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ABSTRACT 

An ability to predict population dynamics of the amphipod Diporeia is 

important in understanding how energy pathways in the Lake Superior food web 

might be altered by disturbances to the ecosystem.   Estimating growth rates for this 

prominent prey item for fish requires information on the physiological effects of 

changes to its environment.  These effects have been investigated for Diporeia in 

other Great Lakes, but little is known about Lake Superior populations.  The primary 

objective of this study is to obtain quantitative data for rates of Diporeia respiration 

and consumption that can be incorporated into a bioenergetics model for Lake 

Superior.  Benthic communities in Lake Superior were sampled bimonthly from April 

through September during 2011 and 2012 to investigate spatial and temporal trends 

of Diporeia abundances as well as size class structures of the population.  Additional 

samples of Diporeia were collected and kept alive in natural sediment for laboratory 

experiments.  Respiration rates for Diporeia were measured by monitoring dissolved 

oxygen concentrations in microcosoms using microelectrodes.  Additionally, a series 

of experiments to estimate consumption rates based on food availability were 

conducted using 14C-labeled algae (Selenastrum capricornutum).  Amphipod 

population densities are highest between 30-110 m (slope) compared to 0-30 m 

(shelf) or >110 m (profundal) regions in Lake Superior.  This heterogeneous 

distribution of Diporeia in Lake Superior is an important component to quantifying 

lake-wide biomass.  Rates of oxygen consumption by Diporeia range from 32.0 to 

44.7 mgO2·gDW-1·d-1, and do not vary significantly with body size per individual.  The 

predicted consumption rate corresponding to average Lake Superior algal carbon 

fluxes was 0.08 ± SE mgC·gDW-1·d-1.  Data on Lake Superior Diporeia biomass and 
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bioenergetics found in this study can be incorporated in a model used to estimate the 

viability of this population under potential future environmental stressors.  
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CHAPTER 1.  DIPOREIA IN LAKE SUPERIOR 

INTRODUCTION 

The trophic dynamic aspect proposed by Lindeman (1942) was the first 

quantitative effort to define patterns of connectedness between energy supply and 

transfer in food webs.  In this attempt to understand energy pathways, the lake 

ecosystem was expressed as a network of groups of organisms (i.e. tropic levels) 

connected by feeding (Golley 1993).  The rate at which organisms assimilate food 

has since been used as an approach to develop ecosystem energy-flow models 

(Odum 1956; Kitchell et al. 1977; Rice and Cochran 1984).  In order to understand 

the mechanisms through which pelagic and benthic nutrients are allocated to higher 

trophic levels, it is essential to investigate the factors affecting the energetics of 

primary consumers within a lake.  

Lake Superior is the largest freshwater lake in the world by surface area, and 

perhaps the most pristine of the Laurentian Great Lakes (Strachan and Eisenreich 

1988) due to its remote location.  Nonetheless, this ecosystem has been subjected to 

numerous disturbances as local industry and land development continue to expand 

in the region.  Specifically, trace metal and organic chemical contamination, along 

with the introduction of non-native species, have affected the interactions in biotic 

and abiotic cycles in Lake Superior (Galloway et al. 1982; Mills 1994; Nriagu 1995; 

Kitchell et al. 2000; Grigorovich 2003).  The functionality of an ecosystem is 

influenced by a vast amount of physical and biological factors.  Any attempt to 

predict the response of a system as large as Lake Superior requires a suite of 

models that have been validated and can be used in conjunction (Golley 1993).  The 
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overall aim of this research is to collect new data required to parameterize a 

bioenergetics model, which will later be incorporated into a more detailed and 

integrated model used to predict Lake Superior ecosystem responses to 

anthropogenic disturbances (e.g. invasive species, climate change, etc.).   In an 

effort to increase the understanding of mechanisms contributing to Lake Superior 

ecosystem health and condition, the amphipod Diporeia spp was chosen as a focus 

organism to parameterize a bioenergetics model. 

The shrimp-like organisms of the genus Diporeia spp., previously known as 

Pontoporeia (Bousfield 1989), are native to the cold, hypolimnetic waters of 

proglaciated lakes in North America.  Historically, these amphipods have been widely 

distributed among all of the Laurentian Great Lakes, accounting for up to 70% of the 

macroinvertebrate biomass (Nalepa 1989).  They are nutrient rich (i.e. lipids) 

organisms and are responsible for consuming up to 30% of organic matter that has 

settled to the lake bottom (Gardner et al. 1985).  Recent studies (Pilgrim et al. 2009) 

have shown that populations of Diporeia spp. in the Great Lakes might include 

several distinct species.  Consequently, they are typically referred to by their genus 

name, Diporeia spp (herein called Diporeia). 

Diporeia are considered a keystone species in Lake Superior because of the 

major role they play in transporting organic carbon produced in the pelagic zone to 

benthic communities and to higher trophic levels (Auer et al. 2009).  The efficiency 

with which Diporeia are able to transfer organic carbon makes them an important 

prey item within Lake Superior’s ecosystem.  Many fish species in Lake Superior 

favor Diporeia as a food source (Wells 1980; Kitchell et al. 2000; Scharold et al. 
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2004).  Among these, lake whitefish (Coregonus clupeaformis) is considered to be 

the most valued due to its role in commercial fisheries (Nalepa et al. 2005).  Lake 

whitefish are a benthivorous species that preferentially feed on Diporeia (Rennie et 

al. 2009).   Both whitefish and Diporeia populations are considered to be stable in 

Lake Superior (Scharold et al. 2004; Auer et al. 2009; Gorman et al. 2012), having 

biomass estimates within historical ranges.  The whitefish - Diporeia pairing is 

thought to both limit and regulate the bulk of energy flow within the benthic 

component of Lake Superior’s food web.   

The stability of Diporeia populations within Lake Superior suggests that this 

lake has had fewer influences on the benthic community from ecological 

disturbances compared to other Great Lakes.   Diporeia populations have undergone 

significant declines in Lakes Erie, Huron, Michigan, and Ontario since the early 

1990’s (Nalepa et al. 1998; Lozano et al. 2001; Lozano et al. 2003; Nalepa et al. 

2006; Barbiero et al. 2011).  It has been proposed that the introduction of invasive 

zebra and quagga mussels (Dreissena polymorpha and D. bugensis) is linked to 

Diporeia population declines in the lower Great Lakes (Landrum et al. 2000; 

Vanderploeg et al. 2002; Nalepa et al. 2006).  Lake Superior is the only Great Lake 

that has not been subjected to widespread invasion by mussels. (Cook and Johnson 

1974; Kraft 1979; Auer and Kahn 2004; Barbiero et al. 2011; Auer et al. 2013).  

Theories such as food limitation (dressenids outcompete Diporeia by filtering 

phytoplankton and detritus from the water column), toxic excretions (dressenid 

pseudofeces influence Diporeia survival rates), predation (dreissenid filtering results 

in clearer water, making Diporeia more vulnerable to predators), are among several 
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others that have been offered to explain Diporeia population declines (Dermott 2001; 

Nalepa et al. 2006; Watkins 2007).  None of these theories have been definitively 

shown to have an impact on Diporeia populations.  Moreover, coexistence of 

dressenids and Diporeia has been documented in Cayuga Lake by Dermott et al. 

(2005). 

The ability to accurately determine Diporeia respiration and consumption 

rates is not only an important component of modeling growth, but also has major 

influences on estimates of contaminant uptake and transfer.  Diporeia are rich in 

lipids and therefore may accumulate large amounts of organic contaminants and 

heavy metals since these pollutants tend to concentrate in this type of fatty tissue. 

(Landrum and Nalepa 1998).  Since Diporeia are a major food source for whitefish, 

alewife, rainbow smelt, bloaters, yellow perch, and sculpins (Scharold et al. 2004; 

Nalepa et al. 2006; Rennie et al. 2009), expanding our knowledge base of Diporeia 

metabolic processes is required to better understand the potential severity of 

destruction to aquatic food webs in the event of anthropogenic pollution and 

contamination. 

RESEARCH OUTLINE 

Empirical models (Strayer and Likens 1986; Rasmussen and Kalff 1987) 

have shown that macroinvertebrate biomass is directly related to phytoplankton 

production and deposition.  Consequently, zoobenthos are typically used as a 

measure of biological integrity within freshwater systems (Fore et al. 1994).  Growth 

rates and abundances of Diporeia have been selected as indicators of ecological 

health for all of the Great Lakes (Reynoldson 1993).   Understanding the causes of 
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subtle changes in Diporeia physiology (e.g. consumption and respiration rates) could 

have a significant utility in understanding their population dynamics.   

A Diporeia bioenergetics model requires data on population size, food 

resource availability (i.e. organic carbon flux), environmental conditions of the lake, 

and physiological rates for growth calculations.  The main focus of this research is an 

examination of Diporeia growth in Lake Superior.  Current abundance estimates are 

presented here in CHAPTER 1 to establish the state of Diporeia population structure 

on temporal and spatial scales.  In CHAPTER 1, preliminary experiments conducted 

to investigate growth rates based on changes in body length are described.   

CHAPTER 2 and CHAPTER 3 are individual studies of Diporeia respiration 

and consumption, respectively. Sensitivity analyses of bioenergetics models have 

shown that these two physiological rates have the greatest influences on model 

predictions (Kitchell et al. 1977; Rice and Cochran 1984).  These studies on 

respiration and consumption are seen as the fundamental basis on which to build a 

growth model.  Environmental forcing conditions (e.g. water temperature, carbon 

deposition, etc.) for the model will be determined using output from the coupled 

hydrodynamic-water quality model. 

ABUNDANCE OF DIPOREIA AND OTHER MACROINVERTEBRATES 

Sample collection and identification 

During 2011 and 2012, samples were collected aboard the R/V Agassiz 

during field monitoring cruises along a transect, known as Houghton North (HN), 

starting near the North Entry of the Keweenaw Waterway (Michigan, USA) and 
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extending 26 km into Lake Superior (see Auer and Kahn 2004; Urban et al. 2005; 

Auer et al. 2009).  A total of 53 PONAR (area = 0.046 m²) grabs were collected from 

25 m, 50 m, and 190 m during the spring, summer, and fall of each year.  These 

stations represented shelf (0-30 m), slope (30-110 m), and profundal (>110 m) 

regions of the lake.  Triplicate samples were taken at each station, except for the 

shelf during spring 2011 when only two samples were taken due to equipment 

malfunction and time constraints.  PONAR grab samples were elutriated, sieved 

through a 243 µm mesh net, and were preserved in 10% formalin. Benthic 

invertebrates were identified and counted following Auer and Kahn (2004).  Diporeia 

lengths were measured following Quigley and Lang (1989).  All individuals less than 

2.5 mm were considered young of year (YOY), and they were assumed to have a 

length of 2 mm when calculating the average body size of all individuals within a 

sample. 

Abundance data for benthos   

The distribution of Diporeia between the three stations was consistent from 

2011 to 2012.  Diporeia abundance (individuals·m-2) was greatest in the slope region 

in both years, and the shelf and profundal regions did not differ significantly (p<.001) 

in either year (Figure 1.1).  The average body lengths for Diporeia among all 

samples ranged from 2.5 to 6.0 mm.   Size distributions for Diporeia in the shelf, 

slope, and profundal regions were shown by season in Figure 1.2, Figure 1.3, and 

Figure 1.4 for 2011, and in Figure 1.5, Figure 1.6, and Figure 1.7 for 2012.  

Diporeia was the most abundant macroinvertebrate in 2011 and 2012, 

comprising 45.5% of the total number of organisms counted.  The most abundant 
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benthic groups after Diporeia, were nematodes, oligochaetes, sphaeriids, and 

chironomids, accounting for 19.1%, 14.5%, 9.9%, and 5.5% of organisms, 

respectively.  Average abundances of the four most prominent benthic groups (see 

Auer and Kahn 2004) in the Lake Superior macroinvertebrate communities are listed 

in Table 1.1.  These abundances were multiplied by the average dry weight 

(estimates of organism biomass taken from Nalepa and Robertson 1981) of each 

organism to estimate the biomass. Average abundances (±SE) for all benthos are 

listed in Table 1.2 for 2011, and Table 1.3 for 2012. 

Summary 

Although there was considerable variation among sample replicates, our 

results of macroinvertebrate abundances correspond to previous studies. The 

average annual Diporeia abundance found in this study was 1,607·m-2 (Table 1.1).  

This estimate compares closely to the mean of 1,152·m-2 found in 1998, 1999, and 

2000 by Auer and Kahn (2004) and 1,450·m-2 found in 2003 by Auer et al. (2009).  In 

2008, Barbiero et al. (2011) reported open lake (>90 m) Diporeia densities of 380·m-

2, and nearshore (30-90 m) densities of 2,114·m-2.  All three of these studies show 

that populations of Diporeia in Lake Superior remain stable, and do not deviate from 

historical records.  It has also been well documented that the benthic community of 

Lake Superior exhibits a pattern of elevated Diporeia abundances on the slope (30 to 

125 m) region of the lake (Cook 1975; Kraft 1979; Auer et al. 2013) compared to the 

shelf (0 to 30 m) and profundal (>125 m) regions.  Our data from samples collected 

near the Keweenaw Peninsula support this theory that regions of elevated densities, 
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termed “The Ring of Fire” (Auer et al. 2013), exist in a band around the lake 

wherever adequate substrate is available.   

Size frequency data reported here is suggestive of high Diporeia production 

rates in Lake Superior (i.e. P/B>1) due to the large proportions of YOY individuals 

present in almost all samples from each station.  Samples collected on 4 April 2012 

were the exception, however, having a relatively low proportion of YOY Diporeia.  It 

is likely that this difference was due to sampling before females had released their 

eggs during that year. 

The predominant macroinvertebrates in Lake Superior, as well as in other 

Great Lakes, have historically been found to be Diporeia, oligochaetes, sphaeriids, 

and chironomids (Cook and Johnson 1974; Dermott and Kerec 1997; Nalepa et al. 

1998; Auer and Kahn 2004).  Quantitative considerations of Great Lakes benthic 

communities do not typically take nematodes or ostracods into account due to the 

difficulty involved with efficiently sampling their populations (Alley and Mozley 1975). 

While these two taxa make up a large proportion of the overall number of organisms 

in the benthic community, nematodes, ostracods, sphaeriids, and chironomids 

typically account for only a small fraction of total macroinvertebrate biomass.  Nalepa 

(1989) found that oligochaetes and Diporeia combined accounted for over 97% of 

benthos biomass in depths greater than 30 m within Lake Michigan.  A thorough 

understanding of the composition of benthic invertebrates is important in developing 

accurate estimates of energy transfer within the ecosystem.  This is due to the 

differences among benthos in assimilation efficiencies and as well as the utilization 

of macroinvertebrates by fish species. 
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PRELIMINARY GROWTH EXPERIMENTS 

A set of microcosm experiments was initiated on 9 November 2011 to 

quantify individual growth rates of Diporeia in a natural setting.  Body lengths were to 

be measured at regular intervals over the course of one year, and the change in 

biomass would be used to calculate production for both YOY and juveniles. 

Diporeia collection and culture 

Samples of Diporeia were collected on 25 October 2011, placed into plastic bins with 

lake water from the collection sites, then transported back to the laboratory where 

they were stored in constant darkness at 4°C.  These animals were kept alive to be 

used in growth monitoring experiments.  Fresh lake water was added to Diporeia 

cultures every two weeks. 

Length-weight Relationship 

Prior to the growth experiments, individual Diporeia were selected at random 

from samples taken on 6 October 2011 and placed onto a flat-bottomed well slide.  

Each amphipod (n=59) was then photographed using a Nikon D50 camera that was 

attached to the eyepiece of a dissecting microscope using an Olympus SZ-CTV 

scope.  Once photographed, individuals were transferred to a vial filled with water 

and labeled with the photograph number.  Once all were photographed, each 

individual was weighed, wet, using a METTLER TOLEDO MX5 Automated-S 

Microbalance to the nearest 0.001 mg.  After each wet weight was recorded, all 

animals were dried for 24 hours at 60°C (Dermott and Corning 1988; Quigley et al. 

2002) and reweighed.  Dry weights were also recorded to the nearest 0.001 mg. 
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Total body length, defined as the distance from the tip of the rostrum to the tip 

of the telson following the line of the gut (Quigley and Lang 1989; Chapelle and Peck 

2004), was estimated for each animal using Sigma Scan Pro-4 (version 4.01).  Dry 

weight measurements were matched to the corresponding body length and a length-

weight relationship was determined using a non-linear regression model with the 

statistical software R (R Development Core Team 2011).  An Excel plot of these 

results is shown in Figure 1.8 

Growth Chambers 

 Sections of clear PVC pipe (255 mm in height, 145 mm in diameter) with two 

lateral openings (20x15 cm) were covered with 210-μm mesh netting to allow water 

to flow through.  This pipe was fitted into grooves that were carved in a removable 

bottom plate, and secured using elastic straps.  The diffusion rate and dissolved 

oxygen (DO) level of the water in these tubes was monitored.  Petri dishes were filled 

with filtered lake sediment and placed at the bottom of growth chambers.  The 

containment apparatuses were placed into a “Frigid Unit” tank filled with lake water, 

and the sediments were allowed to settle overnight.  Water in the tank was kept 

between 3-5°C and temperature was monitored daily with the temperature control 

system of the chilled unit and with two thermometers that were calibrated in a 0°C 

ice bath.     

Sediment preparation and Diporeia handling 

 Plastic bins containing unwashed PONAR samples were kept in the dark at 

4°C.  In order to prepare sediment used for growth experiments, the overlying culture 

water from a bin was gently poured into a 10 cm piece of PVC pipe with a 210-μm 
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mesh net attached at the bottom end in order to filter out Diporeia.  Small amounts of 

sediment were then removed using a spatula, and placed into the PVC pipe with 

mesh netting.  Lake water was poured into the top end of the PVC pipe, and the 

sediment was gently stirred to allow all of the fine particles to fall through.  Each petri 

dish was filled with 5 mm of filtered sediment.   

 Live Diporeia were consolidated by carefully stirring up the top layer of culture 

sediment from a bin, causing the amphipods to rise into the water, and then gently 

pouring the culture water through the 210-μm mesh net.  Organisms were 

immediately removed from the netting and transferred to a large petri dish kept on 

ice.  Diporeia to be photographed were individually removed using a spatula and 

quickly and carefully placed onto a round-bottomed well slide. 

Experiment design and performance 

 Nine growth chambers were prepared, as described above, and live Diporeia 

were introduced to each (n=60).  Six were devoted to housing YOY amphipods (360 

total YOY), and three replicates for juveniles (defined as individuals between 3 and 6 

mm) (180 total juveniles).    The density of Diporeia in this experiment was equivalent 

to 477·m2.  Given that the individuals in this study were YOY, and that all other 

benthos had been removed, it was assumed that food availability would not be 

limiting.  During the duration of the experiment, we would monitor changes in growth 

by removing animals bimonthly, taking photos of each individual for determining body 

length, and immediately returning the animals to the tank with fresh sediment. 
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 After the first two months we observed a survival rate of approximately 75%.  

All animals were photographed, and the remaining live Diporeia were returned to the 

growth chambers.  During the second bimonthly data collection, less than 5% of the 

original 540 animals were still alive.  At this point, the experiment was terminated.  

We presume the cause of the high Diporeia mortality rate observed in this 

experiment was related to the water movement produced by the temperature control 

system.  This unit continuously stirred the water to maintain a constant dissolved 

oxygen content in the microcosms.  However, the currents produced forced Diporeia 

that had come out of the sediment up to the water surface, where they became 

trapped by air bubbles under their carapace and by the surface tension, causing 

them to be unable to return to the bottom of the chamber. 

 Through these experiments, we developed a length-weight relationship for 

Diporeia, gained knowledge of how to properly maintain Diporeia in the lab over an 

extended period of time and how to accurately determine body length through digital 

analysis.  Additionally, we became more familiar with the small scale measurements 

needed to determine true Diporeia growth rates.  
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a) 

  

b) 

 

Figure 1.1 Mean abundances (±SE) of Diporeia on the shelf, slope, and profundal 
regions of Lake Superior during spring, summer and fall of a) 2011 and b) 2012. 
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Figure 1.2 Diporeia length-frequencies for the shelf, slope, and profundal regions 
of Lake Superior during spring 2011. 
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Figure 1.3 Diporeia length-frequencies for the shelf, slope, and profundal regions 
of Lake Superior during summer 2011. 
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Figure 1.4 Diporeia length-frequencies for the shelf, slope, and profundal regions 
of Lake Superior during fall 2011. 
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Figure 1.5 Diporeia length-frequencies for the shelf, slope, and profundal regions 
of Lake Superior during spring 2012. 
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Figure 1.6 Diporeia length-frequencies for the shelf, slope, and profundal regions 
of Lake Superior during summer 2012. 
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Figure 1.7 Diporeia length-frequencies for the shelf, slope, and profundal regions 
of Lake Superior during fall 2012. 
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Figure 1.8 A length-weight relationship for Diporeia taken from Lake Superior on 5 
October 2011 (n=59). 
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Table 1.1 Mean abundance and biomass of the four most prominent benthic 
invertebrates during 2011 and 2012.  Values represent the mean (±SE) of 53 
PONAR grabs collected from the shelf, slope, and profundal regions along the 
western edge of the Keweenaw Peninsula in Lake Superior. 

Taxa Mean abundance 
(individuals·m-2) 

Mean biomass 
(g·m-2) 

% of total biomass 
2011 & 2012 

Chironomidae 194 (±84) 0.02 1.15% 
Diporeia 1607 (±441) 1.10 79.63% 
Oligochaeta 517 (±209) 0.21 15.06% 
Sphaeriidae 347 (±148) 0.06 4.16% 
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Table 1.2 Mean abundances (individuals·m-2) of benthos in the shelf, slope, and 
profundal regions of Lake Superior during 2011. 

23-Apr-11 Shelf Slope Profundal 
Taxa Mean ±SE Mean ±SE Mean ±SE 

Chironomidae 239 130 435 38 7 7 
Diporeia 783 587 2268 533 297 155 
Gastropod 0 0 80 80 0 0 
Nematoda 0 0 0 0 0 0 
Oligochaeta 0 0 7 7 43 25 
Ostracod 250 76 1413 120 696 349 
Sphaeriidae 43 22 826 190 623 268 

 

17-Jun-11 Shelf Slope Profundal 
Taxa Mean ±SE Mean ±SE Mean ±SE 

Chironomidae 326 113 275 97 22 13 
Diporeia 428 91 3116 413 913 107 
Gastropod 7 7 7 7 0 0 
Nematoda 0 0 0 0 0 0 
Oligochaeta 7 7 0 0 51 19 
Ostracod 225 84 1616 477 428 51 
Sphaeriidae 29 7 1087 124 1123 244 

 

28-Aug-11 Shelf Slope Profundal 
Taxa Mean ±SE Mean ±SE Mean ±SE 

Chironomidae 101 36 493 26 7 7 
Diporeia 775 26 4855 409 457 50 
Gastropod 0 0 0 0 0 0 
Nematoda 0 0 72 72 297 171 
Oligochaeta 0 0 7 7 29 29 
Ostracod 72 52 2471 583 326 45 
Sphaeriidae 43 43 1188 84 442 237 
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Table 1.3 Mean abundances (individuals·m-2) of benthos in the shelf, slope, and 
profundal regions of Lake Superior during 2012. 

4-Apr-12 Shelf Slope Profundal 
Taxa Mean ±SE Mean ±SE Mean ±SE 

Chironomidae 145 32 464 32 22 13 
Diporeia 297 77 2210 352 341 26 
Gastropod 7 9 0 0 0 0 
Nematoda 0 0 0 0 0 0 
Oligochaeta 0 0 0 0 130 130 
Ostracod 72 9 1652 499 80 14 
Sphaeriidae 7 9 935 317 152 88 

 

16-Jun-12 Shelf Slope Profundal 
Taxa Mean ±SE Mean ±SE Mean ±SE 

Chironomidae 87 33 297 93 14 14 
Diporeia 1072 353 6659 655 790 290 
Gastropod 0 0 0 0 0 0 
Nematoda 399 129 239 58 0 0 
Oligochaeta 0 0 0 0 7 7 
Ostracod 413 58 1746 480 36 19 
Sphaeriidae 36 7 1261 214 94 40 

 

29-Sep-12 Shelf Slope Profundal 
Taxa Mean ±SE Mean ±SE Mean ±SE 

Chironomidae 478 193 87 25 0 0 
Diporeia 478 238 2790 285 391 58 
Gastropod 0 0 0 0 0 0 
Nematoda 101 40 152 13 65 33 
Oligochaeta 0 0 14 7 0 0 
Ostracod 152 66 551 44 29 19 
Sphaeriidae 123 63 1145 122 138 95 
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CHAPTER 2.  Measurement of Lake Superior Diporeia Respiration Using 

Microelectrodes 

 

ABSTRACT 

The freshwater amphipod Diporeia is a dominant macroinvertebrate species 

in Lake Superior’s benthic community and an important prey item for many fish.  A 

capacity to predict growth and production rates of Diporeia using a bioenergetics 

model requires information on physiological processes of the species.  The objective 

of this study is to quantify oxygen consumption of Lake Superior Diporeia and to 

determine if respiration rate changes by size class.  Diporeia were collected from 

Lake Superior and kept in natural sediment maintained at 4°C.  Dissolved oxygen 

levels for groups of Diporeia immatures, juveniles, and adults in 20 mL microcosms 

were measured using a polarographic microelectrode.  Mass-specific respiration 

rates for Lake Superior Diporeia ranged from 32.0 to 44.7 mgO2·gDW-1·d-1.  A 

significant relationship between body length and mass-specific respiration rate 

(p>0.1) was not found.  The estimate of Diporeia respiration presented here is 

significantly higher (p<0.05) than previous findings from populations in Lake 

Michigan and Lake Ontario.  This study provides new data on respiration rates of 

Diporeia in Lake Superior and compares findings to studies for other Great Lakes.   

  



42 

INTRODUCTION 

The glacial relict amphipod Diporeia has historically been a mainstay of the 

benthic communities in all the Laurentian Great Lakes (Stimpson 1870; Cook and 

Johnson 1974; Winnell and White 1984). This amphipod is a major component in the 

diets of numerous commercial and sport fish species (Scharold et al. 2004; Nalepa et 

al. 2006; Rennie et al. 2009).  The extensive influence that Diporeia has on aquatic 

food webs (Guiguer and Barton 2002), in conjunction with this amphipod being an 

effective energy source for other organisms due to its high lipid content  (Gardner et 

al. 1985; Kainz et al. 2010), indicate that this species is a key link between primary 

production and population dynamics of higher trophic level consumers. 

Production of Diporeia in Lake Superior has been of recent concern due to its 

population declines in Lakes Erie, Huron, Michigan, and Ontario (Nalepa et al. 1998; 

Lozano et al. 2001; Lozano et al. 2003; Nalepa et al. 2006; Barbiero et al. 2011).  It 

has been suggested that the occurrence of these declines is correlated with the 

introduction of non-native species, with attention concentrating on zebra and quagga 

mussels (Dreissena polymorpha and D. bugensis) (Landrum et al. 2000; 

Vanderploeg et al. 2002; Nalepa et al. 2006).  Diporeia populations have yet to 

deviate from historical levels in Lake Superior (Cook and Johnson 1974; Kraft 1979; 

Auer and Kahn 2004; Barbiero et al. 2011; Auer et al. 2013), which is the only Great 

Lake that has not been subjected to widespread invasion by mussels. Understanding 

the causes of subtle changes in Diporeia physiology (e.g. respiration rate) could 

have a significant utility in understanding their population dynamics.  For example, 

reduced dissolved oxygen (DO) conditions are known to have detrimental effects on 
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amphipod fitness (Johansson 1997).  Chapelle and Peck (2004) found that both the 

maximum and minimum sizes of various species of amphipods increase with 

increasing oxygen availability.   

Additionally, oxygen uptake has been shown to be closely linked with the 

uptake of heavy metals and organic contaminants in Diporeia (Landrum and 

Stubblefield 1991).  The exposure of Diporeia populations to toxicants can increase 

amphipod mortality rates (Landrum and Nalepa 1998) and lead to a high 

bioaccumulation potential through transfer to benthivorous fish species (Thomann et 

al. 1992).   Consequently, examination of Diporeia respiratory demand will allow us 

to further our understanding of factors that drive population abundances of this 

species. 

Few studies that focus on ecological monitoring of lake systems include the 

explicit analysis of benthic invertebrate respiration that is necessary for predicting 

population growth rates using bioenergetic calculations (i.e. consumption = 

respiration + excretion + production).  This lack of data is often due to the 

methodological challenges associated with non-invasively measuring physiological 

functions (Mills 2007), yet several techniques have been developed.  Studies 

focusing on Diporeia respiration have typically used the Winkler titration method to 

monitor DO content in water (Johannsson et al. 1985; Quigley et al. 2002).  While 

this is the most widely used method for measuring DO concentrations in wet 

chemistry (Sahoo et al. 2010), it cannot be used to continuously monitor respiration 

throughout the duration of an experiment.   Alternatively, polarographic 

microelectrodes have previously been used to monitor respiration of various living 
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organisms (e.g. soil microbes, larval fish, aquatic invertebrates, etc.) and can track 

DO in water on a continuous scale with a response time less than one second.   

Johnson and Brinkhurst (1971) examined respiration rates of Lake Ontario Diporeia, 

as well as several other benthic invertebrate species, using a polarographic 

microelectrode.  At the time of their study, however, the electrode required that water 

be constantly stirred to avoid oxygen consumption effects from the cathode.  The 

probe used in their experiments (YSI model 54, YSI Inc., Yellow Springs, Ohio) had a 

probable error rate of approximately 4.8%.  Technological advances have since 

enabled these types of sensors to measure oxygen concentrations with a precision 

of about 0.1 µM, or 0.05%, and without mixing the water that surrounds the sensor.  

The objective of the present study is to both quantify oxygen consumption of 

Lake Superior Diporeia and to assess if respiration rate changes among size classes 

of these amphipods.  Previous work by Landrum and Stubblefield (1991) and Quigley 

et al. (2002) suggested that body sizes of Diporeia are inversely related to their 

mass-specific respiration rate.  Lake Superior Diporeia are hypothesized to have 

similar rates of respiration as those found in populations from Lake Michigan and 

Lake Ontario, and to have increased mass-specific respiration rates with decreasing 

body size.    

MATERIALS AND METHODS 

Animal Collection and Maintenance 

 During October 2012, samples were collected aboard the R/V Agassiz from a 

70 m deep station in Lake Superior located approximately 5 km offshore on the 
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western coast of the Keweenaw Peninsula, Michigan, USA. Sediment with live 

Diporeia was collected using a PONAR grab (area = 0.046 m²) and placed into 

plastic bins with lake water from the collection sites, then transported back to the 

laboratory where they were stored in constant darkness at 4°C.  Fresh lake water 

was added to Diporeia cultures every two weeks. 

Microelectrodes  

Diporeia respiration was estimated using an OX50 Unisense microsensor 

(Unisense A/S, Aarhus, Denmark) to measure oxygen partial pressure (pA) during 

laboratory experiments.  Data acquisition was performed automatically using 

SensorTrace PRO 3.0.1 (Microsoft Excel format, Unisense A/S).  The sensor used 

was a Clark-type polarographic microelectrode that allowed oxygen to diffuse 

through a thin silicone membrane to a polarized cathode (Oxygen Sensor Manual, 

Unisense A/S).  This cathode reduced oxygen and the reduction current was 

measured and reported by the Unisense Microsensor Multimeter in millivolts (mV).  

Because these microsensors respond linearly to changes in oxygen levels, it was 

assumed that two points would be sufficient for calibrating the sensor to report the 

correct oxygen concentration.  Calibration was performed before each experiment 

using both an oxygen-free solution and an oxygen-saturated solution.  A zero 

reading was obtained by placing the sensor into an anoxic solution of ≈2g sodium 

ascorbate dissolved in 100 ml of 0.1M NaOH.  Once the signal had stabilized, the 

mV output was set as 0 mg O2·L-1.  The sensor was then rinsed and placed into 

filtered lake water that had been completely aerated through vigorous bubbling.  
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After the readings had once again stabilized, the signal was set as our value for fully 

saturated conditions.  Each experiment was performed using the same electrode. 

At the start of each trial, oxygen is contained within the electrolyte, resulting in 

extremely high initial readings (Gundersen et al. 1998).  A series of control runs was 

required to account for this difference between observed and actual DO 

concentrations.  Additionally, control trials revealed any background change in DO 

concentrations due to oxygen consumption by the electrode (Marsh and Manahan 

1999).  Oxygen levels were monitored in several vials containing only filtered lake 

water at 4°C.  The average for these control rates was subtracted from the oxygen 

depletion results obtained in trials with animals before any further data analysis.   

Oxygen Uptake Experiments 

 Respiration rates of Lake Superior Diporeia were obtained from an analysis 

of microcosm DO concentrations in a series of experiments during October-

December 2012.  Diporeia were gently sieved from laboratory cultures and 

individuals to be used in each trial were selected based on approximate size.  A total 

of 13 trials were conducted for three size classes: individuals with body lengths of 

approximately 2 mm were considered immatures (n=4), individuals with body lengths 

of approximately 4 mm were considered juveniles (n=5), and individuals with body 

lengths of approximately 6 mm were considered adults (n=4).  The number of 

individuals used was typically around 10 for trials with juveniles and with adults.  

Additional animals were used for trials with immatures (19-22 individuals) in order to 

more accurately detect changes in DO concentrations.  Amphipods were placed into 

vials filled with 20 mL of fully-oxygenated filtered lake water (0.7-μm GF/F filters).  
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Vials were then equipped with a microelectrode and sealed with no air between the 

water and cap.  It was assumed that the absence of sediment would not alter 

Diporeia respiration based on previous findings (Quigley et al. 2002).  Dissolved 

oxygen content of the system was tracked for five hours.  This duration was chosen 

in order to eliminate the possibility of decreased oxygen availability associated with 

bottle effects.  Extending the time of each experiment would also result in decreasing 

the frequency of readings due to the software’s data storage limitations.  Initial O2 

concentrations during each of the trials varied slightly, yet never fell below 20% of 

the initial concentration.   

Immediately after the experiment Diporeia were individually photographed 

using a QImaging MicroPublisher 5.0 RTV camera (QImaging, Surrey, BC) and body 

lengths were determined using the image processing program Image-Pro Plus 7.0.  

The length of each animal was measured from the tip of the rostrum to the tip of the 

telson following the gut line.  Animals were then grouped together, dried at 60°C for 

24 hours, and weighed to the nearest 0.001 mg.  Mass-specific respirations rates 

(i.e. mgO2·gDW-1·d-1) were calculated as the slope of the oxygen depletion curve 

divided by the total dry weight of Diporeia biomass present. 

Animals were sieved from laboratory cultures, transported to a separate 

incubator for the experiment, and occupied the vials for 1.25 hours before O2 

depletion rates were tracked.  Though previous work has shown that Diporeia have 

elevated respiration rates after being introduced to a new environment (Quigley et al. 

2002), no initial increase in respiration rate was observed in this study when 

monitored for 24 hours.  In preliminary trials, O2 depletion rates stayed constant for 



48 

the initial nine hours and then began to fluctuate.  We speculate that this variation in 

depletion rates was due to bottle effects (i.e. insufficient oxygen supply).  

Subsequently, experiment durations were limited to five hours.  The experimental 

animal density in each trial (8-22 individuals per vial) was chosen based on the DO 

detection limits of the electrode.  

Statistics 

Given that this series of experiments focused on the relationship between the 

rate of oxygen consumption and Diporeia size, allometric effects on respiration rates 

were evaluated. To accomplish this, a linear regression was used to determine if 

mass-specific respiration rates varied significantly with body length. Analyses were 

conducted in the statistical software program R (R Development Core Team 2011) 

and significance evaluated at α=0.05. 

RESULTS 

Control trials consistently showed an exponential decline of observed DO 

within the first hour (Figure 2.1).  These declines were attributed to sensor 

stabilization (see Methods section above) and only data collected from 1.25 hours to 

the end of each trial were used in statistical analyses.  The sensor readings exhibited 

an average decline in DO of 0.02 mg·L-1·h-1 for the duration of each control trial after 

1.25 hours (n=7). Rates of O2 depletion in all respiration trials were calculated by 

subtracting 0.02 from the slope of DO content (mg·L-1) vs. time (hours).   

Mass-specific respiration rates for Lake Superior Diporeia ranged from 32.0 

to 44.7 mgO2·gDW-1·d-1 (Table 2.1).  The average respiration rate among all size 
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classes was 38.2 ± 1.1 (SE) mgO2·gDW-1·d-1, with a coefficient of variation of 10%.  

Immature Diporeia had an average body length of 2.6 ± 0.1 (SE) and an average 

respiration rate of 40.1 mgO2·gDW-1·d-1.  Juveniles had an average body length of 

4.68 ± 0.2 (SE) and an average respiration rate of 38.5 mgO2·gDW-1·d-1.  Adults had 

an average body length of 6.28 ± 0.2 (SE) and an average respiration rate of 35.9 

mgO2·gDW-1·d-1.  

A linear regression analysis (Figure 2.2) of average Diporeia body length 

from each trial did not show a significant relationship between this variable and 

mass-specific respiration rate (R2=0.10, F(1,11)=2.27, p=0.16).  The data was 

assumed to be homoscedastic based on a Shapiro-Wilk test (p>0.05) and the linear 

relationship observed in a QQ plot.  The mean Diporeia respiration rate found in this 

study was found to be significantly higher than previous findings from Diporeia 

populations in Lake Michigan and Lake Ontario (Welch’s t-test, P<0.05). 

DISCUSSION 

In this study, higher respiration rates were observed for Lake Superior 

Diporeia populations than have been shown for other Great Lakes.  One possible 

explanation could be due to diverse life history strategies developed within different 

lake environments.  This theory of distributional diversity among amphipods in the 

Great Lakes was first proposed by Bousfield (1989).  Although the mechanisms 

contributing to between lake variations are not clearly understood, some evidence 

has been found in recent studies.  Quigley et al. (2002) found that the mean 

respiration rate for Lake Michigan Diporeia ranged from 13.9 to 33.9 mgO2·gDW-1·d-

1, which was higher than the 4.0 mgO2·gDW-1·d-1 and 18.9 mgO2·gDW-1·d-1 
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previously reported by Johnson and Brinkhurst (1971) and by Johannsson et al. 

(1985), respectively, for animals from Lake Ontario.  This difference was attributed to 

the potential existence of several Diporeia sub-species throughout the Great Lakes.  

Auer et al. (2009) found a substantial difference between length-weight relationships 

for Diporeia from Lake Superior compared to Lake Michigan and Lake Ontario 

Diporeia (Winnell and White 1984; Cavaletto et al. 1996).  Although Auer et al. 

(2009) found a similar average lipid content (mean=30.8%) among Great Lakes 

populations, amphipods from Lake Superior clearly exhibited different physiological 

characteristics by having less mass per unit length.  However, the most notable 

support of the idea of variance among lake populations comes from the genetic 

analysis performed by Pilgrim et al. (2009), who determined that Lake Superior 

Diporeia exhibit different haplotypes than those found in any of the other Great 

Lakes.  These results do not suggest that Lake Superior Diporeia should be 

classified as a separate species, but rather they have evolutionarily and perhaps 

physiologically diverged from populations in other Great Lakes. 

A second possibility for the higher respiration rates observed in this study 

may be the difference in measurement techniques (Table 2.2).  Determination of 

metabolic demands for aquatic invertebrates such as Diporeia is often a challenging 

process due to the small size of subjects and the potential stress involved with in 

vitro studies.  Johnson and Brinkhurst (1971) measured Diporeia respiration rates 

using an oxygen microelectrode fitted with an oscillating stirrer to prevent 

background oxygen consumption by the cathode.  In this research, the dissolved 

oxygen content of microcosms was tracked throughout the course of each 
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experiment without generating any water movement or disturbance.  Additionally, the 

newer model of sensor has a minute tip size which allowed for a relatively smaller 

microcosm (20 mL) to be used in the experiments, ensuring that the water being 

measured was representative of the area that the animals were occupying.  The use 

of polarographic microelectrodes is thought to be a more appropriate method of 

determining Diporeia respiration rates than Winkler titration because they are able to 

detect the dissolved oxygen concentrations of small scale microcosms on a 

continuous scale without disturbing the sample. 

In this study, a significant relationship between respiration rate and body size 

of Diporeia was not observed.  These results suggest that Lake Superior Diporeia 

respiration rates may be estimated from data only on amphipod biomass.  This would 

allow models aimed at predicting carbon turnover and biogeochemical balances 

associated with Lake Superior’s benthic community to estimate this metabolic rate 

without requiring a Diporeia size-frequency coefficient.  Not including life stage data 

in lake wide respiration estimates would be beneficial to researchers since the most 

parsimonious model is often the most desirable in order to maintain statistical power.   

The physiological characteristics of Lake Superior Diporeia that contribute to 

the lack of observed size dependence in respiration are not clearly understood. 

Since Diporeia densities vary among different regions of the lake, a comparison of 

respiration rates between populations from different depths in Lake Superior may 

provide further insights into Diporeia bioenergetics for modeling lake-wide ecosystem 

function.  The results presented here suggest that continuing physiological studies 

(i.e. investigations of consumption, excretion, and growth rates) specific to Diporeia 
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in Lake Superior will aid in the capacity to predict ecosystem responses to 

anthropogenic influences such as pollution, the introduction of invasive species, or 

global climate change. 
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Figure 2.1 Observed dissolved oxygen (DO) concentrations over time during a 
control trial (i.e. no test animals in microcosm).  The decrease in DO concentration 
during the first 1.25 hours is due to oxygen contained within the electrolyte being 
reduced by the cathode. 
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Figure 2.2 Relationship between Diporeia body length and mass-specific 
respiration (mgO2·gDW-1·d-1).  Animal size was shown to have no significant 
relationship with respiration rate (p=0.16). 
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Table 2.1 Respiration rates for three size classes (mean body length ± mean SE) 
of Lake Superior Diporeia based on O2 depletion and the total dry weight of all 
individuals in each trial. 

Size Class 
(mm) 

Rate of O2 
Depletion     

(mgO2·L-1·hr-1) 

Dry Weight of 
Cohort (mg) 

Respiration Rate 
(mgO2·gDW-1·d-1) 

Immatures 
(2.64 ± 0.08) 

0.14 1.55 44.72 
0.15 2.03 34.68 
0.17 1.99 42.19 
0.14 1.72 38.89 

Juveniles 
(4.68 ± 0.15) 

0.39 4.44 42.34 
0.38 4.95 36.44 
0.37 4.20 42.85 
0.38 5.32 34.49 
0.33 4.37 36.22 

Adults 
(6.28 ± 0.24) 

0.93 11.57 38.51 
0.72 10.74 31.97 
0.48 6.57 34.86 
0.68 8.48 38.41 
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Table 2.2 Comparison of literature values for the respiration rate (mgO2·gDW-1·d-1) 
of juvenile Diporeia (mean dry weight of 1.6 mg). 

Study Respiration 
Rate 

Method of O2 
Measurements Sample Site 

Johnson and 
Brinkhurst 

1971 
4.0 

Oxygen electrode 
equipped with oscillating 

stirrer. 
Lake Ontario 

Johannsson et 
al. 1985 18.9 Winkler titration. Lake Ontario 

Quigley et al. 
2002 33.9 Winkler titration. Lake Michigan 

Present study 38.2 
Oxygen electrode with no 

water movement or 
disturbance. 

Lake Superior 
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CHAPTER 3.  Measuring the Effects of Food Availability on Lake 

Superior Diporeia Consumption Rates Using Radiolabeled Algae 

 

ABSTRACT 

Within Lake Superior benthic macroinvertebrate communities, Diporeia are 

the most abundant organism and account for the largest proportion of biomass.  

They are also a favored prey for lake whitefish and other benthivorous species.  As 

detritivores that feed on organic material in surficial sediments, Diporeia play a major 

role in transferring energy and nutrients to higher trophic level consumers.  The 

objective of this study is to model the response of Diporeia consumption rate to 

changes in food availability.  Diporeia were introduced to microcosms containing 

various concentrations of 14C-labeled green algae (Selenastrum capricornutum), and 

were held for 24 hour durations. Consumption was calculated as the radioisotope 

content of each animal divided by the specific activity of the labeled algae.  The 

predicted consumption rate corresponding to average Lake Superior algal carbon 

fluxes was 0.08 ± SE mgC·gDW-1·d-1.  The hyperbolic Michaelis-Menten function 

estimated the maximum consumption rate to be 1.76 ± SE mgC·gDW-1·d-1.  The rate 

at which consumption increased at a normal range of food availability for Lake 

Superior populations was best explained through linear regression.   The parameter 

estimates presented here may act as inputs for a bioenergetics model used to 

predict Diporeia growth and production in Lake Superior.  
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INTRODUCTION 

The fate of algae settling into the cold, hypolimnetic water of Lake Superior is 

often determined by benthic amphipods of the genus Diporeia spp., formerly known 

as Pontoporeia hoyi (Bousfield 1989) and herein referred to as Diporeia.  Diporeia 

are detritivores that typically burrow and feed in surficial sediments (Marzolf 1965; 

Fitzgerald and Gardner 1993).  Within Lake Superior benthic macroinvertebrate 

communities, Diporeia are the most abundant organism and account for the largest 

proportion of biomass (Auer and Kahn 2004; Sierszen et al. 2006; Auer et al. 2013).   

They are also a favored prey for lake whitefish and other benthivorous species.  Lake 

Superior Diporeia are nutrient rich organisms, having an overall average lipid content 

of 32% (Auer et al. 2009) throughout most of the year, and almost 50% following 

spring phytoplankton blooms (Cavaletto et al. 1996).  This high lipid content makes 

them capable of efficiently recycling nutrients and energy to predators. Gardner et al. 

(1985) estimated that this macroinvertebrate species is responsible for consuming 

nearly 30% of the total bioavailable organic matter that has settled to the hypolimnion 

in Lake Michigan.  Of that 30%, only about 9% is used by Diporeia for metabolic 

processes, resulting in approximately 21% being available to secondary consumers 

through Diporeia biomass (Fitzgerald and Gardner 1993).  

The relationship between Diporeia and their predators has been extensively 

studied (Flint 1986; Owens and Dittman 2003; Hondorp et al. 2005; Rennie et al. 

2009; Pothoven et al. 2011), yet estimates of Diporeia consumptive demand are still 

relatively uncertain (Dermott and Corning 1988; Fitzgerald and Gardner 1993; 

Lozano et al. 2003).  Consumption rates for this amphipod are dependent on several 
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factors. Diporeia are intermittent feeders that exhibit full guts most often during 

spring algae blooms (Quigley 1988; Evans et al. 1990).  Quigley and Vanderploeg 

(1991) showed that Diporeia feeding rates increased with decreasing food quality.  

When organisms were fed Melosira, a diatom that is considered to be a highly 

desirable energy source to Diporeia, the nutritional requirements of each individual 

was assumed to be met faster, leading to an overall decrease in the amount of food 

consumed (Quigley and Vanderploeg 1991).  The amount an individual consumes is 

also regulated by its size.  Quigley (1988) found that juvenile Diporeia had fuller guts 

than adults that had reached reproductive maturation.  Lozano et al. (2003) proposed 

a model that related Diporeia consumption to body size and water temperature.  In 

order to measure consumption, this group observed fecal pellet production and 

assumed that the egestion rate was equal to the ingestion rate due to the low 

percentage of carbon (approximately 1%) in the sediment.  Lozano et al. (2003) 

found that smaller organisms have fuller guts and feed more continuously than larger 

individuals.  

Since Diporeia have been shown to be important in detrital uptake and 

transfer of organic carbon, factors influencing consumption rates for this species in 

Lake Superior play key roles in energy flow and community dynamics.  The 

intensified feeding rate observed during phytoplankton blooms and the subsequent 

increase in average lipid content of amphipods are indications of Diporeia 

consumption rates being strongly dependent on carbon inputs to the hypolimnion 

during the spring.  If amphipod biomass in Lake Superior is regulated by food 

availability, we hypothesize that any change in the flux of organic carbon to the 
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benthic community will result in varying the amount of carbon consumed by Diporeia.  

To test this hypothesis, we investigated the dietary response of Lake Superior 

Diporeia to a range of food availability conditions through a series of laboratory 

experiments.  The amount of food consumed was evaluated using radioisotopes to 

label algal cells. This method of measuring Diporeia consumption rates through 

radiolabeled algae was first implemented by Fitzgerald and Gardner (1993), who 

introduced Diporeia from Lake Michigan to a concentration of algal carbon typical to 

ambient conditions.  Here, we have added a range of algal carbon concentrations to 

Diporeia microcosms in order to investigate the relationship between food supply and 

uptake.  

MATERIALS AND METHODS 

Collection and Maintenance of Benthic Communities 

Sediment and live Diporeia were collected from the slope region of Lake 

Superior (70 m depth site located approximately 5 km offshore on the western coast 

of the Keweenaw Peninsula, Michigan, USA ) during 2012 and 2013 using a PONAR 

grab (area = 0.046 m²).  Samples were placed into plastic bins with surface water 

(approximately 8°C) from the collection site and transported back to the laboratory 

where they were stored in constant darkness at 4°C. Additional surface water was 

collected and stored at 4°C until used for feeding experiments or for changing 

Diporeia culture water. 
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Preparation of radiolabeled algae 

Carbon uptake was measured through the use of radiolabeled sodium 

bicarbonate (NaH14CO3).  A culture of green algae, Selenastrum capricornutum, was 

grown and maintained at 20°C in an incubator under constant light.  This algal 

species was chosen because of how fast and easily it can be grown, and preliminary 

experiments showed that it is readily consumed by Diporeia.  We transferred 600 mL 

of the algal culture into a 1 L Erlenmeyer flask, split the culture into two separate 300 

mL aliquots, and inoculated one with NaH14CO3 at an activity of 0.3 μCi·mL-1.  This 

flask was thoroughly agitated to ensure the radioisotopes had been mixed throughout 

the algae.  Both the radiolabeled culture and the non-radioactive control culture were 

incubated at saturating light intensity (600-800 µE·m-2·s-1) at 20°C for 48 hours to 

irradiate the cells.  This time period was chosen based on experiments in which a 

culture of S. capricornutum was inoculated with NaH14CO3 and monitored over seven 

days to determine when radiation levels of the algal cells reached a plateau (Figure 

3.1).  After this 48 hour period, the two cultures were transferred to a 4°C incubator 

in constant darkness for 24 hours.  Each culture was then centrifuged at 2,000 RPMs 

for 10 minutes.  The supernate was extracted, and the remaining algae were then 

rinsed with deionized water (Milli-Q, Millipore) and centrifuged a second time.  Again, 

we removed the overlying water and added deionized water to each culture until a 

volume of 100 mL was reached.  The two cultures were stored in 300 mL Erlenmeyer 

flasks at 4°C until processing for specific activity.  



66 

Determining specific activity of radiolabeled algae 

We filtered five replicates of 0.1 mL (0.45 μm pore size, 25 mm diameter) of the 

radiolabeled algae before and after consumption trials.  Filters were transferred into 

20 mL scintillation vials and approximately three to four drops of 0.2 N HCl was 

added to each to remove any inorganic carbon present.  The vials were then air-

dried under a fume hood for 24 hours.  Once dried, scintillation cocktail (Scintiverse 

BD Cocktail, Fisher Scientific) was added to each vial and radioactivity was 

measured using a Beckman Coulter LS 6500 Multi-Purpose Scintillation Counter. 

In order to determine the organic carbon content of the algae, we filtered 1.0 mL 

of the control culture using ashed 0.7-μm GF/F filters.  A few drops of 0.2 N HCl 

were again added to remove inorganic carbon.  Filters were then kept frozen until 

analyzed for particulate organic carbon (POC) content. The specific activity, as 

described by Conover and Francis (1973), of the radiolabeled algae is calculated as: 

 𝑆𝐴 = �
𝑅𝐴

[𝐶] × 𝑉
� (Eq. 3.1) 

where SA is the calculated specific activity (mgC/DPM), RA is the radioactivity (DPM) 

of the 14C-labeled algae that was filtered, [C] is the concentration (mgC·L-1) of algal 

particulate organic carbon as measured from the control, and V is the volume (L) of 

labeled algae that was filtered.   

To ensure that the control culture was representative of the radiolabeled 

culture for determining carbon content, we extracted 600 mL of algae and split it into 

two 300 mL parts without adding NaH14CO3 to either. These two parts were 

centrifuged twice, combined into a 100 mL culture as described above, and each 
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measured for turbidity.  This process was done in triplicate, and the two parts from 

each experiment never differed by more than 1.0 NTU.  It was therefore assumed 

that the turbidity readings for the control culture could be used to estimate the 

concentration of organic carbon in the radiolabeled culture for each consumption 

trial. 

Assessing consumption through radioisotope content  

Microcosms were prepared by filling BOD bottles with filtered lake water (0.7-

μm GF/F filters) and varying amounts of radiolabeled algae.  The amount of 

radiolabeled algae added to each bottle was determined by measuring the turbidity 

(NTU) of the control culture to estimate the concentration (mgC·L-1) of organic 

carbon in the radiolabeled culture (Figure 3.2).  After the algae and water were 

added, the bottles were stored in 4°C for 24 hours to allow the algae to settle. Two 

series of trials were performed; the first series (herein referred to as 1D) had one 

Diporeia added to each 60 mL BOD bottle.  The second series (herein referred to as 

5D) had five Diporeia added to each 300 mL bottle.  After either one or five 

individuals were transferred, bottles were capped with no air space in order to 

prevent the animals from becoming trapped at the water surface. After 24 hours, 

Diporeia were removed from the bottles, gently rinsed with water, and measured to 

the nearest 0.5 mm under a dissecting microscope.  Animals were then transferred 

into a scintillation vial and air dried for 48 hours.  Once dried, Diporeia were ground 

up using a metal spatula.  Each vial had 10 mL of cocktail added to it and was 

shaken vigorously before being assessed for radioisotope content.  For the 5D trials, 

the animals were dried, pulverized and homogenized as a group in scintillation 
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cocktail.  Only a portion of the cocktail was then assayed for radioactivity in order to 

reduce the effects of quenching.  Consumption rates (mgC·gDW-1·d-1) were 

calculated as:  

 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 = �
𝑅𝐷

𝑆𝐴 × 𝐷𝑊
� (Eq. 3.2) 

where RD is the radioactivity (DPM) observed in Diporeia biomass and DW is the 

estimated Diporeia dry weight (g) based on the length of each animal. A length-

weight relationship was developed using a total of 59 Diporeia.  Animals were 

measured for total body length from the tip of the rostrum to the tip of the telson 

following the gut line, using the computer software Image-Pro Plus 7.0.  Individuals 

were then dried at 60°C for 24 hours and weighed to the nearest 0.001 mg.     

To ensure that radioactivity levels represented the effects of consumption, 

and that there were no radiolabeled algal cells fortuitously attached to the 

exoskeleton of test animals, we placed dead individuals into bottles containing the 

same amounts of radiolabeled algae as in each trial.  These animals were left for 24 

hours and processed as described above.  In order to determine the duration of each 

experiment, Diporeia were fed 0.5 mg of radiolabeled algal carbon, as described 

above, and were kept at 4°C in the dark for 12, 24, 48, 72, 96, and 168 hours.  No 

change in activity levels (DPM) were observed after 24 hours.  We therefore limited 

all subsequent trials to this 24 hour time period. 

Statistical Analysis  

Data collected from this study were analyzed using linear and nonlinear 

regression.  Model coefficients were determined in the statistical software program R 
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(R Development Core Team 2011) and significance evaluated at α=0.05.  All 

coefficients were determined using the mean consumption rate among replicates in 

1D and 5D trials.  A variance-weighted statistical analysis was performed on the 

nonlinear regression to determine goodness of fit for the model. 

RESULTS 

We collected 102 data entries for Lake Superior Diporeia feeding rate.  Of the 

330 individuals used in these experiments, most were processed in groups of five 

(285 animals).  All others were processed individually (45 animals).  Experimental 

conditions were consistent among all trials and only varied in concentrations of food 

available to each animal and with bottle size between the 1D and 5D trials.  The size 

distribution of Diporeia in this study was uniform.  Average animal length among all 

trials was 4.82 mm with a standard error of 0.04 mm. 

Consumption rates ranged from 0.01 to 1.24 mgC·gDW-1·d-1, and increased 

asymptotically with increasing concentrations of algal carbon (Figure 3.3). The more 

rapid change at low carbon concentrations was consistent among all trials.  The 

relationship between consumption rate and organic carbon flux was described for 

both 1D and 5D trials, as well as all trials combined, using the Michaelis-Menten 

equation: 

 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝑁𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟 𝑚𝑜𝑑𝑒𝑙 = 𝐶𝑚𝑎𝑥 × �
𝐽𝑃𝑂𝐶

𝐽𝑃𝑂𝐶 + 𝐾
� (Eq. 3.3) 

where Cmax is the maximum consumption rate (mgC·gDW-1·d-1), JPOC is the flux of 

organic carbon (mgC·m-2·d-1), and K is the half-saturation constant (Table 3.1). The 
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data was also analyzed using simple linear regression for lower JPOC values (0 to 350 

mgC·m-2·d-1).  This relationship was described using the equation: 

 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝐿𝑖𝑛𝑒𝑎𝑟 𝑚𝑜𝑑𝑒𝑙 = 𝑏1(𝐽𝑃𝑂𝐶) (Eq. 3.4) 

where b0 is the intercept of consumption and b1 is the rate of consumption increase 

over a range of JPOC values. This linear function explained a larger proportion of the 

variability (R2=0.91) in consumption rate at low JPOC values for the 1D trials 

(R2=0.96), 5D trials (R2=0.96), and combined data (R2=0.91).The linear function also 

had less variance around the parameter estimates (Table 3.1). The JPOC stimulated 

consumption values show a R2 of 0.91 to observed values and are significant 

(p<0.001). 

 Specific activity of the algal cultures did not vary significantly (student t-test, 

p<0.01) between measurements taken before and after each trial.  DPM values of 

Diporeia that were dead before being introduced to BOD bottles were within 

background levels. 

DISCUSSION 

Overall model performance and assessment 

The true relationship between consumption rate and carbon flux is 

inadequately described by a simple linear function since feeding is limited by animal 

size.  Instead, this relationship can be defined by the form of the Michaelis-Menten 

equation (Eq. 3.3) (Barthel 1983).  In an oligotrophic system such as Lake Superior, 

JPOC values are low and fall within the increasing portion of the Michaelis-Menten 

function.  Within this range (between 60 to 90 mgC·m-2 ·d-1) Diporeia are food 
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limited, leading to consumption rates being extremely sensitive to food inputs.  At 

higher carbon-flux conditions, Diporeia are no longer food limited, and so the 

response of consumption rate to food availability is almost completely discontinued.  

Between these two JPOC ranges is considered to be a transitional phase where the 

response of consumption rate slows as the carbon flux increases.  Prior to this 

transitional phase, (Eq. 3.3) is too restricted by assumption to be of use in describing 

the relationship between consumption and food availability.  The rate at which 

consumption increases with low JPOC values is consistently overestimated using the 

Michaelis-Menten function due to the influence of consumption rates corresponding 

to extremely high food availability ranges.  Therefore, the consumption-carbon flux 

relationship can best be explained through linear regression (Eq. 3.4).  However, 

parameters calculated for the nonlinear function (Eq. 3.3) are still useful for 

bioenergetic models (e.g. Bioenergetics 3.0, Ecopath, etc.). 

Since consumption is expected to be zero when JPOC=0, we decided to force 

the linear regression through the origin.  Although forcing a zero-intercept can impair 

a regression, it is necessary in this case since we are interested in possible 

consumption vales that are within extremely low JPOC ranges.  Seven outliers were 

removed before performing the regression analyses.  These values were identified in 

our data as being more than three standard deviations away from the mean of the 

remaining values in each trial.  We view the removal of outliers to be a prudent step, 

as they may seriously skew the least-squares fit of a regression surface, and act as a 

control on key model properties (Montgomery et al. 2006).  Additionally, one 5D trial 

was removed due to the extremely low results observed in all three of the replicates. 
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All results that were removed are shown as either open circles (1D trials) or open 

diamonds (5D trials) in Figure 3.3a, with the exception of a single consumption value 

(1.8 mgC·gDW-1·d-1) at 1125 mgC·m-2·d-1. 

As mentioned earlier in this manuscript, Diporeia do not feed continuously 

due to their life history strategy of selectively feeding on higher quality food during 

different periods of the year (Gardner et al. 1985; Dermott and Corning 1988; 

Cavaletto et al. 1996; Lozano et al. 2003).  A comparison of results from 1D and 5D 

trials shows a difference in sample variance between the two experimental methods.   

This difference is most clearly demonstrated by the standard error of K for 1D trials 

(SE of K=82.07) being higher than K (K=79.40) (Table 3.1). The SE of K for 5D trials 

(SE of K=338.11) was approximately one third of its corresponding K (K=938.77) 

(Table 3.1).  Trials with only one individual per bottle resulted in much higher 

variance in consumption values than the 5D trials.  It was assumed that processing 

five individuals as a group would diminish the impact of non-feeding individuals on 

the model.  Given the increase in predictive power associated with a decrease in 

sample variance, the five replicates from each 1D trial were averaged and pooled 

with the results of the 5D trials.  We rely solely on the combined (1D and 5D) data to 

estimate Diporeia consumption. 

Although our results fall in the lower range of previously reported 

consumption rates for Diporeia, the empirical data from this study is still comparative 

with these earlier estimates.  Using the combined linear model, the predicted 

consumption rate corresponding to average Lake Superior algal carbon fluxes (75 

mgC·m-2 ·d-1) (see Baker 1991) is 0.08 ± SE mgC·gDW-1·d-1. Lozano (2003), Harkey 



73 

et al. (1994), and Dermott and Corning (1988) found adult Diporeia consumption 

rates to be 0.2, 0.8, and 2.6 mgC·gDW-1·d-1, respectively.  These values were 

adjusted by correcting for the proportion of organic carbon in sediments, wet:dry 

mass, and amphipod abundance. The consumption model proposed by Lozano et al. 

(2003) was developed by monitoring fecal pellet production in the laboratory using 

Lake Michigan Diporeia and with defining water temperature and animal size as 

independent parameters.  Because their experimental study was performed in a 

controlled environment, we believe it to be a more accurate and precise estimate of 

Diporeia consumption compared to Harkey et al. (1994) and to Dermott and Corning 

(1988) who used observational data as an index for consumption and growth.  

Dermott and Corning (1988) calculated ingestion rates using intermittent 

observations of Diporeia gut content.  The ingestion rate values they reported were 

therefore strongly influenced by the environmental conditions and gut contents of 

Diporeia at the time of their sampling efforts.  The application of the carbon-labeling 

technique used in this study circumvents challenges associated with measuring gut 

contents of such small organisms.   

Since consumption rates were derived from replicated measurements of 

specific activity (Eq. 3.1) before and after each trial in this study, and not from the 

absolute quantity of 14C, it was assumed that consumption estimates were not 

affected by algal cell division, bacterial activity in the culture flask, or an uneven 

distribution of 14C among algal cells.  The observed absence of radioisotopes in trials 

with dead Diporeia shows that all DPM counts in this study are representative of 

consumption.  Animal size in this study (mean length=4.82 mm) was taken into 
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account by dividing the estimate of carbon consumed (mgC) by the total mass (gDW) 

of the animals in each trial.  Consumption rates for Diporiea have been shown to be 

size dependent (Lozano et al. 2003).  Therefore, predictions of lakewide Diporeia 

biomass should have considerations of both food availability as well as amphipod 

size classes.  

Another key assumption of this study was that bottle effects were minimal.  

The experimental animal density for the 1D and 5D trials is equivalent to 689 and 

1337 Diporeia·m-2, respectively.   These conditions approached natural lakewide 

abundances of Diporeia in Lake Superior (Barbiero et al. 2011; Auer et al. 2013).  

Similarly, the lower values of carbon fluxes used in this study correspond to natural 

ratios of algae to animals. In Figure 3.4, the average values for organic carbon fluxes 

among the Great Lakes are plotted with the average consumption rates (see Meyers 

1980; Bloesch 1982; Charlton 1983; Baker 1991; Meyers and Eadie 1993; Urban et 

al. 2004).  In 1D trials, consumption rates continually increased at low values of JPOC, 

corresponding to a linear function, and then transitioned to decreasing rates of 

consumption as carbon flux increased (Figure 3.3).   The 5D trials also showed this 

result, but the response was not as pronounced, as demonstrated by values of K 

corresponding to 1D and 5D (Table 3.1).  The half saturation constant, K, describes 

the efficiency with which Diporeia utilize the available organic carbon.  Cmax and K 

were greater for the 5D trials (Cmax = 1.50, K = 938.77) compared to the 1D trials 

(Cmax = 0.36, K = 79.40) (Table 3.1).  We attribute this difference to a combination of 

factors.  First, it is possible that animals from the 5D trials had become more starved 

compared to animals from the 1D trials.  This is due to the fact that 1D trials were 
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performed 24 hours after the animals were collected from Lake Superior, while 5D 

trials were performed 12, 25, and 37 days after collection.  Between collection and 

the initiation of the 5D trials, animals were kept in natural sediment without additional 

food supplements.  Furthermore, the sediment became fully mixed during transport 

to the laboratory, which potentially buried a large portion of the organic carbon 

consumable by Diporeia under the top layer where these animals typically burrow.  

The mixed sediment and lack of food supplements likely caused amphipods to more 

readily consume the green algae during consumption trials.  Second, consumption 

rates in the 5D trials may have been higher due to a more competitive environment 

within the mircrocosm.  An increase in consumption rate due to increases in 

population densities has been found in multiple other species.  For example, Ndegwa 

(2000) found that feeding rates of Eisenia foetida increased as animal density 

increased.  This increase in feeding observed for E. foetida contributed to higher 

growth and production rates in the population.  Third, it was assumed that 24 hours 

would be sufficient time for Diporiea to acclimate to its new environment based on 

previous studies (Quigley et al. 2002).  However, the potential stress involved with 

transporting these animals in 1D trials from the lake, to a laboratory culture, and then 

again to a BOD bottle within a two day time period might have caused them to spend 

less time foraging for food, and more time attempting to flee from their surroundings. 

Quenching (whether chemical, color, dilution, or absorption) was also 

assumed to have little to no influence on the final results of this study.  The effects of 

quenching were accounted for through an external standard, H# Plus, that had been 

previously installed in the scintillation counter used to analyze all samples.  
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According to the Operating Manual (1999) for this counter, a quenching agent is 

detected by the H# Plus when the standard has a variation of over 100 repeats.  H# 

repeats among all samples in this study ranged from 50 to 73.  This is an indication 

that quenching had a relatively minor impact on 14C detection before correction by 

the external standard.  The radioisotope analysis of each sample produced values 

recorded in both CPM and DPM.  Carbon-14 counting efficiency (i.e. CPM/DPM) was 

approximately 82 ± 8%, and did not vary significantly among samples of Diporeia 

and algae.  Preliminary experiments showed decreasing 14C counting efficiency as 

the number of Diporeia (1, 3, 5, or 10 animals per vial) within each sample bottle 

increased.  For this reason, only a fraction of the total animal biomass was assayed 

in the 5D trials.  The concentration of algae on each filter that was assessed for 

radioisotope content did not have an impact on our estimate of specific activity.  This 

was determined by the direct relationship that was observed between the volume of 

radiolabeled algae filtered (0.01 uL to 40 mL) and its resulting DPM value. 

Conclusions 

Lake Superior Diporeia consumption rates (mgC·gDW-1·d-1) responded to 

food availability, expressed as JPOC in units of mg(organic carbon)·m-2·d-1, according 

to the linear function: 

 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 = 0.0011(𝐽𝑃𝑂𝐶) (Eq. 3.5) 

In order to estimate the theoretical maximum consumption rate, required for 

bioenergetic model inputs, we used the Michaelis-Menten function (Eq. 3.3).  Our 

findings are consistent with previous studies of Diporeia consumption rates among 

other Great Lakes.  A leading theory for the decline of Diporeia in the lower Great 
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Lakes is that populations have experienced decreased food availability.  

Understanding how Diporeia populations might respond to changes in phytoplankton 

production may help in predicting future food-web dynamics in Lake Superior.  
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Figure 3.1 Relationship between the average disintegrations per minute (DPM) per 
milligram of algal carbon and time (±SE) for three cultures of green algae (S. 
capricornutum) inoculated with NaH14CO3 at an activity of 0.1 μCi·mL-1. 
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Figure 3.2 Relationship between the measured turbidity of a sample (n=17) of 
green algae (S. capricornutum) and its particulate organic carbon content (POC). 
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Figure 3.3 Observed consumption rates from feeding trials during June and July  
2013 using radiolabeled S. capricornutum and either one (1D=circles) or five 
(5D=diamonds) Diporeia.  Open shapes denote outliers.  (a) All values from 5D 
trials plotted with means of 1D trials. (b) Nonlinear model (dashed line represents 
95% confidence interval) showing the relationship between consumption rate 
(mean ±SE) and organic carbon flux (JPOC). 
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Figure 3.4 Linear relationship for Diporeia consumption rates (±SE) within the 
natural range (<350) of organic carbon fluxes (JPOC) in the Great Lakes.  The 
vertical dashed lines correlate to literature values for JPOC in the each of the Great 
Lakes (Meyers 1980; Bloesch 1982; Charlton 1983; Baker 1991; Meyers and Eadie 
1993; Urban et al. 2004). (R2=0.91, p<0.0001) 
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Table 3.1 Parameter estimates for six equations predicting Diporeia consumption 
(mgC·gDW-1·d-1) from food availability (i.e. organic carbon flux; JPOC).  The linear 
models (a) predict consumption at low JPOC values, while the nonlinear models (b) 
describe the response of consumption to food availability at high JPOC values.  
Parameter calculations were made for each model based on the experimental 
method used (i.e. individual and combined for 1D and 5D trials).  

a) 
Linear Model (JPOC <350) 

Trial(s) 1D 5D Combined 
Equation Eq.4 Eq.4 Eq.4 
slope, b1 0.0014 0.0008 0.0011 
SE of b1 0.0001 0.0001 0.0001 

R2 0.96 0.96 0.91 
Degrees of Freedom 4 9 13 

 

b) 
Nonlinear Model (All JPOC Values) 

Trial 1D 5D Combined 
Equation Eq.3 Eq.3 Eq.3 

Cmax 0.36 1.50 1.76 
SE of Cmax 0.09 0.26 0.40 

K 79.40 938.77 1427.26 
SE of K 82.07 338.11 550.75 

SE of Residuals 0.09 0.13 0.14 
Degrees of Freedom 4 16 25 
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