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ABSTRACT 
Intraneural Ganglion Cyst is disorder observed in the nerve injury, it is still unknown and very 

difficult to predict its propagation in the human body so many times it is referred as an unsolved 

history. The treatments for this disorder are to remove the cystic substance from the nerve by a 

surgery. However these treatments may result in neuropathic pain and recurrence of the cyst. The 

articular theory proposed by Spinner et al., (Spinner et al. 2003) considers the neurological 

deficit in Common Peroneal Nerve (CPN) branch of the sciatic nerve and adds that in addition to 

the treatment, ligation of articular branch results into foolproof eradication of the deficit. 

Mechanical modeling of the affected nerve cross section will reinforce the articular theory 

(Spinner et al. 2003). As the cyst propagates, it compresses the neighboring fascicles and the 

nerve cross section appears like a signet ring. Hence, in order to mechanically model the affected 

nerve cross section; computational methods capable of modeling excessively large deformations 

are required. Traditional FEM produces distorted elements while modeling such deformations, 

resulting into inaccuracies and premature termination of the analysis. The methods described in 

research report have the capability to simulate large deformation. The results obtained from this 

research shows significant deformation as compared to the deformation observed in the 

conventional finite element models.  The report elaborates the neurological deficit followed by 

detail explanation of the Smoothed Particle Hydrodynamic approach. Finally, the results show 

the large deformation in stages and also the successful implementation of the SPH method for 

the large deformation of the biological organ like the Intra-neural ganglion cyst. 
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1. MOTIVATION:  

The articular theory proposed by et al., (Spinner et al. 2003) explains the neurological deficit in 

Common Peroneal Nerve (CPN) branch of sciatic nerve and affirms that ligation of articular 

branch results into foolproof eradication of the deficit. This theory is proposed as a solution to 

the disorder that occurs due to nerve injury called Intraneural Ganglion Cyst (200 year old 

mystery related to nerve injury, which is yet to be solved) 

Current treatments are relatively simple procedures to remove cystic content from the nerve. 

However, these treatments may result into neuropathic pain and recurrence of the cyst. So the 

mechanical modeling of the affected nerve cross section will reinforce the articular theory 

(Spinner et al. 2003). 

In this disorder as the cyst propagates, it compresses the neighboring fascicles and the nerve 

cross section bulges out radially. Hence, in order to mechanically model the affected nerve cross 

section; computational methods capable of modeling excessively large deformations are 

required. Traditional FEM produces distorted elements while modeling such deformations, 

resulting into inaccuracies and premature termination of the analysis. 

The basic objective of this research work is to simulate the large deformations observed in 

biological organs similar to nerves. 

The method described in this report is an attempt made to simulate this high deformation. 

The result obtained from the model resembles the expansion of the cross section of the nerve. 
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2. INTRODUCTION: 

2.1   Intra Neural Ganglion Cyst (IGC) : 

Intraneural Ganglion Cysts is lesions or defects occurring in nerves and causing a 

neurological deficit. These lesions contain mucin as a primary substance and are believed 

to be seen around joints. As the name suggests, the cystic lesions occur inside the nerve 

and as the cyst propagates, the cyst expands due to intra-articular pressures from the joint 

mechanics and compresses material around it. The material being compressed consists of 

nerve fascicles and epineurium. Nerve fascicles contain a bundle of nerve fibers enclosed 

by protective sheathing made up of connective tissue called perineurium. Several such 

nerve fascicles are bundled together and are surrounded by a layer of connective tissue 

called epineurium which forms the constituents of a major peripheral nerve. 

 

Figure: 1.1-Constituents of major peripheral nerve 
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As shown in figure 1.1, nerve fascicles contain nerve fibers carrying sensory or motor signals. 

Hence, compression of these fascicles results in a loss of sensory or motor signal. Current 

treatments of the problem include removal of cystic contents from the nerve. However, these 

treatments are not foolproof and result into postoperative recurrence of the defect. These cysts 

occur at several locations in human body, but are predominantly seen in nerves of the lower leg. 

Whenever a nerve is mechanically loaded, Epineurial tissue functions as a shock absorber, 

resulting in dissipation of strain energy set up in the nerve. The dissipation of strain energy 

increases with increasing amount of Epineurial tissue. Figure 1.2 explains the concept of 

dissipation of strain energy in nerve having a number of fasciculi supported with Epineurial 

tissue interspersed in between the fascicles. Because, Common Peroneal Nerve (CPN) division 

of a sciatic nerve is composed of large and closely packed fasciculi with little supporting 

Epineurial tissue, it is more susceptible 

 

Figure 1.2 Dispersion of Compression stresses by Epineurial tissue 

to nerve injury. This work focuses on Intraneural Ganglion Cyst occurring in a CPN division of a 

sciatic nerve. A unifying theory based on the importance of articular branch in the formation and 

growth of Peroneal Intraneural Ganglion Cyst (IGC) proposed by Spinner et al., (Spinner et al. 

2003) explains the involvement of superior Tibia-fibular joint in the formation of the cyst. The 
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anatomy of CPN and its branches suggest that articular branch connected to the joint serves as a 

conduit for synovial fluid (joint fluid) to pass through itself and enter the Common Peroneal 

Nerve. This aberration occurs due to defects in the joint which may have been previously 

traumatized, degenerated or congenitally weakened. Due to large intra articular pressures, the 

articular branch becomes remarkably enlarged and results into formation of IGC.       

Figure 2.3 shows the anatomy of the CPN and its branches and path of cyst propagation from 

articular branch to sciatic nerve. It is believed that the fluid follows the path of least resistance 

and flows proximally up from articular branch to CPN and finally up to the sciatic nerve 

depending upon the anatomy of CPN and its nerve branches. Due to defect in the joint, the cyst 

fluid oozes out from the joint and enters the articular branch. The large intra-articular pressures 

associated with loading and joint mechanics result in cystic appearance of CPN. The predilection 

of the cyst to propagate proximally depends on the anatomy of articular branch. For this, 

anatomical study (R. Spinner et al. 2003) of 20 cadaveric limbs was performed which supports 

the proximal dissection of the cyst from the articular branch to sciatic nerve. Moreover, to 

understand the cyst pathogenesis, a dye study (R. Spinner, J. Atkinson, et al. 2003) was 

performed on five specimens concluding that cyst dissects proximally to the sciatic nerve.  

Typically, cyst propagation is categorized into four stages: 

Stage I:  Cyst fluid flows in the articular branch resulting into mechanical pain.  

Stage II:  Cyst fluid crosses the trifurcation of the articular branch, DPN and superficial 

branches resulting in neuropathic pain and neurological deficit in DPN. 

Stage III:  Cyst fluid enters CPN resulting into motor nerve weakness. 
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Stage IV:  Dissection extends proximal to sciatic nerve bifurcation and enters sciatic nerve 

resulting into motor and sensory nerve disturbance. 

During cyst propagation, cystic fluid under intra-articular pressures compresses the fascicles 

around it and after reaching Stage IV, simulates an appearance of signet ring. The term ‘signet 

ring sign’ was coined by Spinner et al., (Spinner et al. 2006) due to resemblance of MRI image 

and signet ring.  

 

Figure 1.3 Composite Drawing showing the stages of intra-neural ganglia. 

The excessive deformation of fascicles leads to neuropathic pain and loss of motor weakness 

and/or sensory disturbance. A retrospective study of patients suffering from neuropathic pain and 

presumably the problem of IGC was done on 16 cases.  
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3. Limitations of Finite Element Analysis (FEA) in Biomechanics: 

Biomechanics is a field of engineering which deals with mechanics of biological materials. 

Biological materials fall in the class of materials showing inconsistent material behavior in 

different directions under mechanical loading. Biomechanics involves knowledge of geometry, 

mechanical properties involved, governing natural laws, mathematical formulation of specific 

problems, their solutions and validation.  

FEM as a concept is a simplification, FEM in Biomechanics also depends on a number of 

simplifications and assumptions (Gallagher et al. 2006). However, appropriate simplification is a 

key to good modeling and these appropriate simplifications depend on the hypothesis of the 

behavior of the system being tested in the model. In general, FEM in Biomechanics has three 

different aspects: 

i. Geometric representation 

ii. Material representation (constitutive laws) 

iii. Boundary conditions (loading and restraints)  

FEM is performed differently in different biological materials namely orthopedic materials, Soft 

tissues, Bio-fluids etc. as these materials behave differently under mechanical loading. This work 

mainly focuses on a biological defect involving the mechanics of nervous tissue (soft tissue) and 

finite element modeling of the cross section of the affected nerve at the fibular neck to resemble 

it with MRI image obtained at the same location.  
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4. Application of Finite Element Analysis for large deformations: 

The primary constraint in finite element modeling of IGC is excessively large deformation 

(greater than 100% strain) of neighboring fascicles due to cyst expansion. Traditional FEM 

suffers from problems like excessive element distortions resulting in inaccuracies and premature 

termination of analyses while modeling such deformations. Hence, special numerical techniques 

are required to model such large deformations. Research conducted at University of Pittsburgh 

by Sidorov, is based on finite element modeling of Aneurysm development and growth which is 

similar to modeling IGC propagation. Here, finite element modeling of Balloon Angioplasty and 

Fusiform Aneurysm were performed in commercial code Ansys using a multi-mechanism 

inelastic material model. However, this research was mainly concerned with the observation of 

stresses at the fully affected aneurysm sites and not with propagation of Aneurysms from its 

unaffected state to affected state.  

Dheeranvongkit and Shimada (Dheeravongkit & Shimada 2005) maintained the shape quality of 

elements during large deformation by gaining knowledge about the final deformation boundary 

and stress state. Then, re-meshing of the final deformation boundary was performed to control 

the mesh shapes and sizes. Finally, mapping of the element was done to un-deformed 

configuration by inverse bilinear mapping. Due to which, the shape quality of elements was 

preserved throughout the deformation.  

To model such large deformations, advanced techniques are required to prevent mesh distortions 

and inaccuracies. Also, there is additional complexity to model biological materials with 

governing material non linearity and directionality characteristics. Meshless methods are 

considered as techniques which are capable of modeling excessively large deformations. Due to 
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absence of the mesh, the problem of mesh distortions is avoided and also the computational time 

and cost due to re-meshing techniques is also saved. 

Meshless methods were used in biological applications to study the effect of soft tissue 

deformations during surgical simulations by Horton et al., (Horton et al. 2007). In their study, the 

Element Free Galerkin Method (EFGM) was used to obtain reaction forces at nodes on the 

contact surface of a swine brain by assigning prescribed displacements to a set of nodes. A cloud 

of nodes were used to discretize the problem domain and background cells were used to obtain 

system matrices. Results obtained were fairly accurate and validated well with the experimental 

results. 

Doblare et al., (Doblare et al. 2004) was another group of researchers that made use of Meshless 

methods in biomechanics. They used the Natural Element Method (NEM) for simulation of 

adaptive bone remodeling. NEM prevented the formation of checkerboard phenomenon, which 

was considered to be the main drawback of FEM while modeling bone tissue adaptation. The 

values of density distribution at the femoral neck and head closely matched with the actual 

radiographic images of the femur after similar time steps. 

Meshless methods are also capable of modeling large deformations in Hyperplastic materials. 

This type of work was conducted by Kawashima and Sakai, (Kawashima & Sakai 2007). They 

used Smooth Particle Hydrodynamics (SPH) which is a form of Meshless modeling for 

analyzing large deformations of rubber. SPH was used to simulate the experimental setup of 

elastic sealant indentation test. Here, a cylindrical material was pushed into an elastic sealant 

made of polymer resulting into excessive deformations of the sealant. Traditional FEM may 

result in mesh distortions, leading to inaccuracies or premature termination of the analysis due to 
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large deformation of the elastic sealant. However, due to absence of mesh, SPH was able to 

simulate the problem with fairly good accuracy.  

Due to esoteric nature of Meshless methods, very little is known about different types of mesh 

less methods and hence, there are a few commercial software packages namely LS-Dyna, Pam 

Crash, MFree 2D etc. capable of analyzing problems using meshless methods. Another method 

dealing with large deformation analysis is the Eulerian Finite Element (FE) approach which 

minimizes element distortions and inaccuracies associated with the classical Lagrangian 

approach.  

Generally, the Eulerian FE approach is used to simulate fluid flow problems. Benson (Benson 

1992), Gadala and Wang (Gadala & Wang 1998) first made use of the Eulerian FE approach for 

simulating excessively large deformations in solids in metal forming, extrusion and die forging 

applications. This Eulerian FE approach was used by Raczy (Raczy et al. 2004) to simulate 

deformation state of Copper subjected to orthogonal cutting. They used LS-Dyna for applying 

the Eulerian technique to study the excessive deformation of copper during the machining 

process. The strains obtained were of the order of 500 to 600 percent. The results validated well 

with the experimental local stress and strain values.  

 A detailed study involving Eulerian FE approach and meshless methods was done by Lee (Lee 

et al. 2005). They studied the effect of dynamic pressure loading on aorta using advanced 

numerical techniques. Dynamic pressure resulted in excessive strains in the aorta wall and the 

formation of vortices in the fluid flowing through aorta. They employed Lagrangian, Arbitrary 

Lagrangian Eulerian (ALE), Eulerian and SPH formulations to simulate the problem. Stresses, 

strains and velocity of fluid were obtained as output parameters. Comparison of output 
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parameters from each method concluded that SPH gave better results concerning idealized fluid 

flow, but the Eulerian approach gave fairly accurate results concerning the deformation of aorta 

wall.  

Work related to FE modeling of Intraneural Ganglion Cyst (IGC) was performed by Elangovan, 

(Elangovan et al. 2009) and (Elangovan 2010). They categorized the IGC propagation into two 

stages. Stage I considered the propagation of IGC in the articular branch. Modeling of Stage I 

was performed using a 3 dimensional FE model. Stage II considered the propagation of IGC in 

Common Peroneal Nerve (CPN) division of the sciatic nerve. Modeling of Stage II was 

performed using a 2 dimensional FE model. The approach for modeling cyst propagation in both 

the stages was based on a combined geometrical and physical growth criterion (Huang and Black 

1996). In this approach, element separation was performed when the stress value of an element 

exceeded failure strength of that particular material. However, application of this approach 

approximates propagation of the cyst by failure of neighboring fascicles rather than propagation 

of cyst by actual deformation of fascicles. The primary constraint involved in modeling of this 

neurological deficit is the excessively large deformations of fascicles due to expansion of IGC. 

Hence, a computational method capable of modeling such large deformations is required to 

model this neurological deficit. 

 

 

 

 

 



12 
 

5. Objective: 

The primary objective of this research is to mechanically model the growth and propagation of 

Intraneural Ganglion Cyst in CPN division of Sciatic nerve by using a two dimensional finite 

element model by actual deformation of fascicles (elements). This research mainly focuses on 

the advanced numerical techniques used to model the cross section of affected CPN at the fibular 

neck, simulating propagation of the cyst from Stage I to Stage IV (depicted in figure 1.3) to 

resemble it with MRI image of the affected CPN cross section at the same location. Strain due to 

deformation of fascicles during cyst growth from Stage I to Stage IV in CPN cross section is 

expected to be greater than 100%. Hence, advanced numerical techniques capable of modeling 

strains greater than 100% are required to simulate cyst propagation. 

This report focuses on meshless method/techniques capable of modeling excessively large 

deformations using SPH: Smoothed Particle Hydrodynamic approach  
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6.  FEA Model  creation of affected CPN cross-section: 

Sunderland and Ray, (Sunderland & Ray 1948) investigated the behavior of fascicles and its 

intra-fascicular mixing forming intra-neural plexus formations. For this, they prepared 

histological sections from segments of sciatic nerve between sciatic notch and tibia malleolus 

from 40 adult subjects. The sections were enlarged, drawn and arranged in a serial fashion. Thus, 

several drawings of cross sections of a sciatic nerve were prepared at different locations. The 

drawing of the nerve cross section at the fibular neck was of primary interest. Figure 6.1 shows 

the drawing of the cross section of the nerve at fibular neck. According to Spinner et al., 2003, it 

was believed that cysts arise from the articular branch. The articular branch is located eccentric 

to the left in the drawing represented by ‘G’ shown in figure 6.1. Hence, the cyst in the form of a 

circular through hole was located in the model eccentric to the left representing the articular 

branch. 

A finite element model was created in Abaqus 6.9 and the cyst arising from articular branch was 

treated as a hole. The geometry of the outer boundary of the model was scanned and imported in 

Abaqus 6.9. The dimensions of the FE model were calculated by scaling the model according to 

the image obtained in Figure 6.1. The major axis of the ellipse ‘a’ as shown in figure 6.2 was 

obtained by experimental data obtained from Spinner et al., 2007 and was 5.7 mm. 

 

Figure 6.1 Schematic drawing cross section of the CPN 
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The minor axis ‘b’ of the ellipse was obtained by equation. 

 

The minor axis obtained from the above relation was equal to 2.52 mm. Figure 6.2 shows the 

finite element model of the affected CPN cross section at fibular neck. Due to lack of initial 

guiding data, the diameter of the cyst was considered to be 0.18 mm. This dimension locates the 

cyst within the fascicle boundary. Since, intra-articular pressures were responsible for 

propagation of the cyst; the hole was subjected to internal pressure in radial outward direction to 

simulate the propagation of the cyst from Stage I to Stage IV.  

 

Figure 6.2 Finite Element model of affected CPN at fibular neck 
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7. Material properties and its assumptions: 

In order to model the Nerve Cross section for cyst blow out, oval shapes were to be assigned 

fascicle properties and epineurium material properties to the area interspersed in between the 

oval shapes shown in figure 6.1. However, large complexities were involved in maintaining the 

boundaries between fascicle and epineurium during excessive deformation. Hence, for modeling 

simplicity, the entire area inside the boundary of the nerve was assumed to be a homogenous 

continuum. Moreover, fascicles and epineurium are anisotropic materials having nonlinear 

material behavior. Material non linearity creates convergence issues while modeling such large 

deformations. In addition, incompressibility associated with soft tissues creates further 

complexities in obtaining an accurate solution. The objective of this research is to mechanically 

model the propagation of ganglion cyst at an affected nerve cross section. Hence, strains are of 

primary importance in this research. Strains are obtained by differentiating displacements 

calculated from the numerical solution. Material models are involved only in calculation of 

stresses. Therefore, the assumption of using a linear elastic material having Elastic modulus 

similar to the nerve material can be conveniently made in this case. 

 

Elastin and collagen are the major constituents of nerve material and approximately have a linear 

elastic behavior. Wu et al., 2004 obtained the longitudinal elastic modulus of elastin, cured 

elastin and native carotid artery by testing dumbbell shaped specimens in tension. Native carotid 

artery has elastin and collagen as its primary constituents. Hence, Properties of native carotid 

artery were approximated to be similar to the material properties of CPN. Average Elastic 

modulus of native carotid artery measured in the experiment was E = 4.6 MPa. Mass Density of 

human patellar tendon was measured by Hashemi et al. (Hashemi, Chandrashekhar and 
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Slauterback 2005) and equal to ρ = 0.76 g/cm3. Since, human patellar tendon contains elastin and 

collagen as its primary constituents. CPN was assigned a compressible linear elastic material 

property having ρ = 7.6 x 10-7 kg/mm3; E = 4.6 MPa and ν = 0.3. 

Thus, the finite element model was subjected to boundary conditions and loads in order to 

simulate a cyst blow out at the fibular neck which is discussed in further sections. 

 

 

 

 

 

 

 

 

 

 

 

 

 



17 
 

8. Mesh-less Methods ( also known as Mesh free Methods): 

In the field of numerical simulation methods, the meshfree methods are those which do not 

require a predefined mesh connecting the data points of the simulation domain. Meshfree 

methods enable the simulation of some otherwise difficult types of problems, at the cost of extra 

computing time and programming effort. 

8.1 Motivation for mesh-less method: 

Numerical methods such as the finite difference method, finite-volume method, and finite 

element method were originally defined on meshes of data points. In such a mesh, each point has 

a fixed number of predefined neighbors, and this connectivity between neighbors can be used to 

define mathematical operators like the derivative. These operators are then used to construct the 

equations to be simulated, such as the Euler equations or the Navier–Stokes equations. 

But in simulations where the material being simulated can move around (as in computational 

fluid dynamics) or where large deformations of the material can occur (as in simulations of 

plastic materials), the connectivity of the mesh can be difficult to maintain without introducing 

error into the simulation. If the mesh becomes tangled or degenerate during simulation, the 

operators defined on it may no longer give correct values. The mesh may be recreated during 

simulation (a process called remeshing), but this can also introduce error, since all the existing 

data points must be mapped onto a new and different set of data points. The meshfree methods 

are intended to remedy these problems. 

 

http://en.wikipedia.org/wiki/Numerical_analysis
http://en.wikipedia.org/wiki/Finite_difference_method
http://en.wikipedia.org/wiki/Finite-volume_method
http://en.wikipedia.org/wiki/Finite_element_method
http://en.wikipedia.org/wiki/Finite_element_method
http://en.wikipedia.org/wiki/Numerical_differentiation
http://en.wikipedia.org/wiki/Euler_equations_%28fluid_dynamics%29
http://en.wikipedia.org/wiki/Navier%E2%80%93Stokes_equations
http://en.wikipedia.org/wiki/Computational_fluid_dynamics
http://en.wikipedia.org/wiki/Computational_fluid_dynamics
http://en.wikipedia.org/wiki/Deformation_%28mechanics%29
http://en.wikipedia.org/wiki/Plasticity_%28physics%29
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Meshfree methods are also useful for: 

• Simulations where creating a useful mesh from the geometry of a complex 3D object may 

be especially difficult or require human assistance 

• Simulations where nodes may be created or destroyed, such as in cracking simulations 

• Simulations where the problem geometry may move out of alignment with a fixed mesh, 

such as in bending simulations 

• Simulations containing nonlinear material behavior, discontinuities or singularities 

 

 

 

 

 

 

 

 

 

 

http://en.wikipedia.org/wiki/Mesh_generation
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9. SPH : Smoothed Particle Hydrodynamic method:  

 Smoothed particle hydrodynamics (SPH) is a numerical method that is part of the larger family 

of mesh-less methods. This methods you do not define nodes and elements as you would 

normally define in a finite element analysis; instead, only a collection of points are necessary to 

represent a given body. In smoothed particle hydrodynamics these nodes are commonly referred 

to as particles. 

Smoothed particle hydrodynamics is a  Lagrangian modeling allowing the discretization of a 

prescribed set of continuum equations by interpolating the properties at a discrete sets formed by  

points distributed over the solution domain eliminating the requirement to define a spatial mesh. 

The method's Lagrangian nature, associated with the absence of a fixed mesh, is its main 

strength. Difficulties associated with fluid flow and structural problems involving large 

deformations and free surfaces are resolved in a relatively natural way. From the beginning the 

method has received theoretical support (Gingold and Monaghan, 1977), and the number of 

publications related to the method is now very large. A number of references are listed below.  

At its core, the method is not based on discrete particles (spheres) colliding with each other in 

compression or exhibiting cohesive-like behavior in tension as the word particle might suggest. 

Rather, it is simply a clever discretization method of continuum partial differential equations. In 

that respect, smoothed particle hydrodynamics is quite similar to the finite element method.  

The method can use any of the materials available in Abaqus/Explicit (including user materials). 

You can specify initial conditions and boundary conditions as for any other Lagrangian model. 

http://onlinedocs1.coe.ad.mtu.edu:2080/texis/search/hilight2.html/+/usb/pt04ch15s01aus93.html?CDB=v6.11#asphanalysis-gingold1977
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Contact interactions with other Lagrangian bodies are also allowed, thus expanding the range of 

applications for which this method can be used. 

9.1 SPH with illustration:  

In a traditional finite difference simulation, the domain of a one-dimensional simulation would 

be some function , represented as a mesh of data values at points , where 

 

 

 

 

We can define the derivatives that occur in the equation being simulated using some finite 

difference formulae on this domain, for example 

 

and 

 

http://en.wikipedia.org/wiki/Finite_difference_method
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Then we can use these definitions of and its spatial and temporal derivatives to write the 

equation being simulated in finite difference form, then simulate the equation with one of many 

finite difference methods. 

In this simple example, the spatial step size and the temporal step size are constant, and the 

left and right mesh neighbors of the data value at are the values at and , respectively. 

But if the values can move around, or can be added to or removed from the simulation that 

destroys the spacing and the simple finite difference formulae for derivatives will no longer be 

correct. 

Smoothed-particle hydrodynamics (SPH), one of the oldest meshfree methods, solves this 

problem by treating our data points as physical particles with mass and density which can move 

around over time, and which carry some value with them. SPH then defines the value of 

between the particles by 

 

where is the mass of particle , is the density of particle , and is a kernel function that 

operates on nearby data points and is chosen for smoothness and other useful qualities. By 

linearity, we can write the spatial derivative as 

 

http://en.wikipedia.org/wiki/Finite_difference_method
http://en.wikipedia.org/wiki/Smoothed-particle_hydrodynamics
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Then we can use these definitions of and its spatial derivatives to write the equation 

being simulated as an ordinary differential equation, and simulate the equation with one of many 

numerical methods. In physical terms, this means calculating the forces between the particles, 

then integrating these forces over time to determine their motion. 

The advantage of SPH in this situation is that the formulae for and its derivatives do not 

depend on any adjacency information about the particles; they can use the particles in any order, 

so it doesn't matter if the particles move around or even exchange places. 

One disadvantage of SPH is that it requires extra programming to determine the nearest 

neighbors of a particle. Since the kernel function only returns nonzero results for nearby 

particles within twice the "smoothing length" (because we typically choose kernel functions with 

compact support). It would be a waste of effort to calculate the summations above over every 

particle in a large simulation. So typically SPH simulators require some extra code to speed up 

this nearest neighbor calculation. 

 

9.2 Applications of SPH method : 

Smoothed particle hydrodynamic analyses are effective for applications involving extreme 

deformation. Fluid sloshing, wave engineering, ballistics, spraying (as in paint spraying), gas 

flow, and obliteration and fragmentation followed by secondary impacts are a few examples. 

There are many applications for which both the coupled Eulerian-Lagrangian and the smoothed 

particle hydrodynamic methods can be used. In many coupled Eulerian-Lagrangian analyses the 

material to void ratio is small and, consequently, the computational effort may be prohibitively 

http://en.wikipedia.org/wiki/Differential_equation
http://en.wikipedia.org/wiki/Numerical_methods_for_ordinary_differential_equations
http://en.wikipedia.org/wiki/Support_%28mathematics%29#Compact_support
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high. In these cases, the smoothed particle hydrodynamic method is preferred. For example, 

tracking fragments from primary impacts through a large volume until secondary impact occurs 

can be very expensive in a coupled Eulerian-Lagrangian analysis but comes at no additional cost 

in a smoothed particle hydrodynamic analysis. 

9.3. Model creation: 

To create a part a 3D modeling space is defined because SPH dynamic explicit analysis cannot 

be done using 2D planar space and since the geometry is not axis symmetric so Axis-symmetric 

space is also not chosen. 

 

Figure :9.3.1-Parameters for part creation 

To perform this analysis a ‘deformable’ type part is chosen. 

Eulerian model is good option for the application of pressure boundary conditions but since with 

the pressure boundary condition it is not possible to convert the domain of element nodes to that 

of particles, the option of having Eulerian model is also eliminated. 
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The base feature is selected as per the nature of the part i.e. since the Nerve is a solid extruded 

part the shape is chosen as solid and the type as extrusion.  

  

Figure:9.3.2- Material assignment 

Section is assigned to the geometry of the cross section of the nerve and the type as a solid 

homogeneous. 

Material as discussed in the section has Young’s modulus as 4.6 MPa and ν = 0.3 

An independent instance is created in the assembly to mesh the part. 

Before meshing the part is partitioned into four quadrants for a uniform meshing near and around 

the cyst.  A tetrahedron mesh is so chosen to have a better accuracy with the results. 

Local seeding is done with the Size method and having the size control over the element as 0.3 

and curvature control for maximum deviation factor i.e. height to length ratio as 0.1 and 

minimum size factor as 0.1 
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9.4. Elements in SPH: 

The smoothed particle hydrodynamic method is implemented via the formulation associated with 

PC3D elements. These 1-node elements are simply a means of defining particles in space that 

model a particular body or bodies. These particle elements utilize existing functionality in 

Abaqus to reference element-related features such as materials, initial conditions, distributed 

loads, and visualization. 

These elements are defined in a similar fashion as you would define point masses. The 

coordinates of these points lie either on the surface or in the interior of the body being modeled, 

similar to the nodes of a body meshed with brick elements. For more accurate results, strive to 

space the nodal coordinates of these particles as uniformly as possible in all directions.  

As defining each and every co-ordinates for the particles is a laborious job and also as many 

times the parts are not having a standard shape, another approach is adopted in this research 

report. 

 

9.5. Conversion of elements to particles: 

An advantage of the intrinsic strengths of both Lagrangian finite element and SPH method is 

taken here when modeling a body. The model is defined with Lagrangian finite elements and 

converted them to SPH particles either at the beginning of an analysis. It is sometimes easier to 

create the mesh with Lagrangian finite elements, and Lagrangian finite elements are often more 

accurate for small deformations. SPH methods are well suited for large deformation. 
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The analysis is started by defining the part as usual. The part can be meshed with the C3D8R, 

C3D6, or C3D4 reduced-integration elements or a combination of these elements.  Here the part 

is meshed with the C3D4 elements. Then these “parent” elements can be specified to convert to 

internally generated SPH particles when a user-specified criterion is met. (The user specified 

criteria is described in the next section). Gravity loads, contact interactions, initial conditions, 

mass scaling, and output requests associated with the parent elements or nodes of the parent 

elements are transferred appropriately to the generated particles upon conversion in an intuitive 

way as explained below. A special formulation is used to ensure the smoothest possible 

transition between the two modeling methods.  

The element conversion to particles functionality is not active by default. The conversion 

functionality is intentionally used when the deformations in the original finite element mesh 

were significant and elements had been distorted.  Traditionally, in such cases deletion of the 

soon-to-be distorted Lagrangian elements would be the only choice to allow the analysis to 

continue. Converting to SPH particles offers an improvement over the element deletion option 

because the generated particles are able to provide resistance to deformation beyond finite 

element distortion levels. Consequently, element deletion cannot be used together with element 

conversion. The number of particles generated per parent element can be controlled and the 

conversion into particles can be done by applying different criteria of conversion. 
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Figure :9.5.1- Particle conversion parameters 

Specification of number of particles to be generated: 

By default, one particle is generated per parent element.  The number of particles generated per 

element can be controlled by specifying the number of particles to be generated per parent 

element in iso-parametric direction. The total number of particles generated per element depends 

on the element type that is being converted. For example, we specify 3 particles to be generated 

per iso-parametric direction, upon conversion 27 particles would be generated from a C3D8R 

element, 18 from a C3D6 element, and 10 from a C3D4 element, as illustrated in figure below.  
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Figure: 9.5.2- Particles per Isoperimetric direction 

A maximum value of seven particles per direction can be specified. The particles are evenly 

spaced inside the parent element such that they fill the volume as uniformly as possible. For 

example, if cubic parent elements are stacked in the user-defined mesh, the particles would be 

evenly spaced throughout the part. 

Internally generated particles per parent element illustrated for three particles per isoparametric 
direction. 
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10. DIFFERENT CRITERIA FOR SPH APPLICATION  

 

10.1. Time based criteria: 

You can specify the time when the conversion of all the elements in the affected element set is to 

take place regardless of the deformation levels. This option is intended for applications where the 

SPH functionality is the preferred modeling method, such as fluid sloshing in a tank or a 

synthetic bird strike on an aircraft. If the conversion time is specified as zero, the conversion 

takes place at the beginning of the analysis. For example, fluid sloshing is a good candidate for 

using a time-based criterion if sloshing is expected to start at the beginning of the analysis. You 

can specify a later time at which the conversion takes place if extreme deformations do not occur 

until later in the analysis. A bird strike analysis is a potential candidate as the bird might travel 

for some time without any deformation prior to hitting the intended target. 

10.2. Strain based criteria: 

You can specify the absolute value of the maximum principal strain when the conversion of a 

given element is to take place. As elements deform, if the absolute value of the maximum strain 

is greater than the specified threshold, the parent elements will convert progressively to SPH 

particles. This option is intended for applications where the finite element method is the 

preferred modeling method but severe deformations could occur in certain regions. Examples 

include blast applications and crushing. 
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10.3. Stress based criteria: 

You can specify the absolute value of the maximum principal stress value at which the 

conversion of a given element takes place. As elements deform, if the absolute value of the 

maximum principal stress is greater than the specified threshold, the parent elements will convert 

progressively to SPH particles. This option is intended for the same candidate applications as 

those discussed for the strain-based criterion. 

Conversion to particles formulation: 

When using the conversion technique, particles are generated internally at the beginning of the 

preprocessing phase of the analysis, and they are placed in an inactive or dormant state. The 

particles are attached to the parent elements in a similar fashion as the nodes of embedded 

elements are attached, and they follow the motion of the parent element nodes in an average 

sense. The inertial properties of the particles in this inactive state (while the parent finite 

elements are active) are automatically disregarded to avoid doubling the momentum at a given 

location. Similar to SPH particles defined directly as PC3D elements, particles generated from 

parent element sets associated with different section definitions will not interact with each other. 

Upon conversion a number of internally generated particles per parent element are activated, as 

illustrated for various element types in Figure 15.1.2–1. The computational cost of the analysis 

can increase significantly after conversion takes place if a large number of particles are generated 

per element since a larger number of active elements needs to be processed. In addition, the 

computational cost increases because the stable time increment associated with the internally 

generated particles decreases as the particle density increases. 

http://abaqus.me.chalmers.se/texis/search/hilight2.html/+/usb/pt04ch15s01aus95.html?CDB=v6.12#asphconversion-particles


31 
 

Upon conversion the state information (such as stress or equivalent plastic strain) associated with 

the element being converted is transferred to the generated particles to ensure the smoothest 

possible transition. The activated particles will interact via the SPH formalism with both the 

previously activated particles and the neighboring inactive particles that are still embedded in 

active parent elements. 
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 11. SPH Kernel interpolator: 

The interpolation polynomial used for this mesh-less method implemented in Abaqus /Explicit is 

Cubic spline. There also options using quadratic and quintic interpolator. 

The SPH method works on the local interpolations on surrounding particles to construct 

continuous field approximations. This is the basis for the spatial discretization of governing 

equations. The interpolation of the  value of a function A for any position r can be expressed 

using SPH smoothing as proposed by 

 

Figure : 11.1 Kernel Function in SPH 

 

where mb and ρb are the mass and the density particle b, and the sumation is over all the particles 

b within a radius 2h of r. Here W(r, h) is a C2 the smoothing kernel with radius 2h, that gives the 

approximation of the shape of a Gaussian function with following properties: 
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In the above given limit of integral, the smoothing function approximates a delta function 

 

The kernel in this method has compact support, i.e.  it extends with non-zero values up to the 

limit of radius  2, and has zero value beyond.  The kernel is graphically represented as in figure 

above. The h value depends on the spacing between particles, and is taken as 1.2 times the 

spacing in particle. 

The function can in different types. The cubic kernel is represented as follows: 

 

Smoothening length calculation: 

Even though particle elements are defined in the model using one node per element, the 

smoothed particle hydrodynamic method computes contributions for each element based on 

neighboring particles that are within a sphere of influence. The radius of this sphere of influence 

is referred to in the literature as the smoothing length. The smoothing length is independent of 

the characteristic length discussed above and governs the interpolation properties of the method. 

By default, the smoothing length is computed automatically. As the deformation progresses, 

particles move with respect to each other and, hence, the neighbors of a given particle can (and 

typically do) change. Every increment Abaqus/Explicit re-computes this local connectivity 

internally and computes kinematic quantities (such as normal and shear strains, deformation 



34 
 

gradients, etc.) based on contributions from this cloud of particles centered at the particle of 

interest. Stresses are then computed in a similar fashion as for reduced-integration brick 

elements, which are in turn used to compute element nodal forces for the particles in the cloud 

based on the smoothed particle hydrodynamic formulation. 

By default, Abaqus/Explicit computes a smoothing length at the beginning of the analysis such 

that the average number of particles associated with an element is roughly between 30 and 50.  

The smoothing length is kept constant during the analysis. Therefore, the average number of 

particles per element can either decrease or increase during the analysis depending on whether 

the average behavior in the model is expansive or compressive, respectively. If the analysis is 

mostly compressive in nature, the total number of particles associated with a given element 

might exceed the maximum allowed and the analysis will be stopped. By default, the maximum 

number of allowed particles associated with one element is 140. 
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12. Parameters tested and their effects: 

 

Table: Different parameters tested for the conversion 

Sr. No. Criteria Threshold  PPD  Kernel 
Type of 
element  

Second order 
accuracy Output result 

1 Strain 1 2 
 

Hexagonal Yes 
solution did not 
converge 

2 Strain 1.2 2 Cubic  Hexagonal No 
No conversion to 
particles 

3 Strain 1.4 2 Cubic  Wedge No 
No conversion to 
particles 

4 Strain 1.6 2 Cubic  Hexagonal No 
No conversion to 
particles 

5 Strain 1.8 2 Cubic  Tetrahedron  No 
No conversion to 
particles 

6 Strain 2 2 Cubic  Hexagonal No 
No conversion to 
particles 

7 Strain 2.2 2 Cubic  Hexagonal No 
No conversion to 
particles 

8 Stress 1 3 Cubic  Wedge No 
No conversion to 
particles 

9 Stress 1.2 4 Cubic  Hexagonal No 
No conversion to 
particles 

10 Stress 1.4 5 Cubic  Tetrahedron  No 
No conversion to 
particles 

11 Time 1 2 Cubic  Hexagonal No 
No conversion to 
particles 

12 Strain 1.00E-04 2 Cubic  Wedge No Conversion of particles 
13 Strain 1.00E-05 3 Cubic  Hexagonal No Conversion of particles 
14 Strain 1.00E-06 2 Cubic  Tetrahedron  No Conversion of particles 
15 Stress 0.0001 2 Cubic  Hexagonal No Conversion of particles 
16 Stress 0.00001 3 Cubic  Wedge No Conversion of particles 
17 Stress 0.000001 4 Cubic  Hexagonal No Conversion of particles 
18 Stress 0.000001 5 Cubic  Tetrahedron  No Conversion of particles 
19 Time  0.0001 2 Cubic  Hexagonal No Conversion of particles 
20 Time  0.00001 3 Cubic  Wedge No Conversion of particles 
21 Time  0.000001 2 Cubic  Hexagonal No Conversion of particles 
22 Time 0.0001 2 Cubic  Tetrahedron  No Conversion of particles 
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These were the parameters which were tested by performing iterations and recording the results 

and its corresponding effects: 

1) Having second order accuracy in the element control 

2) Criteria 

3) Particles per isoperimetric direction 

4) Threshold value 

5) Kernel Function 

6) Type of element  

7) The figure below shows the different parameters to decide the meshing element type and 

its conversion. 

 

Figure:12.1- Showing various parameters for iterations: 
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So after trying out all of these different parameters the solution did converge and gave the 

results. But with these conversion of particles had no movement even after application of load. 
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13. Boundary Conditions:  

The one far end of the body was fixed so that the part has the stability in the analysis and also 

that the solution should converge.  

The second boundary condition being employed in this research is the ‘Displacement boundary 

condition’. This boundary condition gives the resulting movement of the particles on the 

application of the pressure on the inner surface of the cyst. 

 

13.1. Boundary Condition in a Test model: 

All the above iterations were done with a simple part i.e a long rectangular plate with a hole. 

Where the plate represents the cross section of the nerve, the long plate is selected so as to 

minimize the effect of the fixed node and to have a fixed constrain over the body at the 

maximum possible distance. The hole represents the cyst with the objective to simulate the 

outward expansion resembling the expansion of a cyst. 

 

Figure: 13.1.1 – Plate with a hole: 
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Initially only a part of the long plate was selected to see the conversion to particles and the 

behavior of those particles during simulation.  

So as we can see that on applying the strain criteria it has converted the domain to particles but 

the motion of the particles is not observed and as we can see it is the progressive strain to which 

the part is subjected and it spread gradually form the cyst to the neighboring region in the body. 

Simulation with different criteria to check the motion of particle: 

                 

 

                                      

 

Figure: 13.1.1.-Strain Criteria 
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Applying the time criteria: 

The time criteria is the time in seconds that we can specify for the analysis to convert the domain 

to particles. This criterion is generally effective in case where the time is a critical factor i.e the 

object is subjected to large deformation after certain time of the analysis. The example explained 

in the earlier section of a bird striking an aero-plane is a good example of the time criteria. 

As you can see in the figure below the time criteria is successfully employed with the conversion 

of the particles but the particles still does not move with the analysis in progress. The conversion 

of particles observed in this simulation is not progressive but converts the entire domain to 

particles after attaining the specified time. 

 

                                  

                                          

Figure: 13.1.2.-Time Criteria 
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After changing the static simulations to dynamic the movement of the particles was observed. 

Initally the particles were tried with the displacement boundaru condition in the horizonatal 

direction and at the angle of 45 degrees since the boundary condition of the displacement of the 

particles was rectangular there was a need to change it to achieve the outward radial movement 

of the particles. Thus a new coordinate system; Cylindrical coordinate was defined only for the 

the second step i.e. the displacement boundary condition. 
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14. RADIAL EXPANSION & ITS CONTROLLING PARAMETERS: 

                   

                 

Figure: 14.1.- Horizontal movement of particles 

Simulation shows the expansion of the cyst using cylindrical co-ordinate system. The change in 

system was a step to move towards the physical significance of the blow out of a cyst .  

                    

                 

Figure: 14.2.-Particle movement in radial direction 
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Though the expansion in the radially outward direction was achieved but the motion of the 

particle was not in control and resembled more of an explosion than the gradual outward 

expansion of the cyst. Thus lot of iterations was done with the different parameters i.e. the time 

period, the steps for the simulation, the amplitude of the displacement etc. as shown in the figure. 

 

Figure: 14.3. - Optimizing Boundary Condition 

Even after these iterations there were simulations which converted the nodes to particles and 

simulated the expansion but did not carry it though out the simulation. This was the time when 

the analysis was tested for the time period and the user defined steps of the solution , these user 
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defined steps were then again linked with the slope of the time and displacement graph which 

was an user input. 

The figure below shows the simulation of one of these iterations : 

  

 

 

Figure: 14.4.- Simulation with different parameters 

The control over the motion of the particle was thus finally achieved by finding a suitable 

relation between the times periods that is the total time for the simulation the time steps i.e. the 

time after which the displacement boundary condition is applied in stages and the nature of the 

time versus amplitude slope. It was observed that the best solution was achieved after having a 

comparatively long time period, shorter time steps and a gentle slope of the time and amplitude 

graph.  
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Figure: 14.5.-Controlled Particle Motion 

Thus after this simulation it gave a confidence of using the SPH method of the large 

deformations. So a similar process was repeated with the changes as mentioned above for the 

cross section of a nerve. The figure below exhibits the slow and gradual expansion of the cyst.  
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15. Implementation of SPH with the nerve cross section: 

This expansion of the cross section of the nerve is close to the physical blow out of a material 

having the elastic nature and capability to handle the large strain deformation. 

 

Figure: 15.1-Stage -1: This is the initial phase; body under the threshold strain value 

After attaining the threshold limit the entire domain is gradually converted to particles  

 

Figure: 15.2- Stage -2 

Expansion of the cyst in the radially out ward direction: 



47 
 

 

Figure: 15.3- Stage -3 

The motion of the particle i.e. the circumference of the cyst and the Nerve cross section blowing 

outwards: 

 

 

Figure: 15.4- Stage -4 
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16. Conclusion: 

From the report we can conclude that the mesh-less method smoothed Hydrodynamic approach 

can be successfully applied to the Bio-medical applications like the expansion of a cyst.  

The SPH method does give a solution for the large deformations where the conventional finite 

element methods are not capable of carrying the high strain deformations without distortion of 

nodes. 
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17. Future Scope: 

The SPH method to be successfully applied to the 3D model biological organs  

The SPH method should be capable of deciding the PPD as per the selection of the meshing 

element type and its size. 

Analysis to be simulated considering the pressure exerted by the cystic fluid on the inner surface 

of the cyst involving pressure by incorporating the pressure boundary conditions in the SPH 

method.  
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