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Abstract

Computational models for the investigation of flows in deformable tubes are developed

and implemented in the open source computing environment OpenFOAM. Various

simulations for Newtonian and non-Newtonian fluids under various flow conditions are

carried out and analyzed. First, simulations are performed to investigate the flow of a

shear-thinning, non-Newtonian fluid in a collapsed elastic tube and comparisons are made

with experimental data. The fluid is modeled by means of the Bird-Carreau viscosity

law. The computational domain of the deformed tube is constructed from data obtained

via computer tomography imaging. Comparison of the computed velocity fields with

the ultrasound Doppler velocity profile measurements show good agreement, as does the

adjusted pressure drop along the tube’s axis. Analysis of the shear rates show that the

shear-thinning effect of the fluid becomes relevant in the cross-sections with the biggest

deformation.

The peristaltic motion is simulated by means of upper and lower rollers squeezing the

fluid along a tube. Two frames of reference are considered. In the moving frame the

computational domain is fixed and the coordinate system is moving with the roller

speed, and in the fixed frame the roller is represented by a deforming mesh. Several

two-dimensional simulations are carried out for Newtonian and non-Newtonian fluids. The

effect of the shear-thinning behavior of the fluid on the transport efficiency is examined.

In addition, the influence of the roller speed and the gap width between the rollers on the

xxvii



transport efficiency is discussed. Comparison with experimental data is also presented and

different types of moving waves are implemented.
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Chapter 1

Introduction

1.1 Background

Many biofluid mechanical processes encountered in the human body can be modeled as

the flow of a non-Newtonian fluid in a deformable or collapsible elastic tube which is

subjected to external and/or internal forces. Examples include the transport of food or

digestive liquids in the esophagus, stomach and intestines, and the flow of blood through

veins, capillaries and arteries. This is an inherently multi-physics problem which can be

modeled by means of a fluid in a deforming tube. Specifically, as the fluid flows through

the tube, it produces surface forces on the internal tube wall, which may cause the tube to

deform. This change in the tube’s shape causes a change in the flow field and hence the
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surface forces on the tube, which again affects the tube’s deformation. Moreover, there

may be large additional external forces applied to the outer wall of the tube which further

cause the tube to deform, thus contributing to the complex interplay between the flow field

and the tube deformation. Under many relevant conditions, the tube experiences very large

deformations and may approach complete collapse.

There are two main approaches to describe such phenomena. The first approach is to solve

the coupled fluid-structure problem, that is, both, the flow field and the tube deformation

are simultaneously solved as a coupled system. The second approach, called peristalsis,

describes a fluid system whose flow is driven by the deformation of the boundaries due to

outside forces. In a biofluid mechanical system, the peristaltic motion is the transport of

fluids in a tube by means of muscular contraction and expansion such as in the esophagus,

stomach, intestines, blood vessels etc. A non-biological application of peristalsis is the

peristaltic pump which is used to move clean/sterile or aggressive fluids through a tube

without cross contamination between the exposed pump components and the fluid. As

discussed in Jaffrin and Shapiro [2], the presence of viscous forces can produce effective

pumping.

1.2 Previous and Related Studies

Studies involving the coupled fluid-structure approach with varying degrees of

sophistication have been conducted by different authors including Heil [3, 4], Hazel and
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Heil [5], and Grotberg and Jensen [6]. Heil [3, 4] presented a three-dimensional solution

of flow in a coupled system by using the nonlinear Kirchoff-Love shell model to describe

the tube wall deformation and a Stokes flow approximation for the fluid. The fluid traction

has been approximated by lubrication theory. Hazel and Heil [5] used the finite element

method to simulate three dimensional flows in a non-axisymmetric buckled tube at finite

Reynolds number. Grotberg and Jensen [6] discussed some of physiological applications

of collapsible tube flows.

To understand the peristaltic motion in different situations, several theoretical and

experimental attempts have been made by the pioneering work of Latham [7] which

investigated the mechanism of peristalsis in relation to mechanical pumping. Specifically,

a theoretical and experimental analysis of a simplified model of peristaltic pumping have

been presented. Shapiro et al. [8] studied a Newtonian fluid with a periodic train of

sinusoidal peristaltic waves. They found that for a given amplitude ratio (the ratio of

the wave amplitude to the channel width or tube radius), the theoretical pressure rise per

wavelength decreases linearly with an increase of the flow rate. Also, reflux in peristaltic

flow has been discussed. Using the work of Shapiro et al. [8], Kleinstreuer [9] presented an

analytical solution of a peristaltic problem by using a reduced form of the Navier-Stokes

equations with a sinusoidal displacement wave, as a boundary condition, traveling on

the channel wall with constant speed; he computed the fluid’s axial pressure gradient

resulting from the pressure difference at both channel ends, the volumetric flow rate and

the conditions of reflux.

3



Analytic investigations of a Newtonian fluid flow induced by the peristaltic motion of a

flexible tube have been made by Barton and Raynor [10]; they computed the instantaneous

flow rate for a wide range of tube geometries. Jaffrin and Shapiro [2] presented a review of

much of the early literature on peristaltic flows.

The first attempt to understand the peristaltic motion of non-Newtonian fluids has been

made by Raju and Devanathan [11]; they considered the steady motion of a non-Newtonian

fluid in a rigid tube with a sinusoidal deformation at the boundary, and they discussed

the influence of the applied pressure gradient along with non-Newtonian parameters on

the streamlines and velocity profiles. In 1985, Srivastava and Srivastava [12] showed

that the magnitude of pressure rise, under a zero Reynolds number and long wavelength

approximation, is smaller in the case of a shear-thinning non-Newtonian fluid.

The peristaltic flow of a Jeffrey six-constant viscoelastic fluid in a uniform inclined tube has

been investigated by Nadeem et al. [13], while the peristaltic flow of a Herschel-Bulkley

yield-value fluid in a nonuniform inclined tube was studied by Nadeem and Akbar [14].

A theoretical analysis for the axisymmetric peristaltic motion of an incompressible

Johnson-Segalman viscoelastic fluid through a circular deformable tube has been carried

out by Hayat and Ali [15].

Merrill [16] mentioned that the temperature has no significant effect on the rheological

properties of normal blood in the non-Newtonian regime. Specifically, he found that the

yield stress is independent of temperature at least in the range of 15-37 C. Also, blood flow

is laminar except in severely stenosed arteries. This laminar behavior is achieved with the
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controlled pumping action of the heart and the viscoelasticity of the blood vessels reacting

locally to variations in blood pressure. For more details, refer to Kleinstreuer [9].

1.3 Contributions of this thesis

This dissertation has investigated several issues in Computational Fluid Dynamics applied

to flow in deformable tubes and channels, and the major contributions are:

• For Collapsed Elastic Tube:

– Simulations have been performed to investigate the flow of a shear-thinning,

non-Newtonian fluid in a collapsible elastic tube that reflect an experimental

setup. The computational domain has been constructed from data obtained via

Computer Tomography (CT) imaging.

– The numerical simulations have been compared with the experimental data,

and this comparison study shows a generally good agreement. Results show

that crude info about tube geometry is sufficient to get accurate simulations,

without need to solve the more complex coupled fluid-structure problem.

– Plenty of insight into the flow and the material properties has been offered.

Some of these properties cannot be easily obtained by means of measurement.

– The effect of a shear-thinning non-Newtonian viscosity on the flow behavior in

5



the collapsed tube has been determined.

• For Peristaltic Motion:

– Two-dimensional computer models have been developed to simulate

peristaltic-motion-driven flow based on experiments where the peristaltic

motion is induced by means of rollers which deform the tube. Two different

frames of references are considered to describe the peristaltic-motion-driven

flow. In the moving frame, the computational domain is fixed and the coordinate

system is moving with the roller speed, and in the fixed frame the roller motion

is represented by a deforming mesh.

– A moving-mesh boundary condition has been modified to account for the

boundary motion of interest in the fixed frame of reference. This boundary

condition moves the points of the mesh at a boundary according to a prescribed

mathematical formula.

– To examine the flexibility of our moving-mesh boundary condition, several

shapes of traveling waves such as parabolic and sinusoidal waves have been

tested.

– A boundary condition for velocity has been implemented to ensure zero flux on

the moving boundary during the deformation.

– Good agreement has been obtained between the simulation and experimental

results.
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– The effect of several parameters on the transport efficiency and other flow

behavior has been investigated.

– The extension to a three-dimensional channel and comparison of the results to

those of the two-dimensional channel have been made.

The computations performed in the framework of this thesis have been performed with the

open-source software OpenFOAM [17]. OpenFOAM is an object-oriented C++ continuum

mechanics software library. OpenFOAM currently uses a second-order Finite Volume

Method on structured and unstructured meshes. It is written in operator form and has a

class hierarchy designed to be shared between various discretization practices. Lower level

objects, including mesh, matrix, field, boundary conditions, linear solvers etc. are re-used

without change.

To study peristaltic motion by means of rollers moving axially along an elastic tube,

different codes of OpenFOAM had to be modified. The code changes and additions are

documented in the appendix.
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Chapter 2

Fluid Dynamics Background and

Numerical Methods

Fluid dynamics is the science which describes the motion of fluids and their interactions

with solid bodies. The term fluid is used to describe a substance that flows continuously

under an applied stress. In most cases of interest, a fluid can be regarded as a continuum,

i.e., a continuous substance. Every point in space has finite values for physical properties

such as velocity, stress, temperature, etc. These properties may change their values

from a point to the next one or there could be a surface where some properties jump

discontinuously. However, the continuum assumption does not allow properties to become

infinite or to jump discontinuously at a single isolated point.

Applying external forces causes the fluid to flow. These driving forces can be classified as
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surface forces (e.g. pressure, viscous forces in a moving fluid, etc.) and body forces (e.g.

gravity, electromagnetic forces, etc.).

2.1 Conservation Principles

The fluid motion is described by means of the equations of conservation for mass,

momentum, and energy. The general form of the local balance equations for a physical

variable γ in the Eulerian frame of reference takes the form (see Hutter and Jöhnk [18])

∂γ

∂ t
+∇ · (γu) =−∇ ·φ +π + ς , (2.1)

in which u is the velocity of the fluid, φ is the flux of γ from the outside into the body

through its bounding surface, π is the production term, and ς denotes the supply term.

Taking γ = ρ , the mass density (mass per unit volume) in Eq. (2.1), and assuming that

mass is neither produced nor supplied and it does not flow through a surface, we make the

following substitutions π = ς = ∇ · φ = 0. This leads to the mass conservation equation

(continuity equation)

∂ρ

∂ t
+∇ · (ρu) = 0, (2.2)
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where the first term on the left hand side of the equation represents the local rate of change

of ρ and the second term represents the convective flow of mass out of the fluid particle

across its boundaries.

If ρ is constant, the continuity equation Eq. (2.2) becomes

∇ ·u= 0, (2.3)

which is called incompressibility constraint. A fluid which satisfies the incompressibility

constraint is called incompressible.

The momentum equation can be obtained by taking γ = ρu in Eq. (2.1) with π = 0

(assuming that momentum is conserved). Moreover, the supply of momentum is governed

by the external volume forces or by densities of the volume forces (e.g. the gravitational

force or weight), i.e., ς = ρggg, where ggg is the gravitational acceleration vector. The flux of

momentum is the result of the surface-force densities; these are represented by the stress

tensor, i.e., φ = −σσσ , where σσσ is the Cauchy stress tensor whose component σi j refers to

the force per unit area acting in the j direction on a surface (plane) which is perpendicular

to the i direction. These substitutions lead to the momentum conservation equation

∂ (ρu)

∂ t
+∇ · (ρuu) = ∇ ·σσσ +ρggg. (2.4)
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The Cauchy stress tensor is determined by the type of material and can be written as

σσσ =−pδδδ + τττ , (2.5)

where p represents the pressure, δδδ is the unit tensor, and τττ is the viscous stress (or

extra-stress) tensor. Substituting Eq. (2.5) into the momentum conservation equation

Eq. (2.4) yields

∂ (ρu)

∂ t
+∇ · (ρuu) =−∇p+∇ · τττ +ρggg. (2.6)

For an incompressible fluid, the momentum conservation equation becomes

ρ(
∂u

∂ t
+u ·∇u) =−∇p+∇ · τττ +ρggg. (2.7)

In this thesis, the flows considered are isothermal so that the energy conservation equation

will not be discussed. In fact, for the isothermal flows, the mass and momentum

conservation equations suffice. In addition, the constitutive equations, which relate the

stress tensor to the fluid deformation, will be discussed in the next section.
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2.2 Rheological Model

The system of the conservation equations has more unknowns than equations, and so to

close the system we need additional equations called constitutive equations. For the viscous

or extra-stress tensor τττ , a constitutive equation is a rheological equation of state which

describes the stress in the fluid as a function of the rate-of-strain or strain that the fluid

experiences.

Fluids can be classified as Newtonian and non-Newtonian. A Newtonian fluid is one in

which viscous stress is linear in the rate-of-strain. More specifically, for a general isotropic

(no directional preference) isothermal Newtonian fluid, the constitutive equation is given

by

τττ = µγ̇γγ − 2

3
µ(∇ ·u)δδδ , (2.8)

where the rate-of-strain (or rate-of-deformation) tensor γ̇γγ , is defined by γ̇γγ = ∇u+(∇u)T

and µ is the constant dynamic viscosity.

For an incompressible fluid under isothermal conditions the constitutive equation becomes

τττ = µγ̇γγ. (2.9)
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A non-Newtonian fluid is one whose stress cannot be described by Eq. (2.8).

There are many ways for a fluid to be non-Newtonian. The following are some of these

ways:

• A fluid whose stress is a nonlinear function of strain or rate-of-strain.

• A fluid that exhibits nonzero normal stress differences in shear flows.

• A fluid with a memory effect due to micro-structure.

Two main classifications of many non-Newtonian fluids are (time-independent) inelastic

fluids and (time-dependent) viscoelastic fluids.

In either case, an important rheological characteristic of a non-Newtonian fluid is a

shear-rate-dependent viscosity, η(γ̇), where the shear rate γ̇ is given by

γ̇ =

√

1

2
(γ̇γγ : γ̇γγ) =

√

1

2
∑
i, j

γ̇i jγ̇ ji. (2.10)

If the predominant rheological characteristic of a fluid is a time-independent

shear-rate-dependent viscosity, then the fluid may be modeled with a generalized

Newtonian constitutive equation

τττ = η(γ̇)γ̇γγ , (2.11)

14



where a viscosity model must be specified for η(γ̇). These models are empirical in nature.

Fluids with a shear-rate-dependent viscosity η(γ̇) can be classified into:

– Shear-thinning or pseudoplastic fluids when η(γ̇) decreases as the shear rate

increases.

– Shear-thickening or dilatent fluids when η(γ̇) is an increasing function of the shear

rate.

– Yield-value or viscoplastic fluids when the fluid can sustain an applied (nonzero)

stress without flowing. The stress below which the fluid does not flow is called a

yield-value or yield-stress.

Figure 2.1 illustrates these shear-rate-dependent viscosity curves, while Fig. 2.2 shows the

relationship between the shear stress and the shear rate for different types of fluid.
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Figure 2.3 shows the different regions in a viscosity curve for a shear-thinning fluid which

are modeled. The η0 and η∞ are the limiting viscosity at zero and at infinite shear rate,

respectively.

Common viscosity models are given below.

Power-Law Model

The simplest type of model to account for shear-rate-dependent viscosity is the power-law

model of Ostwald [19] and de Waele [20]. This model has two parameters and it is given

by

η(γ̇) = mγ̇n−1, (2.12)
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where m represents the consistency index describing the vertical shift of the power-law

region and has units of Pa.sn, and n is the power-law exponent which describes the slope

of viscosity curve η(γ̇) in the power-law region and it is dimensionless.

Note that n= 1 corresponds to Newtonian fluids. With 0< n< 1, the fluid is shear-thinning

or pseudo-plastic and with 1 < n < ∞, the fluid is shear-thickening or dilatant. Note that

the power-low model only describes the viscosity curve in the power-law region.

According to Bird et al. [21], this model is widely-used and very popular among many

engineers because the analytical solutions are available for many problems and it can be

used to get a rough estimate of the effect of the shear-rate-dependent viscosity. However,

this model cannot describe behavior outside the power-law region, i.e., for small or large

values of shear rate. Therefore, its use in CFD programs can lead to large computational

errors.

An improvement to the power-law model can be achieved by describing the behavior of the

viscosity outside the region of power law. This can be seen in the following model.

Carreau-Yasuda Model

This model is given by the expression (refer to Carreau [22] and Yasuda [23])

η −η∞

η0 −η∞
= (1+(kγ̇)a)(n−1)/a, (2.13)
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where k is a time constant with units of seconds, whose reciprocal gives the shear rate at

which the fluid changes from the constant viscosity behavior to the power-law behavior, a is

a dimensionless parameter describing the transition between the zero-shear-rate-dependent

viscosity and the power-law region, and the dimensionless power law exponent n describes

the slope of (η −η∞)/(η0 −η∞) in the power-law region (see Fig. 2.3).

For many shear-thinning fluids, a ≈ 2, and so as a special case of this model, the

Bird-Carreau model or simply the Carreau model is given by taking a to be 2 as follows

η −η∞

η0 −η∞
= (1+(kγ̇)2)(n−1)/2. (2.14)

For more details about this model refer to Bird et al. [21].

Yield-Stress Models

A fluid has a yield-value (yield-stress), if it can sustain an applied (nonzero) stress without

flowing. The yield-value (yield-stress) is the stress below which there is no relative flow.

Common yield stress fluids include blood, toothpaste, and paints.

If we denote the yield stress by τ0, then for the yield-stress fluid







τi j = η(γ̇)γ̇i j :| τττ |2≥ τ2
0 ;

γ̇i j = 0 :| τττ |2< τ2
0 .
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where

| τττ |2= 1/2 (τττ : τττ).

η(γ̇) is the apparent viscosity of the material beyond the yield point

η(γ̇) =
τ0

γ̇
+ η̂(γ̇), (2.15)

where η̂(γ̇) is the constitutive equation for the fluid after the yield stress is reached.

For yield-value fluids, the viscosity approaches infinity at small shear rate. Examples of

yield-value models are the Bingham model (refer to Bingham [24]) in which the fluid

behaves like a Newtonian fluid after the yield stress has been reached, i.e., η̂(γ̇) = µ =

constant, and the Herschel-Bulkley model in which the fluid behaves like a power-law fluid

after the yield stress has been reached, i.e., η̂(γ̇) = mγ̇n−1.

One common method of obtaining a yield stress value is to extrapolate the stress versus

shear rate curve back to the stress intercept at zero shear rate. For more details about these

models refer to Bird et al. [21] and Steffe [25].
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2.3 Relevant Dimensionless Numbers

This section discusses two dimensionless numbers that are relevant in our study: the

Reynolds number and the Deborah number.

The dimensionless Reynolds number Re, expresses the ratio of the inertial forces to the

viscous forces, and it is defined by

Re=
ρu0L0

η0
, (2.16)

where u0 is a characteristic velocity, L0 is a characteristic length of the geometry and η0 is

the characteristic viscosity (which is µ for a Newtonian fluid).

A flow having a very small Re is called a Stokes flow, or a creeping flow. A flow is called

a laminar flow if the Re falls below some critical value which depends on the considered

geometry. Otherwise, it is called a turbulent flow. The flows in this thesis are restricted

to the laminar regime. For example, if we consider the flow inside a tube with a fixed

diameter, the flow is Stokes if Re << 1, the flow is laminar if Re < 2100, and turbulent if

Re> 4000 and the range 2100 < Re< 4000 represents the transition range.

Using Eq. (2.9) in the momentum equation of incompressible flow, Eq. (2.7), yields the

Navier-Stokes equations

ρ(
∂u

∂ t
+u ·∇u) =−∇p+µ∇2u+ρggg. (2.17)
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On the other hand, substituting Eq. (2.11) into Eq. (2.7) yields the momentum equation for

a generalized Newtonian fluid as follows:

ρ(
∂u

∂ t
+u ·∇u) =−∇p+∇ · (η(γ̇)γ̇γγ)+ρggg. (2.18)

In order to get dimensionless forms of Eqs. (2.17 and 2.18), let us define the dimensionless

quantities as follows

ũ=
u

u0
, ∇̃ = L0∇, p̃= (

L0

η0u0
)p. η̃ =

η

η0
,

Using the above dimensionless quantities, Eqs. (2.17 and 2.18) can be rewritten in the

dimensionless form as (after dropping the tildes):

Re(
∂u

∂ t
+u ·∇u) =−∇p+∇2u+

(
Re

Fr

)
ggg

g
(2.19)

Re(
∂u

∂ t
+u ·∇u) =−∇p+∇ · (ηγ̇γγ)+

(
Re

Fr

)
ggg

g
, (2.20)

where g is the gravitational constant and Fr =
u2

0

gL0
is the Froude number.

The dimensionless Deborah number De, has been proposed by Marcus Reiner [26] as a

means of distinguishing between solids and liquids. This number is important to understand

the behavior of viscoelastic materials and it becomes the fundamental number of rheology.
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Reiner defined the Deborah number De in [26] as

De=
tfluid

tflow

, (2.21)

where the numerator is time scale of the material’s response, and the denominator is time

scale of the flow process. If De < Decritical , the elastic effects can be neglected and we

can treat the non-Newtonian fluid as a pure viscous material. Otherwise, the material has

elastic effects that must be accounted for in the constitutive equation. The critical value

of the Deborah number Decritical , depends on the flow and the geometry of the problem.

This thesis considers fluids whose De< Decritical , i.e., no elastic effect will be studied and

a generalized Newtonian constitutive equation Eq. (2.11), can be used.

2.4 Numerical Methods

2.4.1 Finite Volume Method

A discretization method is a method of approximating the partial differential equations by

a system of algebraic equations for the variables at some set of discrete locations in space

and time. In this subsection, we briefly recall the main explanations given by Jasak [27]

about the description of the discretization process in Finite Volume Method (FVM) with

the following properties in mind:
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• The method is based on discretizing the integral form of the conservation equations

over each control volume of the discrete domain. The basic quantities, such as mass

and momentum, will therefore be conserved at the discrete levels.

• The method is applicable to both steady-state and transient calculations.

• The control volumes can be of any shape.

• System of partial differential equations is treated in a segregated way, meaning that

they are solved one at a time in a sequential manner.

Polyhedral FVM discretizes the computational domain by splitting it into convex polyhedra

bounded by convex polygons. These polyhedra, which are called control volumes (CVs),

do not overlap and completely cover the computational domain.

The computational point P is located at the centroid of the control volume CV, such that

∫

VP
(x−xP)dV = 0, (2.22)

where VP stands for the volume of the CV with centroid xP. The topology of the control

volume is not important in this thesis. A typical polyhedral control volume is shown in

Fig. 2.4, where S f is the face area, n f is the face unit normal vector, N is the computational

point of a neighboring control volume, d f is the vector between the computational points

P and N, and rP is the vector between the origin and P. The control volume is bounded by

a set of flat faces and each face is shared with only one neighboring control volume. All
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Figure 2.4: Arbitrary polyhedral control volume. Source: Jasak and

Tukovic [1].

faces of the control volume will be marked with f , which also represents the centroid of

the face.

The conservation equations described in Section 2.1 can be written in integral form for a

tensorial quantity φ over a given control volume as follows

∫

VP

∂ρφ

∂ t
︸ ︷︷ ︸

temporal derivative

dV +
∫

VP
∇ · (ρuφ)
︸ ︷︷ ︸

convective term

dV =
∫

VP
∇ · (ρΓφ ∇φ)
︸ ︷︷ ︸

diffusion term

dV +
∫

VP
qφ (φ)
︸ ︷︷ ︸

source term

dV,

(2.23)

where Γφ is the diffusion coefficient of φ . Eq. (2.23) represents the integral of the general

time-dependent convection-diffusion equation for a quantity φ . Since the diffusion term

has a second-order derivative of φ in space, the Eq. (2.23) is a second-order equation. To
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solve a second-order equation, the discretization method in space and time should be at

least of order two.

In fact, the assumption that φ has a linear variation in space and time around the

computational point P gives a second-order discretization method in space and time. The

linear variation of φ is represented by

φ(x) = φP+(x−xP) · (∇φ)P, (2.24)

φ(t+∆t) = φ t +∆t(
∂φ

∂ t
)t , (2.25)

where φP = φ(xP), (∇φ)P = ∇φ(xP) , φ t = φ(t) and (∂φ
∂ t )

t = ∂φ
∂ t (t).

The procedures to derive a second-order discretization method in space and time for the

general convection-diffusion equation are given below.

Spatial Discretization

• Discretization of the convection term

Using the divergence theorem on the convection term over a control volumeVP gives

∫

VP
∇ · (ρuφ)dV =

∮

∂VP
(ρuφ ·n)dS, (2.26)
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where ∂VP is the surface bounding the volume VP and n is the unit normal vector on

the boundary surface pointing outward.

Since the control volume is bounded by a series of flat faces, the surface integral can

be written as

∮

∂VP
(ρuφ ·n)dS= ∑

f

(∫

f
(ρuφ ·n)dS

)

. (2.27)

Applying the assumption of linear variation simplifies the integral in the right hand

side of Eq. (2.27) as follows

∫

f
(ρuφ ·n)dS≈ (ρuφ) f ·

∫

f
ndS+(∇(ρuφ)) f :

∫

f
(x−x f )ndS, (2.28)

where the subscript f implies the value of the variable at the centroid of the face.

Notice that (∇(ρuφ)) f · (x−x f ) ·n= (∇(ρuφ)) f : (x−x f )n and since f represents

the centroid of the face (see Fig. 2.4), Eq. (2.28) becomes

∫

f
(ρuφ ·n)dS≈ (ρuφ) f ·

∫

f
ndS= (ρuφ) f ·S, (2.29)

where S= S fn is the outward-pointing face area vector.

The derivation of Eq. (2.29) is equivalent to applying a one-point Gauss quadrature

rule to the left-hand side of Eq. (2.28). The one-point Gauss quadrature rule is exact

for integrating polynomials of degree one.
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Using Eqs. (2.26-2.29) the convection term is discretized as follows:

∫

VP
∇ · (ρuφ)dV ≈ ∑

f

S · (ρuφ) f

= ∑
f

S · (ρu) fφ f

= ∑
f

Fφ f , (2.30)

where F = S · (ρu) f is the mass flux through the face. There are several approaches

to compute the face value of φ in Eq. (2.30). The following is a brief discussion of

three of these methods.

The first method is called Central Differencing (CD), where the face value of φ is

approximated by

φ f = fxφP+(1− fx)φN , (2.31)

where the subscripts of P and N imply the values of the variable at the computational

points P and N, respectively. The interpolation factor fx, is defined as the ratio of the

distance between the face and the centroid xN , and the distance between the centroids

xP and xN , i.e.,

fx =
f N

PN
. (2.32)
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This method is second-order but unbounded. (Unbounded means that φ can take

values outside its physically meaningful range.)

The Upwind Differencing (UD) method approximates the face value of φ according

to the direction of the flow, i.e.,

φ f =







φP if F ≥ 0;

φN if F < 0.

This method (which is a full upwinding technique) is bounded, but it is first order

accurate and so it violates the order of accuracy of the discretization.

The last method is called Blended Differencing which can be described as a balance

(weight) between Central Differencing and Upwind Differencing. In this method the

face value of φ is given by

φ f = (1− γ)(φ f )UD+ γ(φ f )CD, (2.33)

where (φ f )UD and (φ f )CD are the face values of φ computed by the Upwind and

Central Differencing, respectively. The blending factor γ , 0 ≤ γ ≤ 1 controls how

much numerical diffusion will be introduced (Jasak [27]).
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• Discretization of the diffusion term

By using a similar approach as before, the diffusion term is discretized by

∫

VP
∇ · (ρΓφ ∇φ)dV =

∮

∂VP
(ρΓφ ∇φ) ·ndS

= ∑
f

∫

f
(ρΓφ ∇φ) ·ndS

≈ ∑
f

(ρΓφ ∇φ) f ·
∫

f
ndS

= ∑
f

(ρΓφ ∇φ) f ·S

= ∑
f

(ρΓφ ) fS · (∇φ) f . (2.34)

If the mesh is orthogonal, i.e, vectors d f and S in Fig. 2.5 are parallel, then S · (∇φ) f

can be approximated by

S · (∇φ) f =| S | φN −φP
| d f |

. (2.35)

For a non-orthogonal mesh, S · (∇φ) f is split in two components as follows

NP

S

df

f

b

Figure 2.5: Vectors S and d f on a non-orthogonal mesh.
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S · (∇φ) f = ∆∆∆ · (∇φ) f
︸ ︷︷ ︸

orthogonal contribution

+ k · (∇φ) f
︸ ︷︷ ︸

non-orthogonal contribution

, (2.36)

where ∆∆∆ and k need to satisfy S= ∆∆∆+k.

The most robust, stable and computationally efficient approach to handle the mesh

orthogonality decomposition is called over-relaxed approach. In this method, ∆∆∆ is

given by

∆∆∆ =
S ·S
d f ·S

d f . (2.37)

Substituting Eq. (2.37) in Eq. (2.36) yields

S · (∇φ) f =| ∆∆∆ | φN −φP
| d f |

+k · (∇φ) f . (2.38)

Notice that the magnitude of ∆∆∆ (as defined in Eq. (2.37)) increases with the increase

of non-orthogonality (decrease of the denominator), which means that the importance

of the term in φP and φN is caused to increase with the increase in non-orthogonality.

The decomposition of S in the over-relaxed method is shown in Fig. 2.6.

For more details about other approaches refer to Jasak [27].

NP

S

df

f

b

k

∆

Figure 2.6: Non-orthogonality treatment in the over-relaxed approach.
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• Discretization of the source term

The source terms are the terms of the convection-diffusion equation that cannot be

written as temporal contribution, convection, and diffusion. These terms need to be

linearized as follows

qφ (φ) = qu+qpφ , (2.39)

where the terms qu and qp may also depend on φ .

By using Gauss quadrature and the assumption of the linear variation, the volume

integral of the source term is given by

∫

V
qφ (φ)dV ≈ (qφ (φ))PVP

= quVP+qpVPφP. (2.40)

Temporal Discretization

By integrating the Eq. (2.23) in time we get

∫ t+∆t

t

[∫

VP

∂ρφ

∂ t
dV +

∫

VP
∇ · (ρuφ)dV −

∫

VP
∇ · (ρΓφ ∇φ)dV

]

dt =

∫ t+∆t

t

(∫

VP
qφ (φ)dV

)

dt. (2.41)
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Using the spatial discretization results, Eq. (2.41) can be written as:

∫ t+∆t

t

[(
∂ρφ

∂ t

)

P
VP+∑

f

Fφ f −∑
f

(ρΓφ ) fS · (∇φ) f

]

dt =

∫ t+∆t

t
(quVP+ qpVPφP)dt. (2.42)

Usually, Eq. (2.42) is called the semi-discretized form of the convection-diffusion

equation.

The linear variation of φ with respect to time leads to the following approximations

(
∂ρφ

∂ t

)

P
=

ρn
Pφn

P−ρo
Pφo

P

∆t
(2.43)

∫ t+∆t

t
φ(t)dt =

1

2
(φo+φn)∆t, (2.44)

where superscripts o and n represent the values of the variable at time t and t+∆t,

respectively. Using these approximations in Eq. (2.42) and by assuming that ρ and Γφ

do not change with time yield the following second-order Crank-Nicholson method

ρPφn
P−ρPφo

P

∆t
VP+

1

2
∑
f

Fφn
f −

1

2
∑
f

(ρΓφ ) fS · (∇φ)nf

+
1

2
∑
f

Fφo
f −

1

2
∑
f

(ρΓφ ) fS · (∇φ)of =

quVP+
1

2
(qpVPφn

P + qpVPφo
P), (2.45)
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where φ f and (∇φ) f depend on the values of the surrounding cells. In the

Crank-Nicholson method, face and cell values of φ and ∇φ are required for both old

and new time levels, i.e., at time t and t+∆t. This method is unconditionally stable,

but does not guarantee boundedness of the solution.

The explicit and implicit Euler discretization give an approximation of φ f as follows:

φ f =







fxφo
P+(1− fx)φo

N explicit Euler discretization ;

fxφn
P+(1− fx)φn

N implicit Euler discretization .

On the other hand, these two methods approximate S · (∇φ) f by

S · (∇φ) f =







| ∆∆∆ | φo
N−φo

P
|d f | +k · (∇φ)of explicit Euler discretization ;

| ∆∆∆ | φn
N−φn

P
|d f | +k · (∇φ)nf implicit Euler discretization .

Both methods are first order, but contrary to the explicit Euler method, the implicit

Euler method gives a bounded solution.

For more details about other temporal schemes (e.g. a second-order Backward

Differencing) refer to Jasak [27].

For each control volume, Eq. (2.45) gives an algebraic equation:

aPφn
P+∑

N

aNφn
N = RP, (2.46)
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where the coefficient aP includes the contribution from all terms corresponding to φn,

i.e., the temporal derivative, convection and diffusion terms as well as the linear part

of the source term. The coefficient aN include the corresponding terms for each of the

neighboring points. The source term RP includes the parts of the temporal derivative,

convection and diffusion terms corresponding to the old time-level as well as the

constant part of the source term.

Assembling the discrete equations, Eq. (2.46), for all control volumes, yields a

system of algebraic equations of the form

Ax= b (2.47)

in each time step, where A is a sparse matrix containing the coefficients aP and

aN , x is the vector of unknown φ for all control volumes, and b contains the

source terms, RP. This system is linear, i.e., A is constant in each time step, if

the original continuous convection-diffusion equation is linear in φ , or if terms have

been linearized during discretization.
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Discretization of the Flow Transport Equations

Now let us turn to the discretization of the flow transport equations. We shall start with

the continuity and momentum equations for incompressible flow with a non-Newtonian

viscosity, Eqs. (2.3 and 2.18):

∇ ·u = 0,

ρ(
∂u

∂ t
+u ·∇u) = −∇p+∇ · (η(γ̇)γ̇γγ)+ρggg.

The momentum equation in the xi direction can be interpreted as a convection-diffusion

equation in which the scalar function φ is the velocity component in the xi direction and the

diffusion coefficient is viscosity. On the other hand, notice that the momentum equations

contain a contribution from the pressure, which has no analog in the convection-diffusion

equation. In fact, the pressure term may regarded either as a source term or a surface

force, but because of the coupling between the transport (continuity and momentum)

equations, this term needs a special treatment. Although the viscous stress term in the

momentum equation is similar to the diffusive term of the convection-diffusion equation,

it’s contribution is more complex because the momentum equations are vector equations.
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The discretized form of the continuity equation for incompressible flow is given by

0 =
∫

VP
∇ ·udV

=
∮

∂VP
u ·ndS

= ∑
f

(
∫

f
u ·n)dS

≈ ∑
f

S ·u f . (2.48)

The convection term of the integral form of the momentum equation is discretized as

follows

∫

VP
∇ · (ρuu)dV =

∮

∂VP
(ρuu) ·ndS

= ∑
f

∫

f
(ρuu) ·ndS

≈ ∑
f

(ρuu) f ·
∫

f
ndS

= ∑
f

S · (ρuu) f

= ∑
f

Fu f , (2.49)
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where F = S · (ρu) f should satisfy the continuity equation.

Similar to the procedures of discretization of the convection term, the viscous stress term

is discretized as follows

∫

VP
∇ · τττdV =

∫

VP
∇ · (η(γ̇)γ̇γγ)dV

=
∮

∂VP
(η(γ̇)γ̇γγ) ·ndS

≈ ∑
f

S · (η(γ̇)γ̇γγ) f

= ∑
f

S · (η(γ̇)) f (γ̇γγ) f

= ∑
f

S · (η(γ̇)) f (∇u+∇uT ) f . (2.50)

There are different methods to calculate S · (∇u) f as discussed previously.

Notice that the discretized convection and viscous stress terms can be written as

aPuP+∑
N

aNuN , (2.51)

where aP and aN are functions of u.

A semi-discretized form of the momentum equation is given by

aPuP =H(u)−∇p. (2.52)
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At this stage, all terms have been discretized except the pressure gradient term.

The H(u) term in Eq. (2.52) is given by

H(u) =−∑
N

aNuN
︸ ︷︷ ︸

transport part

+ r
︸︷︷︸

source part

, (2.53)

where the transport part includes contributions from the discretization of the unsteady,

convection, and viscous stress terms, while the source part r, includes the source part of the

unsteady term (assuming that there is no external forces).

Solving Eq. (2.52) for uP yields

uP =
H(u)

aP
− ∇p

aP
. (2.54)

The face interpolation of Eq. (2.54) is used to express the velocities on the cell face, i.e.,

u f =

(
H(u)

aP

)

f
−
(

1

aP

)

f
(∇p) f . (2.55)

Substituting Eq. (2.55) into Eq. (2.48) gives the discrete pressure equation

∑
f

S ·
(

1

aP

)

f
(∇p) f = ∑

f

S ·
(
H(u)

aP

)

f
. (2.56)
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The completely discretized form of the momentum equation is given by

aPuP =H(u)−∑
f

Sp f . (2.57)

Therefore, the discrete system of equations for an incompressible, generalized Newtonian

fluid consists of Eqs. (2.56) and (2.57).

A second-order Crank-Nicholson method for the momentum equation is given by

(assuming that there is no external forces)

ρPφn
P−ρPφo

P

∆t
VP+

1

2
∑
f

Fφn
f +

1

2
∑
f

pnfS−
1

2
∑
f

(ρS · (η(γ̇)) f (∇u+∇uT )n) f

+
1

2
∑
f

Fφo
f +

1

2
∑
f

pofS−
1

2
∑
f

(ρS · (η(γ̇)) f (∇u+∇uT )o) f = 0,

(2.58)

where φ is the velocity component in the xi direction.

For each control volume, Eq. (2.58) gives an algebraic equation

apφn
P+∑

N

aNφn
N = RP, (2.59)

where the coefficient aP includes the contribution from all terms corresponding to φn, i.e.,

the temporal derivative, convection and viscosity terms. The coefficient aN include the

corresponding terms for each of the neighboring points. The source term RP includes the

parts of the temporal derivative, convection and viscous stress terms corresponding to the
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old time-level as well as the discretized pressure gradient term.

The nonlinearity of the algebraic system is lagged and the coefficients aP and aN are

computed using the most current guess for velocity field. This approach requires iteration

over the non-linear terms. Specifically, the algebraic system is solved several times, with

the fluxes being updated each time, until it has converged.

So, after spatial and temporal discretization of the flow transport equations, as well as

linearization (as described above), a linear system of algebraic equations of the form

Ax= b (2.60)

is assembled in each time step. The matrix A is a constant sparse matrix (only a small

fraction of its entries are non zero), with coefficients aP on the diagonal and aN off the

diagonal, x is the vector of unknowns φ for all control volumes and b is the source term

vector.

In simulations with small time-step the linear pressure-velocity coupling is stronger than

the non-linear coupling represented in the convection and viscosity terms. There are

two different approaches to deal with the pressure-velocity coupling: The first is called

simultaneous approach, where the complete system of equations are solved simultaneously

over the whole domain. The second approach is called the segregated approach and it is

based on solving the equations in sequence. More details about the most popular methods

of the segregated approach are given in the next subsection.
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2.4.2 Pressure-velocity coupling

The most widely-used pressure-based segregated algorithms are SIMPLE (Patankar [28])

which stands for Semi-Implicit Method for Pressure-Linked Equations and PISO (Issa [29])

which stands for Pressure-Implicit with Splitting of Operators.

SIMPLE

The SIMPLE algorithm is a predictor-corrector procedure for the calculation of pressure

on the staggered grid centered around the cell faces.

Before discussing the algorithm, let us start with an important concept. A matrix A= (ai j)

is called diagonally equal if and only if aii = ∑ j=1
j 6=i

ai j, and A is diagonal dominant if and

only if it is diagonally equal and

aii > ∑
j=1
j 6=i

ai j (2.61)

for at least one row of A. The diagonal dominance property is required to guarantee

convergence when using an iterative method like SIMPLE.

To increase the diagonal dominance of the matrix resulting from discretizing the

momentum conservation equation, we shall use the under-relaxed form which can be
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obtained through an artificial term added to both sides of Eq. (2.59)

aPφ k
P+

1−αu

αu
aPφ k

P+∑
N

aNφ k
N = RP+

1−αu

αu
aPφ k−1

P , (2.62)

which can be rewritten as

aP
αu

φ k
P+∑

N

aNφ k
N = RP+

1−αu

αu
aPφ k−1

P , (2.63)

where φ k−1 here represents the velocity component in the xi direction from the previous

iteration or the initial velocity guess (in the first iteration), and αu is the velocity

under-relaxation factor (0 < αu ≤ 1).

The SIMPLE algorithm in OpenFOAM is used for steady-state flows and it can be

summarized as follows

1. Solve the under-relaxed form of the discretized momentum equation, Eq. (2.63),

where the pressure gradient term is calculated using the guessed value p∗ which

is either the initial pressure guess or the pressure field from the previous iteration.

This stage is called the momentum predictor.

2. Define an intermediate velocity field u∗ (which may not satisfy the continuity

requirement) by

u∗ =
H(u)

aP
, (2.64)
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and compute the corresponding flux field according to

Φ∗
f = u∗f ·S. (2.65)

3. Solve the discrete pressure equation

∑
f

[(
1

aP

)

f
(∇pk) f

]

·S= ∑
f

Φ∗
f , (2.66)

to obtain the new pressure distribution pk.

4. Correct the mass fluxes at the cell faces to satisfy the continuity requirement:

Φ f = Φ∗
f −

(
1

aP

)

f
(∇pk) f ·S. (2.67)

5. Apply an explicit under-relaxation to the pressure field as follows

pr = p∗+αp(p
k− p∗), (2.68)

where αp is the pressure under-relaxation factor (0 < αp ≤ 1). According to

Peric [30], the recommended values for the under-relaxation are αp = 0.2 and

αu = 0.8.

6. Correct the velocities on the basis of the relaxed pressure field by using Eq. (2.54).

This step is the explicit velocity correction step.
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7. Set p∗ = pr for the next momentum corrector step.

8. Steps 1 to 7 are called the pressure velocity iterations. Repeat these steps until

convergence.

The spatial and temporal discretization discussed previously generate a linear system of

algebraic equations for velocity in step 1 and for pressure in step 3. These equations will

be solved by using a linear solver (which will be discussed further in the next subsection).

The initial and final residuals are the calculated residuals before and after the linear system

is solved, respectively. The linear solver iterates until one of these two criteria is satisfied:

1. The final residual for the variable (e.g. u, p, etc) falls below the specified absolute

tolerance.

2. The ratio final residual
initial residual

is less than the specified relative tolerance.

By using the SIMPLE algorithm in OpenFOAM, the pressure-velocity iterations are

performed until the initial residual for each variable is less than the corresponding value

specified under residualControl given in the <case>/system/fvSolution

file.
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PISO

The PISO was developed originally for non-iterative computation of unsteady compressible

flows. In this algorithm there is more than one corrector step and so it requires more

computational time per velocity-pressure iteration, but can dramatically decrease the

number of iterations to convergence, thus reducing overall computational time, and it is

specially beneficial for transient problem.

In PISO, several pressure correctors are used with a single momentum equation. So unlike

the SIMPLE algorithm, there is no need to under-relax the velocity or the pressure.

The PISO algorithm in OpenFOAM is used for transient flows and it can be summarized as

1. Solve the discretized momentum equation, Eq. (2.59).

2. Define an intermediate velocity field u∗ by

u∗ =
H(u)

aP
,

and compute the corresponding flux field according to

Φ∗
f = u∗f ·S.

46



3. Solve the discrete pressure equation

∑
f

[(
1

aP

)

f
(∇pn) f

]

·S= ∑
f

Φ∗
f ,

to obtain the new estimate of the pressure distribution pn. This step is called the

pressure solution.

4. Correct the velocity field according to the new pressure distribution

unf = u∗nf − (
1

aP
∇pn) f ,

where u∗nf is the current guess for the face value of u∗. This step is called the explicit

velocity correction.

5. Repeat steps 2-4 for a fixed number of times.

6. Increase the time step and repeat from step 1.

At each time step, the pressure-velocity iterations are performed a specified number of

times. In OpenFOAM, the parameters that control the PISO algorithm are located in the

<case>/system/fvSolution file. These parameters specify the number of times

that the velocity and the pressure fields are corrected with each other (PISO loop) and the

number of times that the pressure equation is solved in each PISO loop.

In every time step, the linear solver iterates at the last PISO loop until the residual of the
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variable falls below the specified tolerance <variable>Final. Also, in fvSolution

file the variable pCorr is an initial pressure calculation that is done before the first

iteration. There will be a pCorr loop for each iteration if the mesh is moving.

2.4.3 Linear Solvers

This subsection describes the linear solvers used in the simulations presented in this

thesis. As shown in Subsection 2.4.1, the discretization process leads to linear systems

of equations in the unknown quantities φ . These linear systems are expressed as

Ax= b, (2.69)

where A= (ai j) is a coefficient matrix, x is a vector of unknowns, and b is the source term.

The matrix A is positive definite (respectively, positive semidefinite) if A is symmetric and

(Ax,x)> 0 (respectively, (Ax,x)≥ 0) for all non-zero vector x, where the inner product of

two vectors x, y is computed by (x,y) = xTy.

The linear system given in Eq. (2.69) are solved iteratively. The general idea of iterative

methods is to start with an initial guess, and improve it systematically in every iteration

step until sufficient accuracy is reached.
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Jacobi and Gauss-Seidel Iteration

In this iteration method, the matrix A is decomposed into

A= D+−E+−F,

where D = (di j) is a diagonal matrix with dii = aii, −E and −F are the strictly lower and

upper triangular parts of A, respectively.

The Jacobi iteration corrects the i-th component of the current approximate solution xk to

annihilate the i-th component of the residual vector at step k given by

rik = (b−Axk)
i

This method can be written in vector form as

xk+1 = D−1(E+F)xk+D−1b. (2.70)

In this method, the components of xk+1 depend only on the components of xk.

To speed up the convergence, the approximate solution is updated immediately after the

new component is determined. This method is called the Gauss-Seidel iteration which is
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given by

xk+1 = (D−E)−1Fxk+(D−E)−1b. (2.71)

Conjugate Gradient Method (CG)

For a given m×m matrix A and an m-vector b, the kth Krylov subspace Kk generated by A

and b is defined by

Kk = span {b,Ab,A2b, ...,Ak−1b}.

Let x∗ = A−1b be the exact solution of the system (2.69), where A is positive definite

matrix. The error at each iteration step k is εk = x∗−xk. The conjugate gradient algorithm

gives a sequence of approximate solutions {xk ∈ Kk} such that the A-norm of the error at

each iteration step, ‖εk‖=
√

εTk Aεk, is minimized.

Note that the residuals rk’s are orthogonal and the search directions pk are A−conjugate,

i.e., (Apk,p j) = 0 when j < k. The conjugate Gradient algorithm is summarized in

Algorithm 1. For more details refer to Trefethen and Bau [31]. The finite volume

discretization of the pressure equation leads to a symmetric matrix which can be solved

by the CG algorithm. Note that this algorithm is not applicable to the asymmetric matrices

generated by the finite volume discretization of the velocity equations, which can be solved
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Algorithm 1 The Conjugate Gradient

set r0 = b−Ax0, p0 = r0 # initialization step

for k = 0, 1, 2, 3, ... # repeat until convergence is reached

αk = (rk,rk)/(Apk,pk) # step length

xk+1 = xk+αkpk # approximate solution

rk+1 = rk−αkApk # residual
βk = (rk+1,rk+1)/(rk,rk) # improvement this step

pk+1 = rk+1 +βkpk # new search direction
end

by the following algorithm.

Bi-conjugate Gradient Method (BiCG)

In the Bi-conjugate Gradient method, two distinct Krylov subspaces, Kk(A,vk) and

Kk(A
T ,w1), are used for solving linear systems. The approximate solution xk is chosen

such that the residual rk is orthogonal to Kk(A
T ,w1), where w1 is any vector satisfies

(w1,v1)=1 with vk ∈Kk(A,vk). As an application of the BiCG, one can choose w1 = v1 =

b/‖b‖2. As discussed in Trefethen and Bau [31], this choice leads to Algorithm 2.

Note that the inner products (r j,sk) and (Ap j,qk) are zero when j < k.
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Algorithm 2 The Bi-Conjugate Gradient

set x0 = 0, r0 = q0 = p0 = s0 = b/‖b‖2 # initialization step

for k = 1, 2, 3, ... # repeat until convergence is reached

αk = (rk−1,sk−1)/(Apk−1,qk−1) # step length

xk = xk−1 −αkpk−1 # approximate solution

rk = rk−1 −αkApk−1 # first residual
sk = sk−1 −αkA

Tqk−1 # second residual
βk = (rk,sk)/(rk−1,sk−1) # improvement this step

pk = rk+βkpk−1 # first new search direction
qk = sk+βkqk−1 # second new search direction

end
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Generalized Geometric Algebraic Multi-grid Method (GAMG)

The multi-grid method is based on generating a solution for the linear system on a coarser

mesh, and take this solution as an initial guess to obtain an accurate solution on the fine

mesh. The steps of multi-grid method can be summarized as follows:

1) Compute xk on the fine mesh by using a few Jacobi or Gauss-Seidel iterations.

2) Obtain the residual rk = Ax−Axk = Aεk.

3) Project rk from the fine mesh to the coarse mesh by means of the restriction matrix R,

i.e., rHk = Rrk, and AH
k = RA, to obtain AHεHk = rHk .

4) On the coarse mesh, solve AHεHk = rHk for εHk .

5) Transferring the correction vector εHk back to the fine mesh via εk = IεHk , where I is the

interpolation matrix.

6) Update the approximate solution xk on the fine mesh via xnewk = xk+ εk.

For more details about the multi-grid method, refer to Saad [32].

The matrices R and I are obtained via the process of agglomeration. In OpenFOAM,

the switching from a coarse mesh to the fine mesh is handled by agglomeration of cells,

either by a geometric agglomeration where cells are joined together, or by an algebraic

agglomeration where matrix coefficients are joined (OpenFOAM [33]).

Note that the Jacobi or Gauss-Seidel iterations are used in multi-grid methods to accelerate

the convergence. This is called smoothing and Jacobi or Gauss-Seidel iterations are called

smoothers.
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Preconditioners

In order to improve the performance of iterative methods for solving the linear system

Eq. (2.69), a preconditioner matrix M is used. If M is nonsingular then the system

M−1Ax=M−1b (2.72)

has the same solution as Eq. (2.69). The matrix M is chosen such that M−1A is close to

normal and that the condition number of M−1A is smaller than the one of A. Recall that

square matrix B is normal if BTB=BBT and the condition number of a nonsingular matrix

B is defined by

cond(B) = ‖B‖·‖B−1‖ (2.73)

By convention, cond(B) = ∞ if B is singular.

The following subsection discusses a preconditioner for positive definite matrices.
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Cholesky Factorization

For any n×n positive definite matrix A, the Cholesky factorization is given by

A= LLT , (2.74)

where L= (li j) is a lower triangular matrix with lii > 0.

If A is a sparse matrix, then usually L is less sparse than A. The incomplete Cholesky

decomposition of a positive definite matrix A is given by L̃L̃T where L̃ = (l̃i j) is a lower

triangular matrix which is more sparse than L. Algorithm 3 (Datta [34]) computes the

elements (l̃i j) by using the exact Cholesky decomposition, except that (l̃i j) = 0 if the

corresponding entry ai j is zero.

The Simplified Diagonal-based Incomplete Cholesky (DIC) is constructed to avoid

Algorithm 3 The Incomplete Cholesky Factorization

set l̃11 =
√
a11

for i= 1, 2, 3, ..., m
for j = 1, 2, 3, ..., i−1

if ai j = 0, then l̃i j = 0 else

l̃i j =
1

l̃ii

(

ai j−
j−1

∑
k=1

l̃ik l̃ jk

)

endif

end

l̃ii =
√

aii−∑
j−1
k=1 l̃

2
ik

end

extracting square roots. This method decomposes the matrix A into L̃DL̃T where the
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diagonal entries of D are computed by

dii = aii−
i−1

∑
k=1

l̃2ikdk. (2.75)

and the entries of L̃ (i> j) are given by

l̃i j =







1
dii

(

ai j−
i−1

∑
k=1

l̃ik l̃ jkdk

)

if ai j 6= 0;

0 if ai j = 0.

The use of DIC in finding the inverse of a matrix is presented in Krishnamoorthy and

Menon [35].

According to Jasak et al. [36], the CG and BiCG methods have a poor convergence rate.

This convergence rate can be improved by using a preconditioner. For example, using

the CG, and BiCG methods with a preconditioner M yields the Preconditioned Conjugate

Gradient and Preconditioned Bi-Conjugate Gradient methods described in Algorithm 4 and

Algorithm 5, respectively. For more details refer to Barrett et al. [37].

Algorithm 4 The Preconditioned Conjugate Gradient

compute r0 = b−Ax0 and p0 = z0 =M−1r0 # initialization step

for k = 0, 1, 2, 3, ... # repeat until convergence is reached

αk = (rk,zk)/(Apk,pk) # step length

xk+1 = xk+αkpk # approximate solution

rk+1 = rk−αkApk # original residual

zk+1 =M−1rk+1 # residual for the preconditioned system

βk = (rk+1,zk+1)/(rk,zk) # improvement this step

pk+1 = zk+1 +βkpk # search direction
end
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Algorithm 5 The Preconditioned Bi-Conjugate Gradient

compute r0 = r̂0 = b−Ax0 # initialization step

for k = 1, 2, 3, ... # repeat until convergence is reached

solve Mzk−1 = ri−1 # first preconditioned residual

solve MT ẑk−1 = r̂k−1 # second preconditioned residual

ξk−1 = zTk r̂k−1

if ξk−1 = 0 method fails

if k = 1

pk = zk−1 # first new search direction
p̂k = ẑk−1 # second new search direction

else

βk−1 = ξk−1/ξk−2

pk = zk−1 +βk−1pk−1

p̂k = ẑk−1 +βk−1p̂k−1

endif

qk = Apk
q̂k = AT p̂k
αk = ξk−1/(p̂

T
k qk) # step length

xk = xk−1 +αkpk # new approximate solution

rk = rk−1 −αkqk # first residual
r̂k = r̂k−1 −αq̂k # second residual

end
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The Incomplete Lower Upper Decomposition (ILU)

For a general matrix A, one possible conditioner is the incomplete lower upper

decomposition, i.e., M = L̃Ũ where L̃ and Ũ are lower and upper triangular matrices,

respectively. The entries of L̃ and Ũ are chosen so that certain entries of L̃Ũ match the

corresponding entries of A. In particular, the property that is preserved in L̃Ũ is the sparsity

of A. In the diagonal-based Lower upper (DILU) factorization, the preconditoner M is

given by

M= (D+L)D−1(D+U). (2.76)

Algorithm 6 (Barrett et al. [37]) shows how to find the matrix M.

Algorithm 6 DILU

Let S be the nonempty set {(i, j) : ai j 6= 0}
for k = 1, 2, 3, ...

dkk = akk
for k = 1, 2, 3, ...
dkk = 1/dkk
for k = k+1, k+2, k+3, ...

if (k, j) ∈ S and ( j,k) ∈ S then

d j j = d j j−a jkdkkak j
endif

end

end

end
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2.5 Mesh Motion

There are many physical phenomena where the shape of the domain is changing according

to a prescribed boundary condition, causing a problem of preserving the quality and validity

of the mesh during the simulation.

In FVM terms, preserving the validity of the mesh after deformation means preserving

1. The positivity of cell volumes and face areas.

2. The cell and face convexities.

3. The mesh non-orthogonality bounds.

These conditions prevent the mesh faces and cells from flipping during the deformation.

In this section we discuss an approach to move the internal points inside the domain

corresponding to the movement of the boundary.

The integral form of the governing equation for a general property φ over an arbitrary

moving volume V bounded by a closed surface S is given by (Jasak and Tukovic [38])

d

dt

∫

V (t)
ρφdV +

∮

S(t)
ρn · (u−us)φdS−

∮

S(t)
ρΓφn ·∇φdS=

∫

V (t)
qφdV (2.77)

where n is the unit normal vector on the boundary surface pointing outward, u is the fluid

velocity, us is the velocity of the boundary surface, Γφ is the diffusion coefficient and qφ is
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the volume source/sink of φ . Notice that Eq. (2.77) is similar to the convection-diffusion

equation for φ mentioned in Subsection 2.4.1 but with u replaced with u−us.

The relationship between the rate of change of the volume V and the velocity us is defined

by the space conservation law (SCL):

d

dt

∫

V (t)
dV −

∮

S(t)
n ·usdS= 0 (2.78)

Jazak and Tukovic [1] mentioned that the mesh validity constraints indicate that a

domain could be considered as a solid body under large deformation, governed by the

Piola-Kirchhoff stress-strain formulation:

∑ = 2µE+λ tr(E)I, (2.79)

where ∑ is the second Piola-Kirchhoff stress tensor, E= 1
2
(∇v+(∇v)T +∇v ·(∇v)T ) is the

Green-Lagrangian strain tensor, v is the displacement, and where µ and λ are the Lame’s

coefficients. The resulting equation governing the deformation is non-linear in v, and very

expensive to solve. This mesh motion can be simplified by using the Laplace equation.

Specifically, the motion of the internal points are determined by using the boundary motion

as a boundary condition and where the mesh motion equation is expressed by Laplace

equation with variable diffusivity

∇ · (γ∇w) = 0 (2.80)
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where w may represent either the velocity or the displacement of a cell, and γ is the variable

diffusivity. The reason behind using the variable diffusivity in the Laplacian is to fix a

problem of local deterioration in the mesh quality since the movement of points close to

the moving boundary are larger than for the other points.

The solution of the Laplace equation, Eq. (2.80), is the motion function w, which is

continuous, smooth, regular and gives non-overlapping streamlines and so it passes the

mesh validity constraints. This motion function is then used to determine us in Eq. (2.77).

In OpenFOAM, there are two mesh-manipulation approaches:

1. Automatic mesh motion which is used when the topology of the mesh does not

change, but instead only the spacing between nodes changes by stretching or

squeezing.

2. Topological changes in the mesh which is used when the topology of the mesh

changes during simulation.

In the application of peristaltic motion considered in this thesis the spacing between the

nodes are just stretched or squeezed, and so the topology of the mesh is not changing

during the simulation.

The approach of the automatic mesh motion needs an extra file called a

dynamicMeshDict in the constant folder of the case. In this file, the user

determine the solver and the diffusivity model that will be used for the mesh motion

equation.
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There are a number of available solvers in OpenFOAM to solve the mesh motion equation.

By selecting the solver velocityLaplacian, the equations of cell motion are solved

based on the Laplacian of the diffusivity times the cell motion velocity, and this solver

needs to read an extra file called pointMotionU in the starting time folder, which

determines the velocity at each boundary point.

Another solver is the displacementLaplacian solver which solves the equations

of cell motion based on the Laplacian of the diffusivity times the cell displacement. This

solver needs an extra file called pointDisplacement file in the starting time folder.

The solver velocityLaplacian was used in this thesis since it gave better results than

displacementLaplacian for the simulations in which it was used.

The diffusivity model determines how the points should be moved when solving the

equation of cell motion for each time step, for more details refer to Gonzalez [39]. In our

simulations, the directional diffusivity model has been used where the deformation of the

mesh is done proportional to the direction of the boundary point motion.

In OpenFOAM, the mapping between the old and new meshes using the

dynamicFvMesh happens behind the scenes, and so the FVM physics solver just

has to satisfy the moving mesh terms shown in Eq. (2.77) and it is independent of the

mesh.

For more details about moving mesh in OpenFOAM refer to Jasak and Tukovic [1],

Kassiotis [40], and Mordnia [41].
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Chapter 3

Simulation of Flow in a Collapsed

Elastic Tube

In this chapter1 the flow of a shear-thinning, non-Newtonian fluid through a collapsed tube

has been simulated without coupling the flow and the tube deformation. The main purpose

of this Chapter is to validate the simulations with experimental data of Nahar et al. [43],

and to gain insight into flow and material properties of the fluid which cannot be easily

obtained by means of measurements.

1The material contained in this chapter was previously published in Applied Rheology [42]
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3.1 Experimental Details

The experimental study of the flow of a non-Newtonian fluid in a collapsible elastic tube

is performed using the Starling Resistor set-up, shown schematically in Fig. 3.1. Here, a

silicone elastic tube (20 mm inner diameter, 1 mm thickness and 320 mm long) is suspended

in a controllable pressure chamber between two rigid aluminum tubes, and an inelastic

shear-thinning aqueous solution is pumped through the tube at a steady flow rate.

The experiment includes the simultaneous measurement of both the deformed tube shape

and the corresponding velocity flow field under the influence of compressive transmural

pressures (internal minus external). The different characteristic pressures such as inlet (Pi),

outlet (Po) and external (Pe) are measured by the pressure sensors connected in the set-up.

The distance between the pressure sensors Pi and Po is 910 mm. The various states of the

tube geometry are achieved by controlling the hydrostatic head connected with the water

filled pressure chamber (Pe). The shapes of the tube are analyzed by means of the computer

tomography method where several images are taken by rotating a camera at different angles

around the pressure chamber. Contrast maximization of the images is applied to identify the

grid lines drawn on the tube surface, and tube shapes are then constructed by the obtained

projection beam lines. In addition, the pulsed ultrasound Doppler velocimetry technique is

applied to monitor velocity profiles of the shear-thinning fluid flowing through the elastic

tube of different degree of deformation (under different applied Pe). More details on the
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materials, methods used and experimental procedure are described in Nahar et al. [43].

Figure 3.1: Schematic representation of the Starling Resistor for fluid

flow behavior study through a collapsible elastic tube. The schematic of

collapsed elastic tube and position of ultrasound transducer for velocity

profile measurement is also inserted.

65



3.1.1 Material Properties

The shear-thinning fluid used is a non-Newtonian carboxymethyl-cellulose aqueous

solution at 1.5% w/w with 0.1 M NaCl and Mw = 2.5×105 g/mol (CMC 1.5%). According

to Stranzinger [44], the CMC 1.5% solution is inelastic for concentrations up to 2%. The

rheological measurements of this solution were carried out using a Physica rheometer

(MCR 300, CC27) with cylindrical geometry and gap width = 1.13 mm, as is documented

in Nahar et al. [45]. The measured shear rate dependent viscosity showed a shear-thinning

behavior and is approximated by the Bird-Carreau equation discussed in Chapter 2

η −η∞ = (η0 −η∞)[1+(kγ̇)2](n−1)/2 (3.1)

where η0=0.1452 Pa s, η∞=0, k=0.02673 s and n=0.7588. This approximation is illustrated

in Fig. 3.2. Note that for η∞=0 and kγ̇ ≫ 1, Eq. (3.1) reduces to the power-law

η = mγ̇(n−1), (3.2)

where m= η0kn−1.

The density of this fluid is ρ = 1000 kg/m3.
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Figure 3.2: Viscosity curve for the non-Newtonian fluid.

3.2 Simulation Details

Computer simulations have been carried out for the non-Newtonian fluid flowing through

the collapsed tube described in the previous section. For comparison purposes, the

same simulation has been repeated for a Newtonian fluid whose viscosity corresponds

to the zero-shear-rate-dependent viscosity η0 = 0.1452 Pa s. The simulation details are

schematically illustrated in Fig. 3.3. Note that the main flow direction is the negative

x-direction and the main collapse occurs in the y-direction. Also, the line-of-measurement

makes an angle of 70o with the flow direction. The simulations have been performed with

the open source CFD environment OpenFOAM R© [17] using simpleFOAM, which is a

steady-state solver for incompressible flows utilizing the SIMPLE algorithm of Patankar
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Figure 3.3: Schematic illustration of the flow through the collapsed tube in

the y=15 mm plane. (The tube is collapsed in the y-direction.)

and Spalding [46] discussed in Chapter 2.

The deformed tube geometry has been obtained from computer tomography image

analysis. More precisely, each cross-section has been reconstructed point by point using

31 measurements from the tube periphery. The cross-sections are equally spaced at 20 mm

intervals along the x-direction, starting at 10 mm (outlet) and ending at 190 mm (inlet).

This resulted in a geometry consisting of nine blocks. Because each block is topologically

equivalent to a parallelepiped, the computational mesh obtained in this way is a structured,

hexahedral, Cartesian mesh. A three-dimensional view of this mesh is shown in Fig. 3.4.

As can be seen, the tube exhibits only small deformation at the inlet and outlet, and large

deformation at several cross-sections closer to the outlet, between x=30 mm and x=90 mm,

where the tube is almost fully collapsed.

The fluid flow is in the negative x-direction with the inlet cross-section at x=190 mm and

the outlet at x=10 mm. The inlet boundary velocity was set to the average velocity of
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Figure 3.4: Three-dimensional view of the computational mesh.

u0=0.05411 m/s The outlet boundary velocity was set to zero gradient and the velocities at

the remaining fixed walls were set to zero. The pressure boundary conditions were zero at

the outlet and zero gradient at the inlet and along the walls of the tube.

3.2.1 Mesh Dependence and Convergence

As described above, the computational mesh consists of nine structured, hexahedral,

Cartesian blocks, each having a uniform cell distribution. The standard mesh has

27×27×27 cells per block, which gives a total of 177’147 cells. The coarse and fine
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meshes were obtained from the standard mesh by reducing, respectively increasing, the

number of cells in each direction by a factor of 1.5. This led to the coarse mesh with

18×18×18 cells per block, resulting in a total of 52’488 cells. Similarly, the fine mesh was

refined to 40×40×40 cells per block, resulting in a total of 576’000 cells.

The results of this mesh refinement study are shown in Fig. 3.5 for the non-Newtonian

velocity profiles at one of the most deformed cross-section, namely at x=70 mm. This

figure shows that the values of the standard mesh are almost identical to the ones of the fine

mesh, but that there is a considerable discrepancy to the ones of the coarse mesh. Therefore,

it can be concluded that the standard mesh exhibits sufficient mesh resolution. Note that

the double peak in the velocity profile is the result of the almost collapsed tube shape, as is

discussed in more detail below.

The convergence of the computation to steady-state is controlled by means of the residuals

for the pressure and velocity equations in the SIMPLE algorithm. In order to assure

sufficient convergence, the residuals for pressure and velocity have been increased,

respectively decreased, by one order of magnitude from their standard values of 10−3 for

pressure and 10−4 for velocity. This led to the smaller residuals of 10−4 and 10−5, and

to the respective larger residuals of 10−2 and 10−3. The results of these variations are

illustrated in Fig. 3.6 for the non-Newtonian velocity profiles at x=70 mm. As is seen, the

results of the standard and small residual simulations are identical, which demonstrates that

the standard residuals are sufficient to reach convergence.
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Figure 3.5: Mesh dependence study for the non-Newtonian velocity profile

at x=70 mm.

Figure 3.6: Convergence study for the non-Newtonian velocity profile at

x=70 mm.
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3.3 Results and Discussion

3.3.1 Velocity Comparison

The UVP technique assumes that the fluid velocity is unidirectional, i.e., there is a preferred

flow direction (in our case, the x-direction) and the velocity components in the other

directions are negligible. To verify this assumption, the simulated velocity magnitudes

and velocity x-components have been plotted at various cross-sections throughout the tube.

It has been found that the two quantities gave almost identical curves, showing that the

UVP assumption was satisfied.

The velocities along the lines-of-measurement (see Fig. 3.3) are compared with the

experimental values at several axial positions across the length of the tube. The

corresponding velocity profiles are illustrated in Figs. 3.7, 3.9 and 3.11 for x=70 mm,

x=90 mm and x=150 mm, respectively. Note that there is considerable uncertainty

in determining the exact line-of-measurement and that small changes in the position

or direction of this line can lead to relatively large fluctuations in the velocity data.

Nevertheless, as can be seen from these figures, there is overall good agreement between

simulation and experiment. In particular, in the collapsed part of the tube at x=70 mm and

x=90 mm, the double peaks of the velocities are quite well reproduced by the simulations.
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Figure 3.7: Velocity profiles at x=70 mm.

Figure 3.8: Cross-section of the non-Newtonian velocity magnitude at

x=70 mm. The cross-sectional coordinates are in mm and the velocity is

in m/s.
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Figure 3.9: Velocity profiles at x=90 mm.

Figure 3.10: Cross-section of the non-Newtonian velocity magnitude at

x=90 mm. The cross-sectional coordinates are in mm and the velocity is in

m/s.
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Figure 3.11: Velocity profiles at x=150 mm.

The double peaks in the velocity profiles occur because of the bow-tie-shaped tube

cross-sections at x=70 mm and x=90 mm, as is shown in Figs. 3.8 and 3.10. The colors

in these pictures represent the velocity magnitudes of the non-Newtonian fluid and is

consistent with the double peak behavior shown in the respective velocity profile plots.

As is well known, when the velocity at the tube wall is zero, the maximum velocities

occur farthest away from the wall. This is consistent with the fact that the fluid takes the

path of least resistance, which in this case translates into the double peak behavior in the

bow-tie-shaped cross-sections. In contrast, as is illustrated in Fig. 3.11, the velocity profile

at x=150 mm does not exhibit the double peak, which is consistent with the convex tube

cross-section shown in Fig. 3.12.

To illustrate the effect of the non-Newtonian behavior of the fluid, an identical
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Figure 3.12: Cross-section of the non-Newtonian velocity magnitude at

x=150 mm. The cross-sectional coordinates are in mm and the velocity is

in m/s.

simulation has been carried out for a Newtonian fluid whose viscosity corresponds to the

zero-shear-rate-dependent viscosity η0 = 0.1452 Pa s of the non-Newtonian fluid. The

velocity profiles of this simulation are also presented in Figs. 3.7, 3.9 and 3.11. These

figures show that the Newtonian fluid exhibits a small increase in the maximum velocities

in the collapsed cross-sections at x=70 mm and x=90 mm, whereas in the convex part of the

tube at x=150 mm, the two velocity profiles are almost identical. The maximum velocities

for the two computations are shown in Table 3.1, where it is seen that the Newtonian fluid

flows faster by about 4%. As is discussed in the next subsection, this is consistent with the

corresponding shear rate behavior.
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Table 3.1

Comparison between the Newtonian and non-Newtonian simulations.

Case ||U||max [m/s] γ̇max [s−1] γ̇avg [s−1] ηmin [Pa s] ∆p [Pa]

Non-Newtonian 0.2544 733 103.2 0.0715 587

Newtonian 0.2644 647 102.4 0.1452 644
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3.3.2 Shear Rate Comparison

Unlike in the experiments, a detailed shear rate field can be determined from the simulation.

The shear rates are computed from the calculated velocity field by

γ̇ = ||γ̇γγ||=
√

1

2
(γ̇γγ : γ̇γγ) =

√

1

2
∑
i, j

γ̇i jγ̇ ji, (3.3)

where γ̇γγ = ∇u+∇uT is the rate-of-strain tensor.

Figure 3.13 shows the shear rates at the tube wall, where the largest shear rates in any axial

cross-section exist, and Fig. 3.14 shows the shear rates in the cross-section x=50 mm, where

the tube is the most deformed. As can be seen from these figures, the largest shear rates

for the non-Newtonian fluid have values above 200 s−1 with a maximum value of 733 s−1,

occurring on the periphery around x=50 mm. Moreover, Fig. 3.14 shows that shear rates

in the shear-thinning regime, which begins at about γ̇=40 s−1 (see Fig. 3.2), are reached

significantly away from the tube wall in this cross-section. Averaging the shear rates in this

cross-section gives the average shear rate of γ̇avg = 103.2 s−1 (see Table 3.1).
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Figure 3.13: Three-dimensional view of the non-Newtonian shear rates on

the periphery of the collapsed tube.

Figure 3.14: Cross-section of the non-Newtonian shear rates at x=50 mm.
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The effect of the tube’s deformed shape on the shear rates can be determined by comparing

the shear rates in the deformed tube to those in the undeformed tube. According to Bird et

al. [21, pp. 175–177], the maximum shear rate in an undeformed cylindrical tube, assuming

a power-law fluid governed by Eq. (3.2) is given by

γ̇max =
u0

R

3n+1

n
. (3.4)

where u0 is the average velocity and R is the tube radius, and the average shear rate is

γ̇avg =
2u0

R

3n+1

2n+1
. (3.5)

For the flow problem under consideration, using the undeformed tube radius R=10 mm

and the average velocity u0=0.0541 m/s, together with the fluid properties in Eq. (3.1), it

follows that γ̇max = 23.4 s−1 and γ̇avg = 14.1 s−1. Comparison of the maximum shear rate

γ̇max = 23.4 s−1 for the undeformed tube with the maximum shear rate γ̇max = 733 s−1 (see

Table 3.1) for the deformed tube, shows that the tube deformation results in a significant

increase of the maximum shear rate, namely by a factor of 31. As a consequence, the

viscosity decreases from its zero shear rate value of η0=0.1452 Pa s down to 0.0715 Pa s

(cf. Table 3.1), which is a factor of two.

Likewise, the average shear rate increases by a factor of 7.3, from 14.1 s−1 in the

undeformed tube to 103.2 s−1 in the deformed tube. This factor agrees very well with
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the factor of 7 found in Nahar et al. [43] for the experiments, which calculated the average

shear rate in the deformed tube using Eq. (3.5), in which u0 and R were determined as

follows. First, the cross-sections obtained from the tomography measurements have been

approximated numerically, which allowed the determination of the average velocity u0

from the flow rate. Then, an equivalent tube radius, R, has been determined such that the

equivalent circular area is equal to the one of the corresponding deformed cross-section.

Using this approach, the area of the cross-section at x=50 mm has been estimated to be

A= 105.7 mm2, which is a factor of 0.34 smaller than the cross-section of the undeformed

tube. The excellent agreement in average shear rates between simulation and estimation

confirm that the rudimentary method of determining the estimated average shear rates from

the experimental data is accurate for this level of tube deformation.

As listed in Table 3.1, the maximum shear rate for the Newtonian case is γ̇max=647 s−1,

which is 4% less than the maximum value for the non-Newtonian case. A more

detailed comparison between Newtonian and non-Newtonian shear rate behavior along

the cross-section x=50 mm is shown in Fig. 3.15. As can be seen, the shear rates of the

Newtonian fluid are larger throughout most of the cross-section, except possibly at the

walls. The largest difference occurs at the z-coordinate z=9 mm, where the Newtonian

shear rate is approximately 26% higher than the non-Newtonian one. However, as is seen

from Fig. 3.2, this relatively large difference in the shear rate leads to an insignificant

change in the viscosity, which explains the small differences in the velocity commented on

in the previous subsection.
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Figure 3.15: Shear rate profile for the non-Newtonian and Newtonian

simulations at x=50 mm.

3.3.3 Pressure Drop Comparison

In the experiments, the pressure drop in the tube was measured over a distance of 910 mm,

of which the middle 320 mm correspond to the deformable elastic tube, and the remaining

part had a cylindrical cross-section with a radius of 10 mm. (Recall that only 180 mm

of the most deformed part of the elastic tube was simulated.) The total pressure drop

was measured to be 1256 Pa. The simulation pressure drop over the entire computational

domain of 180 mm was 587 Pa, as can be seen from Fig. 3.16 or Table 3.1. The dashed

lines in this figure correspond to the theoretical pressure drop for a power-law fluid in an

undeformed tube given in Eq. (3.2). According to Bird et al. [21, p. 176] this pressure drop
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is given by

∆p=

(
3n+1

n

)n
2κ

πnR3n+1
QnL, (3.6)

where L is the length of the tube, Q is the volumetric flow rate. Note that for a

Newtonian fluid with n= 1 and κ = ηo Eq. (3.6) reduces to the Hagen-Poiseuille equation

∆p = 8η0QL/(πR4). Figure 3.16 shows that the slope of the non-Newtonian simulation

pressure curve is the steepest at x=50 mm where the tube exhibits the largest deformation.

The theoretical pressure of the non-Newtonian fluid in an undeformed tube is shown by

the dashed lines at the tube inlet and outlet. These lines are tangential to the simulation

curve, which is an indication that Eq. (3.6) accurately describes the pressure gradient for

the non-deformed portion of the tube. To account for the pressure discrepancy between the

experiment and the simulation, the pressure drop in the remaining undeformed part of the

pipe of the experiment is taken into consideration via Eq. (3.6). The total length of this

undeformed pipe is 730 mm, which leads to a pressure drop of 560 Pa, leading to a total

simulation pressure drop of 1147 Pa. Given the fact that in the experiment there are several

pipe connections over which the pressure drop is larger than predicted by Eq. (3.6), the

agreement between simulation and experiment is excellent.

Also shown in Fig. 3.16 is the pressure curve of the Newtonian calculation. As is seen,

the pressure drop is 644 Pa (cf. Table 3.1), which is almost 10% larger than for the

non-Newtonian case. Since the non-Newtonian fluid under consideration is shear-thinning,
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Figure 3.16: Pressure curves for the non-Newtonian and Newtonian

simulations. (The flow is from right to left.)

its viscosity is smaller or equal to that of the Newtonian fluid. Thus, the viscous dissipation

of the Newtonian fluid is larger, which accounts for the larger pressure drop.
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3.4 Summary and Conclusions

The flow of a non-Newtonian fluid through a collapsed tube has been simulated using

an open source CFD solver and a deformed tube geometry. The simulation results have

been compared with experimental data, and additional insights have been obtained by

considering local quantities for shear rates and viscosities. The geometry of the deformed

tube has been reconstructed from computer tomography image analysis. The velocity

profiles obtained from the simulations have been compared with corresponding ultrasound

Doppler velocity profile measurements at various cross-sections. There is generally

good agreement between simulation and experiment, especially given the rudimentary

approximation to the geometry used in the simulation. The double peaks of the velocity

profiles in the collapsed part of the tube were well reproduced. These double peaks are a

consequence of the bow-tie-shaped cross-sections where the fluid follows the path of least

resistance and flows fastest furthest away from the wall.

The shear-thinning effect of the fluid becomes relevant in the cross-sections with the

largest deformation. The maximum shear rate is about a factor of thirty larger than its

corresponding maximum value in the undeformed tube, which reduces the viscosity by

a factor of two. Similarly, the average shear rate in the most deformed cross-section is

a factor of 7.3 larger, which is in good agreement with the estimate derived from the

experimental data. Also, the pressure drop across the tube was well predicted by the
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simulation after appropriate pressure corrections have been added for the non-deformed

portion in the experimental setup.

In order to better assess the non-Newtonian behavior of this fluid the same flow has been

simulated for a Newtonian fluid. It was found that there are significant differences in

the shear rates at locations where the tube was strongly deformed, These differences are

significant enough to cause sufficient shear-thinning which is reflected in the velocity

profiles, and leads to a 10% increase in the pressure drop for the Newtonian fluid.
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Chapter 4

Simulations of Peristaltic Motion

The simulations presented in this chapter are motivated by the experiments of Nahar [47].

In these experiments a peristaltic motion is induced by means of rollers which squeeze a

fluid along a flexible closed tube. Two different frames of reference are considered: the

moving frame of reference (wave frame) where the computational domain is fixed and

the coordinate system is moving with the roller speed, and the fixed frame of reference

(laboratory frame) where the roller motion is represented by a deforming mesh. The

transformation between the fixed frame, with coordinates (x,y) and velocity (ux,uy), and

the moving frame, with coordinates (x̂, ŷ) and velocity (ûx, ûy), is given by

x̂= x− ct, ŷ= y
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ûx = ux− c, ûy = uy,

where c is the wave speed and t is time.

The simulations are performed for Newtonian and non-Newtonian fluids for different roller

speeds and different gap widths formed by the rollers.

4.1 Moving Frame Simulations

In the moving frame of reference the computational domain is fixed and is moving with the

uniform roller speed in the positive x-direction. This results in a Galilean invariant inertial

frame in which the governing equations are identical to the ones in a frame at a rest. The

two-dimensional, symmetric computational domain reflects the upper half of a deformed

tube or channel, as is shown in Fig. 4.1. The tube diameter is 20 mm, the overall length of

90 mm

10 mm

left
boundary
right

boundary

center line

upper wallupper wall

roller
block 0

block 1
block 2

x

y

h
y=0

Figure 4.1: Computation domain for moving frame simulations.

the domain is 90 mm and the roller diameter is 30 mm. The tube deformation is represented

by an appropriate circular arc which forms a gap of half-width h=4 mm for the standard

simulation case.
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As indicated in Fig. 4.1, the computational mesh consists of three hexahedral blocks, each

having a uniform cell distribution. The length of the outer two blocks is 33 mm. In the

x-direction the standard mesh has 120 cells for the left and the right blocks, and 180 cells for

the middle block. All blocks have 24 cells in the y-direction, and one cell in the z-direction.

(For two-dimensional simulations OpenFOAM requires one cell in the third direction.)

This gives a total of 10’080 cells for the standard mesh. The smallest cells are located in

the gap and are 0.167 mm in height and 0.133 mm in length. The initial and boundary

conditions reflect the experimental setup and are described in the next subsection.

4.1.1 Initial and Boundary Conditions

In order to solve the mass and momentum conservation equations introduced in Chapter 2,

initial and boundary conditions need to be specified. The initial condition for the internal

pressure and velocity fields are set to zero. The pressure boundary conditions on the left

and right boundary are set to zero total pressure. This reflects the fact that the experimental

system is closed, i.e., the right and left boundaries are connected via a large fluid reservoir

which is at constant pressure. The total pressure p0 is computed by

p0 = p+
1

2
ρ | u |2 .
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The first term on the right hand side stands for the static pressure while the second term

expresses the dynamic pressure. The zero total pressure adjusts the pressure p according

to the changes in the velocity u. On the upper wall and on the roller boundary the normal

gradient of the pressure is set to zero.

The velocity boundary conditions on the left and right boundary are set to zero gradient. In

the moving frame of reference, the velocity on the roller is zero since the coordinate system

is moving with the same velocity as the roller. Likewise, the velocity of the undeformed

parts of the upper wall is given by the roller speed in the negative x-direction, i.e., velocity

in the x- and y-directions are −c and 0, respectively. Finally, a symmetry plane boundary

condition has been used for the centerline, which essentially enforces that u ·n= 0 and the

tangential component of σσσ ·n is zero. This condition guarantees that there is no flux across

the centerline.

4.1.2 Computational Details

For the simulations a steady-state solver for incompressible, turbulent flows using the

iterative SIMPLE algorithm, called simpleFoam, is used. This solver has been used

for the laminar flows in this thesis by deactivating the turbulence models. For the

Newtonian simulations the dynamic viscosity is 0.1452 Pa.s, which corresponds to the

zero-shear-rate-dependent viscosity of the non-Newtonian cases.

Since the fluid under consideration is incompressible, the mass transport is expressed in
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terms of the average speed at the right boundary. Therefore, the transport efficiency can be

computed by

Transport efficiency =
average speed at the right boundary

roller speed
(4.1)

The discretization schemes for the different operators are chosen in the file

<case>/system/fvSchemes. In steady state simulations the time derivative

scheme is set to steadyState. The gradient, Laplacian and divergence terms have

been discretized by the standard second order finite volume discretization of Gaussian

integration which is based on summing values on cell faces, which must be interpolated

from cell centers. The Gaussian integration has been used with a linear (central

differencing) interpolation scheme for the gradient and the Laplacian, and an upwind

scheme for the divergence terms. For a more detailed discussion see Chapter 2.

The pressure equations were solved by means of the Preconditioned Conjugate Gradient

(PCG) method with the Diagonal-based Incomplete Cholesky (DIC) preconditioning

for symmetric matrices. The asymmetric velocity equations were solved with the

Preconditioned Bi-Conjugate Gradient (PBiCG) method using a Diagonal-based

Incomplete Lower Upper (DILU) conditioning for the velocity. The solvers and

preconditioners are discussed in Chapter 2.

The convergence of the velocity-pressure iterations is controlled by means of the residuals

for the pressure and velocity equations in the SIMPLE algorithm. Residuals of 10−6

and 10−7 were used for the pressure and for the velocities, respectively. In addition,
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the respective tolerances for the iterative solutions of the discrete pressure and velocity

equations in each SIMPLE step were 10−6 and 10−5 for the absolute values, and 0.01 and

0.1 for the relative values. As discussed in Chapter 2 for each system of equations, the

iteration process is stopped when either the absolute or relative tolerance is met.

4.1.3 Mesh Dependence Study

The mesh dependence study has been performed for a Newtonian fluid for the worst case

scenario, that is, for the case with the largest velocity and pressure gradients. Presumably

this is the case with the fastest roller speed of 10 mm/s and the smallest half gap width of

2 mm.

A coarser and a finer mesh have been obtained from the standard mesh by reducing,

respectively, increasing, the number of cells in the x and y-directions by a factor of 1.5.

These meshes are summarized in Table 4.1. The results of this mesh refinement study are

Table 4.1

Number of cells for the different meshes. (Moving frame simulations.)

Mesh Blocks 0 & 2 Block 1 Total number of cells

Coarse 80×16×1 120×16×1 4480

Standard 120×24×1 180×24×1 10080

Fine 180×36×1 270×36×1 22680

shown in Figs. 4.2-4.4 close to the centerline at y=0.05 mm. In these figures, the central
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vertical dashed lines indicate the x-coordinate of the center of the roller. The left and right

vertical dashed lines represent the end of the roller, that is, the start and end of contact

between the roller and the tube.

Figures 4.2 and 4.3 show that the different meshes give identical values of the x-component

of the velocity and of the kinematic pressure along the centerline. (The kinematic pressure

is the pressure scaled by the density and has units m2/s2.) In order to change the moving

frame back to the laboratory frame, the velocity has been corrected by adding 10 mm/s

in the x-direction to get Fig. 4.2. This figure shows that the minimum velocity (around

6.5 mm/s) occurs in the narrow gap region. The fact that the peristaltic wave tends to

produce a rising pressure in the direction of the wave is shown in Fig. 4.3. This figure also

shows that the pressure is symmetric with respect to the center of the roller and takes the

extreme values at the ends of the roller. The same is true for the shear rates which have a

maximum value of 1.25 s−1 at the ends of the roller, as is shown in Fig. 4.4.
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Figure 4.2: Moving frame mesh dependence study for the x-component of

the velocity of the Newtonian fluid along the centerline at y=0.05 mm. (The

left and right vertical dashed lines represent the ends of the roller, the middle

vertical dashed line is the center of the roller.)
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Figure 4.3: Moving frame mesh dependence study for the kinematic

pressure of the Newtonian fluid along the centerline at y=0.05 mm. (The

left and right vertical dashed lines represent the ends of the roller, the middle

vertical dashed line is the center of the roller.)
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Figure 4.4: Moving frame mesh dependence study for the shear rate of

the Newtonian fluid along the centerline at y=0.05 mm. (The left and right

vertical dashed lines represent the ends of the roller, the middle vertical

dashed line is the center of the roller.)
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4.1.4 Parameter Study

The main aim of this section is to identify the effect of the shear-thinning, non-Newtonian

behavior of the fluid, and to study the material transport efficiency in terms of the roller

speed and the gap width.

Newtonian versus Non-Newtonian Fluids

Simulations have been carried out for two non-Newtonian fluids with a shear rate dependent

viscosity expressed by the Bird-Carreau equation discussed in Chapter 2

η −η∞

η0 −η∞
= (1+(kγ̇)2)(n−1)/2. (4.2)

The fluid parameters for the non-Newtonian fluids used in this comparison are given in

Table 4.2, and the viscosity curves are depicted in Fig. 4.5. Observe that the shear-thinning

for both fluids starts at a shear rate of γ̇ = 1/k = 0.05 s−1, and that two different

power-law indices of n = 0.75 and n = 0.5 were considered, with the latter exhibiting

considerably more shear-thinning behavior. Note that the zero-shear-rate viscosity η0 for

the non-Newtonian fluids is the constant viscosity used for the Newtonian case.
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Table 4.2

Non-Newtonian fluid parameters

Parameters Fluid A Fluid B

η0[Pa s] 0.1452 0.1452

η∞[Pa s] 0 0

k[s] 20 20

n 0.75 0.50

0.001 0.01 0.1 1 10

γ
.
 [1/s]

0.01

0.1

1

η
 [

P
a.

s]

Newtonian       (n = 1.00)

nonNewtonian (n = 0.75)

nonNewtonian (n = 0.50) 

Figure 4.5: Shear rate dependent viscosity curves.
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In these simulations the gap half-width is fixed at 4 mm and the roller speed is 5 mm/s.

The simulation results are shown in Figs. 4.6 to 4.14 and have been transferred to the

fixed/laboratory frame.

Figure 4.6 is a color plot of the x-component of the velocity (transferred to the laboratory

frame) of the Newtonian fluid. The figure shows that the maximum velocities are attained

in the region near the centerline and away from the roller. These maximum values are close

to the roller speed of 5 mm/s. The smallest values of the velocity are in the region under

the roller. They are positive which indicates that there is no back-flow. Figure 4.7 shows

the kinematic pressure distribution. The negative and positive pressure regions under and

near the roller are consistent with the results shown in Fig. 4.3.

The color plot in Fig. 4.8 shows that the maximum values of the shear rates are achieved at

the roller boundary and just under the roller. Also, the figure shows small shear rates along

the centerline.

Figure 4.9 is a vector plot of the velocity. The direction of these vectors indicates the

absence of a back-flow, which is consistent with the positive x-components of the velocity

shown in Fig. 4.6.

In Fig. 4.10, the x-components of the velocity (transferred to the laboratory frame) are

shown along the centerline at y=0.05 mm for the Newtonian and the non-Newtonian fluid

simulations. It is seen that the velocities are the lowest in the most narrow part of the

channel, that is, just below the roller. It is interesting to note that this velocity component

is close to zero but still positive, which indicates that there is no back flow under the roller.
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The largest velocities are achieved away from the roller where the velocities are constant.

The Newtonian fluid exhibits the largest velocity and the more shear-thinning fluid, the fluid

with n= 0.5, has the smallest velocity. This is consistent with the vertical velocity profiles

at the right boundary shown in Fig. 4.11. The profiles for the Newtonian fluid resembles

a parabola, whereas the profiles for the non-Newtonian fluids are more plug-like, with the

more shear-thinning fluid being flatter.

The (relative) kinematic pressures along the centerline at y=0.05 mm are shown in Fig. 4.12

for the three different fluids. Recall that the fluids are incompressible and, therefore, the

pressures are given with respect to the reference total pressure of zero prescribed at the

right and left boundaries. As is seen, the pressure curves are symmetric with respect to the

center of the roller. As expected, the roller movement induces a larger pressure in front,

and an under-pressure region is found behind the roller. The largest pressure variation is

observed for the Newtonian fluid and the smallest pressure variation occurs for the more

shear-thinning fluid. This is consistent with the theoretical result that the smaller viscosities

of the shear-thinning fluid result in a smaller pressure drop in a channel or tube.
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Figure 4.6: Moving frame x-component of the velocity [m/s] of the

Newtonian fluid. (The gap half-width is 4 mm, and the roller speed is

5 mm/s.)

Figure 4.7: Moving frame kinematic pressure [m2/s2] of the Newtonian

fluid. (The gap half-width is 4 mm, and the roller speed is 5 mm/s.)

Figure 4.8: Moving frame shear rate [s−1] of the Newtonian fluid. (The gap

half-width is 4 mm, and the roller speed is 5 mm/s.)
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Figure 4.9: Moving frame velocity vectors [m/s] under the roller of the

Newtonian fluid. (The gap half-width is 4 mm, the roller speed is 5 mm/s.)
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Figure 4.10: Moving frame x-component of the velocity for the Newtonian

and non-Newtonian fluids along the centerline at y=0.05 mm. (The left and

right vertical dashed lines represent the ends of the roller, the middle vertical

dashed line is the center of the roller.)
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Figure 4.11: Moving frame x-component velocity profile for the Newtonian

and non-Newtonian fluids near the right boundary at x=89 mm.
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Figure 4.12: Moving frame kinematic pressure for the Newtonian and

non-Newtonian simulations along the centerline at y=0.05 mm. (The left

and right vertical dashed lines represent the ends of the roller, the middle

vertical dashed line is the center of the roller.)
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The shear rates close to the centerline at y=0.05 mm are shown in Fig. 4.13. It can be seen

that for all three fluids the shear rates are almost the same under and near the roller, whereas

away from the roller noticeable differences occur. This latter observation is also reflected

by the slopes of the velocity gradients near the right boundary at x=89 mm in Fig. 4.11,

which is consistent with the theory. For all three fluids, the shear rates attain their maxima

at the beginning and at the end of the roller. This is a typical behavior of shear rates in

flows with a cross-sectional change: the first peak is due to the cross-sectional contraction

and the second is due to the expansion.

Larger differences in the shear rates between the three fluids are observed at the right

boundary, as is shown in Fig. 4.14. As expected, the shear rates of the Newtonian fluid

vary linearly, while the nonlinearity of the shear-rate-curves increases with increasing

shear-thinning behavior. Also, the variation in the shear rates increases with the amount

of shear-thinning.

The transport efficiency for the three fluids, as defined in Eq. (4.1), is shown in Table 4.3.

As can be seen, the efficiency is almost the same in all three cases, with only a small

decrease with increasing shear-thinning. This is consistent with the averaged velocities,

hence volumetric flow rates, computed from the velocity profiles at the right boundary

shown in Fig. 4.11. These almost constant flow rates are mainly due to the absence of a

back-flow under the roller. As will be discussed in the fixed frame simulations, the effect of

the viscosity can be considerable if a back flow is present. The importance of the back-flow

is also relevant in the moving frame as can be seen from Table 4.4, where the decrease in
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the transport efficiency is reduced significantly more for the gap half-width of 8 mm, which

exhibits a back flow. More details are discussed in the next subsection.
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Figure 4.13: Moving frame shear rate for the Newtonian and

non-Newtonian simulations along the centerline at y=0.05 mm. (The left

and right vertical dashed lines represent the ends of the roller, the middle

vertical dashed line is the center of the roller.)
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Figure 4.14: Moving frame shear rate profile for the Newtonian and

non-Newtonian fluids near the right boundary at x=89 mm.
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Table 4.3

Moving frame transport efficiency for different fluids

Flow type Transport efficiency

Newtonian (n= 1.00) 78%

non-Newtonian (n= 0.75) 77%

non-Newtonian (n= 0.50) 76%

Variation of the Gap Width

The normalized gap half-width parameter, h/R0, where R0 is the radius of the tube, is used.

Simulations for the Newtonian fluid with the roller speed of 10 mm/s and three different

gaps with normalized half-widths of 0.2, 0.4, and 0.8 have been used to study the effect on

the transport efficiency. The results of this study are listed in Table 4.4 which shows that

the transport efficiency decreases with increasing gap half-width. This is consistent with

the velocity profiles at the right boundary shown in Fig. 4.15.

Table 4.4

Moving frame transport efficiency for different normalized gap half-widths

Normalized gap half-width Transport efficiency

0.2 95%

0.4 78%

0.8 28%
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Figure 4.16 shows the x-component of the velocity along the centerline at y=0.05 mm for

different gap half-widths. The presence of negative velocities when the gap half-width is

8 mm indicates the presence of a back-flow. The other two curves do not show negative

values, which means that there is no back-flow in these cases. This back-flow is illustrated

in Fig. 4.17 which shows the velocity vectors in the region under the roller for the case

with the gap half-width of 8 mm. The recirculation zone shown in the figure explains

the significant drop in the transport efficiency by a factor of almost three, as is shown in

Table 4.4.
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Figure 4.15: Moving frame x-component velocity profile for the Newtonian

fluid near the right boundary at x=89 mm for different gap half-widths. (The

roller speed is 10 mm/s.)
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Figure 4.16: Moving frame x-component of the velocity of the Newtonian

fluid along the centerline at y=0.05 mm for different gap half-widths. (The

roller speed is 10 mm/s.)

Figure 4.17: Moving frame velocity vectors [m/s] under the roller. (The

gap half-width is 8 mm, the roller speed is 10 mm/s.)
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Variation of the Roller Speed

To study the effect of the roller speed on the transport efficiency, several cases for a

Newtonian fluid with normalized gap half-width of 0.8 and different roller speeds of 2.5,

5, 10 mm/s are simulated. Table 4.5 shows that the transport efficiency is independent of

the roller speed. Figure 4.18 shows the x-component of the velocity along the centerline at

y=0.05 mm for the different roller speeds. The figure shows the presence of a back-flow

under the roller for the different speeds and this back-flow increases when the roller speed

increases. This increase in the back-flow intensity doesn’t affect the transport efficiency,

since it is compensated by the roller speed.

Figure 4.19 shows the x-component of the velocity near the right boundary at x=89 mm.

This figure shows that the maximum values of the curves scale approximately with the

roller speeds, which is consistent with the almost constant transport efficiencies listed in

Table 4.5.

Table 4.5

Moving frame transport efficiency for different roller speeds

Roller speed [mm/s] Transport efficiency

2.5 27%

5 28%

10 28%
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Figure 4.18: Moving frame x-component of the velocity of the Newtonian

fluid along the centerline at y = 0.05 mm for different roller speeds. (The

gap half-width is 8 mm.)
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gap half-width is 8 mm.)
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4.2 Fixed Frame Simulations

In the fixed frame simulations the geometry (computational domain) is changing. The

walls are stationary and the roller motion is represented as a moving wave which results in

a deforming mesh.

The two-dimensional, symmetric computational domain reflects the upper half of a tube or

channel whose length is 180 mm and the diameter is 20 mm. The initial (undeformed)

computational mesh consists of one block with a uniform cell distribution. In the

x-direction the standard mesh has 810 cells and 23 cells in the y-direction. This gives a

total of 18’630 cells for the standard mesh.

The moving wave on the upper wall is generated by moving the mesh points of the upper

wall vertically. The vertical movement of the mesh points on the upper wall depends on the

horizontal motion of a wave of a given shape and speed. The x-component of the moving

vertex has the speed c and the y-component is moving down or up according to the type of

mesh deformation. In the standard case, the wave is formed by a circular roller of diameter

30 mm which is moving with the uniform speed of 5 mm/s in the positive x-direction and

forms a half gap width of h=4 mm. The contact curve between the roller and the tube is a

circular arc with a segment length of 24 mm.

The computational domain in the fixed frame simulation is shown in Fig. 4.20. In the

undeformed mesh the length of a cell is 0.222 mm, and the height is 0.435 mm. In the

deformed mesh, the smallest cells are located under the roller and the cell height is reduced
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Figure 4.20: Computation domain for fixed frame simulations.

to 0.174 mm.

In comparison to the moving frame geometry, the length of the fixed frame domain is

doubled. The initial and boundary conditions reflect the experimental setup and are

described in the next subsection.

4.2.1 Initial and Boundary Conditions

The boundary conditions for the pressure and velocity on the left and right boundaries and

at the centerline are the same as in the moving frame simulations discussed in the previous

section. However, different boundary condition for the velocity is required for the upper

wall. This condition is a modification of an existing boundary condition of OpenFOAM,

called movingWallVelocity, which corrects the flux due to the mesh motion so that

the total flux across the wall is zero. The modification enforces that the velocity on the

upper wall, including the roller, is zero in the normal direction, that is, on the roller the

velocity relative to the velocity of the moving mesh, i.e., u−us, is zero.

To generate the moving wave, an existing boundary condition has been modified to move

the mesh points on the upper wall vertically according to a prescribed mathematical formula
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that gives the position of the mesh point as a function of time. The circular deformation is

controlled by the equation (refer to Fig. 4.21)

α(x, t) = ymax − (y0 −
√

r2 − (x− x0(t))2 ), x1(t)≤ x≤ x2(t) (4.3)

where ymax is the y-component of the points on the undeformed upper wall, (x0(t),y0) is

0

x

y

ymax

b

x0(t)x1(t) x2(t)

(x0(t), y0)
α(x, t)

r

c

Figure 4.21: The circular wave.

the center of the circle whose radius is r. The x-components of the center and the two ends

of the circular arc are moving with the uniform speed of the roller and are given by

xi(t) = xi+ ct, for i= 0,1,2, (4.4)

where xi’s are the initial values at t = 0. In fact, the x-component of the center x0 is

determined by the user, while x1 and x2 are computed so that α(xi,0) = 0 for i = 1,2.

Notice that the above deformation is valid if and only if y0 ≥ ymax.

The parameters for this boundary condition are given in the <case>/0/pointMotionU

file. These parameters are summarized in Table 4.6. In addition to the modified

moving-mesh boundary condition on the upper wall, the zero gradient boundary condition

117



Table 4.6

Parameters for the circular deformation. (Fixed frame simulations.)

Formula Parameters OpenFOAM Variable name

r circleRadius

c speed

x0 xCompInitialCenter

y0 yCompFinalCenter

has been used for the left and right boundaries and a symmetry plane boundary condition

has been imposed for the centerline.

4.2.2 Computational Details

For the simulations a transient solver for incompressible, turbulent flows with dynamic

mesh capability, called transientSimpleDyMFoam, is used. This solver utilizes the

segregated SIMPLE-based pressure-velocity coupling algorithm in time-stepping mode,

called PISO, discussed in Chapter 2. This solver has been used for the laminar

flows in this thesis by deactivating the turbulence models. The temporal loop of the

transientSimpleDyMFoam solver can be summarized as:

1) Update the time t from tn to tn+1 by adding the time step ∆t.

2) Correct the face fluxes Φ f to an absolute velocity field u f by

Φ f = u f ·S. (4.5)
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3) Use a dynamic mesh solver to move the mesh.

4) Correct the fluxes relative to the mesh motion by using

Φ f = (u−us) f ·S, (4.6)

where us is the velocity of the boundary surface for the moving control volumes.

For the Newtonian simulations the dynamic viscosity is 0.1452 Pa.s, which corresponds to

the zero-shear-rate-dependent viscosity of the non-Newtonian cases.

The transport properties and the discretization schemes are the same as in the moving frame

simulations. However, the time derivative in the fixed frame simulation is discretized by

the first order, implicit, bounded Euler method discussed in Chapter 2. The standard

second order finite volume discretization of Gaussian integration with a central differencing

scheme has been selected to discretize the gradient, divergence, and Laplacien terms.

For the linear solvers, all pressure equations were solved by the GAMG solver

with a Gauss-Seidel smoother. A solver for an asymmetric matrix system called

smoothSolver, is used for the velocity together with a Gauss-Seidel smoother. The

PCG solver with DIC preconditioner has been used as the point motion solver.

The time step is very important for stability in transient simulations. A varying time step

has been used such that the maximum Courant number Co does not exceed 0.5, where the

Courant number is defined by

Co=
| u | ∆t

∆x
, (4.7)
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where ∆x is the size of the cell.

Convergence Considerations

As discussed in Chapter 2, the solutions of the conservation equations are obtained by

means of iterative methods which are implemented as OpenFOAM applications. These

applications produce screen output of convergence data which is redirected into a file

named log. This log file contains information such as residuals, number of iterations

and Courant number. The data of this file has been extracted using the OpenFOAM utility

foamLog which generates several files that can be plotted graphically. Each of these files

has the name <variable>_<occurrence inside the time step>.

Figures 4.22 and 4.23 show the residual as a function of the iteration steps for the

discrete x-momentum and pressure equations, respectively, at the beginning of each

pressure-velocity iteration in the moving frame simulations discussed in Section 4.1. These

figures show that the residuals generally decrease until the residual controls of 10−7 and

10−6 for velocity and pressure are satisfied. Recall that these simulations were performed

with the steady-state solver simpleFoam which uses the SIMPLE algorithm.

Figures 4.24 and 4.25 show the residual as a function of time for the discrete x-momentum

and pressure equations, respectively, at the beginning of the last PISO iteration in each

time step in the fixed frame simulations using the transientSimpleDyMFoam solver

which is based on the PISO algorithm. The figures show that the residuals oscillating about
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a mean level which is acceptable for an unsteady case like this.

In general, the PISO algorithm of OpenFOAM performs a fixed number of

pressure-velocity iterations in each time step. In transientSimpleDyMFoam, the

number of such iterations is controlled by the keyword nOuterCorrectors in

<case>/system/fvSolution. In the fixed frame simulations performed here,

nOuterCorrectors was set to 20. The absolute tolerances for the linear solvers within

each pressure-velocity iterate are shown in Table 4.7 for the moving and fixed frames. The

relative tolerances for these solvers in the moving frame were set to 0.1 and 0.01 for the

velocity and pressure equations. In the fixed frame the relative tolerance for all variables

are set to zero to force the solutions of the system of equations to absolute tolerances in

each time step, which is recommended when using the PISO algorithm. For more details

refer to Lucchini [48].
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Figure 4.22: Residual of the discrete x-momentum equation at the

beginning of each pressure-velocity iteration in the moving frame

simulations (using simpleFoam).
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Figure 4.23: Residual of the discrete pressure equation at the beginning

of each pressure-velocity iteration in the moving frame simulations (using

simpleFoam).
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Figure 4.24: Residual of the discrete x-momentum equation at the

beginning of the last (i.e. 20th) PISO iteration in each time step in the fixed

frame simulations (using transientSimpleDyMFoam).
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Figure 4.25: Residual of the discrete pressure equation at the beginning

of the last (i.e. 20th) PISO iteration in each time step in the fixed frame

simulations (using transientSimpleDyMFoam).

Table 4.7

Absolute Tolerances

Moving Frame Fixed Frame

pcorr - 10−7

p 10−6 10−6

pFinal - 10−7

U 10−5 10−7

UFinal - 10−7
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4.2.3 Mesh Dependence Study

The mesh dependence study has been performed for a Newtonian fluid for the case with

the roller speed of 10 mm/s and a half gap width of 2 mm. This is presumably the worst

case scenario with the largest gradients for pressure and velocity.

A coarser and a finer mesh have been obtained from the standard mesh by reducing,

respectively, increasing, the number of cells in the x and y directions by a factor of 1.5.

In the deformed fine mesh the height of the smallest cell is 0.057 mm and in the coarse

mesh the height of the smallest cell is 0.133 mm. The details of the three different meshes

are shown in Table 4.8.

Table 4.8

Number of cells for the different meshes.(Fixed frame simulations)

Mesh Number of cells Total number of cells

Coarse 540×15×1 8100

Standard 810×23×1 18630

Fine 1215×35×1 42525
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The results of this mesh refinement study are shown in Figs. 4.26 and 4.27 close to the

centerline at y=0.04 mm and at time t=14 s. In these figures, the central vertical dashed

lines indicate the x-coordinate of the center of the roller. The left and right vertical dashed

lines represent the end of the roller, that is, the start and end of contact between the roller

and the tube.

Figure 4.26 shows that the three different meshes give almost identical values for the

x-component of the velocity. This figure shows that the minimum velocity occurs in the

gap region. The negative values of the x-component of the velocity indicate the presence

of a back-flow.

Figure 4.27 shows that the kinematic pressure values of the standard mesh are closer to the

ones of the fine mesh than to the ones of the coarse mesh. Therefore, it can be concluded

that the standard mesh exhibits sufficient mesh resolution. This figure shows that the

extreme values of the pressure occur in the region under the roller.
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Figure 4.26: Fixed frame mesh dependence study for the x-component of

the velocity of the Newtonian fluid along the centerline at y=0.04 mm and

time t=14 s. (The left and right vertical dashed lines represent the ends of

the roller, the middle vertical dashed line is the center of the roller.)
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Figure 4.27: Fixed frame mesh dependence study for the kinematic

pressure of the Newtonian fluid along the centerline at y=0.04 mm and time

t=14 s. (The left and right vertical dashed lines represent the ends of the

roller, the middle vertical dashed line is the center of the roller.)
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4.2.4 Parameter Study

The parameter study has been performed to identify the effect of the shear-thinning,

non-Newtonian behavior of the fluid, and to examine the material transport efficiency in

terms of the roller speed and the gap width.

Newtonian versus Non-Newtonian Fluids

A comparison between the Newtonian and the non-Newtonian simulations has been made.

The fluid parameters are the same as in the parameter study for the moving frame given

in Table 4.2. Note that the zero-shear-rate viscosity η0 for the non-Newtonian fluids is the

constant viscosity used for the Newtonian case. This study has been performed for the case

with the gap half-width of 4 mm, and the roller speed of 5 mm/s.

The results of the simulation of the Newtonian standard case at time t=28 s are shown

in Figs. 4.28-4.31. Figure 4.28 is a color plot of the x-component of the velocity for the

Newtonian fluid. The figure shows that the velocities in the region under the roller are

negative which indicates a back-flow.

Figure 4.29 shows the kinematic pressure distribution. The negative and positive pressure

regions under and near the roller are consistent with the results shown in Fig. 4.27.

Figure 4.30 is a color plot of the shear rates. The figure shows that the maximum values of
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the shear rates are achieved at the roller boundary and just under the roller. Also, the figure

shows small shear rates along the centerline.

The velocity vectors are shown in the Fig. 4.31. The direction of these vectors indicates the

presence of a back-flow, which is consistent with the negative x-components of the velocity

shown in Fig. 4.28 .

Figure 4.28: Fixed frame x-component of the velocity [m/s] of the

Newtonian fluid at time t=28 s. (The gap half-width is 4 mm, the roller

speed is 5 mm/s.)

Figure 4.29: Fixed frame kinematic pressure [m2/s2] of the Newtonian fluid

at time t=28 s. (The gap half-width is 4 mm, the roller speed is 5 mm/s.)
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Figure 4.30: Fixed frame shear rate [s−1]of the Newtonian fluid at time

t=28 s. (The gap half-width is 4 mm, and the roller speed is 5 mm/s.)

Figure 4.31: Fixed frame velocity vectors [m/s] under the roller of the

Newtonian fluid at t=28 s. (The gap half-width is 4 mm, and the roller

speed is 5 mm/s.)
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The simulation results of the x-component of the velocity along the centerline at y=0.04 mm

and time t=28 s for the Newtonian and non-Newtonian fluids are given in Fig. 4.32. It

can be seen that the different fluids have a back-flow. This back-flow increases when the

shear-thinning behavior increases, with their maximum values occurring in the most narrow

part of the channel. This back-flow is consistent with the velocity x-component profiles

computed near the right boundary at y=179 mm and time t=28 s, shown in Fig. 4.33. In

this figure the profiles for the Newtonian fluid resembles a parabola, whereas the profiles

for the non-Newtonian fluids are more plug-like, with the more shear-thinning fluid being

flatter. The gap between the two upper curves is twice the gap between the two lower

curves, which is consistent with the transport efficiency results given in Table 4.9. The

table shows that the efficiency decreases with more shear-thinning.

Figure 4.34 shows the pressure along the centerline at y=0.04 mm and time t=28 s for the

three different fluids. In this figure, the smallest pressure variation is observed for the more

shear-thinning fluid. The pressure curves in Fig. 4.34 intersect near the most narrow part

of the channel. As discussed for the corresponding case of the moving frame simulation in

Fig. 4.12, the pressure variation is decreasing with increasing shear-thinning.

Figure 4.35 presents the shear rates near the centerline at y=0.04 mm and time t=28 s for

the different fluids. The figure shows that the maximum shear rate under the roller increases

with the amount of shear-thinning, and reaches the maximum value of 1.7s−1 for the most

shear-thinning fluid.
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Figure 4.32: Fixed frame x-component of the velocity for the Newtonian

and non-Newtonian fluids along the centerline at y=0.04 mm and time

t=28 s. (The left and right vertical dashed lines represent the ends of the

roller, the middle vertical dashed line is the center of the roller.)
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Figure 4.33: Fixed frame x-component velocity profile for the Newtonian

and non-Newtonian fluids near the right boundary at x=179 mm and time

t=28 s.

Table 4.9

Fixed frame transport efficiency for different fluids

Flow type Transport efficiency

Newtonian (n= 1.00) 35%

non-Newtonian (n= 0.75) 31%

non-Newtonian (n= 0.50) 24%
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Figure 4.34: Fixed frame kinematic pressure for the Newtonian and

non-Newtonian fluids along the centerline at y=0.04 mm and time t=28 s.

(The left and right vertical dashed lines represent the ends of the roller, the

middle vertical dashed line is the center of the roller.)
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Figure 4.35: Fixed frame shear rate for the Newtonian and non-Newtonian

fluids along the centerline at y=0.04 mm and time t=28 s. (The left and

right vertical dashed lines represent the ends of the roller, the middle vertical

dashed line is the center of the roller.)
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Variation of the Gap Width and the Roller Speed

Several simulations for Newtonian fluid have been carried out to study the transport

efficiency in terms of the normalized gap width and the roller speed. The first group

of simulations have been performed with a fixed roller speed of 10 mm/s and several

normalized gap half-widths of 0.2, 0.4, 0.8. Recall that the normalized gap half-width

is h/R0. In order to examine the influence of the roller speed on the transport efficiency,

another group of simulations has been performed with a fixed normalized gap half-width

of 0.8 and different roller speeds of 2.5, 5 and 10 mm/s.

The results of these simulations are shown in Table 4.10. These results show that the

transport efficiency is independent of the roller speed and decrease with increasing gap

half-width. In fact, the presence of the back-flow in the fixed frame leads to a sharper

decrease of the efficiency when the gap half-width increase.

Table 4.10

Fixed frame transport efficiencies

normalized

half-width gap

roller speed (mm/s)

2.5 5 10

0.2 68% 69% 69%

0.4 35% 35% 35%

0.8 3.7% 3.7% 3.7%
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Figure 4.36 shows the x-component velocity profile near the right boundary at x=179 mm

and time t=14 s for different gap half widths with a roller speed of 10 mm/s. It can be seen

from the figure that the velocity decreases when the gap half-width increases. Also, the

velocity values are very small when the gap half-width is 8 mm. This is consistent with the

results shown in Table 4.10.

Figure 4.37 shows the x-component of the velocity for the Newtonian fluid along the

centerline at y=0.04 mm and time t=14 s for different gap half-widths and a roller speed of

10 mm/s. The figure shows that there is a back-flow for all the different gap half-widths.

It is interesting to see that the back flow is increasing when the gap half-width increases

from 2 mm to 4 mm, but that the back flow decreases when the gap half-width is further

increased to 8 mm.

Figure 4.38 shows the x-component velocity profile near the right boundary at x=179 mm

and time t=14 s for different roller speeds and gap half-width of 8 mm. It is obvious from

the figure that the increase of the roller speed gives higher velocities. At y=0 the distance

between the curves corresponding to the roller speed of 10 mm/s and 5 mm/s is almost

double the distance between the curves corresponding to the roller speed of 5 mm/s and

2.5 mm/s. This is consistent with the constant transport efficiencies shown in Table 4.10.

Also, the previous results are consistent with the results in Fig. 4.39 which shows the

x-component of the velocity along the centerline at y=0.04 mm and time t=14 s for different

roller speeds and gap half-width of 8 mm. The minimum velocity of the case with the roller

speed of 10 mm/s is double the one of the case with the roller speed of 5 mm/s, the latter is
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also double the minimum velocity of the case with the roller speed of 2.5 mm/s.
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Figure 4.36: Fixed frame x-component velocity profile of the Newtonian

fluid near the right boundary at x=179 mm and time t=14 s for different gap

half-widths. (The roller speed is 10 mm/s.)
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Figure 4.37: Fixed frame x-component of the velocity of the Newtonian

fluid along the centerline at y=0.04 mm and time t=14 s for different gap

half-widths. (The roller speed is 10 mm/s.)
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Figure 4.38: Fixed frame x-component velocity profile for the Newtonian

fluid near the right boundary at x=179 mm and time t=14 s for different

roller speed. (The gap half-width is 8 mm.)
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Figure 4.39: Fixed frame x-component of the velocity of the Newtonian

fluid along the centerline at y=0.04 mm and time t=14 s for different roller

speeds. (The gap half-width is 8 mm.)
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4.2.5 Comparison between the Moving and Fixed Simulations

In the moving and fixed simulations, the minimum velocities are attained in the region

under the roller, the peristaltic wave tends to produce a rising pressure in the direction of

the wave. Also, the transport efficiency is found to be independent of the roller speed and

decreases when the gap half-width increases.

In the moving frame, a zero velocity boundary condition is imposed on the roller boundary.

In the fixed frame the velocity boundary condition on the roller is modified such that the

normal velocity is zero. Due to these different velocity boundary conditions, the effect

of the shear-thinning viscosity and the gap half-width on the transport efficiency is more

significant in the fixed frame simulations, as is shown in Tables 4.11 and 4.12, respectively.

The standard case in the moving frame simulation needs around 12350 iterations to

Table 4.11

Transport efficiency for different fluids

Flow type Moving frame Fixed frame

Newtonian (n= 1) 78% 35%

non-Newtonian (n= 0.75) 77% 31%

non-Newtonian (n= 0.50) 76% 24%

converge, and the CPU time is about 10 minutes, while the standard case in the fixed frame

simulation needs about 100 minutes for the roller to be out of the domain (at t=38.4 s). The

CPU time for the fixed frame simulations is larger due to the following reasons:
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Table 4.12

Transport efficiency for different normalized gap half-widths.

normalized gap half-width Moving frame Fixed frame

0.2 95% 69%

0.4 78% 35%

0.8 28% 3.7%

1. The large number of PISO loops performed per time steps coupled with the total

number of time steps.

2. The computational domain in the fixed frame is twice as long as in the moving frame.

3. The mesh motion solver must be performed in the fixed frame.

Although, the moving frame simulation takes less CPU time, the fixed frame approach

more accurately represents reality and it is preferable to use. Specifically, in the fixed

frame simulation, the velocity boundary condition on the wave guarantees that the velocity

is zero in the normal direction which reflects the real boundary condition of the peristaltic

wave.
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4.2.6 Comparison with Experiment

The experimental setup is shown in Fig. 4.40 (see Nahar [47]). As can be seen, three pairs of

rollers are used to induce the peristaltic flow from left to right. The velocity measurements

have been obtained by means of the pulsed ultrasound Doppler velocitymetry technique of

Takeda [49]. The location of the velocity measurements is between the first and second pair

of rollers where the tube height is the largest. The ratio of the gap width to the tube height

is 4/11 which is very close to the ratio of 8/20 encountered in the standard simulations. The

same non-Newtonian fluid and the same elastic tube whose characteristics are described in

Chapter 3 are used.

Simulations have been carried out for the non-Newtonian fluid used in the experiments.

Recall from Chapter 3 that this fluid has a shear rate dependent viscosity expressed by the

Bird-Carreau equation with parameters η0 = 0.1452 Pa.s, η∞ = 0 Pa.s, k = 0.02673 s and

n = 0.7588. Note that the shear-thinning of this fluid starts at approximately γ̇ = 1/k ≈

37.4 s−1 which is a factor of almost 750 larger than for the non-Newtonian fluids used in

the parameter studies of Sections 4.1 and 4.2. The results of these simulations are shown

in Fig. 4.41 for the roller speeds c = 10 mm/s, 5 mm/s, 3 mm/s. As can be seen from

Fig. 4.41, the simulation results show excellent agreement with the experimental values.
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Figure 4.40: Experimental setup of the peristaltic motion.
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Figure 4.41: Fixed frame x-component of the velocity of the

non-Newtonian fluid along the centerline at y=0.04 mm. (The gap

half-width is 4 mm.)
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4.2.7 Three Dimensional Channel

In this subsection, the two-dimensional computational model of peristaltic flow in the

fixed frame of reference is extended to three dimensions specifically, the peristaltic flow

of a Newtonian fluid in a three-dimensional channel is simulated. The dimensions of

the channel are same as in two dimensional case except that the width is 20 mm. The

symmetry plane has been used in the middle of the height to save computation time. The

initial undeformed mesh consists of one block with 810×23×40 cells which gives a total

of 745’200 cells. As discussed before in this section, the roller motion is presented by a

moving wave on the upper wall of the channel. In this simulation the gap half-width is

4 mm, the roller speed is 5 mm/s and the roller diameter is 30 mm.

A three-dimensional view of the computational mesh after deformation is shown in

Fig. 4.42.

Figure 4.42: Three-dimensional view of the deformed computational mesh.
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The boundary conditions are same as in the two dimensional case except that for the two

new boundaries normal to the third dimension a fixed value of zero has been imposed for

the velocity. In addition, the zero gradient boundary condition was set for the kinematic

pressure and point motion.

The remaining simulation setup is same as the two dimensional case. The results of this

simulation are shown in Figs. (4.43-4.46).

Figure 4.43 gives a color plot of the x-component of velocity at time t=28 s, while Fig. 4.44

gives the corresponding velocity vector plot in the plane bisecting the domain in the

z-direction. These figures show that negative velocities are reached in the region under

the roller, which indicates that there is a back-flow similar to the two-dimensional case.

Moreover, the largest velocity magnitudes are reached near the centerplane underneath

the roller. The maximum magnitude of the velocity is almost the same as in the two

dimensional case.

Figure 4.45 shows the kinematic pressure distribution. The negative and positive pressure

regions under and near the roller are consistent with the fact that the peristaltic wave tends

to produce a rising pressure in the direction of the wave. The pressure difference in three

dimensional channel is ≈ 2.6 times the one of the two dimensional channel.

Figure 4.46 is a color plot of the shear rates, where the maximum values of the shear rate

are in the region of direct contact with the roller and in the narrow gap. The maximum value

of the shear rate in three dimensional channel is ≈ 1.7 times the one of the two dimensional

channel.
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The transport efficiency in the three dimensional channel is 26% compared to 35% in the

two dimensional case. The CPU time for the three dimensional case is about 4900 minutes

compared to 100 minutes (both CPU times are computed at the first time that the roller is

completely out of domain, i.e., at t=38.4 s).

In conclusion, although there are some quantitative differences between the two

dimensional and three dimensional simulation results, qualitatively the flow behavior is the

same. That is, the two dimensional simulation sufficiently reflects the three dimensional

flow. This, together with the considerably smaller CPU times of the two dimensional

simulation, make it an attractive choice over the three dimensional simulation.

Figure 4.43: Fixed frame x-component of the velocity [m/s] in the three

dimensional channel simulation at t = 28 s. (The gap half-width is 4 mm,

the roller speed is 5 mm/s.)
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Figure 4.44: Fixed frame velocity vectors [m/s] under the roller in the three

dimensional channel simulation at t = 28 s. (The gap half-width is 4 mm,

the roller speed is 5 mm/s.)

Figure 4.45: Fixed frame kinematic pressure [m2/s2] in the three

dimensional channel simulation at t = 28 s. (The gap half-width is 4 mm,

the roller speed is 5 mm/s.)
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Figure 4.46: Fixed frame shear rate [s−1] in the three dimensional channel

simulation at t = 28 s. (The gap half-width is 4 mm/s, the roller speed is

5 mm/s.)
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4.2.8 Other Types of Moving Waves

In order to check the flexibility of the modified moving-mesh boundary condition, two

different types of moving wave have been tested. The upper wall of the two dimensional

domain is deformed according to a parabolic and sinusoidal wave.

In the case where the parabolic wave is used, the parabolic deformation is controlled by

α(x, t) = ymax − (y0 +A(x− x0(t))
2), x1(t)≤ x≤ x2(t) (4.8)

where ymax is the y-component of the points on the undeformed upper wall, A is positive,

and (x0(t),y0) is the vertex of the parabola where x0(t) = x0+ct. Moreover, x1(t) = x1+ct

and x2(t) = x2 + ct. The initial x-component of the vertex x0, is determined by the user,

while x1 and x2 are computed such that α(x, t) = 0. Notice that the parabolic deformation

is valid if and only if y0 < ymax. The parameters for this boundary motion are summarized

in Table 4.13 whereas the tube geometry is shown in Fig. 4.47.

Table 4.13

Parameters for the parabolic deformation.

Formula Parameters OpenFOAM Variable name

x0 xCompInitialVertex

A CoeffA

c speed

y0 yCompFinalVertex
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Figure 4.47: The parabolic wave.

On the other hand, in the case were the sinusoidal wave is used, the sinusoidal deformation

is controlled by

α(x, t) =−Acos(
2π

λ
(x− ct)), x1(t)≤ x≤ x2(t) (4.9)

where A is the amplitude of the peristaltic wave, λ is the wavelength, and x1(t) = x1 + ct,

x2(t) = x2 + ct where

x1 =
1

4
λ , x2 =

3

4
λ .

Notice that the sinusoidal deformation is valid if and only if A < ymax. The parameters

for this boundary motion are summarized in Table 4.14 and the tube geometry is shown in

Fig. 4.48.

Table 4.14

Parameters for the parabolic deformation.

Formula Parameters OpenFOAM Variable name

A amplitude

λ waveLength

c speed
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Figure 4.48: The sinusoidal wave.

Figures 4.49 and 4.50 show a zoomed view of the computational mesh for the parabolic

and sinusoidal wave simulation, respectively.

Figure 4.49: View of the computational mesh using parabolic wave, with

A= 41.6667 mm, x0 = 0 mm, c= 5 mm/s, and y0 = 4 mm.
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Figure 4.50: View of the computational mesh using sinusoidal wave, with

A= 6 mm, λ = 60 mm, and c= 8 mm/s.
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4.3 Conclusions

The most relevant conclusions about the simulation of peristaltic flow in the moving and

fixed frame of reference are summarized below.

1. The simulations results in the moving and fixed frames show that the minimum

velocities are attained in the region under the roller. Moreover, they agreed with

the fact that the peristaltic wave tends to produce a rising pressure in the direction of

the wave.

2. The transport efficiency is independent of the roller speed and decreases when the

gap half-width increases.

3. The transport efficiency decreases with more shear-thinning behavior.

4. In comparison with the moving frame, the fixed frame approach more accurately

represents reality and it is preferable to use.

5. The x-component of the velocity for the three-dimensional channel agreed with the

ones of the two-dimensional channel.

6. In the three-dimensional channel, the pressure difference and maximum shear rate are

≈ 2.6 and ≈ 1.7 the ones of the corresponding case in the two dimensional channel,

respectively.
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7. The two-dimensional simulation sufficiently reflects the three-dimensional

simulation and it is considerably faster.
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Chapter 5

Summary and Future Work

Different types of flow in deformable geometries have been presented in this thesis.

The flow of a non-Newtonian fluid through a collapsed tube has been simulated using a

deformed tube geometry. These simulations were designed to reflect an experimental setup.

The geometry of the deformed tube used in the simulations has been reconstructed from the

experiments using computer tomography image analysis. The simulation results have been

compared with experimental data. There is generally good agreement between simulation

and experiment, especially given the rudimentary approximation to the geometry used in

the simulation. In order to better assess the non-Newtonian behavior of this fluid the same

flow has been simulated for a Newtonian fluid. Conclusions from the simulations in the

collapsed tube are given in Section 3.4.

Simulations of peristaltic flow have also been performed. These simulations were designed
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to reflect an experimental setup in which the peristaltic flow was induced by deforming

a tube using rollers that moved along the tube wall. In the simulations, two frames of

reference were used: the moving frame of reference (wave frame) where the computational

domain is fixed and the coordinate system is moving with the roller speed, and the fixed

frame of reference (laboratory frame) where the roller motion is represented by a deforming

mesh. In either case, good agreement was found with experimental data. Simulations have

been performed for Newtonian and non-Newtonian fluids, and a parameter study has been

performed to determine the effect of shear-thinning behavior, roller speed, and gap width

on the transport efficiency. Conclusions from the peristaltic flow simulations are given in

Section 4.3.

Future Work

To gain a better understanding of the peristaltic motion, further work is still required.

Future simulation work includes the following:

• Modify the moving-mesh boundary condition to generate more general types of

waves.

• Extend the two-dimensional numerical model to axisymmetric geometry.

• Generalize the deformation method by means of rollers to a three dimensional tube.
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• Develop a fully three-dimensional model of traveling wave deformation in complex

geometries such as the stomach.
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Appendix A

Case Files: Elastic Tube Simulations

Initial and boundary conditions are essential in solving any CFD problem. The case is set

up to start at time t = 0 or in the first iterate, so in OpenFOAM the initial field data is stored

in a 0 sub-directory of the case.

<case>/0: File U

This file contains boundary and initial conditions for the velocity.

dimensions [0 1 -1 0 0 0 0];

internalField uniform (-0.05 0 0);

boundaryField

{

inlet //channel inlet

{

type fixedValue;

value uniform (-0.0541127 0 0);

//corresp. to Q = 17 ml/s

}

outlet

{

type zeroGradient;

}

top
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{

type fixedValue;

value uniform (0 0 0);

}

bottom

{

type fixedValue;

value uniform (0 0 0);

}

front

{

type fixedValue;

value uniform (0 0 0);

}

back

{

type fixedValue;

value uniform (0 0 0);

}

}

<case>/0: File p

This file contains boundary and initial conditions for the kinematic pressure.

dimensions [0 2 -2 0 0 0 0];

internalField uniform 0;

boundaryField

{

inlet

{

type zeroGradient;

}

outlet

{

type fixedValue;

value uniform 0;

}

top
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{

type zeroGradient;

}

bottom

{

type zeroGradient;

}

front

{

type zeroGradient;

}

back

{

type zeroGradient;

}

}

<case>/constant: File transportProperties

This file contains the material properties for the fluid.

transportModel BirdCarreau; // Newtonian;

nu nu [ 0 2 -1 0 0 0 0 ] 0.1452e-03;

BirdCarreauCoeffs

{

nu0 nu0 [ 0 2 -1 0 0 0 0 ] 0.1452e-03;

nuInf nuInf [ 0 2 -1 0 0 0 0 ] 0.0;

k k [ 0 0 1 0 0 0 0 ] 0.02673;

n n [ 0 0 0 0 0 0 0 ] 0.7588;

}

<case>/constant: File RASProperties

This file contains the choice of RAS (Reynolds-averaged stress) modelling
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RASModel laminar;

turbulence off;

printCoeffs off;

<case>/constant/polyMesh: File blockMeshDict

This file contains input for the generation of the mesh.

convertToMeters 0.01; // measurements are in cm

vertices

(

(19 1.694444444 0.620370370)//vertex #0

(19 1.150000000 0.800000000)//vertex #1

(19 1.210000000 2.700000000)//vertex #2

(19 1.950000000 2.420000000)//vertex #3

(17 1.768500000 0.590000000)//vertex #4

(17 1.180000000 0.700000000)//vertex #5

(17 1.194000000 2.700000000)//vertex #6

(17 2.061000000 2.450000000)//vertex #7

(15 1.825000000 0.590000000)//vertex #8

(15 1.164000000 0.600000000)//vertex #9

(15 1.074074074 2.518518519)//vertex #10

(15 1.796296296 2.675925926)//vertex #11

(13 1.731481481 0.518518519)//vertex #12

(13 1.250000000 0.700000000)//vertex #13

(13 1.326000000 2.660000000)//vertex #14

(13 1.828000000 2.550000000)//vertex #15

(11 1.768518519 0.481481481)//vertex #16

(11 1.220000000 0.590000000)//vertex #17

(11 1.320000000 2.740000000)//vertex #18

(11 1.950000000 2.520000000)//vertex #19

(9 1.768518519 0.490740741)//vertex #20

(9 1.222222222 0.722222222)//vertex #21

(9 1.550000000 2.910000000)//vertex #22

(9 2.050000000 2.500000000)//vertex #23

(7 1.777777778 0.462962963)//vertex #24

(7 1.240000000 0.490000000)//vertex #25

(7 1.300000000 2.510000000)//vertex #26
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(7 1.981481481 2.675925926)//vertex #27

(5 1.731481481 0.537037037)//vertex #28

(5 1.305555556 0.685185185)//vertex #29

(5 1.480000000 2.800000000)//vertex #30

(5 1.960000000 2.540000000)//vertex #31

(3 1.705000000 0.542000000)//vertex #32

(3 1.255000000 0.768000000)//vertex #33

(3 1.666666667 2.990740741)//vertex #34

(3 2.110000000 2.361111111)//vertex #35

(1 1.750000000 0.740000000)//vertex #36

(1 1.200000000 1.055555556)//vertex #37

(1 1.470000000 2.842592593)//vertex #38

(1 2.166666667 2.509259259)//vertex #39

);

blocks

(

hex ( 5 1 0 4 6 2 3 7) (27 27 27)

simpleGrading (1 1 1) // block #0

hex ( 9 5 4 8 10 6 7 11) (27 27 27)

simpleGrading (1 1 1) // block #1

hex (13 9 8 12 14 10 11 15) (27 27 27)

simpleGrading (1 1 1) // block #2

hex (17 13 12 16 18 14 15 19) (27 27 27)

simpleGrading (1 1 1) // block #3

hex (21 17 16 20 22 18 19 23) (27 27 27)

simpleGrading (1 1 1) // block #4

hex (25 21 20 24 26 22 23 27) (27 27 27)

simpleGrading (1 1 1) // block #5

hex (29 25 24 28 30 26 27 31) (27 27 27)

simpleGrading (1 1 1) // block #6

hex (33 29 28 32 34 30 31 35) (27 27 27)

simpleGrading (1 1 1) // block #7

hex (37 33 32 36 38 34 35 39) (27 27 27)

simpleGrading (1 1 1) // block #8

);

edges

(

spline 0 1 (

(19 1.550000000 0.600000000)
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(19 1.356000000 0.651000000)

(19 1.349000000 0.648000000)

)

spline 1 2 (

(19 1.009259259 0.944444444)

(19 0.920000000 1.115000000)

(19 0.854000000 1.250000000)

(19 0.800000000 1.420000000)

(19 0.753000000 1.564814815)

(19 0.750000000 1.700000000)

(19 0.740740741 1.851851852)

(19 0.760000000 2.050000000)

(19 0.824074074 2.240740741)

(19 0.950000000 2.420000000)

(19 1.111111111 2.601851852)

)

spline 2 3 (

(19 1.379629630 2.777777778)

(19 1.600000000 2.730000000)

(19 1.768518519 2.620370370)

)

spline 3 0 (

(19 2.083333333 2.240740741)

(19 2.142000000 2.044000000)

(19 2.175925926 1.870370370)

(19 2.200000000 1.750000000)

(19 2.219000000 1.518518519)

(19 2.200000000 1.350000000)

(19 2.153000000 1.138888889)

(19 2.100000000 1.000000000)

(19 1.981481481 0.814814815)

(19 1.880000000 0.700000000)

)

spline 4 5 (

(17 1.600000000 0.538000000)

(17 1.450000000 0.550000000)

(17 1.324074074 0.592592593)

)

spline 5 6 (

(17 1.037037037 0.870370370)

(17 0.946000000 1.020000000)

(17 0.898148148 1.157407407)
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(17 0.873000000 1.320000000)

(17 0.867000000 1.490740741)

(17 0.861000000 1.700000000)

(17 0.873000000 1.851851852)

(17 0.884000000 2.050000000)

(17 0.907407407 2.222222222)

(17 0.935000000 2.380000000)

(17 1.009259259 2.527777778)

)

spline 6 7 (

(17 1.447000000 2.842592593)

(17 1.700000000 2.820000000)

(17 1.916666667 2.656000000)

)

spline 7 4 (

(17 2.111000000 2.268518519)

(17 2.120000000 2.100000000)

(17 2.140000000 1.861111111)

(17 2.151000000 1.750000000)

(17 2.157000000 1.544000000)

(17 2.140000000 1.400000000)

(17 2.083333333 1.138888889)

(17 2.050000000 1.050000000)

(17 1.962962963 0.796296296)

(17 1.900000000 0.700000000)

)

spline 12 13 (

(13 1.600000000 0.480000000)

(13 1.462900000 0.500000000)

(13 1.360000000 0.580000000)

)

spline 13 14 (

(13 1.186000000 0.787037037)

(13 1.120000000 0.980000000)

(13 1.092592593 1.129629630)

(13 1.120000000 1.320000000)

(13 1.148148148 1.472222222)

(13 1.164000000 1.640000000)

(13 1.157407407 1.805555556)

(13 1.154000000 2.000000000)

(13 1.137000000 2.185185185)
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(13 1.200000000 2.406000000)

(13 1.242000000 2.509259259)

)

spline 14 15 (

(13 1.462962963 2.824074074)

(13 1.650000000 2.840000000)

(13 1.781481481 2.733333333)

)

spline 15 12 (

(13 1.852000000 2.400000000)

(13 1.905000000 2.220000000)

(13 1.948000000 2.006000000)

(13 1.958000000 1.769000000)

(13 1.941000000 1.564814815)

(13 1.938000000 1.450000000)

(13 1.925925926 1.185185185)

(13 1.950000000 1.020000000)

(13 1.912000000 0.814814815)

(13 1.850000000 0.700000000)

)

spline 8 9 (

(15 1.610000000 0.410000000)

(15 1.377550000 0.331500000)

(15 1.223000000 0.449000000)

)

spline 9 10 (

(15 1.150000000 0.700000000)

(15 1.092592593 0.842592593)

(15 1.080000000 1.020000000)

(15 1.046296296 1.194444444)

(15 1.050000000 1.350000000)

(15 1.037037037 1.518518519)

(15 1.024000000 1.660000000)

(15 1.027777778 1.824074074)

(15 1.000000000 2.000000000)

(15 0.990740741 2.185185185)

(15 1.010000000 2.350000000)

)

spline 10 11(

(15 1.250000000 2.780000000)

(15 1.435185185 2.861111111)

(15 1.640000000 2.810000000)
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)

spline 11 8 (

(15 1.900000000 2.520000000)

(15 1.990740741 2.333333333)

(15 2.010000000 2.160000000)

(15 1.990740741 1.907407407)

(15 2.000000000 1.750000000)

(15 2.009259259 1.546296296)

(15 2.000000000 1.420000000)

(15 1.994000000 1.185185185)

(15 1.980000000 1.020000000)

(15 1.953703704 0.814814815)

)

spline 16 17 (

(11 1.650000000 0.424000000)

(11 1.527700000 0.415000000)

(11 1.370370370 0.444444444)

)

spline 17 18 (

(11 1.166666667 0.768518519)

(11 1.150000000 0.950000000)

(11 1.175925926 1.101851852)

(11 1.220000000 1.250000000)

(11 1.250000000 1.435185185)

(11 1.240000000 1.560000000)

(11 1.222222222 1.750000000)

(11 1.200000000 1.940000000)

(11 1.175925926 2.111111111)

(11 1.150000000 2.290000000)

(11 1.203703704 2.472222222)

)

spline 18 19 (

(11 1.527777778 2.879629630)

(11 1.748000000 2.780000000)

(11 1.907407407 2.638888889)

)

spline 19 16 (

(11 1.981481481 2.333333333)

(11 1.900000000 2.150000000)

(11 1.861111111 1.888888889)

(11 1.842000000 1.750000000)

(11 1.831000000 1.583333333)
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(11 1.870000000 1.360000000)

(11 1.898148148 1.185185185)

(11 1.880000000 1.020000000)

(11 1.916666667 0.833333333)

(11 1.880000000 0.650000000)

)

spline 20 21 (

(9 1.600000000 0.400000000)

(9 1.386900000 0.399074074)

(9 1.250000000 0.520000000)

)

spline 21 22 (

(9 1.220000000 0.900000000)

(9 1.259259259 1.074074074)

(9 1.350000000 1.250000000)

(9 1.351851852 1.398148148)

(9 1.350000000 1.530000000)

(9 1.296296296 1.703703704)

(9 1.300000000 1.900000000)

(9 1.259259259 2.083333333)

(9 1.250000000 2.250000000)

(9 1.277777778 2.416666667)

(9 1.350000000 2.650000000)

)

spline 22 23 (

(9 1.814814815 2.962962963)

(9 1.940000000 2.850000000)

(9 2.046296296 2.629629630)

)

spline 23 20 (

(9 2.018518519 2.305555556)

(9 1.990000000 2.150000000)

(9 1.916666667 1.935185185)

(9 1.840000000 1.780000000)

(9 1.814814815 1.583333333)

(9 1.800000000 1.400000000)

(9 1.828000000 1.194444444)

(9 1.840000000 1.060000000)

(9 1.842592593 0.879629630)

(9 1.840000000 0.700000000)

)

spline 24 25 (
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(7 1.638800000 0.350000000)

(7 1.500000000 0.323000000)

(7 1.355000000 0.351851852)

)

spline 25 26 (

(7 1.222222222 0.666666667)

(7 1.200000000 0.820000000)

(7 1.259259259 0.981481481)

(7 1.290000000 1.140000000)

(7 1.342592593 1.324074074)

(7 1.350000000 1.480000000)

(7 1.361111111 1.648148148)

(7 1.300000000 1.810000000)

(7 1.259259259 1.981481481)

(7 1.250000000 2.160000000)

(7 1.240740741 2.342592593)

)

spline 26 27 (

(7 1.430000000 2.800000000)

(7 1.638888889 2.870370370)

(7 1.800000000 2.840000000)

)

spline 27 24 (

(7 2.020000000 2.460000000)

(7 2.018518519 2.275000000)

(7 1.960000000 2.140000000)

(7 1.870370370 1.962962963)

(7 1.830000000 1.850000000)

(7 1.731481481 1.611111111)

(7 1.768518519 1.240740741)

(7 1.810000000 1.050000000)

(7 1.898148148 0.861111111)

(7 1.850000000 0.650000000)

)

spline 28 29 (

(5 1.648100000 0.420000000)

(5 1.462962963 0.416666667)

(5 1.340000000 0.520000000)

)

spline 29 30 (

(5 1.300000000 0.800000000)

(5 1.305555556 0.981481481)
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(5 1.340000000 1.100000000)

(5 1.361111111 1.296296296)

(5 1.360000000 1.450000000)

(5 1.398148148 1.629629630)

(5 1.360000000 1.800000000)

(5 1.324074074 2.000000000)

(5 1.300000000 2.180000000)

(5 1.277777778 2.333333333)

(5 1.380000000 2.600000000)

)

spline 30 31 (

(5 1.648148148 2.833333333)

(5 1.800000000 2.800000000)

(5 1.907407407 2.712962963)

)

spline 31 28 (

(5 1.935185185 2.370370370)

(5 1.880000000 2.200000000)

(5 1.787037037 2.046296296)

(5 1.720000000 1.850000000)

(5 1.666666667 1.629629630)

(5 1.660000000 1.450000000)

(5 1.731481481 1.277777778)

(5 1.750000000 1.110000000)

(5 1.787037037 0.962962963)

(5 1.770000000 0.730000000)

)

spline 32 33 (

(3 1.580000000 0.489000000)

(3 1.443000000 0.529000000)

(3 1.342592593 0.594000000)

)

spline 33 34 (

(3 1.192000000 0.972222222)

(3 1.154000000 1.205888888)

(3 1.153000000 1.450000000)

(3 1.162000000 1.601851852)

(3 1.175000000 1.769000000)

(3 1.185185185 1.935185185)

(3 1.162000000 2.123000000)

(3 1.157407407 2.305555556)

(3 1.206000000 2.523000000)
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(3 1.305555556 2.740740741)

(3 1.460000000 2.898000000)

)

spline 34 35 (

(3 1.915000000 2.881000000)

(3 2.074074074 2.731481481)

(3 2.120000000 2.558000000)

)

spline 35 32 (

(3 2.097000000 2.166000000)

(3 2.064814815 1.962962963)

(3 2.026000000 1.791000000)

(3 1.990740741 1.592592593)

(3 1.999000000 1.441000000)

(3 2.027777778 1.194444444)

(3 2.008000000 1.075000000)

(3 1.962962963 0.953703704)

(3 1.897000000 0.789000000)

(3 1.796296296 0.611111111)

)

spline 36 37 (

(1 1.600000000 0.743000000)

(1 1.444444444 0.796296296)

(1 1.313000000 0.936000000)

)

spline 37 38 (

(1 1.113000000 1.182000000)

(1 1.020000000 1.333333333)

(1 0.973000000 1.529000000)

(1 0.940000000 1.703703704)

(1 0.927000000 1.850000000)

(1 0.925925926 1.990740741)

(1 0.947000000 2.198000000)

(1 0.981481481 2.351851852)

(1 1.080000000 2.508000000)

(1 1.190000000 2.646000000)

(1 1.313000000 2.765000000)

)

spline 38 39 (

(1 1.653000000 2.866000000)

(1 1.916666667 2.824074074)

(1 2.080000000 2.679000000)
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)

spline 39 36 (

(1 2.220000000 2.289000000)

(1 2.226000000 2.064814815)

(1 2.240000000 1.845000000)

(1 2.226000000 1.657407407)

(1 2.207000000 1.460000000)

(1 2.166000000 1.250000000)

(1 2.127000000 1.118000000)

(1 2.043000000 0.966000000)

(1 1.913000000 0.861000000)

)

);

boundary

(

inlet

{type patch;

faces

(

( 1 0 3 2)

);

}

outlet

{type patch;

faces

(

(37 36 39 38)

);

}

top

{type wall;

faces

(

( 0 4 7 3)

( 4 8 11 7)

( 8 12 15 11)

(12 16 19 15)

(16 20 23 19)

(20 24 27 23)
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(24 28 31 27)

(28 32 35 31)

(32 36 39 35)

);

}

bottom

{type wall;

faces

(

( 1 2 6 5)

( 5 6 10 9)

( 9 10 14 13)

(13 14 18 17)

(17 18 22 21)

(21 22 26 25)

(25 26 30 29)

(29 30 34 33)

(33 34 38 37)

);

}

front

{type wall;

faces

(

( 1 5 4 0)

( 5 9 8 4)

( 9 13 12 8)

(13 17 16 12)

(17 21 20 16)

(21 25 24 20)

(25 29 28 24)

(29 33 32 28)

(33 37 36 32)

);

}

back

{type wall;

faces

(
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( 2 3 7 6)

( 6 7 11 10)

(10 11 15 14)

(14 15 19 18)

(18 19 23 22)

(22 23 27 26)

(26 27 31 30)

(30 31 35 34)

(34 35 39 38)

);

}

); //end boundary

mergePatchPairs

(

);

<case>/system: File controlDict

This dictionary sets input parameters essential for the creation of the database.

application simpleFoam;

startFrom startTime;

startTime 0;

stopAt endTime;

endTime 50000;

deltaT 1;

writeControl timeStep;

writeInterval 1000;

purgeWrite 0;

writeFormat ascii;

writePrecision 6;

writeCompression uncompressed;

timeFormat general;

timePrecision 6;

runTimeModifiable yes;
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<case>/system: File fvSolution

This file controls the equation solvers, tolerances and algorithms.

solvers

{

p

{

solver GAMG;

// Geometric-algebraic multi-grid solver

tolerance 1e-06;

// Stop if the residual is below this solver

// tolerance

relTol 0.00;

// Or, stop if the ratio of curent residual

// to initial residual falls below this solver

// relTol

smoother GaussSeidel;

nPreSweeps 0;

nPostSweeps 2;

cacheAgglomeration true;

nCellsInCoarsestLevel 10;

agglomerator faceAreaPair;

mergeLevels 1;

}

U

{

solver smoothSolver;

smoother GaussSeidel;

nSweeps 2;

tolerance 1e-08;

relTol 0.00;

}

}

SIMPLE

{

nNonOrthogonalCorrectors 0;

pRefCell 0;
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pRefValue 0;

residualControl

{

p 1e-3;

U 1e-4;

}

}

relaxationFactors

{

default 0;

p 0.3;

U 0.7;

nuTilda 0.7;

}

<case>/system: File fvSchemes

This file sets the numerical schemes for terms., such as derivatives in equations.

ddtSchemes

{

default steadyState;

}

gradSchemes

{

default Gauss linear;

grad(p) Gauss linear;

grad(U) Gauss linear;

}

divSchemes

{

default none;

div(phi,U) Gauss linearUpwind grad(U);

div(phi,nuTilda)

Gauss linearUpwind grad(nuTilda);

div((nuEff*dev(T(grad(U))))) Gauss linear;

}
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laplacianSchemes

{

default none;

laplacian(nuEff,U) Gauss linear corrected;

laplacian((1|A(U)),p) Gauss linear corrected;

laplacian(DnuTildaEff,nuTilda)

Gauss linear corrected;

laplacian(1,p) Gauss linear corrected;

}

interpolationSchemes

{

default linear;

interpolate(U) linear;

}

snGradSchemes

{

default corrected;

}

fluxRequired

{

default no;

p ;

}
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Appendix B

Case Files: Peristaltic Motion

Simulations

B.1 Moving Frame

The following are the files for the standard case

<case>/0: File U

dimensions [0 1 -1 0 0 0 0];

internalField uniform (0 0 0);

boundaryField

{

upperWall

{

type fixedValue;

value uniform (-0.005 0 0);

}

roller

{

type fixedValue;

value uniform (0 0 0);

}
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leftBoundary

{

type zeroGradient;

}

rightBoundary

{

type zeroGradient;

}

centerLine

{

type symmetryPlane;

}

frontAndBack

{

type empty;

}

}

<case>/0: File p

dimensions [0 2 -2 0 0 0 0];

internalField uniform 0;

boundaryField

{

upperWall

{

type zeroGradient;

}

roller

{

type zeroGradient;

}

rightBoundary

{

type totalPressure;

p0 uniform 0;

gamma 1;

value uniform 0;

}

leftBoundary
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{

type totalPressure;

p0 uniform 0;

gamma 1;

value uniform 0;

}

centerLine

{

type symmetryPlane;

}

frontAndBack

{

type empty;

}

}

<case>/constant: File transportProperties

transportModel Newtonian;

nu nu [ 0 2 -1 0 0 0 0 ] 0.1452e-03;

<case>/constant: File RASProperties

RASModel laminar;\\ uses no turbulence models

turbulence off;

printCoeffs off;
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<case>/constant/polyMesh: File blockMeshDict

convertToMeters 1.0e-3;

vertices

(

//back side

( 0.00 10.00 -0.10)

// Vertex A0 = 0

( 0.00 0.00 -0.10)

// Vertex A2 = 1

( 33.00 0.00 -0.10)

// Vertex B2 = 2

( 33.00 10.00 -0.10)

// Vertex B0 = 3

( 57.00 10.00 -0.10)

// Vertex C0 = 4

( 57.00 0.00 -0.10)

// Vertex C2 = 5

( 90.00 0.00 -0.10)

// Vertex D2 = 6

( 90.00 10.00 -0.10)

// Vertex D0 = 7

//front side

( 0.00 10.00 0.10)

// Vertex A1 = 8

( 0.00 0.00 0.10)

// Vertex A3 = 9

( 33.00 0.00 0.10)

// Vertex B3 = 10

( 33.00 10.00 0.10)

// Vertex B1 = 11

( 57.00 10.00 0.10)

// Vertex C1 = 12

( 57.00 0.00 0.10)

// Vertex C3 = 13

( 90.00 0.00 0.10)

// Vertex D3 = 14

( 90.00 10.00 0.10)

// Vertex D1 = 15
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);

blocks

(

hex(1 2 3 0 9 10 11 8)(120 24 1)

simpleGrading (1 1 1) //blk 0

hex(2 5 4 3 10 13 12 11)(180 24 1)

simpleGrading (1 1 1) //blk 1

hex(5 6 7 4 13 14 15 12)(120 24 1)

simpleGrading (1 1 1) //blk 2

);

edges

(

arc 3 4 (45 4.00 -0.10)

arc 11 12 (45 4.00 0.10)

);

boundary

(

leftBoundary

{ type patch;

faces

(

(0 1 9 8) //on blk0

);

}

rightBoundary

{ type patch;

faces

(

(15 14 6 7) //on blk2

);

}

centerLine

{ type symmetryPlane;

faces

(

(1 2 10 9) //on blk0

(2 5 13 10) //on blk1

(5 6 14 13) //on blk2

);

}

upperWall
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{ type wall;

faces

(

(0 3 11 8) //on blk0

(4 7 15 12) //on blk1

);

}

roller

{ type wall;

faces

(

(3 4 12 11) //on blk1

);

}

frontAndBack //for 2D case

{ type empty;

faces

(

( 3 2 1 0) //on blk0 back

( 8 9 10 11) //on blk0 front

( 4 5 2 3) //on blk1 back

(11 10 13 12) //on blk1 front

( 7 6 5 4) //On blk2 back

(12 13 14 15) //on blk2 front

);

}

);

mergePatchPairs

(

);

<case>/system: File controlDict

application simpleFoam;

startFrom startTime;

startTime 0;

stopAt endTime;

endTime 20000;

deltaT 1;
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writeControl timeStep;

writeInterval 500;

purgeWrite 0;

writeFormat ascii;

writePrecision 6;

writeCompression off;

timeFormat general;

timePrecision 6;

runTimeModifiable true;

<case>/system: File fvSolution

solvers

{

p

{

solver PCG;

preconditioner DIC;

tolerance 1e-06;

relTol 0.01;

}

U

{

solver PBiCG;

preconditioner DILU;

tolerance 1e-05;

relTol 0.1;

}

// The following parameters are not used for laminar

k

{

solver PBiCG;

preconditioner DILU;

tolerance 1e-05;

relTol 0.1;

}

epsilon

{

solver PBiCG;

preconditioner DILU;
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tolerance 1e-05;

relTol 0.1;

}

R

{

solver PBiCG;

preconditioner DILU;

tolerance 1e-05;

relTol 0.1;

}

nuTilda

{

solver PBiCG;

preconditioner DILU;

tolerance 1e-05;

relTol 0.1;

}

}

SIMPLE

{

nNonOrthogonalCorrectors 0;

residualControl

{

p 1e-6;

U 1e-7;

"(k|epsilon|omega)" 1e-3;

}

}

relaxationFactors

{

p 0.3;

U 0.7;

k 0.7;

epsilon 0.7;

R 0.7;

nuTilda 0.7;

}
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<case>/system: File fvSchemes

ddtSchemes

{

default steadyState;

}

gradSchemes

{

default Gauss linear;

grad(p) Gauss linear;

grad(U) Gauss linear;

}

divSchemes

{

default none;

div(phi,U) Gauss upwind;

div(phi,k) Gauss upwind;

div(phi,epsilon) Gauss upwind;

div(phi,R) Gauss upwind;

div(R) Gauss linear;

div(phi,nuTilda) Gauss upwind;

div((nuEff*dev(T(grad(U))))) Gauss linear;

}

laplacianSchemes

{

default none;

laplacian(nuEff,U) Gauss linear corrected;

laplacian((1|A(U)),p) Gauss linear corrected;

laplacian(DkEff,k) Gauss linear corrected;

laplacian(DepsilonEff,epsilon)

Gauss linear corrected;

laplacian(DREff,R) Gauss linear corrected;

laplacian(DnuTildaEff,nuTilda)

Gauss linear corrected;

}

interpolationSchemes

{

default linear;

interpolate(U) linear;

}

snGradSchemes
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{

default corrected;

}

fluxRequired

{

default no;

p ;

}

B.2 Fixed Frame

<case>/0: File U

dimensions [0 1 -1 0 0 0 0];

internalField uniform (0 0 0);

boundaryField

{

leftBoundary

{

type zeroGradient;

}

rightBoundary

{

type zeroGradient;

}

centerLine

{

type symmetryPlane;

}

upperWall

{

type movingWallNormalVel;

value uniform (0 0 0);

}

frontAndBack

{

type empty;

}
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}

<case>/0: File p

dimensions [0 2 -2 0 0 0 0];

internalField uniform 0;

boundaryField

{

leftBoundary

{

type totalPressure;

p0 uniform 0;

gamma 1;

value uniform 0;

}

rightBoundary

{

type totalPressure;

p0 uniform 0;

gamma 1;

value uniform 0;

}

centerLine

{

type symmetryPlane;

}

upperWall

{

type zeroGradient;

}

frontAndBack

{

type empty;

}

}
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<case>/0: File pointMotionU

This file contains some input values that control the movement of the upper wall.

dimensions [0 1 -1 0 0 0 0];

internalField uniform (0 0 0);

boundaryField

{

leftBoundary

{

type zeroGradient;

}

rightBoundary

{

type zeroGradient;

}

centerLine

{

type symmetryPlane;

}

upperWall

{

type dynPerCircle;

circleRadius 0.01500;

xCompInitialCenter 0.0;

speed 0.00500;

yCompFinalCenter 0.01900;

value uniform (0 0 0);

}

frontAndBack

{

type empty;

}

}

<case>/constant: File dynamicMeshDict

dynamicFvMesh dynamicMotionSolverFvMesh;
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motionSolverLibs ("libfvMotionSolvers.dylib");

solver velocityLaplacian;

diffusivity directional (1 1200 0);

<case>/constant: File turbulenceProperties

simulationType laminar;

<case>/constant/polyMesh: File blockMeshDict

convertToMeters 1.0e-03;

vertices

(

( 0.00 0.00 -0.10)// vertex#0

(180.00 0.00 -0.10)// vertex#1

(180.00 10.00 -0.10)// vertex#2

( 0.00 10.00 -0.10)// vertex#3

( 0.00 0.00 0.10)// vertex#4

(180.00 0.00 0.10)// vertex#5

(180.00 10.00 0.10)// vertex#6

( 0.00 10.00 0.10)// vertex#7

);

blocks

(

hex (0 1 2 3 4 5 6 7) (810 23 1)

simpleGrading (1 1 1)

// block #0

);

edges

(

);

boundary

(

leftBoundary

{

type patch;

faces
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(

(0 3 7 4)

);

}

rightBoundary

{

type patch;

faces

(

(5 6 2 1)

);

}

centerLine

{

type symmetryPlane;

faces

(

(1 0 4 5)

);

}

upperWall

{

type wall;

faces

(

(2 3 7 6)

);

}

frontAndBack

{

type empty;

faces

(

(0 1 2 3)

(5 4 7 6)

);

}

);

mergePatchPairs

(

);
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<case>/system: File controlDict

application transientSimpleDyMFoam;

startFrom startTime;

startTime 0;

stopAt endTime;

endTime 48;

deltaT 0.00005;

writeControl adjustableRunTime;

writeInterval 2;

purgeWrite 0;

writeFormat ascii;

writePrecision 6;

writeCompression off;

timeFormat general;

timePrecision 6;

runTimeModifiable true;

adjustTimeStep yes;

maxCo 0.5;

maxDeltaT 1; // Maximum deltaT in seconds

libs

(

"dynPerCircle.dylib"

"movingWallNormalVel.dylib"

);

<case>/system: File fvSolution

solvers

{

pcorr

{

solver GAMG;

tolerance 1e-7;

relTol 0;

smoother GaussSeidel;

nPreSweeps 0;

nPostSweeps 2;
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cacheAgglomeration off;

agglomerator faceAreaPair;

nCellsInCoarsestLevel 20;

mergeLevels 1;

// controls the speed at which coarsening

// or refinement levels is performed.

maxIter 100;

minIter 1;

}

p

{

$pcorr;

tolerance 1e-6;

relTol 0;

}

pFinal

{

$p;

tolerance 1e-7;

relTol 0;

}

"(U|k|epsilon|omega|nuTilda)"

{

solver smoothSolver;

smoother GaussSeidel;

nSweeps 1;

tolerance 1e-07;

relTol 0;

maxIter 100;

minIter 1;

};

"(U|k|epsilon|omega|nuTilda)Final"

{

solver smoothSolver;

smoother GaussSeidel;

nSweeps 2;

tolerance 1e-07;

relTol 0;

maxIter 100;

minIter 1;

}

cellMotionU
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{

solver PCG;

preconditioner DIC;

tolerance 1e-08;

relTol 0;

}

}

PISO

{

nCorrectors 2;

nOuterCorrectors 20;

nNonOrthogonalCorrectors 0;

correctPhi true;

}

<case>/system: File fvSchemes

ddtSchemes

{

default Euler;

}

gradSchemes

{

default Gauss linear;

grad(p) Gauss linear;

}

divSchemes

{

default none;

div(phi,U) Gauss linear;

div((nuEff*dev(T(grad(U))))) Gauss linear;

}

laplacianSchemes

{

default none;

laplacian(nu,U) Gauss linear corrected;

laplacian(rAU,pcorr) Gauss linear corrected;

laplacian(rAU,p) Gauss linear corrected;

laplacian(diffusivity,cellMotionU)

Gauss linear uncorrected;
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laplacian(nuEff,U) Gauss linear uncorrected;

}

interpolationSchemes

{

default linear;

interpolate(HbyA) linear;

}

snGradSchemes

{

default corrected;

}

fluxRequired

{

default no;

pcorr ;

p ;

}
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Appendix C

OpenFOAM Codes

C.1 movingWallNormalVel boundary condition

movingWallNormalVelFvPatchVectorField.H

SourceFiles

movingWallNormalVelFvPatchVectorField.C

\*-------------------------------------------*/

#ifndef movingWallNormalVelFvPatchVectorField_H

#define movingWallNormalVelFvPatchVectorField_H

#include "fvPatchFields.H"

#include "fixedValueFvPatchFields.H"

// * * * * * * * * * * * * * * * * * * * * * //

namespace Foam

{

/*-------------------------------------------*\

Class movingWallNormalVelFvPatch Declaration

\*-------------------------------------------*/
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class movingWallNormalVelFvPatchVectorField:

public fixedValueFvPatchVectorField

{

// Private data

//- Name of velocity field

word UName_;

public:

//- Runtime type information

// aaalhaba110 08-15-12 (changed the type name

// from movingWallVelocity to:

TypeName("movingWallNormalVel");

// aaalhaba111

// Constructors

//- Construct from patch and internal field

movingWallNormalVelFvPatchVectorField

(

const fvPatch&,

const DimensionedField<vector, volMesh>&

);

//- Construct from patch, internal field and

// dictionary

movingWallNormalVelFvPatchVectorField

(

const fvPatch&,

const DimensionedField<vector, volMesh>&,

const dictionary&

);

//- Construct by mapping given

// movingWallNormalVelFvPatchVectorField

// onto a new patch

movingWallNormalVelFvPatchVectorField

(

const movingWallNormalVelFvPatchVectorField&,
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const fvPatch&,

const DimensionedField<vector, volMesh>&,

const fvPatchFieldMapper&

);

//- Construct as copy

movingWallNormalVelFvPatchVectorField

(

const movingWallNormalVelFvPatchVectorField&

);

//- Construct and return a clone

virtual tmp<fvPatchVectorField> clone() const

{

return tmp<fvPatchVectorField>

(

new movingWallNormalVelFvPatchVectorField(*this)

);

}

//- Construct as copy setting internal field

// reference

movingWallNormalVelFvPatchVectorField

(

const movingWallNormalVelFvPatchVectorField&,

const DimensionedField<vector, volMesh>&

);

//- Construct and return a clone setting

// internal field reference

virtual tmp<fvPatchVectorField> clone

(

const DimensionedField<vector, volMesh>& iF

) const

{

return tmp<fvPatchVectorField>

(

new

movingWallNormalVelFvPatchVectorField(*this,iF)

);

}
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// Member functions

//- Update the coefficients associated with the

// patch field

virtual void updateCoeffs();

//- Write

virtual void write(Ostream&) const;

};

// * * * * * * * * * * * * * * * * * * * * * //

} // End namespace Foam

// * * * * * * * * * * * * * * * * * * * * * //

#endif

// ****************************************** //

movingWallNormalVelFvPatchVectorField.C

// aaalhaba110 08-15-2012

#include

"movingWallNormalVelFvPatchVectorField.H"

// aaalhaba111

// Note: replacing all movingWallVelocity to the

// new class movingWallNormalVel

#include "addToRunTimeSelectionTable.H"

#include "volFields.H"

#include "surfaceFields.H"

#include "fvcMeshPhi.H"

// *************** Constructors ************ //

Foam::movingWallNormalVelFvPatchVectorField::
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movingWallNormalVelFvPatchVectorField

(

const fvPatch& p,

const DimensionedField<vector, volMesh>& iF

)

:

fixedValueFvPatchVectorField(p, iF),

UName_("U")

{}

Foam::movingWallNormalVelFvPatchVectorField::

movingWallNormalVelFvPatchVectorField

(

const movingWallNormalVelFvPatchVectorField& ptf,

const fvPatch& p,

const DimensionedField<vector, volMesh>& iF,

const fvPatchFieldMapper& mapper

)

:

fixedValueFvPatchVectorField(ptf, p, iF, mapper),

UName_(ptf.UName_)

{}

Foam::movingWallNormalVelFvPatchVectorField::

movingWallNormalVelFvPatchVectorField

(

const fvPatch& p,

const DimensionedField<vector, volMesh>& iF,

const dictionary& dict

)

:

fixedValueFvPatchVectorField(p, iF),

UName_(dict.lookupOrDefault<word>("U", "U"))

{

fvPatchVectorField::operator=

(vectorField("value", dict, p.size()));

}

Foam::movingWallNormalVelFvPatchVectorField::
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movingWallNormalVelFvPatchVectorField

(

const

movingWallNormalVelFvPatchVectorField& mwvpvf

)

:

fixedValueFvPatchVectorField(mwvpvf),

UName_(mwvpvf.UName_)

{}

Foam::movingWallNormalVelFvPatchVectorField::

movingWallNormalVelFvPatchVectorField

(

const

movingWallNormalVelFvPatchVectorField& mwvpvf,

const DimensionedField<vector, volMesh>& iF

)

:

fixedValueFvPatchVectorField(mwvpvf, iF),

UName_(mwvpvf.UName_)

{}

// ************* Member Functions ************ //

void Foam::

movingWallNormalVelFvPatchVectorField::

updateCoeffs()

{

if (updated())

{

return;

}

const fvPatch& p = patch();

const polyPatch& pp = p.patch();

const

fvMesh& mesh=dimensionedInternalField().mesh();

const pointField& oldPoints =

mesh.oldPoints();

212



vectorField oldFc(pp.size());

forAll(oldFc, i)

{

oldFc[i] = pp[i].centre(oldPoints);

}

const vectorField

Up((pp.faceCentres() - oldFc)/

mesh.time().deltaTValue());

const volVectorField&

U = db().lookupObject<volVectorField>(UName_);

scalarField phip

(

p.patchField

<surfaceScalarField, scalar>(fvc::meshPhi(U))

);

const vectorField n(p.nf());

const scalarField& magSf = p.magSf();

tmp<scalarField> Un = phip/(magSf + VSMALL);

/* aaalhaba010 08-15-12

(commented out the old operator)

vectorField::

operator=(Up + n*(Un - (n & Up)));

aaalhaba011 */

// aaalhaba120 08-15-12 (project the

// movingWallVelocity

// onto normal direction)

// Note: (a & b) is for the dot product between

// vectors

// a and b

vectorField::

operator=((n & (Up + n*(Un - (n & Up))))*n);

// aaalhaba121

fixedValueFvPatchVectorField::updateCoeffs();

}
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void Foam::

movingWallNormalVelFvPatchVectorField::

write(Ostream& os) const

{

fvPatchVectorField::write(os);

writeEntryIfDifferent<word>(os,"U", "U", UName_);

writeEntry("value", os);

}

// ****************************************** //

namespace Foam

{

makePatchTypeField

(

fvPatchVectorField,

movingWallNormalVelFvPatchVectorField

);

}

// ****************************************** //

C.2 dynPerCircle boundary condition

dynPerCircle.H

Class

Foam::dynPerCircle

Description

Foam::dynPerCircle

SourceFiles dynPerCircle.C

\*---------------------------------------------*/
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#ifndef dynPerCircle_H

#define dynPerCircle_H

#include "fixedValuePointPatchField.H"

// * * * * * * * * * * * * * * * * * * * * * //

namespace Foam

{

/*--------------------------------------------*\

Class dynPerCircle

Declaration

\*--------------------------------------------*/

class

dynPerCircle

:

public fixedValuePointPatchField<vector>

{

// Private data

scalar circleRadius_;

scalar xCompInitialCenter_;

scalar speed_;

scalar yCompFinalCenter_;

pointField p0_;

public:

//- Runtime type information

TypeName("dynPerCircle");

// Constructors

//- Construct from patch and internal field

dynPerCircle

(

const pointPatch&,

const DimensionedField<vector, pointMesh>&

);

//- Construct from patch, internal field and
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// dictionary

dynPerCircle

(

const pointPatch&,

const DimensionedField<vector, pointMesh>&,

const dictionary&

);

//- Construct by mapping given

// patchField<vector> onto

// a new patch

dynPerCircle

(

const dynPerCircle&,

const pointPatch&,

const DimensionedField<vector, pointMesh>&,

const pointPatchFieldMapper&

);

//- Construct and return a clone

virtual

autoPtr<pointPatchField<vector> > clone() const

{

return autoPtr<pointPatchField<vector> >

(

new dynPerCircle

(

*this

)

);

}

//- Construct as copy setting internal field

// reference

dynPerCircle

(

const dynPerCircle&,

const DimensionedField<vector, pointMesh>&

);

//- Construct and return a clone setting

// internal field
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// reference

virtual autoPtr<pointPatchField<vector> > clone

(

const DimensionedField<vector, pointMesh>& iF

) const

{

return autoPtr<pointPatchField<vector> >

(

new dynPerCircle

(

*this,

iF

)

);

}

// Member functions

// Mapping functions

//- Map (and resize as needed) from self given

// a mapping

// object

virtual void autoMap

(

const pointPatchFieldMapper&

);

//- Reverse map the given pointPatchField onto

// this

// pointPatchField

virtual void rmap

(

const pointPatchField<vector>&,

const labelList&

);

// Evaluation functions

//- Update the coefficients associated with the

// patch

// field
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virtual void updateCoeffs();

//- Write

virtual void write(Ostream&) const;

};

// * * * * * * * * * * * * * * * * * * * * * //

} // End namespace Foam

// * * * * * * * * * * * * * * * * * * * * * //

#endif

// ******************************************//

dynPerCircle.C

#include "dynPerCircle.H"

#include "pointPatchFields.H"

#include "addToRunTimeSelectionTable.H"

#include "Time.H"

#include "polyMesh.H"

#include "mathematicalConstants.H"

// * * * * * * * * * * * * * * * * * * * * * * //

namespace Foam

{

// * * * * * * Constructors * * * * * * * //

dynPerCircle::

dynPerCircle

(

const pointPatch& p,

const DimensionedField<vector, pointMesh>& iF

)
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:

fixedValuePointPatchField<vector>(p, iF),

circleRadius_(0.0),

xCompInitialCenter_(0.0),

speed_(0.0),

yCompFinalCenter_(0.0),

p0_(p.localPoints())

{}

dynPerCircle::

dynPerCircle

(

const pointPatch& p,

const DimensionedField<vector, pointMesh>& iF,

const dictionary& dict

)

:

fixedValuePointPatchField<vector>(p, iF, dict),

circleRadius_(readScalar

(dict.lookup("circleRadius"))),

xCompInitialCenter_(readScalar

(dict.lookup("xCompInitialCenter"))),

speed_(readScalar(dict.lookup("speed"))),

yCompFinalCenter_(readScalar

(dict.lookup("yCompFinalCenter")))

{

if (!dict.found("value"))

{

updateCoeffs();

}

if (dict.found("p0"))

{

p0_ = vectorField("p0", dict , p.size());

}

else

{

p0_ = p.localPoints();

}

}

dynPerCircle::
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dynPerCircle

(

const dynPerCircle& ptf,

const pointPatch& p,

const DimensionedField<vector, pointMesh>& iF,

const pointPatchFieldMapper& mapper

)

:

fixedValuePointPatchField<vector>

(ptf, p, iF, mapper),

circleRadius_(ptf.circleRadius_),

xCompInitialCenter_(ptf.xCompInitialCenter_),

speed_(ptf.speed_),

yCompFinalCenter_(ptf.yCompFinalCenter_),

p0_(ptf.p0_)

{}

dynPerCircle::

dynPerCircle

(

const dynPerCircle& ptf,

const DimensionedField<vector, pointMesh>& iF

)

:

fixedValuePointPatchField<vector>(ptf, iF),

circleRadius_(ptf.circleRadius_),

xCompInitialCenter_(ptf.xCompInitialCenter_),

speed_(ptf.speed_),

yCompFinalCenter_(ptf.yCompFinalCenter_),

p0_(ptf.p0_)

{}

// * * * * * * Member Functions * * * * * //

void dynPerCircle::autoMap

(

const pointPatchFieldMapper& m

)

{
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fixedValuePointPatchField<vector>::autoMap(m);

p0_.autoMap(m);

}

void dynPerCircle::rmap

(

const pointPatchField<vector>& ptf,

const labelList& addr

)

{

const

dynPerCircle& aOVptf =

refCast

<const dynPerCircle>(ptf);

fixedValuePointPatchField<vector>::

rmap(aOVptf, addr);

p0_.rmap(aOVptf.p0_, addr);

}

void

dynPerCircle::updateCoeffs()

{

if (this->updated())

{

return;

}

const polyMesh& mesh =

this->dimensionedInternalField().mesh()();

const Time& t = mesh.time();

const pointPatch& p = this->patch();

scalar yMax

(

max(p0_.component(vector::Y)())

);

scalar yCompInitialCenter

(

yMax+circleRadius_

);
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scalar varCenterXcomp

(

xCompInitialCenter_+speed_*t.value()

);

scalar varCenterYcomp = 0.0;

if

(

(t.value() > 0)

&&

(t.value() < 1)

)

{

varCenterYcomp =

yCompInitialCenter-

t.value()*
(yCompInitialCenter-yCompFinalCenter_);

}

else

{

varCenterYcomp = yCompFinalCenter_;

}

scalar yDiff

(

yMax-varCenterYcomp

);

scalar yDiffSquared

(

yDiff*yDiff

);

scalar yRadicand

(

circleRadius_*circleRadius_-yDiffSquared

);

scalar yRadicandSqrt

(

sqrt(yRadicand)

);
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scalar lowerBound

(

varCenterXcomp-yRadicandSqrt

);

scalar upperBound

(

varCenterXcomp+yRadicandSqrt

);

scalar b = -1.0;

pointField

yCenterShift(p0_.size(),point(0.0,0.0,0.0));

pointField

velocity(p0_.size(),point(0.0,0.0,0.0));

forAll(p0_,pointI)

{

scalar xRadicandSqrt = 0.0;

if

(

(p0_.component(vector::X)()[pointI] > lowerBound)

&&

(p0_.component(vector::X)()[pointI] < upperBound)

)

{//major

scalar xDiff

(

p0_.component(vector::X)()[pointI]-varCenterXcomp

);

scalar xDiffSquared

(

xDiff*xDiff

);
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scalar xRadicand

(

circleRadius_*circleRadius_-xDiffSquared

);

xRadicandSqrt = sqrt(xRadicand);

yCenterShift[pointI]=

point(0.0,varCenterYcomp-

1*p0_.component(vector::Y)()[pointI],0.0);

}

else

{

xRadicandSqrt = 0.0;

yCenterShift[pointI]=point(0.0,0.0,0.0);

}

velocity[pointI]

=yCenterShift[pointI]+

b*point(0.0,xRadicandSqrt,0.0);

}

pointField::operator=

(

(p0_

+velocity

-p.localPoints()

)/t.deltaT().value()

);

fixedValuePointPatchField<vector>::

updateCoeffs();

}

void

dynPerCircle::

write

(

Ostream& os

) const
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{

pointPatchField<vector>::write(os);

os.writeKeyword("circleRadius")

<< circleRadius_ << token::END_STATEMENT << nl;

os.writeKeyword("xCompInitialCenter")

<< xCompInitialCenter_ << token::END_STATEMENT << nl;

os.writeKeyword("speed")

<< speed_ << token::END_STATEMENT << nl;

os.writeKeyword("yCompFinalCenter")

<< yCompFinalCenter_ << token::END_STATEMENT << nl;

p0_.writeEntry("p0", os);

writeEntry("value", os);

}

// * * * * * * * * * * * * * * ** * * * * * //

makePointPatchTypeField

(

pointPatchVectorField,

dynPerCircle

);

// * * * * * * * * * * * * * * * * * * * * //

} // End namespace Foam

// **************************************** //

C.3 Parabolic wave

0/pointMotionU

FoamFile

{

version 2.0;
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format ascii;

class pointVectorField;

object pointMotionU;

}

// * * * * * * * * * * * * * * * * * * * * //

dimensions [0 1 -1 0 0 0 0];

internalField uniform (0 0 0);

boundaryField

{

leftBoundary

{

type zeroGradient;

}

rightBoundary

{

type zeroGradient;

}

centerLine

{

type symmetryPlane;

}

upperWall

{

type dynPerParabolic;

coeffA 41.66667;

xCompInitVertex 0.000;

speed 0.005;

yCompFinVertex 0.004;

value uniform (0 0 0);

}

frontAndBack

{

type empty;

}

226



}

dynPerParabolic.H

Class

Foam::dynPerParabolic

Description

Foam::dynPerParabolic

SourceFiles

dynPerParabolic.C

\*-----------------------------------------*/

#ifndef dynPerParabolic_H

#define dynPerParabolic_H

#include "fixedValuePointPatchField.H"

// * * * * * * * * * * * * * * * * * * * * //

namespace Foam

{

/*-----------------------------------------*\

Class dynPerParabolic Declaration

\*-----------------------------------------*/

class dynPerParabolic

:

public fixedValuePointPatchField<vector>

{

// Private data

scalar xCompInitVertex_;

scalar coeffA_;

scalar speed_;

scalar yCompFinVertex_;

pointField p0_;
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public:

//- Runtime type information

TypeName("dynPerParabolic");

// Constructors

//- Construct from patch and

// internal field

dynPerParabolic

(

const pointPatch&,

const DimensionedField<vector, pointMesh>&

);

//- Construct from patch, internal

// field and dictionary

dynPerParabolic

(

const pointPatch&,

const DimensionedField<vector, pointMesh>&,

const dictionary&

);

//- Construct by mapping given

// patchField<vector> onto a new patch

dynPerParabolic

(

const dynPerParabolic&,

const pointPatch&,

const DimensionedField<vector, pointMesh>&,

const pointPatchFieldMapper&

);

//- Construct and return a clone

virtual autoPtr<pointPatchField<vector> > <brk>

clone() const

{

return autoPtr<pointPatchField<vector> >

(

new dynPerParabolic
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(

*this

)

);

}

//- Construct as copy setting internal

// field reference

dynPerParabolic

(

const dynPerParabolic&,

const DimensionedField<vector, pointMesh>&

);

//- Construct and return a clone setting

// internal field reference

virtual autoPtr<pointPatchField<vector> > clone

(

const DimensionedField<vector, pointMesh>& iF

) const

{

return autoPtr<pointPatchField<vector> >

(

new dynPerParabolic

(

*this,

iF

)

);

}

// Member functions

// Mapping functions

//- Map (and resize as needed) from

// self given a mapping object

virtual void autoMap

(

const pointPatchFieldMapper&

);

//- Reverse map the given
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// pointPatchField onto this

// pointPatchField

virtual void rmap

(

const pointPatchField<vector>&,

const labelList&

);

// Evaluation functions

//- Update the coefficients associated

// with the patch field

virtual void updateCoeffs();

//- Write

virtual void write(Ostream&) const;

};

// * * * * * * * * * * * * * * * * * * * * //

} // End namespace Foam

// * * * * * * * * * * * * * * * * * * * * //

#endif

// ************************************** //

dynPerParabolic.C

#include "dynPerParabolic.H"

#include "pointPatchFields.H"

#include "addToRunTimeSelectionTable.H"

#include "Time.H"

#include "polyMesh.H"

#include "mathematicalConstants.H"
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// * * * * * * * * * * * * * * * * * * * //

namespace Foam

{

// * * * * * Constructors * * * * * //

dynPerParabolic::

dynPerParabolic

(

const pointPatch& p,

const DimensionedField<vector, pointMesh>& iF

)

:

fixedValuePointPatchField<vector>(p, iF),

xCompInitVertex_(0.0),

coeffA_(0.0),

speed_(0.0),

yCompFinVertex_(0.0),

p0_(p.localPoints())

{}

dynPerParabolic::

dynPerParabolic

(

const pointPatch& p,

const DimensionedField<vector, pointMesh>& iF,

const dictionary& dict

)

:

fixedValuePointPatchField<vector>(p, iF, dict),

xCompInitVertex_<<brk>>

(readScalar(dict.lookup("xCompInitVertex"))),

coeffA_(readScalar(dict.lookup("coeffA"))),

speed_(readScalar(dict.lookup("speed"))),

yCompFinVertex_<<brk>>

(readScalar(dict.lookup("yCompFinVertex")))

{

if (!dict.found("value"))

{

updateCoeffs();

}
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if (dict.found("p0"))

{

p0_ = vectorField("p0", dict , p.size());

}

else

{

p0_ = p.localPoints();

}

}

dynPerParabolic::

dynPerParabolic

(

const dynPerParabolic& ptf,

const pointPatch& p,

const DimensionedField<vector, pointMesh>& iF,

const pointPatchFieldMapper& mapper

)

:

fixedValuePointPatchField<vector> <<brk>>

(ptf, p, iF, mapper),

xCompInitVertex_(ptf.xCompInitVertex_),

coeffA_(ptf.coeffA_),

speed_(ptf.speed_),

yCompFinVertex_(ptf.yCompFinVertex_),

p0_(ptf.p0_)

{}

dynPerParabolic::

dynPerParabolic

(

const dynPerParabolic& ptf,

const DimensionedField<vector, pointMesh>& iF

)

:

fixedValuePointPatchField<vector>(ptf, iF),

xCompInitVertex_(ptf.xCompInitVertex_),

coeffA_(ptf.coeffA_),

speed_(ptf.speed_),

yCompFinVertex_(ptf.yCompFinVertex_),
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p0_(ptf.p0_)

{}

// * * * * * Member Functions * * * * * //

void dynPerParabolic::autoMap

(

const pointPatchFieldMapper& m

)

{

fixedValuePointPatchField<vector>::autoMap(m);

p0_.autoMap(m);

}

void dynPerParabolic::rmap

(

const pointPatchField<vector>& ptf,

const labelList& addr

)

{

const dynPerParabolic& aOVptf =

refCast<const dynPerParabolic>(ptf);

fixedValuePointPatchField<vector>:: <<brk>>

rmap(aOVptf, addr);

p0_.rmap(aOVptf.p0_, addr);

}

void dynPerParabolic::updateCoeffs()

{

if (this->updated())

{

return;

}

const polyMesh& mesh = this-> <<brk>>

dimensionedInternalField().mesh()();

const Time& t = mesh.time();

const pointPatch& p = this->patch();
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scalar yMax

(

max(p0_.component(vector::Y)())

);

scalar varVertexXcomp

(

xCompInitVertex_+speed_*t.value()

);

scalar yDiff

(

yMax-yCompFinVertex_

);

scalar ratio

(

yDiff/coeffA_

);

scalar sqrtRatio

(

sqrt(ratio)

);

scalar lowerBound

(

varVertexXcomp-sqrtRatio

);

scalar upperBound

(

varVertexXcomp+sqrtRatio

);

Info <<"lower"<<lowerBound;

Info <<"upper"<<upperBound;

pointField <<brk>>

yVertexShift(p0_.size(),point(0.0,0.0,0.0));

pointField <<brk>>

velocity(p0_.size(),point(0.0,0.0,0.0));

forAll(p0_,pointI)
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{

scalar yParabola=yMax;

if

(

(p0_.component(vector::X)()[pointI]>lowerBound)

&&

(p0_.component(vector::X)()[pointI]<upperBound)

)

{//major

scalar xDiff

(

p0_.component(vector::X)()[pointI]- <<brk>>

varVertexXcomp

);

scalar xDiffSqu

(

xDiff*xDiff

);

yParabola= coeffA_*xDiffSqu+yCompFinVertex_;

}

else

{

yParabola= yMax;

}

velocity[pointI]

=point(0.0,yParabola,0.0)- <<brk>>

point(0.0,yMax,0.0);

}

pointField::operator=

(

(p0_

+velocity

-p.localPoints()
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)/t.deltaT().value()

);

fixedValuePointPatchField<vector>:: <<brk>>

updateCoeffs();

}

void dynPerParabolic::write

(

Ostream& os

) const

{

pointPatchField<vector>::write(os);

os.writeKeyword("coeffA")

<< coeffA_ << token::END_STATEMENT << nl;

os.writeKeyword("xCompInitVertex")

<< xCompInitVertex_ <<brk>>

<< token::END_STATEMENT << nl;

os.writeKeyword("speed")

<< speed_ << token::END_STATEMENT << nl;

os.writeKeyword("yCompFinVertex")

<< yCompFinVertex_ <<brk>>

<< token::END_STATEMENT << nl;

p0_.writeEntry("p0", os);

writeEntry("value", os);

}

// * * * * * * * * * * * * * * * * * * * //

makePointPatchTypeField

(

pointPatchVectorField,

dynPerParabolic

);

// * * * * * * * * * * * * * * * * * * * //

} // End namespace Foam
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// ************************************* //

C.4 Sinusoidal wave

0/pointMotionU

FoamFile

{

version 2.0;

format ascii;

class pointVectorField;

object pointMotionU;

}

// * * * * * * * * * * * * * * * * * * * //

dimensions [0 1 -1 0 0 0 0];

internalField uniform (0 0 0);

boundaryField

{

leftBoundary

{

type zeroGradient;

}

rightBoundary

{

type zeroGradient;

}

centerLine

{

type symmetryPlane;

}
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upperWall

{

type dynPerSinusoidal;

amplitude 0.006;

waveLength 0.06;

speed 0.005;

value uniform (0 0 0);

}

frontAndBack

{

type empty;

}

}

// ************************************** //

dynPerSinusoidal.H

Class

Foam::dynPerSinusoidal

Description

Foam::dynPerSinusoidal

SourceFiles dynPerSinusoidal.C

\*-------------------------------------------*/

#ifndef dynPerSinusoidal_H

#define dynPerSinusoidal_H

#include "fixedValuePointPatchField.H"

// * * * * * * * * * * * * * * * * * * * * * //

namespace Foam

{
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/*-------------------------------------------*\

Class dynPerSinusoidal Declaration

\*-------------------------------------------*/

class dynPerSinusoidal

:

public fixedValuePointPatchField<vector>

{

// Private data

scalar amplitude_;

scalar waveLength_;

scalar speed_;

pointField p0_;

public:

//- Runtime type information

TypeName("dynPerSinusoidal");

// Constructors

//- Construct from patch and internal field

dynPerSinusoidal

(

const pointPatch&,

const DimensionedField<vector, pointMesh>&

);

//- Construct from patch, internal field and

// dictionary

dynPerSinusoidal

(

const pointPatch&,

const DimensionedField<vector, pointMesh>&,

const dictionary&

);

//- Construct by mapping given patchField<vector>

// onto

// a new patch

dynPerSinusoidal

(
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const

dynPerSinusoidal&,

const pointPatch&,

const DimensionedField<vector, pointMesh>&,

const pointPatchFieldMapper&

);

//- Construct and return a clone

virtual

autoPtr<pointPatchField<vector> > clone() const

{

return autoPtr<pointPatchField<vector> >

(

new

dynPerSinusoidal

(

*this

)

);

}

//- Construct as copy setting internal field

// reference

dynPerSinusoidal

(const

dynPerSinusoidal&,

const DimensionedField<vector, pointMesh>&

);

//- Construct and return a clone setting internal

// field

// reference

virtual autoPtr<pointPatchField<vector> > clone

(

const DimensionedField<vector, pointMesh>& iF

) const

{

return autoPtr<pointPatchField<vector> >

(

new dynPerSinusoidal

(

*this,
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iF

)

);

}

// Member functions

// Mapping functions

//- Map (and resize as needed) from self given a

// mapping

// object

virtual void autoMap

(

const pointPatchFieldMapper&

);

//- Reverse map the given pointPatchField onto

// this

// pointPatchField

virtual void rmap

(

const pointPatchField<vector>&,

const labelList&

);

// Evaluation functions

//- Update the coefficients associated with the

// patch field

virtual void updateCoeffs();

//- Write

virtual void write(Ostream&) const;

};

// * * * * * * * * * * * * * * * * * * * * * //

} // End namespace Foam

// * * * * * * * * * * * * * * * * * * * * * //
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#endif

// ***************************************** //

dynPerSinusoidal.C

#include "dynPerSinusoidal.H"

#include "pointPatchFields.H"

#include "addToRunTimeSelectionTable.H"

#include "Time.H"

#include "polyMesh.H"

#include "mathematicalConstants.H"

// * * * * * * * * * * * * * * * * * * * * * //

namespace Foam

{

// * * * * * * * * Constructors * * * * * * //

dynPerSinusoidal::dynPerSinusoidal

(

const pointPatch& p,

const DimensionedField<vector, pointMesh>& iF

)

:

fixedValuePointPatchField<vector>(p, iF),

amplitude_(0.0),

waveLength_(0.0),

speed_(0.0),

p0_(p.localPoints())

{}

dynPerSinusoidal::dynPerSinusoidal

(

const pointPatch& p,

const DimensionedField<vector, pointMesh>& iF,

const dictionary& dict

)
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:

fixedValuePointPatchField<vector>(p, iF, dict),

amplitude_(readScalar

(dict.lookup("amplitude"))),

waveLength_

(readScalar(dict.lookup("waveLength"))),

speed_(readScalar

(dict.lookup("speed")))

{

if (!dict.found("value"))

{

updateCoeffs();

}

if (dict.found("p0"))

{

p0_ = vectorField("p0", dict , p.size());

}

else

{

p0_ = p.localPoints();

}

}

dynPerSinusoidal::dynPerSinusoidal

(

const dynPerSinusoidal& ptf,

const pointPatch& p,

const DimensionedField<vector, pointMesh>& iF,

const pointPatchFieldMapper& mapper

)

:

fixedValuePointPatchField<vector>(ptf, p, iF, mapper),

amplitude_(ptf.amplitude_),

waveLength_(ptf.waveLength_),

speed_(ptf.speed_),

p0_(ptf.p0_)

{}

dynPerSinusoidal::dynPerSinusoidal

(
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const

dynPerSinusoidal& ptf,

const DimensionedField<vector, pointMesh>& iF

)

:

fixedValuePointPatchField<vector>(ptf, iF),

amplitude_(ptf.amplitude_),

waveLength_(ptf.waveLength_),

speed_(ptf.speed_),

p0_(ptf.p0_)

{}

// * * * * * * Member Functions * * * * //

void dynPerSinusoidal::autoMap

(

const pointPatchFieldMapper& m

)

{

fixedValuePointPatchField<vector>::autoMap(m);

p0_.autoMap(m);

}

void dynPerSinusoidal::rmap

(

const pointPatchField<vector>& ptf,

const labelList& addr

)

{// The following is a long line, so will break

// into three lines

const dynPerSinusoidal& aOVptf = //<brk>

refCast<const dynPerSinusoidalPoint //<brk>

PatchVectorField>(ptf);

fixedValuePointPatchField<vector>::rmap(aOVptf, addr);

p0_.rmap(aOVptf.p0_, addr);

}

void dynPerSinusoidal::updateCoeffs()
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{

if (this->updated())

{

return;

}

const polyMesh& mesh =

this->dimensionedInternalField().mesh()();

const Time& t = mesh.time();

const pointPatch& p = this->patch();

scalar yMax

(

max(p0_.component(vector::Y)())

);

scalar waveNumber

(2*constant::mathematical::pi/waveLength_

);

scalar lowerBound

(

0.25*waveLength_+speed_*t.value()

);

scalar upperBound

(

0.75*waveLength_+speed_*t.value()

);

pointField yShift(p0_.size(),point(0.0,0.0,0.0));

pointField

velocity(p0_.size(),point(0.0,0.0,0.0));

forAll(p0_,pointI)

{

scalar ySinusoidal = 0.0;

if

(

(p0_.component(vector::X)()[pointI]>lowerBound)

&&
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(p0_.component(vector::X)()[pointI]<upperBound)

)

{//major

scalar xDifference

(

p0_.component(vector::X)()[pointI]-

speed_*t.value()

);

scalar angle

(

waveNumber*xDifference

);

ySinusoidal

= amplitude_*cos(angle);

yShift[pointI]

=point(0.0,0.0,0.0);

}

else

{

yShift[pointI]=

point(0.0,-1*p0_.component(vector::Y)()[pointI]+

yMax,0.0);

}

velocity[pointI]=

yShift[pointI]+point(0.0,ySinusoidal,0.0);

}

pointField::operator=

(

(p0_

+velocity

-p.localPoints()

)/t.deltaT().value()

);
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fixedValuePointPatchField<vector>::updateCoeffs();

}

void dynPerSinusoidal::write

(

Ostream& os

) const

{

pointPatchField<vector>::write(os);

os.writeKeyword("amplitude")

<< amplitude_ << token::END_STATEMENT << nl;

os.writeKeyword("waveLength")

<< waveLength_ << token::END_STATEMENT << nl;

os.writeKeyword("speed")

<< speed_ << token::END_STATEMENT << nl;

p0_.writeEntry("p0", os);

writeEntry("value", os);

}

// * * * * * * * * * * * * * * * * * * * * * //

makePointPatchTypeField

(

pointPatchVectorField,

dynPerSinusoidal

);

// * * * * * * * * * * * * * * * * * * * * //

} // End namespace Foam

// *************************************** //
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C.5 transientSimpleDyMFoam

checkTotalVolume.H

scalar newTotalVolume =

sum(mesh.cellVolumes());

Info<< "Volume: new = "

<< newTotalVolume << " old = " << totalVolume

<< " change = "

<< Foam::mag(newTotalVolume - totalVolume)<<endl;

totalVolume = newTotalVolume;

correctPhi.H

{

wordList pcorrTypes(p.boundaryField().types());

for (label i=0; i<p.boundaryField().size(); i++)

{

if (p.boundaryField()[i].fixesValue())

{

pcorrTypes[i] =

fixedValueFvPatchScalarField::typeName;

}

}

volScalarField pcorr

(

IOobject

(

"pcorr",

runTime.timeName(),

mesh,

IOobject::NO_READ,

IOobject::NO_WRITE
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),

mesh,

dimensionedScalar("pcorr", p.dimensions(), 0.0),

pcorrTypes

);

# include "continuityErrs.H"

// Flux predictor

phi = (fvc::interpolate(U) & mesh.Sf());

rAU == runTime.deltaT();

for(int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)

{

fvScalarMatrix pcorrEqn

(

fvm::laplacian(rAU, pcorr) == fvc::div(phi)

);

pcorrEqn.setReference(pRefCell, pRefValue);

pcorrEqn.solve();

if (nonOrth == nNonOrthCorr)

{

phi -= pcorrEqn.flux();

}

// Fluxes are corrected to absolute velocity and

// further corrected

// later. HJ, 6/Feb/2009

}

}

createFields.H

Info<< "Reading field p\n" << endl;

volScalarField p

(

IOobject

(

"p",
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runTime.timeName(),

mesh,

IOobject::MUST_READ,

IOobject::AUTO_WRITE

),

mesh

);

Info<< "Reading field U\n" << endl;

volVectorField U

(

IOobject

(

"U",

runTime.timeName(),

mesh,

IOobject::MUST_READ,

IOobject::AUTO_WRITE

),

mesh

);

# include "createPhi.H"

label pRefCell = 0;

scalar pRefValue = 0.0;

setRefCell

(p, mesh.solutionDict().subDict("PISO"), //<brk>

pRefCell, pRefValue);

scalar totalVolume = sum(mesh.V()).value();

volScalarField rAU

(

IOobject

(

"rAU",

runTime.timeName(),

mesh

),
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mesh,

runTime.deltaT(),

zeroGradientFvPatchScalarField::typeName

);

singlePhaseTransportModel

laminarTransport(U, phi);

autoPtr<incompressible::RASModel> turbulence

(

incompressible::RASModel::

New(U, phi, laminarTransport)

);

readControls.H

# include "readTimeControls.H"

# include "readPISOControls.H"

bool correctPhi = false;

if (piso.found("correctPhi"))

{

correctPhi = Switch(piso.lookup("correctPhi"));

}

bool checkMeshCourantNo = false;

if (piso.found("checkMeshCourantNo"))

{

checkMeshCourantNo =

Switch(piso.lookup("checkMeshCourantNo"));

}

transientSimpleDyMFoam.C

Application
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transientSimpleDyMFoam

Description

Transient solver for incompressible, turbulent

flow of Newtonian

fluids with dynamic mesh. Solver implements a

SIMPLE-based

algorithm in time-stepping mode.

Author

Hrvoje Jasak, Wikki Ltd. All rights reserved.

Modification

Evaluation of turbulence model moved inside

the

SIMPLE loop.

- Mikko Auvinen, Aalto University

\*--------------------------------------------*/

#include "fvCFD.H"

// The following is a long line, so will break

// into two

#include //<brk>

"incompressible/singlePhaseTransportModel/

//<brk>

singlePhaseTransportModel.H"

#include "incompressible/RASModel/RASModel.H"

#include "dynamicFvMesh.H"

// * * * * * * * * * * * * * * * * * * * * //

int main(int argc, char *argv[])

{

# include "setRootCase.H"

# include "createTime.H"

# include "createDynamicFvMesh.H"

# include "initContinuityErrs.H"

# include "createFields.H"

// * * * * * * * * * * * * * * * * * * * * //
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Info<< "\nStarting time loop\n" << endl;

while (runTime.run())

{

# include "readControls.H"

# include "checkTotalVolume.H"

# include "CourantNo.H"

// Make the fluxes absolute

fvc::makeAbsolute(phi, U);

# include "setDeltaT.H"

runTime++;

Info<< "Time = "<<runTime.timeName()<< nl << endl;

bool meshChanged = mesh.update();

# include "volContinuity.H"

if (correctPhi && meshChanged)

{

// Fluxes will be corrected to absolute velocity

// HJ, 6/Feb/2009

# include "correctPhi.H"

}

// Make the fluxes relative to the mesh motion

fvc::makeRelative(phi, U);

if (checkMeshCourantNo)

{

# include "meshCourantNo.H"

}

// --- SIMPLE loop

for (int ocorr = 0; ocorr < nOuterCorr; ocorr++)

{

// # include "CourantNo.H" -- mikko
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# include "UEqn.H"

rAU = 1.0/UEqn.A();

U = rAU*UEqn.H();

phi = (fvc::interpolate(U) & mesh.Sf());

//+ fvc::ddtPhiCorr(rAU, U, phi);

adjustPhi(phi, U, p);

p.storePrevIter();

for

(int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)

{

fvScalarMatrix pEqn

(

fvm::laplacian(rAU, p) == fvc::div(phi)

);

pEqn.setReference(pRefCell, pRefValue);

if

(ocorr == nOuterCorr - 1&&nonOrth == nNonOrthCorr)

{

pEqn.solve(mesh.solver(p.name() + "Final"));

}

else

{

pEqn.solve(mesh.solver(p.name()));

}

if (nonOrth == nNonOrthCorr)

{

phi -= pEqn.flux();

}

}

# include "continuityErrs.H"

//Explicitly relax pressure for momentum corrector

p.relax();
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// Make the fluxes relative to the mesh motion

fvc::makeRelative(phi, U);

U -= rAU*fvc::grad(p);

U.correctBoundaryConditions();

// The turbulence model evaluation is necessary

// within

// the SIMPLE loop. -- mikko

turbulence->correct();

}

runTime.write();

Info<< "ExecutionTime = "

<< runTime.elapsedCpuTime() << " s"

<< " ClockTime = "

<< runTime.elapsedClockTime() << " s"

<< nl << endl;

}

Info<< "End\n" << endl;

return(0);

}

// ********************************** //

UEqn.H

fvVectorMatrix UEqn

(

fvm::ddt(U)

+ fvm::div(phi, U)

+ turbulence->divDevReff(U)

);
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UEqn.relax();

// Solve the momentum equation

solve(UEqn == -fvc::grad(p));

Make/files File

transientSimpleDyMFoam.C

EXE = $(FOAM_USER_APPBIN)/transientSimpleDyMFoam

Make/options File

EXE_INC = \

-I$(LIB_SRC)/dynamicFvMesh/lnInclude \

-I$(LIB_SRC)/dynamicMesh/lnInclude \

-I$(LIB_SRC)/meshTools/lnInclude \

-I$(LIB_SRC)/finiteVolume/lnInclude \

-I$(LIB_SRC)/turbulenceModels/RAS \

-I$(LIB_SRC)/transportModels

EXE_LIBS = \

-ldynamicFvMesh \

-ldynamicMesh \

-lengine \

-lmeshTools \

-lincompressibleRASModels \

-lincompressibleTransportModels \

-lfiniteVolume \

-llduSolvers

256



C.6 shearRate

Application

shearRate

Description

For each time: calculate the shear rate.

\*--------------------------------------------*/

#include "fvCFD.H"

// * * * * * * * * * * * * * * * * * * * * * * //

int main(int argc, char *argv[])

{

timeSelector::addOptions();

# include "setRootCase.H"

# include "createTime.H"

instantList timeDirs =

timeSelector::select0(runTime, args);

# include "createMesh.H"

forAll(timeDirs, timeI)

{

runTime.setTime(timeDirs[timeI], timeI);

Info<< "Time = " << runTime.timeName() << endl;

IOobject Uheader

(

"U",

runTime.timeName(),

mesh,

IOobject::MUST_READ

);

// Check U exists

if (Uheader.headerOk())
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{

mesh.readUpdate();

Info<< " Reading U" << endl;

volVectorField U(Uheader, mesh);

Info<< " Calculating shearRate" << endl;

if (U.dimensions() ==

dimensionSet(0, 1, -1, 0, 0))

{

volScalarField shearRate

(

IOobject

(

"shearRate",

runTime.timeName(),

mesh,

IOobject::NO_READ

),

sqrt(0.5*(2*symm(fvc::grad(U))&&

(2*symm(fvc::grad(U)))))

);

shearRate.write();

}

else

{

Info<< " No U" << endl;

}

Info<< endl;

}

}

return 0;

}

// ******************************************* //
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