Michigan

Technological Michigan Technological University
1a8s] University Digital Commons @ Michigan Tech
College of Business Publications College of Business

2005

Some evidence concerning the economic value of software
portability: A real options approach

Dean L. Johnson
Michigan Tech Univ, dean@mtu.edu

Brent J. Levkin

James E. Northey

Follow this and additional works at: https://digitalcommons.mtu.edu/business-fp

6‘ Part of the Business Commons, and the Social and Behavioral Sciences Commons

Recommended Citation

Johnson, D. L., Levkin, B. J., & Northey, J. E. (2005). Some evidence concerning the economic value of
software portability: A real options approach. Financial Decisions, 17(1).

Retrieved from: https://digitalcommons.mtu.edu/business-fp/365

Follow this and additional works at: https://digitalcommons.mtu.edu/business-fp

b Part of the Business Commons, and the Social and Behavioral Sciences Commons

http://www.mtu.edu/
http://www.mtu.edu/
https://digitalcommons.mtu.edu/
https://digitalcommons.mtu.edu/business-fp
https://digitalcommons.mtu.edu/business
https://digitalcommons.mtu.edu/business-fp?utm_source=digitalcommons.mtu.edu%2Fbusiness-fp%2F365&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/622?utm_source=digitalcommons.mtu.edu%2Fbusiness-fp%2F365&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/316?utm_source=digitalcommons.mtu.edu%2Fbusiness-fp%2F365&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.mtu.edu/business-fp?utm_source=digitalcommons.mtu.edu%2Fbusiness-fp%2F365&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/622?utm_source=digitalcommons.mtu.edu%2Fbusiness-fp%2F365&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/316?utm_source=digitalcommons.mtu.edu%2Fbusiness-fp%2F365&utm_medium=PDF&utm_campaign=PDFCoverPages

Financial Decisions, Sporing 2005, Article 2

Some Evidence Concer ning the Economic Value of Softwar e Portability:
A Real Options Approach

Dean L. Johnson, Brent J. Lekvin and James E. Northey
Michigan Technologicd Univeraty, Michigan Technologicd Universty, and
Jordan & Jordan, respectively

Abstract

Softwar e devel opment typically involves a large capital outlay for an asset with a highly
uncertain useful life. A reduction in the degree of uncertainty is likely to have a significant
impact upon the expected val ue of an application. One method for reducing uncertainty isto
incor porate modularity (e.g. a portability layer) when the application isfirst developed. The
inclusion of such a layer involves an additional development cost. Using a real options approach
we estimate the value of the flexibility that such portability confers. We use sensitivity analysisto
examine the relationship between value of portability and changes in factors such as the
probability that the application will have to be rewritten, expected application life, and the
volatility of future redevelopment costs. Evidence is presented regarding the fundamental
requirements necessary to make the additional investment in software design a positive net
present value project.

I. Introduction and Background

The cost of writing and rewriting software applications typicaly represents amagor capital
expense. Thisistrue whether the gpplication is custom devel oped within the company, cusom
developed using externd resources, or purchased from an independent software vendor (ISV).
Worldwide expenditures on software are estimated at approximately USD $800 hillion as of
1999. To put this into context, expenditures on software represented 17.8% of all private fixed
investment in equipment and software in the United States during 1999, versus 17.1% for
industrid equipment, and 19.5% for transportation equipment during the same year.2 Moreover,
such gpplications often have a highly uncertain useful life, and software failure can be coglly.
The cost in terms of logt productivity relating to software failure has been estimated at $85
billion in the United States done during 1998.3 One specific example is Gateway’ s $45 million
write-off for the abandonment of a software project in 1997. Another example is the London
Stock Exchange’ s £80 million write-off relating to the abandonment of the Taurus software
project in 1993. Consequently, these software investments can be considered a high-risk use of

* We have benefited greatly from comments made by participants at the 2003 Midwest Finance Association
Conference. Additional comments by Andrew Jansmawere also helpful. Finally, we thank Heath S. Johnson for
assistance on this project.

! Boehm and Sullivan (1999).
2 U.S. Department of Commerce, Bureau of Economic Analysis.
3 Business Week (1999)

Financial Decisions, Sporing 2005, Article 2

capitd.* The objective of this research is to show the value of a real-options approach in
evauating methods that may reduce the failure rate of software projects.

In order to place this research into context, we begin with the work of Parnas (1972) relaing to
the information hiding gpproach to software modularity. Information hiding refersto desgn
features hidden in the software to make it more flexible should changes be required during the
life of the software. In this paper we refer to thistype of design as a portability layer. Parnas
work has been influentid in computer science and software design. Successin thisredm,
however, istypicdly defined in terms of functiondity of the software rather than based upon
some metric for estimating the economic vaue of the project. Mogt entities that procure software
have traditiondly not employed financid andysis. Instead, biases based upon past experience of
the gpplication architect or those responsble for project management are used in decison
meking.

Boehm and Sullivan (1999) make a sirong case concerning the need for economics-based
thinking with respect to software development. They refer to this as software economics, and
assart that “most software designers today make design decisions in an economics-independent
‘Flatland’ " At least three reasons are given for thislack of financid andysis during the
development process. First isalack of explicit links between design, cogt, and vaue. Second isa
lack of training among software engineers with the relevant tools necessary to understand how
the software parameters might be manipulated for vaue cregtion. Third is that software
development was once largely driven by the requirements of government, hence the concomitant
lack of incentive for va ue- cregtion. Boehm and Sullivan point out that since the mgority of
software applications are now created under the auspices of private (profit-driven) entities, it is
likely that more attention will be placed on the relative vaue created (or destroyed) by such
development activities.

Previous research by Mooney (1993, 1994) has focused on the various component costs of
application development, and the cogt ramifications resulting from the incorporation of

portahility at the time the application is written.® Baldwin and Clark (2000) appear to have been
the firg to recognize that the vaue of software modularity could be modeled with ared options
approach. Sullivan, Chaasani, Jha, and Sazawa (1999) have sought to provide a theoretical
rationale for the use of red options methodology as a means of placing avaue on software
design. Beck (2000) aso recognizes the various options embedded in software development and
implores software devel opers to incorporate an economic-based decision process.

* Further exacerbating a project’ srisk is the fact that these applications are usually developed using services- such
as database management, communications, user interface, operating system - that may require replacement at any
given time. These services upon which the application relies shall be referred to asservice components herein.

® A history of software economicsis provided in this paper.

® Mooney makes a clear distinction between portability and reuse, noting that the term portability implies the “ reuse
of complete applications’, while reuse by itself implies that only a subset of an entire application may be

salvageabl e (with the remainder being rewritten). In this paper we define portability as the ability of a software unit
to be ported to agiven (new) environment at a cost that is significantly below the expected cost of full
redevelopment. The portability layer isa(small) subset of the overall application that permits this porting to anew
environment.

Financial Decisions, Sporing 2005, Article 2

Our research takes thisline of reasoning to its next logica step: we employ red options
methodology as a tool with which software modularity (pecifically software portability) can be
vaued, and present alogica framework for capital budgeting decisions concerning this aspect of
software projects. Specificaly, we are concerned with the necessity of application
redevelopment, and the financid implications of usng various srategies to contend with this
risk.” To this end, we present amode using real options that can assist in providing a
quantitative judtification for incurring development codts relating to gpplication architecture
decisons tha attempt to minimize thisrisk. We are hopeful that thisisjust afirs sep inthe
goplication of financid evauation tools to the andyss of capital expenditures on software
development projects.

In Section 11, we discuss the factors that can lead to the necessity of gpplication redevel opment,
specificaly focusing on an example rdating to the loss of a service component and the various
srategies to contend with this occurrence. In Section 111, we describe red options, the factors
that determine the value of ared option, and their application to software development. In
Section 1V, we describe our red option model. Section V' explores the relationship between the
vaue of portability and factors such as the theoretica and expected practicd life of the
goplication and the volatility of redevelopment costs using sengtivity andysis. Section VI
concludes the paper.

[I. Application Development and Redevelopment Strategies

Software structure largely determines the degree of flexibility, and flexibility is vauable. The
incluson of software portability normaly fals within the domain of application architecture.
Application architecture is the discipline of developing the overdl modd and software design,
and specifies the mgor characteristics of a system.

A software rewrite can occur for avariety of reasons, anong which istheloss of a service
component upon which the application relies. The loss of a service component can result from
numerous factors, such as the gpplication becoming obsolete or a change to new hardware that is
incompatible with existing software® The actua cause of application failureis not critical to our
andyss. We focus on the loss of a service component as one of these causes becauseit is
relatively easy to modd, and isintuitive and tractable.

Regardless of the factor underlying the loss of the service component, there are three
fundamenta approaches consdered here that might be applied to the indalation of anew service
component. Each of these gpproaches can have differing financid ramificetions, aswell as
potentia effects on the overdl functiondity of the gpplication relying on the component.

The firg approach isto rewrite the application to interface directly with the new service
component. This approach is assumed to have no cost at time zero beyond the standard

" The specific instance triggering the redevel opment is the loss of a service component, but any event making
redevel opment a necessity is generally consistent with the analysis provided.

8 Some other factors leading to the loss of a service component include: vendor going out of business,
discontinuation of software, cost of an input to the application changing, inability to scale up/down, and a merger
necessitating that software applications be rationalized. Thislist is not exhaustive.

3

Financial Decisions, Sporing 2005, Article 2

developmentd costs associated with writing the origina software, but it effectively entails afull
rewrite upon subsequent loss of the service component.® Consequently, the expected cost of
future redevelopment under this gpproach is the highest of the three approaches considered.

The second approach isto insert a software portability layer between the application software
and the service component interface. A software portability layer can be explained as a set of
software (and/or hardware) that is adaptable to a replacement service component, thus avoiding
modification to the gpplication software. The software portability layer is necessarily asmdl
subset of the overall software gpplication. The application program (the mgority of the software)
is written to interface to the software portability layer, instead of being written to interface
directly to a specific service component. The software portability layer iswritten to access the
service component, thus encapsulating the service component and hiding its direct interface from
the gpplication software. This gpproach is assumed to have a higher initid cost a time zero (i.e.,
when the gpplication is origindly developed), but also resultsin the largest reduction in expected
future costs relating to future service component |0ss.

The third approach isto create an emulation layer in the event of a service component requiring
replacement. An emulation layer involves the insertion of an interface that behaves nearly
identically to that of a pecific service component that is being replaced. In other words, it makes
the new service component look exactly the same as the old service component from the
perspective of the primary gpplication, thus eiminating the need to rewrite the primary
application. This approach is assumed to have no cost at time zero beyond the standard
developmental cogts associated with writing the origina software, since the costs associated with
an emulation layer occur in the future. In the event of a service component replacement event
this approach has alower expected cost than a complete rewrite, but a higher expected cost than
would be the case if aportability layer is present. We have dso dlowed for the possibility that
emulation may lead to degradation of the software' s performance. This degradation is
represented as acost in our modd. If the magnitude of the degradation is believed to be extreme
(in effect rendering the software unusable) an infinitely large cost can be assgned to emulation.
The practicd result is that emulation would never be an economicaly feasible solution under

such a scenario.

A summary of the relationship of initial costs and future redevel opment costs that we expect to
occur most frequently in practice is presented in the table below, where Cy is the base application
development cost at timet = 0 and Cp iSsthe cost of adding a portability layer for agiven service
component. The anaytica results presented in Section V are based upon these relationships. We
note, however, that our real options model is robust for virtualy any expected cost relationship.

Expected
Strategy Initial Cost Redevel opment Costs
Full Rewrite Co High
Portability Layer C+GC, Low
Emulation Layer Co Medium

% The assumption of afull rewriteis simply abase case assumption. Our model is capable of handling an infinite
range of values for the cost of rewriting the software.

4

Financial Decisions, Sporing 2005, Article 2

[11. Financial Options, Real Options, and Softwar e Portability and Emulation

Generically, an option isaright to take an action. For example, acal option on a stock provides
the option holder the right to buy a particular number of shares of a particular stock at a
particular exercise price on (or before) a particular maturity date. Options that can only be
exercised on the maturity date are said to be Europeanstyle, whereas American-style options can
be exercised on or before the maturity date. Given that the option represents aright, but not an
obligation, the action will only be taken if it benefits the option holder. The call option holder

will only exercise the cdl option if it alows hinvher to purchase the underlying stock a aprice
(the exercise price) that is less than the current stock price.

Coinciding with the trading of stock options on organized exchanges, Black and Scholes (1973)
published their semina paper on option vauation, leading to the development of afamily of

option pricing models (OPMs) in subsequent years. Whereas the Black- Scholes OPM provides a
closed-form solution for the vauation of European style options, binomia OPMs have become
the norm for andyzing Americanstyle options. [See Cox, Ross, & Rubinstein (1979)]

Relatively recently, a new branch of research has emerged whereby the financid option

framework is applied to red assets. Thisareaistypicaly described asared options vauation
approach. [See Amram and Kulatilaka (1999) or Copeland and Antikarov (2001) for an overview
of red options] Within the capitd budgeting, area alarge number of option-like fegtures have
been identified: the option to abandon a project, the option to expand a project, the option to
delay a project, the option to restart a project, the option to switch production inputs, et cetera.
[See Trigeorgis (1993) or Dixit & Pindyck (1994) for an overview of red options and capita
budgeting.|

Initidly it was quite naturd for financia researchersto look at familiar applications (e.g. capita
budgeting) that normdly fal under the purview of the finance professon. However, researchers
now find themselves gpplying red options analysis to new problems that reach acrosstraditiona
disciplinary boundaries. For example, Benaroch & Kauffman (1999) employ ared options
goproach to evaduate investments in information technology hardware. It iswithin this latter
branch of research that this paper resides.

Anaogous to an option, software portability provides the firm with flexibility to take actions that
it would otherwise not possess. For example, software that incorporates portability to work with
avaiety of databases can smply switch to a new database if the current database becomes
obsolete. Alternatively, if the software does not contain a portability layer, the firm is faced with
writing an emulation layer, if possible, or re-writing the entire gpplication. *°

While agtock cal option gives the holder the right to acquire a share of stock by paying the
exercise price, the portability or emulation option give the firm the ability to restore the use of
software from aloss of a service component by paying ether the cost to port or the cost to

19 \We are assumi ng that the software supports critical functions within the firm. As such, the software will always
be restored. In other words, abandoning the software is equivalent to abandonment of the entire firm, whichis
assumed never to be an optimal decision. Modifying the model to incorporate abandonment of the softwareis
possible; however, the case examined in the paper is more relevant.

5

Financial Decisions, Sporing 2005, Article 2

emulate the software. As such, the portability and emulation options are call options. The vdue
of acall option on astock depends on the current stock price, the risk-free interest rate in the
economy, the option’s maturity date, the option’s exercise price, and the volatility of the
underlying stock price. Next, we draw and ogies between these five variables for a stock call
option and the portability/emulation option.

Definitions of Variables

Value of the underlying asset. This varidble is the foundation from which the option derivesits
vaue. For astock option, it is the current stock price. In the case of red options on softwareit is
the cost to develop (or redevelop) the software. Given that the call option holder hasthe right to
purchase the share for the fixed exercise price, the higher the current stock price, the more
vauable the call stock option. In our case, the higher the cost to redevelop the software when the
loss of a service component occurs, the more vauable the portability or emulation option

Risk-free interest rate. This varidble isthe return to holding the risk-free asset, and remains
identica in both financia options and rea options framework. An increase in the risk-free
interest increases the vaue of the cal option.

Maturity date. Thisvaridble isthe time remaining until the option expires, and after which the
option ceases to exigt. In our framework, the portability/emulation option can be exercised
during the life span of the software and ceases to exist once the software no longer exigs. In
generd, alonger term to maturity increases the vaue of the cal option, because the option
provides its flexibility over alonger period of time.

Exercise price. For astock cdl option, thisis the fixed price a whichthe cal option holder can
purchase the stock. In the case of real options on software, this represents the cost to port the
software or emulate the software when a replacement event occurs. It should be noted that the
exercise priceistypicdly fixed throughout afinancia option’slife. However our red option
model alows the exercise price (the cost to port or emulate) to vary through time. A lower
exercise price increases the vdue of acdl option.

Volatility of the underlying asset value. Genericdly, an option’ s value is afunction of the
volatility of the vaue of the underlying asset. Thisis because the greater the volatility, the
gregter the likelihood that the option will be “in the money” (have postiveintringc value) a
expiration. For stock options, volatility isafunction of changesin the sock’s price, while in the
case of software portability, volatility represents uncertainty regarding changesin the cost to
redevel op the software in the future.

In our redl options model an additiond factor is present—that of the probability of a replacement
event occurring. In other words, not only does the cost to redevel op (the stochastic vaue of the
underlying asset) change, but there is also uncertainty as to whether a replacement event will
occur a dl. Software portability would be more vauable if replacement events were frequent.
On the other hand, a software portability layer would yield little benefitsif replacement events
were the exception. Accordingly, the volatility of redevelopment cost and the probability of a
replacement event interact to determine the option value.

Financial Decisions, Sporing 2005, Article 2

A fina congderation differentiates the portability option and emulation option from the standard
stock option. Whereas a call option can only be exercised once, the portability option and
emulation option can be exercised each time a replacement event occurs. Hence, they are
anaogous to a portfolio of options.

V. Model Development

We use abinomia option pricing model to vaue the portability and emulation option. In the
binomia mode, the vaue of the underlying asset is allowed to take on one of two vaues over a
very small period of time. In the case of our rea options model, the cost of software
deveopment, Cp, can increase over the next period by an upward multiplier, u, or decrease over
the next period by adownward multiplier, d. The probability of an upward moveisp, and the
probability of adownward moveis (1- p). The figure below depicts asingle binomid tree node.

C,*u

$Co

1_
P C,*d

Cox, Ross, and Rubinstein (1979) established the following relaionship between the annud
ingantaneous standard deviation of the rate of return on the underlying asset and the up and
down movements in the binomial tree, given by the set of equationsin 1, where T represents the
life of the option in years, and n represents the number of branches in the binomia tree over the
life of the option.

u :es T/n

d :e-S T/n

@D

In practice, questions like “What is the largest increase or decrease in cost development costs
over the next year?’ can be used to help determine appropriate vaues for u, d, and the standard
deviation.

A key feature of the binomia option modd is the replacement of the actuad probakilities of the
upstate/downstate occurring with pseudo-probabilities, p and (1-p). Aswill be demongtrated in
the following example, the pseudo- probabilities served to adjust the expected cash flows, such
that the appropriate discount rate is the risk-free interest rate.**

™ A requirement of the binomial option pricing model is the existence of atwin security that can be used to
construct arisk-free portfolio; that is, a portfolio whose payoffsin the upstate and the downstate are identical.
Accordingly, the risk-free rate of returnisthe required return on this portfolio. Copeland and Antikarov (2001) make
astrong argument that the logical twin security is the underlying project without the embedded option(s). They
further demonstrate that the assumption of atwin asset is actually analogous to the assumption found in the
traditional Net Present Value (NPV) valuation method. The requirement of atwin security isfrequently used asa
criticism of the binomial model, when in actuality this assumption is found in the most common of valuation
methods used everyday without question.

Financial Decisions, Sporing 2005, Article 2

Consider atwo-year example, where the cost to write the origind software is $100, and the
annudlized voldility of this codt is estimated at 40.55%. Let the annud risk free rate be 5% per
year. From the Cox, Ross, and Rubingtein relationship, this corresponds to a 50% increase or a
33.33% decrease per period in software cogts. The tree for this software development cost is
depicted below, where the pseudo-probahility of the upstate (downstate) move is 46% (54%) as
determined by (2).

0 1 2
| | |
[[|
$225
0.46
150
0.46 $
0.54
$100 $100
0.46
0.54
$66.66
054 $44.44
_(1+r)-d
~ u-d)
_ (1+.05)- 06666 _ .,
1.5- 0.6666

To confirm that the risk-free interest rate is the appropriate discount rate, consder the present
vaue caculation of the software development cost in the first period. The expected time-one
costs using the pseudo- probabilities and discounting et the risk-free rate are determined by (3).

C,+{L- p)*C, (3)
1+r

Cy =2

_ 0.46*150+0.54* 66.66
1.05

=100

This matches the actua software development cost of $100 at time zero, confirming our resullt.
The use of pseudo-probabilities combined with discounting at the risk-free interest rate will be
employed to find the vaue of the portability option and the emulation option.

Financial Decisions, Sporing 2005, Article 2

To continue the example, assume for smplicity that the cost to emulate is congtant at $70, while
the cost to port is congtant at $50. Finally, assume there is a 20% (30%) probability of a
replacement event at time 1 (2). To begin, consder the expected cost of software development
without the flexibility given by emulation or portability, as determined by (4).

First PeriodExpected Cost

€0.46* 150 + 0.54* 66.66 g_l_ (4)

50=0.2
& 1.05 H

Second PeriodExpected Cost
6(0.46)% * 225+ 2* 0.46* 0.54* 100 + (0.54)2 * 44.440
+0.3a > a

Given the 20% chance of a replacement event in the first period, there is a 46% pseudo-
probability of the upstate occurring ($150 in redevel opment costs) and a 54% pseudo- probability
of the downstate occurring ($66.66 in redevelopment costs). In the second period, there is a 30%
chance of areplacement event. In order to reach the top node in period two, we would need to
move up twice, which occurs with a 21.16% pseudo- probability (46%* 46%). In order to reach
the middle node, we need to move up once and down once. However, redize there are two paths
to reach the middle node (up first and then down, or down first and then up). Accordingly, the
pseudo-probability for the middle node is 49.68% (2* 46%* 54%). To reach the lower node, we
need to move down twice, which occurs with a 29.16% pseudo-probakility. Findly, note that the
pseudo- probabilities in each period sum to one. Given that these cash flows occur in the second
periods, we discount them back two periods at the risk free interest rate.

From the above caculations, we have determined that the expected development cost without the
portability or emulation option is $50. We can now repesat the expected development cost tree for
the portability option and then the emulation option. To conserve space, we present asingle tree
to show both cases. At each node in the tree, the decison ruleis that the firm will sdlect the leest

coslly dtemnative available, i.e min{C 4 . This tree s shown below, where

t, full-rewrite? Ct,emulat

C 1 y
| | |
| |]
$70
0.46 $50
$70
0.46 $50
0.54 $70
0.46 $50
0.54 $66.66
$50 0.54 $44.44
$44.44

Financial Decisions, Sporing 2005, Article 2

the top number represents the development cost under the emulation option and the bottom
number represents the development cost under the portability option.

In states of nature where the cost of development exceeds $70 ($50), the option to emulate (port)
the software will be employed to reduce the expected development codts. If the cost to develop is
below the cost to emulate ($70) or port ($50), then the optima action isto Smply rewrite the
software. Using the same present value gpproach asin (4), the expected development cost with
emulation and with portability is calculated by (5) and (6), respectively.

First PeriodExpected Cost

60.46* 70 + 0.54* 66.661)
+
& 1.05 H

Second Period Expected Cost

€(0.46)% * 70+ 2* 0.46* 0.54* 70+ (0.54)2 * 44.441

+ 0'38 2 U
€ (1.05) a

30.01=0.2

)

First PeriodExpected Cost

€0.46* 50 + 0.54* 50
-+
& 1.05 H

Second PeriodExpected Cost

+ 0.25046)” * 50+ 2* 0.46* 0.54* 50+ (0.54)° * 44.440
e

& (1.05)? 8

22.69=0.2

(6)

The expected savingsin development costs represents the vaue of the emulation option and the
portability option:

Vaue of Emulation Option = Expected Development Cost Without Flexibility —
- Expected Development Cost With Emulation
= $50 - $30.01 =$19.99

Vaue of Portability Option = Expected Development Cost Without Hexibility —
- Expected Development Costs With Portability
= $50 - $22.69 = $27.31

Notice that the additiond vaue of the portability option versus the emulation option comes from
two components. Firgt, in states of nature where the cost of rewriting the softwareis high, the
portability option reduces costs by an additiona $20 over the emulation option. Secondly, the
portability option is exercised in additiona states of nature. For example, if areplacement event
occurs in the downstate of the first year the portability option reduces costs by $16.66, whereas
the emulation option is not exercised and no cost savings are redlized.

Up to this point, we have congdered the emulation option and the portability option separately.
As described in Section 11 however, the emulation option requires no action today and as such is

10

Financial Decisions, Sporing 2005, Article 2

assumed to be aways availadle. Accordingly, the true vaue of the portability optionisthe
additiona cost savings beyond the emulation option.

As such, we will define the true vaue of the portability option as follows:

Vaue of Portability Option = Expected Development Cost With Emulation —
- Expected Development Costs With Portability
= $30.01 - $22.69 = $7.32

(or, interms of the savings, $27.31 - $19.99 = $7.32).

Thisisthe definition of portability option vaue that isused in Section V of the paper.
Accordingly, if the cost to write a portability layer is below $7.32, we should incorporate a
portability layer into the software. If the cost to write a portability layer exceeds $7.32, we
should forego the portability layer in the software.

If the emulation option is not availadle (for example, ared-time gpplication that would suffer an
unacceptable level of performance degradation with the insertion of an emulation layer), this can
be modded by smply assgning an arbitrarily large vaue as the cost to emulate. Returning to the
prior example, if the $70 emulation cost were replaced with a $300 emulation cost, the emulation
option would have higher redevelopment costs a each node than afull rewrite and would
provide no cost savings at any node. As such the expected development cost with emulation
would equa the expected development cost without flexibility since emulation would never be
economicdly raiond.

In the above example, the two-year life of the software was divided into two periods. As aresult,
the cost of software development could only take on one of two vaues over the next year.
However, the time periods are completely arbitrary in the modd. In other words, we can divide
the life of the software project into as many periods as we desire. For example, we can model the
two-year software project usng four Sx-month periods, twelve two-month periods, etc. While
the number of computations increases dramaticaly as the number of periods increases, the
approach remainsidentica.

To mode the probakility of areplacement event in our modd, we use the gamma digtribution.
This digtribution was sdected to alow usto vary the expected life of the application while
holding the theoreticd “maximum” life of the gpplication congtant. We define the theoreticd life
of an gpplication asthe point a which 95% (i.e. the cumulative replacement probability) of
gmilar gpplications require replacement. The gamma distribution allows usto maintain a
congtant theoretical life (i.e. cumulative replacement probability value a time T) while dtering
the expected life of the application, defined as the mean expected replacement date as a
percentage of the theoretica life. We refer to the expected life variable as the “ persstence’ of
the application in Tables 1 and 2. Figure 1 shows the cumulative probability of replacement for 3
hypothetica applications with differing levels of persstence. The highest curve represents
goplications that have a life expectancy of 25% of their feasible useful life (25% persstence),
while the lowest curve represents applications that have alife expectancy of 75% of their useful

11

Financial Decisions, Sporing 2005, Article 2

life (75% persstence). In practice, our mode would dlow for the incluson of virtudly any
probability specification as a proxy for the frequency of occurrence of a replacement event.

In the prior section, we described the impact the Six main determining factors (cost of software
redevel opment, the risk-free interest rate, the software' s life span, the cost of
emulation/portahility, the voldility of redevelopment costs, and the probability of a replacement
event) on the vaue of a single option, the emulation option or the portability option, in isolation.
However, the true vdue of the portability option, as defined in our model, depends upon the
difference between the portability option and the emulation option. Aswe shall seein the next
section, the interaction of these vaue-determining factors can lead to results that gppear counter-
intuitive & firg glance.

V. Resaultsand Analysis

We vaue the portability option by assuming that there are three states of nature. First, we assume
that there are Situaions in which neither emulation nor portability is possble. For example,

certain red-time gpplications may be sufficiently sengtive to performance degradation that it is
not possible (or desirable) to insert either an emulation or portability layer. While we believe that
there are rdatively few such cases, thisis posited as our base case and the vaue to emulation and
portability are afunction of the cost reduction available relative to afull rewrite necessitated
under the base case. The cost incurred under the base case when a service component failsis
amply the expected cost of afull rewrite of the gpplication.

Second, we assume that in most stuations it will be possible to emulate to anew service
component. We have arbitrarily assumed that the cost of such emulation is 20% of the cost of the
initial application development cost. However, it would be possible to use any cost of emulation
from 0% (i.e. the trangition was costless) to 100% (i.e. the trangition involved effectively
replacing the entire gpplication), without invaidating our modd. The requirement for the
portability option to have postive vaue is Smply that the inclusion of a portability layer confers
some expected benefit rdative to emulation in the face of a replacement event. Thisisthe
emulation case.

Third, we assume that it is possible to include a portability layer at the time the gpplication is
origindly developed. If S0, it is assumed that the inclusion of such alayer will necessarily
provide some expected cost benefit relative to the expected (but not necessarily actual) cost of
rewriting, aswell as asomewhat smdler but pogitive cost benefit (either immediately or in the
future) relaive to the cost of emulation. Thisisthe portability case.

There are two hypothetica portability cost-benefit scenarios examined in our analys's, and these
are sufficiently generd that they likely have gpplications beyond the software application
development scenarios described in the paper. The initia application cost is assumed to be $1
million under both scenarios, but thisis Smply a scalar. Scenario Oneisthat in which the cogt to
port is less than the cost to emulate, but that the two costs are increasing a the same rate over the
theoreticd life of the gpplications. In pecific, the porting cogt isinitidly 10% of the initia
application cost (relative to 20% to emulate), and both the cost to port and the cost to emulate are
growing a arate of 5% per annum.

12

Financial Decisions, Sporing 2005, Article 2

Table 1 shows the net vaue to portability under Scenario One for various expected theoretical
maximum application lives, perdstence levels (meaning expected life as a percentage of the
theoreticd life of the gpplication), and levels of voldility in the cost of software application
development. It can be seen that when volatility of gpplication development cogtsislow (in

Pand A wherethisis 10%), the net present value of owning the portability layer is
approximately $95,000 in dl cases. In other words, you would pay up to this amount to put a
portability layer in place, Sncethisis the expected present vaue cost advantage (over emulation)
of the option to port. This makes intuitive sense, asthe origind built-in cost advantage is
$100,000, and we have, by congtruction assumed that 95% of al applications are rewritten
during their theoretica lives.

In Panels C, D, and E, we begin to see some variation in the value of the portability option. In dl
cases, the vaue of the option is decreasing in both the volatility of the underlying process, and in
the theoretical life of the gpplication. For example, under avolatility assumption of 40%, the
vaue of portability is estimated at $94,793 for an application with atheoreticd life of 5 years,

and apersstence leve of 25% (i.e. it isexpected to last 5 years™ 25% = 1.25 years after it is put
into service). An option with the same volatility assumption, but atheoreticd life of 30 years,

and apersistence level of 75% has an estimated value of $51,179. In other words, you would be
willing to pay about $40,000 less for the portability layer for applications typified by the latter

the case than by the former.

Scenario Two is that in which the cost to port isinitidly the same as the cost to emulate, but
thereis an anticipated future cost advantage in that the cost to port is growing more dowly than
the cost to emulate over the theoretical life of the application. In specific, the porting cost is
initidly 20% of theinitid gpplication cogt (relative to 20% to emulate), and the cost to port is
growing a arate of 5% per annum, while the cost to emulate is growing a 7.5% per annum.

Table 2 shows the net vaue to portability under Scenario Two for various theoretical gpplication
lives, peragtence levels, and levels of voldtility in the cost of software development. It can be
seen that when volaility of application development costsislow (Pand A wherethisis 10%),
the net present vaue varies Sgnificantly as afunction of both theoretical and practical

goplication life. Specificaly, it can be seen that the vaue of portability is relatively modest for
applications with both short theoretical and practical lives. For example, for aproject with a5-
year theoreticd life and a persstence level of 25%, the vaue of a portability layer isonly $4,897.
Thisincreases to $140,000 for a project with a 30-year theoretical and 75% persistence level.
Hence, the vadue of the portability option isincreasng in theoretical and expected practica
project life.

In Panels B, C, D, and E we see results that are smilar in that the vaue of the option is
increasing in both the theoretical and expected practica gpplication life. See Figure 2 for a
graphic depiction of how these variables affect the value of the portability option for an
gpplication with atheoretica life of 20 years. However, we dso note that, asin the prior case,
the results seem to be puzzling insofar as the vaue of the portability option is seen to be
decreasing in voldility. Here we illugtrate that these results, while somewhat surprising, are, in
fact, congstent with the theory underlying the vauation modd.

13

Financial Decisions, Sporing 2005, Article 2

With regard to the results displayed in Table 2, we note that while option prices are generdly
increasing in voldility, the degree of change is dependent upon the intringc vaue of the option.
In specific, options that are at-the-money will experience a greater change in vaue for agiven
change in the voltility of the vaue of the underlying asset. Since the emulation option is closer
to being at-the-money than the portability option, its vaue will increase more rgpidly asthe
volatility increases. Given that the vaue of the portability option has been defined incrementally
as the difference between the vaue of the portability option and the vaue of the emulation
option, it then makes sense thet this differenceis actudly decreasing in volatility.

With regard to the results displayed in Table 2 and Figure 2, we note that as the voldility
increases the dispersion of future application development cogtsincreases - both upward and
downward. Hence, while the expected cost of gpplication development is aso increasing by 5%
per year, there are some states that occur with positive probability in which the cost is actudly
less than the certain cost to port the origina application. Such cases may occur, for example,
when Firm A owns aviable application that it can replicate. Suppose that Firm B has an
goplication that includes a portability layer, and that the gpplication is presently in need of a
replacement. If Firm A acquires Firm B, A can smply replace B's gpplication at acost thet is
close to zero, thereby rendering the value of B’s portability layer worthless. Hence, the greater
the volatility of the development cogt, the more such states exi<t, and the concomitant decrease in
the value of the portability option. Thisisreflected in decreasing option vaues as the voldility

of the value of the underlying asset increases.

V1. Summary and Conclusons

Software gpplication development represents a significant use of capitd for firms (and other
entities) in virtudly al indugtries and in dl parts of the world. Y e, by comparison with other
comparably-sized capitd projects, relatively little economic andyssis employed in the
evauation of these expenditures. In addition, this type of investment often appears to represent a
relatively risky use of capitd since these gpplications have highly uncertain useful livesas a

result of the pace of technologica change in the area. Consequently, features that can be
incorporated into software gpplications that reduce thisrisk should have economic vaue.

Other researchers have argued that it may be possible to reduce the risk of software obsolescence
by building flexibility into the gpplication at the time it is developed. In this paper we refer to
thistype of flexibility as software portability. Such flexibility may permit the gpplication to
adapt to technologica change, thereby reducing the probability that the gpplication will need to
be rewritten prematurely. This research gppliesfinancid theory to the vauation of flexibility in
the form of red options analys's, and it attempts to infer the vaue of the portability option that
can be incorporated into software applications when these are developed. The outcomeisa
quantitative modd within which such decisonsto include or exclude portability can be made
based upon arigorous anaytical framework. The result isto put the evauation of the software
architecture decision on the same footing as other capital budgeting decisions wherein the cogt,
benefit, and risk can be assessed in a systematic manner (typicaly NPV).

14

Financial Decisions, Sporing 2005, Article 2

The sengitivity analyd's presented indicates that incorporating portability can be a postive net
present value (NPV) project. Thisvalueis shown to be a function of the theoretical and expected
practicd life the gpplication as well asthe volatility of the underlying cost of application
development. Moreover, for the scenarios considered here, this value is shown to be non-trivid
in an economic sense. The vauation examples presented result in option values ranging from
amogt zero to as much as 14% of the application vaue. Using an average red option vaue of
7%, and the estimated total worldwide software development expenditures of USD $800 hillion
per year, thisimplies that somewhere in the neighborhood of 7% x $800 hillion = $56 hillionin
red options values may be available each year to software engineers and ther firms.

By demongtrating how this gpproach works with a stylized, base case set of assumptions we hope
to have provided a theoretical foundation for the further use of red options andysisin thisarea

In particular, we believe that the next logica step isto apply thistype of andyssto specific
circumstances that are encountered in practice. Further research involving the gpplication of the
modd to actua case study datais a part of our ongoing research in the area.

15

Financial Decisions, Sporing 2005, Article 2

Refer ences

Amram, M. and N. Kulatilaka (1999), “Red Options,” Harvard University Press.

Benaroch, M. and R. Kauffman (1999), “A Case for Using Red Options Pricing Analysisto
Evauate Information Technology Project Investments,” Information Systems Research, 10:1,
70-86.

Baldwin, C. Y. and K. B. Clark (2000), Design Rules: The Power of Modularity (MIT Press).

Beck, K. (2000), Extreme Programming Explained: Embrace Change, (Boston: Addisorn+
Wedley).

Black, F. and M. Scholes (1973), “ The Pricing of Options and Corporate Liahilities,” Journal of
Political Economy, 81, 637-659.

Boehm, B. and K. Sullivan (1999), “ Software Economics. Status and Prospects,” Information
and Software Technology, 41, 937-46.

Copédand, T. and V. Antikarov (2001), Real Options, (New York: TEXERE).

Cox, J, S. Ross, and M. Rubingtein (1979), “Option Pricing: A Smplified Approach,” Journal of
Financial Economics, 7, 229-264.

Dixit, A. and R. Pindyck (1994), Investment Under Uncertainty (Princeton: Princeton University
Press).

Gross, Neil, Marcia Stepanek, Otis Port and John Carey (12/6/99), “ Software Hell,” Business
Week, 3658, 104-118.

Mooney, J. (1993), “Issuesin the Specification and Measurement of Software Portability,”
Working Paper, West Virginia Universty.

Mooney, J. (1994), “Portability and Reusability: Common Issues and Differences,” Working
Paper, West Virginia Universty.

Parnas, C. L. (1972), “On the Criteria to be Used in Decomposing Systems into Modules,”
Communications of the ACM, 15:12, 1053-1058.

Sullivan, K. J,, P. Chdasani, S. Jha, and V. Sazawa (1999), “ Software Design as an Investment
Activity: A Red Options Perspective” in Real Options and Business Strategy: Applications
to Decison-Making, L. Trigeorgis, ed., (London: Risk Books), 215-261.

Trigeorgis, Lenos (1993), “Red Options and Interactions with Financid FHexibility,” Financial
Management, 202-224.

16

Financial Decisions, Sporing 2005, Article 2

Table 1. Portability Option Value

Initial Cost Differential, Porting — Emulation = $100,000.

The valuesin thistable represent the net present value of a portability layer. Thisis defined as the expected present
value to rewrite when emulation is possible, minus the expected present value to rewrite when a portability layer isin
place. Theinitia cost to emulate is assumed to be 20% of the application’ sinitial cost of $1,000,000, and is growing
at arate of 5.0% per annum; the cost to port is 10%, and is growing at arate of 5.0% per annum. Persistenceis the
mean point during the application’s theoretical life at which it will be necessary to rewrite the application.

Theoretical Maximum Life of Application

Per sistence

5

10

15

20

25

30

Pand A: Volaility = 10%

25%

$95,017

$95,029

$95,043

$95,056

$95,070

$95,081

35%

$95,028

$95,046

$95,068

$95,090

$95,111

$95,131]

459

$95,030

$95,060

$95,091

$95,121]

$95,150

$95,176

55%

$95,034

$95,073

$95,111

$95,149

$95,196

$95,227

65%

$95,026

$95,073

$95,139

$95,199

$95,235

$95,268

75%

$94,911]

$95,184

$95,166

$95,183

$95,297

$95,306

Pand B: Volatility = 20%

25%

$95,017

$95,029

$95,043

$95,056

$95,070

$95,081]

35%

$95,028

$95,046

$95,068

$95,090

$95,111

$95,131]

459

$95,030

$95,060

$95,091

$95,121]

$95,150

$95,176

55%

$95,034

$95,073

$95,111]

$95,149

$95,196

$95,227

65%

$95,026

$95,073

$95,139

$95,199

$95,235

$95,268

75%

$94,911

$95,184

$95,166

$95,183

$95,297

$95,306

Pand C: Volatility = 30%

25%

$94,996

$94,699

$94,046

$93,165

$92,161

$91,096

35%

$94,989

$94,491

$93,362

$91,829

$90,079

$88,226

45%

$94,977

$94,197

$92,436

$90,076

$87,422

$84,658

55%

$94,953

$93,753

$91,137

$87,756

$84,084

$80,365

65%

$94,896

$93,076

$89,386

$84,924

$80,224

$75,632

75%

$94,693

$92,183

$87,291

$81,703

$76,182

$70,891

Pand D: Volatility = 40%

25%

$94,793

$93,551]

$91,770

$89,833

$87,894

$86,014

35%

$94,649

$92,503

$89,398

$86,038

$82,703

$79,501

459

$94,448

$91,112

$86,405

$81,452

$76,667

$72,183

55%

$94,139

$89,229

$82,697

$76,154

$70,083

$65,576

65%

$93,652

$86,816

$78,477

$70,640

$63,606

$57,430

75%

$92,833

$84,081

$74,176

$65,311

$57,726

$51,179

Pand E: Vdlaility = 50%

25%

$94,189

$91,502

$88,455

$85,507

$82,766

$80,245

35%

$93,610

$88,933

$83,663

$78,644

$74,054

$69,903

459

$92,826

$85,711

$78,032

$71,002

$64,791

$59,340

55%

$91,711]

$81,761

$71,789

$63,144

$55,827

$49,620

65%

$90,178

$77,322

$65,533

$55,896

$47,996

$41,501

75%

$88,154

$72,872

$59,814

$49,575

$41,524

$35,021]

17

Financial Decisions, Sporing 2005, Article 2

Table 2: Portability Option Value

Initial Cost Differential, Porting — Emulation = $0

The valuesin this table represent the net present value of a portability layer. Thisis defined as the expected present value to
rewrite when emulation is possible, minus the expected present value to rewrite when a portability layer isin place. Theinitial
cost to emulate is assumed to be 20% of the application’ sinitial cost of $1,000,000, and is growing by 7.5% per annum; the cost
to port is 20%, and is growing by 5.0% per annum. Persistence is the mean point during the application’ s theoretical life at which

it will be necessary to rewrite the application.

Theoretical Maximum Life of Application

Persistence

5

10

15

20

25

30

Pand A: Volatility = 10%

25%

$4,879

$9,690

$14,808

$20,248

$26,012

$32,080

35%

$8,919

$18,156

$23,782

$38,647

$42,074

$52,014

459

$10,367

$21,148

$32,697

$45,066

$58,265

$72,248

55%

$13,089

$26,890

$41,785

$57,849

$75,085

$93,446

65%

$15,829

$32,740

$51,159

$71,166

$92,825

$115,980

75%

$18,596

$38,707

$60,864

$85,193

$111,627

$140,000

Pand B: Voldility = 20%

25%

$4,879

$9,658

$14,574

$19,501

$24,363

$29,122

35%

$8,918

$18,083

$23,399

$36,933

$39,311

$47,028

45%

$10,367

$21,070

$32,109

$43,148

$53,982

$64,508

55%

$13,088

$26,770

$40,880

$54,907

$68,549

$81,693

65%

$15,827

$32,549

$49,736

$66,629

$82,892

$98,369

75%

$18,594

$38,387

$58,594

$78,194

$96,762

$114,236

Pand C: Volaility = 30%

25%

$4,861

$9,347

$13,544

$17,410

$20,970

$24,258

35%

$8,877]

$17,369

$21,644

$32,205

$33,468

$38,633

459

$10,322

$20,260

$29,381

$37,591

$44,975

$51,640

55%

$13,020

$25,530

$36,773

$46,683

$55,424

$63,189

65%

$15,718

$30,659

$43,726

$54,966

$64,706

$73,210

75%

$18,411]

$35,571]

$50,144

$62,403

$72,837

$81,801]

Pand D: Volaility = 40%

25%

$4,768

$8,705

$12,046

$14,903

$17,372

$19,528

35%

$8,664

$15,915

$19,059

$26,702

$27,258

$30,489

459

$10,082

$18,552

$25,414

$31,019

$35,655

$39,526

55%

$12,650

$22,996

$31,061

$37,430

$42,530

$46,656

65%

$15,146

$27,058

$35,956

$42,739

$47,992

$52,089

75%

$17,540

$30,702

$40,133

$47,070

$52,270

$56,143

Pand E: Voldtility = 50%

25%

$4,586

$7,905

$10,470

$12,507

$14,153

$15,499

35%

$7,143

$12,393

$16,334

$19,367

$21,740

$23,613

45%

$9,597

$16,433

$21,330

$24,927

$27,601

$29,591

55%

$11,918

$19,970

$25,418

$29,194

$31,816

$33,606

65%

$14,071

$22,994

$28,654

$32,328

$34,663

$36,054

75%

$16,017

$25,531]

$31,170

$34,544

$36,464

$37,341

18

Financial Decisions, Sporing 2005, Article 2

Figure 1. Cumulative Densty Functions

Thisfigure shows the cumulative probability of replacement for three hypothetical applications with differing levels
of persistence. The highest curve represents applications that have alife expectancy of 25% of their feasible useful
life (25% persistence), while the lowest curve represents applications that have alife expectancy of 75% of their
useful life (75% persistence).

1
0.9

0.8 /

0.7
0.6 25% Persistence
' P 50% Persistence

8451 / 75% Persistence
0.3 /
0.2
0.1 /

O |_'_|"—/|/| T T T T T T T T T T T T T T T
& PGS S O S S S

Elapsed Theoretical Life in Percent

Cumulative Probability of Replacement Event

19

Financial Decisions, Sporing 2005, Article 2

Figure 2: Portability Option Valuewith a 20-Year Theoretical Application Life

Thisfigure shows a graphic depiction of how persistence and volatility of the underlying asset value affect
the value of the portability option for an application with atheoretical life of 20 years. In the case of software
portability, volatility represents uncertainty regarding changesin the cost to redevel op the software in the
future.

$90,000
$80,000
$70,0001
$60,0001
$50,000+
$40,000+
$30,000-
$20,000+
$10,000+

10%

$O'
7504 0% volatility of
65% 5506 50% Underlying
45% 4po, Asset Value
Persistence 25%

20

	Some evidence concerning the economic value of software portability: A real options approach
	Recommended Citation

	FD Spring 05 Art 2.doc

