 

prior and after pennycress cultivation can be used to calculate the GHG emissions due to 

dLUC (if any occurs). Pennycress residues need to be examined to measure the above 

and belowground N content, so the amount of N left in soil after harvesting can be 

determined. The crop residues N left in soil may reduce the N fertilizer use for the next 
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crop (soybean), and this credit should be examined and included in future LCA analyses. 

The use of pennycress meal as an animal feed is not yet practiced commercially and this 

assumption requires future market validation. Energy use of the presscake via direct 

combustion or fast pyrolysis can also be studied to understand the environmental impact 

of its use for bio-power.  

 

2.6. Conclusion 

Pennycress, a non-food member of the mustard family Brassicacae, has the potential to 

be grown between soybean/corn rotations as a winter annual crop yielding feedstock for 

drop-in hydrocarbon biofuel production. Because the planting of pennycress does not 

compete with food production nor reduce post-pennycress soybean yields, it is not 

expected to raise any concerns over iLUC. The life cycle GHG results (CO2 eq) of 

pennycress oil derived RD and HRJ show over 50 % of reductions compared to their 

petroleum counterparts, which could qualify them as advanced biofuel and as biomass-

based diesel by the RFS standard. Most of the energy required for each pennycress 

biofuel product is derived from renewable biomass as opposed to non renewable fossil. 

The fossil energy consumptions are considerably lower than the petroleum fuels. With 

the potential of 15 million cubic meter of annual liquid renewable fuels yield, pennycress 

can be a significant contributor to meet the 79.5 million cubic meter advanced biofuel 

target by 2022.  
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3. Chapter 3: A Life Cycle Assessment of Jatropha Oil Derived 

Jet Fuel and Diesel 
3.1. Introduction 

Jatropha is a perennial plant native to Central America which belongs to the 

Euphorbiaceae family62,63, it is now commonly seen across tropical and sub-tropical 

regions and presents promising properties as oil feedstock for biofuel production64. 

Jatropha can survive in adverse conditions and grown on marginal land, thus is less likely 

to compete with food production and cause any negative land use change impact. In 

addition, it requires very little fertilizer inputs or irrigation65.  Moreover, jatropha is 

claimed to have lower pesticides requirement as it has fewer pests and diseases66. 

Jatropha is not currently produced for food or animal feed because of the toxicity of its 

seeds.  However, the whole plant and parts can be used in many other ways.  The entire 

plant has been used for soil erosion control, pest repellent, medicinal use, and fire 

wood67.  The fruit and seed cake of the plant can be used as fertilizer or energy source 

through gasification and combustion68. Jatropha seeds contain relatively high oil content 

compared to conventional oil seeds such as soybean, ranging from 27 to 40%65,69. 

Jatropha oil is not edible due to certain antinutrient compounds such as phosphatides, 

which makes it ideal as energy source65. 

 

However, jatropha faces many environmental and socio-economic issues64,69. Although 

jatropha can be grown on marginal land, active management and some level of inputs 

such as fertilization and irrigation are required to achieve high yields to be profitable. 

Marginal lands only yield very poor productivity (2-3 t/ha-yr) and the highest yields 

come from fertile land and intensive production practice70,71.  Studies have shown that the 

environmental impact of jatropha derived energy is highly dependent on the type of land 

use which is converted to jatropha plantation, land use change can significantly change 

the GHG balance64,69. Decisions have to be made based on local environmental, 

economic, cultural and social characteristics69. 
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This study was conducted to understand the environmental impact of jatropha derived 

biofuel and bioenergy. A jatropha plantation in Yucatan Mexico by the Global Clean 

Energy Holdings (GCEH) was studied in this research. The jatropha fruits are crushed to 

produce oil at the oil facilities near the jatropha farm. The oil is then transported from 

Mexico to U.S to produce RD and HRJ at a fuel facility using UOP’s EcofiningTM 

process and Green Jet FuelTM process. GHG emission and energy demands of the RD and 

HRJ were estimated using the LCA software SimaPro. Sensitivity analyses were also 

conducted to evaluate the impact of fertilizer application rates, H2 source and land use 

change.  

 

3.2. LCA methods  

3.2.1. Cultivation 

The land for jatropha plantation was originally developed for henequen around 1900, but 

very little of which are being produced in Mexico currently, and therefore, most of these 

land have been fallow for decades.  iLUC is assumed to be minimal for these lands 

because they are not suitable for food production. The inputs of jatropha cultivation were 

obtained from GCEH (personal communication, GCEH), the detailed inventory data are 

not tabulated due to the confidential agreement with the company. Some nitrogen (urea), 

phosphorus (single superphosphate and triple superphosphate) and potassium (potassium 

chloride) fertilizers are used during jatropha cultivation, but the jatropha husks and other 

organic waste are also applied to soil to offset the mineral fertilizer use. 1.325 % (direct 

and indirect) of N applied to soil is converted to N2O emission, as per the IPCC 

guidelines described in section 2.2.1. Although jatropha has been reported as pest 

resistant67, there are some pests that can infest jatropha monocultures63,72, therefore, 

pesticides are used to control insect and unfavorable microorganisms. Diesel is used to 

establish, maintain and operate jatropha plantation, but the energy requirement is 

relatively low compare to other oil plant such as soybean, mostly because the soil doesn’t 

need to be plowed and seeded every year (personal communication, GCEH).  
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3.2.2. Oil extraction 

The oil can be extracted by both mechanical extraction and chemical-based processes 

such as solvent extraction. Although solvent extraction could reach higher extraction rate 

(90-99%), it is more expensive and energy intensive69,73. Therefore, the oil is assumed to 

be extracted by mechanical press. The presscake after oil extraction are toxic due to the 

phorbol esters74 and other heat-sensitive antinutrients such as lectins, trypsin inhibitors 

etc67. Therefore, the cake will be used as energy source.  

 

The inputs of jatropha oil extraction were provided by GCEH and literature review. The 

husk which comprises about 30% of the dry weight of the fruit is removed by mechanical 

means after harvesting. The majority of husks (98.3 wt%) are used as a green fertilizer to 

reduce the use of mineral fertilizers, with the remainder is expected to enter the fuel 

market as a bio-energy source. After the husks are removed, the inner seeds are crushed 

to extract about 90% of the total oil present. For every 1000 kg of fruit, 300 kg husk are 

removed before oil extraction, 214 kg of oil is extracted from the seeds, leaving 486 kg of 

de-oiled cake.  The remaining cake (19.2 MJ/kg) can be used as bio-energy or animal 

feed if the antinutrient components are removed by either physical or chemical treatment. 

The crude jatropha oil contains a low concentration of phosphatides, which are poison to 

fuel production catalyst. To remove the remaining phosphatides, a chemical treatment 

step generates a mixture of precipitated gums and soapstock that separate from the oil 

using a centrifuge. Following chemical precipitation and centrifuging, absorptive solids 

such as Trisyl® will be used to absorb trace contaminants. About 0.3 wt% (of crude oil) 

of solid sorbent will be used, which will then be removed by filtration. This material 

(filtered cake) is considered a waste, with no market value. The detailed mass flow and 

energy flow are listed in Table 3.1.  
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Table 3.1:  Inputs and outputs of jatropha oil extraction 

Inputs   

Jatropha seed  3.271 kg/kg crude oil 

Chemicals 0.007 kg/kg crude oil 

Electricity 0.001 kWh/kg crude oil 

   

Outputs   

Jatropha husks 1.402 kg/kg crude oil 

Jatropha cake 2.271 kg/kg crude oil 

Refined jatropha oil 0.986 kg/kg crude oil 

Filter Cake (waste) 0.004 kg/kg crude oil 

Soapstock 0.018 kg/kg crude oil 

 

The oil is transported 50 km by truck to a port, and then loaded to transoceanic tank and 

ship to Virginia, U.S. The shipping distance is estimated to be 2400 km. Finally the oil is 

transported 650 km by rail from Virginia to Institute, WV for fuel production.   

 

3.2.3. Oil conversion to RD and HRJ  

The jatropha oil is converted to RD and HRJ via UOP’s EcofiningTM process and Green 

Jet FuelTM Process. Conversion inputs were obtained from confidential UOP design 

data.Simalar data reported in the literatures are presented in Table 2.7 and 2.8. The H2 

required is assumed to be produced using steam methane reforming (SMR) in the base 

case analysis. The final fuel products are distributed by truck to consumers within a 

radius of 150 km.  

 

System expansion and allocation approaches (energy and market value) were applied in 

the jatropha study. For the system expansion method, jatropha husks are displacing 

mineral fertilizers, with the amount of fertilizers calculated by the nutrient (N, P, K) 

content in the husks, obtained from literature: the percent of N, P2O5 and K2O in 
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harvested jatropha seeds are 2.1%, 0.84% and 2.3%, respectively64.  The seed cake and 

soapstock produced in oil refining step are assumed to be used as energy source, 

displacing coal. Renewable fuel gas, LPG and naphtha produced along with the diesel/jet 

products were assumed to displace fossil natural gas, propane and petroleum naphtha, 

respectively. The avoided emissions were calculated by the emission burdens of these 

fossil fuels included in the Ecoinvent database, including their combustion emissions. For 

the energy allocation method, the allocation factors of jatropha oil and fuel products were 

calculated by their energy contents. For the market value allocation, the pricing of husks 

was indexed to a market energy price of coal, the current market value would be about 

$60 per dry t (personal communication with GCEH). Seed cake was valued as energy 

source, which would have a current market value of about $60 per dry t. Because of the 

higher market value of crude jatropha oil compared to husks and cakes, the majority of 

the burdens up to oil extraction step were allocated to the oil itself. The allocation factors 

of the jatropha oil and final fuel products were calculated by the same equations 

described in section 2.2.3.2, and are tabulated in Table 3.2. 

 

Table 3.2: The energy content and market value, along with the allocation factors of the 

products and co-products of jatropha RD and HRJ 

   LHV 

(MJ/kg) 

Market value 

($/kg) 

EA factor MVA factor 

Crude oil 40.7 0.85 0.358 0.794 

Husk 19.5 0.06   

Seed cake 19.5 0.06   

Soapstock 20.4    

Filtered cake 10.625    

RD 44 1.21 0.892 0.925 

HRJ 44 1.21 0.531 0.568 
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3.3. LCA results and discussion 

3.3.1. GHG emissions 

The life cycle GHG emissions of jatropha RD and HRJ are shown by life cycle stage in 

Figure 3.1. Renewable fuels derived from jatropha contain no fossil carbons in the fuel 

molecules, only carbon atoms sequestered from the atmosphere as CO2 during plant 

growth.  Therefore, these fuels do not contribute to climate warming when combustion 

occurs.  Fuel production stage is the leading GHG contributor, mainly because of the H2 

and fossil fuels (natural gas and electricity) used in the fuel production process. 

Cultivation is the second largest GHG contributor mainly because of the nitrogen 

fertilizer used.  Life cycle GHG emissions of jatropha RD and HRJ are most favorable 

compared to petroleum fuels when displacement method is used to account for the co-

products. It is because the co-products of the process, which include fertilizers and 

renewable fuels (fuel gas, LPG, naphtha) have much lower carbon intensity than the 

fossil based products they displaced. Market value allocation method yields the highest 

emission, because of the high economic values of the jatropha oil compared to the husks 

and cake, where most of the energy and emission burdens of the cultivation and oil 

extraction process are allocated to the oil, and subsequently to the final fuel products. 

Savings of GHG emissions compared to fossil fuel are greater than 60% in for all 

jatropha biofuels shown in Figure 3.1. 
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Figure 3.1: The life cycle GHG emissions of jatropha RD and HRJ (base case), using 

imported H2 from SMR, compared to petroleum fuels 

 

3.3.2. Energy demand results (CED; FED) 

Figure 3.2 shows the CED results of jatropha RD and HRJ, and with comparison to the 

petroleum baseline. The net energy demand results are labeled above each bar. The CED 

consists of four parts; non-renewable fossil and nuclear energy use, renewable biomass 

energy use, and other renewable energy sources, which include solar, geothermal, and 

hydroelectric power. The total energy demand of RD and HRJ calculated by energy 

allocation method are comparable to their petroleum counterparts, while the other two 

methods generate higher CED results. For the market allocation method, more energy 

flow is assigned to the jatropha oil because of its higher price than the co-product 

presscake. Thus the final fuel products have higher CED than the results generated by the 

energy allocation method. But the majority of the energy demands are from renewable 

biomass, the renewable fuels require substantially less fossil energy than petroleum fuels 

through the life cycle, as shown in Figure 3.3.   
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Figure 3.2: CED results (base case) of jatropha derived RD and HRJ, compared to 

petroleum fuels 

 

When analyzing the FED impacts, it is worthwhile to note at which point in the processes 

that the energy is actually consumed. Therefore the FED has been broken into seven 

process stages; cultivation/RMA (raw material acquisition), feedstock transportation, oil 

extraction and transportation, fuel production, distribution, and use. For petroleum diesel 

and jet, most of the fossil energy is embodied in the fuel itself, as shown by the large fuel 

use segment in their bars on Figure 3.3. For the renewable fuels, fuel production stage is 

responsible for most of the fossil energy use, because of the electricity and natural gas 

used to power the oil-to-biofuel conversion process. Cultivation is the second largest 

contributor due to the use of petroleum diesel and fertilizers. 
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Figure 3.3: FED results (base case) of jatropha derived RD and HRJ, compared to 

petroleum fuels 

 

3.4. Sensitivity analyses 

3.4.1. Fertilize application rates 

In the base case, the fertilizer inputs were obtained from the GCEH confidential data. 

Because the jatropha husks are put back to the soil as nutrients supplement, the synthetic 

fertilizer inputs are much reduced. A sensitivity analysis was conducted to investigate the 

impact of different fertilizer application rates, which assumes fertilizer inputs are set at 

the theoretical application rate that would be needed to replace nutrients lost though the 

annual harvest of seeds. The fertilizer requirements were calculated by multiplying the 

percent of nutrient in harvested seeds and the amount of seeds consumed during oil 

extraction. The fertilizer input data were obtained from the Bailis and Baka study64 which 

studied jatropha plantations in Brazil. The percent of N, P2O5 and K2O in harvested 

jatropha seeds are 2.1%, 0.84% and 2.3%, respectively.  N-fertilizer is assumed to be 

applied as urea, which is the most common N-fertilizer currently used in Brazil. P2O5 is 
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assumed to be a mix of single- and triple-super phosphate (SSP and TSP), which are 

consumed in a 60:40 proportion. K-fertilizer is almost entirely imported as Potassium 

chloride. The life cycle GHG emissions of jatropha RD and HRJ results are illustrated in 

Figure 3.4. The fertilizer application rates have a significant impact on the total GHG 

emissions of final fuel products, especially when displacement or market value allocation 

method was used for the co-products. This is because all the emission burdens from 

additional fertilizer are applied to the final fuel products. When energy allocation method 

was used, a smaller fraction of the emission burdens of cultivation are allocated to the 

final fuel products, therefore, the increase in life cycle GHG emissions is smaller.  

 
Figure 3.4: Life cycle GHG emissions of jatropha RD and HRJ, with different fertilizer 

application rates 

 

3.4.2. H2 sources 

In the base case, H2 required in the Ecofining process is imported from a natural gas 

SMR plant. A sensitivity study assuming H2 from other sources was also included in the 

study. The second scenario assumes the H2 is produced in the integrated H2 production 

plant, using co-products from the Ecofining process such as fuel gas, LPG and naphtha as 
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consumed in the integrated H2 plant, thus all the environmental burdens of fuel 

production is allocated to RD (EAF=1).  The fuel gas, LPG, and a portion of naphtha and 

diesel produced in the HRJ production process are consumed to produce H2, the EAF and 

MAF were calculated as 0.657 and 0.637, respectively.  The GHG emissions results are 

illustrated in Figure 3.5. When H2 is produced on-site with the co-products of the process,  

RD and HRJ show more favorable GHG reductions with respect to the GHG emission 

burdens. This is because H2 from the process co-products have much lower emission and 

energy burdens than the SMR H2, which is derived from fossil natual gas. However, if 

displacement method is used, the GHG credits of the co-products decrease because they 

are consumed internally to produce H2, instead of displacing their petroleum counterparts. 

 
Figure 3.5: Life cycle GHG emissions of jatropha RD and HRJ, with different H2 sources 

 

3.5. Land use change 

iLUC impact is neglected because jatropha is planted on fallow land not suitable for 

agricultural production. The GHG emissions due to dLUC of jatropha cultivation were 

calculated based on assumed carbon stocks data for native vegetation on three categories 

of land in the Yucatan (Table 3.3). The dLUC impact was calculated by the following 

formula (modified from the European Renewable Energy Directive54): 
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𝑑𝐿𝑈𝐶 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 =
𝑝𝑙𝑎𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝑎𝑟𝑒𝑎 (ℎ𝑎) × (𝐶𝑆𝑖 − 𝐶𝑆𝑗) × 44/12

𝑅𝐷 (𝐻𝑅𝐽)𝑦𝑖𝑒𝑙𝑑 𝑜𝑣𝑒𝑟 40 𝑦𝑒𝑎𝑟𝑠 (𝑀𝐽)
 

where CSi is the carbon stocks of the land prior to jatropha planting (t C/ha), CSj is 

carbon stock after maturation of jatropha plantation (t C/ha), 44/12 is ratio of molecular 

weight of CO2 to C, and the plantation life of 40 years are assumed to calculate the 

average dLUC impact of the RD and HRJ.    

 

Table 3.3: Land category classes of native vegetation of the green bordered area, as well 

as of future jatropha plantations planted in this area (Personal communication David 

Shonnard 2012) 

Prior Land Cover 

Carbon 

Content Plantation 

(t C/ha) Fraction 

10% or less tree canopy cover 4.8 0.20 

10-20% or tree canopy cover 13.65 0.40 

20-30% or tree canopy cover 21 0.40 

Jatropha plantation cover 17.5 1.00 

 

The GHG emissions due to dLUC are tabulated in Table 3.4. The RD and HRJ offer a 

GHG credit, because jatropha is grown on degraded low carbon stock lands in the 

regions, more carbon is stored in soil due to the jatropha plantation. When allocation 

methods (EA and MVA) are used, the dLUC credit is lower because a portion of the 

credit is given to the co-products. The life cycle GHG emission results of jatropha RD 

and HRJ are illustrated in Figure 3.6.  

 

Table 3.4: GHG emissions (g CO2 eq/MJ) due to dLUC of jatropha plantation  

 

RD 

(EA) 

RD 

(MVA) 

RD 

(disp) 

HRJ 

(EA) 

HRJ 

(MVA) 

HRJ 

(disp) 

dLUC -5.03 -5.22 -5.64 -4.98 -5.30 -9.34 
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Figure 3.6: Life cycle GHG emissions of jatropha RD and HRJ, including dLUC impact 

 

Bailis & Baka64 studied jatropha derived jet fuel compared to petroleum jet fuel in Brazil. 

When no land use change was included in the analysis, jatropha oil results in 40 kg CO2 e 

per GJ of fuel produced. When direct land use change was considered, the type of land 

being replaced by jatropha has a large impact on the GHG emissions. The study found 

that converting annual crop land to jatropha can have a net increase in carbon stocks, 

which results in life-cycle GHG reductions of 83% compared to petroleum jet fuel. 

However, converting areas like shrublands can make the jatropha jet fuel shows 59% 

more GHG emissions than petroleum jet fuel. Therefore, jatropha’s sustainability is very 

dependent upon what type of land is chosen for its growth. 
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Based on the results from this LCA study, RD produced from jatropha have 75% to 98% 
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co-products, including fuel gas, LPG and naphtha. Sensitivity analyses were also 

conducted in this LCA to investigate the impact of fertilizer application and H2 sources. 

In the base case, H2 was assumed to be imported from a SMR plant. In the sensitivity 

analysis, it was assumed to be produced in an integrated H2 plant using co-products of the 

Ecofining process as feedstock. The integrated H2 scenario reduces life cycle GHG 

emissions by 14 to 40% compared to the base case, depending on the allocation methods. 

This is because of the low carbon intensity of the H2 produced from biofuels co-products 

as oppose to fossil natural gas. The dLUC impact due to jatropha plantation is also 

studied. This study found that jatropha plantation on degraded land not suitable for 

agricultural production provides a GHG credit because it stores more carbon in the soils 

over the life of the plantation, which further reduces the life cycle GHG emissions of 

jatropha derived RD and HRJ. Therefore, under the assumptions of this study, jatropha 

oil will be a promising biomass feedstock to replace fossil energy for transportation fuels. 

The GHG emission results of jatropha derived biofuels were also compared to the 

literature and LCA models, the details are presented in the next chapter.    
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4. Chapter 4: A Review of Life Cycle GHG Emissions of HRJ 

from Renewable Oils and Fats4

4.1. Introduction 

  

4.1.1. Background 

World jet fuel consumption reached 840 million L per day in 200875. This demand is 

expected to increase as the aviation industry will continue to grow over the coming 

decades with an annual growth rate of 5%76.  The United States consumed 614 MMbbl of 

conventional kerosene jet fuels in 2005, only 30% of which was produced from domestic 

crude oil resources77. The aviation fuels demand in the U.S is also expected to expand as 

the Federal Aviation Administration (FAA) projected an average annual growth rate of 

3.7 percent over the next 5 years, followed by 2.5 percent per year through 203178.  

Global CO2 emission from the aviation sector accounted for 2% of global CO2 emissions 

in 201079. There is considerable pressure on international communities and the aviation 

industry to reduce the carbon footprint of aviation fuels80. The Energy Independence and 

Security Act of 2007 (EISA) mandates the use of 36 billion gallons (136 GL) of 

renewable transportation fuel by 20224, and the European Emissions Trading Scheme 

(ETS) is also encouraging the international production of renewable jet fuel6. The 

International Air Transport Association (IATA) has set a goal of 10% alternative fuel use 

by 2017, carbon neutral growth in 2020, and 50 % reductions of CO2 emissions (to 2005 

baseline) by 205081. On July 1st 2011, ASTM gave final approval for blending of 

hydrotreated jet fuels (HRJ) (also referred to as synthetic paraffinic kerosene (SPK) from 

Hydroprocessed Esters and Fatty Acids, HEFA) up to 50 % in aviation fuels7, thus 

facilitating a commercial pathway to sustainable aviation fuels.  

 

                                                 
4 This chapter has been published in International Journal of Environmental Science and Engineering 
Research. Reprinted with permission from the journal editor Thomas White for use in dissertation (Figure 
D.4). Citation: Fan J, Handler RM, Shonnard DR, Kalnes TN. A review of life cycle greenhouse gas 
emissions of hydroprocessed jet fuels from renewable oils and fats. IJESER Vol 3(3):114-138, 2012 
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4.1.2. Hydroprocessed renewable jet (HRJ) 

Renewable fats and oils can be catalytically converted to drop in hydrocarbon biofuels by 

combination of hydrogenation, deoxygenation, isomerization and hydrocracking 

reactions. Feedstocks are primarily composed of triacylglycerols (TAGs) and free fatty 

acids (FFAs)33,82. An overview of the required processing steps is illustrated in Figure 

4.1.  

 
Figure 4.15 83: Overview of the UOP Renewable Jet Fuel Process   

 

In reaction zone R1, renewable fats and oils are hydrogenated and deoxygenated.  After 

separation of the resultant water and carbon oxides, the deoxygenated oil is catalytically 

hydrocracked and isomerized in reaction zone R2.  The HRJ is then recovered from the 

R2 effluent using commercially proven separation and fractionation technology. Excess 

hydrogen provided to the reactor system is recovered and recycled back to the reactor. 

                                                 
5 This figure was prepared by Tom Kalnes of UOP LLC for Conference 2008 Pacific Rim Summit on 
Industrial Biotechnology and Bioenergy and published online. Permission for use in this dissertation was 
provided by Tom Kalnes via email (Figure D.5). Copyright clearance from UOP Honeywell is shown is 
Figure D.3 
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Make-up hydrogen is added to the process to balance both chemical consumption and 

solution losses31. Existing  on-site hydrogen production facilities in petroleum refineries 

can be expanded to supply the hydrogen required for the hydroprocessing process38. 

Otherwise, hydrogen can be produced from natural gas in a steam methane reforming 

(SMR) plant84. Renewable co-products such as propane, butane (LPG) and naphtha from 

the HRJ production can also be steam reformed to meet the hydrogen need. A renewable 

diesel co-product can also be produced.  Table 4.1 summarizes the range of material and 

energy inputs for HRJ production that is currently available in the open literature. These 

values represent the average inputs and co-products for all feedstocks studied in those 

studies. However, some inputs such as H2 will depend on the molecular characteristics of 

the oils, most importantly the double bonded carbon (C=Cs). Co-products yields also 

depend on the hydrocracking process and catalyst.   
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Table 4.1: Inputs and outputs of HRJ production from renewable oils* (per kg of HRJ) 

 Stratton et al85 

Agusdina

ta et al40 

GREET 

201286 

GHGen

ius 87 

EPA88 

 Low  Base  High      

Inputs 

Oils (kg) 1.73 1.71 1.67  1.39 1.7 2.033 

H2 (kg) 0.037 0.058 0.075 0.046 0.056 0.058 0.013 

electricity 

(kWh) 0.071 0.092 0.114 

0.061 0.061 0.092 0.088 

natural  

gas (L) 10.81 11.62 12.33 4.58 214.85 315.37 387.16 

Co-products (kJ) 

Diesel        20558 

propane  1602 3786 3864 3086 6125  3638 

naphtha  20059 20058 20106 4194 4318  6274 

butane     1207     

LPG       13920 5716 

gasoline            5165   

* renewable oils include pure vegetable oils, recycles products, animal fats  

 

4.1.3. Life cycle assessment (LCA) of biofuels 

LCA is considered one of the best methodologies to evaluate the environmental impacts 

associated with biofuel and bioenergy production89. Researchers have been using this 

general methodology to evaluate renewable transportation biofuels and comparing them 

against conventional petroleum fuels3,39,90.  Two main approaches for conducting LCA on 

biofuels are attributional and consequential analyses.  Attributional LCA considers only 

the inputs and emissions from the product stages, while consequential analysis also 

includes direct effects to soils and indirect effects of biofuel production such as changes 

to food prices and indirect land use change emissions.  There are several LCA tools 
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available to simulate the environmental burdens of chemicals, fuels, and processes.  

SimaPro 7.241 is a LCA software integrated with the Ecoinvent database91, which allows 

the user to model products, processes and services from a life cycle perspective following 

ISO 14040 guidelines. The Greenhouse Gases, Regulated Emissions, and Energy Use in 

Transportation (GREET) Model estimates the energy and emission impacts of 

transportation fuels on a full wells-to-wheels fuel cycle92.  The latest version of GREET 

2012 86 includes the HRJ pathways from various feedstock sources, such as camelina, 

jatropha, algae, etc.  GHGenius 4.0187 is a LCA model for specific regions (east, central 

or west) of Canada, the United States and Mexico, which analyzes the air emissions and 

energy use associated with the production and use of traditional and alternative 

transportation fuels.  

 

The consideration of co-products along the life cycle is essential to fairly address the 

energy and emission burdens of the primary product, and the methodology to credit the 

co-products can have a significant impact on the final LCA results89. The most commonly 

used methods are system expansion (displacement) and allocation (mass, energy, or 

market value) method. The system expansion (SE) method involves identifying a product 

displaced by the co-product of the process, and determining the energy and emissions 

associated with the displaced product. The credits are then subtracted from the 

environmental burdens of the primary product under evaluation. The ISO 1404150 

standards and Roundtable on Sustainable Biofuels (RSB)93 both recommend using this 

approach to deal with co-products. The U.S.EPA also states that this is the preferred 

method for life-cycle energy and greenhouse gas (GHG) analyses in its analysis of the 

Renewable Fuel Standard (RFS2) Program51.  The allocation methods split the burdens 

between the primary product and co-products on the basis of mass, energy content, or 

economic value of the product relative to co-products. The European Commission divides 

the GHG emissions of biofuels and the co-products (except for agricultural crop residues 

and residues from processing)  in proportion to their energy content (based on lower 

heating value)54. The RSB recommends use of allocation based on economic value when 

necessary data are not available to perform SE method. When multiple applications of 
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various co-products are involved, a sensitivity analysis should be conducted to investigate 

the impacts of various allocation methods50.  

 

4.1.4. Land use change (LUC) 

Studies have shown that use of food crops for biofuels production may result in land use 

change (LUC) emissions of greenhouse gases, including direct and indirect effects, which 

can significantly change the GHG profiles of biofuels94-96. A consequential approach is 

applied by the U.S EPA to estimate both direct LUC (dLUC) and indirect LUC (iLUC) 

impacts of bioethanol and biodiesel derived from corn, soybean, and other biofuel 

feedstocks, such as switchgrass. The Forestry and Agricultural Sector Optimization 

Model (FASOM) and the Food and Agricultural Policy Research Institute (FAPRI) 

model have been used by the EPA to estimate the impacts of biofuels feedstock 

production on domestic and international agricultural and livestock production, 

respectively. Then the change in agricultural land and livestock are converted to GHG 

emissions based on GHG emissions factors from IPCC.  GHG emissions due to LUC are 

finally joined with fuel production emission to calculate the life cycle emissions of 

biofuels4.  The Low Carbon Fuels Standard (LCFS) of California57 identifies LUC as a 

significant source of additional GHG emissions and includes the carbon intensity values 

assigned to those fuels in the regulation. The Global Trade Analysis Project (GTAP) 

model is used by the California Air Resource Board (CARB) to evaluate the worldwide 

land use conversion associated with biofuel production. The European Renewable Energy 

Directive54 calculates annualized carbon emissions from dLUC over 20 year period. GHG 

emissions due to iLUC are also analyzed. The RSB GHG accounting scheme93 uses the 

same method to calculate the dLUC emissions, while not including iLUC impact in the 

scope of their study.   

 

4.1.5. Goal and scope 

In the literature, a limited number of LCAs have been conducted on the life cycle GHG 

emissions of HRJ produced from renewable oil feedstocks38-40,97. Here, we present an 

overview of the GHG emissions of HRJ produced from soybean, camelina, jatropha, 
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palm, algae, pennycress, tallow, and corn oil. The results are either from literature 

sources, LCA models such as GREET 2012 and GHGenius 4.01 (inputs from existing 

fuel pathway in the models), or from simulation we conducted based on literature data 

using SimaPro 7.2, and all are compared to the 2005 petroleum jet fuel baseline 77. The 

inputs, assumptions, and allocation methods used in those sources are also presented and 

compared.  Furthermore, the authors identify the key drivers of the GHG emissions of 

HRJ.  The system scope of this study includes the full life cycle of the HRJ, from 

biomass farming (exclude iLUC, but including dLUC), feedstock transport, oil extraction, 

refining and distribution, HRJ production, distribution and storage, and final use in 

aircraft engines. Life cycle GHG emissions are based on 1 MJ of final fuel product, 

which is the functional unit of this study.  

 

4.2. HRJ from renewable feedstocks 

4.2.1. HRJ from soybean oil 

Soybean oil is extensively used in U.S and Europe for biodiesel production38. Soybean 

crops have an oil content of about 18 wt% 98 and produce about 430 L of soybean oil per 

hectare per annum99. However, use of soybeans for fuel production competes with food 

markets, and thus may cause emissions due to LUC. The Stratton study85 shows that HRJ 

from soybean oil has GHG savings ranging from 32% to 69% compared to the petroleum 

jet fuel, depending on the soybean yield and farming energy inputs. According to this 

reference, the savings decrease to 7% to -62% if dLUC are included, assuming the 

soybean fields are converted from Cerrado grassland in Brazil. If the soybean fields are 

converted from tropical rainforests, the GHG emissions due to LUC are even larger.        

 

The life cycle GHG emission results for soybean HRJ are summarized in Table 4.2.  The 

life cycle emissions are organized into two stages: well-to-pump (WTP) and pump-to-

wake (PTW). It is assumed that carbon is sequestered during biomass growth, thus 

gaining a credit (-) in the WTP stage, and then is emitted to the atmosphere as CO2 when 

the biofuel is combusted in the jet engines.  Stratton85 uses market value allocation 

methodology to split the energy and emissions between soybean meal and oil, while 
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splitting emissions between HRJ and the co-products (naphtha and propane) based on 

their energy contents.  In addition to the literature results, we ran the GREET 2012 model 

using the same allocation assumptions as in Stratton article85 as a comparison.  GHGenius 

uses displacement methodology to calculate the life cycle GHG emissions of soybean 

derived HRJ. Displacement methodology was also applied in the GREET 2012 to 

compare to the GHGenius model. The Stratton and GHGenius model results show greater 

GHG savings (compared to GREET).  The reasons for the differences in emissions are 

due to differences in the inputs (see Table 4.1 and Tables A1-A3),  N2O emission from 

crop residues (Appendix A.1), co-product outputs (Table 4.1 and A3), economic value 

factors, and emission factors used within each of these models for fuels, chemicals, and 

electricity as discussed in Appendix A.1.   

 

Table 4.2: Life cycle GHG emissions of soybean-derived HRJ 

g CO2 eq/MJ LHV Stratton 

(baseline)85  

GREET 

(allocation)86  

GREET 

(SE)86  

GHGenius 4.01 

(SE)87 

WTP -33.5 -25.6 -30.3  

Soybean farming  8.91 23.53 89.2 

Biomass credit  -70.42 -70.42  

Seed transport  1.27 3.35 2.12 

Oil extraction  9.63 -0.02 -50.3 

Oil transport  0.73 0.91 1.06 

Fuel production  23.67 11.8 -9.1 

Fuel distribution  0.6 0.6 1.05 

Fuel dispensing    0.63 

PTW 70.4 70.5 70.5  

Total 37.0 44.9 40.2 34.6 

GHG savings (%) 60.2 51.7 56.7 62.8 

* SE: system expansion (displacement) 
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4.2.2. HRJ from camelina 

Camelina is an oilseed plant (oil content 28-40 wt%) of the Brassicaceae family which is 

native to northern Europe and central Asia 100,101. Camelina has a relatively short growing 

season and is well suited to be planted as a spring annual or in milder winter88, thus it has 

the potential to be gown as a rotation crop with wheat on acres that would otherwise 

remain fallow. It can effectively reduce the insect and weed pressure and provide extra 

moisture and nutrient to the soil 88. Moreover, camelina can be grown on marginal 

agricultural land. Therefore, studies have shown that no additional farm land is required 

to grow the camelina, thus no significant direct land use change impact is expected88,102. 

No significant indirect LUC impact is expected either since the limited non-biofuels use 

of camelina will not result in significant change on crop production or commodity 

markets88. In addition, it is tolerant to drought stress conditions, thus minimizing 

irrigation requirement23,102. Camelina crops can produce about 570 L of camelina oil per 

hectare per annum99 as an additional crop grown on wheat acreage. Camelina received 

preliminary acceptance as renewable feedstock by the EPA and the corresponding 

biofuels are expected to qualify as biomass-based diesel and advanced biofuels 88.  

 

Shonnard 102 uses energy allocation (EA) to distribute GHG impacts among the various 

products and co-products. It was assumed that combustion of biofuels is carbon neutral 

because biogenic carbon is sequestered by photosynthesis during the biomass growth. 

This assumption is also applied by the EPA RFS2 103 and the LCFS of California 57. The 

EPA 88 allocates the GHG emissions of HRJ and RINs-generating co-products (diesel, 

LPG and naphtha) based on their energy contents, while using displacement for other co-

products (propane). All the EPA inputs and assumptions were applied in the SimaPro 7.2 
41 to simulate the life cycle GHG emissions of camelina-derived HRJ. EA methodology 

was used in the GREET 2012 with all its default values to simulate the life cycle GHG 

results (EA), which are compared to the results simulated by SimaPro. Displacement 

methodology was also applied in the GREET model to compare with the GHGenius 

model. The results are summarized in Table 4.3. The GREET model generates 

comparatively higher results, mainly because the process requires high energy inputs 
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(natural gas) but  include less co-products (Table 4.1). GREET also shows higher farming 

emissions compared to the Shonnard et al. (2010) study and SimaPro simulation with 

EPA inputs, because of the N fertilizer requirement (Table A.4) and higher allocation 

factor of camelina oil assumed in GREET as discussed in Appendix A.2. GHGenius 

predicts the highest cultivation emissions, mainly because the high N fertilizer input 

(Table A.4) yields more N2O emission.    

 

Table 4.3: Life cycle GHG emissions of camelina derived HRJ from various sources 

g CO2 eq/MJ  Shonnard 

et al 102  

SimaPro (EPA 

data)* 88 

GREET 

(EA) 86 

GREET 

(SE) 86 

GHGenius 87 

(SE) 

Camelina farming 8.53 12.98 19.3 39.1 57.78 

Biomass credit   -70.42 -70.42  

Seed transport 0.64 2.42 0.89 1.8 1.17 

Oil extraction 

(refining) 

2.80 2.17 2.54 -5.08 -25.25 

Oil transport 2.02  0.54 0.67 0.58 

Fuel production 9.04 6.22 23.82 11.8 -3.77 

Fuel distribution 0.4 0.74 0.6 0.6 1.05 

Fuel dispensing     0.63 

Fuel combustion   70.5 70.5  

Total 23.5 21.37 47.6 48.9 31.9 

GHG savings (%) 74.7 77.0 48.8 47.4 65.7 

* The feedstock and fuel distribution emissions were obtained from EPA soybean results, as EPA 

assumes the same distribution inputs for camelina as for soybean 

 

4.2.3. HRJ from jatropha 

Jatropha presents promising properties as oil feedstock for biofuel production97 and can 

produce about 1850 L of oil per hectare per annum99. 
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Stratton85 obtained the cultivation data from a test-plot in India. The authors assumed 

solvent based oil extraction and that the co-products (husks, shell and meal) were burned 

for electricity. Energy allocation was used to account for all the products and co-products 

along the life cycle. LUC impact was neglected because marginal land was used and no 

estimates of root carbon sequestration from jatropha were available. Bailis and Baka97 

studied Brazilian jatropha for jet production, and long distance transport by truck for 

seeds (750 km) and transoceanic freighter for oil (U.S. market). The jatropha cake/husk 

was either considered as fertilizer to displace synthetic fertilizer or as energy source to 

generate electricity. The HRJ showed a GHG reduction of 55% relative to conventional 

jet fuel if dLUC impacts are excluded97. However, the impact of dLUC significantly 

changed the total emissions, when the jatropha plantation land was converted from 

various land types. Land converted from tropical forests emitted the highest amount of 

GHG to the atmosphere.  Sensitivity analyses were also performed to explore the effect 

of jatropha yield and allocation methodologies. Table 3.4 summarizes the life cycle GHG 

emissions of jatropha HRJ. The displacement method generates lower GHG emissions 

because of the credits from the jatropha cake/husk, especially if they are combusted for 

electricity generation. The fuel co-products of HRJ production also give GHG credit 

when they displace their petroleum counterparts. But GREET 2012 exhibits low GHG 

credit at the fuel production stage because it assumes low co-product yields (Table 4.1).  

GHGenius shows the highest GHG emissions, especially at the farming stage even 

though it assumes the lowest fertilizers requirement (Table A.6). This seemingly 

contradictory result is because GHGenius shows high emission factors for the fertilizers 

and includes N from crop residues, which are converted to N2O emissions (Appendix 

A.3). In addition, GHGenius doesn’t account for the jatropha cake/husk credit due to the 

toxicity, and thus no credit is given at the oil extraction stage.   
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4.2.4. HRJ from rapeseed/canola 

Rapeseed (Brassica napus) is a widely cultivated annual crop with high oil (44%) and 

protein (23%) content104. Rapeseed crops produce about 1135 L of oil per hectare per 

annum 99. The oil can be used for human consumption and HRJ production 85, and 

rapeseed meal produced after oil extraction is a high protein (38-43% 105) animal feed and 

fertilizer. The word “canola” was adopted in 1979 to describe "double low" (low erucic 

acid and low glucosinolate) rapeseed cultivar106. EPA analyzed the canola oil biodiesel 

pathway and qualified it as biomass-based diesel 107.  

 

Stratton85 used market allocation for the rapeseed meal as it is used as animal feed. The 

emissions of HRJ and co-products were allocated based on their energy contents. We ran 

the GREET 2012 model using the same allocation approach as a comparison. In addition, 

we obtained canola cultivation and oil extraction data from the EPA107  and a CARB 

report108. Both the U.S and Canada scenarios studied by the EPA were simulated using 

SimaPro 7.2 (energy allocation). Certain inputs, such as electricity grid mix, were 

adjusted to be consistent with facility location. In their LCA analyses, CARB assumes 

that canola oils are produced in Canada and shipped 1200 miles (1930 km) by rail for fuel 

production. This assumption was applied in our study as well. Energy allocation method 

was applied in GREET to compare to results generated using SimaPro software. 

Generally, the HRJ produced from rapeseed/canola shows higher GHG emissions than 

other oil plants (Table 4.5), mainly because of the high fertilizer inputs (Table A.8). 

Rapeseed straws contain 0.75 wt% N 109, which also contributes to N2O emissions (direct 

and indirect). The GREET model generates higher GHG emissions than the SimaPro 

software for two reasons: (1). GREET uses a lower value for rapeseed meal LHV making 

the allocation factor of oil higher (Appendix A.4) (2). GREET assumes much higher 

natural gas use and lower co-products yield during HRJ production (Table 4.1).  

Therefore, the HRJ has higher feedstock and fuel production emission. Canola oil 

produced in Canada shows a more favorable result to that produced in U.S, because 

Canadian canola has a lower fertilizer requirement. The emission factor of Canadian 

electricity is also lower because the electricity generation uses more renewable sources. 
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Stratton also considered GHG emission due to LUC from rapeseed cultivation. The 

rapeseed is assumed to be planted on set-aside agricultural land (land removed from 

agricultural use to benefit the ecosystem and wildlife). When the land is returned for 

agricultural use, the sequestered C and N in soils are depleted over time. The GHG 

emission (43 g CO2 eq/MJ) due to this impact was estimated by Stratton. 

 

Table 4.5: Life cycle GHG emissions of rapeseed derived HRJ from various sources 

g CO2 eq/MJ Stratton 

(baseline) 
85  

GREET 

2012 

(Stratton 

allocation) 
86 

GREET 

2012  

(EA) 86 

SimaPro  (EA) 

Canada 

case 107  

U.S 

case 
107 

CARB 
108 

Seed cultivation 

and harvest 

 30.31 27.24 21.34 20.6 15.33 

Biomass credit -70.5 -70.42 -70.42    

Seed transport  0.82 0.74 0.15 0.15 0.15 

Oil extraction and 

refining 

 5.44 3.79 4.18 4.74 3.15 

Oil transport  0.54 1.65 1.9 0.9 1.9 

Fuel production  23.67 23.67 13.8 13.8 13.16b 

Fuel distribution  0.59 0.60 0.4 0.4 0.4 

Combustion 70.4 70.5 70.5    

Total (w/o LUC) 54.9 61.4 57.7 41.3 41.0 34.1 

GHG savings (%) 40.9 33.9 37.9 55.5 55.9 63.3 

Total (w/ LUC) 97.9a      

a: assume rapeseed planted on set-aside agricultural land 

b: California electricity mix obtained from EERE110 
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4.2.5. HRJ from palm oil 

Oil palm is a perennial crop, which produces fresh fruit bunches (FFB) containing 20 

wt% oil111. Palm oil is the largest and least expensive edible oil in the global oils and fats 

market112. Roughly 5600 L of palm oil can be produced per hectare per annum99, which 

demonstrates high productivity for palm acreage compared to other conventional oilseed 

crops. It is considered the most promising biodiesel feedstock and the production is 

expanding, especially in Malaysia and Indonesia, where 90% of global palm oil is 

produced112.  

 

In the oil mills, palm kernel, mesocarp fiber, shell and empty fruit bunches (EFB) are co-

produced as well as palm oil. Palm kernel is further processed to produce kernel oil, and 

kernel expeller is produced as a co-product, which can be used as animal feed. The fibers 

and shell are usually burned on-site for heat and power. The EFB are returned to soils as 

organic fertilizers. A waste stream called palm oil mill effluent (POME) is also produced. 

The POME is treated in a series of anaerobic lagoons or tanks before discharged, which 

results in methane emissions. If the oil mills employ covered lagoons or closed digester 

tanks, the methane can be captured and then either flared or used to generate electricity 

and/or steam85,113. 

 

Stratton85 used the same allocation approach for palm oil as for soybean and rapeseed 

(market value and energy allocation).  The same allocation approach was applied by our 

study here using the GREET 2012 model, and utilizing palm inputs from its existing 

pathway. The EPA study113 assumes that palm kernel (0.27 kg/kg oil) are used as animal 

feed (no credit is given), and it allocates the energy and emission burdens between the 

HRJ and RIN-generating co-product (diesel) based on their energy content, while 

assuming propane and LPG displace natural gas, and naphtha displaces conventional 

gasoline. This allocation approach employed by the EPA along with their inputs was used 

by our study to calculate GHG emissions using SimaPro 7.2. System expansion approach 

was also used in GREET and the results compared to the emissions from GHGenius, 

which assumes system expansion.  The GHG emissions of palm oil HRJ are shown in 
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Table 4.6. GHGenius yields the highest emission result because: 1. the emission factors 

of fertilizers are higher; 2. Seed yield is lower but the fertilizer use is much higher (Table 

A.11), N in crop residues is also included in the model (Appendix A.5), which 

contributes to N2O emission; 3. Oil extraction emission includes CH4 emission from 

POME treatment (Appendix A.5). SimaPro model using the EPA inputs generates the 

lowest emission because of the low fertilizers use (Table A.11) and the allocation method 

the EPA assumes. The EPA113 estimates the GHG emissions due to LUC based on land 

cover types projected for conversion. Forest and mix land cover types (equal shares of 

forest, grassland, shrubland and cropland) would account for over 80% of land cover 

impacted by oil palm expansion in Indonesia and Malaysia, and thus results in a large 

carbon debt due to dLUC. LUC emission also comes from tropical peat swamp drainage 

to prepare land for palm plantation.  The tropical peat soils sequester approximately 20 

times more carbon than forest biomass on a per hectare basis because the peat forest 

removes CO2 from atmosphere and stores it in biomass and peat deposits113. Stratton also 

concluded that large amounts of GHG would be emitted, especially if tropical forests are 

converted to palm plantations.    
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Table 4.6: Life cycle GHG emissions of palm oil derived HRJ from various sources 

g CO2 eq/MJ Stratton 

(baseline)85 

SimaPro 

(EPA113) 

GREET (EPA 

allocation) 86 

GREET 

(SE) 86 

GHGenius87 

(SE) 

Seed 

cultivation and 

harvest 

 6.49/8.69b 10.16 12.76 30.07 

Biomass credit -70.5  -70.4 -70.4  

Seed transport  1.18 0.54 0.68 0.49 

Oil extraction   -3.01c 1.29 0.81 34.56e 

Oil transport  1.95 2.87 3.55 3.45 

Fuel 

production 

 -0.33 23.67 11.8 -15.56 

Fuel 

distribution 

 1.56 0.6 0.6 1.05 

Fuel 

dispensing 

    0.63 

Combustion 70.4  70.5 70.5  

Total (w/o 

LUC) 

30.1 7.84/10.03 39.2 30.3 54.7 

GHG savings 

(%) 

67.6 91.6/89.2 57.8 67.4 41.1 

Total (w/ 

LUC) 

39.8/166a 69.9/72.1d    

a: assuming palm field converted from logged over forest and tropical rainforest, respectively. 

b: represent Indonesia and Malaysia respectively  

c: does not include CH4 emission from POME treatment, which is 41.71 g CO2 eq/MJ HRJ113  

d: LUC calculated from mean LUC of palm oil RD (44.55 g CO2 eq/MJ RD) 

e:  includes CH4 emission from POME treatment 
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4.2.6. HRJ from pennycress 

Field Pennycress (Thalaspi arvense L.) is a winter annual native to Eurasia and now 

widely distributed throughout temperate North America114. It has the potential to be 

grown between traditional summer crops (soybeans, wheat) to produce renewable 

biomass for fuel production115. Phippen et al116 has shown that soybean planted after the 

spring pennycress harvest show normal plant growth, flowering, pod formation, oil 

constituents and protein profiles, while the soybean yields are slightly higher possibly 

due to increased soil moisture. Approximately 16.2 million hectares of land are available 

each year for the winter production of pennycress with no impact to the food supply or 

critical wildlife habitats26. The harvested seeds contain up to 36 wt% of oil13, which could 

become a sustainable alternative for advanced biofuels production. Pennycress crops can 

produce about 935 L of oil per hectare per annum as an additional crop for soybean 

acreage117. The de-oiled presscake has high energy content, suitable for direct 

combustion, gasification, or pyrolysis oil production13, and it can also be used as animal 

feed117.  

 

Fan et al117  analyzed the GHG emissions of pennycress HRJ (Table 4.7). The pennycress 

is assumed to be grown in the Midwestern United States as a winter annual. After 

harvest, the seeds are trucked to a centralized processing facility where the oil is 

recovered and a de-oiled meal displaces soybean meal as animal feed. The oil is then 

transported 200 miles (320 km) by rail to a hydroprocessing plant for HRJ production. 

Final fuel product is distributed to market over a distance of 75 miles (120 km) by truck.  

Both SE and allocation approaches (energy and market value) were employed. The H2 is 

assumed to be either from an external source using SMR or produced internally using the 

fuel co-products. The GHG emissions are summarized in Table 4.7. The SE 

(displacement) method yields the most favorable results because of two reasons: the soy 

meal displaced by presscake represents a significant GHG credit, and the co-products of 

the conversion process have much lower carbon intensity than the fossil fuels they 

displace. MVA method generates the highest results because of the high value of 

pennycress oil, majority of the emission burdens from cultivation and oil extraction are 
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allocated to the oil. The GHG emissions of the internal H2 scenario are lower than for 

SMR H2. H2 from SMR has GHG burden of 11.4 kg CO2 eq/kg H2, while the fuel co-

products used for H2 production carry much lower GHG burdens. The integrated (int) H2 

scenario calculated by SE method yields less GHG savings (compared to SMR scenario) 

because the co-products are used internally, instead of displacing the petroleum 

counterparts, thus the GHG credit of the co-products are reduced.  

 

Table 4.7: Life cycle GHG emissions of pennycress HRJ117 

 External H2 (SMR) 

Integrated H2 (from fuel co-

products) 

g CO2 eq/MJ HRJ (SE) HRJ (EA) HRJ (MVA) HRJ (SE) HRJ (EA) HRJ (MVA) 

cultivation and 

harvest 70.35 16.25 28.34 

   

Seed transport 1.66 0.38 0.67    

Oil extraction  -41.45 1.36 2.37    

Oil transport 0.61 0.31 0.35    

Fuel production -49.77 14.02 15.65    

Fuel transport 0.35 0.35 0.35    

Total -18.3 32.7 47.7 -12.2 26.4 40.3 

GHG savings (%) 119.6 64.8 48.6 113.1 71.6 56.6 

 

4.2.7. HRJ from algae oil 

Microalgae has received a significant level of renewed interest as an alternative fuel 

feedstock, because many species exhibit significant oil contents and biomass yields are 

predicted to be several orders of magnitude larger than terrestrial crops. In addition, 

microalgae can be grown on marginal lands thus not competing with food 

production118,119 and utilize non-potable water resources. Optimal algae growth and oil 

content observed in laboratory settings have yet to be achieved on a commercial scale, 

but several companies and researchers are actively investigating ways to streamline 
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various segments of the algae fuels value chain. In addition to the factors mentioned 

above, best practices in algae dewatering and efficient re-use of the non-lipid algae 

fraction (often termed ‘lipid-extracted algae or LEA) are critical to economic and 

environmental sustainability of the energy and nutrient-intensive algae cultivation and 

harvesting process. Estimates for algae indicate the potential to produce more than 58,700 

to 136,900 L of algae oil per hectare per annum118, much greater compared to all oilseed 

crops. 

 

Stratton85 reviewed current literature as well as technical processing information that 

arose during the last major algae biofuels research period 20-30 years ago. GREET 2012 

also includes life-cycle pathways of algal biofuels, including HRJ, and the algae specific 

GREET model integration tool will continue to undergo changes as the industry evolves 
120,121. The baseline algal HRJ life cycle of these comprehensive studies assumes a 25% 

oil content for algae cultivation in open pond raceways, but several different assumptions 

are made concerning unit operations for harvesting, dewatering, and oil extraction. 

Stratton assumes that cultivation will be followed by settling and centrifugation to 

achieve 4% and 25% solids, respectively, followed by thermal drying to 90% solids. 

Hexane extraction isolates algal oils, which are then converted to HRJ. Energy allocation 

is used to divide burdens among conversion co-products. Anaerobic digestion of the LEA 

fraction provides internal heat for thermal drying operations, while also facilitating 

recovery and re-use of 50–75% of macronutrients required for algae cultivation. In the 

baseline GREET model, dissolved air flotation and centrifugation are used to achieve 6% 

and 20% solids, respectively, and oil extraction is assumed to occur via a wet hexane 

extraction procedure. Anaerobic digestion is also utilized to decompose the LEA fraction 

into methane-containing biogas, 2% of which is assumed to escape as fugitive emissions. 

Electricity produced from biogas combustion supplements a majority of power 

requirements in the process (Table A.14). Anaerobic digestion solids are assumed to have 

value as a soil amendment and fertilizer displacement, and a credit is given for 

application of this material on farm fields. Energy allocation is used at the fuel 

conversion stage to divide impacts among HRJ co-products. Baseline results of both 
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studies are displayed in Table 4.8. The differences in model assumptions presented above 

account for key differences in the overall life cycle, with the GREET model having larger 

overall emissions due to large extraction, fuel conversion, and algae growth emissions, 

despite a large credit for electricity production and export to the grid. 

 

Table 4.8: Life cycle GHG emissions of algal oil derived HRJ 

g CO2eq / MJ HRJ GREET 201286 Stratton et al85 

CO2 sequestration credit -70.4 -70.5 

CO2 pumping 4.4  

Growth / harvesting 24.64  

Dewatering 8.21  

Oil extraction 33.14  

Subtotal 70.4 37.7a 

Algae oil transport 0.62 0.6 

Fuel conversion 29.9 10.3 

LEA soil amendment credit -0.16 0 

LEA biogas recovery 19.5 1.8b 

LEA biogas cleanup / combustion -49.2 0c 

Total WTP emissions 0.9 -19.7 

Fuel use 70.5 70.4 

Total WTW emissions 71.4 50.7 

GHG savings (%) 23.1 45.4 

a:  includes 8.1 g CO2 eq/MJ of N2O emissions that were aggregated for the entire life cycle of the 

HRJ process. The Stratton report assumes that the majority of N2O emissions occur in the algae 

cultivation stage from conversion of N-containing fertilizers, so we place the N2O emissions 

burden here.  

b: due solely to methane emissions. Methane emissions are reported separately in the Stratton 

report, but as in GREET we assume that most CH4 emissions occur during the anaerobic 

digestion gas recovery phase 

c: LEA biogas combusted for heat to dry algae to 90% solids 
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4.2.8. HRJ from tallow 

Inedible tallow is rendered from animal tissues by the application of heat. The raw 

materials are dehydrated and cooked, and then the protein and fat are separated. The final 

products include tallow, and carcass meal. The carcass meal can be used for livestock 

feed, soap, production of fatty acids, etc122. Currently, inedible tallow is mostly used as 

animal feed123. However, the Food and Drug Administration (FDA) is likely to ban the 

use of tallow and other animal based waste products due to bovine spongiform 

encephalopathy and other similar diseases. In addition, large amount of Distiller’s Dried 

Grains with Solubles (DDGS) also reduces the use of processed animal waste as feed 

supplement 123. Therefore, the use of inedible tallow to produce fuels is expected to 

expand while not causing any negative indirect effects (economic or LUC).   

 

The CARB studied the inedible tallow derived renewable diesel. The rendering inputs 

(Table A.16) were obtained from the study and used to analyze tallow HRJ using 

SimaPro 7.2, and then compare results to the GHGenius model. The crude tallow is 

pretreated to remove the impurities and inorganic compounds. The pretreatment inputs 

were provided by a UOP licensee, which include chemicals such as citric acid, bleaching 

earth, Trisyl, and energy inputs such as electricity and steam. The pretreatment produces 

soap stocks as co-product. The inputs of HRJ production were obtained from confidential 

UOP design data, which are similar to the inputs reported by Stratton (Table 4.1). Both 

EA and SE approach were applied to give credits to the co-products, including the soap 

and fuel products. The CARB study doesn’t consider the bone meal as a co-product of 

tallow rendering because they don’t expect it to displace animal feed for the reasons 

aforementioned. However, the GHGenius assumes that the bone meal (2.28 kg/L crude 

tallow) are used as animal feed to displace soybean meal (412 g CO2 eq/kg meal), results 

in a GHG credit of 27.3 g CO2 eq/MJ crude tallow. The extra bone meal credit of 

GHGenius makes tallow rendering emissions comparable to the SimoPro-CARB 

simulation, even when GHGenius assumes much higher natural gas and electricity use 

than does CARB (Table A.16). The GHGenius model predicts higher fuel production 

emissions (Table 4.9) compared to SimaPro (displacement), mainly because it assumes 
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higher energy requirement and lower fuel co-products (Table 4.1). Energy allocation 

leads to the highest emissions. Although the rendering impact is smaller because some of 

the impacts are allocated to the fuel co-products, it has higher fuel production emission 

because it is not subtracting the GHG credit from the fuel co-products.     

 

Table 4.9: Life cycle GHG emissions of tallow derived HRJ 

g CO2 eq/MJ SimaPro (EA) SimaPro (SE) GHGenius87 (SE) 

Tallow rendering 17.29 27.54 25.55 

Tallow transport   5.58 

Tallow pretreatment 0.92 1.03 0 

Fuel production 12.72 -27.81 -16.38 

Fuel distribution  0.4 0.4 1.05 

Fuel dispensing    0.63 

Total 31.42 1.30 16.43 

GHG savings (%) 66.2 98.6 82.3 

 

4.2.9. HRJ from fuel grade corn oil 

Fuel grade corn oil can be extracted from whole stillage, thin stillage or distillers grains 

with solubles (DGS) after the ethanol distillation process. The corn oil extraction system 

can be added to existing corn ethanol plants with no impact on the ethanol yield while 

increasing plant energy efficiency and total fuel yield124,125. Biodiesel, renewable diesel 

and jet fuel from fuel grade corn oil have been accepted by the EPA as RINs generating 

pathways88.   

 

Our study analyzed the life cycle GHG emissions of HRJ from fuel grade corn oil. The 

feedstock is produced at a corn ethanol plant, and all the emissions associated with corn 

farming and harvest, iLUC, and ethanol production are allocated to the ethanol as ethanol 

is the target product. Corn oil only carries energy and emission burden from the oil 

extraction step. The oil extraction inputs reported by both Mueller124 and CARB125 
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(Appendix A.8 and Table A.17) were analyzed in our study. The oil is then pretreated to 

remove impurities and inorganics (metals). The pretreatment inputs (Table A.18) were 

assumed to be the same as camelina oil reported by Shonnard102. The refined oil is then 

catalytically converted to HRJ in the integrated hydroprocessing facility. Input data for 

HRJ production were obtained from confidential UOP design, which are similar to those 

reported by Stratton38 (Table 4.1). Energy allocation was applied for the co-products. The 

H2 was assumed to be produced from SMR using natural gas.  Final fuel products are 

distributed to the market within a radius of 150 km.  

 

The GHG emissions of corn oil derived HRJ are shown in Table 4.10. The oil extraction 

system reported in the CARB report presents a more favorable result, because of the 

GHG credit from the energy savings from DDGS drying process due to corn oil 

extraction (Appendix A.8). The other stages show the same results because of the same 

inputs used.  

 

Table 4.10: Life cycle GHG emissions of HRJ from fuel grade corn oil (EA) 

g CO2 eq/MJ SimaPro (Mueller124) SimaPro (CARB125) 

Oil extraction 10.9 -5.01* 

Oil refining 0.61 0.61 

HRJ production 13.7 13.7 

HRJ distribution 0.4 0.4 

Total 26 9.7 

GHG savings (%) 72 89.6 

* oil extraction emission includes the reduction in the DDGS co-product credit 

 

4.3. Discussion 

HRJ from renewable oils show a wide range of life cycle GHG emissions, especially 

when the range includes the potential LUC impact. HRJ from algae shows the highest 

GHG burdens among all the feedstocks we reviewed, mainly because of the high 

cultivation and oil extraction impacts. Current estimates of algae production and refining 
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have taken a conservative approach when estimating the potential requirements from 

immature technologies being investigated for several stages of the algae value chain, but 

a great deal of promising research is being conducted in this area to minimize external 

inputs and increase algae productivity and yield. Rapeseed also shows higher emissions 

than other feedstocks because of the N2O emission from higher N fertilizer requirement 

and N left in straw. However, SimaPro simulations that reflect an optimized 

hydroprocessing process indicate that rapeseed derived HRJ could still achieve more than 

50% GHG savings. HRJ from waste products such as corn oil and tallow show the most 

favorable results because the feedstocks carry very little environmental burdens. 

Plantation of jatropha and palm could result in negative LUC impacts which offset the 

GHG savings of HRJ, especially if the plantation land is converted from peat soil and 

tropical forest.  Oil crops cultivated on marginal agricultural land such as algae and 

jatropha, rotation crops such as camelina and pennycress, and waste products such as fuel 

grade corn oil and tallow strive to eliminate unwanted LUC impacts because they do not 

compete with food production. 

 

In addition to the LUC, cultivation is often the major GHG contributor, especially for the 

oil plants such as camelina and rapeseed. N fertilizer (and N in crop residues) is 

responsible for most of the emissions in the cultivation stage due to direct and indirect 

N2O emissions. Stratton, GREET 2012 and our simulation in SimaPro all use the IPCC 

tier 1 methodology to calculate the N2O emissions, conversion rate for N from synthetic 

fertilizers is 1.325% (1% from direct emission, 0.1% from volatilization, 0.225% from 

leaching and runoff), and nitrogen from crop residues 1.225% (no volatilization). The 

GHGenius assumes different direct and indirect (volatilization+leaching) emission factors 

for different crops. Different N fertilizers have very different emission factors, for 

example, ammonium nitrate has a much higher emission factor than urea (8.55 vs 3.3 kg 

CO2 eq/kg N91). The choice of fertilizer can change the final GHG emissions of HRJ 

product as well. It is expected that the GHG emissions of HRJ will be further reduced in 

the future as advancements in agriculture are realized. Examples of these advancements 

include increased oilseed yield and reduction in the application of nitrogen fertilizer. 
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Fuel production emissions vary from different models and SimaPro simulation, based on 

the utilities and H2 inputs, and the amount of co-products. If the fuel production process 

is integrated with the H2 production process to minimize natural gas inputs, the emissions 

from this stage can be significantly reduced. 

 

LCA models can predict very different GHG emission results, because different process 

inputs and emission factors they assume. For example, the emission factors of electricity 

in GHGenius, GREET and SimaPro are 229, 677 and 745 g CO2 eq/kWh, respectively. 

The GREET model generates higher fuel production emissions than other sources 

because of higher natural gas required in HRJ production and lower co-products yields. 

GHGenius generally predicts high GHG emissions for HRJ production, mainly because 

of the larger fertilizer and energy inputs it assumes.  

 

Use of displacement method or allocation method (mass, energy and market value) can 

also significantly change the energy and emission burdens allocated to the primary 

product HRJ. Displacement method is the most recognized approach to deal with the co-

products. It generally yields lower emission because of the negative credit. When 

allocation approach is chosen, the method should be determined by their potential use. 

For example, co-products with high protein contents such as soybean meal and rapeseed 

meal are likely to be used as animal feed, the energy and emission burdens should be 

allocated based on the market values. If the co-products are used for energy production, 

such as fuel gas and LPG, the burdens are best allocated based on their energy contents. 

Sensitivity analyses should be included in the LCA study to investigate the impacts of 

various allocation methods on the life cycle GHG emissions of HRJ. 

 

4.4. Conclusion 

HRJ produced from soybean, camelina, pennycress, fuel grade corn oil, and tallow all 

show over 50% GHG savings compared to the 2005 petroleum jet baseline, which could 

qualify them as advanced biofuels according to the EPA RFS2 standard.  Crops planted 

on marginal land, rotation crops, and waste materials such as tallow should be better 
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utilized to produce biofuels and bioenergy, while avoiding competition with food based 

crops and the associated negative LUC impacts. 
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5. Chapter 5: Emission Reduction using RTP Green Fuel in 

Industry Facilities6

5.1. Introduction 

 

Heavy fuel oils are blends of the residues and distillates that are derived from various 

refinery distillation, cracking and reforming processes126. In 2011, the U.S industrial 

consumption of distillate fuel oil and residual fuel oil reached 2427 and 870 million 

gallons respectively127, which together result in greenhouse gas (GHG) emissions of 40 

million metric ton CO2 eq approximately (85 g CO2 eq/MJ128). Although responsible for 

only a small fraction of total domestic industrial GHG emissions (778 million metric ton 

CO2 eq129), combustion of fuel oils calls for attention from an environmental perspective. 

In addition to greenhouse gas emissions, fuel oil combustion produces air pollutants such 

as CO, SOx, NOx, particulate matters (PM) and organic compounds130.  U.S electricity 

generation47 is heavily dependent on fossil fuels such as coal, oil and natural gas. As a 

result, the power sector is the leading GHG contributor, responsible for 2414 million 

metric ton CO2 eq. Large amounts of criteria pollutants such as NOx (2.2 million metric 

ton) and SO2 (6.1 million metric ton) are emitted as well.    

 

Fast pyrolysis technologies have been developed to produce renewable liquid fuels from 

lignocellulosic biomass131. Pyrolysis oil shows great promise to reduce the consumption 

of petroleum derived fuels and the resultant air emissions. It can be combusted in boilers 

and furnaces for heating to replace heavy fuel oil. ASTM D7544 standard specification132 

covers detailed requirements for the pyrolysis oil in various heating applications. In 

addition to traditional heating oil uses, pyrolysis oil can also be combusted in a stationary 

diesel engine or gas turbines to generate electricity133. Similarly, pyrolysis oil can be co-

fired with coal and natural gas at conventional power plants for commercial electricity 

generation131,134. It has also been demonstrated that pyrolysis oil can be upgraded to 

transportation fuels by deoxygenation reaction131. The upgrading technology has been 

                                                 
6 This chapter was submitted to Energy & Fuels for publication. Citation: Fan J, Shonnard DR, Kalnes TN, 
Streff M, Hopkins G. Emission Reduction using RTP Green Fuel in Industry Facilities: A Life Cycle Study. 
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proven at laboratory scale by UOP and will be demonstrated at pilot scale by the end of 

2013 in the Integrated Biorefinery (IBR) unit being built in Kapolei, Hawaii backed by a 

$25 million award from the U.S. Department of Energy. 

 

Fast pyrolysis is a fast thermal degradation process whereby biomass is rapidly heated 

and then rapidly cooled within seconds in the absence of oxygen135. The process 

generates mostly vapors, aerosols and some charcoal (char), and then upon condensation 

a liquid pyrolysis bio-oil is obtained. Maximum liquid yields are obtained with high 

heating rates, at reaction temperatures around 500⁰C and with short vapor residence times 

to minimize secondary cracking of the primary products135. A yield (weight) of liquid 

bio-oil (pyrolysis oil) up to 85 % (wet basis or 70 % dry basis) from forestry or 

agricultural biomass is reported in the literature136. The elemental and chemical 

composition of the pyrolysis oil depends on the reaction conditions and biomass 

feedstock, and typical properties and characteristics are presented in Table 5.1 and 

compared to the crude oil. The by-product char and non-condensable gas are used to 

provide process heat and to dry the input biomass134,135. 
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Table 5.1: Typical properties and compositions of pyrolysis oil135,137,138 

 Pyrolysis oil  Crude oil  

Water content (wt%) 20-25 <0.1 

Specific gravity  1.15-1.2 0.86-0.92 

Viscosity (cp) at 50 °C 40-100 180 

Acidity (pH) 2-3 NA 

Flash point (°C) 40-65  

Lower heating value (MJ/kg) 13-19 44 

C (wt %) 44-52 83-86 

H (wt %) 6-7 11-14 

N (wt %) 0.2 <1 

S (wt %) <0.01 <4 

O (wt %) 28-40 <1 

Ash (wt %) <0.2 0.1 

This study is based on one of the commercially practiced fast pyrolysis technologies, 

RTP™ Rapid Thermal Processing.  This process utilizes a circulating transported bed 

reactor system, in which properly sized and dried lignocellulosic biomass is contacted 

with circulating hot sand in the reactor.  The pyrolytic vapor is rapidly quenched to 

produce a high yield of liquid renewable fuel, or RTP green fuel.  A basic process 

schematic of the RTP unit can be viewed in Figure 5.1 below. 
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Figure 5.17 139: Process schematic diagram of the RTP unit  

 

As-received biomass is dried and mechanically milled to the appropriate moisture content 

(5-6 %) and size (3-6 mm) prior to feeding in the RTP reactor by means of an auger or 

screw conveyor.  The prepared feed contacts the circulating hot sand in the reactor where 

heat is transferred and the conversion of the biomass to useful products occurs.  The 

biomass is rapidly converted to a pyrolytic vapor and a solid char by-product (a powder-

like charcoal material) in the RTP reactor, which is operating at nearly atmospheric 

pressure and a temperature of approximately 500°C.  The product and by-product vapors 

are separated from the solid char and the sand in a cyclone separation system which 

transfers the captured solids to the RTP reheater.  The vapors are sent to the condensing 

section of the unit. Air is provided to the reheater for both fluidization of the sand and 

also to provide the oxygen necessary for the combustion of the char.  The combustion 

                                                 
7 This figure was prepared by Tom Kalnes of UOP LLC for Conference CO2 Summit: Technology & 
Opportunity 2010 and published online. Permission for use in this dissertation was provided by Tom 
Kalnes via email (Figure D.5). Copyright clearance from UOP Honeywell is shown in Figure D.3 
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flue gases exit the reheater and are separated from the ash in another cyclone separation 

system.  Reheater flue gas can be used to raise steam in a waste heat recovery steam 

generation system or it can be used to provide part or all of the heat required to dry the 

incoming wet biomass.  The flue gas is cleaned up by the appropriate pollution abatement 

technologies before being exhausted to the atmosphere.  The circulating sand exiting this 

vessel is sufficiently reheated to enter the reactor without additional heat input during 

stable operations.  By-product ash is collected in bins for possible commercial use or 

disposal.  The pyrolytic vapor produced in the RTP reactor is directed to the condensing 

section where the liquid RTP green fuel product is collected and sent to storage.  Similar 

to ranges presented in Table 5.1, the RTP green fuel has an approximate specific gravity 

of 1.2.  Water is a significant component, which helps maintain its viscosity at less than 

125 cSt at 40°C.  The higher heating value of the fuel is typically 40% of fossil fuel oils 

at about 19 MJ/kg.  Non-condensable gas is recycled and used as a transport/lift gas in 

the reactor.  Any net by-product gas can be used as a fuel to dry the incoming wet 

biomass feedstock or sold to an external consumer.  

 

One objective of this study is to determine the emissions, cumulative energy demand 

(CED) and fossil energy demand (FED), and other environmental impacts of RTP green 

fuel as produced in Cote-Nord region of Quebec by the RTP process. Another research 

objective is to explore the impacts of model assumptions and parameter uncertainty in the 

calculation of GHG emissions.  A series of scenario analyses will probe the effects of 

various LCA inputs: type of biomass feedstock, biomass transportation distance and 

modes, and electricity sources.    

 

5.2. Research methods 

5.2.1. System scope, methods, and impact assessment 

The baseline pathway diagram of this LCA study is illustrated in Figure 5.2. The scope of 

this study encompasses the entire life cycle from biomass collection through the 

production and use of pyrolysis oil. The pyrolysis inputs were obtained from confidential 

design data (personal communication with Envergent Sep 21, 2012). The RTP green fuel 



 

81 
 

is sold to local industrial operators within a 70 km radius from the pyrolysis plant located 

in the Cote-Nord region of Quebec in the base case study. All the inventory data were 

assembled based on energy content of 1 MJ of final fuel product, which was the 

functional unit of this LCA. The software used for this LCA was SimaPro 7.2. The GHG 

impact assessment method used was the IPCC 2007 GWP 100a V1.01 method 44 whose 

output is in g CO2 equivalents for all of the GHG emissions using global warming 

potentials (GWP) of 1 for CO2, 25 for CH4, 298 for N2O. GWPs for refrigerants, solvents, 

and other compounds were included in the analysis. The major air pollutants (CO, NOx, 

SO2 and PM) are also calculated by the IPCC 2007 GWP 100a method.  The CED and 

FED are calculated by using Cumulative Energy Demand 1.07 method in the SimaPro, 

the results include non-renewable fossil (coal, oil, natural gas) and nuclear energy use, 

renewable biomass energy use, and other renewable energy sources, which include solar, 

geothermal, and hydroelectric power, which are given as the amount of process energy 

inputs (MJ) along the life cycle per unit of energy in the fuel products. The RTP green 

fuel impacts on human health, ecosystem quality, and fossil resources are evaluated and 

compared to heavy fuel oil. These environmental impacts are simulated by the Eco-

indicator 99 method140 in SimaPro 7.2.  The hierarchical version (H/A) is chosen because 

it is widely accepted in the scientific community and political bodies140. The human 

health effects are quantified by disability-adjusted life years (DALYs), which is the 

number of disability years caused by exposure to toxic material multiplied by the 

“disability factor”, a number between 0 and 1 that describes severity of the damage (0 for 

being perfectly healthy and 1 for being fatal). Ecosystem quality is characterized in 

Potentially Disappeared Fraction (PDF) times area times year (PDF×m2×year). PDF is a 

probability of the plants species to disappear from the area as a result of acidification. 

The fossil resources impact is quantified by “surplus energy” in MJ per kg extracted 

material. The total environmental damages are aggregated into a single score damage 

indicator by normalization and weighting.  
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Figure 5.2: Pathway diagram of the pyrolysis oil LCA. 

 

5.2.2. Biomass loading, unloading, and storage  

The feedstock of pyrolysis is assumed to be sawmill residues from an adjacent mill 

located in the Cote-Nord region of Quebec.  The residues represent a blend of bark (48%) 

and white wood (52%). The sawmill residues are assumed to be waste materials produced 

on-site, thus carrying no environmental impacts and the transport is minimal. The fuel 

inputs for residues loading and unloading were obtained from Mihalek141 and tabulated in 

Table 5.2. 

 

Table 5.2: Inventory inputs of biomass loading, unloading and storage 

Loading  Diesel (L/t) 0.507 

Lubricating oil (L/t) 5.79E-3 

Unloading Diesel (L/t) 0.507 

Lubricating oil (L/t) 5.79E-3 

Reloading Diesel (L/t) 0.507 

Lubricating oil (L/t) 5.79E-3 

 

5.2.3. RTP green fuel production and distribution 

The mill residues are sized and dried to the appropriate size and moisture content prior to 

feeding in the reactor. Then the biomass is heated by direct contact with circulating hot 

sand where the biomass is converted to RTP green fuel. Electricity is used in biomass 

pretreatment stage. RTP start-up and operation requires electricity and small amounts of 

fossil fuel. The co-products (char and non-condensable gas) are burned internally to re-

heat the circulating sand and to dry the biomass feed. Sand is also required to make up for 

attrition caused by the pyrolysis reactor operation.  The RTP process emissions (char and 

by-product gas combustion) were obtained from the emission tests of flue exhaust and 
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fuel combustor exhaust provided by Ensyn Corporation (confidential data), which include 

CO2, CO, NOx, SO2, PM, metals, VOC, SVOC, PAH and D&F emissions. RTP inputs 

were obtained from confidential design data (personal communication with Envergent, 

Sep 21 2012), however similar RTP inputs were reported in a former study134.  

Hydroelectric power is assumed in this study since the electricity in Eastern Quebec is 

supplied exclusively from a hydroelectric dam. For the base case, it is assumed that the 

RTP green fuel product will be sold to local industrial operators within a 70 km radius.  

 

5.2.4. Oil combustion 

The RTP green fuel is expected to be combusted in industrial boilers to replace heavy 

fuel oil (No.6 fuel oil). The most significant combustion pollutants from organic fuel 

combustion are carbon dioxide (CO2), carbon monoxide (CO), unburned hydrocarbons 

(HC), nitrogen oxides (NOx), sulfur oxides (SOx), and particulate matter (PM)142. CO2 

emissions from RTP green fuel are not accounted for in the GHG analysis as explained 

below in section 5.3.1.  Researchers have been investigating the combustion of pyrolysis 

oil in industrial boilers and comparing the air emissions to either No.2 fuel oil or No.6 

fuel oil. CO emissions are found to be similar or slightly higher in pyrolysis oil than No.2 

fuel oil143-147. NOx emissions from pyrolysis oil combustion are found to be higher than 

No.2 fuel oil 144-146 but lower than No.6 fuel oil148. However, NOx emissions from 

pyrolysis oil combustion can be successfully controlled by conventional technologies, 

such as staged combustion and low NOx burners143,149. Pyrolysis oil generally shows 

higher PM emission than the light fuel oil (No.2 fuel oil)131,147 but lower than the heavy 

fuel oil (No.6 fuel oil)147. Very low SOx emissions are reported for the pyrolysis oil 

because of the low S content in the oil146.  

 

A Danstoker Model Global 5 heavy oil boiler (2009) was used to generate the 

combustion emissions data. The burner was manufactured by Oilon Oy, type RP-250 M 

XH (2011) and all measurements were made at the stack after the boiler in a test 

laboratory. The stack was horizontally installed and the measurements were done from 

side of the stack. Sampling locations followed ISO Standard 9096 requirements for the 
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plane of bend with the plane of bend before the sampling line being more than 7 

hydraulic diameters and after the sampling line more than 5 hydraulic diameters. In this 

case, the stack had a hydraulic diameter of 0.4 meters and the gas flow conditions were 

satisfactory for the isokinetic sampling. Particle concentrations were measured with 

EMES 3866 equipment using standard SFS 38661 /ISO 90962 and samples were 

collected with quartz filters. Temperatures were measured with K-type thermocouple and 

thermometer and the humidity of the stack gas was measured with gravimetric method. 

Volume flow rate was measured with S-pitot tube and micromanometer. Oxygen 

concentrations of the stack gas were measured with Testo 350 XL, which measures O2, 

NO, and CO with electrochemical detector and CO2 with infrared detector. The criteria 

pollutants emissions of the RTP green fuel are presented in Table 5.3, and compared to a 

heavy fuel oil (No.6) combusted using the same burner in the same boiler. It shows 

higher CO emission but lower NOx, SO2 and PM emissions than the No.6 fuel oil. CO2 

emissions from RTP green fuel were not accounted for in the GHG analysis as explained 

below in section 5.3.1.  Other GHG emissions such as CH4 and N2O were obtained from 

a study conducted by the (S&T)2 Consultant Inc150, which are 0.1 and 0.05 g/GJ fuel 

respectively. 

   

Table 5.3: Measured emission data (mg/MJ) of RTP green fuel and No. 6 fuel oil 

(Envergent) 

 

test CO NOx as NO2 SO2 PM 

RTP green 

fuel 1 37 107 ND* 58 

 

2 37 108 ND* 55 

 

3 62 104 ND* 58 

#6 fuel oil 1 23 157 387 90 

 

2 23 156 394 95 

 

3 28 164 366 109 

 

4 25 164 364 102 

* below detection limit 
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5.3. LCA results  

5.3.1. GHG emissions 

The GHG emissions of RTP green fuel are tabulated in Table 5.4 by life cycle stage and 

compared to petroleum-based heavy fuel oil. In accordance with the EPA Renewable 

Fuel Standard (RFS2)51 and the Low Carbon Fuels Standard (LCFS) of California57, the 

net CO2 emissions of RTP green fuel at the combustion stage are considered carbon 

neutral because CO2 is sequestered by photosynthesis during the growth of biomass. The 

RTP green fuel shows over 98% of GHG savings compared to heavy fuel oil. Biomass 

loading and unloading is responsible for approximately 25% of total emission due to the 

fuel use. In most scenarios, the pyrolysis process is the largest GHG contributor due to 

the use of fossil fuel for unit start-up. The emission from imported electricity use is 

minimal because of the low emission factor of hydroelectricity.   

 

For comparison purpose, the RTP green fuel emissions simulated by SimaPro are 

compared to the pyrolysis oil results generated by the (S&T)2 Consultants Inc150. In the 

(S&T)2 report, wood residues are assumed as waste products produced and consumed on-

site, thus carrying zero environmental burdens. The inputs of the pyrolysis process are 

tabulated in Table 5.5. Canada average grid mix is used for the analysis thus having a 

much higher emission impact than hydroelectricity (228.9 vs. 4.4 g CO2 eq/kWh). The 

default setting of pyrolysis oil transport is 200 km by truck whereas a 70 km radius was 

assumed in this study. When the oil is combusted, greenhouse gases such as CH4 and 

N2O are emitted (Table 5.6).  Consistent with the SimaPro model, the pyrolysis stage is 

the largest GHG contributor in the life cycle due to electricity and fossil fuel use. Oil 

transport impact is higher due to the longer distribution distance.  
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Table 5.4: Life cycle GHG emissions of RTP green fuel, comparing to heavy fuel oil 

g CO2 eq/MJ oil RTP green fuel 

(S&T)2 

pyrolysis  oil 150 Heavy fuel oil 128 

Biomass loading/unloading 0.46 0 

 Biomass pretreatment  0.06 0* 

 Oil production 0.67 3.10 

 Oil transport 0.55 1.92 

 Oil combustion 0.02 0.11  

Total 1.76 5.12 85.3 

GHG savings 98.0% 94.0%  

* Biomass pretreatment emission is integrated with the fast pyrolysis in the GHGenius model 

 

Table 5.5: Inputs of wood residues pyrolysis (per L of pyrolysis oil)150 

Dry wood (kg) 1.646 

Electricity (kWh) 0.24 

Natural gas (L) 0.02 

 

Table 5.6: Combustion emissions of pyrolysis oil (g/GJ pyrolysis oil)150 

CH4 0.1 

CO 0.07 

N2O 0.05 

NOx (NO2) 0.05 

SOx (SO2) 28.56 

PM 0.32 

 

5.3.2. Air pollutants 

In addition to the combustion emissions listed in Table 5.3, major air pollutants 

(uncontrolled values) emitted during the life cycle of RTP green fuel are estimated and 

tabulated in Table 5.7, which include emissions from the production and use of fossil 
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fuels, RTP process emissions, and combustion of RTP green fuel in the industrial 

furnace, and compared to heavy fuel oil. RTP green fuel shows higher CO emission, but 

lower SO2, NOx and particulates emissions. SO2 emission is particularly lower because 

of low sulfur content in the fuel.  A lower CO emission is achievable with a change in 

boiler operation. 

 

Table 5.7: Life cycle air pollutants (mg/MJ) of RTP green fuel and heavy fuel oil 

 

RTP green fuel Heavy fuel oil 

CO 132.4 41.2 

SO2 4.33 469.7 

NOx 184.4 198.7 

PM 88.81 107.1 

 

5.3.3. Energy demand results (CED; FED) 

Figure 5.3 shows the CED and FED results of RTP green fuel from sawmill residues. The 

CED consists of four parts; non-renewable fossil, nuclear energy use, renewable biomass 

energy use, and other renewable energy sources, which include solar, geothermal, and 

hydroelectric power. FED has been broken into four process stages: biomass (loading and 

unloading), biomass pretreatment, fast pyrolysis, and oil transport. Although pyrolysis 

requires more total energy to produce the same unit of energy than heavy fuel oil, only a 

small fraction of energy (2%) is from fossil energy. Out of the total fossil energy 

requirement, oil transport is the largest contributor to the total fossil energy use. 

Approximately 30% of fossil energy is used in the biomass loading and unloading stage, 

because of the diesel use.  RTP green fuel production accounts for another 30% fossil 

energy demand, while natural gas is the dominant contributor in this process.  
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Figure 5.3: CED and FED results of RTP green fuel, in MJ (input)/MJ (output). 

 

5.3.4. Environmental damages 

As shown in Table 5.8, RTP green fuel shows lower impacts than heavy fuel oil in all 

three environmental damage categories. RTP green fuel shows an advantage in the 

human health category mainly because it releases less respiratory organics /inorganics 

and ozone depleting emissions. It also shows superior performance with regard to 

ecosystem quality because of lower acidification and land occupation impacts. RTP green 

fuel has lower fossil fuel depletion rate than heavy fuel oil because the majority of energy 

is derived from renewable biomass. Therefore, RTP green fuel has a lower total 

environmental damage impact than heavy fuel oil, as indicated by the single score 

normalized and weighted by the Eco-indicator 99 method.  
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Table 5.8: Human health, ecosystem quality and resources impacts of RTP green fuel, 

compared to heavy fuel oil 

Damage category RTP green fuel Heavy fuel oil  

Human Health (DALY) 

  Carcinogens 1.02E-10 6.77E-10 

Respiratory organics 1.53E-12 4.04E-11 

Respiratory inorganics 2.65E-08 5.72E-08 

Climate change 4.15E-10 1.88E-08 

Radiation 1.99E-12 3.44E-11 

Ozone layer 2.08E-13 1.09E-11 

Ecosystem Quality (PDF*m2yr) 

  Ecotoxicity 2.44E-04 2.21E-04 

Acidification/ Eutrophication 1.06E-03 1.63E-03 

Land use 2.09E-05 8.19E-04 

Resources (MJ surplus) 

  Minerals 4.55E-05 1.02E-04 

Fossil fuels 2.94E-03 1.62E-01 

Single score (Pt) 0.00088 0.006 

 

5.4. Sensitivity analyses 

5.4.1. Biomass transport 

In the base case scenario, the mill is assumed to be immediately adjacent to the RTP plant 

so that mill residue transport is minimal.  In this biomass transport scenario, we 

investigate the impact of biomass transport distance and mode on the total GHG 

emissions. The biomass is assumed to be transported from the mills to pyrolysis plant by 

truck, rail and barge. The transport distances and modes considered in this scenario are 

shown in Table 5.9.   
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Table 5.9: Transport mode and distance (km) of mill residues 

Truck 50 100 200 

Rail 100 250 500 

Barge 100 250 500 

 

The GHG emission results of the transport scenario are illustrated in Figure 5.4. The total 

emissions are sensitive to the distance of the biomass transport, especially for the truck 

scenario. The rail and barge scenarios are comparable because the emission factors of 

these transport modes are similar. 

 

 
Figure 5.4: Impact of biomass transport on the total GHG emissions of RTP green fuel. 

 

5.4.2. Pyrolysis of sawmill residues in the U.S 

In this scenario, RTP green fuel is assumed to be produced in Maine, Georgia, Alabama, 

Washington, and Oregon because these states have the largest sawmill production 

capacities in the U.S151. Electricity is considered as a variable as an attempt to model 

different geographical settings. The fuel mixes of electricity production from these states 
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were obtained from the U.S EPA eGRID47 and compared to the U.S average electricity 

mix47. The total GHG emissions of RTP green fuel are shown in Figure 5.5. The 

electricity source has a significant impact on the GHG results. Emissions from Alabama 

and Georgia are the highest among all the states investigated because over 50% of 

electricity in the two states is from coal. U.S average also has a high dependence on coal 

electricity. Washington and Oregon have higher percentages of hydroelectricity in the 

power grid, thus the emissions are lower compared to other states.    However, RTP green 

fuel still shows over 70% GHG reductions compared to heavy fuel oil.  

 
Figure 5.5:  Life cycle GHG emissions of RTP green fuel from sawmill residue produced 

in the U.S. 

 

5.4.3. Other biomass feedstock 

Apart from sawmill residues, low ash corn stover, sugarcane bagasse and logging 

residues are also investigated as feedstocks for RTP green fuel production. Corn stover is 

assumed to be collected from corn field and converted to RTP green fuel Iowa, because 

Iowa is the top corn producing state in the U.S152. The inputs of corn stover (Table 5.10) 

were obtained from Morey et al153, which include biomass collection, transport and 

nutrients added to the field to replace the stover.  Sugarcane bagasse is assumed to be 
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pyrolyzed at the cane ethanol plants in Brazil, because of the abundant feedstock 

availability. The feedstock is waste materials available on site, the energy and emission 

burdens come from loading and unloading of the biomass. The inputs are assumed to be 

the same as sawmill residues. The inputs of logging residues (Table 5.11) were assumed 

similar to a study conducted for mixed hardwood logging residue collection from natural 

regeneration hardwood site near Trenary, MI, which include the fuel consumption 

associated with the forwarding and the grinding of the biomass and the production of 

equipment used. The logging residues are then transported 120 km to the pyrolysis plant , 

which is the default transport distance in the GREET 201286. The pyrolysis inputs of corn 

stover, sugarcane bagasse and logging residues were obtained from Mihalek141, which 

represent UOP’s future operation as optimized for these specific feedstocks. Steam is 

produced as a co-product in the RTP process, which presents a GHG credit to the RTP 

green fuel product. Electricity profiles were created based on the generation mix data 

from Iowa47, Brazil154 and Michigan47.  

 

Table 5.10:  Inputs of 1 dry metric ton low ash corn stover153 

Process Inventory Input 

Collection  Lubricating oil (L/t) 5.88E-3 

Diesel fuel (L/t) 0.928 

Raking Lubricating oil (L/t) 1.18E-3 

Diesel fuel (L/t) 0.222 

Baling Lubricating oil (L/t) 4.71E-3 

Diesel fuel (L/t) 0.939 

Bale moving Lubricating oil (L/t) 9.41E-3 

Diesel fuel (L/t) 1.768 

Transport (round trip) Truck (tkm) 85 

Nutrients Replacement  Ammonia (kg/t) 7.4 

Diammonium phosphate (kg/t) 2.9 

Potassium sulphate (kg/t) 12.7 
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Table 5.11: Inputs of 1 dry metric ton of logging residues134 

Diesel, low-sulfur 3.34 kg Consumed in harvesting logging  residue 

Diesel, low-sulfur 1.86 kg Consumed in forwarding logging  residue 

Diesel, low-sulfur 2.10 kg Consumed in chipping logging residue 

Building machine 3.64E-6 p For harvester machine manufacture 

Building machine 9.26E-6 p For forwarder machine manufacture 

Building machine 5.51E-6 p For chipper machine manufacture 

Transport, by truck 80 km Residues transport (round trip) 

 

The life cycle GHG emissions of RTP green fuel from sugarcane bagasse, corn stover 

and logging residues are shown in Figure 5.6, and compared to heavy fuel oil. RTP green 

fuel from corn stover shows the highest emissions, because: 1. large environmental 

burdens from the fuel use and nutrient replacement at the biomass collection stage; 2. The 

Iowa electricity is highly dependent on coal thus has high emission factor.  RTP green 

fuel from logging residues shows the second highest emission, because of longer biomass 

transport distance and high emission factor of Michigan electricity. RTP green fuel from 

sugarcane bagasse has the lowest GHG impact because of the small fuel use at biomass 

loading and unloading stage. It also requires no biomass transport. In addition, Brazil 

electricity has a higher percentage of renewable sources.  The savings of GHG emissions 

compared to fossil heavy fuel oil is greater than 80% for all of these biomass feedstocks.   
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Figure 5.6: GHG emissions of RTP green fuel from various feedstocks, comparing to 

heavy fuel oil. 

 

5.5. Conclusion 

Sawmill residue is a promising feedstock for production of RTP green fuel. When 

hydroelectricity is used in the process, the life cycle GHG emission reductions of over 

98% compared to fossil heavy fuel oils are possible. RTP green fuel from other 

lignocellulosic biomass show over 70% of GHG reductions. Most of the energy required 

for oil production is from renewable biomass as opposed to non-renewable fossil. RTP 

green fuel also shows superior environmental performance with regard to human health, 

ecosystem quality, and fossil resources.  

 

 

 

 

 

-10 

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

Oil (cane bagasse) Oil (corn stover) Oil (logging 
residues) 

heavy fuel oil 

g 
CO

2 e
q/

M
J 

heavy fuel oil 

Oil transport 

Fast pyrolyisis 

Biomass pretreatment 

Biomass transport 

Biomass 



 

95 
 

6. Chapter 6: LCA of Electricity Generation using Fast 

Pyrolysis Bio-Oil8

6.1. Introduction 

  

In 2007, 4,157 million MWh electric power was generated in U.S., and electricity 

demand is projected to increase by 26 percent from 2007 to 2030, or by an average of 1.0 

percent per year155. Power generation emits significant amounts of greenhouse gases, 

mainly carbon dioxide (CO2). Estimated CO2 emissions by U.S. electric generators and 

combined heat and power facilities increased by 2.3 percent from 2006 to 2007 (from 

2,460 million metric tons to 2,517 million metric tons). To date, over 70% of electricity is 

generated by fossil fuels such as coal and natural gas, while renewable energy accounts 

only for about 8% of all electricity generated. Wood and wood derived fuels accounted 

for 39 million MWh or 0.9 percent of total net generation, and other biomass 17 million 

MWh156. To reduce power plant emissions of greenhouse gases, as well as reducing 

dependence on foreign fossil fuels, renewable energy such as wind and biomass is 

expected to play an important role in future electricity generation43.  

 

Pyrolysis oil converted from residual biomass and post-consumer materials such as 

construction and demolition wastes is a potential substitute for petroleum to generate 

renewable power and process heat. Pyrolysis oil can be combusted directly to generate 

power, and the emissions at combustion stage are considered carbon neutral because CO2 

is sequestered by photosynthesis during the growth of biomass, and thus the GHG 

emissions are significantly reduced compared to fossil fuels.   

 

Upper Peninsula of Michigan is heavily forested, the timberland accounts for 77% and 

84% of the eastern and western half of U.P of Michigan157. The large volume of timber 

resources are potential feedstocks for biofuels production. The by-products from pulp and 

                                                 
8 This chapter was updated from a former study published in Renewable Energy. Figure D-1 shows 
copyright clearance allowing for use in dissertation. Citation: Fan JQ, Kalnes TN, Alward M, Klinger J, 
Sadehvandi A, Shonnard DR. Life cycle assessment of electricity generation using fast pyrolysis bio-oil. 
Renewable Energy 2011;36(2):632-641 
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paper industry, such as logging residue, wood bark and chips, are usually considered as 

waste, or burned on site to provide heat. The forest residues alone can provide over two 

million dry t of biomass for biofuels production158 (see Table 6.1). Black liquor produced 

at the end of kraft process is concentrated with lignin residues, hemicellulose, and the 

inorganic chemicals used in the process159, which could be a potential feedstock for 

biofuels production as well160. 

 

Table 6.1: Forest residues supply in the Michigan Upper Peninsula158 

Dry t per year Potential Supply 

Currently Available 

and Utilized 

Sawmill and pulp mill 

residues 1,493,601 Negl 

Logging residues 503,243 503,243 

Thinning residues 853,800 853,800 

Total  2,850,644 1,357,043 

 

Forestland can also supply biomass feedstocks to the biofuels industry. Pulp and paper 

industry mainly use hardwood such as aspen and maple as wood feedstocks, while 

biofuels production is regardless of biomass property, it can use softwood161 or even low 

grade wood products162 as feedstocks. Thus biofuels production will not compete with 

pulp and paper industry directly in the biomass supply chain. The Forest Inventory and 

Analysis (FIA) Program of the U.S. Forest Service163 reports on the status and trends in 

forest area and location; in the species, size, and health of trees; in total tree growth, 

mortality, and removals by harvest;  in wood production and utilization rates by various 

products; and in forest land ownership. This database gives us access to evaluate whether 

the forestland in the U.P of Michigan can sustainably supply biomass to the biofuels 

industry. There are approximately 15 billion cubic feet of live trees currently grown in 

the Upper Michigan (Table 6.2). The annual net growth, removals and mortality of live 

trees can be targeted for biofuels production. The total volumes of these three categories  

are approximately 146, 129 and 82 million cubic feet, respectively163. 
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Table 6.2: Net volume of live trees (at least 5 inches d.b.h./d.r.c.), in cubic feet163 

Forest Service  

Other 

Federal  

State/Local 

Gov't  Private  Total 

3,407,355,813 316,484,013 3,019,094,826 7,726,437,384 14,469,372,037 

 

Short rotation forestry (SRF) such as willow and poplar is also an option as feedstocks of 

biofuels production in U.P of Michigan. SRF can be grown on abandoned or marginal 

agricultural land, thus providing biomass without competing with food production or 

disturbing carbon stocks in forests164. In addition, SRF have much lower fertilizer and 

irrigation water requirement than oil producing plants such as soybean and canola, thus 

the GHG emissions of biomass cultivation, especially N2O emission from application of 

N fertilizers are considerably reduced.  

 

The abundant biomass resources from the forest sector are promising feedstock to 

produce bioenergy through pyrolysis. To better understand the environmental impacts of 

generating electricity from pyrolysis oil, this study evaluated the life cycle greenhouse 

gas emissions of electricity generation from pyrolysis oil combustion in various power 

conversion systems, and then compared these emissions with conventional fossil fuels as 

well as biomass direct combustion technologies. 

 

6.2. LCA Methods 

6.2.1. System Scope, Functional Unit, Inventory, and Impact Assessment 

Life cycle assessment (LCA) is a methodology to evaluate environmental impacts, energy 

consumption, resource depletion, and other impacts for an entire product system.  

Standards to guide the conduct of LCA have been developed and published by the 

International Organization for Standardization (ISO 14040-14049). The purpose of LCA 

is to inform decision makers in industry and government on the best product or 

technology alternative to satisfy a particular customer or societal need in an 

environmentally sound manner165.  
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The goals of this LCA study of pyrolysis oil combustion for power generation are to 

understand the relative importance of biomass cultivation, transportation, and combustion 

in the life cycle greenhouse emissions, investigate different feedstocks and technologies, 

and to evaluate the effects of power generation efficiency.   The pathway diagram of this 

LCA study is illustrated in Figure 6.1. The system boundries include all the energy, fuels, 

chemicals , and transportation needed to operate all phases of the entire operation starting 

from the nursery for the biomass and finishing with the combustion of pyrolysis oil in 

power plant to generate electricity.  Land use change (direct or indirect) was not included 

in the system. The functional unit is assumed to be 1kWh electricity generated. A 

complete set of inputs was utilized from literature sources, field measurements, and from 

Ensyn / UOP for pyrolysis oil production from wood chips.  

 

The software used for this LCA was SimaPro 7.241, which contains a large database of 

inventory data for material, chemical, and energy inputs. Inventory data is from the 

Ecoinvent database42, which is comprised of mostly European data that has close 

technology relevance to U.S. production, but whenever possible, these ecoprofiles were 

adjusted for U.S. conditions; for example electricity generation was modeled using a 

combination of current U.S. grid electricity primary energy sources43. The GHG impact 

assessment method used was the IPCC 2007 GWP 100a V1.01 method166 whose output is 

in g CO2 equivalents for all of the GHG emissions using global warming potentials 

(GWP) of 1 for CO2, 25 for CH4, 298 for N2O. GWPs for refrigerants, solvents, and other 

compounds were included in the analysis.   

 

The effects of the percent of land area for biomass cultivation and transport were 

investigated in scenarios.  An additional scenario evaluated reductions in GHG emissions 

when electricity is provided from an integrated pyrolysis oil production-electricity 

generation facility, thus avoiding the use of imported electricity from the U.S. grid for 

pyrolysis oil production. 



 

99 
 

 
Figure 6.1: Pathway diagram of pyrolysis oil to power LCA study. 

 

6.2.2. Biomass cultivation and harvesting 

Biomass feedstock production LCAs were first performed in order to better understand 

the greenhouse gas impacts of biomass cultivation and harvesting. Four types of 

feedstocks were considered: short rotation forestry (SRF) willow, SRF poplar, collection 

of hardwood residue from existing forestry operations, and waste wood such as sawmill 

waste available at the site of pyrolysis oil production.   

 

Willow cultivation as an energy crop was thoroughly studied by Heller et al.167, who 

analyzed the production of nursery stock used for plantation, fuel used by farming 

equipment, fertilization, weed and pest control, manufacture of the equipment and willow  

harvesting.  The inputs of willow cultivation and harvesting stage were obtained from 

their study, and then entered into SimaPro on 1kg dry biomass basis. The eco-profile of 

willow cultivation and harvesting stage in SimaPro is shown in Table 6.3. 
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Table 6.3: Inventory inputs of willow cultivation and harvesting 

Products 

 

 

Hybrid willow 1 kg 

Resources  

Energy, gross calorific value, in biomass, primary forest 19.8 MJ 

Materials/fuels  

Diesel, low-sulphur, at regional storage 0.003762 kg 

Chemicals inorganic, at plant 8.22E-06 kg 

Glyphosate, at regional storehouse 1.86E-05 kg 

Pesticide unspecified, at regional storehouse 1.34E-05 kg 

Rye seed IP, at regional storehouse 0.000216 kg 

Ammonium nitrate, as N, at regional storehouse 0.002554 kg 

Petrol, unleaded, at regional storage 7.2E-05 kg 

Heavy fuel oil, at regional storage 0.000258 kg 

Heat, heavy fuel oil, at industrial furnace 1MW 11.57 KJ 

Wood chips, hardwood, from industry, u=40%, at plant 6.61E-07 m3 

Heat, hardwood chips from industry, at furnace 50kW 0.002795 MJ 

Ammonium nitrate, as N, at regional storehouse 6.02E-05 kg 

Single superphosphate, as P2O5, at regional storehouse 6.9E-05 kg 

Thomas meal, as P2O5, at regional storehouse 6.9E-05 kg 

Potassium sulphate, as K2O, at regional storehouse 7.25E-05 kg 

Urea, as N, at regional storehouse 1.42E-05 kg 

Tap water, at user 1.329844 kg 

U.S electricity mix (cultivation) 0.001098 kWh 

 

Hybrid poplar, like willow, is a high yield short rotation forest system used for biomass 

production. The poplar system was investigated by Gasol et al.168. We took all 

operational inputs for 16-year poplar rotation cultivation from their study, and calculated 
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all the material and energy used to produce 1kg of dry poplar.  The inventory inputs are 

shown in Table 6.4. 

 

Table 6.4: Inventory inputs of poplar cultivation and harvesting 

Products 

  Hybrid poplar 1 kg 

Resources 

 Energy, gross calorific value, in biomass, primary forest 18.2 MJ 

Materials/fuels 

 Diesel, low-sulphur, at regional storage 1.30E-03 kg 

Glyphosate, at regional storehouse 3.16E-05 kg 

Pesticide unspecified, at regional storehouse 1.74E-05 kg 

Ammonium nitrate, as N, at regional storehouse 1.91E-03 kg 

Single superphosphate, as P2O5, at regional storehouse 1.72E-03 kg 

Thomas meal, as P2O5, at regional storehouse 1.72E-03 kg 

Potassium sulphate, as K2O, at regional storehouse 2.71E-03 kg 

 

Analysis of woody logging residue as a feedstock involves collection of the residue after 

a lumber harvesting process. The inputs were assumed similar to a study conducted for 

mixed hardwood logging residue collection and transport from natural regeneration 

hardwood site near Trenary,MI, which include the fuel consumption associated with the 

forwarding and the grinding of the biomass and the production of equipment used. 

Information was compiled from multiple surveys and interviews of hardwood loggers on 

the fuel consumption of this equipment.  The detailed inventory inputs are the same as 

those in Table 5.9. 

 

Waste wood is assumed to be on site of pyrolysis plants, therefore, there are no materials 

or energy input involved, thus no environmental impact of this feedstock during biomass 

cultivation stage. 
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6.2.3. Biomass transportation 

A mathematical model shown in the equation below169 was used to simulate the 

transportation distance between biomass collection sites and pyrolysis plants. 

rcircle=2/3 ∗ 𝜏 ∗ � 𝐹
𝜋∗𝑌∗𝑓

 

 

τ represents the tortuosity factor of the road (1.5), f is the fraction of land devoted to 

biomass crops (0.10).  Y represents biomass yield in short tons per acre, which was 

directly obtained from the literature referenced. F is the biomass required to generate the 

requred amount of power for each case. It is assumed that wet biomass, which contains 

40 wt% moisture, is transported by 16 t semi-trucks. For biomass direct combustion 

cases, F was calculated from the power plant size, plant efficiencies and low heating 

value (LHV) of dry biomass. For GTCC and diesel generator systems, F was calculated 

from the power output, thermal efficiencies of facilities, LHV of pyrolysis oil, and the 

biomass-to-pyrolysis oil production ratio. For co-firing cases, 400 metric ton bone dry 

biomass per day were assumed to be combusted in fossil fuels plants. The transportation 

distances of three feedstocks for each power plant are shown in Table 5.5. Waste wood 

are produced on site of pyrolysis plant, and therefore no feedstock transportation is 

required.  

 

Table 6.5: Biomass transportation distances for power conversion systems 

Distances (km) 

 

BC1 

 

BC2 GTCC 

Diesel 

generator Fossil fuels plants 

SRF poplar 6.18 5.25 11.60 8.16 17.67 

SRF willow 6.58 5.58 12.34 8.69 18.81 

Logging residue 28.91 24.53 54.22 38.17 82.61 

 

BC1 and BC2 represent biomass direct combustion in 10MW capacity Rankine power 

plant, 107291 and 77250 t biomass are required for BC1 and BC2 per year, respectively. 

F are 62907 and 31170 for the pyrolysis oil combustion cases GTCC and diesel 
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generator, and 146000 metric ton biomass are combusted in the fossil fuels plants. For the 

biomass yield data Y, SRF poplar, SRF willow and logging residue are 14.88, 13.12 and 

0.69 metric ton per hectare, respectively. 

 

6.2.4. Pyrolysis oil production 

Wood chips are heated by direct contact with hot sand and, after pyrolysis, rapidly cooled 

within seconds to maximize liquid yield. Some electricity (wood drying and pyrolysis oil 

production) and natural gas are used during start-up and RTP operation. Inputs for this 

step were obtained from a report provided by Ensyn and UOP process inputs, which are 

presented in a former study134. The pyrolysis process also produces by-products char and 

gas, however, in this study, both are combusted to provide heat to pretreat the wood 

feedstock and maintain the process. We therefore assumed that pyrolysis oil was the only 

output in our analysis. U.S. grid mix electricity ecoprofile was compiled in SimaPro 

using breakdown of current U.S. grid electricity43.  

 

6.2.5. Power generation 

In order to better understand the advantage of power generation from pyrolysis oil from 

an environmental perspective, life cycle GHG emissions of chipped biomass direct 

combustion in a conventional Rankine power plant and pyrolysis oil combustion in 

existing and new power plants were evaluated. For the biomass direct combustion cases, 

three biomass feedstocks: logging residue, SRF willow, and SRF poplar, are directly 

combusted in a power generation facility with 10 MW output capacity. The efficiencies 

of the stand-alone direct biomass combustion cases (BC1 and BC2) were assumed to be 

18 and 25%134, representing existing and modern dedicated biomass combustion facility 

at a nominal 400 metric tons dry biomass per day scale, respectively. Three power 

conversion systems were considered for pyrolysis oil combustion cases in our LCA 

study, conventional power plants burning fossil fuels, including coal, natural gas and fuel 

oil, gas turbine combined cycle (GTCC) with heat recovery and a stationary diesel 

generator. Pyrolysis oil substitution cases (co-firing) represent pyrolysis oil combusted in 

conventional power plants as feedstock displacing fossil fuels. The electricity generation 
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efficiencies for the substitution cases were assumed to be the same as the fossil fuel 

power plants, which is a good assumption for low biomass displacement of fossil 

resources (<20%)170. Electricity generation efficiencies of coal and natural gas plants 

were taken from the dissertation of Jaramillo171, and efficiency of an oil plant was taken 

from a LCA software tool, the GHGenius model172. Wet biomass (40 wt% moisture) is 

transported a standard distance of 100km to the power plant. It was assumed that 400 

metric tons dry biomass per day is processed in the pyrolysis oil substitution cases, with 

the pyrolysis oil replacing the fossil fuel feedstock used in the power plants. The power 

outputs of these systems were calculated by the biomass feedstock, LHV of the biomass 

and thermal efficiencies of the power plants. The plant size and thermal efficiencies of 

GTCC and stationary diesel generator were obtained from RTP preliminary design data 

and literature references131,133. Table 6.6 shows the power output and efficiency of each 

system. 

 

Table 6.6: Plant size and efficiency of each power generation system 

  

BC1 BC2 

GTCC 

Diesel 

Generator Coal plant 

Natural gas 

plant Oil plant 

Power Output 

(MW) 

10 10 

9.62 5 19.64 24.99 20.23 

% Efficiency 18 25 42.9 45 33 42 34 

 

The GTCC and stationary diesel generator were assumed to be parasitic systems, in 

which the energy required for pyrolysis is supplied by the integrated pyrolysis oil 

combustion power plant. An estimated of 0.012 kWh generated electricity is consumed at 

the pyrolysis plant to produce 1MJ pyrolysis oil, and therefore, more pyrolysis oil is 

required to be combusted to generate 1kWh electricity. The net efficiency of GTCC 

facility is 39% while stationary diesel generator 40.9% after factoring in parasitic losses. 

The biomass feedstocks required were calculated by the power output and plant net 

thermal efficiencies.  
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6.3. Results and discussion 

6.3.1. Biomass cultivation and harvesting 

GHG emissions during the biomass cultivation and harvesting stages is shown in Figure 

6.2 for each major greenhouse gas. Harvesting logging residue exhibits a lower GHG 

footprint per kg of harvested and chipped biomass, followed by poplar and then by 

willow; 27.5 < 43.2 < 56.2 g CO2 eq./kg chipped dry biomass, respectively.  Logging 

residues obtained from natural regeneration forests avoid inputs of fertilizers and 

pesticides that are found in intensively cultivated systems such as willow and poplar. The 

N2O emissions account for the majority of GHG emission, mostly due to the application 

of nitrogen fertilizers during poplar and willow cultivation.  However, systems such as 

willow and poplar have the advantage of much higher productivities per acre (per hectare) 

which translates into fewer transportation emissions, as will be shown in the next section. 

Thus, there is a tradeoff between productivity and transportation that emerges as the scale 

of biomass production increases.    

 
Figure 6.2: GHG emission of biomass cultivation and harvesting (no transport). 

 

0 

10 

20 

30 

40 

50 

60 

Hybrid poplar Hybrid willow Logging residues 

g 
CO

2 
eq

/k
g 

dr
y 

ch
ip

s 

CO2 

N2O 

CH4 



 

106 
 

6.3.2. Pyrolysis oil production  

In this study, pyrolysis oil production was divided into four life cycle stages: biomass 

cultivation and harvesting, feedstock transportation, pyrolysis, and bio-oil distribution 

and storage. 400 metric tons dry biomass per day were assumed to be consumed to 

produce pyrolysis oil. The feedstock transport distances were described in former section. 

The GHG emissions results are shown in Table 6.7. Pyrolysis step is the leading 

contributor of GHG emissions of pyrolysis oil production, primarily due to the 

consumption of electricity imported from the U.S. grid.  Pyrolysis oil produced from 

waste wood has the least environmental impact, because the feedstock itself does not 

introduce any GHG emission.  

 

Table 6.7: GHG emissions results of PyOil production from 4 biomass feedstocks 

g CO2 eq./MJ pyrolysis oil 

logging 

residues poplar willow 

sawmill 

waste 

Feedstock cultivation 2.08 3.28 4.26 0 

Feedstock transport 1.31 0.28 0.30 0 

Pyrolysis 9.39 9.39 9.39 9.39 

Pyrolysis oil distribution and storage 0.34 0.34 0.34 0.34 

Total  13.13 13.30 14.30 9.73 

 

6.3.3. Sensitivity analysis of f value  

When the value of f (fraction of land devoted to biomass crops) changes, the 

transportation distances of biomass feedstocks adjust accordingly, as a result, the cradle 

to gate GHG emissions of pyrolysis oil production change. The base case value of f=0.1 

was used as the basic case, and f was changed for a sensitivity study. The biomass 

transportation distances under different f values are shown in Table 6.8.  
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Table 6.8: Transportation distances of biomass feedstock under different f values 

rcircle (km)  f=0.03 f=0.1 f=0.3 f=0.6 f=0.9 

Poplar 32.26 17.67 10.20 7.21 5.89 

Willow 34.34 18.81 10.86 7.67 6.28 

Residue 150.83 82.61 47.69 33.72 27.53 

 

The cradle to gate GHG emissions of pyrolysis oil production results are shown in Figure 

5.3. Effects of transportation distance on life cycle GHG impacts for pyrolysis oil 

production are most pronounced for small values of f; 0.03<f<0.6.  At low values of f, 

where transportation distances are largest, logging residues emit the largest amount of 

GHG even though residue cultivation is small compared to SRF biomass. At high values 

of f (f>0.6), logging residue-derived pyrolysis oil becomes similar in terms of GHG 

emissions as the SRF feedstock-derived pyrolysis oil.  However, such high values of f are 

not likely to be realized for most applications. Because waste wood such as sawmill 

waste is produced on site, no biomass transportation required and changes of f value do 

not impact on the life cycle emission of pyrolysis oil production from waste wood.  

 

 
Figure 6.3: Cradle to gate GHG emission of pyrolysis oil production with different f 

values. 
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6.3.4. Pyrolysis oil production in a parasitic plant 

The location of power source and pyrolysis plant has a large impact to the LCA study 

results. If the pyrolysis plant is integrated with the power plant, the electricity generated 

in the power plant can be consumed internally to meet the energy demand of pyrolysis. 

Even though the overall efficiency of power generation will decrease, the GHG emission 

caused by U.S. grid electricty use can be avoided. Table 6.9 shows the GHG emissions of 

pyrolysis oil production when this “parasatic power” scenario was considered.  The GHG 

emissions due to pyrolysis production is considerably lower; by slightly more than 8 g 

CO2 eq. /MJ pyrolysis oil, compared to the results in Table 6.6.  

 

Table 6.9: GHG emissions results of pyrolysis oil production in parasitic plant 

g CO2 eq/MJ 

PyOil Poplar Residue Willow 

Waste 

wood 

Feedstock  4 2.08 2.41 0 

Feedstock 

Transportation  0.82 3.84 0.87 0 

Pyrolysis 0.42 0.42 0.42 0.42 

Total 5.25 6.34 3.7 0.42 

 

6.3.5. Power generation from pyrolysis oil combustion 

Pyrolysis oil is assumed to be combusted in GTCC, diesel generator, and co-fired in 

fossil fuel plant to generate electricity. GHG emissions data for fossil fuel plant (coal, 

natural gas and fuel oil plant) were obtained from the GREET model55, and used as 

baseline to compare to the pyrolysis oil substitution case. 

 

6.3.5.1. GTCC with heat recovery 

For the GTCC system, part of the final electricity is used internally to power the pyrolysis 

plant, the overall efficiency decreases from 42.9% to 39%, but the GHG emission caused 

by imported U.S. grid electricity is avoided.  In addition, no GHG emission is caused due 
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to pyrolysis oil transportation because the pyrolysis plant and GTCC facility are 

integrated.  The overall GHG emissions show significant advantage compared. The life 

cycle GHG emissions are shown in Table 6.10. For poplar and willow GHG emissions 

are the largest for biomass cultivation and harvesting, whereas transportation and 

pyrolysis are about an order of magnitude lower and nearly equal.  For logging residues, 

harvesting/cultivation and transportation are nearly the same magnitude due to large 

distances needed for the relatively low productivity feedstock.  Waste wood is available 

without burden and needs no transportation since it is assumed that biomass is available 

at the site of pyrolysis and electricity generation. The GHG savings compared to U.S. 

coal baseline range from 96% to 99%, depending on the biomass feedstock used. Coal 

electricity was selected as the comparison baseline because new renewable electricity 

generation capacity is likely to displace the most polluting electricity source.   

 

Table 6.10: Life cycle GHG emissions of electricity from pyrolysis oil in GTCC 

g CO2 eq/kWh 

logging 

residues poplar willow 

sawmill 

waste 

U.S coal 

electricity55 

Feedstock cultivation 19.23 30.28 39.35 0.00 

 Feedstock transport 7.94 1.70 1.81 0.00 

 Pyrolysis 3.77 3.77 3.77 3.77 

 Pyrolysis oil distribution 

and storage 3.18 3.18 3.18 3.18 

 Pyrolysis combustion 0.01 0.01 0.01 0.01 

 Total 34.12 38.94 48.12 6.96 1087 

GHG savings 96.9% 96.4% 95.6% 99.4% 

  

6.3.5.2. Stationary diesel generator 

The stationary diesel generator case is also a parasitic system similar to the GTCC case, 

and factoring in parasitic loss of electricity, 0.52kg pyrolysis oil is combusted to generate 

1 kWh net electricity. The life cycle GHG emission results are shown in Table 6.11. 

Similar results as to Case GTCC are exhibited: impacts of cultivation and harvesting are 
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greater for poplar and willow crops, with emissions from feedstock transportation and 

pyrolysis oil production being nearly equal.  Electricity generated from logging residue-

derived pyrolysis oil show relatively large transportation impacts and waste wood-

derived pyrolysis oil is lowest in GHG emissions. For the same reason as given in Section 

6.3.5.1, coal electricity was selected as the comparison baseline. The GHG savings vary 

from 95% to 99% compared to U.S. coal electricity baseline, depending on the feedstock 

used.  

 

Table 6.11: Life cycle GHG emissions of electricity from pyrolysis oil in diesel generator 

g CO2 eq/kWh 

logging 

residues poplar willow sawmill waste 

U.S coal 

electricity55 

Feedstock cultivation 18.34 28.87 37.52 0.00  

Feedstock transport 5.33 1.14 1.21 0.00  

Pyrolysis 3.59 3.59 3.59 3.59  

Pyrolysis oil distribution 

and storage 3.03 3.03 3.03 3.03 

 

Pyrolysis combustion 0.01 0.01 0.01 0.01  

Total 30.30 36.64 45.37 6.63 1087 

GHG savings 97.2% 96.6% 95.8% 99.4%  

 

6.3.5.3. Pyrolysis oil substituting coal  

Pyrolysis oil is combusted in the coal power plant to replace coal as feedstock, the 

generation efficiency was assumed to be the same as a typical U.S. coal plant (33%)171. 

The life cycle GHG emission results are shown in Table 6.12. Because pyrolysis oil 

production is remote from power generation and uses grid electricity, GHG emissions of 

pyrolysis oil production contributes the most to the life cycle impacts.  

Harvesting/cultivation impacts are second largest followed by pyrolysis oil transport and 

feedstock transport. For logging residues, feedstock transportation emission is higher than 

the other two feedstocks due to the low area productivity of residues.  The lowest GHG 
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emission is for sawmill waste as feedstock because it does not incur feedstock 

cultivation/harvesting or transportation impacts. The GHG savings compared to U.S. coal 

baseline range from 84% to 89%, depending on the biomass feedstock used.  

 

Table 6.12: Life cycle GHG emissions of pyrolysis oil combustion in coal-fired plant 

g CO2 eq/kWh residue poplar willow 

sawmill 

waste 

U.S coal 

electricity55 

Feedstock 22.73 35.79 46.51 

  Feedstock transport 14.30 3.06 3.26 

  Pyrolysis 102.44 102.44 102.44 102.44 

 Pyrolysis oil transport 5.39 5.39 5.39 5.39 

 Pyrolysis oil distribution & storage 3.76 3.76 3.76 3.76 

 Pyrolysis oil combustion 0.02 0.02 0.02 0.02 

 Total 148.63 150.44 161.36 111.60 1087 

GHG savings 86.3% 86.2% 85.1% 89.7% 

  

6.3.5.4. Pyrolysis oil substituting natural gas 

In this case, pyrolysis oil is combusted in the natural gas power plant as feedstock, with 

the same efficiency as an average natural gas fired plant173, we assumed the median point 

efficiency of natural gas plant, which is 42%171. The life cycle GHG emission results are 

shown in Table 6.13.  These GHG results are qualitatively similar to those presented for 

coal substitution, except that overall emissions are lower in comparison due to the higher 

electricity generation efficiency.  The higher efficiency translates to reduced feedstock 

demand per unit of electricity output. The GHG savings compared to U.S. natural gas 

baseline range from 78% to 85%, depending on the biomass feedstock used.  
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Table 6.13: Life cycle GHG emissions of pyrolysis oil combustion in natural gas plant 

g CO2 eq/kWh residue poplar willow 

sawmill 

waste 

U.S natural 

gas 

electricity55 

Feedstock 17.86 28.12 36.54 

  Feedstock transport 11.23 2.40 2.56 

  Pyrolysis 80.49 80.49 80.49 80.49 

 Pyrolysis oil transport 4.24 4.24 4.24 4.24 

 Pyrolysis oil distribution and 

storage 2.95 2.95 2.95 2.95 

 Pyrolysis oil combustion 0.01 0.01 0.01 0.01 

 Total 116.78 118.21 126.78 87.69 509 

GHG savings 77.1% 76.8% 75.1% 82.8% 

  

6.3.5.5. Pyrolysis oil substituting fuel oil 

In this case, pyrolysis oil is combusted in the fuel oil power plant as feedstock, the 

efficiency was assumed to be 35%55. The life cycle GHG emission results are shown in 

Table 6.14. GHG emission of fuel oil plant data obtained from the GREET model was 

used as a benchmark.  GHG emissions for the oil substitution case are very similar to that 

for coal substitution because electricity generation efficiency is very comparable.  The 

GHG savings compared to U.S. fuel oil baseline range from 82% to 87%, depending on 

the biomass feedstock used.   
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Table 6.14: Life cycle GHG emissions of pyrolysis oil combustion in fuel oil-fired plant 

g CO2 eq/kWh residue poplar willow 

sawmill 

waste 

U.S fuel oil 

electricity55 

Feedstock 21.43 33.74 43.85 

  Feedstock transport 13.48 2.88 3.07 

  Pyrolysis 96.59 96.59 96.59 96.59 

 Pyrolysis oil transport 5.08 5.08 5.08 5.08 

 Pyrolysis oil distribution and 

storage 3.54 3.54 3.54 3.54 

 Pyrolysis oil combustion 0.02 0.02 0.02 0.02 

 Total 140.14 141.85 152.15 105.23 835 

GHG savings 83.2% 83.0% 81.8% 87.4% 

  

6.3.6. Sensitivity analysis of pyrolysis oil transportation distance 

For substitution cases, pyrolysis oil is produced in distributed pyrolysis plants and then 

transported to the power plant to generate electricity. In this sensitivity study, the 

transportation distance of pyrolysis oil between pyrolysis and power plant range from 

50km to 200km, where the base case distance was 100km. The life cycle GHG emission 

results are shown in Figures 6.4.  As the pyrolysis oil transportation distances increase 

from 50 to 200 km, life cycle GHG emissions for 1 kWh electricity increase roughly by 

16 g CO2 eq. 
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Figure 6.4: Life cycle GHG emissions of pyrolysis oil combusted in power plant with 

different pyrolysis oil transportation distances. 

 

6.3.7. Biomass direct combustion 

Biomass are collected and transported to the power plant, generating electricity by direct 

combustion. The biomass transport distances are presented in Table 6.5. GHG emissions 

of BC1 and BC2 were calculated and the results are shown in Table 6.15. Feedstock 

cultivation exhibits the largest GHG emissions and minimal impacts from transportation.  

In all cases, biomass combustion emits relatively few GHG emissions.  BC2 case, being 

of higher efficiency, shows lower GHG emissions than the BC1 case.  Both the BC1 and 

BC2 cases show more than 90% GHG savings compared to coal electricity emissions.   
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Table 6.15: Life cycle GHG emissions of electricity from biomass direct combustion 

g CO2 eq/kWh 

BC1 

(residue) 

BC1 

(poplar) 

BC1 

(willow) 

BC2 

(residue) 

BC2 

(poplar) 

BC2 

(willow) 

U.S coal 

electricity 

Feedstock 30.56 48 62.44 22 34.56 44.96 

 Feedstock 

transport 4.02 0.86 0.91 2.45 0.52 0.56 

 Biomass 

combustion  4.13 4.13 4.13 2.97 2.97 2.97 

 Total 38.70 52.99 67.49 27.42 38.05 48.49 1087 

GHG savings 96.4% 95.1% 93.8% 97.5% 96.5% 95.5% 

  

6.4. Discussion 

Power generation by biomass direct combustion, by co-firing in fossil fuels plant, by 

GTCC and stationary diesel generator are compared together to determine GHG 

emissions and savings compared to conventional fossil fuel-generated electricity. The 

results are shown in Figure 6.5. Pyrolysis oil co-fired in fossil fuels plants (coal, natural 

gas or fuel oil) has the highest emissions, although the emissions are significantly lower 

than fossil fuels electricity baseline. The major contributor to life cycle GHG emissions is 

electricity used in the pyrolysis plant. Pyrolysis oil produced in a parasitic configuration 

and combusted in either a GTCC or stationary diesel generator release the lowest GHG 

emission; even lower than the direct biomass combustion cases presented above, because 

the GHG emission caused by grid electricity used for production of pyrolysis bio-oil is 

avoided. Biomass direct combustion in steam turbines reside in between, but the leading 

contributor to the life cycle GHG releases in this case are biomass cultivation/harvesting 

and transportation. The low energy density of raw biomass relative to pyrolysis oil 

becomes increasingly important as transportation distance increases. 
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Figure 6.5: Life cycle GHG emissions of power generation.  

 

As shown in other studies, power generation from direct combustion of biomass 

produced by urban sources, normal land filling and mulching operations has great 

advantage with regard to GHG emissions compared to the fossil fuel plants174. However, 

problems and limitations of direct biomass combustion remain. High nitrogen oxides 

(NOx) emission is one of the top air quality concerns. Biomass power plants show a 

relatively high NOx emission rate per kWh generated compared to other combustion 

technologies. Carbon monoxide (CO) is also emitted, sometimes at levels higher than 

those for coal plants. Another air quality concern is PM emission, as burning biomass 

will release relatively large amounts of particulates. Furthermore, ash produced from 

biomass co-combustion is not yet certified for reuse in cement manufacturing, and hence, 

ash from co-processing may become a solid waste rather than a useful co-product. In 

addition, volatile alkali salts produced during biomass co-processing have been shown to 

hurt the effectiveness of catalysts used in selective catalytic reduction (SCR)175, and as a 

resykt, NOx emission from the power plant may further increase. Solid and wet biomass 

fuels are of relatively low energy density, compared with fossil alternatives, and 
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consequently large volumes are typically required to be stored and transported, hence the 

emission and cost due to biomass transportation are much higher than other feedstocks, 

for example pyrolysis bio-oil. In addition, biomass will usually absorb moisture if 

exposed, thus it may naturally biodegrade in storage176. Using pyrolysis oil instead of 

biomass as feedstock to generate electricity can eliminate many of the problems 

associated with direct biomass combustion. Because of low ash content in pyrolysis oil 

(often well below 1%), it can also minimize ash related issues caused by biomass 

combustion177. In addition, pyrolysis oil is more flexible in power plant application, as it 

can be combusted in coal, oil, and natural gas-fired plants133, as compared to wood chips 

that can most easily displace solid fossil fuels (coal).  

 

6.5. Conclusion 

Pyrolysis bio-oil can be produced through fast pyrolysis step from solid biomass, and 

then combusted to generate power, replacing fossil fuels as feedstock. Combusting 

pyrolysis oil as a liquid biofuel to generate power can reduce the climate changing 

greenhouse emissions significantly because the CO2 emission at the pyrolysis oil 

combustion stage is considered carbon neutral as CO2 is sequestered during feedstock 

growth. In this LCA study, life cycle GHG savings of 80% to 99% were estimated for 

power generation from pyrolysis oil combustion relative to fossil fuels combustion, 

depending on the biomass feedstocks and combustion technologies used. A parasitic 

system scenario in which electricity is provided from an integrated pyrolysis oil 

production-electricity generation facility was also considered, and it shows more GHG 

savings because use of imported electricity from the U.S. grid is avoided. With expected 

improvement of pyrolysis technology, and more efficient power generation technology, 

the life cycle GHG emissions of power generation using pyrolysis oil can be further 

reduced. Pyrolysis oil has the potential to replace fossil fuels as an alternative energy 

source to generate power, reducing GHG emissions caused at power plant, as well as the 

dependence on fossil fuels. 
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7. Chapter 7: LCA of transportation fuels produced from 

pyrolysis oil 
7.1. Introduction 

Pyrolysis oil can be upgraded to transportation fuels by deoxygenation reaction131. 

However, it is not suitable for direct use in most combustion engines due to limited 

storage capability and large amounts of water (up to 50 wt%) and corrosive organic acids 

(up to 10 wt%)178. It also shows other undesired properties for fuel application such as 

low heating value, immiscibility with hydrocarbon fuels, thermal and chemical 

instability, and high density179.  The pyrolysis oil is unstable due to the oxygen containing 

components, especially the carbonyl compounds137. Polymerization of organic matters 

present in oil may occur which will increase the viscosity if stored for an extended period 

of time under wide temperature fluctuations137,180.  Therefore, the pyrolysis oil needs to 

be stabilized by reducing the oxygen content via catalytic hydrotreating first. This 

hydrotreatment also avoids catalyst deactivation in the upgrading step181. The 

hydrotreated pyrolysis oil can be used to produce liquid fuels such as gasoline and diesel 

through hydroprocessing in the presence of hydrogen and heterogeneous catalysts138,182. 

Hydroprocessing of pyrolysis oil differs from petroleum crudes processing because of the 

importance of hydrodeoxygenation, as opposed to nitrogen and sulfur removal183. The 

hydrodeoxygenation process is performed at high temperature (up to 20MPa), high 

pressure (up to 400°) and in presence of catalyst to remove oxygen as H2O179,184. The 

hydrodeoxygenation process can be represented as follows:179,185  

 

C6𝐻8𝑂4 + 6𝐻2 → 6𝐶𝐻2 + 4𝐻2𝑂 

 

The oil is then distilled to separate light and heavy oil fractions. Hydrocracking process is 

a process performed to convert the heavy components to light oil fraction, which is joined 

with the light oil fraction separated at the first distillation process. The final light oil 

products are distilled to separate gasoline, diesel and etc186.  
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The flow diagram of the biomass fast pyrolysis to produce liquid fuels is shown in the 

Figure 7.1. The biomass is dried and ground to a small size prior to being fed into a 

pyrolyzer. Char particles are removed from the vapor exiting pyrolyzer by a cyclone. The 

vapors are condensed in the heat exchanger to yield liquid pyrolysis oil, which is then 

stabilized (less than 2% O) by hydrotreatment prior to upgrading to liquid transportation 

fuels. Bio-char produced in the reactor is used internally to provide process heat. The 

hydrogen required for the hydrotreating, hydroprocessing and hydrocracking reactions 

are either purchased externally, or produced in-situ by reforming external natural gas and 

co-product fuel gas180,187.  

 
Figure 7.1: Flow diagram of liquid fuels production via fast pyrolysis of biomass. 

Adapted from Jones et al188 

 

The final products are compatible with the current transportation fuel distribution 

infrastructure and current vehicle technologies180.  Pyrolysis oil can also be upgraded to 

hydroprocessed jet fuels (HRJ), which is prominently composed of aromatic compounds. 

However, it has not been certified to use in jet engines because of the aromatic content 

limit (25 vol%) specified by the ASTM D1655 standard189. Therefore, the pyrolysis based 

jet fuels are not expected to be blended with conventional jet fuels, but may be certified 

in a blend with SPK to increase aromatic content190.   
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7.2. LCA methods 

7.2.1. Research objectives 

Life cycle assessment studies have been conducted by researchers to estimate the GHG 

emissions and net energy values of pyrolysis gasoline and diesel. Hsu191 examined forest 

residues as a feedstock to produce gasoline and diesel using the fast pyrolysis and 

subsequent hydrotreating and hydrocracking processes described in the PNNL (Pacific 

Northwest National Laboratory) report188.  No indirect land use change or change in soil 

carbon was included in this study as a result of production and harvesting of forest 

residues. The pyrolysis gasoline and diesel products showed 53% of GHG reduction 

compared to the 2005 conventional gasoline baseline. A well-to-wheels (WTW) analysis 

of pyrolysis-based gasoline was conducted and compared with petroleum gasoline by 

Han et al192. The pyrolysis and oil stabilization & upgrading process from corn stover and 

forest residues were investigated in the GREET 2012 model, which are based on the 

study conducted by Wright et al187 and the PNNL188 research group respectively. The 

impacts of two different hydrogen sources for pyrolysis oil upgrading were investigated. 

Reforming fuel gas/natural gas for H2 reduces WTW GHG emissions by 60% (range of 

55–64%) compared to the petroleum fuels. Reforming pyrolysis oil for H2 increases the 

WTW GHG emissions reduction up to 112%. The goal of this LCA study is to investigate 

the life cycle GHG emissions, cumulative energy demand (CED), and fossil energy 

demand (FED) of gasoline and diesel produced from pyrolysis of corn stover and logging 

residues, and the results are compared to those generated by the GREET 2012. The 

differences in GHG emission results generated by the two models are explored to 

understand the impact of emission factors of the LCA inputs and co-products credits. 

 

7.2.2. System Scope, Functional Unit, Inventory, and Impact Assessment 

The pyrolysis gasoline and diesel production from logging residues and corn stover 

described by Wright et al187 and PNNL188 are considerd in this study. The system 

boundries include all the energy, fuels, chemicals, and transportation needed to operate 

all phases of the entire operation starting from biomass collection and finishing with the 

combustion of biofuels in the engines.  Land use change (direct or indirect) was not 



 

121 
 

included in the system because the feedstocks are considered as waste materials, and in 

the case of stover, are harvested within allowable limits to assure soil health and erosion 

control. The functional unit is assumed to be 1 MJ of fuels combusted. A complete set of 

inputs was utilized from literature sources. The software used for this LCA was SimaPro 

7.2. The GHG impact assessment method used was the IPCC 2007 GWP 100a V1.01 

method44 whose output is in g CO2 equivalents for all of the GHG emissions using global 

warming potentials (GWP) of 1 for CO2, 25 for CH4, 298 for N2O. GWPs for 

refrigerants, solvents, and other compounds were included in the analysis, which are from 

the Ecoinvent database within SimaPro. The CED and FED are calculated by using 

Cumulative Energy Demand 1.07 method in SimaPro, the results include non-renewable 

fossil (coal, oil, natural gas) and nuclear energy use, renewable biomass energy use, and 

other renewable energy sources, including solar, geothermal, and hydroelectric power, 

which are given as the amount of process energy inputs (MJ) along the life cycle per unit 

of energy in the fuel products. 

 

Two scenarios of pyrolysis oil upgrading are considered: 1. Distributed refinery scenario 

in which the pyrolysis oil is produced and stabilized in distributed refineries, and then 

transported to a centralized oil upgrading facility for liquid fuel production. 2. Integrated 

refinery scenario in which the pyrolysis oil production is integrated with the fuel 

production. The pathway diagram of this LCA study is illustrated in Figure 7.2.  
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Figure 7.2: Pathway diagram of pyrolysis oil to liquid fuels LCA study 

 

7.2.3. Pyrolysis gasoline and diesel production 

The inputs of gasoline and diesel production process were obtained directly from GREET 

201286. The H2 required in the reactions is assumed to be supplied externally from a 

steam methane reforming (SMR) plant. The co-product fuel gas is available for other 

uses, and energy allocation method is used to distribute the environmental impacts 

between liquid fuel product (gasoline and diesel blend) and fuel gas. A second scenario 

assumes that the H2 is reformed from a mix of external natural gas and co-product fuel 

gas. There is no co-product in this scenario, and all the emissions and energy burdens are 

allocated to the fuel product. In the distributed system, transport of hydrotreated pyrolysis 

oil to the biorefinery is assumed to be the same as that in the GREET 201286, which 

includes rail and truck transport of 480 km and 80 km respectively. The final product 
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contains pyrolysis gasoline and diesel, which are assumed to be distributed to customers 

within a 150 km radius.   

 

7.2.3.1. Logging residues as feedstock 

Logging residues as the pyrolysis feedstock was presented in Chapter 5. The feedstock is 

mixed hardwood logging residue collected from natural regeneration hardwood site near 

Trenary, MI, which is assumed to be  available as waste in the forest. The inputs include 

biomass collection, forwarding, grinding, and transportation. No land use change impact 

(direct or indirect) is included. The residues (20% moisture) are transported 120 and 240 

km by truck to the distributed and integrated pyrolysis plant respectively. This 

assumption was obtained from the GREET 201286 for forest residues transport to the 

biorefinery. The inputs of the pyrolysis gasoline and diesel production from logging 

residues in both integrated and distributed systems were obtained from the GREET 2012 

model86 and tabulated in Table 7.1. Energy allocation method was used to account for the 

co-product fuel gas. LHV of the hydrotreated pyrolysis oil and pyrolysis gasoline/diesel 

are 17450 and 17756 btu/lb86 (40.6 and 41.3 MJ/kg) respectively.  

 

Table 7.1: Inputs of  pyrolysis gasoline and diesel production from logging residues86 

 

distributed process* Integrated process 

Inputs external H2 internal H2 external H2 internal H2 

Biomass (dry kg/kg fuel) 3.15 3.15 3.15 3.15 

Elec (kWh/kg fuel) 0.504 0.51 0.5 0.509 

NG for H2 (MJ/kg fuel) 

 

9.36  9.345 

H2 (g/kg fuel) 113.6  113.4  

Co-product 

  

  

Fuel gas (MJ/kg fuel) 9.67 

 

9.645  

* the inputs include oil production & stabilization and oil upgrading at a standalone bio-refinery  
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7.2.3.2. Corn stover as feedstock 

In addition to the logging residues, corn stover was investigated as a feedstock for 

pyrolysis gasoline and diesel production.  Corn stover as a pyrolysis feedstock was 

studied in section 5.4.3. The feedstock is assumed to be collected from corn fields in 

Iowa. The inputs of corn stover production were obtained from Morey et al153, which 

include biomass collection, transport and nutrients added to the field to replace the stover.  

Corn stover is transported 48 and 96 km by truck to the distributed and integrated 

pyrolysis plant respectively.  Inputs of pyrolysis gasoline and diesel production in the 

distributed and integrated system were tabulated in Table 7.2. Energy allocation method 

was used for the co-products.  

 

Table 7.2: Inputs of  pyrolysis gasoline and diesel production from corn stover86 

 

distributed process* Integrated process 

Inputs external H2 internal H2 external H2 internal H2 

Biomass (dry kg/kg fuel) 3.61 3.61 3.61 3.61 

Elec (kWh/kg fuel) 0.551 0.549 0.548 0.547 

NG for H2 (MJ/kg fuel) 

 

11.43  11.42 

H2 (g/kg fuel) 86.28  86.25  

Co-product 

  

  

Char (MJ/kg fuel) 11.47 11.47 11.45 11.45 

Steam (MJ/kg fuel) 2.43 2.43 2.26 2.26 

Fuel gas (MJ/kg fuel) 2.57 

 

2.76  

* the inputs include oil production & stabilization and oil upgrading at a standalone bio-refinery  

 

7.3. LCA results 

7.3.1. GHG emissions 

The GHG emissions of pyrolysis gasoline/diesel produced from logging residues are 

tabulated in Table 7.3. These results also include those generated by GREET for 

comparison. SimaPro generates comparable GHG results to the GREET model. SimaPro 
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shows higher biomass collection emissions because of the larger inputs such as diesel use 

compared to GREET (8.62 vs 6.72 L diesel/t dry residues). The biomass transport 

emissions generated by SimaPro are lower compared to GREET because of the lower 

emission factor of the truck transport. Fuel production emissions include both pyrolysis 

and oil stabilization/upgrading process. The differences in fuel production emission also 

lie in the emission factors assumed by GREET and SimaPro. The emission factors of 

electricity, natural gas and H2 in GREET are 677.5 g CO2 eq/kWh, 3.52 kg CO2 eq/kg 

and 12.155 kg CO2 eq/kg, respectively. In SimaPro, the emission factors are 745 g CO2 

eq/kWh, 4.275 kg CO2 eq/kg and 11.4 kg CO2 eq/kg, respectively. The system using 

external SMR H2 generates higher life cycle GHG emissions than the internal H2 system, 

because H2 from process co-products have lower carbon intensity than its counterpart 

produced from fossil natural gas.  Distributed system and integrated system have similar 

life cycle GHG emission, the main difference is due to the transport, where the integrated 

system shows a higher biomass transport impact because of the longer biomass transport 

distance to the centralized facility, while the fuel transport emissions in the integrated 

system are lower because there is no transport of hydrotreated pyrolysis oil as in the 

distributed system. 
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Table 7.3: GHG emissions of pyrolysis gasoline/diesel from logging residues 

 

Distributed process Integrated process 

g CO2 eq/MJ external H2 internal H2 external H2 internal H2 

 SimaPro GREET SimaPro GREET SimaPro GREET SimaPro GREET 

Biomass 1.68 1.54 2.1 1.91 1.7 1.55 2.1 1.91 

Biomass 

transport 

 

0.88 

 

1.89 

 

1.45 

 

2.35 

 

2.21 

 

3.8 

 

2.89 

 

4.7 

Fuel 

production 

 

32.95 34.62 

 

29.76 25.30 

 

32.66 

 

33.74 

 

29.70 

 

25.31 

Fuel 

transport* 

1.75 

(1.33, 

0.42) 

1.14 

(0.53, 

0.61) 

1.08 

(0.66, 

0.42) 

1.14 

(0.53, 

0.61) 

0.42 0.61 0.42 0.58 

Total 37.16 39.18 34.39 30.69 37.0 39.7 35.1 32.49 

* the two numbers in parentheses represent transport emissions of hydrotreated pyrolysis oil and 

liquid product, respectively  

 

The GHG emissions of pyrolysis gasoline/diesel produced from corn stover are tabulated 

in Table 7.4. The results generated by SimaPro are higher than the GREET, mainly due to 

the comparatively high fuel production emission. This is because GREET assumes a 

lower emission factor of H2 (86.3 vs 95 g CO2 eq/MJ). In addition, GREET assumes that 

the co-product char is used as soil amendment thus gaining a GHG credit (80% of C in 

char are sequestrated). As in SimaPro, energy allocation method was applied to the co-

product char, as opposed to gain a credit by the displacement method. The steam co-

product in GREET is either exported to produce natural gas or discarded on-site. The 

efficiency of natural gas boiler is 80%. Fuel gas can be either used to generate electricity 

for internal use, or exported to gain a GHG credit. In SimaPro, the internal H2 scenario 

generates higher GHG emission than the external H2 scenario. This is because internal H2 

scenario includes a lower co-products yield, thus, even with a lower carbon intensity H2 

source, more emissions are allocated to the gasoline/diesel product. As for GREET on the 
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other hand, internal H2 scenario yields lower GHG emission, due to lower pyrolysis 

impacts and higher char credit. This is because the internal H2 scenario includes natural 

gas in the input, which has a lower emission factor (61.4 g CO2 eq/MJ), while H2 

imported in the external H2 scenario has a higher emission factor (86.3 g CO2 eq/ MJ). 

Fuel gas is produced as a co-product in the external H2 scenario, which allocates partial 

GHG credit from biochar sequestration away from the product hydrotreated pyrolysis oil. 

The GREET model shows higher corn stover impact because of the larger diesel 

requirement and nutrients required to replace the stover in the corn field (Table 7.5). 

GREET assumes urea as the N fertilizer as opposed to ammonium as assumed by 

Morey153, the former has a higher emission factor.  

 

Table 7.4: GHG emissions of pyrolysis gasoline/diesel from corn stover 

 

Distributed process Integrated process 

g CO2 eq/MJ external H2 internal H2 external H2 internal H2 

 SimaPro GREET SimaPro GREET SimaPro GREET SimaPro GREET 

Biomass 3.33 7.58 3.48 7.88 3.15 7.44 3.31 7.88 

Biomass 

transport 

0.38 0.61 0.41 0.63 0.94 1.14 0.99 1.27 

Fuel 

production 

 

26.3 14.14 

 

28.28 11.21 

 

24.08 

 

14.36 

 

26.2 

 

10.62 

Fuel transport 1.45 0.61 1.27 0.61 0.42 0.61 0.42 0.61 

Total 31.46 22.94 33.45 20.33 28.6 22.4 30.92 20.38 
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Table 7.5: Corn stover collection and additional nutrients added to soil 

 

SimaPro GREET 

Diesel (L/t) 3.857 9.56 

Lubricant oil (L/t) 0.02 0 

N (kg/t) 7.4 7.7 

P2O5 (kg/t) 2.9 2 

K2O (kg/t) 12.7 12 

 

The life cycle GHG emissions of pyrolysis gasoline and diesel are illustrated in Figure 

7.3. Pyrolysis gasoline and diesel produced from logging residues show GHG reductions 

ranging from 59 to 62% compared to the petroleum gasoline and diesel baseline, 

depending on the system and H2 source. Pyrolysis gasoline and diesel produced from 

corn stover show slightly higher GHG reductions because of lower fuel production 

emission as a result of co-products assumed in the study (char producted as co-product of 

pyrolysis process is applied to soil for C sequestration).  

 
Figure 7.3: GHG emissions of pyrolysis gasoline and diesel, comparing to the petroleum 

fuels 
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7.3.2. Energy demands 

Figure 7.4 shows the CED results of pyrolysis oil derived transportation fuels. The CED 

consists of four parts; non-renewable fossil, non-renewable nuclear, renewable biomass, 

and other renewable energy sources, which include solar, geothermal, and hydroelectric 

power. Although it requires more total energy to produce the same amount of pyrolysis 

gasoline/diesel than conventional petroleum fuels, the majority of energy requirement of 

pyrolysis gasoline/diesel are from renewable biomass. The petroleum fuels consume 

more nonrenewable fossil energy to produce, which is illustrated in the FED results 

below.  

 
Figure 7.4: CED results of pyrolysis gasoline/diesel, comparing to petroleum gasoline 

and diesel 

 

The FED results (Figure 7.5) have been broken into 4 process stages: biomass 

production, biomass transport, fuel production, and fuel transport. In the integrated 

system scenarios, oil production and fuel production are integrated together, and there is 
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no oil transport. The majority of fossil energy demand occurs at the hydrotreated 

pyrolysis oil production stage, because of the H2 (natural gas) requirement. Pyrolysis oil 

upgrading also requires H2 (natural gas), which contributes to the fossil energy use at the 

fuel production stage.  The next most important stage is biomass transport, especially for 

the integrated system where biomass is transported a relatively long distance to a central 

pyrolysis and upgrading facility. Apart from H2 (natural gas) used for hydrotreating and 

hydroprocessing process, diesel used in the biomass collection and transportation stages 

contribute to the total fossil energy demand as well.  

 
Figure 7.5: FED results of pyrolysis gasoline/diesel (Fuel transport includes transport of 

hydrotreated pyrolysis oil and final gasoline/diesel product) 

 

7.4. Discussion 

Pyrolysis gasoline and diesel produced from logging residues show similar GHG 

emission results between SimaPro and GREET 2012. The differences are results of 

emission burdens of residues feedstock and the emission factors assumed in the two 
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models. However, gasoline and diesel produced from pyrolysis of corn stover show very 

different GHG results. GREET yields higher corn stover collection impact because of the 

higher diesel input and higher emission factor of the N fertilizer (urea). The emission 

burden of corn stover is sensitive to the choice of N fertilizer, as different N fertilizers 

have very different emission factors, application of urea also contributes to CO2 emission 

to the atmosphere. On the other hand, fuel production emission results generated from 

GREET are much lower than those from SimaPro. This is mainly because of the GHG 

credit of the co-product char. GREET assumes that the char is applied to soil as a carbon 

sequestration method, which offers a large GHG credit to the fuel products. Energy 

allocation method was applied in SimaPro, where a portion of the process emission 

burdens are distributed to the char. H2 source is found to affect the GHG emissions of the 

final fuel products. As opposed to importing H2 from external source, it can be produced 

internally from co-products of the hydrocracking process with additional natural gas. 

Natural gas has a lower emission factor than external H2 produced from steam reforming, 

therefore, the total emission can be reduces if H2 is produced internally. However, 

producing H2 internally can reduce the GHG credit of the co-product as the process 

consumes the fuel gas co-product. Distributed system where pyrolysis oil is produced and 

stabilized at distributed facilities first, and then transported to a centralized biorefinery 

for hydrocracking show similar GHG results to the integrated system, in which the 

biomass is transported to a centralized biorefinery where the feedstock is converted to 

gasoline and diesel by hydrotreating and hydrocracking. The main differences lie in the 

biomass transport and transport of the hydrotreated pyrolysis oil. In cases where biomass 

transport distance to a centralized facility are much greater than in this study, the 

distributed system emissions may be much small in comparison to a centralized system.  

Materials and energy requirements of the distributed and integrated system are similar. 

 

7.5. Conclusion 

Pyrolysis oil can be upgraded to transportation fuels by hydroprocessing 

(hydrodeoxygenation and hydrocracking reaction). The pyrolysis gasoline and diesel 

produced from logging residues and corn stover show approximately 60% of GHG 
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reductions compared to their petroleum counterparts. If H2 used in the hydroprocessing 

reaction are produced from a mix of external natural gas and co-product fuel gas, the life 

cycle GHG emissions can be reduced. Although they consume more energy to produce 

the same energy of final product than gasoline and diesel produced from fossil crudes, 

they show much lower fossil energy demand than their petroleum counterparts.   
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8. Chapter 8: Direct land use change emissions associated with 

forest-based biofuels and bioenergy production in 

Michigan9

8.1. Introduction 

 

8.1.1. Michigan Forest 

Michigan currently has 8.1 million hectares of forestland193. The majority of Michigan 

forests (5.06 million hectares) are owned by private landowners and managed in varying 

intensity.  The State and local governments hold 1.86 million hectares and the Federal 

government holds the other 1.2 million hectares193.  Michigan has one of the largest 

amounts of timber net growth in excess of removals of any state (3.84 million cubic 

meter194), which represents significant potential growth of the timber products 

industry195.  Michigan has a rich history of using wood for bioenergy and bio-based 

products196.  While current industrial wood use is in a down-cycle197, the excess timber 

wood can be a promising feedstock to address the state’s growing energy needs while 

also creating a thriving renewable fuels industry.         

 

8.1.2. Land Use Change (LUC) 

The conversion of native habitats to biofuels production will result in disturbance of 

carbon stocks in the native biomass (aboveground and belowground) and soils, thus 

releasing CO2 into the atmosphere95. If pristine domestic or international lands are 

cleared and converted to farmland to compensate for the crop production loss due to 

biofuels production, a significant amount of CO2 will be emitted through burning or 

microbial decomposition of organic carbon stored in biomass and soils. These two 

mechanisms are called direct and indirect land use change (dLUC and iLUC), 

respectively. Studies have shown that use of food crops for biofuels production may 

                                                 
9 This chapter will be prepared for peer-reviewed publication. Citation: Fan J, Froese R, Shonnard 
DR,Handler RM. Direct Land Use Change Emissions associated with Forest-based Biofuels and Bioenergy 
Production in Michigan. 
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result in LUC emissions of greenhouse gases, which can significantly change the GHG 

profiles of biofuels94-96.  

 

A consequential approach is applied by the U.S EPA4 to estimate both dLUC and iLUC 

impacts of bioethanol and biodiesel derived from corn, soybean, and other biofuel 

feedstocks, such as switchgrass. The Forestry and Agricultural Sector Optimization 

Model (FASOM) and the Food and Agricultural Policy Research Institute (FAPRI) 

model have been used by the EPA to estimate the impacts of biofuels feedstock 

production on domestic and international agricultural and livestock production, 

respectively. Then the change in agricultural land and livestock are converted to GHG 

emissions based on the GHG emissions factors from the GREET model86 or IPCC 

guidance.  The GHG emissions due to LUC are then incorporated with fuel production 

emission to calculate the life cycle emissions of biofuels. The life cycle year 2022 GHG 

emissions results modeled by the EPA are shown in Table 8.1 for effects of large-scale 

production of biofuels meeting 2022 mandated volumes. It shows that the iLUC can 

cause significant GHG emissions due to land conversion, but these biofuels meet the 20% 

GHG reduction threshold mandated by the EISA, thus qualify as renewable fuels.
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On April 23, 2009, the California Air Resources Board (CARB) proposed the California 

Low Carbon Fuel Standard (LCFS)57 in order to lower the carbon content of 

transportation fuels used in California. This standard identifies LUC as a significant 

source of additional GHG emissions and includes the carbon intensity values assigned to 

those fuels in the regulation. Figure 8.1 illustrates the process of quantifying GHG 

emissions due to LUC from some feedstocks. However, the LCFS states that corn stover 

and waste stream feedstocks such as yellow grease, waste cooking oils and municipal 

solid waste (MSW) are unlikely to lead to LUC impacts.  

 

 
Figure 8.1: LUC impacts estimation process by CARB (adapted from CARB LCFS57) 

 

The Global Trade Analysis Project (GTAP) model is used by the California Air Resource 

Board (CARB) to evaluate the worldwide land use conversion in response to the 

increasing biofuels demand. The GHG emissions due to the land conversion are 

calculated by applying GHG emission factors to the acreage of land converted. LUC 

emissions vary substantially with time.  For example, large near term GHG emissions are 

generated from combustion and decomposition of organic carbon stored in vegetations 

and soils.  However, over the subsequent years biofuels produced from biomass grown on 

converted land can repay this carbon debt. These time-varying GHG flows are inputted 

into a time accounting model to convert to a LUC carbon intensity value.  The carbon 

intensity and LUC of biofuels and their petroleum baselines are listed in Table 8.2. The 

LUC impacts are similar to those reported by EPA, with the exception of sugarcane 

ethanol. EPA assumes the sugarcane is planted in Brazil, thus most of impacts on 

agricultural land is distributed in the “Net International Agriculture” category. 
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Table 8.2: Carbon intensity values of gasoline, diesel and fuels that substitute for them 

from CARB57 

g CO2 eq/MJ 
Direct 
emissions LUC 

Total 
carbon 
intensity 

Corn ethanol (CA) 50.7 30 80.7 

Sugarcane ethanol 27.4 46 73.4 

Soybean biodiesel 26.93 42 68.93 

Biodiesel/Renewable diesel derived from 

waste 15 0 15 

California Gasoline  95.86 

 

95.86 

California Diesel 94.71 

 

94.71 

 

The European Renewable Energy Directive54 calculates dLUC emissions as annualized 

carbon emissions from carbon stocks associated with the reference land prior use and the 

land use after conversion over 20 year period. The actual values of carbon stocks 

associated with the reference land use and the land use after conversion are based on the 

Intergovernmental Panel on Climate Change (IPCC) 2006  guidelines and data198. The 

annualized dLUC emissions are calculated by the following formula: 

 

𝑒𝑙 = (𝐶𝑆𝑅 − 𝐶𝑆𝐴) ∗ 3.664 ∗
1

20
∗

1
𝑃
− 𝑒𝐵 

Where 

el : the annualized GHG emissions due to dLUC (as mass CO2 equivalent per unit 

biofuel);  

CSR : carbon stock per unit area associated with the reference land use 20 years before the 

biomass raw materials are obtained; 

CSA : carbon stock per unit area associated with the actual land use; 

3.664 : the ratio of molecular weight of CO2 (44.010 g/mol) by molecular weight of C 

(12.011 g/mol); 

P: the productivity of the crops (as biofuel energy per unit of area per year); 
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eB :  bonus of 29 g CO2 eq/MJ biofuel if biomass is obtained from degraded land  

The Roundtable on Sustainable Biofuels (RSB) GHG accounting scheme93 uses the same 

method as the European Renewable Energy Directive to calculate the dLUC emissions, 

while not including iLUC impact in the scope of their study.   

 

8.1.3. Carbon Budget Model for the Canadian Forest Sector (CBM-CFS3) 

When trees grow, they remove CO2 from atmosphere through photosynthesis. In addition, 

a substantial amount of carbon is stored in forests as dead organic matter (DOM) in 

standing snags, on the forest floor, and in the soil until they are released back to the 

atmosphere by decomposition199.  The IPCC provides guidelines198 for the calculation 

and reporting of changes in stocks of forest carbon. The IPCC identifies three tiers for 

reporting changes in forest carbon stocks that depend on sophistication of the data 

collection and estimation certainty. The Carbon Budget Model for the Canadian Forest 

Sector (CBM-CFS3) implements the highest tier, or Tier 3, approach to simulate the 

carbon dynamics in forest due to land use change200.   

 

The IPCC Good Practice Guidance (GPG)201 specifies five carbon pools that must be 

accounted for: aboveground live biomass, belowground live biomass, dead wood, litter, 

and soil organic matter. The CBM-CFS3 tracks carbon transfers between 10 live biomass 

pools and 11 DOM carbon pools within a forest stand and the atmosphere. The 

correspondence between the pools in CBM-CFS3 and pools recommended by the IPCC 

are listed in Table 8.3.  Living biomass pools are tracked for hardwood and softwood 

separately. The DOM pools are categorized by the materials they contain and the rate of 

decay.  
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Table 8.3: Carbon pools in the CBM-CFS3 and pools recommended by IPCC GPG 

(adapted from Kurz 2009200) 

CBM-CFS3 pools IPCC GPG pools 

Merchantable & bark (SW, HW) Aboveground biomass 

Other wood & bark (SW, HW) Aboveground biomass 

Foliage (SW, HW) Aboveground biomass 

Fine roots (SW, HW) Belowground biomass 

Coarse roots (SW, HW) Belowground biomass 

Snag Stems DOM (SW, HW) Dead wood 

Snag branches DOM (SW, HW) Dead wood 

Medium DOM Dead wood 

Aboveground fast DOM Litter 

Aboveground very fast DOM Litter 

Aboveground slow DOM Litter 

Belowground fast DOM Dead wood 

Belowground very fast DOM Soil organic matter 

Belowground slow DOM Soil organic matter 

SW=softwood; HW=hardwood 

 

The CBM-CFS3 simulates carbon stock changes due to biomass growth, turnover, 

litterfall, transfer and decomposition. The relations of all carbon pools in the CBM-CFS3 

are illustrated in Figure 8.2. Carbon is accumulated in the forest ecosystem and 

distributed among 10 biomass pools. Turnover and disturbances result in C transfer from 

live biomass to DOM pools. Disturbances also cause C loss to atmosphere as gaseous 

emissions or to the forest industry sector as products. Carbon is transferred between the 

DOM pools by decay, transfer and disturbances.  
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Figure 8.2: C flow between biomass and DOM pools in the CBM-CFS3 (adapted from 

Kurz et al200) 

 

Yield tables with data of merchantable timber volume over time are first entered as model 

inputs. The CBM model estimates the aboveground biomass from the yield tables based 

on yield-to-biomass equations developed by Boudewyn et al202. These equations convert 

stand-level volume to aboveground biomass for over 60 tree species found in Canada 

using 270 unique model parameters. First, the amounts of biomass for individual tree 

components is estimated as a function of diameter at breast height and tree height, which 
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is then summed into per hectare plot totals. Plots are stratified by province, ecozone, 

leading species, predominant genus, and forest type. Finally, the proportions of total tree 

biomass in stem wood, stem bark, branches and foliage are estimated. The CBM-CFS 

then estimates aboveground C increments.  The procedure starts with converting 

merchantable volume (softwood and hardwood) to biomass in units of dry matter, which 

is then converted to mass of C using conversion factor of 0.5 g C/g dry biomass. Once the 

aboveground C increment is estimated, belowground biomass and C increment are 

calculated using equations from Li et al203.   The model estimates biomass turnover to 

represent biomass mortality using annual turnover rate. Then the model uses litterfall 

transfer rates to assign C to different DOM pools. 

 

Decomposition is modeled by a temperature-dependent decay rate that determines the 

amount of organic matter that decomposes in a DOM pool every year. Applied decay 

rates (ak) are calculated for each DOM pool using the following equation: 

 

ak=BDRk*TempMod*StandMod   

 

where BDRk is the base decay rate (yr-1) at a reference annual temperature of 10°C; 

TempMod is a temperature modifier, which reduces the decay rate for mean annual 

temperature below reference temperature; StandMod is a stand modifier which simulates 

enhanced decomposition occurs under an open canopy. The parameters used to simulate 

DOM dynamics are tabulated in Table 8.4. 
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Table 8.4: The parameters used to simulate DOM dynamics in CBM-CFS3200 

Pools Decay parameters 

BDR (yr-1) Patm* Pt* Pool receiving Pt 

Snag stems 0.0187 0.83 0.17 AG slow 

Snag branches 0.0718 0.83 0.17 AG slow 

Medium 0.0374 0.83 0.17 AG slow 

AG fast 0.1435 0.83 0.17 AG slow 

AG very fast 0.355 0.815 0.185 AG slow 

AG slow 0.015 1 0 N/A 

BG fast 0.1435 0.83 0.17 BG slow 

BG very fast 0.5 0.83 0.17 BG slow 

BG slow 0.0033 1 0 N/A 

*Patm and Pt are the proportions of C in the decayed materials that is released to atmosphere or 
transferred to the more stable slow DOM pools   
 

The CBM-CFS3 uses a simulation initialization procedure that links biomass, DOM 

dynamics and historic disturbance regimes at the beginning of a model run. The model 

starts the initialization process with all pools containing zero C stocks. It simulates each 

stand through repeated growth following by stand replacing disturbance, gradually 

increase the C stock in the DOM pools. This cycle continues until the 

above+belowground slow DOM C pools at the end of two successive rotations differs by 

1% or less. Once the quasi-steady state is reached, the model simulates one more rotation 

terminated by the stand replacing disturbance. The model then grows each stand to its 

current age. The default assumption for DOM pools initialization is that the historic 

natural disturbance regime is stand replacing fire.  

 

In a stand replacing disturbance, the model sets all merchantable trees to age zero and the 

stand starts re-growing on the same growth curve, unless instructed otherwise by the 

users. Following a partial disturbance, the age of stand and corresponding growth 
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increments remain the same. Transition rules can be determined by users to simulate 

regeneration delays, species change and other post-disturbance dynamics.  

 

8.1.4. Research objective 

Substitution of fossil fuel energy with forest-based biofuels and bioenergy is found to 

reduce the GHG emissions due to the assumption of “carbon neutrality”, which assumes 

CO2 captured by growing trees balances the CO2 emissions during bioenergy 

combustion204.  However, the forest can capture and store atmospheric CO2 in live 

biomass, dead organic matter and soil pools over many decades205. In contrast, C stored 

in biomass is quickly transferred to the atmosphere if biomass derived biofuels are 

combusted as bioenergy204. Harvest can arrest the C sequestration far short of the full 

potential of forests, which means that this practice could reduce terrestrial C storage and 

thereby increase atmospheric CO2 concentration in the near term206,207. Therefore, biofuel 

LCA should incorporate forest carbon stock assessment to estimate over a long time 

frame the total GHG emissions of forest-based bioenergy205. Mckechnie et al205 found 

that wood pellet and ethanol production from forest biomass result in a substantial 

reduction in forest carbon. The associated GHG emissions initially exceed the avoided 

fossil fuel related emission. Forest carbon dynamics are significant and an integrated 

LCA/forest carbon modeling approach is recommended for forest-based bioenergy 

studies. Mitchell et al206 studied the carbon debt caused by forest bioenergy production, 

and the results show bioenergy production increases the carbon losses from the forest. 

Initial landscape and land use history are of significance in determining the time required 

for forests to repay the carbon debt incurred from bioenergy production.  The objective of 

this study is to model the impact of dLUC emissions on the life cycle GHG emissions of 

forest based biofuels and bioenergy in Michigan. In this study the CBM-CFS3 model is 

used to simulate the C stocks change in Michigan over a greater than 2 century time 

frame for aspen-dominated forest stands when aspen is intensively harvested for the 

biofuel (ethanol and pyrolysis oil) and bioenergy (electricity) production.   
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8.2. Methods 

8.2.1. Forest carbon stocks 

The aspen and birch group is one of the leading forest types in the state of Michigan, 

covering more than 1.2 million hectares of forest land193, mainly in northern Lower 

Michigan and in the Upper Peninsula208. Aspen is one of the most commonly harvested 

tree species for timber industrial use in Michigan209. Therefore, aspen is chosen in this 

study to investigate the C dynamics of Michigan forest. The current age distribution of 

aspen is tabulated in Table 8.5. 

 

Table 8.5: Current age distribution of aspen in Michigan193 

in ha 0-19 

years 

20-39 40-59 60-79 80-99 100-119 Total 

Aspen/ 

birch 

group 

225,325 311,562 385,081 278,318 86,737 13,115 1,299,138 

 

Aspen is fast growing, shade intolerant species grown in forest openings created by 

disturbances such as wind, wildfire, harvesting, insects and diseases. When they are 

matured, their canopies provide shade for more shade tolerant species such as maple, 

beech, etc208. When aspen forests are managed, clearcut harvest is employed to allow 

regeneration from the root stock because it needs full sunshine to thrive, and thus cannot 

compete in mature forests210.  When left undisturbed, aspen will either die or convert to 

more shade tolerant species such as maple, beech, balsam fir, and spruce208.  

 

Mills and Zhou211 predicted the national forest inventories by projecting yield of each 

forest type within each region from the forest inventory analysis (FIA) plot data. The 

authors use empirical growth rates to reflect the impact of historical and recent 

management practices. By employing a series of regression functions, they were able to 

predict the net growth by age for major regional forest types. Yields of aspen and birch 

for the North Central Lake States region from their study were taken to represent the 

http://www.michigandnr.com/publications/pdfs/huntingwildlifehabitat/landowners_guide/Introduction/Glossary.htm#Tolerant�
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average growth curve of Michigan trembling aspen. Ek and Brodie212 published equations 

that allow for different yield curves, depending on assumptions about site quality 

(productivity) and initial tree spacing. In the Mills and Zhou inventory data, the 

merchantable volume of aspen remained constant after 120 years.  However, senescence 

and succession to other species will decrease merchantable volumes as stands age.  

Therefore, the growth curve was updated with a decline after year 140 to represent the 

merchantable volume decrease due to senescence and succession to other species, which 

have lower accumulation of merchantable volume. The decline rate was set the same as 

that in the Ek and Brodie curve. The aspen growth curves used in our study are illustrated 

in Figure 8.3 below.   

 

 
Figure 8.3: Growth curves of aspen in Michigan 

 

The CBM-CFS3 simulates forest C dynamics based on different ecozones in Canada 

(Figure 8.4). The Ontario Mixedwood Plains is chosen in this study to represent the 

Michigan aspen forest because of the similarity of climate, cover type and soil conditions.  
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Figure 8.410 213: Canada’s terrestrial ecozones   

 

The 6 age groups of aspen (Table 8.4) were created as 6 individual stands in the CBM-

CFS3 (Figure 8.5), each containing 13 age classes with intervals of 20 years. Each age 

class was assigned a merchantable volume based on the growth curve of aspen (Figure 

8.3). At year 0, stand 1 starts with only 225,325 hectares of aspen in age class 1 (year 0-

20), and the aspen grow to other age classes through time.  

 

                                                 
10  This map was downloaded from Natural Resources Canada http://cfs.nrcan.gc.ca/pages/125. 
Reproduction for non-commercial purposes is allowed without charge or further permission. Clearance is 
available from http://www.nrcan.gc.ca/important-notices and shown in Figure D.6. 
 

http://cfs.nrcan.gc.ca/pages/125�
http://www.nrcan.gc.ca/important-notices�
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Figure 8.5: Conceptual design of trembling aspen forest in the CBM-CFS3 

 

In reality, forest harvest occurs on an annual basis, so the forest can continuously produce 

feedstock for industry, including the future biofuels and bioenergy production. In order to 

reflect the realistic harvesting scenario, annual harvest is assumed. A business-as-usual 

(BAU) scenario was first established to represent the current aspen harvest levels, which 

mostly supply wood to the forest products industry. The ages of stand 5 and 6 are 

distributed from year 80 to 120, which means these forests are less likely to be harvested, 

possibly because of the owners’ unwillingness to cut or inaccessibility of the forest 

(Personal communication, Robert Froese 2012).  Therefore, only the first 4 stands of 

aspen forests are modeled to be clear cut. In the BAU scenario, the CBM-CFS3 sets the 

age to zero after the clear cut, and the stand starts to regrow on the same growth curve 

(modified Mill and Zhou curve). Stand 5 and 6 are assumed to grow continually along the 

modified Mill and Zhou growth curve and eventually die or convert to other species. The 

annual removals of growing stock aspen on timberland during survey year 2011 are 58 

million cubic feet (1.64 million cubic meter)193. The harvest intensity (hectares of forest) 

of BAU scenario is simulated in the model to match the total timber volume harvested 

over 250 years. The intensive harvest scenario (INT) is one where biomass additional to 

that used in conventional forest products industries (lumber, pulp and paper) is used for 

the bioenergy production. In this intensive harvesting scenario (INT), the area of annual 

aspen forest harvested is doubled.  

 



 

148 
 

It is well known in forestry that when stands are placed under management that they 

produce higher yields than the stands that are not managed. Through management the 

composition and occupancy of a forest site can be controlled. Managed aspen forests will 

be more "pure" (higher percentage of aspen group), more regular, and more productive 

(Personal communication Robert Froese). Therefore, a new silvicultural regime was 

applied to the post-harvest aspen forest using the Ek_Brodie curve (Figure 8.3) to 

represent the faster growing of aspen under intensive forest management. The import 

files of the CBM-CFS model are presented in Appendix B.  

 

8.3. Results  

8.3.1. Harvested biomass 

In the BAU scenario, 7200 ha of aspen is assumed to be clear-cut every year to match 

FIA data of 58 million cu ft (1.64 million cubic meter), while INT scenario doubles this 

area to 14400 ha. The total harvested biomass in the BAU and INT scenarios over the 

250 years are illustrated in Figure 8.6, and compared to the FIA data. The up and down 

spikes of the harvested biomass are because after all the aspen in one stand are clear cut, 

the following harvest transfers to the next stand which has different merchantable 

volume. The harvested biomass increases by approximately 50% after 80 years because 

all the aspen stands are transferred to the fast growth curve (Ek_Brodie curve) by this 

time. Total biomass harvested in the INT scenarios over 250 years is approximately 2.3 

times of that harvested in the BAU scenario, this is because aspen in the INT scenario 

grow faster after disturbance, thus generates more biomass on the same hectare. The extra 

biomass harvested in the INT scenario additional to the BAU scenario (205 million 

metric ton) is used for biofuel and bioenerrgy production. 
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Figure 8.6: Total biomass harvested in the BAU and INT scenarios over 250 years  

 

8.3.2. Forest carbon stocks 

The carbon stocks of the BAU and INT scenarios are illustrated in Figure 8.7. The total C 

stocks in the MI forest ecosystem are divided into the C stored in live biomass (above and 

belowground) and DOM pools. More C is accumulated in the DOM pools in the INT 

scenario compared to the BAU scenario, because more C in live biomass pools are 

transferred to the DOM pools after disturbance. This also explains that initial (0-80 yrs) 

biomass pool carbon of the INT scenario is lower than that in the BAU scenario. 

However, in the INT scenario, carbon in biomass pools exceeds that in the BAU scenario 

after 80 years, because the aspen are transferred to a faster growth curve (Ek and Brodie 

curve) after disturbance and accumulates more carbon. Overall, less carbon (total 

ecosystem C) is accumulated in the first 75 years due to the intensive harvest, which 

indicates a negative dLUC impact of the biofuel and bioenergy production. However, the 

INT scenario starts to store more carbon in the long run.  
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Figure 8.7: Ecosystem C stored in the BAU and INT scenarios 

 

8.3.3. dLUC of biofuels and bioenergy 

The differences of C in the ecosystem are due to the intensive harvest of aspen, which 

can be converted to the dLUC impact of the biofuel (bioenergy) derived from the extra 

biomass harvested.  The biomass is assumed to be used for lignocellulosic ethanol (0.79 

kg/L) or pyrolysis oil (1.2 kg/L) production. Ethanol yield of 90 gal per dry metric ton of 

biomass86 is assumed in this study. The pyrolysis oil yield was obtained from a former 

study134, which assumes 1.4 kg dry biomass is used to produce 1 kg oil. Pyrolysis oil is 

assumed to be burned in a diesel engine with 45% efficiency to generate electricity. The 

GHG emissions due to dLUC are calculated by Equation 8.1 below,  

 

𝐶𝑂2 (𝑡) =
𝐶𝑠𝑡𝑜𝑟𝑎𝑔𝑒(𝑡)
𝐵𝐴𝑈 −𝐶𝑠𝑡𝑜𝑟𝑎𝑔𝑒(𝑡)

𝐼𝑁𝑇

∑ 𝑏𝑖𝑜𝑓𝑢𝑒𝑙𝑡
1  

∗ 44 𝑔 𝐶𝑂2
12 𝑔 𝐶

      Eq (8.1) 

 

which assumes that all C harvested for biofuels is emitted as CO2, where 𝐶𝑠𝑡𝑜𝑟𝑎𝑔𝑒(𝑡)
𝐵𝐴𝑈  is the 

amount of C stored in the BAU scenario at year t; 𝐶𝑠𝑡𝑜𝑟𝑎𝑔𝑒(𝑡)
𝐼𝑁𝑇  is the amount of C stored in 
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the managed forest (INT scenario) at year t; ∑ 𝑏𝑖𝑜𝑓𝑢𝑒𝑙𝑡
1  is the cumulative biofuel yield 

(in MJ) from year 1 to year t, which was calculated by the productivity and LHV of 

ethanol (26.95 MJ/kg) and pyrolysis oil (14.8 MJ/kg).  

 

The GHG emissions due to dLUC of the ethanol, pyrolysis oil and pyrolysis oil derived 

electricity are illustrated in Figure 8.8. In the short term, the biofuels (EtOH and pyrolysis 

oil) and bioenergy (electricity) result in a large amount of GHG emissions due to the 

forest carbon loss. In year 1, the dLUC GHG emissions for cellulosic ethanol produced 

from aspen in MI are 299 g CO2 eq/MJ ethanol. Over the next several years, dLUC 

emissions rise due to increasing C storage gaps between the INT and BAU scenarios, but 

afterwards dLUC emissions fall as more biofuels and bioenergy are produced from the 

biomass, thus an increasing denominator. In addition, the intensive management and 

harvest of aspen helps accumulates more C in the ecosystem over a long period of time, 

which result in the negative dLUC emissions (credit) eventually. A similar trend is found 

for both pyrolysis oil and electricity generated from pyrolysis oil combustion. The overall 

trends over time are higher net GHG emissions early in the model simulation and smaller 

GHG emissions, even negative emissions, later in the model time domain. These 

simulation results indicate that an intensively managed aspen-birch landscape can yield 

renewable biofuel and biopower as well as realize net accumulation of forest C on the 

land compared to a BAU management and harvest.  The biofuels start to offer consistent 

GHG credits from approximately year 76. At year 250, total C stored in the forest 

ecosystem are 327.6 and 314.8 million metric tons (327.6*106 and 314.8*106 Mg) for the 

INT and BAU scenarios respectively. The extra 12.7 million metric tons of C stored in 

the ecosystem is attributed to the intensive harvest of aspen, which contributes a dLUC 

credit of 31.5 and 21.6 g CO2 eq/MJ for ethanol and pyrolysis oil, respectively. dLUC 

impact of pyrolysis oil is smaller because more oil (energy content) is produced from the 

same amount of biomass than ethanol.  The dLUC credit of electricity is 172.6 g CO2 

eq/kWh.  
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Figure 8.8: The GHG emissions due to dLUC of biofuel and bioenergy over 250 years 

 

8.3.4. Life cycle results, including dLUC 

LCA method was used to estimate the GHG emissions of biofuels (ethanol, pyrolysis oil) 

and bioenergy (electricity). Standing trees harvest and forest operations were assessed by 

Zhang et al214.  The emission of biomass harvest includes forest harvest, forest renewal, 

road construction and maintenance, which was calculated as 35,093 g CO2 eq/ODT 

biomass.  Biomass transport, ethanol production and distribution were studied in GREET 

201286. Biomass is transported 120 km (one-way) to the ethanol plant for fermentation. 

Excess electricity is produced from lignin combustion, presenting an electricity credit of 

2.28 kWh/gal. The ethanol product is distributed 48 km (assumption from GREET 

ethanol) to fueling stations by truck. Total GHG emission of ethanol production 

(excluding dLUC) is -3.74 g CO2 eq/MJ. Pyrolysis oil production and combustion for 

power generation are presented in Chapter 6. Total GHG emission of pyrolysis oil 

(excluding dLUC) is 16.35 g CO2 eq/MJ. The GHG emission of the electricity from 

pyrolysis oil is 130.8 g CO2 eq/kWh, compared to coal electricity of 1020 g CO2 eq/kWh.  

Incorporating these emission results with the dLUC credits, the total GHG emissions of 

biofuels (ethanol and pyrolysis oil) and bioenergy (pyrolysis oil derived electricity) are 

illustrated in Figure 8.9, and compared to their petroleum and coal counterparts. The time 
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for life cycle emissions of biofuels to equal and go below fossil products is approximately 

60 years.   

 
Figure 8.9: GHG emissions (w/dLUC) of EtOH, pyrolysis oil and electricity over 250 

years, comparing to their petroleum counterparts 

 

8.3.5. Bioenergy system total emissions  

Mckechnie et al205 estimated total emissions associated with a bioenergy system by 

combining GHG flows resulting from the life cycle inventory and those from forest 

carbon analysis, using the following equation.  

 

𝐺𝐻𝐺𝑡𝑜𝑡(𝑡) = ∆𝐹𝐶(𝑡) + 𝐺𝐻𝐺𝑏𝑖𝑜(𝑡) 

ΔFC(t) is the change in forest carbon due to biomass harvest for bioenergy, which was 

calculated by 𝐶𝑒𝑐𝑜𝑠𝑦𝑠𝑡𝑒𝑚𝐼𝑁𝑇 − 𝐶𝑒𝑐𝑜𝑠𝑦𝑠𝑡𝑒𝑚𝐵𝐴𝑈 . GHGbio is the net savings of GHG emissions for 

biofuels and bioenergy from displacing fossil fuel alternatives. The total GHG emissions 

calculated using Mckechnie’s equation are illustrated in Figure 8.10. For the biofuels 

(EtOH and pyrolysis oil) produced from intensive harvest, total emissions initially exceed 

the fossil fuel pathway, which indicates a GHG emission increase due to the production 
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and use of biofuels. This is because forest carbon loss due to biomass harvest exceeds the 

avoided emissions from substituting biofuels for fossil fuels. However, this emission 

increase associated with biofuels is temporary. The INT scenario eventually accumulates 

more carbon than the BAU scenario while the emission credits associated with utilizing 

biofuels continue to increase over the simulation time.  The time required for bioenergy 

system total emissions to decrease below zero is about 60 years for both ethanol and 

pyrolysis oil pathways.     

 

Figure 8.10: Total GHG emissions of EtOH and pyrolysis oil 

 

8.4. Sensitivity analyses 

8.4.1. Post-disturbance growth curve uncertainty 

The C stock results from this model are highly sensitive to the post-disturbance growth 

curve. To investigate this model sensitivity, the Ek_Brodie curve was decreased by 10% 

and 20% respectively to represent slower growth (compared to original INT scenario) 

after the clear cut. The total ecosystem C dynamics of the four scenarios are illustrated in 

Figure 8.11. When the growth rate of post-disturbance are decreased by 10% and 20%, 
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less C is stored in the ecosystem over the entire 250 years simulated, which indicates a 

positive dLUC impact (GHG emissions) due to the intensive harvest for biofuels and 

bioenergy production. The GHG emissions due to dLUC are presented in Figure 8.12 and 

8.13 for ethanol and pyrolysis oil respectively. The dLUC impact increases significantly 

because of the decline of the growth curves in this sensitivity analysis.  Both in the 

Ek_Brodie -10% and -20% scenarios, the intensive harvest contributes to a positive 

dLUC impact (GHG emission) because less C is stored in the INT scenario compared to 

the BAU scenario. Ek_Brodie -20% curve results in the highest dLUC associated GHG 

emissions, because more ecosystem C is lost compared to the BAU scenario due to 

slower growing rate. 

 

 
Figure 8.11: Total ecosystem C storage of the 4 scenarios 
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Figure 8.12: GHG emissions due to dLUC of ethanol, comparing 3 growth curve 

scenarios 

 

 
Figure 8.13: GHG emissions due to dLUC of pyrolysis oil, comparing 3 growth curve 

scenarios 
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Total GHG emissions of EtOH and pyrolysis oil of this sensitivity analysis were 

calculated by the equation described in section 8.3.5, and the results are illustrated in 

Figure 8.14. Even though the Ek_Brodie -10% and -20% curves result in decrease of 

forest carbon, the biofuels produced from the harvested biomass provide carbon 

mitigation effect because of the avoided emissions from displacing fossil fuels. However, 

the time required to reach carbon neutrality are prolonged from 60 to75 and to 130 years, 

when a slower post-disturbance growth curve is assumed.  

 
Figure 8.14: Total GHG emissions of EtOH and pyrolysis oil, comparing 3 growth curve 

scenarios 

 

8.5. Discussion 

Similar to other studies205,206, forest based biofuels and bioenergy from intensive 

harvesting compared to BAU result in increased GHG emissions compared to fossil fuels 

use in the near term because of the carbon stock loss. Biofuels production provides 

emission reduction eventually because the forests start to accumulate more carbon due to 

intensive management and the GHG credits from displacing fossil fuels. The time 

required for the biofuels to reach carbon neutrality vary depending on the biomass 

species, forest management, biofuel conversion technologies and the fossil energy 
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displaced. Our study shows that ethanol and pyrolysis oil produced from intensive 

harvest of aspen forest reach carbon neutrality at approximately 60 years. While in the 

Mckechnie study203, ethanol from residues requires 75 years to reach carbon neutrality if 

it displaces gasoline (E85), while ethanol from standing trees (under the same forest 

management) never reach carbon neutrality over the 200 year simulation time because of 

the large carbon loss in the forest.    Our study also shows that carbon dynamics are 

highly sensitive to the post-disturbance growth. Intensive harvest of biomass could, if 

managed poorly, cause a continual carbon loss in the forest carbon stocks, which may 

prolong the time required to reach carbon neutrality. However, our results also show that 

when aspen forest stands are managed after clear-cut harvest for maximum growth 

potential the time for C debt pay back can be significantly shortened. Therefore, future 

studies should focus on the validity of the post-disturbance growth of biomass. Collected 

data from managed aspen stands in Michigan are needed to verify the growth curve used 

and need to understand impacts of harvest strategy and forest management on C stocks in 

live and dead biomass pools.  

 

GHG mitigation capability of biofuels (bioenergy) also depends on the technology routes 

and carbon intensity of the fossil fuels displaced.  In this analysis, a higher yield (MJ 

basis) of pyrolysis oil than the ethanol was used, which means more fossil fuels can be 

displaced when the same amount of biomass are converted by thermochemical process as 

opposed to biochemical process. On the other hand, ethanol has a lower life cycle GHG 

emission mainly because of the credit from exported electricity, which means it has a 

larger GHG reduction than pyrolysis oil on the same energy basis when compared to their 

petroleum baseline. Pyrolysis oil derived electricity shows the most favorable GHG 

mitigation capability because of its large reduction compared to the coal electricity. 

However, ethanol will show a much larger GHG reductions compared to high carbon 

intensity petroleum fuels such as oil shale and tar sands, when conventional crude oils are 

depleted in the long run. GHG reduction also depends on the LCA assumption and 

method. If the co-product char is exported as a soil amendment, it will give a GHG credit 

to the pyrolysis oil product, which makes it a more favorable biofuel option with respect 
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to GHG emission reduction. Allocation methods can change the life cycle GHG 

emissions of biofuels as well.  

 

8.6. Future work 

For future work, a yield curve for aspen from field data at multiple sites needs to be 

compiled to predict the carbon dynamics of Michigan aspen-birch forests. In addition, the 

study can be expanded to include all the available tree species in Michigan, namely 

white-red-jack pine, maple-beech-birch, spruce-fir, elm-ash-cottonwood, and oak-

hickory. Third, the model can be improved by simulating harvest by various owner 

groups (federal, state, industrial and non-industrial private) as they have different harvest 

agendas. Finally, the CBM model can be used to simulate the carbon stock changes of 

short rotation forestry (poplar and willow) planted on abandoned agricultural land. Short 

rotation forestry can provide fast growing biomass dedicated for energy production and 

may be the most promising biomass production strategy for minimizing dLUC impacts of 

forest-based biofuels and bioenergy. When planted on marginal agricultural land, it is 

expected to store more carbon in soils, but more field work needs to be carried out to 

study the LUC impact of this practice so that more accurate C modeling can be done. 

 

8.7. Conclusion 

The excess timber resources in Michigan can be a promising feedstock for biofuel and 

bioenergy production. When aspen forest is under management for intensive harvest, it 

can produce an extra18.46 billion gallons of ethanol to blend with gasoline for the 

transport sector over the next 250 years. The biomass can also be used to produce 32.26 

billion gallons of bio-oil by fast pyrolysis process, which can be combusted to generate 

electricity or upgraded to renewable gasoline, diesel and jet fuels. In addition to the 

carbon credits from displacing fossil energy, our modeling study finds that intensive 

harvesting can result in carbon accumulation in the aspen forest, which translates to a 

CO2 credit from the dLUC impact. However, this credit is sensitive to the post-

disturbance growth curve assumed.  
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9. Chapter 9: Depolymerization Kinetic Model for Dilute Acid 

Hydrolysis of Aspen 
9.1. Introduction 

Research into ethanol production from lignocellulosic biomass has grown significantly 

over the last few decades215-218, for it offers a potential solution to replace conventional 

fossil fuels while not competing with food production. The potential benefits of using 

lignocellulosic ethanol include lowering the trade deficit, improvement of national energy 

security and price stability, as well as reducing greenhouse gas emissions219,220. 

Lignocellulosic biomass such as agricultural residues, forest residues and energy crops 

are abundantly available, providing a total of 1094 million dry metric tons of feedstock 

for biorefinery by 2030, which translates to annual production of 85 billion gallons of 

biofuel, enough to displace a third of the nation’s transportation fuel demand5.  

 

Lignocellulosic biomass is composed of three major polymers: namely lignin, cellulose 

and hemicellulose221. The structure of lignocellulosic biomass is shown in Figure 9.1. 

Cellulose is a homopolymer consisting of β-D-glucopyranose subunits linked by β-1,4 

glycosidic bonds221, which can be decomposed to glucose monomer222. Hemicellulose is 

an amorphous carbohydrate structure that consists of pentoses (xylose and arabinose), 

hexoses (glucose, galactose, mannose, rhamnose, and fucose), and sugar acids222,223. 

Hemicellulose has a lower molecular weight and degree of polymerization, and less 

crystallinity than cellulose, which makes it easier to hydrolyze under milder reaction 

conditions222. Lignin is a three dimensional amorphous polymer between cellulose and 

hemicellulose, which provides the plant structural support, impermeability, and resistance 

against microbial attack and oxidative stress223. Lignin contains approximately 40% of 

the possible energy of the biomass due to its higher carbon content222, thus it is usually 

burned to provide process heat at the biorefinery. However, it can also be used to produce 

value-added chemicals via catalytic valorization224.  
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Figure 9.1: Components of lignocellulosic biomass (adapted from Yin 2012225) 

 

Lignocellulosic ethanol production starts with pretreatment of the biomass feedstock. 

Depending on process, pretreatment is required to remove the lignin and hemicellulose, 

and disrupt the crystalline structure of cellulose, so that the enzymes have easier access to 

cellulose to convert them to fermentable sugars226,227. Pretreatment methods are either 

physical (comminution, pyrolysis), physicochemical (steam explosion, ammonia fiber 

explosion) or chemical (acid hydrolysis, alkaline hydrolysis), or a combination of 

these226. Acid pretreatment has been well studied recently227-229 as a process of hydrolysis 

for the hemicellulose. However, concentrated acids are corrosive and thus require 

expensive anti-corrosion equipment. Therefore, dilute acid pretreatment is more 

economically feasible while achieving high reaction rates230.  Dilute acid hydrolysis 

appears to be one of the most promising options among all the pretreatment methods231. 

Dilute H2SO4 (0.5 – 2 wt%) is added to biomass at moderate temperatures (140–190 °C) 

to hydrolyze hemicelluloses, producing xylose and other sugars, and then continues to 

break xylose down to form furfural and other degraded products227. Lignin structure is 

disrupted in the process as well231.       
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Hemicellulose is a major component of lignocellulosic biomass, accounting for 25-35% 

of total mass231. Thus, the efficient conversion of hemicellulose to fermentable sugars is 

vital to ethanol yield and optimizes the economic performance of the production process. 

One of the challenges for dilute acid hydrolysis is to maximize production of xylose 

while minimizing furfural and tars through reaction process optimization.  A kinetic 

mechanism for hemicellulose hydrolysis is highly desired as a tool to understand and 

improve lignocellulosic biorefining. The most common mechanism is a two-step pseudo 

first order irreversible reaction where xylan in hemicellulose (XH) is hydrolyzed directly 

to xylose (X), which is dehydrated subsequently to furfural and eventually tars (D)232.   

 
However, oligomers are found to be a significant fraction of the product for very dilute 

acid flow-through systems, especially at short times233-235. In addition, oligomers are not 

taken up by fermenting microorganisms unless the oligomers are hydrolyzed further. 

Recent study236 even shows that xylooligomers can be strong inhibitors to enzymatic 

hydrolysis of cellulose. Therefore, the formation and degradation of xylooligomers are 

vital components of the reaction kinetics of hemicellulose hydrolysis. Chen et al237 

proposed a modified kinetic model which includes fast and slow hydrolyzing 

hemicellulose to oligomer intermediates (O) followed by their breakdown to monomers 

and finally the decomposition of xylose monomers (D).   

 
In one study by Morinelly et al238, a four-step first order irreversible reaction mechanism 

with constant rate constants at each step was proposed, where xylan is hydrolyzed to 

oligomer intermediates, and then to xylose, which is later dehydrated to furfural (F) and 

other degradation products.  
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This kinetic model successfully described quantitatively and qualitatively the observed 

xylose monomer profile. This study used an indirect method to quantify the oligomer 

concentrations rather than direct measurement of oligomers of different degrees of 

polymerization. Oligomer data was described successfully at early stage, but the model 

underpredicted the elevated oligomer concentrations at long reactor times.  

 

A depolymerization model was proposed by Lloyd and Wyman to describe the dilute acid 

hydrolysis of hemicellulose239. The bonds of a polymer composed of n-monomer units 

are broken during dilute acid hydrolysis. The polymer is first broken and form two 

molecules, then the molecules are further degraded to smaller oligomers, monomers are 

finally formed and then degraded into by-products such as furfural. The hydrolysis 

process can be described as follows: 

 

Nn           Nj+Nn-j 

 

                                                          Nj           Ni+Nj-i 

 

Nn-j         Nk+Nn-j-k 

 

N1           Degradation Products 

 

where N is the number concentration of xylose monomer and oligomer, n is the chain 

length of the longest oligomer molecule, i, j, and k are the chain length of the i-mer, j-mer 

and k-mer, kh is the probability of bond breakage during hydrolysis (hydrolysis rate 

constant), which is assumed to be constant regardless of chain length, and kd is the sugar 

degradation rate constant. 
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The rate of change in concentration of any oligomer can be expressed by the following 

differential equations:  

 

𝑑𝑁𝑛
𝑑𝑡

= −𝑘ℎ × (𝑛 − 1)𝑁𝑛 

𝑑𝑁𝑗
𝑑𝑡

= (2𝑘ℎ � 𝑁𝑖) −
𝑛

𝑖=𝑗+1

𝑘ℎ(𝑗 − 1)𝑁𝑗 

𝑑𝑁1
𝑑𝑡

= (2𝑘ℎ�𝑁𝑖) −
𝑛

𝑖=2

𝑘𝑑𝑁1 

 

The results of integrating these linear first-order differential equations are as follows 

(detail solutions are presented in Appendix C.1):  

 

𝑁𝑛 = 𝑁𝑛0exp[−𝑘ℎ(𝑛 − 1)𝑡] 

                                 𝑁𝑗 = 𝑁𝑛0 (1 − α)(j−1) 𝛼[2 + (𝑛 − 𝑗 − 1)𝛼] 𝑤𝑖𝑡ℎ α = 1 − e−kht 

𝑁1 = 2𝑘ℎ𝑁𝑛0(
(𝑛 − 1)(𝑒−𝑘ℎ𝑡 − 𝑒−𝑘𝑑𝑡)

𝑘𝑑 − 𝑘ℎ
−

(𝑛 − 2)(𝑒−2𝑘ℎ𝑡 − 𝑒−𝑘𝑑𝑡)
𝑘𝑑 − 2𝑘ℎ

) 

 

Li et al225 measured the xylose monomer and oligomer yields from water-only hydrolysis 

of oat spelt xylan at 180 and 200°C. It was found that longer chain xylooligomers 

depolymerize to shorter chains that ultimately result in release of soluble oligomers and 

monomers. Because of the low severity of reaction, no significant yields of oligomers 

were detected at early reaction time, suggesting the degree of polymerization (DP) of 

oligomers in solution are larger than 10. Yang and Wyman240 characterized the 

xylooligomers produced from water-only pretreatment of pure xylan and corn stover at 

200, 220 and 240°C. DP as high as 30 were separated using the Dionex DX-600 Ion 

Chromatograph system. The yields of lower DP (<10) oligomers increased with 

temperatures. Kumar and Wyman241 modeled the kinetics of xylooligomers (up to DP 5) 

in dilute acid hydrolysis, assuming first order reaction of xylooligomers hydrolysis and 
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xylose degradation. The yield of xylose increased with increasing acid concentration but 

decreased with increasing xylooligomer DP at a given acid concentration. The 

xylooligomers disappeared at a higher rate compared to xylose monomer and the 

hydrolysis rate constant increased with DP at all pH.  

 

Our study propose to use the depolymerization model developed by Lloyd and Wyman239 

to predict the xylooligomers and xylose monomer concentrations over time in dilute acid 

hydrolysis. Aspen is used as the xylan source because it is widely available in Upper 

Peninsula area of Michigan and is a promising feedstock for future bioethanol 

production. The study here is new in that each xylooligomer (up to DP9) is tracked 

during the hydrolysis reaction to optimize the model, as opposed to using the total 

oligomers profile by Lloyd and Wyman239. The primary research objectives in this study 

are to evaluate whether the depolymerization model is able to predict the trends in the 

xylooligomers and xylose monomer concentrations over time and whether the predicted 

concentrations are a good match with measured values.  Based on these comparisons 

between predicted and measured concentrations, recommendations will be made to 

improve model assumptions and quality of measured data. 

 

9.2. Hydrolysis experiments 

9.2.1. Materials 

The aspen samples were obtained from forests in the Upper Peninsula area of Michigan. 

The biomass samples were debarked, flaked, dried, and milled in preparation for 

pretreatment according to the procedures described by Yat et al 242. The aspen chips of 

mesh size +28-20 were collected by the W.S. TYLER ROTAP (Model RX-29, Serial 

9774). Xylose (purity>99%), hydroxymethyl furfural (HMF) and furfural were purchased 

from Sigma Chemical Company (St. Louis, MO). A xylobiose standard of over 95% 

purity was purchased from Megazyme International Ireland Ltd. (Bray, Co. Wicklow, 

Ireland, Cat No. O-XBI). Sulfuric acid (96 wt%) purchased from Fisher Scientific 

(Pittsburgh, PA) was diluted with distilled water to designated concentration for dilute 

acid hydrolysis.  
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9.2.2. Experiment setup 

Experiments of dilute acid hydrolysis of aspen were conducted to measure the 

concentrations of monomer and oligomer xylose, and degradation products such as 

furfural and HMF over time. The experiment setup is illustrated in Figure 9.2 below. The 

pretreatment conditions (acid concentration and reaction temperature) were varied to 

evaluate the reaction profiles under different reaction severity. The proposed experiment 

matrix is shown in the Table 9.1 below and experiments were conducted in duplicate.  

The experiment apparatus are similar to those used in previous research219,238, which 

consists of a rack of 12 small-scale tubular reactors made out of stainless steel (Type 316) 

tubing and Swagelok fittings (o.d.=3/8 in., walls=0.035 in., inner volume=6.75 mL) and a 

silicon oil bath with Dow Corning 550 fluid heated by a Fisher Scientific HiTemp bath. 

0.5 g of dry biomass and 4.5 ml of dilute sulfuric acid were poured into each stainless 

tubular reactor. The reactor end-caps were tightened to 40 Newton-meters with a torque 

wrench before placed in the basket. The reactors were flipped twice in the next 30 

minutes (10 min intervals) to ensure complete diffusion of the dilute acid solution 

through the biomass. The reactors were then submerged into a preheated silicon oil bath 

to undergo the acid hydrolysis. The initial bath temperature was set 10⁰C higher than the 

reaction temperature set point (determined by previous experiments) so that the reactors 

and the bath reached thermal equilibrium exactly at the target temperature after a short 

time (3-5 min). The reactors were removed from the oil bath at various times, and once 

the reactors were removed, they were immediately placed in an ice bath to stop the 

hydrolysis reaction. Each sample, including biomass and solution,  was transferred from 

the reactor into a 20-ml capped scintillation vial after it cooled down, and then the 

solution was filtered through 0.2 µm pore size polycarbonate membrane filter 

(Whatman®) for further analysis.   

 

High Performance Liquid Chromatography-HPLC (Agilent 1200 series) coupled with a 

Hi-Plex Na column (Agilent) was employed to measure the oligomer sugar 

concentrations based on the NREL laboratory analytical procedure243. Two potions of 

aliquots of 1ml were taken from each filtered hydrolyzate. The first was neutralized by 
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10N NaOH solution in HPLC vial and sent to HPLC. The HPLC measures the peak 

signals of monomer xylose, oligosaccharides up to DP 9, and degradation products such 

as furfural and HMF. Calibration curves are determined by known concentrations of 

xylose, xylobiose, furfural and HMF prepared from the standards. Concentrations of 

these chemicals are calculated by the calibration curves. Concentrations of each 

xylooligomer specie (xylotriose, xylotretraose, xylopentaose, xylohexaose and etc) are 

calculated by taking the ratio of each peak height to the peak height of xylobiose and 

multiplying this ratio by the measured concentration of the latter, which is proved to be 

accurate in determining the xylooligomers concentrations225. This method also reduces 

the cost of purchasing expensive xylooligomers standards.   The second aliquot is used to 

determine the concentration of total oligosaccharides, because the chain length of 

oligosaccharides during early time of the acid pretreatment may be too long for the 

column to detect225.  The aliquot (1 ml) was pipette into a 1.7ml centrifuge vial, 96% wt 

of sulfuric acid was added in the vial to bring the acid concentration to 4%, and the vial 

was sealed by autoclave tape and put in an autoclave for 60 minutes at 121°C for 

hydrolysis of oligomers. After 60 minutes, each sample was removed from the autoclave 

to cool in room temperature, and filtered and neutralized to a pH of 5~6 by the 10 M 

NaOH solution, then transferred to the HPLC for xylose analysis. By taking the 

difference between the xylose concentration determined from the samples after acid 

pretreatment, and the concentration determined from the samples that undergo the 

additional hydrolysis, while applying a “sugar recovery” factor243, concentrations of the 

total oligomeric sugar were determined.  
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Figure 9.2: Experiment setup of aspen hydrolysis 

 

Table 9.1: Pretreatment severities for acid concentration and temperature 

increasing severity 

150°C 160°C 175°C 

0.5% wt 0.5% wt 0.5% wt 

 

The mass of initial xylan can be calculated by the xylan wt% in aspen sample. Xylan 

usually accounts for 14.6% of the dry mass of aspen242. The measurements of monomer 

and oligomer xylose, furfural and HMF will be used to obtain the model parameter such 

as kh, kd, and n under different pretreatment conditions. 

 

9.3. Results 

The concentrations of xylose monomers at various temperatures during dilute acid 

hydrolysis are shown in Figure 9.3. The peak concentrations of xylose increase as the 

reaction temperature increases, and the time to reach the peak xylose concentration 

decreases with increasing temperature.  At the highest temperature of 175°C,  xylan 

breaks down into monomer sugars more completely at this severe reaction condition, 
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however at long times xylose disappears to form furfural (Figure 9.4) and tars.  At 

relatively mild temperatures (150 and 160°C), the xylose continues to increase over time 

while xylose starts to break down at higher temperature, which are confirmed by the 

increase of furfural and HMF at 175°C (Figure 9.4).  The increase in furfural 

concentration for the 175°C experiment achieves a high concentration of approximately 5 

g/L by 60 minutes while the decrease on xylose concentration from the peak to the low at 

60 minutes is about 9 g/L.  Apparently some of the xylose was converted to other 

degradation products such as tars by the end of the experiment.   

 
Figure 9.3: Concentrations of xylose monomers during dilute acid hydrolysis 
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Figure 9.4: Furfural and HMF concentrations during dilute acid hydrolysis 

 

Xylooligomers concentrations along the time axis for the hydrolysis reaction at 150°C, 

160°C and 175°C are shown in Figure 9.5, 9.6 and 9.7, respectively. At 150°C, 

xylooligomers (xylobiose, xylotriose, xylotetraose and xylopentaose) peak at 

approximately 12 minutes, and then decrease due to breaking down into smaller 

oligomers. In general, the shorter the chain length, the higher peak concentration it has. 

The peak concentration of total xylooligomers measured by HPLC is 2.39 g/L, of which 

xylobiose accounts for 1.12 g/L.  The reaction time required to reach peak concentrations 

decrease as the reaction temperature increase. At 160°C and 175 °C, xylobiose reach 

peak concentration at 10 minutes and 5 minutes respectively.  The results also show that 

the longer chain length the oligomer has, the shorter the time required to reach peak 

concentration. For example, at 175°C, xylobiose reaches peak concentration at 5 minutes 

while xylotetraose reaches peak concentration at 2 minutes. Comparing total 

xylooligomers (detected by HPLC) produced at 150 and 175°C, higher temperature 

facilitates the hydrolysis reaction as more xylooligomers are produced from xylan, which 

are later converted to xylose monomer and degraded products.  
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Figure 9.5: Concentrations of xylooligomers at 150°C 

 

 
Figure 9.6: Concentrations of xylooligomers at 160°C 
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Figure 9.7:  Concentrations of xylooligomers at 175°C 

 

Total oligomer concentrations are calculated by the xylose increase in the second stage 

acid hydrolysis coupled with the “sugar recovery factor” 243. Total oligomers after dilute 
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breaking down of xylan polymer, and then they further break down into smaller 

oligomers and finally to xylose monomer and degraded products. At lower temperature 

(150 and 160°C), there are a small amount of oligomers left at 60 minutes, while at a 

higher temperature (175°C), all the oligomers disappear at 60 minutes as the hydrolysis 

reaction is more severe. The high variability of measured total oligomer concentration for 

the 150°C experiment at long times may be due to experiment error rather than a real 

outcome. The maximum concentrations of oligomers produced from xylan at different 

temperature are similar at approximately 4.5 g/L. However, when subjected to higher 

temperature, it takes less time to hydrolyze all the oligomers. For example, the time to 

reach peak concentration at 175°C is 5 minutes, while it takes approximately 15 to 20 

minutes to produce the maximum amount of oligomers at 150°C.  
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Figure 9.8: Total oligomers concentrations in the hydrolyzate using the NREL procedure. 
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reaction temperature result in shorter peak times for each DP species and that oligomer 
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modeling results to be presented in the next section will be compared to the experimental 

results based on these observed trends.   
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function: Σ(Xmodel-Xdata)2. Figure 9.9, 9.10 and 9.11 illustrated the experimental xylose 

concentrations and model predictions at 150, 160 and 175°C, respectively. The optimized 

parameters kh and kd determined by a best fit match of the model to the xylose data, are 

presented in the figures as well.  As shown in the figures, the model can successfully 

predict the xylose concentrations over time during the experiments. The hydrolysis 

reaction is faster in higher reaction temperature as indicated by the increasing hydrolysis 

rate kh. Simultaneously, xylose is subjected to more severe degradation process, which is 

indicated by the increasing degradation rate kd, which is confirmed by the increasing 

concentrations of the degradation products furfural and HMF (Figure 9.4).    

 

 
Figure 9.9: Xylose experiment data at 150°C and model prediction 
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Figure 9.10: Xylose experiment data at 160°C and model prediction 

 

 
Figure 9.11: Xylose experiment data at 175°C and model prediction 
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When kh and kd were optimized to match the xylose profiles, the model over predicts the 

concentrations of other xylooligomers, and over predicts the peak time. The xylobiose, 

xylotriose and xylotetrose profiles (wt fraction of initial xylan) for 150, 160 and 175 °C 

are illustrated in Figure 9.12, 9.13 and 9.14 respectively, and compared to their model 

predictions. At 150°C (Figure 9.12), there are important differences between the 

experimental data and predictions.  The measured data shows a peak in wt fraction of 

each oligomer at the same time (12 minute), while the model predicts peak wt fractions of 

oligomers at different times.  For example, the measured xylobiose peaks at 12 minutes, 

the peak concentration is 1.12 g/L (approximately 0.069 wt fraction of initial xylan). 

However, the model predicts xylobiose peaks at 23 minute, and predicts the peak 

concentration is approximately 0.316 wt fraction of initial xylan. The model predicts 

xylotriose peak at 15 min for 0.196 wt fraction of initial xylan, while the experiment 

shows that xylotriose peak at 12 min for 0.032 wt% of initial xylan. Xylotetrose is 

predicted to peak at 11 min for 0.143 wt fraction of initial xylan, while the experiment 

shows that it reaches peak at 12 min for 0.022 wt fraction of initial xylan. Similar trends 

as for the 150°C results are also found at 160 and 175°C, in Figures 9.13 and 9.14.  In 

one aspect the measured data and model predictions do agree; the time required to reach 

peak wt fraction for each oligomer decreases with increasing temperature.  Also, at 

175°C, the data and model results show a similar trend in that higher DP oligomers peak 

in wt fraction at earlier times than lower DP oligomers.  Based on these results, there are 

important similarities and differences when comparing measured wt fraction of oligomer 

in solution compared to predicted values. Although the model can describe the overall 

trend of the xylooligomers profiles, it over predicts the peak concentrations of 

xylooligomers. 
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Figure 9.12: Xylobiose, xylotriose and xylotetrose concentrations at 150°C, comparing to 

model predictions 

 

 
Figure 9.13: Xylobiose, xylotriose and xylotetrose concentrations at 160°C, comparing to 

model predictions 
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Figure 9.14: Xylobiose, xylotriose and xylotetrose concentrations at 175°C, comparing to 

model predictions 

 

Total xylooligomers concentrations measured by the NREL procedure at 150, 160 and 

175°C are illustrated in Figure 9.15, 9.16 and 9.17 respectively, and are compared to the 
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the model prediction agreed well with data at early times, but xylooligomers were 
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and xylooligomers data when dilute acid hydrolysis was used, a consequence of the 

addition of acid catalyst.  
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Figure 9.15: Total xylooligomers concentrations at 150°C, comparing to model 

predictions 

 

 
Figure 9.16: Total xylooligomers concentrations at 160°C, comparing to model 

predictions 
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Figure 9.17: Total xylooligomers concentrations at 175°C, comparing to model 

predictions 

 

9.5. Discussion 

Aspen is hydrolyzed in dilute acid at 150, 160 and 175°C, the concentrations of each 

xylooligomer (DP2-7) and xylose monomer are tracked by HPLC coupled with Hi-Plex 

Na column. The experiment results are used to develop the depolymerization model. The 

depolymerization model seems to capture the trend of xylooligomers in dilute acid 

concentrations. However, the experimental data are much lower than the model 

prediction, which is also found by Lloyd and Wyman in dilute acid hydrolysis of corn 

stover239. This may results from the model itself or the experiment data. The sums of 

xylooligomers concentrations measured by HPLC (Figure 9.5-9.7) are lower than the 

total oligomers calculated by the NREL procedure (Figure 9.8). This could be an 

indication that the HPLC coupled with the Hi-Plex Na column is not capable of 

determining the concentrations of the oligomers, or there are many oligomers in the 

hydrolyzate whose chain length are longer than the detection limit of the Hi-Plex Na 

column. New equipment and experiment procedures need to be implemented to obtain 

more accurate measurements. A HPLC system employing Aminex-HP 42A column (Bio-

Rad) was used by Kumar241 for xylooligomers quantification (DP ranging from 2 to 5). A 

Dionex HPLC equipped with CarboPac PA100 anion exchange column was used by Qing 
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et al236 to quantify xylooligomers over a DP range of 1 to 30. The depolymerization 

model also needs to be modified to better describe the kinetic behavior of the 

xylooligomers. For example, xylobiose and xylotriose are found to directly degrade to 

degradation products241.  In addition, presence of glucooligosaccharides, other pentose 

oligomers and even lignin could affect the hydrolysis of xylan and xylooligomers 

(Personal communication Wen Zhou). The depolymerization model should take these 

oligomer sugars and lignin into consideration, otherwise, pure xylan should be 

hydrolyzed to develop the kinetic model of xylooligomers hydrolysis.  Finally, the 

assumption that all bonds react at equal rates can be modified to include differences in 

end bonds, also that hydrolysis rate depend on the chain length of xylooligomers. In 

appendix C.2 and C.3, two modifications of the model are proposed: depolymerization 

model with different reaction constants, and hydrolysis kinetics of each xylooligomer 

modified from Kumar et al241 (appendix C.4). The modified models can predict the 

overall trend of the xylooligomers. However, hydrolysis of each xylooligomer such as 

xylotriose and xylotetrose needed to be carried out to study the kinetic behavior of each 

xylooligomer under dilute acid conditions. 

 

9.6. Conclusion 

The depolymerization model can successfully predict the xylose profile under dilute acid 

hydrolysis. The hydrolysis reaction is faster in higher reaction temperature as indicated 

by the increasing hydrolysis rate kh. Simultaneously, xylose is subjected to more severe 

degradation process, which is indicated by the increasing degradation rate kd, which is 

confirmed by the increasing concentrations of the degradation products furfural and HMF 

with reaction time and with temperature. However, the model predicts much higher 

concentrations of xylooligomers than the experiment data, which could result from the 

measurements or the model itself. New equipment and experiment procedures need to be 

implemented to obtain more accurate measurements (as mentioned in the discussion 

above), and the model needs to be modified to include the direct degradation of xylobiose 

and xylotriose to degradation products, and differences in hydrolysis rate depending on 

the chain length.    
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10. Chapter 10: Future work 
All the future work proposed in former sections of this dissertation is summarized in this 

chapter. 

 

10.1. Pennycress LCA (Chapter 2) 

• Multi-year and large-scale field cultivation of pennycress in rotation with corn 

and soybeans is needed to confirm the iLUC assumptions.  

• Field measurements of soil carbon stocks prior and after pennycress cultivation is 

needed to estimate dLUC (if any occurs).  

• Pennycress residues need to be examined to measure the above and belowground 

N content. 

• N fertilizer credit from pennycress crop residues should be examined and 

included in future LCA analyses.  

• Energy use of the presscake via direct combustion or fast pyrolysis can be studied 

to understand the environmental impact of its use for bio-power.  

 
10.2. dLUC of forest-based biofuel and bioenergy (Chapter 8) 

• A yield curve for aspen from field data at multiple sites needs to be compiled to 

predict the carbon dynamics of Michigan aspen-birch forests.  

• Include all the available tree species in Michigan, namely white-red-jack pine, 

maple-beech-birch, spruce-fir, elm-ash-cottonwood, and oak-hickory. 

• Simulate harvest by various owner groups (federal, state, industrial and non-

industrial private) as they have different harvest agendas.  

• Simulate the carbon stock changes of short rotation forestry (poplar and willow) 

planted on abandoned agricultural land.  
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10.3. Depolymerization model (Chapter 9) 

• A Dionex HPLC equipped with CarboPac PA100 anion exchange column can 

measure xylooligomers up to DP 30. 

• The depolymerization needs to be modified to include direct degradation of 

xylobiose and xylotriose. 

• Effects of oligomer sugars (glucooligosaccharides, other pentose oligomers) and 

lignin should be taken into consideration when develop the kinetic model of 

hemicellulose hydrolysis. 

• The model needs to be modified to include differences in hydrolysis rate 

depending on the chain length.    

• Hydrolysis of each xylooligomer such as xylotriose and xylotetrose needed to be 

carried out to study the kinetic behavior of hemicellulose hydrolysis. 
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A. Appendix A: Supporting Information for Chapter 3 
A.1. HRJ from soybean 

The soybean farming inputs used in this review are summarized in Table A.1. The 

GREET 2012 shows the lowest fertilizer inputs, while the energy inputs from three 

sources are relatively similar. In addition to the N fertilizer, both Stratton and GREET 

include the N from above and below ground biomass (200.7 g N/bu) when calculating 

total N2O emission. The combined direct and indirect conversion rate for nitrogen from 

synthetic fertilizers is 1.325% and nitrogen from crop residues 1.225% according to the 

IPCC Tier methodology. GHGenius assumes higher N left in crop residues (38.2 g N/kg 

soybean), which is calculated from the following formula:  

 

(1-0.15)*0.0169*2.8*0.95=0.0382 g N/g soybean harvested 

in which 0.15 is the moisture content, 0.0169 is the N content in crop residues, 2.8 is the 

weight ratio of crop residues and harvested soybean, 0.95 is the fraction of crop residues 

left on field.   

 

Table A.1: Fertilizers and energy inputs of soybean farming 

 Stratton et al 85* GREET 2012 86 GHGenius 87  

N (g/bu) 49 30.9 48.7 

P2O5 (g/bu) 155 113.4 144.8 

K2O (g/bu) 278 210 231.1 

Herbicide (g/bu) 14 15  

Pesticide (g/bu)  0.4 13.6 

Diesel (mL/bu) 403.2 311.7 315.2 

Gasoline (mL/bu) 110.1 96.1 99.4 

Natural gas (L/bu) 33.24 34.83 30.2 

LPG (mL/bu) 33.9 56.1 33.8 

Electricity (kWh/bu) 0.17 0.14 0.16 

* The inputs of baseline scenario is presented, which assumes soybean yield of 110 bu/ha 
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Both Stratton and GREET 2012 assume solvent extraction of soybean oil while 

GHGenius assumes mechanical crushing. The energy inputs of the oil extraction are 

summarized in Table A.2. Stratton assumes the highest energy requirement, mainly due 

to the natural gas use for the process heat.  

 

Table A.2:  Inputs of soybean oil extraction 

 Stratton et al 85 GREET 2012 86 GHGenius 

(year 2012) 87   

Seeds (kg/kg oil) 5.7 5.4 5.21 

Natural gas (L/kg oil) 326 131.3 166.1 

Steam (MJ/kg oil)    

Coal (MJ/kg oil)  2.37  

Electricity (kWh/kg oil) 0.36 0.289 0.284 

Hexane (ml/kg oil) 14.4 4.7  

Total energy (MJ/kg oil) 13.64 10.4 7.92 

 

Table A.3 summarizes the co-products of soybean HRJ and their credits, including 

soybean meal and fuel products from HRJ production. In the market allocation method 

used by Stratton and our simulation in GREET, Stratton allocates less burdens to soybean 

oil, mainly because of the low oil content assumed by Stratton. However, Stratton 

includes more co-products in the HRJ production process, thus fewer emissions are 

allocated to the main product HRJ, which reflects on the lower emission results shown in 

Table 3.2. GHGenius uses displacement method for the co-products produced along the 

soybean HRJ life cycle. Each co-product is assigned a GHG credit and subtracted from 

the emission of the main product. The soybean meal shows a GHG credit of 415 g CO2 

eq/kg meal, which translates to -45.1 g CO2/MJ oil and -70.1 g CO2/MJ HRJ. The co-

products of HRJ production are LPG and gasoline, which have GHG credit of 80.35 and 

96.23 g CO2 eq/MJ, respectively.  When displacement method was applied in GREET 

2012, 1 kg of soybean meal displaces 1.2 kg soybean, which has GHG burden of 180.8 g 
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CO2 eq/kg soybean. Therefore, GHGenius shows much higher soybean meal credit, 

which reflects on the lower oil extraction emission shown in Table 3.2.    

 

Table A.3: Product and co-products of soybean HRJa 

 Stratton et al 85 GREET 201286 GHGenius87 

Soybean oil  1 kg*1.05$/kg 

(44.7%) 

1 kg*0.846 $/kg 

(46.8%) 

1kg 

Soybean meal  4.48 kg*0.29 $/kg 

(55.3%) 

3.7kgb*0.26 $/kg 

(53.2%) 

4.21kg  

HRJ (MJ/kg HRJ) 44.07 (65.2%) 44.09 (80.8%) 44.1 

Naphtha (MJ/kg 

HRJ) 

19.94 (29.5%) 4.32 (7.9%) 

 

Propane (MJ/kg 

HRJ) 

3.53 (5.2%) 6.12 (11.2%) 

 

LPG (MJ/kg HRJ)   13.92  

Gasoline (MJ/kg 

HRJ) 

  

5.10  

a:The Stratton and GREET use market value allocation for soybean oil and meal, and energy 

allocation for HRJ and its co-products, numbers in parentheses are the allocation factors.  

b: bone dry 

 

Stratton yields lower fuel production emissions compared to GREET 2012, because: 1. 

Small allocation factor as discussed above; 2. Lower energy inputs, mainly natural gas 

used in the process (Table 3.1).  GHGenius yields lower life cycle emission results than 

GREET 2012 when displacement method was applied, because of the larger GHG credits 

from the co-products, which include both soybean meal and fuel co-products. 

 

A.2. HRJ from camelina 

The camelina farming inputs and seed yields used in this review are summarized in Table 

A.4. The Forward 3000 scenario reported by Shonnard et al is used in this study, which 
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represents projected yield gains from crop improvement research. GREET 2012 obtained 

the farming inputs from the Farmer 2008 scenario studied by Shonnard et al, which uses 

increased N application rate to boost yield. GHGenius assumes camelina planted in 

Canada, which shows higher fertilizer application rates and diesel use.   

 

Table A.4: Chemicals and energy inputs of camelina farming 

  Shonnard102 
Agusdinata 
40 

EPA88 GREET 86 GHGenius87 

Yield (kg/ha) 3368 1681 1850 1123* 1020 

Urea, as N (g/kg 

seed) 
24.9 18.3 24.2 37 55 

Thomas meal, as 

P2O5 (g/kg seed) 
5 7.3 9.1 15 15.31 

Potassium 

chloride, as K2O 

(g/kg seed) 

3.3   6.06 10 4.08 

Herbicide (g/kg 

seed) 
0 0 1.67 0   

Diesel (L/kg 

seed) 
0.009 0.015 0.018 0.028 0.031 

* The camelina yields of GREET are assumed the same as the Farmer 2008 scenario reported by 

Shonnard et al, as GREET shows the same fertilizer and energy inputs. 

 

Table A.5 summarizes camelina oil extraction inputs. GHGenius assumes mechanical 

crushing, which uses more energy while achieve higher yield. Shonnard used energy 

allocation method to credit the camelina meal of oil extraction, based on the LHV of meal 

and the crude oil. The allocation factor of oil was calculated as 0.445. The GREET model 
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assumes 1.78 kg meal/kg oil is produced as co-product, allocation factor of camelina oil 

is 0.61 based on the energy content. This allocation factor results in higher emissions 

allocated to the camelina oil (compared to Shonnard and SimaPro), which translates to 

higher farming emission. In the displacement scenario, GREET assumes camelina meal 

displaces the same amount of soybean, which has a GHG profile of 181.4 g CO2 eq/kg 

soybean.  GHGenius assumes the camelina oil extraction rate is 2.43 kg seed/L oil, while 

the meal has GHG emissions of 312 g CO2 eq/kg meal. Therefore, GHGenius shows 

higher GHG credit of camelina meal than GREET 2012, which results in lower oil 

extraction emission (Table 3.3). 

 

Table A.5: Inputs and co-product of camelina oil extraction (and refining) 

 Shonnard et al 102 EPA88 GREET 86 GHGenius87 

Inputs     

Natural gas (MJ/kg oil) 1.523 1.814 1.725 2.561 

Electricity (Wh/kg oil) 

30.30 

 

30.36 

 

32.94 

 

130.42 

Hexane (mL/kg oil) 

3.47 

  

3.97 

 

Diesel (mL/kg oil) 18.52    

Co-product     

Meal (kg/kg oil) 

1.78 

 

1.85 

 

1.78 

 

1.51 

 

GREET 2012 also yields much higher fuel production emission compared to Shonnard 

and SimaPro. Shonnard study assumes much lower natural gas use (similar to Stratton 

inputs shown in Table 3.1) than GREET. In addition, co-products yields are also higher 

which means less emission burdens are allocated to the HRJ. EPA also includes more co-

products of HRJ production. H2 requirement assumed by EPA is lower than GREET as 

well.  When comparing GREET (SE) to GHGenius, GHGenius shows much higher co-
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products credits, which make the fuel production emission lower even GHGenius 

assumes higher energy requirement.  

 

A.3. HRJ from jatropha 

The jatropha farming inputs are summarized in Table A.6. The fertilizers and energy 

requirement from these sources are comparatively similar, with the exception of 

GHGenius, which are much lower. However, GHGenius includes N from jatropha crop 

residues, which are converted to N2O.  The N content is calculated by the following 

formula: (1-0.1)*0.035*1=0.0315 g N/g crop harvested, in which 0.1 is the moisture 

content, 0.035 is the N content in crop residues, and 1 is the ratio of crop residues and 

harvested jatropha crop.  The emission factors of fertilizers are also relatively high 

compare to GREET 2012.  

 

Table A.6: Chemical and energy inputs of jatropha cultivation 

 Stratton 85 Bailis 

and 

Baka97 

GREET 

2012 86 

GHGenius87 

Low  Baseline High 

Yield (t/ha- yr) 5 2.5 1 4  2.38 

N (g/kg seed) 31.8 34 35.3 21 34 8.5 

P2O5 (g/kg seed) 12.6 13 13.4 8.5 13 3.32 

K2O (g/kg seed) 31.3 37.4 37.4 23.5 37.4 14.8 

Diesel (L/kg 

seed) 

0.034 0.039 0.041  0.039 0.036 

Electricity 

(kWh/kg seed) 

     0.02 

Natural gas 

(MJ/kg seed) 
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Figure A.1: Flow diagram of GREET jatropha oil extraction (per kg seed) 

 

GREET model assumes the co-products (seed meal, husks, shells) are combusted for 

power generation. The quantity and LHV of each co-product are illustrated in Figure A.1. 

99% of them are combusted in biomass boiler with efficiency of 20.8% and the 

remainder 1% is combusted in integrated gasification combined cycle ( IGCC) with 

efficiency of 40%. Total electricity credit from the co-products is 3.37 kWh/kg oil, the 

emission factor of electricity is 677.53 g CO2 eq/kWh. The Stratton report assumes power 

generation for the co-products as well, 99% of biomass is burned in boiler with efficiency 

of 32.1% and the the remainder 1% is burned in IGCC with efficiency of 43%, 

transmission loss of 8% is included. Energy allocation method is used for the electricity 

generated, therefore, the credit of electricity is much lower than what GREET yields.  

Bailis and Baka assumes mechanical pressing process with heat. 3 scenarios are 

considered for the seedcake and husks: 1. Waste; 2. Displace domestic urea and SSP, and 

imported potash (based on nutrient content); 3. Displace fuel oil (based on energy 

content). If the biomass is discarded as waste, there is no co-product credits generated, 

thus the oil extraction impact is the highest among 3 scenarios. In the second scenario, N, 

P and K content in the seedcake and husk are used to calculate the amount of fertilizers 

the co-products can displace. The cake and husk contains the equivalent of 21.8 kg N, 

24.6 kg P2O5, and 8.51 kg K2O. In the third scenario, the energy content of seedcake and 
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husk exceeds the process heat requirement, which is assumed to produce briquettes to 

displace heating oil (69 kg oil/GJ HRJ). 

 

Table A.7: Process inputs of jatropha oil extraction (and refining) per kg of oil 

 Stratton et al85 Bailis et 

al 97 

GREET86 GHGenius*87 

Low  Baseline High 

Inputs 

Seeds (kg) 2.70 2.86 2.94  2.78 3.19 

Natural gas 

(L) 

50.33 49.29 50.77  49.27 66.13 

Electricity 

(kWh) 

0.168 0.195 0.201 0.38 0 0.175 

Hexane (g) 4.02 3.93 4.05  3.95  

NaOH (kg)    0.012   

Fuel oil (kg)    0.015   

Water (kg)    0.24   

Co-products 

Husk (kg) 1.3 1.71 1.76 1.4 1.67  

Shell (kg) 0.89 1.06 1.09  1.04  

Meal (kg) 0.81 0.8 0.85 1.39 0.74  

Gums (kg)    0.137   

* GHGenius doesn’t give credit to the jatropha husk/meal due to its toxicity. 

 

Stratton assumes jatropha oil extraction and hydroprocessing occur at the same location, 

thus no oil transport is required. Bailis and Bark calculated the weighted average road 

distances from jatropha growers to oil expeller (1439 km). The oil is then transported to 

Brazil’s principle seaport at Santos, and then shipped 15000 km to UOP facility on West 

Coast of US. The authors also assume that the jatropha SPK will follow a similar 

distribution path as conventional kerosene-based jet fuel. A emission factor of 0.9 kg CO2 
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eq/kg fuel was used. In Shonnard’s study, the jatropha capsules are trucked 95 km (190 

km round trip) to the oil extraction plant at Uman, and then 320 km (640 km round trip) 

to Cancún where the oils are converted to green jet fuel using the UOP LLC process. 

 

A.4. HRJ from rapeseed (canola) 

The fertilizers and energy inputs of rapeseed (canola) farming are summarized in Table 

A.8. This feedstock requires much higher fertilizers use compared to other oil plants. In 

addition, Stratton and GREET includes N from rapeseed residues, which converts to N2O 

via direct and indirect emissions.  
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Table A.8: Chemical and energy inputs of rapeseed cultivation (per t seed) 

  

Stratton et al84
 

GREET 

2012 85
 

EPA 239
 

CARB 107
 

Low Baseline High 
(US 

canola) 

(Canada 

canola) 

Yield (t/ha- 

yr) 
2.79 3.35 1.885 

 
1.885 2.025 

 

Na (kg) 50.18 48.96 46.27 48.96 46.4 37 50.12b 

P2O5 (kg) 12.19 14.03 14.4 14.03 14.1 9.86 13.36 

K2O (kg) 12.54 12.84 21.08 12.69 13.7 7.4 10.02 

Herbicide 

(kg) 
0.65 0.69 0.72 0.69 0.33 0.17 0.23 

Insecticide 

(kg)      
0.023 0.06 

Diesel (L) 18.59 19.26 28.25 26.99 24.71 16.6 20.3 

Gasoline (L) 
    

2.98 
  

Electricity 

(kWh)      
14.6 18.3 

a: 7125 g N/kg rapeseed is reapplied to soil in the form of straw, in addition to the synthetic 

fertilizer85.  

b: 70.7% Ammonia, 21.1% Urea, 8.2% Ammonium Nitrate 

 

Solvent extraction is used in all the studies in this review. Hexane and energy use of oil 

extraction are summarized in Table A.9, which are relatively higher than jatropha oil. 

Stratton used market allocation method to credit the rapeseed meal. When the same 

method is used in GREET 2012, rapeseed oil and meal have market value of 1.05 and 

0.26 $/kg respectively, the allocation factor of rapeseed oil is 0.764. When energy 



 

211 
 

allocation method is applied in GREET, the LHVs of rapeseed oil and meal are 37.2 and 

13.35 MJ/kg, the allocation factor of rapeseed oil is 0.686. However, EPA assumes 

higher LHV of rapeseed meal (20.06 MJ/kg), more emissions are allocated to the co-

product, thus EPA inputs generate lower oil extraction impacts. CARB used mass 

allocation for the canola oil/meal pathway, 57% of canola farming impacts were allocated 

to canola meal while the remainder (43%) to the oil.  

  

Table A.9: Chemical and energy inputs of rapeseed oil extraction 

per kg oil Stratton et al 85 GREET 

2012 86 

EPA 244 CARB 108 

Low  Baseline High 

Seeds (kg) 2.22 2.27 2.44 2.27 2.5 2.34 

Natural gas (L) 64.76 66.23 71.08 66.28 63.89 63.87 

Electricity (kWh) 0.111 0.114 0.122 0.114 0.114 0.115 

Hexane (g) 4.893 5.005 5.371 4.989 1.5-2.9 2.18 

Co-product       

Meal (kg) 1.22 1.27 1.44 1.27 (13.35 

MJ/kg) 

1.5 (20.06 

MJ/kg*) 

1.34 

* The LHV of canola meal was obtained from Bernessen 2004245 and used in the SimaPro  

 

The transport of the rapeseed (to oil extraction) and oil (to fuel production) are 

summarized in Table A.10. Although the distances vary in these sources, transport stage 

has very small contribution to the total GHG results.   
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Table A.10: Transport mode and distance of rapeseed and oil (in km)* 

Stratton et al 85 GREET 86 CARB 
108 

Seed 

transport 

Farm to 

oil 

extraction 

facility  

115 (truck) Seed 

transport 

Farm to 

stack  

16.1 (truck) 16.1 

(truck) 

Oil 

transport 

Oil 

facility to 

EU ports  

150 (truck) Stack to 

oil mills  

64.4 (truck) 64.4 

(truck) 

EU ports 

to US 

ports  

6000 

(tanker) 

Oil 

transport 

Oil mills 

to fuel 

facility  

128.7/1126.3 

(truck 

67%/rail 

33%) 

1930.8 

(rail) 

US ports 

to fuel 

facility  

257.5/1287 

(truck 

50%/rail 

50%) 

* The EPA doesn’t list the rapeseed transport, the distances are assumed to be the same as those 

in the CARB report, with the exception that oil is transported 570 mi by rail 53 to the 

hydroprocessing facility in the US scenario.     

 

A.5. HRJ from palm oil 

The farming inputs of oil palm are summarized in Table A.11. The fruit yields reported in 

these sources are similar, but the fertilizers inputs vary. EPA assumes the lowest N 

fertilizer use, thus it generates low cultivation emissions. GHGenius generates the highest 

cultivation emission because of the large fertilizer use, especially the N fertilizer.    
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Table A.11: Chemicals and energy inputs of palm fruit farming and harvest 

 Stratton 

(baseline)85 

EPA (year 2022) 113 GREET 86  GHGenius 

(India 2000)87 Indonesia Malaysia 

Fruit yield (t/ha) 21.2 25.3 25 21.2 19 

N fertilizer (g/t 

fruit) 

6560 2936.8 3996 6556.6 9945* 

P fertilizer (g/t 

fruit) 

 1134.4 1428  1590 

K fertilizer (g/t 

fruit) 

 3620.6 9396   

Herbicide (g/t 

fruit) 

 0.79 36 15  

Insecticide (g/t 

fruit) 

 0.4 6.4 0.4 430 

Fungicide (g/t 

fruit) 

 0.4 6.4   

Diesel (L/t fruit) 4.183 2.77 2.8 4.18 3.23 

* N in crop residues add another 8366 g N/t fruit, which also contributes to total N2O emission 

 

Stratton and GREET assume the oil produced includes palm oil extracted from FFB and 

kernel oil from palm kernel, while EPA only accounts for palm oil from FFB, and palm 

kernel is used as animal feed. Therefore, EPA has a higher FFB to oil ratio, but also 

higher co-product yield (0.27 kg kernel/kg oil vs. 0.11 kg kernel expeller/kg oil). The 

GREET assumes 0.11 kg kernel expeller per kg crude oil is produced as co-product, 

which displaces 0.132 kg soybean with GHG burden of  180.76 g CO2 eq/kg. The 

GHGenius assumes that 0.14 kg of palm meal is produced per liter crude oil, which 

displaces soybean meal (415 g CO2 eq/kg) on a ratio of 0.35 (1 kg palm meal displaces 

0.35 kg soybean meal). 
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The EPA assumes POME yield of 3 t/t oil, and 18.2 m3 of methane is generated per tonne 

of POME. 3% of palm oil mills capture methane with 90% capture efficiency. Of all the 

mills capture methane, 27% flare the gas onsite with destruction efficiency of 90%, 7% of 

them use methane to generate electricity with efficiency of 34%. The GHGenius assumes 

crop residues (0.225 kg/L oil) are burned onsite for heat and power, which has emission 

factor of 2407 g CO2 eq/GJ biomass. Emissions from POME treatment are also included 

in the oil extraction stage, which includes 900 g CH4/GJ oil and 60 g PM/GJ oil. Because 

CH4 is a potent greenhouse gas, it accounts for almost all the GHG emission (98.75%) 

during oil extraction. 

 

Table A.12: Inputs of palm oil extraction (per kg crude oil) 

per kg crude oil Stratton et al 

(baseline)85 

EPA113  GREET86 GHGeniusb 87 

Fruit (kg) 4.5 5 4.49 4.34 

Electricity (kWh) 0.019 0a 0.0194  

Diesel (L) 0.011 0.0045 0.011  

a: electricity generated on-site from combustion of palm kernel shell and fiber 

b: crop residues (0.225 kg/L oil) burned on-site for heat and power 

 

The transport of palm fruit and oil are summarized in Table A.13. Transoceanic long 

distance shipping is included in all sources, but the transport has insignificant impact to 

the life cycle of HRJ emissions.   
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A.6. HRJ from algae 

Inputs for algae cultivation and dewatering are shown below in Table A.14. Although 

each study assumes similar oil content, algae yields can vary widely according to 

geography and season, and these variations are incorporated in the most recent GREET 

assessment of algae cultivation. Estimates of electricity use are roughly double in the 

GREET assessment, compared to Stratton 2010. Table A.15 displays key input data for 

algal oil extraction and refining to HRJ. Many differences are apparent in the 

assumptions made in these life cycle stages, especially concerning the internal vs. 

external use of lipid-extracted algae (LEA) for heat and power. Internal use of LEA 

offsets a great deal of natural gas, but also results in fugitive methane emissions which 

contribute to the overall GHG emissions profile.  

 

Table A.14: Inputs for algae cultivation and dewatering 

Item GREET 86 Stratton et al85 

Algae yield (g/m2 - d) 13.2* 25 

Lipid fraction 25% 25% 

Net N demand (mg/g algae) 19.5 13.25 

Net P demand (mg/g algae) 4.1 1.3 

Net CO2 demand (kg/kg algae) 2.46 2.18 

Electricity for CO2 delivery (KJ/kg CO2) 151.93 82.61 

Electricity for algae growth and 1st 

dewatering (KJ/kg Algae) 

1215.4 608.98 

Electricity for Remaining Dewatering 

centrifuge  (KJ/kg Algae) 

629.87 422 

* Site-based assessment of algal productivity incorporated in Davis et al120 
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Table A.15: Inputs for algae oil extraction and refining to HRJ 

 GREET86 Stratton et al85 

Algae input (kg algae / kg oil) 4.68  Not mentioned 

Energy for Extraction (KJ/kg oil) 15.26a 4.66b 

LEA sent to biomass (kg biomass / kg oil) 3.73 3 

Energy Consumed in Recovery Step  

(MJ/kg dry lipid-extracted biomass) 1.098 nonec 

Methane in Biogas yield (kg/dry-kg residue) 0.213  

Recovered CO2 (kg/dry-kg residue) 0.288 No recycle mentioned 

AD Residue Yield, kg/dry-kg residue 0.499 No mention – treated 

as waste 

Methane loss from prod./ processing 2% None mentioned 

Oil use: kg. oil/kg. renewable jet fuel 1.39 1.72 

Propane fuel mix (kg/kg) 0.142 0.081 

Naphtha (kg/kg) 0.097 0.446 

Yield of HRJ from vegetable oil  

(kg/kg vegetable oil) 

 0.889 0.587 

     Natural gas (MJ/kg HRJ) 7.87 0.43 

     Electricity (MJ/kg HRJ) 0.22 0.33 

     Hydrogen (MJ/kg HRJ) 6.54 6.91 

a: 23.1 % electricity, 76.9% heat 

b: 8.5% due to electricity, 91.5% heat 

c: Heat and electricity from biogas combustion used to satisfy needs of anaerobic digestion and 

post-centrifuge thermal drying to 90% solids 

 

A.7. HRJ from tallow 

The tallow rendering inputs are summarized in Table A.16. GHGenius includes much 

higher energy requirement. However, it assumes the bone meal produced in the rendering 

process displace soybean as animal feed, offering a GHG credit of 27272 g CO2 eq/GJ 

tallow. 
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Table A.16: Tallow rendering process from CARB and GHGenius 

per L of crude tallow CARB 123 GHGenius87 

Inputs   

Natural gas (L) 185.6 442.3 

Electricity (kWh) 0.25 0.68 

Co-product   

Bone meal* (kg)  -2.28 

* The CARB considers the bone meal as waste because animal based waste products are likely to 

be banned by the FDA. GHGenius assumes that the bone-meal are used as animal feed, offering a 

GHG credit of 27272 g CO2 eq/GJ tallow by displacing soybean meals (412 g CO2 eq/kg meal) 

 

A.8. HRJ from fuel grade corn oil 

With the oil extraction system reported in the Mueller study124, the thermal energy 

requirements of the ethanol production remain the same while the VOC emissions are 

reduced. Electricity is needed to power the centrifuges for oil extraction.  The oil 

extraction rate is assumed to be 3.5 vol% (0.035 gal oil/gal EtOH). The CARB 125 studies 

the GreenShift process, which extracts corn oil from the stillage portion of DGS. The 

process includes two system: thin stillage is heated by steam and centrifuged in the first 

system (Corn Oil Extraction 1), in which almost 30% of available oil is extracted; the 

second system (Corn Oil Extraction 2) extracts another 30% of oil bound in the whole 

stillage. 6.5 gallons of corn oil is assumed to be extracted per 100 gallons of ethanol 

produced. The Corn Oil Extraction 1 system can significantly reduce the thermal energy 

requirement in the DGS drying process, due to improved heat transfer efficiency, 

increased drying efficiency, and improved DGS flow characteristics following corn oil 

removal. The steam credit is also accounted for by the CARB study. The removal of corn 

oil results in a reduction of DDGS yield, which translates into a reduction in CO2 credit 

from DDGS. This CO2 credit reduction (1.08 g CO2 eq/MJ ethanol) is converted to a g 

CO2 eq per kg corn oil basis, which finally translates into a g CO2 eq per MJ HRJ basis. 

The crude corn oil refining inputs are assumed to be the same as camelina oil102 (Table 

A.18).    
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Table A.17: Energy inputs of corn oil extraction 

 CARB 125 Mueller124 

Yield (L oil/L ethanol) 0.065 0.035 

Electricity (kWh/L oil) 0.405 0.53 

Natural gas (L/L oil) 33.96  

Natural gas credit (L/L oil) -433.2  

 

Table A.18:Material and energy inputs of corn oil refining (per kg refined oil) 

Crude corn oil (kg) 1.0417 

Electricity (kWh) 0.0063 

Steam (kg) 0.106 
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B. Appendix B: Supporting information for Chapter 8 

 
Figure B.1: Age class import file of the BAU and INT scenarios 

 

 
Figure B.2: Classifier file of the BAU scenario 
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Figure B.3: Classifier file of the INT scenario 

 

 
Figure B.4: Disturbance type import file of the BAU and INT scenarios 

 

 
Figure B.5: Yield import file of the BAU scenario 
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Figure B.6: Yield import file of the INT scenario 

 

 
Figure B.7: Transition rule file of the BAU scenario 

 

 
Figure B.8: Transition rule file of the INT scenario 
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C. Appendix C: Supporting information for chapter 9 
C.1. Procedures of solving differential equations of N 

C.1.1. Procedures of solving N1 when n=2 
 

𝑑𝑁1
𝑑𝑡 = 2𝑘ℎ𝑁2 − 𝑘𝑑𝑁1 = 2𝑘ℎ exp(−𝑘ℎ) 𝑡 − 𝑘𝑑𝑁1 

𝑑𝑁1
𝑑𝑡 + 𝑘𝑑𝑁1 = 2𝑘ℎ exp(−𝑘ℎ) 𝑡 

𝑁1 = 𝑒−∫𝑘𝑑𝑑𝑡 × (�𝑒∫𝑘𝑑𝑑𝑡 × 2𝑘ℎ exp(−𝑘ℎ) 𝑡 𝑑𝑡) 

𝑁1 = 𝑒−𝑘𝑑𝑡 × (�𝑒𝑘𝑑𝑡 × 2𝑘ℎ exp(−𝑘ℎ) 𝑡 𝑑𝑡) 

𝑁1 = 𝑒−𝑘𝑑𝑡 × 2𝑘ℎ(�𝑒(𝑘𝑑−𝑘ℎ)𝑡 𝑑𝑡) 

𝑁1 =
2𝑘ℎ

𝑘𝑑 − 𝑘ℎ
𝑒−𝑘𝑑𝑡(𝑒(𝑘𝑑−𝑘ℎ)𝑡 + 𝐶) 

𝑁1
0 =

2𝑘ℎ
𝑘𝑑 − 𝑘ℎ

(1 + 𝐶) = 0   

𝐶 = −1 

𝑁1 =
2𝑘ℎ

𝑘𝑑 − 𝑘ℎ
𝑒−𝑘𝑑𝑡(𝑒(𝑘𝑑−𝑘ℎ)𝑡 − 1) 

𝑁1 =
2𝑘ℎ

𝑘𝑑 − 𝑘ℎ
(𝑒−𝑘ℎ𝑡−𝑒−𝑘𝑑𝑡) 

 

C.1.2. Procedures of solving N1 when n=3 
 

𝑁3 = exp(−2𝑘ℎ𝑡) 

𝑁2 = 2(exp(−2𝑘ℎ𝑡)− exp (−2𝑘ℎ 𝑡)) 

𝑑𝑁1
𝑑𝑡 = 2𝑘ℎ(𝑁2 +𝑁3)− 𝑘𝑑𝑁1 = 2𝑘ℎ(2 exp(−𝑘ℎ) 𝑡 − exp(−2𝑘ℎ𝑡))− 𝑘𝑑𝑁1 
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𝑑𝑁1
𝑑𝑡 +𝑘𝑑𝑁1 = 2𝑘ℎ(2 exp(−𝑘ℎ𝑡)− exp(−2𝑘ℎ𝑡)) 

𝑁1 = 𝑒−𝑘𝑑𝑡 × (�𝑒𝑘𝑑𝑡 × 2𝑘ℎ(2 exp(−𝑘ℎ) 𝑡 − exp(−2𝑘ℎ𝑡)𝑑𝑡) 

𝑁1 = 𝑒−𝑘𝑑𝑡 × 2𝑘ℎ(�2𝑒(𝑘𝑑−𝑘ℎ)𝑡 − e(𝑘𝑑−2𝑘ℎ)𝑡𝑑𝑡 

𝑁1 = 2𝑘ℎ𝑒−𝑘𝑑𝑡(
2

𝑘𝑑 − 𝑘ℎ
𝑒(𝑘𝑑−𝑘ℎ)𝑡 −

1
𝑘𝑑 − 2𝑘ℎ

e(𝑘𝑑−2𝑘ℎ)𝑡 + C) 

𝑁1
0 = 2𝑘ℎ �

2
𝑘𝑑 − 𝑘ℎ

−
1

𝑘𝑑 − 2𝑘ℎ
+ 𝐶� = 0   

𝐶 =
1

𝑘𝑑 − 2𝑘ℎ
−

2
𝑘𝑑 − 𝑘ℎ

 

𝑁1 = 2𝑘ℎ𝑒−𝑘𝑑𝑡(
2

𝑘𝑑 − 𝑘ℎ
𝑒(𝑘𝑑−𝑘ℎ)𝑡 −

1
𝑘𝑑 − 2𝑘ℎ

e(𝑘𝑑−2𝑘ℎ)𝑡 +
1

𝑘𝑑 − 2𝑘ℎ
−

2
𝑘𝑑 − 𝑘ℎ

) 

𝑁1 =
4𝑘ℎ

𝑘𝑑 − 𝑘ℎ
𝑒−𝑘ℎ𝑡 −

2𝑘ℎ
𝑘𝑑 − 2𝑘ℎ

𝑒−2𝑘ℎ𝑡 +
2𝑘ℎ

𝑘𝑑 − 2𝑘ℎ
𝑒−𝑘𝑑𝑡 −

4𝑘ℎ
𝑘𝑑 − 2𝑘ℎ

𝑒−𝑘𝑑𝑡 

𝑁1 =
4𝑘ℎ

𝑘𝑑 − 𝑘ℎ
�𝑒−𝑘ℎ𝑡 − 𝑒−𝑘𝑑𝑡� −

2𝑘ℎ
𝑘𝑑 − 2𝑘ℎ

�𝑒−2𝑘ℎ𝑡 − 𝑒−𝑘𝑑𝑡� 

 

C.1.3. Procedures of solving N1 when n=4 
 

𝑁4 = 𝑒−3𝑘ℎ𝑡 

𝑁3 = 2(𝑒−2𝑘ℎ𝑡 − 𝑒−3𝑘ℎ𝑡) 

𝑁2 = 3𝑒−𝑘ℎ𝑡 − 4𝑒−2𝑘ℎ𝑡 + 𝑒−3𝑘ℎ𝑡) 

𝑑𝑁1
𝑑𝑡

= 2𝑘ℎ(𝑁2 + 𝑁3 + 𝑁4) − 𝑘𝑑𝑁1 = 2𝑘ℎ(3𝑒−𝑘ℎ𝑡 − 2𝑒−2𝑘ℎ𝑡) − 𝑘𝑑𝑁1 

𝑁1 = 𝑒−𝑘𝑑𝑡(�𝑒𝑘𝑑𝑡 × 2𝑘ℎ × (3𝑒−𝑘ℎ𝑡 − 2𝑒−2𝑘ℎ𝑡)𝑑𝑡 

𝑁1 = 2𝑘ℎ × 𝑒−𝑘𝑑𝑡 × �(3𝑒𝑘𝑑−𝑘ℎ𝑡 − 2𝑒𝑘𝑑−2𝑘ℎ𝑡)𝑑𝑡 
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𝑁1 = 2𝑘ℎ × 𝑒−𝑘𝑑𝑡 × (
3

𝑘𝑑 − 𝑘ℎ
𝑒𝑘𝑑−𝑘ℎ𝑡 −

2
𝑘𝑑 − 2𝑘ℎ

𝑒𝑘𝑑−2𝑘ℎ𝑡 +
2

𝑘𝑑 − 2𝑘ℎ
−

3
𝑘𝑑 − 𝑘ℎ

) 

𝑁1 =
6𝑘ℎ

𝑘𝑑 − 𝑘ℎ
(𝑒−𝑘ℎ𝑡 − 𝑒−𝑘𝑑𝑡) −

4𝑘ℎ
𝑘𝑑 − 2𝑘ℎ

(𝑒−2𝑘ℎ𝑡 − 𝑒−𝑘𝑑𝑡) 

 

C.2. Depolymerization model with different hydrolysis reaction rates 

In order to investigate if hydrolysis reaction rates depend on the chain length, the 

xylooligomers in the system were simplified as N1, N2 and N3. The kinetics of the 

xylooligomers are as follows: 

𝑑𝑁3
𝑑𝑡

= −2𝑘3𝑁3 

𝑑𝑁2
𝑑𝑡

= 2𝑘3𝑁3 − 𝑘2𝑁2 

𝑑𝑁1
𝑑𝑡

= 2𝑘3𝑁3 + 2𝑘2𝑁2 − 𝑘𝑑𝑁1 

𝑑𝐷
𝑑𝑡

= 𝑘𝑑𝑁1 

To solve these three equations with initial conditions of N3(0)=1 and N2(0)=N1(0)=0 (see 

Figure C.4 and C.5 for derivation), the kinetics behavior of N1, N2 and N3 are as follows:  

 

𝑁3 = exp (−2𝑘3𝑡) 
𝑑𝑁2
𝑑𝑡 = 2𝑘3𝑁3 − 𝑘2𝑁2 = 2𝑘3𝑒−2𝑘3𝑡 − 𝑘2𝑁2 

𝑑𝑁2
𝑑𝑡 + 𝑘2𝑁2 = 2𝑘3𝑒−2𝑘3𝑡 

𝑁2 = 𝑒−𝑘2𝑡 × (�(𝑒𝑘2𝑡 × 2𝑘3𝑒−2𝑘3𝑡)𝑑𝑡) 

= 2𝑘3 × 𝑒−𝑘2𝑡 × (�(𝑒(𝑘2−2𝑘3)𝑡)𝑑𝑡) 

= 2𝑘3 × 𝑒−𝑘2𝑡 × (
1

𝑘2 − 2𝑘3
𝑒(𝑘2−2𝑘3)𝑡 + 𝐶) 
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𝑁2(0) =
2𝑘3

𝑘2 − 2𝑘3
+ 𝐶 = 0      𝐶 =

−2𝑘3
𝑘2 − 2𝑘3

 

𝑁2 =
2𝑘3

𝑘2 − 2𝑘3
(𝑒

−2𝑘3𝑡

− 𝑒−𝑘2𝑡) 

 

𝑁1 =
6𝑘2𝑘3 − 4𝑘32

(𝑘2 − 2𝑘3) ∗ (𝑘𝑑 − 2𝑘3) (exp(−2𝑘3𝑡) − exp(−𝑘𝑑𝑡))

−
4𝑘2𝑘3

(𝑘2 − 2𝑘3) ∗ (𝑘𝑑 − 𝑘2) (exp(−𝑘2𝑡) − exp(−𝑘𝑑𝑡)) 

 

𝐷 =
3𝑘2𝑘𝑑 − 2𝑘3𝑘𝑑

−(𝑘2 − 2𝑘3) ∗ (𝑘𝑑 − 2𝑘3) exp(−2𝑘3𝑡)

+
6𝑘2𝑘3 − 4𝑘32

(𝑘2 − 2𝑘3) ∗ (𝑘𝑑 − 2𝑘3) exp(−𝑘𝑑𝑡)

+
4𝑘3𝑘𝑑

(𝑘2 − 2𝑘3) ∗ (𝑘𝑑 − 𝑘2) (exp(−𝑘2𝑡)

−
4𝑘2𝑘3

(𝑘2 − 2𝑘3) ∗ (𝑘𝑑 − 𝑘2) exp(−𝑘𝑑𝑡) +
3𝑘2𝑘𝑑 − 2𝑘3𝑘𝑑

(𝑘2 − 2𝑘3) ∗ (𝑘𝑑 − 2𝑘3)

−
6𝑘2𝑘3 − 4𝑘32

(𝑘2 − 2𝑘3) ∗ (𝑘𝑑 − 2𝑘3) −
4𝑘3𝑘𝑑

(𝑘2 − 2𝑘3) ∗ (𝑘𝑑 − 𝑘2)

+
4𝑘2𝑘3

(𝑘2 − 2𝑘3) ∗ (𝑘𝑑 − 𝑘2) 

 

When xylotriose is hydrolyzed, the concentractions of xylotriose, xylobiose, xylose, and 

degradation products should follow the trend illustrated in Figure C.6. Experiments need 

to be conducted to obtain the concentrations of furfural, xylose, xylobiose, and xylotriose 

for the hydrolysis rate k1, k2, k3, and degradation rate kd.  
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Figure C.1: Xylotriose hydrolysis profiles predicted by the depolymerization model 

 

C.3. Depolymerization model with updated kinetic reactions 

Assuming the kinetic expressions of xylooligomers are as follows: 

 
The corresponding rate laws are as follows:  

When n and i are even: 
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𝑑𝑁𝑖
𝑑𝑡

= �𝑘ℎ�𝑁𝑗

𝑛

𝑖+1

� + 2𝑘ℎ𝑁2𝑖 − 𝑘ℎ
𝑖
2
𝑁𝑖  (𝑖𝑓 𝑖 ≥ 4) 

𝑑𝑁𝑖
𝑑𝑡

= �𝑘ℎ�𝑁𝑗

𝑛

𝑖+1

� + 2𝑘ℎ𝑁2𝑖 − 𝑘ℎ𝑁𝑖 (𝑖𝑓 𝑖 = 2) 

𝑑𝑁1
𝑑𝑡

= �𝑘ℎ�𝑁𝑗

𝑛

3

� + 2𝑘ℎ𝑁2 − 𝑘𝑑𝑁1 

𝑑𝐷
𝑑𝑡

= 𝑘𝑑𝑁1 

 

When n and i are odd: 

𝑑𝑁𝑛
𝑑𝑡

= −𝑘ℎ
𝑛 − 1

2
𝑁𝑛 

𝑑𝑁𝑖
𝑑𝑡

= �𝑘ℎ�𝑁𝑗

𝑛

𝑖+1

� + 2𝑘ℎ𝑁2𝑖 − 𝑘ℎ
𝑖 − 1

2
𝑁𝑖  (𝑖𝑓 𝑖 ≥ 5) 

𝑑𝑁𝑖
𝑑𝑡

= �𝑘ℎ�𝑁𝑗

𝑛

𝑖+1

� + 2𝑘ℎ𝑁2𝑖 − 𝑘ℎ𝑁𝑖  (𝑖𝑓 𝑖 = 1 𝑜𝑟 3) 

𝑑𝑁1
𝑑𝑡

= �𝑘ℎ�𝑁𝑗

𝑛

3

� + 2𝑘ℎ𝑁2 − 𝑘𝑑𝑁1 

𝑑𝐷
𝑑𝑡

= 𝑘𝑑𝑁1 

 

Assuming xylotetrose is hydrolyzed by dilute acid, the kinetic rates of xylotetrose, 

xylotriose, xylobiose and xylose are as follows: 

𝑁4 = exp (−2𝑘ℎ𝑡) 

𝑁3 = − exp(−2𝑘ℎ𝑡) + exp (−𝑘ℎ𝑡) 

𝑁2 = − exp(−2𝑘ℎ𝑡) + (1 + 𝑘ℎ𝑡)exp (−𝑘ℎ𝑡) 

𝑁1 =
−2𝑘ℎ

𝑘𝑑 − 2𝑘ℎ
exp(−2𝑘ℎ𝑡) +

3𝑘ℎ
𝑘𝑑 − 𝑘ℎ

exp(−𝑘ℎ𝑡) +
2𝑘ℎ2[(𝑘𝑑 − 𝑘ℎ)𝑡 − 1]

(𝑘𝑑 − 𝑘ℎ)2
exp(−𝑘ℎ𝑡)

+
2𝑘ℎ

𝑘𝑑 − 2𝑘ℎ
exp(−𝑘𝑑𝑡) −

3𝑘ℎ
𝑘𝑑 − 𝑘ℎ

exp(−𝑘𝑑𝑡) +
2𝑘ℎ2

(𝑘𝑑 − 𝑘ℎ)2
exp(−𝑘𝑑𝑡) 
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The xylotetrose hydrolysis is illustrated in Figure C.7. Experiments need to be conducted 

to obtain the concentrations of xylose, xylibiose, xylotriose and xylotetrose for the 

hydrolysis rate kh and degradation rate kd.  

 
Figure C.2: Xylotetrose hydrolysis predicted by the depolymerization model 

 

C.4. Reaction kinetics of xylooligomers developed by Kumar and Wyman 

Kumar and Wyman241 assumed first-order reaction kinetics for xylose degradation and 

xylooligomers hydrolysis.  Their study shows that the hydrolysis rate increased with DP. 

In addition, direct degradation of xylobiose and xylotriose occurs along with the 

hydrolysis, especially in the absence of acid, but is negligible for higher DP oligomers. 

The reaction kinetics can be summarized as follows:  
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The authors estimated the reaction rates by using the least-square method for the data at 

different pH values. The reaction rates at pH 1.45 are tabulated in Table C.1.  

 

Table C.1: Depolymerization reaction rates at pH 1.45241 

k51h k52h k41h k42h k3h k3d k2h k2d k1d 
1.914 1.9246 1.78 4.35 1.362 0.00001 1.5 0.12 0.0048 

 

 

 

 

 

 

 

 



 

241 
 

D. Appendix D: Copyright clearance 

 

Figure D.1: Copyright clearance from Elsevier for Chapter 2 and 6 
(http://www.elsevier.com/authors/author-rights-and-responsibilities) 

http://www.elsevier.com/authors/author-rights-and-responsibilities�
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Figure D.2: Copyright clearance from USDA (for Figure 2.1) 
http://www.usda.gov/wps/portal/usda/usdahome?navtype=FT&navid=POLICY_LINK 
 

 
Figure D.3: Copyright clearance from UOP Honeywell (for Figure 2.3) 

http://www.usda.gov/wps/portal/usda/usdahome?navtype=FT&navid=POLICY_LINK�
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Figure D.4: Permission by the IJESER editor Thomas White to use the paper in this 
dissertation (Chapter 4) 
 

 
Figure D.5: Permission by Tom Kalnes to use Figure 4.1 and 5.1 in this dissertation 
 

 

Figure D.6: Copyright clearance from Natural Resources Canada for Figure 8.4 
(http://www.nrcan.gc.ca/important-notices) 

http://www.nrcan.gc.ca/important-notices�
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