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Abstract

To analyze the characteristics and predict the dynamic behaviors of complex systems over

time, comprehensive research to enable the development of systems that can intelligently

adapt to the evolving conditions and infer new knowledge with algorithms that are

not predesigned is crucially needed. This dissertation research studies the integration

of the techniques and methodologies resulted from the fields of pattern recognition,

intelligent agents, artificial immune systems, and distributed computing platforms, to

create technologies that can more accurately describe and control the dynamics of

real-world complex systems. The need for such technologies is emerging in manufacturing,

transportation, hazard mitigation, weather and climate prediction, homeland security, and

emergency response.

Motivated by the ability of mobile agents to dynamically incorporate additional

computational and control algorithms into executing applications, mobile agent technology

is employed in this research for the adaptive sensing and monitoring in a wireless sensor

network. Mobile agents are software components that can travel from one computing

platform to another in a network and carry programs and data states that are needed for

performing the assigned tasks. To support the generation, migration, communication, and

management of mobile monitoring agents, an embeddable mobile agent system (Mobile-C)

is integrated with sensor nodes. Mobile monitoring agents visit distributed sensor nodes,

xxi



read real-time sensor data, and perform anomaly detection using the equipped pattern

recognition algorithms. The optimal control of agents is achieved by mimicking the

adaptive immune response and the application of multi-objective optimization algorithms.

The mobile agent approach provides potential to reduce the communication load and energy

consumption in monitoring networks.

The major research work of this dissertation project includes: (1) studying effective feature

extraction methods for time series measurement data; (2) investigating the impact of

the feature extraction methods and dissimilarity measures on the performance of pattern

recognition; (3) researching the effects of environmental factors on the performance of

pattern recognition; (4) integrating an embeddable mobile agent system with wireless

sensor nodes; (5) optimizing agent generation and distribution using artificial immune

system concept and multi-objective algorithms; (6) applying mobile agent technology

and pattern recognition algorithms for adaptive structural health monitoring and driving

cycle pattern recognition; (7) developing a web-based monitoring network to enable the

visualization and analysis of real-time sensor data remotely. Techniques and algorithms

developed in this dissertation project will contribute to research advances in networked

distributed systems operating under changing environments.
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Chapter 1

Introduction

Distributed sensing and monitoring systems are playing an important role in manufacturing,

civil engineering, transportation systems, chemical process, power grids, and homeland

security. As the complexity of the monitored objects and environment increases, the

monitoring network needs to provide higher quality of accuracy, reliability, adaptability,

and autonomy. To meet these requirments, this dissertation research studies data-driven

pattern recognition based on real time sensor data. The effects of feature extraction

methods, similarity measures and environmental factors on the performance of pattern

recognition are also investigated. To achieve adaptive monitoring, the mobile-agent-based

monitoring paradigm is adopted and the network platform is developed. The generation and

distribution of the monitoring agents over the network are optimized by the multi-objective

optimization algorithms and the concept of artificial immune system.

1



The major work of this dissertation research includes following. Firstly, this dissertation

investigates the time series data representation methods and similarity measures for sensor

data feature extraction and pattern recognition. The pattern recognition technique basically

deals with two issues: finding out the accurate description of the studied object (feature

extraction) and then categorize the object into a pattern based on its description (pattern

classification). Feature extraction methods are assessed by examining the distribution of

feature vectors in the feature space and the success rate of pattern recognition. The impact

of similarity measures on the pattern recognition success rate are also investigated. The test

data used in this research are from the System Identification to Monitor Civil Engineering

Structures (SIMCES) test [1, 2], which was performed on the Z24 bridge in Europe

for almost one year. The analysis results show that both time-series data representation

methods and the similarity measures have significant impact on the success rate of pattern

recognition.

Secondly, this dissertation research integrates a mobile agent network middleware with

a high computational power wireless sensor node. The sensor node has Linux operating

system and C numerical libraries. The integrated mobile agent middleware, Mobile-C

[3], can host both stationary and mobile agents. Agents can work locally on sensor

nodes or travel between sensor nodes. Two-layer approach is utilized for the software

design of the sensor node: the open architecture of the upper layer promotes the software

reuse and speeds up the development cycle by employing available numerical algorithms

in open software packages such as CLAPACK and Numerical Recipes in C. The lower
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layser of the sensor node is designed to collect data from different types of sensors to

support multi-modality sensing. The web service at sensor node level lowers the power

consumption of the sensor node by reducing the amount of data transmitted. Users can also

view the result of data processing and damage diagnosis online.

Thirdly, the dissertation studies the optimal control of mobile agents in artificial immune

system based (AIS-based) monitoring networks. Artificial immune system (AIS) is an

artificial intelligence technique inspired by the principles and features of natural immune

systems. AIS can be applied to the scenarios where a parallel, distributed, and adaptive

system is desirable. In AIS-based monitoring networks, the monitoring work is achieved

by a group of mobile agents which are equipped with pattern recognition algorithms.

The optimal control of agents includes agent generation and agent distribution. The

optimization of the agent generation is to minimize the response time for the mobile agents

to diagnose the damage. The optimization of agent distribution is to increase the probability

of damage detection and extend the lifetime of a monitoring network. The optimization

algorithms are implemented by utilizing genetic algorithms to find the non-dominated

solutions as close to Pareto front as possible.

Finally, mobile agent technology, high computational power monitoring networks, and

pattern recognition techniques are applied to structural health monitoring and driving cycle

pattern recognition. In mobile-agent-based structural health monitoring application, mobile

agents migrate from user’s computer to remote sensor nodes which are mounted on a scaled
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steel bridge. The agents diagnose if the bridge is in normal pattern or damaged pattern by

utilizing the autoregressive (AR) model [4] coefficients of the acceleration data collected

by the senor nodes. A diagnose report is then sent back to the remote user by the mobile

agents. In the damage localization application, the distance between the feature vectors of

the normal pattern data and damaged pattern data is calculated for each sensor. The result

shows that the closer the sensor is to the damaged location, the larger this distance value is.

This finding indicates that the distance between the feature vectors of different patterns can

be used as a measure for the damage localization. In the driving cycle pattern recognition

application, four federal driving cycles are used to generate reference feature vectors. Real

world driving cycles collected by a mild-hybrid Chevy Malibu driven in the urban and

suburban area are used to validate the effectiveness of the reference feature vectors for

driving cycle pattern recognition. In the last application, a web-based structural health

monitoring network is designed to provide sensor level web services. This web-based

monitoring network is able to display remote sensor data in a web browser and perform

damage diagnosis.
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Chapter 2

Literature Review

A literature research was conducted to understand the state of the art of the dissertation

research area. This chapter reports the literature review results in the area of pattern

recognition, mobile agents, agent networks, and artificial immune systems.

2.1 Pattern Recognition

Pattern recognition is a technique to assign test objects into categories or classes [5] based

on the features these objects possess. Pattern recognition is of importance in many areas,

including character recognition [6, 7, 8], machine vision [9], data mining [10, 11, 12],

speech recognition [13, 14] and computer aided diagnosis [15]. Pattern recognition
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typically contains two stages of work: feature extraction and pattern classification [5]. The

first stage selects properties of the studied object which can best describe the object and

be used to distinguish itself from other objects. The second stage is to classify the object

to one of known classes using a pattern recognition algorithm. The pattern classification

algorithm is also called a classifier.

Feature extraction method is often used in pattern recognition and image processing

[16, 17, 18, 19]. In image processing, the visual factors are usually adopted as the

image features, generally including edge, shape, color and texture [20, 21, 22]. In pattern

recognition, the features to be extracted depend on the specific problem. To extract

features from time series, a number of methods have been proposed, including Single Value

Decomposition (SVD) [23], Discrete Fourier Transformation [24, 25], Discrete Wavelet

Transformation [26], Adaptive Piecewise Constant Approximation [27], Discrete Cosine

Transformation [23], Chebyshev Polynomials [28], Piecewise Aggregate Approximation

[10], and Symbolic Aggregate Approximation [29].

The second stage of pattern recognition is the classification of the test objects.

Classification is to categorize the feature vectors of the test objects into corresponding

patterns. The algorithm to realize the classification is called a classifier [5, 30]. If all the

training data have class information, the classification is called supervised classification.

The commonly used supervised learning classification algorithms include: Naive Bayesian

classifier [31, 32], decision trees [33, 34], support vector machine [35, 36] and K-Nearest
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Neighbor [5, 37]. In unsupervised classification, training data don’t have class information.

The classification algorithms for unsupervised classification are clustering algorithms,

including K-means clustering [38, 39] and Hierarchical clustering [5, 40]. An unsupervised

pattern recognition method inspired by artificial immune system is proposed for structural

damage classification in [41].

2.2 Mobile Agents and Agent Networks

A mobile agent is the composition of computer program and data which can travel from

one computing platform to another. The agent technology becomes popular for the

reasons such as: parallel performance of tasks, dynamic adaptation to changing conditions,

easy deployment of new program and being able to exchange information. The agent

concept has been widely adopted in many areas such as: control system [42, 43], network

management [44], information management [45], E-commerce [46, 47]. The existing agent

platforms include: MOLE [42], Aglets [48, 49], Concordia [50], Ara [51], TACOMA

[52], and Mobile-C [3]. Mobile-C is an embeddable mobile agent system compliant

with Foundation for Intelligent Physical Agents (FIPA). The FIPA is an internationally

recognized agent standards.

In a mobile agent network, agents can carry data and programs while moving from one

computing platform to another. One task can be decomposed into several sub-tasks and
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these sub-tasks can be performed by multiple agents. These agents work cooperately

and dynamically adapt themselves to the changing environment. Agent coordination

mechanism is often designed to enable agents cooperation to optimize the performance

of the overall agent network. One important feature of an agent network is its scalability.

The number of the network nodes can be easily adjusted based on the task scale.

The agent platform adopted in this work is Mobile-C, a defined above FIPA compliant

agent platform for mobile C/C++ agents [3]. Ch [53], an embedded C/C++ interpreter has

been integrated into Mobile C platform. One advantage of C/C++ being the agent program

language is that the agent can interface with the hardware and low-level software. A large

amount of existing C/C++ programs can be reused for the mobile agent programs. All

the agents running on this platform are composed of XML code and C/C++ programs.

For each agent, the C/C++ program is wrapped by the XML code which specifies the

identification information of an agent, including ID number, destination, itinerary and other

details. Mobile-C has been successfully applied to some fields, such as: traffic detection

and management [54], vision fusion for robotics [55] and flexible automation systems [56].

2.3 Artificial Immune Systems

Artificial immune systems are computational systems inspired by the ideas, processes and

theories of the biological immune system [57, 58]. The biological immune system can
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detect various antigens, and identify them so as to protect the healthy cells and organs.

Immune cells, such as B cells and T cells are major players to recognize and eliminate the

antigens. If the receptor of a B cell matches the feature of an invading antigen, this antigen

will be bound by the B cell. The infected cells will be killed by the activated T cells. If a

new type of antigen invades a healthy organ, B cells whose receptors have high affinity with

the antigen will be activated. After a process of clonal selection, additional B cells with

similar receptors are generated. The B cells whose receptors have high affinity with the

antigens become the memory cells and will stay in the immune system for a relatively long

time. The immune system can quickly react to this type of antigen when it appears again.

Artificial immune system has found its applications in data analysis [59], computer security

[60], unsupervised structural damagepattern recognition [41], misbehavior detection in

mobile ad hoc networks [61].
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Chapter 3

Theoretical Background of Pattern

Recognition

3.1 Concept of Pattern Recognition

Pattern recognition is the scientific study of how to describe and distinguish patterns and

reasonably classify these patterns into categories. A pattern is the abstract entity to be

recognized or identified. Pattern recognition technique finds its applications in a number

of fields, including: character recognition where "pattern" refers to a specific character,

computer aided diagnosis where a "pattern" refers to images captured by microscope,

internet security where a "pattern" may refer to emails and programs, biological statistics
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where a "pattern" may refer to a DNA sequence and speech recognition where a "pattern"

may refer to human being speech waveform. There are two types of pattern recognitions:

supervised learning and unsupervised learning. In supervised learning, all the categories

are known and the training data have class labels. In unsupervised learning, there are no

predefined categories.

The process of pattern recognition typically includes following steps: (1) Collect data from

the object to be classified; (2) Data preprocessing: such as data normalization (3) Feature

extraction: identify a number of features to describe the object. These features form a

feature vector. (4) Classification: assign the object to a category using a classification

algorithm.

3.2 Feature Extraction

Time series is one of the most commonly used data formats in real world. It is being

generated in a tremendous speed from almost every application area. Due to its high

dimension, direct processing and storage of time series in its raw format is expensive.

"Two key aspects for achieving effectiveness and efficiency when managing time series

data are representation methods and similarity measures" [62]. In the last decades,

a number of representation methods and similarity measures have been proposed to

extract features from time series data for indexing, classification, and clustering. The
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objective of feature extraction is to find a representation at a lower dimensionality that

preserves the fundamental characteristics of the original time-series data [63]. The time

series representation methods can be classified as shape-based method, structure-based

(or model-based) method, and dimensionality reduction. For long time series data,

model-based and dimensionality reduction methods are more effective.

Model-based time series representation methods extract global features from time series,

create feature vectors, and use these feature vectors to measure similarity of time series for

classification and clustering. Time series data are usually fitted into models, such as Box

Jenkins model or Markov Model, and the parameters of the model are used to form feature

vectors. The dimensionality reduction methods are typically based on data transformation.

Many dimensionality reduction methods have been reported in the literature, such as

Discrete Fourier Transformation (DFT) [24, 25], Single Value Decomposition (SVD)

[23], Discrete Wavelet Transformation (DWT) [26], Piecewise Approximation [27], and

Chebyshev Polynomials (CHEB) [28].

Similarity measure is important for evaluating feature extraction methods. There are over a

dozen distance measures have been reported in the literature for mining and indexing time

series. These similarity measures include Euclidean Distance [25], Mahalanobis Distance,

Cosine Distance, Standardized Euclidean (Seuclidean) Distance, Correlation Distance, and

Dynamic Time Warping (DTW) [64, 65].
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3.2.1 Model-based Feature Extraction Methods

In this dissertation, autoregressive model is used to model a time series data. The AR

model-based feature extraction method fits time series data into an AR model and uses the

coefficients of the AR model as members of the feature vector. To reduce noise effects, the

time series data Z are normalized by

xi =
zi−µi

σi
i= 1,2, · · · · · · ,n (3.1)

where µi and σi are the mean and standard deviation of the time series Z.

Then, the normalized time series data x can be fitted into an p-order AR model as shown in

equation 3.2,

xk =
p

∑
i=1

αixk−i+ rk k = p+1, · · · · · · ,n (3.2)

where αi, i= 1,2, ..., p are the coefficients of the AR model. The feature vector of the time

series data x, F(X), is composed of the coefficients of the AR model as shown in Equation

3.3,

F(X) = (α1, α2, · · · · · · ,αp)T (3.3)
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3.2.2 Discrete Fourier Transform

The Discrete Fourier Transform (DFT) is one type of discrete transform which transforms a

function in the time domain into another in the frequency domain. Given a time series with

the length of N, the DFT of is defined to be X consisting of complex numbers as shown in

Equation 3.4

Xk =
N

∑
i=1

xi−1e
− j 2πN (k−1)(i−1), k = 1,2, · · · · · · ,N (3.4)

To reduce the dimensionality of the time series X into a low dimensional feature

space, the first n model frequencies f1, · · · , f2, · · · , fn and corresponding signal amplitudes

a1,a2, · · · ,an are used to form feature vectors. The general form of a feature vector can be

represented as:

F(X) = ( f1,k×a1, f2,k×a2, · · · , fn,k×an) (3.5)

where k is the weighting factor of the amplitudes and n is the number of frequencies to be

used.
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3.2.3 Discrete Wavelet Transform

Discrete Fourier transform is a powerful and commonly used method for feature extraction.

However, discrete Fourier transform does not have time stamp in the DFT coefficients.

From the DFT coefficients, the frequency element can be seen but users won’t know

at which time these frequency elements occur. To overcome this disadvantage, discrete

wavelet transform (DWT) is adopted for feature extraction and dimension reduction

[26, 66, 67, 68]. The DWT can keep signal properties in both time and frequency

domain thus carry more information than DFT coefficients. In [26], an efficient time

series matching technique is proposed by using Haar Wavelet Transform. Discrete wavelet

transform decomposes a signal into layers of coefficients. These coefficients contain both

frequency and time domain information. Discrete wavelet transform has been applied for

feature extraction in different fields [66, 67, 68]. Given a time series with the length of n,

the discrete wavelet transform (DWT) of x is calculated by passing the time series signal

through a series of low pass and high pass filters as shown in equation

yl[n] = x[n]∗g[n] =
∞

∑
k=−∞

x[k]g[2n− k] (3.6)

yh[n] = x[n]∗h[n] =
∞

∑
k=−∞

x[k]h[2n− k] (3.7)
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where g[n] and h[n] are low pass filter and high pass filter, respectively. The outputs

of the high pass filter are detail coefficients while the outputs of the low pass filter

are approximation coefficients. The approximation coefficients are further decomposed

in the next iteration while the detail coefficients are kept as the current level wavelet

coefficients. To form feature vectors from wavelet coefficients, feature extraction method

proposed in [69] is employed. This feature extraction method consists of two steps: cluster

determination and feature extraction. The cluster determination process divides the wavelet

coefficients into a number of clusters c1,c2, · · · · · ·ck and the feature extraction process

calculates the feature vector. The elements of a feature vector are Euclidean norms of each

cluster F = (‖c1‖2,‖c2‖2, · · · · · ·‖ck‖2). The clusters c1,c2, · · · · · ·ck are determined as row

vectors such that each cluster contains a significant wavelet coefficient near the midpoint

of each cluster.

Figure 3.1 shows the process of cluster determination and feature extraction from the raw

data of multiple data patterns. First, the DWT coefficient matrices of raw data frommultiple

patterns are calculated. The dimensions of these coefficient matrices are same if time series

data have same length. To find significant wavelet coefficients, the Central Limit Theorem

[70] is applied to the elements of the DWT coefficient matrices to generate a new matrix G

as shown in equation 3.8

G=
1

σ(R(∑Kk=1 B̃k))
(
K

∑
k=1

B̃k−µ(R(
K

∑
k=1

B̃k)) · I) (3.8)
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where R is an operator to reduce a matrix by its last row, I is a matrix which has the

same size as B̃k and has all the elements of 1. The members of the G matrix are then

compared with a threshold and save the comparison results to the corresponding location

in a matrix Gb. The comparison result is 1 when the member of the Gmatrix is greater than

the threshold and 0 when the member of the G matrix is less than the threshold. Pittner

and Kamarthi [69] prove that the 1s in the matrix Gb appear at the same locations where

the significant wavelet coefficients occur in the matrices B̃k. Based on the Gb matrix, the

clusters are then formed with following rules: (1) each cluster contains one "1" element; (2)

if one row contains no "1" element, this row is treated as one cluster. After the boundaries of

each cluster are determined from the Gb matrix, the wavelet coefficients in the B̃k matrices

are grouped into clusters using the cluster boundary information obtained from the Gb

matrix. The feature vector of the B̃k matrix is calculated with the Euclidean norms of each

cluster as shown in Figure 3.1.
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Figure 3.1: Feature extraction from DWT coefficients
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3.2.4 Principal Component Analysis

Principal component analysis (PCA) is one of the most important data transform methods

that can reduce the dimension of the data. Principal component analysis is also named

Karhunen-Loeve transform (KLT). Assume that there are N vectors each of which contains

M variables, and we want to compress these vectors, an M×N matrix to an L×N matrix.

These vectors can be represented as X1 · · ·XN , and all of them can be represented as column

vectors with M rows. The empirical mean values of each dimension is:

u[m] =
1

N

N

∑
i=1

X [m,n] (3.9)

Every row of the raw data is subtracted by the mean value of this row resulting in B =

X −uh, where h is a row vector with all the elements as 1. The M×N matrix B represents

the deviations from the mean. The M×M covariance matrix can be calculated by:

C = E[B ·B∗] = 1
N

∑B ·B∗ (3.10)

To find the Karhunen-Loeve transform of matrix X , the eigenvectors and eigenvalues of C

are calculated. The eigenvectors of matrix C form an M×M matrix V and the eigenvalues

of C compose an M×M diagnal matrix D. Sort the eigenvalue matrix D in an order of

decreasing eigenvalues. Rearrange the eigenvector matrix V to pair the ith eigenvector
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with the eigenvalue. Select the first L columns of V as a subset. The subset matrix is

labelled asW . Then, the Karhunen-Loeve transform (Y ) of the matrix X can be represented

as:

Y =W ∗ · B
s ·h (3.11)

where s is a vector whose elements are the square root of each element along the diagonal

of C.

3.2.5 Singular Value Decomposition

The singular value decomposition has been widely used for rank and dimension reduction

in pattern recognition and statistics [5]. SVD is based on the global information of the

matrix and has good capability of retaining information, which makes it a good candidate

for feature extraction. The singular value decomposition for a l×n sized matrix X of rank

r can be written as:

X = [u0,u1, ...,ur−1]
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where ui,vi are the column vectors of l× l and n×n unitary matrix respectively, and λi are

the nonzero eigenvalues of the matrix XHX . The original matrix X can be approximated by

a lower rank matrix by using singular value decomposition. Suppose the lower rank value

is k, then the approximate matrix can be written as:

X ≃ X̂ = [u0,u1, ...,uk−1]
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=Uk[a0,a1, ...,an−1] (3.13)

where uk is a matrix containing the first k columns of a l× l unitary matrix and an is the

product matrix of λ
1
2

k V
H
k . So the relatively high dimensional matrix can be represented by

the low dimensional matrix. If k << r, the computational burden can be greatly reduced.

3.3 Pattern Classification Methods

Pattern classification is a process to identify a pattern and make a reasonable decision of

which category this pattern belongs to. The algorithm of pattern classification is also called

classifier. In most cases, when talking about "classifier", the users have already trained the

data and own the information of categories. The new coming patterns will be labeled by

quantitatively analyzing the parameters of them. The number of the categories is limited, so

the training data patterns can be represented as: ( f1, l1),( f2, l2), · · · ,( fn, ln), f represents the
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quantized characteristics of the training data and l is the label of the pattern. These existing

training data can help establish a classifier to evaluate and identify any new observations.

The most commonly used classifiers are: k-nearest neighbors, support vector machine,

naive Bayes, decision tree, and so on.

3.3.1 K-nearest Neighbor

K-nearest neighbor is an intuitive classification method based on the number of closest

training data features in a feature space [5]. The K nearest neighbor algorithm requires

the set of training data and the similarity measure to determine the "closeness". Suppose

that there are totally N training feature vectors belonging to M number of classes. Among

the k nearest neighbors of the test feature vectors, the amount of feature vectors belonging

to each pattern is m1,m2, · · · ,mM, respectively, and ∑Mi=1mi = k. The test data will be

assigned to the group with most training features in the k nearest neighbors. If k = 1, then

the label of the test data feature vector will be determined by the nearest neighbor only.

Euclidean distance is often adopted as the similarity measure between features, however,

this is not always the case. The selection of similarity measures is problem dependent.

The success rate of KNN method for a large k value is relatively higher than that for a

small k value.However, large k value destroys the locality of the estimation and increases

the computation load. Another factor that affects the performance of the KNN method is

the process of calculating the distances of all the feature vectors in a feature space and
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searching for the nearest neighbors. KNN method is easy to implemented, however, as a

lazy learning algorithm, it has large storage requirements.

3.3.2 Support Vector Machine

A support vector machine is one type of supervised learning methods for data analysis and

classification. For a two-class classification problem, an SVM can categorize the input

data into one of the two possible classes. Suppose that the test data are p-dimensional

and belonging to two classes. If there is a (p− 1) dimensional hyperplane which can

separate these test data correctly, this hyperplane can be regarded as a linear classifier [5].

The simplest case is that one straight line can divide a 2D plane into two parts and each

part can contain the points of one pattern. There are multiple ways to draw this line to

divide the plane in order to separate the points into two groups, however, there is a best

approach which can make the line having the longest distance with points of each pattern.

A linear support vector machine is to find a high dimensional hyperplane that can separate

test data vectors. Technically, one hyperplane can only be able to divide the test data into

two groups. If there are more than two patterns, the separation can be done in the form of

one and the rest or in the tree structure. Let xi, i= 1,2, · · · ,N be the P-dimensional feature

vectors of the training data. The group of data can be represented as:

TD= (xi,yi)|xi ∈ R
P,yi ∈ (−1,1)ni=1 (3.14)
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The hyperplane g(x) can be represented as [5]:

g(x) = ωT x+ω0 = 0 (3.15)

where ω is a weight vector and ω0 is a threshold. To find out the optimal hyperplane, the

optimization problem of finding the hyperplane is summarized as:

minimize J(ω,ω0) ≡
1

2
‖ω‖2 (3.16)

sub ject to yi(ω
T xi+ω0) ≥ 1, i= 1,2, · · · ,N (3.17)

The solution of this optimization problem is:

ω =
N

∑
i=1

λiyixi (3.18)

where λi are Lagrange multipliers. The parameterω are used to generate the feature vectors

which are called support vectors lying on the margin of the hyperplane.
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3.3.3 Naive Bayes

The naive Bayes classifier can predict the probability of a test pattern belonging to a

particular category. The classifier is based on Bayes’ theorem and assumes that the effects

of all the features on a given pattern are conditionally independent. This assumption

simplifies the computation and thus the classifier is considered "naive". Suppose that P(x|y)

is the conditional probability of x occurring given the condition of y, then this probability

can indicate howmuch x can contribute to the judgment of the happening of y. The function

for the Naive Bayes classifier is:

Ypredict = argmax P(Y = y)
n

∏
i=1

P(Xi = xi|Y = y) (3.19)

In real world test, the product of the small probabilities may cause float point overflow, so

log function can be used to replace the multiplication. Since log function is monotonic, the

classification result will be the same.

Ypredict = argmax {log(P(Y = y))+
n

∑
i=1

log(P(Xi = xi|Y = y))} (3.20)

In naive Bayes classifier, the probability of each category and the probability of every

feature occuring in each category are all involved in the classification function. This

classification method is simple but works fine in many scenarios.
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3.3.4 Decision Tree

A decision tree is one of the most popular methods for classification which constructs a

multistage tree-like model for decision making. In each stage, one decision is made based

on the criterion on that stage and a class keeps being rejected until it arrives at a pattern

whose criterion the class can satisfy. As a nonlinear classification method, decision tree

works well with the scenarios when there are many classes. Being a graphical tool, decision

trees makes the problem visable and gives users an intuitive understanding. There are three

types of nodes in a decision tree: (1) decision node, which is commonly represented by a

square. Decision nodes represent the controllable factors and decisions can be made; (2)

event or chance node, which is represented by a circle. This kind of node represents the

uncontrollable factors: some events may happen, but they are beyond the decision maker’s

control ability. (3) terminal node, which is represented by a triangle. The terminal node

represents the decision making result of a combination of decisions and events. The size

of the decision tree needs to be carefully determined: it should be large enough but not too

large to lose the generalization [5]. A drawback of the decision tree classifier is it’s sensitive

to the change of the training data. A subtle change of the training data may generate a quite

different decision tree.
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3.3.5 Bio-inspired Pattern Recognition

3.3.5.1 Neural Network Classification

The neural network is a paradigm for data and information analysis inspired by the

biological neural network. It’s popular due to the ability of exploring information from the

complicated raw data and adaptive learning. The neural network is composed of a number

of neurons which are interconnecting functional units. Each neuron has multiple inputs and

multiple outputs and can work in two modes: training mode and using mode. The neurons

are trained in the training mode by the input training patterns and learns the rules between

input patterns and output result. When working in the using mode, the neurons identify

the input test pattern and try to find out the corresponding output pattern if there is. If the

test patterns are not the same as the input patterns in the training process, the firing rule

is adopted to determine the output. The firing rule is an decision making strategy in the

neural network which increases the network flexibility. For any unknown input pattern, the

network will find a known input pattern which has the highest similarity with the unknown

pattern, then the firing rule decides if the output of the known pattern is used as the output

of the unknown pattern. A neural network basically consists of three layers: input layer,

hidden layer and output layer. The feed-forward neural networks only allow the signal flow

to strictly goes from the input to output, while in the feedback network, signal can travel
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in both directions which makes the feedback neural network powerful but complicated.

Figure 3.2 illustrates the feed-forward and feedback networks [71].

Figure 3.2: Structure of a simple neural network

3.3.5.2 Artificial Immune Pattern Recognition (AIPR)

The desirable characteristics of the immune system, such as adaptation, evolution, and

fault tolerance, have inspired the applications of immune concept for supervised and

unsupervised structural damage detection and classification [41, 72]. In supervised

structural damage classification [41], the pattern representative feature vectors for each

data pattern are generated by training data with appropriate pattern labels. By contrast,
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for unsupervised structural damage pattern recognition algorithms [72], the pattern label

information of the training data is not available. Figure 3.3 shows the concept of

artificial immune pattern recognition (AIPR) based structural damage pattern recognition.

The damage classification is to classify the detected damage to one of the possible

damage patterns. The AIPR-based damage pattern recognition is achieved by establishing

representative feature vectors for each damage pattern in a training process. The training

process of the AIPR algorithm is inspired by the clonal selection strategy of the natural

immune system. The initial representative feature vectors are generated by the random

selection of feature vectors from the training data. The rest of feature vectors are used to

stimulate the evolution of representative feature vectors using clonal selection principle.
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Figure 3.3: AIPR-based pattern classification

Let fr = ( fr1, fr2, · · · , frp)T and ft = ( ft1, ft2, · · · , ft p)T denote a representative feature

vector and a training feature vector, respectively. The affinity between these two feature
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vectors is defined as

a f f ( fr, ft) = 1− 1
2

√

p

∑
i=1

( fri− fti)2 (3.21)

The number that a representative feature vector will be cloned, CloneNum , depends on its

affinity with the training feature vector,

CloneNum= round(CR∗a f f ( fr, ft)) (3.22)

where CR is the clonal rate. The cloned representative feature vectors undergo a process

of maturation which increases the diversity of the representative feature vectors using the

formula below.

fr,mutated = fr+MV ×φ (3.23)

where fr,mutated is the mutated representative feature vector and MV is the mutation value.

The vector φ = (φ1,φ2, · · · ,φp)T is a random vector. Each element in φ is defined by

φi ∈ N(0,σ2), where N(0,σ2) is a normal random variable with the standard deviation of

σ . The clonal selection principle allows the AIPR algorithm to mutate its representative

feature vectors towards matching the training data. The AIPR algorithm can study and

store different data patterns by creating representative feature vector clusters for input data

patterns.
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3.4 Unsupervised Clustering Methods

Unsupervised clustering refers to the process of partitioning unlabeled data into clusters.

The cluster is defined as a set of similar objects which are grouped together. If all the

objects are represented by feature vectors in a feature space, the distance between any two

feature vectors in the same cluster is shorter than the distance from any feature vector in this

cluster to any other feature vectors which is not in this cluster [73]. Clustering technique

is regarded as unsupervised learning and can be divided into several major categories

[5]: sequential algorithms, hierarchical clustering algorithms, clustering algorithms based

on cost function optimization and other special clustering techniques. The most popular

clustering approaches are k-means clustering, hierarchical clustering and fuzzy clustering.

3.4.1 K-means Clustering

If there are n feature vectors {xi}ni=1 in the feature space to be partitioned into k clusters

C1,C2, · · · ,Ck (k ≤ n), the centroid of each cluster can be represented as:

µi =
1

ni
∑
j∈Ci
x j (3.24)
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where ni is the number of elements in cluster Ci. The initial clusters are usually randomly

selected. If Euclidean distance is used for similarity measure, the sum of the squared error

is:

E =
k

∑
i=1

∑
x j∈Ci

‖x j−µi‖ (3.25)

where µi is the mean of the points in the cluster i. So the clustering problem turns to be

seeking the minimum value of the error.

Generally, the satisfying partitioning is achieved by iterative calculation [74]: Assign each

pattern to the cluster whose centroid this pattern is closest to:

C
(t)
i = {x j : ‖x j−µ

(t)
i ‖ ≤ ‖x j−µ

(t)
i′ ‖, f or all i′ = 1,2, · · · ,k} (3.26)

Calculate the new means of the clusters for the next iteration:

µ t+1i =
1

|C(t)
i |

∑
x j∈C(t)

i

x j (3.27)

where t is the iteration index. The iteration stops when there is no change of the pattern

assignment.

32



3.4.2 Hierarchical Clustering

Hierarchical clustering is a technique which can construct a hierarchy of data clusters.

Hierarchical clustering includes agglomerative algorithms (bottom up) and division

algorithms (top down). In agglomerative algorithms, if there are n sample patterns, there

will be totally n levels in the hierarchy and each sample pattern is in a cluster at the

beginning. So there are n clusters in the first level of the hierarchy and at each level, two

closest clusters are merged, until all the patterns are merged into one single cluster. The

division algorithms run are in the opposite direction: the hierarchy starts from one cluster

and more clusters are produced at each step by splitting single clusters.

There are multiple ways to calculate the distance between two clusters A and B. One

example is to calculate the minimum distance between two points from the two clusters:

D(A,B) = min distance(ai,b j), ai ∈ A,b j ∈ B (3.28)

The other example is to calculate the maximum distance between two points from the two

clusters:

D(A,B) = max distance(ai,b j), ai ∈ A,b j ∈ B (3.29)
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3.4.3 Fuzzy Clustering

Conventionally clustering methods classify a studied object exclusively to a single category

[5, 75]. However, in some real world problems, this hard clustering technique is

insufficient. With fuzzy clustering technique, clusters with vague boundaries can be

constructed and one object can belong to more than one clusters to some degree. Suppose

that there are n objects X = {x1,x2, · · · ,xn} and K number of clusters. The degree of

describing how much an object belongs to a cluster can be denoted as:

uik ≡ µk(xi), i= 1, · · · ,n, k = 1, · · · ,K (3.30)

where

uik ∈ [0,1],∀i,k;
K

∑
k=1

uik = 1, ∀i (3.31)

Fuzzy C-Means is a fuzzy clustering method which minimizes the cost function [75]:

J(U,v1, · · · ,vK) =
n

∑
i=1

K

∑
k=1

(uik)
md2(xi,vk) (3.32)

where vk denotes the centroid of the cluster k and d
2(xi,vk) is the square of the Euclidean

distance between xi and vk. m ranges within (1,∞) and indicates the degree of fuzziness.
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The solutions for the above equation are [75]:

uik =
1

∑Kl=1{d(xi,vk)/d(xi,vi)}
2
m−1

, vk =
∑ni=1(uik)

mxi

∑ni=1(uik)
m

(3.33)
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Chapter 4

Mobile Agent and AIS-Based

Monitoring Networks

4.1 Mobile-Agent-based Monitoring Networks

As introduced in Chapter 2, mobile agents can transport data and program from one

computing node to another and perform the assigned task on the destination platform.

This section presents a mobile agent approach for building a monitoring network to reduce

data transmission and enhance the flexibility of distributed monitoring systems. Taking

advantage of the mobility of a mobile agent system, the presented monitoring network

allows moving diagnosis programs to data sources and performing abnormal condition
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diagnosis locally as shown in Figure 4.1. The distributed sensor nodes can dynamically

accept mobile agents for the deployment of new abnormal condition diagnosis algorithms

and sensing strategies in response to the changes of monitoring conditions. In a mobile

agent-based monitoring network, mobile agents can be sent to the hardware platforms in

the network by the remote user. Mobile agents can travel from one hardware platform

to another with program and its execution state. After execution of the assigned task,

the results are sent back to the users. To identify each agent, an identification number

accompanies the mobile agent throughout its lifetime. To support mobile agent generation,

Figure 4.1: A mobile agent-based monitoring network

migration, execution, and management, the presented mobile agent based sensor network

platform is developed based on Mobile-C [3, 41, 76]. In a mobile-agent-based monitoring

network, mobile agents of different types could be generated and sent to hardware platforms

according to users’ requests. These agents will patrol over the network and perform the

assigned tasks as requested.

38



4.2 AIS-based Monitoring Networks

The main features of the immune system include adaptive immune response to the invading

pathogens and pattern recognition capabilities. When an invading pathogen is detected by

the host, corresponding biological response will happen on different levels of biological

organization [77]. Immune cells, such as B cells, T cells, and antigen presenting cells, will

be activated [78]. In the process of adaptive immune response, the amount of B cells can

increase due to one kind of specific antigen and the newly created B cells can generate

more antibodies to bind with the intruders [79].

The advantages of the immune system, such as adaptation, evolution, and fault tolerance,

have inspired the applications of immune concept for monitoring networks. In AIS-based

monitoring networks, a mobile monitoring agent is selected for cloning when it detects

abnormal condition in a sensor unit. Multiple copies of this type of monitoring agents

will be created. As a result, the type and amount of mobile monitoring agents are

adapted to detected abnormal pattern. The framework of an AIS-based monitoring

network consists of (1) an agent-based network middleware (mobile agent system)

[3, 80] to support the generation, execution, migration of mobile monitoring agents;

(2) clonal selection algorithm for the cloning of mobile monitoring agents who detect

abnormal condition in distributed sensor units; (3) knowledge base for keeping updated

representative feature vectors (memory cells) for normal and abnormal condition patterns
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and performing confirmation of abnormal condition detected by a mobile monitoring agent;

(4) agent interaction protocols, for example, agent communication protocols amongst

mobile monitoring agents, knowledge base agent, and the clonal selection agent for cloning

a mobile monitoring agent.

4.3 Mobile Agent Network Platform

To integrate a mobile agent system with sensor nodes and provide high computational

power for anomaly detection, an embedded computer-based wireless sensor node integrated

with C numerical libraries is developed to form a mobile-agent-based network.

4.3.1 Sensor Node Design

4.3.1.1 Hardware Design

Sensor nodes are building blocks of wireless sensor networks. For the SHM sensor

networks, the desirable characteristics of sensor nodes are as follows. First, high

computational power sensor nodes are highly recommended. Local data processing can

reduce the raw data transmission over a network. The reduction of data transmission

can save network bandwidth and energy [81]. Second, open software implementation
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is desirable to promote software reuse. The open software architecture allows user

communities to participate in improving node functionalities and developing new software.

Third, multimodality sensors help to achieve a better assessment of the structural state from

a comprehensive view of the structure. Finally, reprogrammable sensors are welcome to

increase the adaptability and support the multitasking purposes.

Having the aforementioned node design criteria in mind, we chose a finger size embedded

computer called Gumstix [82] as sensor node computing platform. The sensor node

consists of three boards: The sensing board lies at the bottom; the Gumstix board is

located in the middle; and a wireless communication board sits at the top. Three boards

are connected together through predesigned connectors. The Gumstix board communicates

with the sensing board through I2C bus, and connects to the wireless communication board

through a parallel port. The volume of the sensor node is about 4×2.4×0.65 in3.

4.3.1.2 Software Design

Targeting for embedded applications, Gumstix does not include an on-board compiler.

The Gumstix application software is usually developed on a host computer using a

cross-compiler, and then, downloaded to the Gumstix. After setting up the Gumstix,

Gumstix can program the sensor board microcontroller through I2C-load and in system

programmer (UISP).
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To facilitate the implementation of damage diagnosis algorithms on sensor nodes, a number

of numerical libraries are integrated into sensor nodes. Thanks to the open source software

packages Ch, CLAPACK [83], and Numerical Recipes in C [84], which make it easy to

perform damage diagnosis on sensor nodes and build an open software architecture. Ch is

an embeddable C/C++ interpreter which supports all the standard libraries and features of

the ISO C90 Standard [53].

The lower layer embedded software manages the peripherals of ATmega128L, such

as UART, SPI, I2C, and on-chip ADC. Impedance measurement uses I2C module to

transmit data and send commands, while passive sensing module communicates with

the microcontroller via SPI bus. The passive data acquisition is handled in a timer

interrupter processing module. The active sensing and the humidity and temperature data

are processed in the microcontroller main control loop.

To support the execution and migration of mobile monitoring agents, an embeddable

mobile agent system, mobile-C, is integrated with the sensor unit as shown in Figure 4.2.

Mobile-C is an IEEE FIPA [85] compliant mobile agent system supporting mobile C/C++

agents. It has a small footprint and is easy to be integrated with resource-constrained

systems, such as sensor networks. The Mobile-C in sensor nodes can host both stationary

agents and mobile agents. Stationary agents are those staying in the sensor nodes where

they are created, such as data acquisition agents and regional or central management agents.

Mobile agents are those created during the system operation and able to move to different
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sensor nodes in a network. The agencies are the main components of the Mobile-C
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Figure 4.2: A sensor node integrated with a mobile agent middleware

agent system and the runtime environment of both stationary and mobile agents [3]. Ch

[53], a C/C++ interpreter, is adopted as the agent program execution engine in Mobile-C.

The advantages of using C/C++ as the agent language include [3]: (1) C/C++ is highly

structured language with many powerful function sets; (2) C/C++ has been popular for

years, so a large number of existing programs can be reused in Mobile-C; (3) C language is

able to interface with hardware. Because Ch is not able to capture and record the execution

state of a process, so the agent migration in Mobile-C is labeled as weak migration which

only allows the data state to be transferred between hosts. In Mobile-C, XML language
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carries the responsibility of conveying agents which are composed of data states and C/C++

code and the migration messages are encoded into XML code. The task for an mobile agent

can be divided into subtasks which are saved into the task list. The task list can be updated

dynamically due to the changing user requirement. The subtasks can be performed on

different hosts, however, once the subtask begins to be executed on one host, the agent has

to stay on this host till the ongoing subtask is finished.

4.3.1.3 Lifetime Evaluation of Sensor Nodes

For energy efficiency, the sensor node is designed to operate in two different configurations:

with Gumstix and WiFi boards (three boards) or sensor board only. For agent or web-based

applications, three boards configuration is required. For simple structural data collection,

only one sensor board is needed. In a typical application, two-level network architecture

can be employed using these two configurations. The upper-level sensor nodes can use

configuration 1 (three boards) while the lower-level sensor nodes can use configuration 2

(senor board only).

Figure 4.3 shows the lifetime of the sensor node (configuration 2) if the sensor node is

powered by four 1.2V 2900mAh AA batteries. The sensor board performs passive and

active sensing periodically. Each passive sensing event collects 7500*4*2 byte data and

lasts one minute. IC chips on the sensor board including microcontroller, AD converter,

active sensing signal generator and response analyzer, SRAM, SHT15 sensor, and ZigBee
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module, can work in either active or power saving mode. The power supply voltage and

current of these chips in the active/power saving mode are listed in Table 4.1. When the

sensor board is performing passive/active sensing, the corresponding chips are in the active

mode. These chips enter power saving mode when the board is not collecting data. The

term "duty cycle" represents the ratio of the duration of active mode to a period of 10

minutes. The duty cycle is 10% if one passive sensing event happened within 10 minutes.

Figure 4.3 shows that the lifetime of the sensor board is 863 hours when the duty cycle

is 10% and the sensor board does not perform active sensing. The lifetime of the sensor

board reduces to 166 hours when the sensor board performs continuous passing sensing.

The impact of the active sensing to the lifetime of the sensor board is also shown in Figure

4.3. If the sensor board performs active sensing once every hour, the lifetime of the sensor

node decreases to 717 hours at 10% duty cycle and 119 hours for continuous passing

sensing. In configuration 1 (three boards), the Gumstix and WiFi boards work with 5V

DC power supply. The Gumstix board draws 270 mA in sensing mode and 60 mA in

power saving mode. The current of the WiFi board is 80 mA. The lifetime of the sensor

node in configuration 1 is 19 hours at 10% duty cycle and 7.6 hours for continuous passing

sensing.
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Figure 4.3: The lifetime of the sensor board vs the duty cycle of the data

collection

Table 4.1

The power supply voltage and current of chips on the sensor node

Component Voltage (V) Current (mA) Active/Power

saving mode

ATmega128 3.3 5/2

ADC (QF4A512) 3.3 17/0.6

Active sensing chip (AD5933) 3.3 10/0.0007

SRAM (CY62138CV30LL) 3.3 1.5/0.0002

Temperature and humidity (SHT15) 3.3 0.55/0.0003

ZigBee module 3.3 35/0.001

Accelerometer 3.3 0.95
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Chapter 5

Optimal Control of Agent Networks1

This chapter presents multi-objective optimization algorithms for the optimal control of

mobile monitoring agents in artificial-immune-system-based monitoring networks. To

minimize the response time for the generated monitoring agents to diagnose abnormal

condition and maximize the average affinity of the feature vectors of monitoring agents and

the abnormal sensor data feature vectors, a multi-objective genetic algorithm is developed

to find appropriate number of agent clones and the mutation rate for the cloned monitoring

agents. In the distribution optimization of mobile monitoring agents, sensor data feature

vector and the remaining battery capacity of sensor nodes are taken into consideration to

increase the detection probability and extend the lifetime of the monitoring network.

1 c©Elsevier. Portions reprinted with permission, from W. Liu and B. Chen, "Optimal control of mobile
monitoring agents in immune-inspired wireless monitoring networks", Journal of Network and Computer

Applications, vol. 34, no. 6, pp. 1818-1826, 2011.
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5.1 Genetic Algorithms and Multi-Objective

Optimization

Genetic algorithm is a population-based optimization algorithm which maintains a

population of candidate solutions. Due to its population-based nature, it belongs to the

family of global optimization algorithms. Genetic algorithm uses techniques inspired

by natural evolution to search the solutions for the optimization problems. The solution

search process consists of steps such as mutation and crossover which are inspired by the

natural evolution. The genetic algorithm starts searching from a group of initial solution

population. The initial solutions are randomly generated. Each solutioni is encoded into

a chromosome. The data structure of a chromosome is an array. The first generation of

solutions are evaluated and sorted by their performance. Then several top solutions are

picked to go through the process of crossover and mutation. The generated new solutions

will be evaluated with their parent solutions. The algorithm repeats above steps until a

stopping criterion is met.

Genetic algorithms have been widely applied to many optimization problems. In a

sensor network for agriculture application [86], genetic algorithm is adopted to design

wireless sensor network topologies by optimizing parameters which are related to the

power consumption of the sensors. Parameters of network connectivity and application
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requirements are also considered so an integrated network is designed. Khanna et al.

[87] design a reduced-complexity genetic algorithm to minimize the power consumption

of the sensor system while maximize the sensing coverage. The genetic algorithm runs

periodically to assign functions to the randomly deployed sensor nodes. In [88], a

genetic algorithm is applied for data dissemination by creating energy-efficient clusters.

The authors proposed an intelligent hierarchical clustering protocol which has better

performance than the traditional cluster-based protocols. Igor et al. [89] introduce basic

and advanced genetic algorithm implementations and applications in information fusion.

Genetic algorithm is also employed in the work of node deployment for wireless sensor

networks [90]. The GA system decides which sensor nodes should be active and which

sensor node should work as the cluster head in the network. To maximize network lifetime,

a regression model [91] is applied to find out an energy-efficient configuration for the

genetic algorithm to optimize resource allocation. The reason genetic algorithm is adopted

in this work is it can quickly search a large group of solution candidates and handle multiple

constraints and objectives.

Multi-objective optimization method is used to control agent generation and distribution

in this study. A multi-objective optimization problem has a number of objective functions

that need to be minimized or maximized under a number of constraints. The general form
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of a multi-objective optimization is described below [92].

Minimize/maximize fm(X),m= 1,2, · · · ,M; (5.1)

sub ject to g j(X) ≥ 0, j = 1,2, · · · ,J;

hk(X) = 0,k = 1,2, · · · ,K;

x
(L)
i ≤ xi ≤ x(U)

i , i= 1,2, · · · ,n

where fm(x) are M number of objective functions; g j(x) and hk(x) are inequality and

equality constrains; and the n solutions X = (x1,x2, · · · ,xn)T are restricted by lower and

upper boundaries x
(L)
i and x

(U)
i .

There exist a number of multi-objective optimization implementations. A fast and elitist

multi-objective genetic algorithm, NSGA-II [93], is one of those algorithms which has

been applied to many applications. NSGA-II employs non-dominated sorting incorporating

elitism. The goals of NSGA-II algorithm are to find a population of solutions that are

as close as possible to the Pareto-optimal front and as diverse as possible. The NSGA-II

algorithm consists of four steps. The first step combines parent and offspring, and performs

a non-dominated sorting to identify different front for each solution. The first front is

a non-dominated set in the current population and the second front is dominated by the

individuals in the first front, and so on. In the second and third steps, a new parent set is
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formed based on the rank of front level and the crowding distances. The solutions with

higher order of front levels will firstly be selected into new parent set. The selection of

solutions at same front level is based on crowding distances. The solutions with large

crowding distances will be included to increase the diversity of the solution population.

In the forth step, the selected parents generate offspring by using the crowed tournament

selection, crossover, and mutation operations.

5.2 Optimization of Agent Generation

5.2.1 Agent Generation in an AIS-based Monitoring Network

In AIS-based monitoring networks, adaptive immune response is a mechanism to manage

the amount and type of monitoring agents through clonal selection. Figure 5.1 shows

the clonal selection process in which the activated mobile monitoring agent is cloned and

mutated. The cloned mobile monitoring agents are sent to sensor nodes close to the location

where the abnormal condition is detected to find out the abnormal condition affected area.

Assume that the local communication uses ZigBee and the long distance communication

uses WiFi. The cloned mobile monitoring agents will visit N number of sensor nodes for

further abnormal condition diagnosis. The number of cloned monitoring agents, n, depends

on the clonal rate CR and the affinity between the feature vector of the mobile monitoring
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Figure 5.1: Artificial immune response

agent and the sensor data feature vector where the abnormal condition is detected. The

number of cloned agents can be calculated by equation 5.2

n= round(CR∗a f f (β ,α)) (5.2)

where the CR is an integer value used to control the number of agent clones allowed for

the activated mobile monitoring agent. Let ma. f = β = (β1,β2, · · ·βp) and sd. f = α =

(α1,α2, · · ·αp)T denote the feature vector of a mobile monitoring agent and the feature

vector of the sensor data, respectively. The affinity between the feature vector of the mobile

monitoring agent and the sensor data feature vector is defined as

a f f (β ,α) = 1− 1
2
×dist(β ,α), (5.3)
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where dist(β ,α) is the Euclidian distance between vectors α and β as shown in Equation

5.4.

dist(β ,α) =

√

p

∑
i=1

(βi−αi)2 (5.4)

The cloned monitoring agents are mutated to increase the diversity of the generated mobile

monitoring agents. The mutation is performed by mutating the feature vectors of the cloned

monitoring agents. Let (mamutated). f = γ = (γ1,γ2, · · ·γp)T denote the feature vector of a

mutated monitoring agent. The mutation is performed as shown in equation 5.5

γ = β +MV ∗ (φ1,φ2, · · ·φp)T (5.5)

where MV is the mutation value; and φi is a normal random value in the range of [−1,1].

The goal of the presented multi-objective optimization algorithm is to find appropriate

values ofCR and MV with following objective functions.

1). Minimize response time: the response time is defined as the time needed for the

cloned mobile monitoring agents to further diagnose structural abnormal condition at the

N number of sensor nodes close to the location where the abnormal condition is detected.

The response time includes both mobile agent transmitting time and abnormal condition
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diagnosis computational time

T = nsTw+Tc+[
(N−N%n)

n
−1]∗STz+[

(N−N%n)
n

−1]∗Tc+⌈N%n
n

⌉∗ [STz+Tc]+Tga

(5.6)

where Tc is the computational time for a mobile agent to execute abnormal condition

diagnosis program in a sensor node. Tw and Tz are the time needed for transmitting one

byte of data in WiFi and ZigBee networks. Tga is the time need for the genetic algorithm

to find non-dominated solutions. S is the size of a mobile agent in bytes. The number

of cloned mobile monitoring agent is n. Modulus function N%n finds the remainder of

the division N/n. Since n < N, n number of cloned agents needs to move [ (N−N%n)
n

− 1]

times in the ZigBee network and part of the cloned agents needs one more move to cover

N number of sensor nodes.

2). Maximize average affinity level (minimize average distance) among the feature vectors

of cloned mobile monitoring agents and the sensor data feature vector:

D=
1

n

n

∑
i=1

dist((mai,mutated. f ,sd. f )) =
1

n

n

∑
i=1

dist(γi,α) (5.7)

where dist((mai,mutated. f ,sd. f )) is the Euclidean distance between the feature vectors of

the ith cloned mobile monitoring agent and the sensor data feature vector.
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3). The optimization is subjected to following constraints:

n≤ N; 0<CR≤ 30; 0<MV < 1 (5.8)

The range of CR is determined from previous research results. When the value of CR is

less than 30, the number of memory cells is within a reasonable range.

5.2.2 Solutions for the Optimization of Agent Generation

To find out non-dominated solutions for defined objective functions, the fast and elitist

multi-objective genetic algorithm, NSGA-II, is used for the simulation of this optimization

problem. The values of simulation parameters are listed in Table 5.1. The non-dominated

solutions found by the NSGA-II algorithm are shown in Figure 5.2. The corresponding

solution values form a decision space as shown in Figure 5.3. From the decision space, we

can see that when the mutation value MV is high, the value of clonal rate CR is relative

small. When the MV value is small, the CR value is high. Because these solutions are

non-dominated, users can decide which solution will be adopted based on their specific

needs.
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Table 5.1

Description of progressive abnormal condition tests

Simulation parameters Value Unit

Population size 40

Number of generations 2000

Crossover probability 0.6

Mutation probability 0.5

Tc–computational time for a mobile monitoring agent to

execute abnormal condition diagnosis program

55 s

Tw–time needed for transmitting one byte of data in WiFi

network

0.727 µs

Tz–time needed for transmitting one byte of data in ZigBee

network

0.032 ms

Tga − −time needed for the genetic algorithm to find
non-dominated solutions

4 s

The size of a mobile monitoring agent in bytes,S 1900 byte
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Figure 5.2: Non-dominated solutions

To find out good solutions for the system, the impact of algorithm parameters on the system

performance is investigated. Two criteria are usually used to evaluate the goodness of

solutions [92]: (1) the non-dominant solutions should be as close to the Pareto-front as

possible; (2) the non-dominated solutions are as diverse as possible. The diversity helps
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Figure 5.3: Decision space

to achieve more uniform distribution of non-dominated solutions along the Pareto front.

Figure 5.4 shows that non-dominated solutions move towards the origin as the number of

generation increases. This means that the larger the number of generations, the closer the

non-dominated solutions to the Pareto-optimal solutions. The distance between consecutive

solutions can be used to evaluate how well the solutions are uniformly spaced [92]. The

spacing metric S is defined as follows.

S=

√

√

√

√

1

|Q|
|Q|
∑
i=1

(di−d)2 (5.9)

Where Q is the number of non-dominated solutions, di = mink∈Q∧k 6=i∑
M
m=1 | f im− f km| and

d is the mean value of the above distance measure d = ∑
|Q|
i=1 di/|Q|. In the equation of di,

M represents the number of objective functions. In our application, f1 represents response

time and f2 represents average affinity level. A smaller value of S indicates more uniform

spacing of non-dominated solutions. Figure 5.5 shows that the spacing decreases when the

number of generations increases. When the number of generations is above 1200, the value
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Figure 5.4: Final solutions with different number of generations

of S remains at similar level. In addition to number of generations, the mutation rate of the

genetic algorithm also impacts the spacing of the solutions. Comparing with Figure 5.6 and

Figure 5.7, the larger value of the mutation rate has better solution spacing. This is because

the larger mutation probability improves the diversity of solutions.
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Figure 5.5: Spacing of non-dominated solutions vs. number of generations
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Figure 5.6: Final solutions when mutation probability is 0.2
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Figure 5.7: Final solutions when mutation probability is 0.7

5.3 Optimization of Agent Distribution

Optimization of agent distribution is to find out which sensor node is the best candidate for a

mobile monitoring agent to visit so that the abnormal condition detection probability is high
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and monitoring network lifetime can be extended. Due to energy constraints, each sensor

node has its own lifespan. The remaining battery capacity in each sensor node impacts

the lifetime of the entire monitoring network. The goal of the optimization algorithm is

to distribute mobile monitoring agents to the node where they are needed for abnormal

condition detection and prolong the network lifetime. All the sensor nodes keep collecting

data from surroundings at a fixed frequency. Figure 5.8 shows the basic concept of the

presented GA algorithm for optimizing agent distribution. Assume that there is more than

one sensor node in the region where the abnormal condition is occurred. Based on the

fitness values (the distances amongst the sensor data feature vectors and the feature vectors

of a mobile monitoring agent), the GA algorithm determines on which sensor node the

mobile agent has the highest probability to detect anomaly. The algorithm also takes the

remaining battery capacity of each sensor node into consideration for the agent distribution

decision. Sensor nodes with low remaining battery capacities have low privilege to accept

a mobile monitoring agent. This distribution strategy extends the overall lifespan of a

monitoring network.

5.3.1 Genetic Algorithms for Energy Balanced Agent Distribution

A GA-based algorithm is developed to dynamically search a destination sensor node for

a mobile monitoring agent based on the remaining battery capacity of sensor nodes and

the sensor data feature vectors. The selected sensor node satisfies two criteria: (1) the
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Figure 5.8: Agent distribution based on affinity and remaining battery

capacity of sensor nodes

Euclidean distance between the sensor data feature vector and the feature vectors of the

mobile monitoring agent is small; (2) the remaining battery capacity of the sensor node is

higher than a pre-defined threshold. Figure 5.9 shows a GA-based algorithm for a mobile

monitoring agent to search a candidate sensor node to visit. The sensor data feature vectors

and the remaining battery capacities of sensor nodes are used to choose an appropriate

sensor node. The output of the genetic algorithm is the ID of selected sensor node. Sensor

IDs are encoded into chromosomes in binary format. In the experimentation discussed

in this dissertation, 8 digits of binary code are used to represent the sensor IDs. Initial

population with 10 individuals is randomly picked up in the sensor node population pool.

Each individual is an 8-bit binary string. The fitness function of the individuals is calculated

based on the Euclidian distance between the sensor data feature vector and the feature

vector of a mobile monitoring agent. Let βi = (βi1,βi2, · · ·βip)T denote the feature vector
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Figure 5.9: Genetic algorithm for searching a suitable sensor node

of the ith mobile monitoring agent and α j = (α j1,α j2, · · ·α jp)T the sensor data feature

vector of the j th sensor node. The Euclidian distance between these two feature vectors

can be calculated by Equation 5.10.

dist(βi−α j) =
√

(βi1−α j1)2+(βi2−α j2)2+ · · ·+(βip−α jp)2 (5.10)

Based on fitness values, several sensor individuals with high fitness to the feature vectors

of the mobile monitoring agent are selected. The selected sensor individuals subject to

two GA operations: crossover and mutation, to generate offspring of the parent generation.

The impact of crossover probability and mutation rate on the number of iterations to find

a destination sensor node and the ration of good solutions is discussed later. To balance

energy consumption among sensor nodes in a monitoring network, a fitness punishment
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strategy is designed in the genetic algorithm. If a sensor node whose remaining battery

capacity is below a pre-defined threshold, the fitness value of the sensor node is reduced

by multiplying a penalty factor. This punishment greatly impacts the fitness value of the

sensor node; as a result, the sensor node will most likely be eliminated from the population

of the new generation.

5.3.2 The Remaining Energy Model of a Sensor Node

For battery-powered sensor nodes, the remaining battery capacity of a sensor node can be

calculated by equation 5.11 [94]:

RC = SOC ·SOH ·DC (5.11)

where SOC (state of charge) indicates how much energy left in a battery; SOH (state of

health) is the ratio of the full charge capacity of a battery to its design capacity (DC). The

equations for calculating SOC, SOH, and DC are shown in equations 5.12, 5.15, and 5.16

[94]. The SOC is defined below.

SOC = 1−
[ 1
b1
− ( 1
b1
−SOHb2 ·DCb2)exp(∆vm−∆v

λ )]
1
b2

SOH ·DC (5.12)

where ∆v=VOCinit−v and ∆vm=VOCinit−vcut−o f f ,VOCinit indicates initial open-circuit

voltage; vcut−o f f indicates a voltage threshold below which the end of discharge is
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considered being reached; λ = (2RT )/(nF), where R indicates gas constant; T indicates

current temperature; nindicates number of electronics transferred; and F indicates

Faraday’s constant; In equation 5.12, b1 ,b2 are functions of discharge rate and temperature,

respectively [94],

b1(i,T ) = d11exp(
d12

T
)+d13 (5.13)

b2(i,T ) = (
d21

T +d22
)+d23 (5.14)

where d jk(i) = ∑4z=0mz(d jk) · iz, j = 1,2,k = 1,2,3, and mz(d jk) are constant coefficients

based on curve fitting. The values of SOH and DC can be calculated by equations 5.15 and

5.16,

SOH = {
1− exp( rn·i−∆vm

λ )

1− exp( r0·i−∆vm
λ )

}
1
b2 (5.15)

DC = { 1
b1

[1− exp(r0 · i−∆vm
λ

)]}
1
b2 (5.16)

where rn = r(i,T,nc,T
′) represents the effect of the Ohmic overpotential and electrode

reaction potential when the discharged current is constant; i indicates current; T indicates
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the current temperature; T ′ indicates the temperature that the battery has experienced

in previous cycle; and nc is the number of electrons transferred during the process of

battery charging; if nc = 0,rn = r0. Based on above equations, the remaining capacity

of a battery can be calculated with three measurable variables: battery voltage v, current i,

and temperature T .

5.3.3 Effects of Fitness Punishment Strategy on the Network Lifetime

To analyze the impact of the fitness punishment strategy based on remaining battery energy

on the network lifetime, a simulation is performed to find out appropriate penalty factor

values and remaining energy threshold. Assume that 255 sensor nodes are deployed evenly

in a 15×15m2 area. Each sensor node collects measurement data from sensors. The sensor

network periodically dispatches mobile monitoring agents to the network for distributed

anomaly detection. The total energy consumption of the network includes sensing energy

and mobile agent deployment energy Ea. The energy consumed for deploying a mobile

agent consists of mobile agent transmitting energy and computation energy. In our

monitoring network, collecting 2000 data bytes of acceleration data for abnormal condition

diagnosis consumes 1.296 J. The energy consumption for transmitting a mobile agent to

a sensor node and performing abnormal condition diagnosis consumes 183.75 J. Since

the agent deployment energy is much higher than sensing energy, only agent deployment

energy consumption is considered in this simulation. Figure 5.10 shows the percentage of
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network lifetime extension vs. the values of penalty factor and the energy threshold for

applying fitness punishment.
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Figure 5.10: Percentage of lifetime extension vs. penalty factors

5.3.4 The Impact of Genetic Algorithm Parameters on the Good

Solution Ratio and the Number of Iterations

The presented GA algorithm is implemented by the Genetic Algorithm Toolbox for Matlab

from University of Sheffield [95].

To investigate the impact of parameters on the performance of the algorithm, different
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values of mutation probability and crossover rate are used to test the ration of good

solutions and the convergence speed. The good solution is the sensor ID the data collected

by which have the highest affinity with the mobile agent and the remaining energy is

above the predefined threshold. Figure 5.11 shows the impact of the value of mutation

probability on the good solution ratio with a fixed crossover rate. The horizontal axis

represents the number of generations and the vertical axis represents the good solution

ratio. Good solution ratio is defined as the ratio of the number of good solutions to the size

of population. The crossover rate used in this test is equal to 0.7. From Figure 5.11, we

can see that the ratio of good solutions increases quickly in the first 30 generations, but, no

significant change after that.

Figure 5.12 shows the average number of iterations the genetic algorithm takes to find the

best candidate sensor node. The horizontal axis represents the mutation probability and

the vertical axis represents the average number of iterations from 12 trials. The curves

with different colors are corresponding to different values of crossover rate. From Figure

5.12, we can see that the number of iterations increases significantly when the mutation

probability varies from 0.04 to 0.06. For each crossover rate, the average number of

iterations increases as the mutation probability increases.
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Figure 5.11: Good solution ratio vs. mutation probability
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Chapter 6

Study the Effects of Similarity Measures,

the Length of Time Series Data, and the

Environmental Factors on the

Performance of Pattern Recognition 1 2

This chapter examines several time series representation methods and similarity measures

for structural damage feature extraction and pattern recognition. The study result is a

good reference for selecting effective feature extraction and similarity measure methods.

1A portion of this chapter has been submitted to Mechanical Systems and Signal Processing, Elsevier
2 c©DEStech. Portions reprinted with permission, from W. Liu and B. Chen, "Bio-inspired Computing
Algorithms for Adaptive Structural Health Monitoring," Proceedings of the Eighth International Workshop

on Structural Health Monitoring, 2011. Lancaster, PA: DEStech Publications, Inc.
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Both model-based and dimensionality reduction representation methods are investigated.

The computation of the presented time series representation algorithms can be handled by

the sensor node level software. Pattern-recognition-based structural damage detection and

classification are based on the similarity measure of damage feature vectors with normal

feature vectors. The goal of the feature extraction is to select features which will separate

damage feature vectors and normal feature vectors in the feature space. This separation will

allow us to distinguish damage and normal patterns. The performance of feature extraction

methods and similarity measures are evaluated utilizing acceleration data collected from

the Z24 Bridge as part of the System Identification to Monitor Civil Engineering Structures

(SIMCES) project [2].

6.1 Z24 Bridge Test Data

The Z24 Bridge, located in Switzerland, was monitored for almost one year fromNovember

1997 to September 1998 as the SIMCES project. The data collected from the Z24

Bridge consists of two parts: environmental monitoring system (EMS) measurements

and progressive damage test (PDT). During EMS test, both environmental and vibration

data are collected. The environmental parameters such as wind characteristic, humidity,

air temperature, soil temperature, and temperatures of multiple spots on the bridge were

monitored. In the PDT test, acceleration data were recorded from over 150 accelerometers

under normal and various damage scenarios as shown in Figure 6.1. Table 6.1 provides
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Table 6.1

Description of progressive damage tests

Test Description Test Description

Pattern 1 No Damage

(missing/corrupted data)

Pattern 9 Concrete Spalling: 12m2

Pattern 2 No Damage, Pier Hinge

Added (Baseline)

Pattern 10 Concrete Spalling: 24m2

Pattern 3 Pier 3 Settlement: 20mm Pattern 11 Landslide at Abutment

Pattern 4 Pier 3 Settlement: 40mm Pattern 12 Concrete Hinge Failure

Pattern 5 Pier 3 Settlement: 80mm Pattern 13 Anchor Head Failure (2)

Pattern 6 Pier 3 Settlement: 95mm Pattern 14 Anchor Head Failure (4)

Pattern 7 Pier 3 Foundation Tilt Pattern 15 Tendon Wire Failure (54/2)

Pattern 8 No damage, Pier 3 Restored Pattern 16 Tendon Wire Failure (100/4)

a list of damage scenarios including same damage type (pier settelment) with different

damage severity and different damage modalities. Data from this project has been used in

a number of published studies [96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106].

Setup_9 Setup_8 Setup_7 Setup_6 Setup_5 Setup_4 Setup_3 Setup_2 Setup_1 

Setup_1 Setup_2 Setup_3 Setup_4 Setup_5 Setup_6 Setup_7 Setup_8 Setup_9 

ZURICH 

BERN 

AVT Koppigen Utzenstorf 

Koppigen FVT Utzenstorf 

299---303 304---308 309---313 314---318 319---323 324---328 329---333 334---338 339---343 

199---203 204---208 209---213 214---218 219---223 224---228 229---233 234---238 239---243 

99 --- 103 104---108 109---113 114---118 119---123 124---128 129---133 134---138 139---143 

Figure 6.1: Measurement set-up for vibration test on Z24 bridge

In the presented study, the data collected from these damage scenarios are divided into

training and test subsets. The training subset was used to generate representative feature
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vectors for damage patterns, and the test subset was used to find the success rate of the

pattern recognition.

6.2 Effects of Feature Extraction Methods, Similarity

Measures, and the Length of Time Series Data on the

Performance of Pattern Recognition

Performance evaluation was conducted to test the effectiveness of the feature extraction

methods and the impact of similarity measures and the length of time series. Two test

scenarios were designed: (1) same type of structural damage with different extents (Pattern

2 - Pattern 6 in Table 6.1) and (2) different damage modalities (Patterns 6, 10, 11, 12, 14,

and 16 in Table 6.1). I adopted sensor data collected by sensor node 232 in the forced

vibration test. Data points in the sensor data files were divided into two groups: training

data and test data. Features vectors generated from the training data were use to find the

representative feature vectors for each damage pattern using K-means method. The feature

vectors created from test data were used to test the effectiveness of feature extraction

methods for damage pattern recognition using K-nearest neighbor (KNN-1) classification

method. The success rate in this context refers to the ratio of the number of test feature

vectors which are correctly identified to the number of total test feature vectors.
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To find good similarity measures for structural damage pattern recognition, a number of

commonly used similarity measures are evaluated using Z24 bridge data sets. These

similarity measures are able to represent the distance between feature vectors in the

feature space and help classify the feature vectors. The tested similarity measures include

Euclidean distance, L-infinity (Maximum) norm, Mahalanobis distance, Cosine distance,

Standardized Euclidean (Seuclidean) distance, and Correlation distance. Let X and Y are

two feature vectors with dimension n: X = (x1,x2, · · · · · · ,xn)T and Y = (y1,y2, · · · · · · ,yn)T .

The definitions of these similarity measures are given below:

• Manhattan distance :

dXY =
n

∑
i=1

|xi− yi| (6.1)

• Euclidean distance :

D=
√

(X−Y )(X −Y )T (6.2)

• L− in f inity :

dXY = max(|Xi−Yi|), i ∈ n (6.3)

• The Mahalanobis distance of a multivariate vector X = (x1,x2, · · · · · · ,xn)T from a group
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of values with mean µ = (µ1,µ2, · · · · · · ,µn)
T and covariance matrix S is defined as:

D=
√

(X−µ)TS−1(X−µ) (6.4)

• Cosine distance :

dXY = 1− XY T

(XXT )
1
2 (YY T )

1
2

(6.5)

• Standardized Euclidean(Seuclidean) distance :

d2XY = (X−Y )D−1(X −Y )T (6.6)

where D is a diagonal matrix with diagonal elements given by v2j , which denotes the

variance of the jth-feature over all the features vectors contained by X and Y .

• Correlation distance :

dXY = 1− (X− X̄)(Y − Ȳ )T

((X− X̄)(X− X̄)T )
1
2 ((Y − Ȳ )(Y − Ȳ )T )

1
2

(6.7)

where X̄ = 1
p∑ jX j,Ȳ = 1

p∑ jY j
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6.2.1 Effects of Similarity Measures and the Length of Time Series

Data Using AR-based Feature Extraction

To test the performance of feature extraction methods, the Z24 Bridge data sets described

in Section 6.1 are used. In the Z24 bridge data sets, each sensor data file contains 65536

acceleration data points. For the feature extraction, the first 4999 data points are abandoned

to avoid using unstable sensor data which may occur in the beginning of each test. The rest

of sensor data in the data file are used to form data series. The length of the time series data

are selected as: 100, 200, 300, 500, 700, 1000, 1500, 2000, 3000, and 5000.

The success rate of classifying test data to corresponding damage patterns using AR-based

feature extraction method was evaluated for different damage modalities and progressive

damage patterns. Figure 6.2 shows the average success rate of pattern recognition in first

scenario (Pattern 2 - Pattern 6 in Table 6.1) using similarity measures defined above. Five

data patterns defined in the first scenario are No Damage, Pier 3 Settlement-20mm, Pier

3 Settlement-40mm, Pier 3 Settlement-80mm, and Pier 3 Settlement-95mm. The x axis

stands for the length of time series for feature extraction; the y axis stands for the type

of similarity measures; and the z axis is the average success rate of AR-based feature

extraction method. From Figure 6.2 we can see that the Mahalanobis distance outperforms

over other similarity measures. For each similarity measure, the success rate increases as

the length of time series gets longer. Figure 6.3 shows the average success rate of pattern
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Figure 6.2: Average success rate of pattern recognition with different

similarity measures and the length of time series (first scenario).

recognition for Patterns 6, 10, 11, 12, 14, and 16 in Table 6.1 (pier 3 settlement-95 mm,

concrete spalling-24 m2, landslide at abutment, concrete hinge failure, anchor head failure,

and tendon wire failure). Figure 6.3 presents similar trends as Figure 6.2 with regard to the

effects of similarity measures on the pattern recognition success rate for AR-based feature

extraction method. The success rate in Figure 6.3, however, is generally lower than that in

Figure 6.2. This is due to the separation of feature vectors in first scenario is better than

that of the second scenario. This can be observed from Figure 6.4 and Figure 6.5.

The impact of the length of time series on pattern recognition success rate for individual

pattern using Mahalanobis distance as similarity measure was also investigated. Figure

6.6 shows the success rates of pattern recognition for the patterns in the first scenario and

Figure 6.7 shows the success rates of pattern recognition for the patterns in second scenario.

Figure 6.6 indicates that the success rate increases as the length of time series increases. In

addition, the severity of damage affects the pattern recognition success rate also. Pattern 6,
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Figure 6.3: Average success rate of pattern recognition with different

similarity measures and the length of time series (second scenario).
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Figure 6.4: The feature vectors of data patterns in first scenario from sensor

node 232 using Mahalanobis distance

with largest settlement, has the highest pattern recognition success rate. Figure 6.7 shows

the success rate of pattern recognition performed on different damage modalities. Similarly,

the success rates go up as the lengths of time series increases.

The success rate is also affected by the separation of feature vectors in the feature space.

Figure 6.4 and Figure 6.5 show the distribution of feature vectors in the first and second

scenarios. The length of time series is 5000 in both plots. To display high dimensional
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Figure 6.5: The feature vectors of data patterns in second scenario from

sensor node 232 using Mahalanobis distance

feature vectors in 3D space, 20-dimensional feature vectors are reduced to 3-dimentsional

feature vectors using principal component analysis. In Figure 6.4, the feature vectors of

pattern 6 are located far away from feature vectors of other patterns. As a result, pattern

6 is easy to be recognized. The success rate of pattern 6 is the highest one comparing

with other patterns. Figure 6.5 shows the distribution of the feature vectors from different

damage modalities. As we can be seen from Figure 6.5, feature vectors of pattern 14 is

located far away from feature vectors of other patterns, so the success rates of pattern 14 is

higher than the success rate of other patterns. In general, the separation of feature vectors

in first scenario is better than that of the second scenario. The overall success rate in first

scenario is also higher than that of the second scenario.
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Figure 6.6: Success rate of pattern recognition for the patterns in the first

scenario (pattern 2-6) using Mahalanobis distance
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Figure 6.7: Success rate of pattern recognition for for the patterns in the

second scenario (patterns 6, 10, 11, 12, 14, and 16) using Mahalanobis

distance
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6.2.2 Effects of Similarity Measures and the Length of Time Series

Data Using DFT-based Feature Extraction

Figure 6.8 and Figure 6.9 show the average success rate of DFT-based feature extraction

method for structural damage pattern recognition with different similarity measures. In

general, the success rate of DFT-based feature extraction is lower than that of AR-based

feature extraction method. Compare with two test scenarios, the first scenario has relatively

high success rate. In both test scenarios, the dissimilarity measure - Mahalanobis distance

again showing better performance than other similarity measures. Figure 6.10 and Figure

Figure 6.8: Average success rate of pattern recognition using DFT-based

feature extraction in first scenario

6.11 show the success rates of pattern recognition for each damage pattern with different

lengths of time series. The similarity measure used in the tests is the Mahalanobis distance.

For most damage patterns, the success rate increases as the length of time series increases.
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Figure 6.9: Average success rate of pattern recognition using DFT-based

feature extraction in second scenario

In general, the success rate of pattern recognition in first scenario is better than that of the

second scenario. Figure 6.12 and Figure 6.13 show the distribution of the feature vectors

in two scenarios using DFT-based feature extraction method. The length of time series is

5000 in both plots. The separation of feature vectors using AR-based feature extraction

method (Figure 6.4 and Figure 6.5) is better than that of the DFT-based feature extraction

method (Figure 6.12 and Figure 6.13). As a result, the success rates of pattern recognition

using AR-based feature extraction (Figure 6.6 and Figure 6.7) are higher than that of the

DFT-based feature extraction (Figure 6.10 and Figure 6.11).
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Figure 6.10: Success rate of pattern recognition using DFT-based feature

extraction for the patterns in the first scenario
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Figure 6.11: Success rate of pattern recognition using DFT-based feature

extraction for the patterns in the second scenario
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Figure 6.12: The feature vectors of data patterns in first scenario from

sensor node 232
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Figure 6.13: The feature vectors of data patterns in second scenario from

sensor node 232

6.2.3 Effects of Similarity Measures and the Length of Time Series

Data Using DWT-based Feature Extraction

Figure 6.14 and Figure 6.15 show the average success rate of DWT-based feature extraction

method for structural damage pattern recognition with different similarity measures. In
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general, the success rate of DWT-based feature extraction is lower than that of AR-based

feature extraction method but higher than that of the DFT-based feature extraction method.

Compare with two test scenarios, the first scenario has relatively high success rate. In

both test scenarios, the dissimilarity measure - Mahalanobis distance again showing better

performance than other similarity measures. Figure 6.16 and Figure 6.17 show the success

Figure 6.14: Average success rate of pattern recognition using DWT-based

feature extraction in first scenario

Figure 6.15: Average success rate of pattern recognition using DWT-based

feature extraction in second scenario

rates of pattern recognition for each damage pattern with different lengths of time series.

The similarity measure used in the tests is the Mahalanobis distance. For most damage
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patterns, the success rate increases as the length of time series increases. Figure 6.18 and

Figure 6.19 show the distribution of the feature vectors in two scenarios. The length of

time series is 5000 in both plots. Comparing the success rate plot with feature distribution

in both test scenarios, the impact of the separation of feature vectors on the success rate

can clearly be seen again. The success rates of pattern 2 and 3 in the first scenario are

much higher comparing with other patterns, and the success rates of pattern 6 and 14 in the

second scenario are much higher comparing with other patterns.
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Figure 6.16: Success rate of pattern recognition using DWT-based feature

extraction for the patterns in the first scenario (sensor 232).

To investigate the impact of the time series length on computing time, simulation tests were

performed using different feature extraction methods and with various time series lengths.

The evaluation tests were conducted using a Dell computer with Intel Core2 Quad 2.4GHz

CPU and 4 GB of RAM. Figure 6.20 shows the computing time for three feature extraction

methods when the length of the time series changes. For the DFT- and DWT-based feature

extraction methods, the length of the time series does not have significant impact on the
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Figure 6.17: Success rate of pattern recognition using DWT-based feature

extraction for the patterns in the second scenario (sensor 232).
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Figure 6.18: The feature vectors of data patterns in first scenario from

sensor node 232

computing time. For the AR-based feature extraction method, the computing time increases

when the length of the time series increases.
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Figure 6.19: The feature vectors of data patterns in second scenario from

sensor node 232
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Figure 6.20: The impact of the time series length on the computing time

for different feature extraction methods

6.3 Structural Damage Localization Using Pattern

Recognition Approach

Damage localization is important when a damage is detected. To investigate the

applicability of pattern recognition approach for structural damage localization, the

numerical analysis study has been conducted to examine the shift of the representative
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feature vectors of the damage patterns from a normal pattern in the feature space using

damage pattern 6 data of Z24 Bridge. To find out the potential relationship between damage

location and the feature vectors of sensor data, the distances between normal pattern feature

vectors and damage pattern 6 feature vectors are calculated. The similarity measure used

in the calculation is Mahalanobis distance as shown below:

FeatureShi f tDistance=Mahalanobis(damage f eaturevectors,normal f eaturevectors)

(6.8)

Figure 6.21 shows the feature vector shift of damage pattern 6 from the normal pattern on

the sensor nodes 120-335. The distribution of these sensor nodes on the bridge is indicated

by numbers corresponding to their IDs as shown in Figure 6.21. There are three rows of

sensor nodes. The sensor nodes 120-135 form the first row and are located in the front edge

of the bridge; the sensor nodes 220-235 form the second row and are located in the middle

of the bridge; the sensor nodes 320-335 form the third row of sensor arrays. The sensor

data used for the numerical analysis are chosen from the forced vibration tests with vertical

directionality. The length of the sensor data time series is 5000. The shifted distances are

measured by the centroids of the normal feature vectors and the damage pattern 6 feature

vectors. From Figure 6.21, we can see that the closer the sensor nodes to the damage

location (pier 3), the larger the shifted distance from pattern 6 feature vectors to the normal

feature vectors. This result shows the potential of using pattern recognition approach for

damage localization analysis.
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Figure 6.21: The shifted distances of damage pattern 6 feature vectors from

normal pattern feature vectors

6.4 Effects of Environmental Factors on the Performance

of Pattern Recognition

To study the impact of the temperature on the normal feature vectors and the updating of

the normal pattern model, the environmental monitoring data collected from Z24 Bridge as

part of the SIMCES (System Identification to Monitor Civil Engineering Structures) project

[107] are used. The AIPR-based damage pattern recognition is achieved by establishing

representative feature vectors for each damage pattern in a training process. The training

process of the AIPR algorithm is based on the clonal selection principle of the natural

immune system. The initial representative feature vectors are generated by the random

selection of the feature vectors from the training data. The rest of training feature vectors

are used to stimulate the evolution of representative feature vectors using clonal selection

principle.
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To find normal pattern model, discrete Fourier transform method is used to extract features

from environmental data. Each feature vector contains 16 feature members which are the

first 8 model frequencies and the corresponding amplitudes. To study the impact of the

temperature on the normal pattern model, the representative feature vectors of the normal

pattern at different temperatures are generated using the AIPR algorithm. Figure 6.22

shows the representative feature vectors of the normal pattern at 8◦C,9◦C,27◦C,29◦C, and

the representative feature vectors of the damage pattern 3 at 29◦C. These representative

feature vectors are generated using the acceleration data collected by the sensor node 7 in

the Z24 bridge environmental monitoring data set. Each acceleration data file in the EMS

test contains 65536 number of data points. To avoid using the unstable data, the first 5000

number of data points are dropped. Starting from the 5001th data point, each 10000 of

data points are used to extract one feature vector using discrete Fourier transform method.

The second feature vector is calculated by advancing 1500 data points, in other words,

starting from 6501th data point. The temperature sensor used in the calculation is TDT3

(temperature in deck top) due to its relatively stable performance discussed in the [2].

Figure 6.22 shows that the normal pattern model moves in the feature space when the

temperature changes. To improve the performance of the damage pattern recognition

algorithm, the updating of the normal pattern model to the changes of the temperature is

necessary. Figure 6.23 compares the success rates of detecting damage 3 using two normal

pattern models, one at 9◦C and the other at 29◦C. The feature vectors of the damage pattern

3 are generated from the sensor data at 29◦C. In Figure 6.23, the k-nearest neighbor (kNN)
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Figure 6.22: The impact of the temperature on the representative feature

vectors of the normal pattern model

algorithm is used for the damage detection. The success rates are compared with several

distance measures. Euclidean distance, Manhattan distance, L-infinity (Maximum) norm,

Cosine distance, and Mahalanobis distance are employed for the similarity measure. The

comparison result in Figure 6.23 shows that the success rates of detecting damage pattern

3 are much lower if the 9◦C normal pattern model is used. This is due to the fact that the

9◦C normal pattern model is very close to the damage pattern 3 at 29◦C as shown in Figure

6.22.
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Figure 6.23: The success rates of the damage pattern recognition with or

without the updating of the normal pattern model
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Chapter 7

Applications of Mobile Agents, High

Computational Power Monitoring

Networks and Pattern Recognition 1 2 3 4

1 c©Wiley. Portions reprinted with permission, from B. Chen and W. Liu, "Mobile Agent Computing
Paradigm for Building a Flexible Structural Health Monitoring Sensor Network," Computer-Aided Civil

and Infrastructure Engineering, vol. 25, no. 7, pp. 504-516, 2010.
2 c©Inderscience. Portions reprinted with permission, from B. Chen and W. Liu, "A web-based structural
health monitoring sensor network," International Journal of Computer Applications in Technology, Vol. 44,

2012.
3 c©Inderscience. Portions reprinted with permission, from B. Chen and W. Liu, "A High Computational
Power Wireless Sensor Network for Distributed Structural Health Monitoring," International Journal of

Sensor Networks, vol. 11, 2012.
4 c©SAE. Portions reprinted with permission,SAE Paper No. 2012-01-0742 c©2012 SAE International.
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7.1 Mobile-Agent-based Structural Health Monitoring

Structural health monitoring (SHM) is an emerging technology in civil, mechanical, and

aerospace engineering to detect damage in structures [108, 109, 110, 111, 112]. The

SHM process is the combination of signal collection from the structure via sensors, feature

extraction from the measurements and pattern recognition of the features to check the status

of the monitored structure [113].

Generally, the sensor deployed close to the damage location is expected to collect data

which are more affected than the data collected from sensors deployed far from the damage

location [114]. Thus a sensor nextwork which is deployed on a complicated structure is

able to supply the damage degree and location information if each sensor node has powerful

computation and communication capabilities.

Although sensor network approach is suitable for SHM, the design of wireless sensor

networks presents a number of challenges. (1) Adaptability: Sensor networks suffer

substantial network dynamics due to node failure, added new nodes, environmental

obstructions, and user demand changes. A sensor network should be able to make

appropriate adjustments to operate robustly when the environment and network itself

change [115]. (2) Distributed data processing and damage diagnosis: Due to the high

sampling frequency, a SHM sensor network generates a huge amount of measurement data
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during the monitoring process. If all the sensor data are centrally processed, these data

need to be sent to a central station. Transmitting this large amount of data over a wireless

sensor network is challenging because of the significant limitation of communication

bandwidth. To reduce the raw data transmission and the response time, a number of

researchers have proposed distributed data processing in SHM sensor networks [116].

(3) Scalability: Scalability is the ability of a sensor network to allow the growth of the

number of sensor nodes without affecting the performance of the network [81]. Scalability

is a desirable property of a sensor network since the size of the required network is

usually unknown at the design stage. The sensor network should maintain at an acceptable

performance level as the network grows for a larger sensing area or higher resolution. (4)

Self-organization: For large structures, sensor networks usually consist of thousands of

nodes and may be deployed in unreachable environments (embedded in physical structure).

Having such a deployment size and environment, it is impossible to pay special attention

to any individual node. Self-organization is a key issue in the design of sensor networks

[117]. (5) Multi-tasking: Most existing sensor networks were designed to be application

specific. However, it is widely accepted that sensor networks will have a long-deployment

cycles serving multiple transient users with dynamic needs [118]. In addition, multiple

applications (tasks) may be performed concurrently over a single sensor network.

To address aforementioned challenges, a framework of mobile agent-based sensor network

that pursues desirable characteristics, such as adaptability, distributed damage diagnosis,

and sensor node collaboration is developed. The major design considerations of the
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presented sensor network framework are as follows. (1) Sensor node design: possess high

computational power; equip with multi-modality sensors; open source Linux operating

system (OS); and open source software implementation; (2) Network middleware design:

reduce network traffic by moving computational algorithms instead of sensor data; support

generation and migration of mobile monitoring agents; allow collaboration in local sensor

communities and collaborative distributed data processing; self-organize through mutual

interaction among agents to agents and agents to the environment. The hardware and

software design of the sensor node has been introduced in Chapter 4.

7.1.1 Experimental Setup

A scaled steel bridge shown in Figure 7.1 was used for the mobile agent validation test.

The bridge has two side beams and eight cross members. Each side beam is composed of

six beam sections. Cross members are distributed near the connections of side beams with

two members are crossed at the center of the bridge. Accelerometers were mounted on the

top of side beams as shown in Figure 7.2. The outputs of accelerometers were connected

to analog/digital (A/D) converters on the sensor board nearby.

During test, the bridge was excited by a shaker at the center of the bridge as shown in

Figure 7.1. Figure 7.3 shows the excitation and force sensing loop. The excitation signals

of the shaker were generated by Siglab and virtual instruments. The siglab can read in and
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Figure 7.1: Test bridge structure

Figure 7.2: Sensor node and accelerometer

send out signals via the virtual instruments which is based on the MATLAB platform.

The virtural instruments include Function Generator, Oscilloscope, Spectrum Analyzer

and Network Analyzer. In the bridge test, the virtual Function Generator is adopted to
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generate shaker excitation signals and the virtual Network Analyzer is used to check the

signals collected by a force sensor which was attached to the end of the shaker. The shaker

excitation signals generated by the Function Generator were amplified by a power amplifier.

Both the shaker and power amplifier are made by the labworks company. The output of the

force sensor was fed back to the Siglab and displayed in the Graphical User Interface (GUI)

of the virtual instruments on the Laptop.

Siglab 

 Power 

amplifier 
Shaker 

Force sensor 

Steel bridge 

Virtual 

Instrument 

Platform 

Figure 7.3: Shaker and excitation signal generation
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Figure 7.4: Acceleration signal conditioning and data transmission between

the sensing board and the Gumstix board

Figure 7.4 shows the acceleration data collection, signal conditioning, and data

transmission between the sensing board and the Gumstix board. Acceleration data were
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sampled at a rate of 125sps. Microcontrollers on the sensing boards read acceleration

data from A/D converters through an SPI interface. The collected acceleration data were

transmitted to the Gumstix board and saved into data files on the Gumstix board. The

inter-board communication between the Gumstix board and the sensing board is achieved

by I2C serial communication. To validate the dynamic deployment of mobile agents for

damage diagnosis, sensor nodes 1 and 2 on the scaled steel bridge were chosen for the

validation test. Figure 7.5 shows the size of the steel bridge and locations of sensor nodes.

Structural damage was simulated by removing two cross members at the center of the

bridge. For both of normal and damage patterns, acceleration data collected by sensor

nodes 1 and 2 were recorded. The excitation signals for the shaker were sinusoid waves

with peak-to-peak voltage of 0.255 volts, 0.275 volts, and 0.295 volts, respectively.

User laptop 

78cm 

Figure 7.5: Sensor node locations (not to scale)
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7.1.2 Auto-Regressive and AR with Exogenous Input (ARX)

Structural Damage Diagnosis Algorithm

The damage diagnostic algorithm selected is Auto-Regressive and AR with Exogenous

input (ARX) models proposed by Sohn and Farrar [4]. This two-stage prediction method

firstly uses an ARmodel as shown in Equation 7.1 to fit a discrete time series of acceleration

data x(k). The structural response data at time t = k∆t, x(k), is a function of p previous

response data plus the error term ex(k). Weights on previous response data are AR

coefficients. Since the error ex(k) in Equation 7.1 is also affected by unknown external

inputs, an ARX model is used in the second stage to establish the relationship between

time signal x(k) and AR model error ex(k), as shown in Equation 7.2. The term εx(k) is the

residual error of the ARX model.

x(k) =
p

∑
i=1

cxix(k− i)+ ex(k) (7.1)

x(k) =
a

∑
i=1

αix(k− i)+
b

∑
j=0

β jex(k− j)+ εx(k) (7.2)

To use AR-ARX method for damage diagnosis, a reference file that contains AR and ARX

prediction model pairs is required. These AR and ARX predication models are constructed
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based on discrete time data sets representing the undamaged structure. During damage

diagnosis, AR coefficients are computed with Equation 7.3 using measured discrete time

acceleration data y(k) from the monitoring structure. Next, the identification of an ARX

model in the reference file is conducted by matching the measured AR model with an AR

model in the reference file based on the minimum distance measure shown in Equation

7.4. The counterpart (ARX model) of the matched AR model in the reference file is used

to calculate the residual errors of measured data set using Equation 7.5. The ratio
σ(εy)
σ(εx)

is

defined as a damage sensitive feature. An appropriate threshold of this ratio is chosen to

minimize false-positive and false-negative damage identification.

y(k) =
p

∑
i=1

cyiy(k− i)+ ey(k) (7.3)

Distance=
p

∑
i=1

(cxi− cyi)2 (7.4)

εy(k) = y(k)−
a

∑
i=1

αiy(k− i)−
b

∑
j=0

β jey(k− j) (7.5)

At each excitation voltage level mentioned in the test setup, a total of 26 acceleration time

series on each sensor node were recorded for the normal pattern, while 19 time series
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Table 7.1

Off-line calculation of the ratio of standard deviation of the residual time

series

Sensor Pattern Ratio
σ(εy)
σ(εx)

1

Normal 1.5240 2.0204 1.6099 1.6241 2.4093

1.8547 1.5547 1.8743 2.0055 1.2815

1.5093 1.7076 1.7283 1.1498 1.8325

1.9087

Damage 3.8485 3.8225 4.2859 4.0668 3.8307

3.8489 4.1123 3.8565 3.8528 3.8592

4.1418 4.1415 3.8429 4.1251 4.1180

4.1094 4.1293 4.1176 3.8475

2

Normal 1.5054 1.0246 1.5293 1.4173 1.7241

1.6026 1.9286 1.6165 1.5583 1.1919

1.3007 1.4971 1.1587 1.2641 1.4014

1.3650

Damage 7.5001 14.4038 7.6681 14.3588 7.7951

7.5751 7.2733 6.9559 12.7211 7.0272

5.9883 5.9110 7.2269 12.5588 6.3172

10.9039 6.2257 6.1708 6.0201

were recorded for the damage pattern. The AR-ARX reference file was constructed by

using 10 normal acceleration time series. The standard deviation of the residual time series

of rest 16 time series for the normal pattern acceleration data and 19 time serials for the

damage pattern were calculated off-line for the comparison of mobile agent results in the

next section. The values of the ratio, r =
σ(εy)
σ(εx)

, are listed in Table 7.1 when the excitation

signal voltage is at 0.275 volts.

102



7.1.3 Mobile Agents for Distributed Structural Damage Diagnosis

For the mobile agent test, mobile agent 1 and 2 were sent to sensor node 1 and 2

respectively. The mobile agents are created to diagnose if there were damage happened

by performing AR-ARX method on the collected acceleration data. In this example,

the flowchart of the mobile agent code is shown in Figure 7.6. A mobile agent fits the

acceleration data to the AR model on the resided sensor node. Based on the calculated

AR coefficients, the mobile agent searches an AR model in the AR-ARX reference file on

the sensor node, which has the smallest Euclidean distance with the calculated AR model.

Once the matched AR model is found, the coefficients of the ARX model paired with the

matched AR model [αi(i = 1,2,3,4,5),β j( j = 1,2,3,4,5)] will be used to calculate the

standard deviation of the residual errors of the measurement data σ(εy) and determines if

damage presents based on the ratio of
σ(εy)
σ(εx)

. The value of σ(εx) is the standard deviation of

the residual errors of the matched ARX model in the reference file. If the value of r=
σ(εy)
σ(εx)

is greater than a predefined threshold, a structural damage presents. Otherwise, no damage

presents.

During simulated damage test, each sensor node ran mobile agent server program waiting

for mobile agents. When a mobile agent arrived at a sensor node, it performed structural

damage diagnosis using equipped AR-ARX algorithm and the acceleration data collected

by the local sensor node. The execution of the AR-ARX algorithm was supported by the
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Figure 7.6: The flow chart of the mobile agent code

execution engine of the mobile agent system installed on the sensor node. Based on the

off-line calculation results shown in Table 7.1, the threshold of the standard deviation ratio

was selected to be 3.5 for the sensor node 1 and 5.0 for the sensor node 2, respectively. The

calculated ratios of standard deviation were 3.931253 at the sensor node 1 and 6.284010

at the sensor node 2. Both ratios were greater than the threshold selected for the sensor

nodes 1 and 2. As a result, structural damage was detected at both sensor nodes 1 and 2.

The damage diagnosis results of both mobile agents were sent back to the mobile agent

dispatcher and displayed on its terminal.
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7.1.4 Discussions

The strength of the mobile agent approach in enhancing flexibility and reducing data

transmission has been demonstrated in the previous sections. Damage diagnosis algorithms

originally not designed in the sensor nodes, such as AR-ARX in the given example, can

be dynamically added to the sensor nodes during the monitoring process without the need

to interrupt normal operation. This feature provides great flexibility for an SHM sensor

network to adopt newly developed diagnosis algorithms and change monitoring tasks. In

addition, the local damage diagnosis does not require transmitting sensor data to a central

data station. The reduction of data transmission is significant in SHM sensor networks

comparing to environmental monitoring networks since SHM monitoring networks usually

have a high sampling frequency. The typical accelerometer sampling rate for SHM is

between 100sps to 150sps. We chose 125sps in the given example. Each acceleration

reading includes two bytes of data. For the acceleration measurement, the sensor node

collects data from a 3-axis accelerometer. The sensor node generates 3*125*2=750 bytes

per second (45000 byte/min or 2.7 MB/hour). The size of the agent message, on the other

hand, is 8722 bytes. Once a mobile agent is dispatched, it can work independently at the

remote sensor nodes to perform assigned tasks.

Mobile agents, in theory, can deploy any algorithm programs on remote sensors. There

are several practical issues, however, we would like to discuss in this section. Structural
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damage diagnosis needs two major components: structural dynamic response data

and diagnosis algorithms. The SHM algorithms typically involve intensive numerical

computation for data analysis and decision making. The size of mobile agent messages

and the diagnosis speed depend on the availability of numerical functions at sensor nodes.

If all the necessary numerical functions are available at sensor nodes, the size of a mobile

agent message will be reduced and the speed of the damage diagnosis will be increased.

The reduction of the mobile agent size is obvious because the mobile agent does not need

to carry on required numerical function code. For the diagnosis speed, the mobile agent

code is typically executed interpretively, which is slower comparing to executing binary

code. If numerical functions are integrated into binary libraries at sensor nodes, the small

mobile agent code and high diagnosis speed can be achieved.

The example given is a completely distributed algorithm that only needs acceleration data

from the local sensor node. For algorithms that extract damage information from multiple

sensors, the time synchronized data are needed. In this case, a feasible solution is to have a

mobile diagnosis agent migrate to the cluster head of a sub-network that covers the region

in interest. The mobile diagnosis agent collaborates with data acquisition agents (typically

stationary agents) residing in sensor nodes in the region to perform a synchronized data

acquisition. Time synchronized data acquisition for wireless sensor networks has been

investigated extensively. A number of synchronization schemes [119, 120, 121, 122] are

proposed to achieve network-wide synchronization.
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7.2 Driving Cycle Pattern Recognition

A driving pattern is typically defined as the driving cycle of a vehicle in a particular

environment [123]. In this research, supervised pattern recognition approach is studied

for the classification of a real-world driving cycle to a similar driving cycle in the

representative driving cycle group. Four federal driving cycles, Urban Dynamometer

Driving Schedule (UDDS), Highway Fuel Economy Driving Schedule (HWFET), a high

acceleration aggressive driving schedule (US06), and an air conditioning driving schedule

(SC03), are selected as representative driving cycles. These driving cycles represent

different street types, driver behavior, and weather condition. With pattern recognition

method, driving cycles and environmental information for various driving patterns are

represented by corresponding features vectors. The classification is based on the distance of

a test feature vector (test driving cycle) to the representative feature vectors (representative

driving patterns). The test driving pattern is classified to one of representative driving

pattern with which the test driving pattern has the smallest distance.

7.2.1 Feature Selection for Driving Cycle Pattern Recognition

To classify driving cycles, thirty-nine characteristic parameters were initially chosen

based on Jeon and Ericsson’s work [124, 125]. The high dimension of feature vectors,
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however, impedes practical application of driving cycle pattern recognition in real-time.

To reduce the dimension of feature vectors, numerous simulation tests were performed to

find a reduced set of feature members and the weighting factor for each feature member.

The simulation work finally identified fifteen feature members listed in Table 7.2 and

corresponding weighting factors to form feature vectors for driving cycles as shown:

f = (k1×a1,k2×a2, · · · ,ki×ai, · · · ,k15×a15), i ∈ [1,15] (7.6)

where aiis a feature member and kiis a weighting factor.

7.2.2 Representative Feature Vectors for Selected Driving Cycles

Four federal driving cycles, UDDS, HWFET, US06, SC03, are selected as representative

driving cycles. The profiles of these four driving cycles are shown in Figure 7.7. A

feature vector of a driving cycle is calculated based on partial data points of a driving

cycle for the quick recognition of driving cycle patterns, which is especially valuable

in real-time applications. During real-time driving cycle pattern recognition, vehicle

controllers collect a number of data points defined by the size of the sample window and

calculate a feature vector for the current sample window using parameters defined in Table

7.2. The real driving cycle is then classified to one of four representative driving cycles
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Table 7.2

Driving cycle feature parameters and corresponding weighting factors

Feature Parameters Weighting Factor

1 Average Cycle Speed (m/s) 10

2 Positive Average Acceleration (a>0.1m/s2) 1

3 Low Speed Time (15-30 Km/h)/Total Time (%) 10

4 Mid High Speed Time (70-90 Km/h)/Total

Time (%)

100

5 High Speed Time (>90 Km/h)/Total Time (%) 10

6 Extreme Deceleration Time (a<-2.5 m/s2)/Total

Time (%)

1000

7 High Deceleration Time (a<-2 & a>-2.5

m/s2)/Total Time (%)

1

8 Maximum Cycle Acceleration (m/s2) 100

9 Maximum Cycle Speed (Km/h) 6

10 Standard Deviation of Cycle Speed (Km/h) 1

11 High Deceleration Time (a<-2 & a>-2.5

m/s2)/Total Time (%)

1000

12 Mid High Deceleration Time (a>-2 & a<-1.5

m/s2)/Total Time (%)

1000

13 Mid Acceleration Time (a>1.5 & a<2

m/s2)/Total Time (%)

1

14 High Acceleration Time (a>2 & a<2.5

m/s2)/Total Time (%)

1000

15 Extreme Acceleration Time (a>2.5 m/s2)/Total

Time (%)

1000

using classification algorithms and calculated feature vector.

To generate the representative feature vectors for the UDDS, HWFET, US06, and SC03,

the velocity data for these driving cycles were downloaded from the U.S. Environmental

Protection Agency website [126]. From each driving cycle, the most representative data

segment was used to generate feature vectors for the corresponding driving cycle. For the

UDDS, velocity data starting from 347 to the end of the driving cycle was used. Since

these representative segments have different length, a common data length of 2000 data
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Figure 7.7: Four federal driving cycles

points was specified to ensure the same number of representative feature vectors for each

driving cycle. The representative segment for each driving cycle was repeated to form a

data set with a length of 2000. In each data set, the first 450 data points were used to

form the first sample window and find the first feature vector using equation (2). The

second feature vector was calculated by advancing the sample window by 50 data points.

From equation (2) we can see that the dimension of feature vectors is 15. To display

high dimensional driving cycle feature vectors, the Principal Component Analysis (PCA)

algorithm was applied to the generated representative feature vectors. The first and second

principal components were then used to plot representative feature vectors in 2-dimensional

space. Figure 7.8 shows the distribution of representative feature vectors for the selected

four driving cycles.
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Figure 7.8: The distribution of the feature vectors of selected four driving

cycles

7.2.3 Classify Real World Driving Cycles Using Representative

Feature Vectors

To validate the effectiveness of representative feature vectors for real-world driving cycle

pattern recognition, two real-world driving cycles were adopted for the performance test.

The two real-world driving cycles were collected by a mild-hybrid Chevy Malibu driven

in the urban and suburban area near the downtown Hancock. The speed profiles for these

two driving cycles are shown in Figure 7.9 and Figure 7.10. To classify real-world driving

cycles to one of the selected four driving cycles, the feature vectors for the RW-CC and

RW-HC were generated using the feature extraction method described in previous Section.

The classification is to identify to which pattern the test pattern belongs. The k-Nearest
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Neighbor (kNN) algorithm was employed for the driving cycle classification. For a test

feature vector , the nearest neighbor rule is summarized as follows. (1) Calculate the

distances of the test feature vector x to each of representative feature vectors shown in

Figure 7.8. (2) Identify the k nearest neighbors of representative feature vectors to the

vector x. The number of k is general not to be a multiple of the number of classes M. (3)

Out of these ksamples, find out the number of feature vectors, ki, which belong to class

ωi, i= 1,2, · · · ,M,∑i ki = k. (4) Label x to the class ωi which has the maximum number ki

of the samples. In the real-world driving cycle test, the value ofM is 4 and the number of k

is chosen to be 13. The distances between the test feature vector and representative feature

vectors was calculated by the Euclidean distance.
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Figure 7.9: The speed profile of city cycle

The success rates of classifying the RW-CC to the UDDS category and the RW-HC to the
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Figure 7.10: The speed profile of highway cycle

HWFET are shown in Figure 7.11. In the classification test, the success rate of driving

cycle pattern recognition was calculated with different size of the sample window. The

tested sample window sizes include 50, 100, 150, 200, 250, 300, 350, 400, and 450. Figure

7.11 shows that the larger size of the sample window has a higher pattern recognition

success rate for both RW-CC and RW-HC. In addition, the success rates of the RW-CC

are higher than RW-HC. This is due to the fact that the similarity of the RW-CC with the

UDDS is higher than the similarity of the RW-HC with the HWFET.
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Figure 7.11: The success rate of real world driving cycle pattern recognition

7.2.4 The Impact of Dissimilarity Measures on Driving Cycle Pattern

Recognition

To test the impact of the dissimilarity measure (distance between feature vectors) on the

performance of the pattern recognition, a number of dissimilarity measures were tested for

the driving cycle pattern recognition. The tested dissimilarity measures include Euclidean

distance, Chebyshev distance, Cosine distance, Correlation distance, and Mahalanobis

distance. Figure 7.12 shows the success rate of RW-CC pattern recognition with various

dissimilarity measures using kNN 13 classification method. From Figure 7.12 we can

see that the Euclidean distance is the only dissimilarity measure that has good pattern

recognition performance for the RW-CC pattern recognition. Other dissimilarity measures,

including Cosine distance, Correlation distance, and Mahalanobis distance have very
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bad performance for the RW-CC pattern recognition. The average success rate of the

Chebyshev distance is only about 60% and it fluctuates significantly. Figure 7.13 shows

the success rate of RW-HC pattern recognition with aforementioned dissimilarity measures.

The Mahalanobis distance shows the best performance of the RW-HC pattern recognition.

The Euclidean distance and the Chebyshev distance also show the good performance when

the sample window size is larger than 300 data points.
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Figure 7.12: The success rate of RW-CC pattern recognition
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Figure 7.13: The success rate of RW-HC pattern recognition
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7.2.5 The Impact of Feature Extraction Methods on the Performance

of Driving Cycle Pattern Recognition and the Quality of

Representative Feature Vectors

In this section, the performance of the autoregressive, DFT, and DWT feature extraction

methods for the driving cycle pattern recognition is studied. Autoregressive, discrete

Fourier transformation, and discrete wavelet transformation feature extraction methods

were applied to the UDDS, HWFET, US06, and SC03 driving cycle data. The generated

representative feature vectors for these four driving cycles are shown in Figure 7.14(a) to

Figure 7.14(c).
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Figure 7.14: The distribution of feature vectors based on different feature

extraction methods
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(b) Success rate of pattern recognition using DFT

based feature extraction method
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based feature extraction method

Figure 7.15: Success rate of pattern recognition using different feature

extraction methods

The features vectors generated using AR, DFT, and DWT methods are not well separated.

With these representative feature vectors, the success rates of driving cycle pattern

recognition were tested using kNN-9 classification method and Euclidean distance. The

test results are shown in Figure 7.15(a) to Figure 7.15(c). As we can see from these figures,

the success rates, in generally, are lower than the pattern recognition success rate using

representative feature vectors shown in Figure 7.8. Although the DFT feature extraction

method has high success rates for the RW-CC pattern recognition, the success rates for the

RW-HC pattern recognition is extremely low.
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7.3 Web-based Structural Health Monitoring Networks

Wireless monitoring network approach is emerging as a feasible solution for structural

health monitoring (SHM). While sensor network approach presents a number of

advantages, the structural damage detection over a sensor network faces many challenges

due to the severe limitations of communication bandwidth and sensor node computational

capabilities. Different from sensor networks for wildlife habitat monitoring, SHM sensor

networks generate a huge amount of measurement data. To monitor the performance of

a structure, these data are typically transferred to a central data station for processing and

analysis. The transmission of a large amount of data over wireless sensor networks is

challenging. In addition, data transmission will cause a response delay of a system to

extreme events.

Web-based approach has gained wide applications in industry and education, such as

web-based enterprise resource planning data mining for decision making [127], quality

management in computer assembly industry [128], construction information management

[129], and control system design and analysis [130]. Conventional web applications

implement web servers on resource rich computers for intensive numerical computation

and information management. This centralized web server approach is also adopted in

the most existing web-based sensor networks, which requires transferring sensor data

to the central web server. The severe limitation of the communication bandwidth in
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wireless sensor networks impedes the practical application of the centralized web server

approach. Motivated by the advances of the embedded systems, a number of researchers

have investigated to embed web services in embedded computers, controllers, and devices

[115, 131, 132].

7.3.1 The Architecture of the Web-based Structural Health

Monitoring Sensor Networks

The architecture of the presented web-based SHM sensor network is shown in Figure 7.16.

The integration of a wireless sensor network with theWorldWideWeb (WWW) technology

enables end users to remotely perform structural health monitoring. The architecture of the

system adopts a typical client-server architecture [133]. An end user, at the client side,

accesses remote sensor data and requests a certain type of data processing or structural

damage diagnosis. The distributed web servers in the wireless sensor nodes or the data

repository machine process the user’s requests and send the requested information back

to the client’s web browser. The distributed sensor nodes collect the dynamic response

data of a structure and selectively transfer raw data or processed data to a data repository

machine. The system not only allows end users to view sensor data, but also perform

sensor data analysis and damage diagnosis. Sensor data can be analyzed either online on

the distributed sensor nodes and the data repository machine or offline by downloading

the sensor data to client machines. The Gumstix provides web services through a Boa
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Figure 7.16: The architecture of the web-based structural health monitoring

sensor network

HTTP server [132]. Boa is one of the lightweight server software and has minimal

hardware resource requirement, which makes it suitable for embedded applications. The

Boa supports the Common Gateway Interface (CGI) [134]. The CGI is a standard that

defines how information is exchanged between a web server and a CGI program running

on the server. A web server receives an input from a client, and passes the input to a

CGI program. Then, the CGI program is executed in the web server to retrieve requested

information and send it back to the client [135]. The web service on a wireless sensor

node is shown in Figure 7.17. When a Boa web server receives a request for sensor data

visualization from an end user, the web server passes this request to a CGI program with

data parameters specified by the end user through the CGI. The CGI program is executed

to read the sensor data from corresponding sensor data files and generate a data plot that

is sent back to the client computer and displayed in a web browser. The end user can also
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request remote sensor node to process real-time sensor data or perform damage diagnosis

based on the sensor data available in the sensor node.

Wireless Sensor Node

Gumstix

Linux kernel

Boa Web Server

Common Gateway 

Interface (CGI)
Embedded 

Application

Program
Data Files

CGI Program

Program

Sensor Board Microcontroller Program

Commands

Figure 7.17: Web service in a wireless SHM sensor node

7.3.2 Data Management in a Web-enabled Sensor Node

The sensor board connects to several types of sensors, including accelerometer, strain

gauge, piezoelectric transducer, humidity, and temperature. The accelerometers and

strain gauges are usually used for passive sensing in structural health monitoring while

piezoelectric sensors are used for active sensing. The sensor data flow in wireless sensor

nodes is shown in Figure 7.18. The microcontroller program that runs on the sensor board

includes a communication module and a data acquisition module. The data acquisition
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module is responsible for collecting data from sensors and storing the data to an external

SRAM memory buffer. To manage the buffer effectively and avoid the data collision, the

buffer is divided into four portions. The size of each portion is 60KB. The upper three

60KB memory blocks are allocated for storing acceleration data; each block for one axis.

The strain data and the impedance data share the lowest 60KB memory block (The strain

sensor and the impedance sensor work at different times). Each 60KB memory portion is

further divided into two sub-buffers. The microcontroller continuously saves sensor data

to one of these two sub-buffers. When one sub-buffer is full, the sensor data is saved to

another sub-buffer, and the data in the full sub-buffer are transmitted to the Gumstix board.

The communication between the Gumstix and the sensor board employs the I2C

communication protocol. The Gumstix acts as the master device and initiates the

communication. The sensor board works as the slave device and responds to the commands

from Gumstix. Since the Gumstix doesn’t know when the sensor data are ready for

transmission, an interrupt signal is generated when one of the sub-buffer in the sensor board

is full to notify the Gumstix. The embedded application program running on the Gumstix,

then, initiates data transmission process to read sensor data from the sensor board and save

the data to data files. A 2 GB compact flash memory mounted on the WiFi board is used to

store these data files. When a sensor node operates in a continuous passive sensing mode

with a sampling rate of 125sps, one data file is generated for each minute. For ease of

searching data, the data files are named in a form of "year-month-day-hour-minute".
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Figure 7.18: The data flow in SHM sensor nodes

7.3.3 Design of Web Functions

The main goals of the web services are to remotely observe real-time sensor data, perform

data analysis, and diagnose structural damage. Users can request these services through a

web interface in client machines by entering information, such as sensor ID, sensor data

type, and the time period of interest. Because these data processing and damage diagnosis

tasks can be performed at the sensor node level, the system exhibits good scalability. The

designed web functions include four categories as shown in Figure 7.19. A unique feature

of the presented web-based SHM system is its ability to visualize distributed sensor data

and perform remote damage diagnosis over the internet. The following section illustrates

the web interface for the sensor data visualization.
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Figure 7.19: Overview of web function categories

7.3.3.1 Web Interface for Sensor Data Visualization

Users can access either recent sensor data on remote sensor nodes or historical data in the

data repository machine through a web interface. Based on users’ inputs (sensor ID, sensor

data type, and the time period), the web system will generate a data plot for the requested

data set and send the plot back to the client machine to be displayed in the user’s web

browser. On the index page, users are requested to input sensor ID to specify which sensor

the users are interested in. The ID for the data repository machine is defined as 0. Each

sensor in the sensor network has a unique ID. By selecting different sensor nodes, users

can monitor data collected from different locations. By clicking the "Data Visualization"

hyperlink on the function selection web page, a new web page is brought up for the users

to choose the sensor data type and the time period of interest. There are several sensor data

types in each sensor node, such as acceleration, impedance, and temperature. Users can

choose to plot different type of sensor data using the radio buttons on the web page. In
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addition, users need to specify the start and end time of the sensor data. After entering the

required information and clicking the "Submit" button, the requested sensor data plot will

be presented to the users on the following page.

7.3.3.2 Software Design for the Web Functions

The web-based sensor information inquiry is achieved through the interactions of clients

and web servers as shown in Figure 7.20. When a remote user request a web service

from a client web browser, the web server will generate a web form that allows the remote

user to input required information for performing requested web service. For example,

when a user requests for sensor data visualization, the user needs to specify sensor data

type and time period of interest in a web form. The data plot parameters submitted in a

web browser are encoded by the browser. These parameters are decoded by a member

function CRequest::getFormNameValue() in the data visualization CGI program as shown

in Program 1. For the web plotting, a plotting CGI program is needed, which reads

the sensor data from sensor data files and generates a plot as requested. To pass user

inputs to the plotting CGI program, code segment shown in Program 2 is used to encode

name-value pairs to query strings in the data visualization CGI program. These parameters

are passed to the plotting CGI program and decoded again using the member function

CRequest::getFormNameValue(). The time period input in our system is used to locate the

sensor data files. To find the sensor data files easily, the sensor data files are named as
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Table 7.3

Program 1. Code segment for decoding user input

chstrarray name, value;

class CResponse Response;

class CRequest Request;

Request.getFormNameValue(name, value);

year-month-date-hour-minute. With the user’s time period input, the plotting CGI program

opens the corresponding sensor data files and generates a plot using Ch plotting class. The

generated plot in a PNG file format is displayed in the client’s web browser by a new HTML

file generated by the data visualization CGI program.
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Figure 7.20: Web-based client-server interaction
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Table 7.4

Program 2. Code segment for encoding data

for (i=0; i<num; i++){

// transferring data between CGI programs

putc(i==0 ? ’?’ : ’&’, stdout);

fputs(Server.URLEncode(name[i]), stdout);

putc(’=’, stdout);

fputs(Server.URLEncode(value[i]), stdout);

}

The file system of the web-based SHM sensor network is shown in Figure 7.21. The file

system contains two types of files: HTML files and CGI programs. HTML files can be

displayed in clients’ web browsers and used as an interface of a web system with human

operators. CGI programs, on the other side, accept users’ input from HTML forms through

CGI, perform defined tasks, and generate a new HTML file to report request information

to the remote users. In our system, the index page (HTML file) of the system is installed

in the central web server (although each sensor node has its own index page for direct

sensor node web access). The action of this HTML file will generate a new HTML file

which allows users to select different types of web functions, such as data visualization,

FFT, and AR-ARX. Each function is implemented by both HTML files and CGI programs.

The HTML files and CGI programs for all the functions are available in each sensor node

and the central web server. For web services in sensor nodes, the HTML files and the

corresponding CGI programs are installed in local sensor nodes. For instance, the FFT

hyperlink on function selection page is linked to an HTML file fft.html located in the sensor

node with an ID specified by the user on the index page of the sensor ID entry. When a

user clicks on the FFT hyperlink, the fft.html in the specified sensor node will be sent to
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the client’s web browser to ask for user inputs. When the user fills out the form fft.html

and click the "Submit" button, the corresponding CGI program, fft.ch, will be called. Since

the output of the FFT function is a plot, the fft.ch will invoke a plotting CGI program to

generate a FFT plot. With the FFT plot generated by the plotting CGI program, the fft.ch

generates a new HTML file to display FFT plot in the user’s web browser.
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Figure 7.21: The file system of the web-based SHM sensor network
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7.3.3.3 Experimental Validation of the Web-based SHM Sensor Networks

The presented web-based system was tested on a scaled steel bridge and the accelerometers

were deployed along the test bridge. During test, the bridge was excited by a shake in

vertical direction. The excitation signals of the shaker were generated by Siglab and virtual

instruments.The excitation signals were 10 Hz sinusoid waves and peak-to-peak voltage

of 0.255 volts, 0.275 volts, and 0.295 volts, respectively. One cross beam in the center

of the bridge was removed to simulate the damage to the bridge as shown in Figure 7.5.

Two sensor nodes, sensor nodes 1 and 2, were chosen for the system validation test. For

both of normal and damage patterns, acceleration data collected by these two sensors were

recorded for offline calculation.

To view real-time acceleration data through the presented web interface, users could click

the "Data Visualization" hyperlink on the function selection page as shown in Figure

7.3.3.3. On the data visualization page shown in Figure 7.23, the sensor data type,

acceleration in this case, and the time period of interest are specified. By clicking the

"Submit" button, the acceleration signal of the sensor node 1 (number 1 is entered in

the sensor ID entry on the index page) is displayed on the next web page. The enlarged

signal shows the frequency of the acceleration is 10 HZ, the same as the frequency of the

excitation signal of the shaker. The web page shown in Figure 7.23 can only specify one

data set. For the visualization of two data sets on the same web page, users can click the
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"click here" link at the bottom of this web page. A new web page shown in Figure 7.24

is brought up for users to specify two data sets for plotting. Upon entering the parameters

of two data sets and clicking the "Submit" button, the acceleration signals at sensor node 1

for both normal pattern and simulated damage pattern are displayed on the next web page

as shown in Figure 7.25. The amplitude of the acceleration signal in simulated damage

pattern is larger comparing to the normal acceleration signal.

Figure 7.22: Web function selection page

To find the modal frequencies of the acceleration, the function of the Fast Fourier Transform

is used to compute the discrete Fourier transform of the acceleration signal. By selecting the

"FFT" function on the function selection page, a new web page, which is similar to the web
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Figure 7.23: Sensor data type and time period

Figure 7.24: Web page for specifying two data sets

page shown in Figure 7.23, will be brought up to allow users to specify acceleration data by

defining sensor data type and the time period of interest. The selected acceleration data are

computed by the FFT algorithm and the resulting FFT plot is reported to users as shown
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Figure 7.25: Acceleration signals collected by the sensor node 1 for both

normal and simulated damage patterns

in Figure 7.26. The FFT plot shown in Figure 7.26 indicates that the major frequency

of the acceleration signal is 10 Hz, which is the same as the frequency of the excitation

signal of the shaker. To generate an AR-ARX reference file for damage diagnosis using

AR-ARXmethod, acceleration data of the steel bridge structure were collected with various

voltage levels of the shaker excitation signals. At each excitation voltage level, a total of 30

acceleration time series on each sensor node were recorded for the normal pattern, while

15 time series were recorded for the damage pattern. The AR-ARX reference file was

constructed by using 10 normal acceleration time series and 5 damaged acceleration time

series. The standard deviation of the residual time series of rest 20 time series for the

normal pattern acceleration data and 10 time serials for the damage pattern were calculated

off-line for the comparison of the web results. The calculated values of the ratio, r =
σ(εy)
σ(εx)
,
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Figure 7.26: Output of FFT analysis

are listed in Table 7.5 when the excitation signal voltage is at 0.255 volts. Table 7.5 shows

that the value of r is about 1.0 for the normal pattern and 15.0 for the damage pattern at

sensor node 1. At sensor node 2, the value of r is less than 1 for the normal pattern and

greater than 2 for the damage pattern. The web AR-ARX result shown in Figure 7.27 for

the sensor node 1 in the normal pattern is within the normal range comparing to the offline

calculation results shown in Table 7.5.

With this web-based system, users can view real-time sensor data and perform damage

diagnosis remotely through a web interface. Different frommost existing web-based sensor

networks, which transmit sensor data to a central web server, the presented web-based SHM
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Table 7.5

Off-line calculation of the ratio of standard deviation of the residual time

series

Sensor Pattern Ratio
σ(εy)
σ(εx)

1

Normal 0.9724 0.9661 0.9629 0.9766 0.9658

0.9564 0.9538 0.9384 0.7987 0.7661

0.7719 0.7673 0.7442 0.7399 0.7395

0.7418 0.7718 1.1137 1.0726 1.1630

Damage 15.8678 15.8597 15.8695 15.8646 15.8124

15.8120 15.8425 15.7976 15.8049 15.6335

2

Normal 0.9978 1.0234 0.9675 0.9988 0.9885

0.9900 0.9560 0.9638 0.9547 0.9488

0.9334 0.9295 0.9247 0.9373 0.9114

0.9223 0.9430 0.9509 0.9389 0.9603

Damage 3.5629 4.6960 4.7539 6.6498 6.7670

3.7302 2.7484 2.5665 3.8426 2.3477

Figure 7.27: AR-ARX result for sensor node 1 in the normal pattern

sensor network provides sensor-level web services. Users can directly access remote sensor

data through a web browser without the need of transferring sensor data to a central data
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station. The distributed web service removes the data transmission burden and enhances

the practical applicability of the system. The remote sensor data are visualized in the users’

web browser using web plots. The distributed structural damage diagnosis is achieved

through embedded data processing and damage diagnosis algorithms at the sensor nodes.

The presented web-based system is validated using a scaled steel bridge. The acceleration

data collected by SHM sensor nodes mounted on the steel bridge can be viewed though a

web browser in the user’s laptop. The web interface can also display the FFT plot and the

AR-ARX results of the acceleration data for damage diagnosis.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

This research is motivated by the emerging need of adaptive monitoring and control in

distributed systems. The major contributions of this dissertation include following aspects.

Firstly, a number of feature extraction methods: autoregressive model, discrete Fourier

transform, and discrete wavelet transform, for structural damage pattern recognition are

investigated. The impact of the dissimilarity measures on the performance of feature

extraction and pattern recognition is also studied. The test data for evaluating the

performance of feature extraction methods and the dissimilarity measures are chosen from

the Z24 bridge test. The Z24 bridge test data include the progressive damage data of
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the same type but varying levels as well as radically distinct damage modalities. These

features of the test data allow us to evaluate the performance of feature extraction methods

and dissimilarity measures for different damage modalities and different levels of damage

severity. In addition, the feasibility of using pattern recognition approach for damage

localization analysis is also explored. The simulation result shows that the closer the sensor

nodes to the damage location, the larger the distances of damage feature vectors shift from

the normal pattern feature vectors.

Secondly, an agent-based prototype sensor network is developed to support distributed

damage diagnosis for structural health monitoring. To achieve required computational

capability, a tiny embedded computer, Gumstix, is selected as the computational engine of

the sensor nodes. A Wifistix board is used to provide wireless communication capability.

The measurements of accelerometers, strain gauges, relative humidity, and temperature

sensors are connected to a customized sensor board for real-time data collection. These

sensor data are then transmitted to the Gumstix board for damage pattern recognition.

The tight integration of the Gumstix with sensor board offers significant reduction of

communication cost and the enhancement of data transmission efficiency. To support agent

application, an embeddable mobile agent system is integrated with this sensor unit. The

validation of this agent-based sensor network shows its effectiveness for the intelligent and

adaptive structural health monitoring.

Thirdly, multi-objective optimization algorithms for the control of mobile monitoring
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agents in artificial-immune-system-based monitoring networks are studied. The developed

algorithms optimize agent generation and distribution to increase damage detection

probability, reduce response time, and extend network lifespan. The amount and type of

generated monitoring agents are tuned to the detected damage. The selected sensor node

for a mobile monitoring agent to visit is based on the affinity between the sensor data

feature vector and the memory cells of the monitoring agent. In addition, the remaining

battery capacity of a sensor node will impact the selection decision. A sensor node with

high remaining battery capacity has high probability to receive a mobile monitoring agent.

This selection strategy not only ensures the detection effectiveness, but also balances the

remaining battery capacities of sensor nodes across the monitoring network.

Finally, case study is performed to prove the validity of the proposed data driven agent

network. The first case illustrates that a mobile agent paradigm applied to structural

health monitoring reduces data transmission and enhances the flexibility of the monitoring

network. The mobile agent approach distributes damage diagnosis algorithms, such as

AR-ARX algorithm, to the sensor nodes instead of transmitting sensor data to a central data

station for the damage diagnosis. The data processing and damage diagnosis are performed

at sensor nodes. This case shows that the mobile agent approach can successfully deploy

damage diagnosis algorithms on distributed sensor nodes via mobile agents. The second

case reveals the potential relationship between damage location and the feature vectors of

sensor data. The shifted distance between normal pattern features and damaged pattern

features varies according to the location of sensors. The result in this case shows the
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potential of using pattern recognition techniques for damage localization. In the third case,

driving cycle recognition using pattern recognition method is investigated. Four federal

driving cycles are used as reference driving cycles. The feature members to represent

driving cycles are identified. The simulation results show that these feature members are

able to distinguish different real-world driving cycles. The final case studies a web-based

structural health monitoring network. In this network, each sensor node can serve as a web

server and be accessed by remote users.

8.2 Future work

This dissertation research focused on the feature extraction and pattern recognition for

temporal sensor data collected from a single senor unit, the optimal control of agent

generation and distribution in a network, and building an agent-based prototype network

for the evaluation of designed adaptive monitoring and control strategies. To advance the

development of intelligent monitoring and control for the large scale complex systems,

following future work is proposed.

(1) Explore adaptive anomaly detection with dynamic model updating

The anomaly detection in existing methods is based on the detection of real-time sensor

data deviating from a normal behavior model. The normal behavior model contains a set

140



of feature vectors extracted from normal data during the training process. The generated

normal behavior model is typically used for anomaly detection throughout the entire

lifetime of the system. Our initial study shows that the normal behavior model is impacted

by the changes of environmental and operational conditions. To enhance the adaptability

of pattern recognition algorithms, the dynamic updating of normal behavior model will be

necessary in real applications.

(2) Investigate the application of adaptive immune response in distributed monitoring

networks

Adaptive immune response provides a good model for the real-time monitoring networks

to deal with emerging threat. To mimic adaptive immune response in monitoring networks,

mathematical models need to be investigated to study the interactions of immune cells

and provide the guideline for the design of agent functions and interaction protocols.

These mathematical models should include the major participants involved in the adaptive

immune response, such as B cells, T cells, antigens, antibody memory cells, and antigen

presenting cells.

(3) Incorporate spatial information for the prediction of system states

The algorithms developed in this work only consider the temporal information from a single

location. To analyze and predict the dynamics of the system globally, the incorporation

of spatial information is necessary. This change will introduce a number of challenges,
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including the increase of transmission load, the delay of system response, and the need of

distributing computation in an area.

(4) Perform rigorous validation tests for the developed algorithms and the agent-based

network platform

The validation tests in this project were conducted in the simulation and laboratory

environments. To verify the effectives of the developed algorithms and the agent-based

network platform, a comprehensive validation test in the real-world scenario is needed.

Additional applications may be pursued to evaluate the applicability of this adaptive

monitoring and control strategy in different areas.
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