
Michigan Technological University Michigan Technological University

Digital Commons @ Michigan Tech Digital Commons @ Michigan Tech

Dissertations, Master's Theses and Master's
Reports - Open

Dissertations, Master's Theses and Master's
Reports

2013

CONVERSION OF DOMAIN TYPE ENFORCEMENT LANGUAGE TO CONVERSION OF DOMAIN TYPE ENFORCEMENT LANGUAGE TO

THE JAVA SECURITY MANAGER THE JAVA SECURITY MANAGER

JAMES WALKER
Michigan Technological University

Follow this and additional works at: https://digitalcommons.mtu.edu/etds

 Part of the Computer Sciences Commons

Copyright 2013 JAMES WALKER

Recommended Citation Recommended Citation
WALKER, JAMES, "CONVERSION OF DOMAIN TYPE ENFORCEMENT LANGUAGE TO THE JAVA SECURITY
MANAGER", Master's report, Michigan Technological University, 2013.
https://doi.org/10.37099/mtu.dc.etds/599

Follow this and additional works at: https://digitalcommons.mtu.edu/etds

 Part of the Computer Sciences Commons

http://www.mtu.edu/
http://www.mtu.edu/
https://digitalcommons.mtu.edu/
https://digitalcommons.mtu.edu/etds
https://digitalcommons.mtu.edu/etds
https://digitalcommons.mtu.edu/etd
https://digitalcommons.mtu.edu/etd
https://digitalcommons.mtu.edu/etds?utm_source=digitalcommons.mtu.edu%2Fetds%2F599&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.mtu.edu%2Fetds%2F599&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.37099/mtu.dc.etds/599
https://digitalcommons.mtu.edu/etds?utm_source=digitalcommons.mtu.edu%2Fetds%2F599&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.mtu.edu%2Fetds%2F599&utm_medium=PDF&utm_campaign=PDFCoverPages

CONVERSION OF DOMAIN TYPE ENFORCEMENT LANGUAGE TO THE JAVA
SECURITY MANAGER

By

James Walker

A REPORT

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

In Computer Science

MICHIGAN TECHNOLOGICAL UNIVERSITY

2013

© 2013 James Walker

This report has been approved in partial fulfillment of the requirements for the Degree of
MASTER OF SCIENCE in Computer Science.

Department of Computer Science

Report Advisor: Steven Carr

Report Co-Advisor: Jean Mayo

Committee Member: Xinli Wang

Department Chair: Charles Wallace

Table of Contents

Chapter 1. Introduction..5

Chapter 2. Related Work..10

Chapter 3. The DTEL to JSM Compiler..12

Chapter 4. Tests and Performance Analysis..21

Chapter 5. Conclusion..32

3

Abstract

With today's prevalence of Internet-connected systems storing sensitive data and the

omnipresent threat of technically skilled malicious users, computer security remains a

critically important field. Because of today's multitude of vulnerable systems and security

threats, it is vital that computer science students be taught techniques for programming

secure systems, especially since many of them will work on systems with sensitive data

after graduation. Teaching computer science students proper design, implementation, and

maintenance of secure systems is a challenging task that calls for the use of novel

pedagogical tools. This report describes the implementation of a compiler that converts

mandatory access control specification Domain-Type Enforcement Language to the Java

Security Manager, primarily for pedagogical purposes. The implementation of the Java

Security Manager was explored in depth, and various techniques to work around its

inherent limitations were explored and partially implemented, although some of these

workarounds do not appear in the current version of the compiler because they would

have compromised cross-platform compatibility. The current version of the compiler and

implementation details of the Java Security Manager are discussed in depth.

4

Chapter 1. Introduction

1.1. Background

Designing and enforcing information security policies is a significant challenge. Today,

system designers and administrators face a combination of ubiquitous Internet

connections, heavy dependence on functional computing infrastructures, storage of

massive amounts of sensitive data, and myriad technically skilled malicious agents. In

this environment, maintaining a secure system is crucial.

Many tools and techniques have been developed to address this challenge. Among these

tools are discretionary access controls and mandatory access controls. Discretionary

access controls restrict access to entities based on the identity of subjects, such as users

and processes, to which they belong. The owner can typically transfer permissions to

other subjects as well, hence the term discretionary. An example of a discretionary access

control is the familiar Unix permission system. In this system, every file defines read,

write, and execute permissions for that file's owner, group, and everyone else. Typically,

the owner of the file can change these permissions at will. For instance, the owner may

grant himself the ability to read and write to a file, give his group read-only access, and

not allow users outside the group to access the file at all.

In mandatory access control, the operating system or similar entity constrains access

based on a set of rules. In this paradigm, subjects may not transfer access rights if they

are restricted from doing so. In other words, it is the system (and the person responsible

for maintaining the system), not end users, that controls file system and execution

permissions. As an example, the system may divide users into various classes and restrict

5

users based on class from accessing the files in a given directory and its subdirectories. In

this case, if users did not belong to the appropriate class, there is nothing they could do to

access the restricted directory, nor could anyone grant them this permission except by

changing the system's security configuration, or by moving them to another class (an

action which itself would probably be restricted by the security configuration). The

ability to configure universal security restrictions in this manner is a powerful tool.

One such mandatory access control is Domain Type Enforcement (DTE) [1]. The two

most important concepts in DTE are domains and types. Domains define a security

context in which processes operate, while types categorize paths in the file system's

directory structure. Access modes, which include reading, writing, executing, and

creating files, are restricted from domains to types and also between domains. Badger et

al [2] have presented a formal definition for specifying DTE policies known as Domain

Type Enforcement Language (DTEL). DTEL allows for the creation of more compact

and maintainable security policies than standard type enforcement, which requires the

development and maintenance of potentially enormous access control tables [3]. A DTEL

policy file concisely describes all of the domains, types, and the access modes that are

permitted between them on a given system.

Security is vital not only at the operating system level, but also at the application level.

Safe programming languages include facilities for writing secure code. The Java

programming language, in particular, is known for having robust security features. One

such feature is the Java Security Manager (JSM). Java applications subject to a JSM

check with the JSM when performing certain actions, such as file system access, and

those actions are then permitted or denied based on the JSM's internal logic. A custom

security policy can be implemented by overriding the SecurityManager class and its

6

relevant methods, then invoking the SecurityManager in the application to be restricted.

The SecurityManager is implemented by overriding certain methods which are called

whenever a particular action is performed; for example, checkRead and checkWrite [5]

[14].

A fundamental similarity exists between DTEL and JSM. Both define security policies

that restrict certain kinds of actions – especially file system access – based on explicitly

defined criteria. However, they have many differences as well. DTEL's security

configuration operates at the operating system level, while JSM operates at the level of an

individual application. A system under the purview of a DTEL specification is subject to

those restrictions whether it wants to be or not, whereas a Java application must willingly

invoke a JSM class to be subject to its restrictions. Furthermore, DTEL security criteria

are tightly defined and limited, while a JSM class can determine security restrictions

based on any criteria that can be programmatically implemented in its internal logic. In

this respect, JSM is more flexible in its ability to define security policies. However,

certain limitations in JSM's implementation place considerable restrictions on its ability

to implement certain kinds of security checks.

1.2. Motivation

As the design and implementation of good security policies is difficult, so too is teaching

students how to understand computer security. To address this challenge, many

pedagogical tools have been developed. Specifically as relates to this project, Carr and

Mayo [4] have described using DTE to teach students the fundamentals of access control.

7

The Domain Type Enforcement Language to Java Security Manager Compiler (D2JC) is

intended to expand the pedagogical potential of DTE as a learning tool. By using D2JC,

students will gain a multifaceted understanding of DTE, the Java Security Manager, and

access control in general. D2JC accepts only valid DTE specifications and includes

thorough semantic checks, so in order to use the compiler, students must be able to

produce well-formed DTE specifications and will be alerted to any semantic errors in

their security policies. D2JC outputs Java code specifying a custom SecurityManager

class, so in order to use the security policy within the context of a Java application,

students must understand how to assign a custom security manager to their application.

Finally, by seeing how the security manager interacts with their file system accesses, they

will observe how JSM functions and can also test and explore the implementation of their

security policy.

Together, it is hoped that these features will provide instructors with a useful tool for

teaching the idiosyncrasies of access control, DTE, and JSM to their students.

1.3. Outcome

The current version of D2JC includes a robust parser that is capable of detecting and

reporting a wide range of both syntactic and semantic errors in DTEL specifications.

Simply by compiling their DTEL specifications, students will learn not only how to

create well-formed DTEL syntax, but also the kinds of logical mistakes that might appear

in their policies and how to avoid them. If compilation is successful, D2JC outputs code

for a valid JSM class that maps certain restrictions (primarily simple file access controls)

in the DTEL specification into JSM equivalents. This code can then be compiled and the

resulting JSM class can be invoked by Java applications to implement the security

8

restrictions. This process will teach students about Java compilation, how to invoke the

Java Security Manager, and provide the ability to test a subset of DTEL specifications

written by the students (or provided to them by instructors).

Additionally, implementation details of the Java Security Manager itself were explored in

detail. Some surprising limitations (discussed in detail in subsection 3.2.3) were

discovered in the JSM's implementation that prevented a full mapping of DTEL to JSM

restrictions. To summarize, it was discovered that the JSM's ability to check the

execution of system commands is impaired; the Java FileDescriptor class does not

contain enough information to check path-based file system accesses without complex

workarounds; and the JSM is subject to its own security restrictions which can throw it

into an infinite loop. The opportunity was taken to research potential solutions to these

issues. Some of these solutions were partially implemented, but they are not included in

the final product because they would hamper cross-platform compatibility. Despite these

limitations, D2JC still has considerable value as a pedagogical tool.

9

Chapter 2. Related Work

2.1. Domain Type Enforcement

The flexibility of DTE has attracted a significant amount of attention in research. Badger

et al [2][1] formulated DTEL as an expression of DTE policies and have explored

potential applications. Tidswell and Potter [15] proposed a dynamically configurable

variant of DTE. Hallyn and Kearns [6] have explored the implementation of DTE in

Linux. Kiszka et al [10] applied DTE to a security model divided into real-time and

non-real-time components and predicted emerging applications and system responses to

expected attacks.

2.2. Security Visualizations

D2JC was built upon an existing DTEL parser. The base code has been used for other

projects besides the D2JC, such as DTEvisual by Li et al [12]. Expanding on the

pedagogical uses of DTE, DTEvisual accepts a valid DTE specification as input and

outputs a graphical representation of the access control policy. DTEvisual is used for

educational purposes such as modifying policies during classroom lectures.

Because humans are adept at interpreting data visually, security visualizations have a

high potential to improve understanding of security policies and even real-time security

events. Recognizing this, other researchers have also developed security visualization

tools. Hallyn and Kearns [7] have developed a tool called DTEView to aid the

construction of sound DTE policy files through visual representation. Marty [13]

describes techniques for using visualization to extract meaningful information from

network security logs. Other examples of security visualizations include NVisionCC, a
10

tool developed by Yurcik et al [16] for visualizing security events on high performance

clusters, potentially allowing for much better security maintenance of high-node clusters

than traditional command-line tools; and the Intrusion Detection Toolkit by Komlodi et al

[11], a visualization tool for detecting intruders on a network.

11

Chapter 3. The DTEL to JSM Compiler

3.1. The DTEL Parser

D2JC was built upon an existing DTEL parser. The parser was written using the Java

Compiler Compiler (JavaCC), “a tool that reads a grammar specification and converts it

to a Java program that can recognize matches to the grammar” [8] and converts valid

DTEL specifications into Java data structures for other uses such as the DTEvisual tool

[12].

In implementing D2JC, several minor bug fixes were applied to the existing code base

and semantic error checking was added. If a semantic error is detected, the program

terminates compilation and prints an appropriate error message. Errors detected by the

semantic checker include the following:

• Multiple types defined with the same name.

• Multiple domains defined with the same name.

• Assigning to a nonexistent type.

• A domain and type sharing the same name.

• The same path is assigned to multiple types.

• No generic type is assigned.

• The initial domain is not a domain.

• Permissions are applied to something that is not a type (e.g., a domain).

• Exec or auto is applied to a non-domain entity.

If the scanner reads the DTEL specification successfully and the parser finds no semantic

errors, the program reports that parsing was completed successfully, and compilation is

allowed to continue. If the user specified the “-jsm” command line option when invoking

12

the compiler, the compiler proceeds to convert the DTEL Specification into Java Security

Manager code.

3.2. Restrictions and Limitations

There is not a 1:1 mapping between DTE and JSM. DTE is a general-purpose mandatory

access control specification, whereas JSM intercepts certain kinds of operations invoked

from a Java application and either permits or denies those operations. Because of this,

there are some aspects of DTE which have no JSM equivalent, and vice-versa.

3.2.1. DTE-to-JSM Non-Equivalencies

UNIX signals. Because a Java application could potentially be running on any operating

system, implementing controls for UNIX signals (e.g., sigkill, sigpause, etc.) would be

unnecessarily restrictive and eliminate cross-platform compatibility.

Domain transitions. The DTEL specification allows for controlling domain transitions

via auto and exec. This involves the creation of a new process. In order to be meaningful,

the new process must be subject to the same security restrictions as the process that

spawned it. The JSM clearly cannot enforce its own restrictions on any non-Java

processes that are spawned. Even if a new Java process is spawned, potential techniques

for transferring the JSM's security restrictions to the new process were deemed

unacceptable, as described under subsection 3.2.3, “Limitations of the Java Security

Manager.”

13

3.2.2. JSM-to-DTE Non-Equivalencies

Sockets. The JSM allows security restrictions on a Java application's socket connections.

Extensive research did not uncover equivalent restrictions configurable through DTE.

Threads. The JSM allows security restrictions on thread access. DTE allows

inter-process restrictions via subject access rights, but no equivalent was found for

threads.

Java-specific components. The JSM allows security restrictions on the Java class loader,

package access, and properties access. As these are Java-specific security concerns, DTE

contains no equivalent.

3.2.3. Limitations of the Java Security Manager

Even among those security concerns which are shared by DTE and the JSM, not all of

them could be implemented due to limitations in the JSM's design. These limitations are

described below.

Transferring JSM access restrictions. Ordinarily, a Java application must explicitly

install a custom security manager in order to be subject to its security restrictions.

Initially, the D2JC project assumed that a rough simulation of a complete mandatory

access control scheme might be achieved by forcing the initial application to invoke the

DTE-specified JSM and then transferring the JSM's security restrictions to any

subsequent Java applications invoked by the initial application. This approach assumes

that forcing the JSM upon subsequently invoked applications is feasible.

14

Subsequent research revealed this to be unworkable. It is possible to assign a security

manager to a Java application via the command line. The initial approach was to intercept

command-line calls initiated by the initial application. Thus, if the initial application

launched another Java process with a call such as

java ApplicationToInvoke

the security manager would intercept that call and replace it with

java -Djava.security.manager=SecMgr ApplicationToInvoke

thereby transferring its properties to the new application.

However, this approach is thwarted by the fact that JSM's method for checking system

calls, checkExec(String command), receives only the first word of the call. Using the

previous examples, the parameter command would contain the string “java”, nothing

more. This is insufficient information to apply meaningful security restrictions to system

calls.

Due to this limitation, D2JC does not transfer JSM restrictions, nor provide an

implementation for the checkExec method.

Reading and writing files with FileDescriptors. The JSM includes multiple

variations of the checkRead and checkWrite methods, including methods which accept

FileDescriptors as parameters. This is problematic because the FileDescriptor class

contains no path information, which DTE requires to perform access checks.

Extensive research revealed a possible workaround for this issue. The FileDescriptor

class (obtained by downloading the Java source) contains the fields fd and handle. These

are private fields, but they may be accessed using reflection [9], as follows:

15

Field privateField = FileDescriptor.class.getDeclaredField("fd");

privateField.setAccessible(true);

int fd = (int)privateField.get(filedescriptor);

Thus armed with the value of the file descriptor, the JSM could invoke an operating

system tool such as lsof to obtain a list of open files, compare them to the obtained

filedescriptor to find the file in question, get the path information, and finally apply DTE

restrictions.

This solution was partially implemented before it was deemed too operating

system-dependent. The current version of D2JC simply denies all file system accesses

attempted with FileDescriptors.

The Java Security Manager is subject to its own restrictions. For example, if the JSM

attempts to open a file as part of a security check, it calls its own checkRead method to

see if the access is allowed. Combined with certain other Java design decisions, this has

the effect of creating situations where infinite recursive calls of security checks are

unavoidable.

In particular, this behavior interferes with the enforcement of file and directory creation

permissions. All of the standard Java file output operations work by automatically

creating the file being written to (as well as requisite path structure) if it does not already

exist. In order to implement file/directory creation checks, it is necessary to first check if

the file being written to does not yet exist; and if it does not, to check the relevant

permissions.

However, checking for the existence of a file in Java involves creating a new File object

and then checking for its existence; i.e.,

16

File file = new File(path);

if(!file.exists()) { /* file creation permission check */ }

This is a problem because the instantiation of the File class causes the security manager

to invoke its own security checks, initiating an endless loop which quickly floods the call

stack and results in the termination of the application.

This behavior might be avoided by invoking native code and performing the file

existence check from there (an option that was explored in some depth), but this would

severely hamper cross-platform compatibility, a limitation deemed unacceptable in the

implementation of this project.

Because of this behavior, the current version of D2JC is unable to enforce these

permissions.

3.3. The DTE to JSM Converter

Although JSM can make only limited use of the DTE specification, D2JC outputs JSM

code that contains a complete internal representation of all aspects of DTE which are

currently supported by the parser. It also overrides all variations of the checkWrite and

checkRead methods to implement those file system checks which it is able.

The JSM generated by D2JC employs the use of five internal classes for converting the

DTE permissions to a usable internal representation. The full code of these classes is

given in Listing 3.1.

17

Listing 3.1. Internal classes of the D2JC-generated JSM.

class Permission {

public ArrayList<String> types;

public boolean read = false;

public boolean write = false;

public boolean exec = false;

public boolean dir = false;

public boolean create = false;

}

class Transition {

public boolean auto = false;

public boolean exec = false;

public ArrayList<String> domains;

}

class Domain {

public String name;

public ArrayList<String> entryPoints;

public ArrayList<Permission> permissions;

public ArrayList<Transition> transitions;

}

class Type {

public String name;

public ArrayList<TypeAssignment> assignments;

}

class TypeAssignment {

public boolean recursive;

public boolean staticOpt;

public ArrayList<String> paths;

}

When invoked to output JSM code, the compiler uses the information stored by the

DTEL parser to generate a constructor that instantiates objects of the classes given in

listing 3.1, assigns their values, and ultimately places them in ArrayLists of Domains

and Types. It then assigns its own domain as the initial_domain defined in the DTEL

18

specification and determines the current working directory of the application that invoked

the JSM.

For executing its file system permission checks, the D2JC-generated JSM implements the

following helper methods:

String convertPath(String path): Converts Windows paths into Unix paths. Unix

paths are returned unaltered.

String combinePaths(String left, String right): Extrapolates a single absolute

path from the left path which is used as the “base” (in practice, the current working

directory of the application that invoked the JSM) and the right path which is a relative

path from the base. It is intelligent enough to parse the ../ character sequence to move

up the directory structure of the base path. If the right parameter is an absolute instead

of relative path (i.e. it is preceded by a slash /), the left parameter is ignored and the

right parameter is returned unaltered.

ArrayList<String> getTypes(String path): Returns a list of all Types that contain

the path supplied.

boolean checkPermission(String type, int permission): Checks if, under the

current Domain, the given type permits permission, which is a coded parameter. Values

of 0 through 4 correspond to the permissions create, read, write, execute, and directory,

respectively.

boolean filesystemCheck (String type, int permission): A generalized method

that contains code common to all file system checks, called on behalf of the JSM's

19

checkRead and checkWrite methods, which supply the relevant permission to be

checked.

Finally, the D2JC-generated JSM overrides the following SecurityManager methods,

which use the helper methods described above:

• checkDelete(String filename)

• checkRead(FileDescriptor filedescriptor): Always throws a
SecurityException (see subsection 3.2.3).

• checkRead(String filename)

• checkRead(String filename, Object executionContext): The
executionContext is irrelevant to the DTE check and is ignored.

• checkWrite(FileDescriptor filedescriptor): Always throws a
SecurityException (see subsection 3.2.3).

• checkWrite(String filename)

A more robust implementation was planned and partially implemented, but numerous

features were cut from the final version of the project for reasons described in subsection

3.2.3.

20

Chapter 4. Tests and Performance Analysis

4.1. Semantic Error Checking

In order to demonstrate the abilities of the semantic error checker, the following

malformed DTEL specification was created:

Listing 4.1. Malformed DTEL specification.

type same_name, same_t, same_t, dup_assign;

domain same_name = (/sbin/init),

(rd->same_d),

(auto->same_t);

domain same_d = (/usr/bin/login),

(crwd->same_t),

(exec->same_d);

domain same_d = (/usr/bin/{sh, csh, tcsh}),

(crwxd->same_name),

(rwd->same_t);

initial_domain = same_t;

assign -r same_name /usr/var, /dev, /tmp, /test;

assign -r same_t /etc;

assign -r dup_assign /dev;

assign -r non_existent /fakepath;

assign -r -s same_t /dte;

The DTEL specification given in Listing 4.1 contains the following semantic errors:

• The initial domain is assigned to a type.

• There is no generic type.

21

• The name same_name is defined for a type and a domain.

• There are two domains called same_d.

• There are two types called same_t.

• A domain tries to assign auto to a type.

• Access permissions are applied to a domain.

• Attempts to assign to a nonexistent type (non_existent).

• Attempts to assign the path /dev to multiple types.

When attempting to compile the DTEL file, the compiler reports each of these errors:

Type 'same_t' has multiple definitions.

Domain 'same_d' has multiple definitions.

Type and domain lists both contain identifier 'same_name'

There is no generic type defined.

initial_domain set to 'same_t' which is not defined as a domain

Permissions tried to reference undefined type 'same_d'

Attempted exec or auto transition to 'same_t' which is not defined
as a domain

Invalid identifier 'non_existent' with assign statement.

Path '/dev' assigned to multiple types

Note that each of these errors corresponds to one of the semantic checks described in

Section 3.1, so this comprises a thorough test of the semantic checker's ability to detect

all of the errors defined for this version of D2JC. Fixing each of these errors yields the

DTEL specification given in Listing 4.2.

Listing 4.2. Corrected DTEL specification.

type same_name, same_t, diff_t;

domain diff_name = (/sbin/init),

(rd->same_t),

(auto->same_d);

22

domain same_d = (/usr/bin/login),

(crwd->same_t),

(exec->same_d);

domain diff_d = (/usr/bin/{sh, csh, tcsh}),

(crwxd->same_name),

(rwd->diff_t);

initial_domain = same_d;

assign -r same_name /usr/var, /dev, /tmp, /test;

assign -r same_t /;

assign -r -s diff_t /dte;

When the compiler is run on the corrected DTEL specification, it reports no errors and

compilation is completed successfully, outputting Java code for a custom security

manager.

4.2. File System Permissions

In order to function correctly, the JSM class outputted by D2JC must have the following

behaviors:

1. It should be subject to the permission restrictions defined by the DTEL

specification for the initial domain.

2. Because the current version of D2JC does not support transitioning to other

domains, it should not be subject to permission restrictions for other domains

besides the initial domain.

3. It should be able to write to files in those directories defined as writable for the

types assigned to the initial domain.

23

4. It should be able to read from files in those directories defined as writable for the

types assigned to the initial domain.

5. It should not be able to read/write from files for which it has not been given

permission to do so via type assignment to the initial domain.

6. It should parse both Windows and Unix paths correctly.

7. It should understand that the ../ character sequence in directory paths means to

move up in the directory structure.

In order to test the correct functioning of D2JC's file system permissions, the following

DTEL specification was created:

Listing 4.3. DTEL specification for testing file system permissions.

type generic_t, writable_t, readable_t, both_t, neither_t,
other_t;

domain start_d = (/sbin/init),

 (r->readable_t),

 (w->writable_t),

(rw->both_t);

domain unreachable_d = (/fakepath),

 (rw->other_t);

initial_domain = start_d;

assign -r generic_t /;

assign -r writable_t /test/writable;

assign -r readable_t /test/readable;

assign -r neither_t /test/neither;

assign -r other_t /test/otherd;

24

assign -r both_t /test/both, /test/both2;

The DTEL specification in Listing 4.3 defines six types, including a generic type to

satisfy DTE requirements. The specification also defines two domains, start_d and

unreachable_d. start_d is defined as the initial domain. This domain is given read

permission to readable_t, write permission to writable_t, read and write permission

to both_t, and no permissions to the other types. unreachable_d is given read and write

permissions to other_t.

To test the JSM class generated when this DTEL file is compiled with D2JC, the

following application was created:

Listing 4.4. Security test application to verify the custom JSM's behavior.

import java.io.*;

class SecurityTest {

public static void main(String[] args) {

// Assign security manager

try {

 System.setSecurityManager(new DTESecurityManager());

 } catch (Exception e) {

 System.out.println("Error: " + e.getMessage());

 }

System.out.println("Successfully set security manager.");

// Write to /test/writable

try {

FileWriter fstream = new
FileWriter("M:\\test\\writable\\WriteOut.txt");

BufferedWriter out = new BufferedWriter(fstream);

out.write("Writing to file.");

25

out.close();

} catch (Exception e) {

System.err.println("Error: " + e.getMessage());

}

// Read from /test/writable

try {

FileReader fstream = new
FileReader("/test/writable/ReadIn.txt");

BufferedReader in = new BufferedReader(fstream);

System.out.println(in.readLine());

in.close();

} catch (Exception e) {

System.err.println("Error: " + e.getMessage());

}

// Write to /test/writable/deeper

try {

FileWriter fstream = new
FileWriter("/test/writable/deeper/../deeper/WriteOut.txt");

BufferedWriter out = new BufferedWriter(fstream);

out.write("Writing to file.");

out.close();

} catch (Exception e) {

System.err.println("Error: " + e.getMessage());

}

// Read from /test/writable/deeper

try {

FileReader fstream = new
FileReader("/test/writable/deeper/ReadIn.txt");

BufferedReader in = new BufferedReader(fstream);

System.out.println(in.readLine());

in.close();

} catch (Exception e) {

System.err.println("Error: " + e.getMessage());

}

// Similar tests for remaining types

// (omitted from code listing)

26

System.out.println("Testing complete.");

}

}

The application in Listing 4.4 tries to read from and write to /test/writable, and then,

to ensure that permissions are being applied recursively (so that paths do not have to be

an exact match, but may be prefixes), it tries to read from and write to

/test/writable/deeper. It performs the same tests with /test/readable and

/test/neither. It then performs the same tests with /test/otherd, /test/both, and

/test/both2, except that the deeper checks are omitted for brevity, recursive

directories having already been checked by the preceding tests. If any of these operations

throws an exception, it catches the exception and prints it to stdout. The relevant

directories and the ReadIn.txt files were created ahead of time for the purposes of the

test. The text files contained a single line of text, “I am the first line from the ReadIn file

in [path to file].”

This application comprises a thorough test of the required behaviors defined previously.

Attempting to read from and write to the various directories defined by the DTEL

specification, including directories with only read, only write, and both read and write

permissions, verifies requirements (1), (3), (4), and (5). Attempting to read from and

write to /test/otherd, which the domain unreachable_d has permissions to, verifies

requirement (2), that other domains' permissions are not being applied to the current

domain. The application also includes a Windows-style path, verifying condition (6), and

a path that uses the ../ character sequence, verifying condition (7).

27

Running this test yielded the following output:

Successfully set security manager.

Error: Current domain does not have read permission to
/test/writable/ReadIn.txt

Error: Current domain does not have read permission to
/test/writable/deeper/ReadIn.txt

Error: Current domain does not have write permission to
/test/readable/WriteOut.txt

I am the first line from the ReadIn file in /test/readable.

Error: Current domain does not have write permission to
/test/readable/deeper/WriteOut.txt

I am the first line from the ReadIn file in /test/readable/deeper.

Error: Current domain does not have write permission to
/test/neither/WriteOut.txt

Error: Current domain does not have read permission to
/test/neither/ReadIn.txt

Error: Current domain does not have write permission to
/test/neither/deeper/WriteOut.txt

Error: Current domain does not have read permission to
/test/neither/deeper/ReadIn.txt

Error: Current domain does not have write permission to
/test/otherd/WriteOut.txt

Error: Current domain does not have read permission to
/test/otherd/ReadIn.txt

I am the first line from the ReadIn file in /test/both.

I am the first line from the ReadIn file in /test/both2.

Testing complete.

Lastly, an examination of the directories revealed that the WriteOut.txt files had been

created in /test/writable, /test/writable/deeper, /test/both, and

/test/both2, and contained the correct text contents, but these files had not been

created in the other directories. This is the expected behavior, thus verifying the correct

operation of the permission checks.

28

4.3. Performance Analysis

4.3.1. Compilation Time

In the process of performing semantic error checking, the compiler makes numerous

comparisons. A small number of these comparisons occur during the scanning phase and

are dependent on the time complexity of the scanner, which was written prior to this

project. The remainder of the checks and their time complexities are analyzed below:

A generic type and initial domain are validly specified. These checks both use data

gathered during scanning that allows them to be performed in constant time.

Duplicate names in types and domains. To ensure that no type possesses the same

name as any domain, the parser compares each domain with each type, resulting in O(dt)

complexity where d and t are the numbers of domains and types, respectively.

Duplicate type assignments. To ensure that the same path is not assigned to any two

types, the parser compares every path in every type with every path in every other type,

resulting in O(p2) complexity where p is the total number of paths from all types.

Permissions are only applied to types. To ensure that permissions are not applied to a

non-type entity, for every set of permissions, the parser checks that permission's target

with all types, resulting in O(pt) complexity where p and t are the number of permissions

and types, respectively.

29

Transitions are only applied to domains. To ensure that auto or exec transitions are not

applied to a non-domain entity, for every set of transitions, the parser checks that

transition's target with all domains, resulting in O(rd) complexity where r and d are the

number of transitions and domains, respectively.

All of these checks require either constant or polynomial time, so the semantic error

checks added by the D2JC parser add polynomial time complexity to the compilation

time of DTEL specifications.

4.3.2. Real-time Permission Checks

Every file system check in D2JC is performed in essentially the same manner. First, the

security manager iterates through all of its paths, noting those which match the path of

the file being checked and recording their corresponding types. This operation is linear in

the number of paths contained in the DTE specification. Then the security manager

iterates through all of the types returned in the preceding operation, and for each one, it

iterates through all of the permissions defined for the current domain, all of the types

assigned to those permissions, and allows the access if the requested operation is allowed

for any of the types whose paths correspond to the file being checked. If the security

manager completes this entire process without finding any matches, then it denies the

access attempt.

The total running time of one check is therefore O(t1pt2) + O(h), where t1 is the number of

types to check against, p is the number of permissions in the current domain, t2 is the

number of types in each permission, and h is the number of paths in the DTE

specification. Although this is a polynomial-time operation, the values of t1, p, and t2 are

30

likely to be small even in relatively complex DTE specifications, so these checks can be

completed quickly in the vast majority of cases.

31

Chapter 5. Conclusion

5.1. Future Work

The current version of D2JC is limited in the DTEL restrictions it can implement. It could

gain even more value as a pedagogical tool if its capabilities were expanded. One

approach would be to implement some of the workarounds described in subsection 3.2.3,

which were deemed infeasible for this version of the compiler. Different versions of the

compiler could be implemented for different operating systems in an effort to preserve

cross-platform compatibility.

Alternatively, future iterations of the project could explore alternatives to the Java

Security Manager. For example, JSM shares security responsibilities with the access

controller and class loader [14]. If D2JC were modified to output not only JSM code, but

to utilize additional Java security features, it may be able to achieve a more robust

implementation of DTEL specifications.

Another alternative would be to implement a special Java application that acts as a virtual

machine specifically for implementing DTE security policies. This virtual machine could

implement its own, more powerful version of the security manager, and D2JC could be

modified to output code for this customized JSM. This approach would allow for

unlimited implementation of DTEL specifications, but implementing the virtual machine

might involve a significant amount of work.

32

5.2. Potential Applications

D2JC's limitations render it inappropriate for industrial use, but it contains many features

valuable for pedagogical purposes. It is useful for teaching students how to create

well-formed DTEL specifications due to its syntactic and semantic error checking. It also

teaches students the basics of incorporating the Java Security Manager into their

applications, since the code outputted by D2JC needs to be compiled and installed

manually in the application that will make use of it. It also provides an implementation of

most of DTE's file permission security checks. However, it must be noted that there are

many parts of the DTEL specification that cannot be implemented in the outputted JSM

code, so while D2JC has substantial use as a supplement, it is not a complete tool for

teaching students how DTE works.

33

References

[1] Badger L., D.F. Sterne, D.L. Sherman, K.M. Walker, S.A. Haghighat. “A Domain and
Type Enforcement UNIX Prototype.” Proc. Fifth USENIX UNIX Security
Symposium 1995.

[2] Badger L., D.F. Sterne, D.L. Sherman, K.M. Walker, S.A. Haghighat. “Practical
Domain and Type Enforcement for UNIX.” Proc. IEEE Symposium on Security
and Privacy 1995.

[3] Boebert W.E. and R.Y. Kain. “A Practical Alternative to Hierarchical Integrity
Policies.” Proc. 8th National Computer Security Conference 1985.

[4] Carr S. and J. Mayo. “Teaching Access Control With Domain Type Enforcement.”
Journal of Computing Sciences in Colleges, 27(1) pp. 74-80, 2011.

[5] “Class SecurityManager.” Oracle Corporation. [Online]. Available:
http://docs.oracle.com/javase/1.4.2/docs/api/java/lang/SecurityManager.html

[6] Hallyn S.E. and P. Kearns. “Domain and Type Enforcement for Linux.” Proc. 4th
Annual Linux Showcase & Conference 2000.

[7] Hallyn S.E. and P. Kearns. “Tools to Administer Domain and Type Enforcement.”
Proc. LISA 2001, pp. 151-156.

[8] “Java Compiler Compiler (JavaCC) – The Java Parser Generator” [Online].
Available: http://javacc.java.net/

[9] Jenvok, J. “Java Reflection: Private Fields and Methods” [Online]. Available:
http://tutorials.jenkov.com/java-reflection/private-fields-and-methods.html

[10] Kiszka J. and B. Wagner. “Domain and Type Enforcement for Real-Time Operating
Systems.” Proc. Emerging Technologies and Factory Automation 2003.

[11] Komlodi A., P. Rheingans, A. Utkarsha, J.R. Goodall, Joshi A. “A user-centered
look at glyph-based security visualization.”IEEE Workshop on Visualization for
Computer Security 2005.

[12] Li Y., S. Carr, J. Mayo, C.K. Shene, C. Wang. “DTEvisual: A Visualization System
for Teaching Access Control Using Domain Type Enforcement.” Journal of
Computing Sciences in Colleges, 28(1) pp. 125-132, 2012.

[13] Marty R. Applied Security Visualization. Addison-Wesley Professional, 2008.

[14] Oaks, S. Java Security 2nd Edition. O'Reilly & Associates, 2001.

[15] Tidswell J. and J. Potter. “An Approach to Dynamic Domain and Type
Enforcement.” Information Security and Privacy 1997.

34

[16] Yurcik W., X. Meng, N. Kiyanclar. “NVisionCC: A Visualization Framework for
High Performance Cluster Security.” Proc. ACM Workshop on Visualization and
Data Mining for Computer Security 2004, pp. 133-137.

35

	CONVERSION OF DOMAIN TYPE ENFORCEMENT LANGUAGE TO THE JAVA SECURITY MANAGER
	Recommended Citation

	Chapter 1. Introduction
	1.1. Background
	1.2. Motivation
	1.3. Outcome

	Chapter 2. Related Work
	2.1. Domain Type Enforcement
	2.2. Security Visualizations

	Chapter 3. The DTEL to JSM Compiler
	3.1. The DTEL Parser
	3.2. Restrictions and Limitations
	3.2.1. DTE-to-JSM Non-Equivalencies
	3.2.2. JSM-to-DTE Non-Equivalencies
	3.2.3. Limitations of the Java Security Manager

	3.3. The DTE to JSM Converter

	Chapter 4. Tests and Performance Analysis
	4.1. Semantic Error Checking
	4.2. File System Permissions
	4.3. Performance Analysis
	4.3.1. Compilation Time
	4.3.2. Real-time Permission Checks

	Chapter 5. Conclusion
	5.1. Future Work
	5.2. Potential Applications

