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Abstract 
 

 The report explores the problem of detecting complex point target models in a 

MIMO radar system. A complex point target is a mathematical and statistical model for a 

radar target that is not resolved in space, but exhibits varying complex reflectivity across 

the different bistatic view angles. The complex reflectivity can be modeled as a complex 

stochastic process whose index set is the set of all the bistatic view angles, and the 

parameters of the stochastic process follow from an analysis of a target model comprising 

a number of ideal point scatterers randomly located within some radius of the targets 

center of mass. The proposed complex point targets may be applicable to statistical 

inference in multistatic or MIMO radar system. 

 

 Six different target models are summarized here – three 2-dimensional (Gaussian, 

Uniform Square, and Uniform Circle) and three 3-dimensional (Gaussian, Uniform Cube, 

and Uniform Sphere). They are assumed to have different distributions on the location of 

the point scatterers within the target.  

 

 We develop data models for the received signals from such targets in the MIMO 

radar system with distributed assets and partially correlated signals, and consider the 

resulting detection problem which reduces to the familiar Gauss-Gauss detection 

problem. We illustrate that the target parameter and transmit signal have an influence on 

the detector performance through target extent and the SNR respectively. A series of the 

receiver operator characteristic (ROC) curves are generated to notice the impact on the 

detector for varying SNR. Kullback–Leibler (KL) divergence is applied to obtain the 

approximate mean difference between density functions the scatterers assume inside the 

target models to show the change in the performance of the detector with target extent of 

the point scatterers.  

 

 

Keywords:  MIMO radar, target model, target extent, SNR, ROC, KL divergence. 
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Chapter 1 ~ Introduction 
 

RADAR theory has been a vibrant scientific field for the last few decades. It deals 

with many different diverse problems. However, one of the most important problems is 

the detection of a target in a given 3-dimensional space. The importance of this problem 

is not limited to radars, and other engineering disciplines like sonar and communication 

deal with very similar problems. In the recent years, radar systems have developed 

considerably that can be attributed to the increase in computation power and advances in 

hardware design. While early radar systems utilized a directional antenna, modern day 

radar systems can synthesize the beams and simultaneously scan a given space. Radar 

systems come in different flavors, and here we will focus on the multiple-input multiple-

output (MIMO) radar system. 

 

MIMO radar and multistatic radar systems have received considerable theoretical 

interest in recent years (1). It consists of an architecture that employs assets, in the form 

of transmitter and receiver antennas, to emit orthogonal or non-coherent waveforms. Two 

forms of such radar system are generally studied: MIMO radars with widely separated 

antennas, and the MIMO radars with collocated antennas (8,19). Both have many unique 

advantages, but both also face many challenges. Fishler et al. were the first to point out 

that MIMO radar system with widely separated antennas provides the important feature 

of spatial diversity that exploits the radar cross-section (RCS) diversity (2,27-28). When 

the orthogonal components are transmitted from different antennas, each orthogonal 

waveform will carry independent information about the target (26). This phenomenon can 

be utilized to devise a better performing detector. MIMO radar with collocated assets can 

exploit the waveform diversity. This is important as it can significantly improve system 

identification, increase target detection and parameter estimation, and enhance transmit 

beam pattern design.  

 

In this report we examine the spatially distributed assets case in a multistatic radar 

environment, where the transmit/receive antennas are positioned widely apart, and the 

transmitters emit orthogonal signals. We assume that each transmitter/receiver module 
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transmits different signal modulation on the common carrier, all receivers respond to all 

signals, and carriers are phase-synchronous. Different target models have been examined, 

with different distributions, and the resulting detection problem has been devised. We 

then proceed to identify the parameters that have an influence on the performance of 

target detection.  

 

 

 

                              

                             s1(t)                                                s2(t) 

                     

 

 

 

 

 

Figure 1.1:  Spatial Diversity MIMO Radar 

 

In the following chapters we will examine the complex point targets in light of 

recent interest in MIMO and multistatic radar systems. Complex reflectivity has been 

characterized as a stochastic process in (7) defined on the space of pairs of the transmitter 

and the receiver view angles. The target model itself consists of a finite number of ideal 

point scatterers randomly located at given positions from the center of mass of the target 

(3-5). Depending on the distribution on scatterer location, we have obtained closed-form 

expressions for the correlation functions between two bistatic views. The key idea here is 

that the target appears different from different view angles. 

 

This report is organized as follows. In Chapter 2, we analyze six different target 

models – three in 2 dimensions (Gaussian, Uniform Square, and Uniform Cube) and three 

in 3 dimensions (Gaussian, Uniform Cube, and Uniform Sphere). We depict a synopsis of 

these target models in the MATLAB GUI-based simulation tools that has been designed 

by John Vander Laan. All of these models lead to similar qualitative results, shown in 
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Chapter 3 and Appendix A, and depend on the spatial extent of the target (normalized by 

the wavelength, λ). We then incorporate these models into the familiar Gauss-Gauss 

detection problem for a MIMO radar system with distributed assets (i.e. varying the 

bistatic view angles on target by means of 4 transmitters, and 4 receivers), and generate 

histogram plots for two hypotheses (noise only, and signal+noise) in Chapter 3.  

 

In Chapter 4, we identify two parameters that have an effect on the performance 

of the detector. They are – transmitted signal-to-noise ratio (SNR), and the spatial extent 

of the target, in terms of wavelength, λ. For the first case, we keep the target’s spatial 

extent fixed and vary SNR of the transmitted signal to generate a series of the receiver 

operator characteristic (ROC) curves. This process is then reversed, and we look at the 

performance by altering the target’s spatial extent, keeping SNR fixed. For either case, 

the Kullback-Leibler (KL) divergence is introduced to provide additional support to the 

claim that transmitted signal SNR and spatial extents of the targets impact the detector 

performance (in Chapter 4, and Appendix B & C). 
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Chapter 2 ~ Target Models 
 

2.1  Common Target Model 

 In this chapter we look at the target models for the detection problem. All these 

models have been derived in (7). A complex point target is a reflected target that is not 

resolved in space by radar waveform, but exhibits a different radar cross-section or 

complex reflectivity as a function of bistatic view angle, which means that it appears to 

occupy a single point in space or one range resolution cell, as the spatial extent is less 

than c/2B where c is the speed of light, and B is the radar signal bandwidth. The complex 

point target’s radar cross-section (RCS) or the complex reflectivity is a stochastic process 

whose index set is the set of all the bistatic view angles. The parameters of this stochastic 

process follow from an analysis of a target model. 

 

 
 

Figure 2.1: Multiple Point Scatterer Model 

 

 

 

 

 

 

 

 

 

              Tx                                                 Rx 
 

Figure 2.2: Unit Vectors to Transmitter & Receiver 

 

 A target model is assumed to consist of a collection of discrete isotropic point 

scatterers that are randomly located at positions x, around the center of mass of the target. 

We say that each of these point scatterer, shown as black dots in Figures 2.1 and 2.2, in 

the target model exhibits a complex reflectivity  ρ  that assumes distribution of CN(0, σ
2
) 

with zero mean, and a given variance. Let L be the total path length from transmitter to 

the scatterer, and then from the scatterer to the transmitter. The target is assumed to be at 

the center of the coordinate axes. The differential path length ΔL, relative to the path 
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length obtained with the exact same scatterer located at the origin of a coordinate axes, 

becomes as follows 

 

 ∆� �  ���	 
 ���	 �   ���  
 ��� 	 (2.1)  

where , uT and uR are unit vectors pointing in the direction towards the transmitter and the 

receiver respectively shown in Figure 2.3. This generates a differential time delay of 

 

 ∆� � ∆�
�  (2.2)  

This can be translated into a phase shift, where the phase term is given by 

 

 � �  ������∆� � �������� ��
�	

�  
 (2.3)  

where λ is the carrier wavelength. Since h depends on the random location of x, it is a 

random variable.  

 

The complex reflectivity of the target becomes a function of the pair (uT, uR) 

which is referred to collectively as the bistatic view angle. The function ρ(uT, uR) is a 

stochastic process whose index set is a set of all the bistatic view angles and whose range 

is ℂ. Its randomness comes from distribution on the scatterer location x. 

 

  ! "# $ "# %  ℂ (2.4)  

in two dimensions, and in three dimensions we have 

 

  ! "�  $  "� %  ℂ  (2.5)  

where S
1
 and S

2
 are unit circle and unit sphere respectively. The conditional distribution 

of ρ(uT2, uR2) given ρ(uT1, uR1) is concentrated on a circle in ℂ.  

 

2.2  Specific Target Model 

Let us assume that (uT1, uR1) and (uT2, uR2) are a pair of bistatic view angles. If ρ 

is a function of this pair of bistatic view angle, we can model ρ as a stochastic process 

given by ρ(uT1, uR1) and ρ(uT2, uR2). The different target models are three 2-dimensional 

cases: Gaussian, Uniform Square, and Uniform Circle; and three 3-dimensional cases: 
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Gaussian, Uniform Cube, and Uniform Sphere. In all these cases, the correlation function 

becomes as follows 

 

 & � '( ��)1, �R1 -��)2, �R2/ (2.6)  

which turns into 

 

 & � '(����0 ���1���1�	 �2���0 ���3���3�	/ (2.7)  

where, the expectation is taken w.r.t. the distribution on the random scatterer location x. 

The dependence on the four direction vectors is through the one unit vector u. 

 

 � � ��# 
 ��# 4 ��� 4 ��� (2.8)  

In four of our six models, the dependence will only be through the scalar A = |u|. Note 

that A ≤ 4 by the triangle inequality.  

 

 

 

 

 

 

 

 

 

Figure 2.3: Unit Vectors Representation 

 

The correlation therefore becomes as follows 

 

 &�� �  5�6�7� ��	 8	�	 9	 (2.9)  

where the integration is taken over 2-space or 3-space as appropriate according to the 

target models. In remainder of this section, we will evaluate equation 2.9 for different 

assumed density functions  fx(x). Appendix A illustrates the reflectivity correlation plots 

for all six target models. We now look into the six target models.  
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2.2.1  Model 1: 2D Gaussian 

 For x : ℝ2
, the density function for a Gaussian distribution is given by, 

 

 8	�	 � 1
<2=>?�

�2 
|	|3
�AB3 (2.10) 

where, σx is the standard deviation of the scatterer location in each dimension (15). By 

circular symmetry of fx(x) the correlation will be invariant to the direction of u, and hence 

without loss of generality we can take u = A[1 0]
T
. We obtain the following expression 

for the correlation function, 

 

 &�� �  �2 ��
3C3AB303  

 (2.11) 

Note that r(u) = 1, when either  σx
2
 = 0, which puts x at the origin with probability 1, or 

when A = 0. Figure 2.6 illustrates 2-D Gaussian model using the MATLAB GUI tool of 

varying size. The top image has 40 scatterers, and the center and bottom images have 20 

and 5 scatterers respectively. 

 

2.2.2  Model 2: Uniform Square 

 In this model the scatterer location is uniformly distributed on a square of the size 

B×B. The square is oriented along the coordinate axes, which apparently destroys the 

circular symmetry, as we have noticed for the previous model. We define u = [ux uy]
T
 and 

furthermore, Ax = |ux| and Ay = |uy|. We have the correlation function as 

 

 &�� � sinc HI?JK L  sinc HIMJK L (2.12) 

We use the definition of the sinc function 

 

 sinc�N � sin�=N
=N  (2.13) 

Note that the argument of both the sinc functions contains the unit-less factor B/λ which 

is the length of one side of the square, in wavelengths. Note also that the correlation is 1 

when either Ax = Ay = 0, or B = 0. Figure 2.7 illustrates this model of varying size. Similar 

to 2-D Gaussian demonstration, the images have 40, 20, and 10 scatterers. 
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2.2.3  Model 3: Uniform Circle 

 Here x is uniformly distributed on a unit circle or radius R, denoted by C(R). For 

the correlation function, we have 

 

 

&�� � 1
=O�  P�����

�	
�

Q��
 9	 (2.14) 

By the circular symmetry of fx(x) we can take u = A[1 0]
T
 and thus the integral becomes 

 

 

&�� � P����C?�
Q��

 9N9R (2.15) 

Transforming into polar coordinates, and after performing integration and appropriate 

algebra, the correlation function becomes 

 

 

&�� � 2S# T2=IOK U
T2=IOK U

 (2.16) 

The function 2J1(u)/u is the jinc function (20,21). It appears qualitatively similar to sinc 

function: it is symmetric, has a maximum value of 1 at u = 0. Our final expression for 

correlation thus becomes 

 

 &�� � VWX� H2=IOK L (2.17) 

Note that the argument depends on R/λ, referred as the target extent of the model, which 

is the radius of the circle in terms of wavelengths. Figure 2.8 illustrates this model for 

three different target extents. 

 

2.2.4  Model 4: 3D Gaussian 

 This is an expansion into three dimensions from 2-D Gaussian model. Here, x 

forms a spherical Gaussian distribution (15) with density function 

 

 8	�	 � �2=>?�2Y/� �2 
|	|3
�AB3 (2.18) 
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As in the 2D Gaussian example, we can take u = A[1 0 0]
T
, and thus the triple integral in 

the expectation reduces to a single integral. We assume circular symmetry, and hence 

obtain the correlation function to be 

 

 &�� �  �2 ��
3C3AB303  (2.19) 

Figure 2.9 illustrates 3D Gaussian model of varying target extent. 

 

2.2.5  Model 5: Uniform Cube 

 This is basically a straightforward extension of the 2D uniform square case. Here, 

x is uniformly distributed over a cube of length B on a side. Since the cube is aligned 

along the coordinate axes, we cannot assume spherical symmetry. We set u = [ux uy uz]
T
 

and obtain the following for the correlation function 

 

 &�� � sinc HI?JK L  sinc HIMJK L  sinc HI[JK L (2.20) 

Similar to the 2D model, the correlation will be 1 when either Ax = Ay = Az = 0, or B = 0. 

Figure 2.10 depicts this model for different target extent. 

 

2.2.6  Model 6: Uniform Sphere 

 For this model, x is uniformly distributed on a sphere of radius R, denoted by 

S(R). The desired expression for the correlation function is 

 

 

&�� � 3
4=OY  ^�����

�	
0  9	

_��
 (2.21) 

Because of spherical symmetry, we can, without loss of generality, take u = A[0 0 1]
T
, 

along the z-axis, and therefore we get 

 

 &�� � 3
4=OY  5 5 ����C`abcd0  sinθ9θ &�9&

�

f

�

f
 (2.22) 

For mathematical convenience, we introduce the parameter α = (2π A)/λ. With some 

necessary substitutions and algebra, we obtain 
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 &�� � 3�sin�gO 4 �gO cos�gO
�gOY  (2.23) 

In the above expression (2.23) we notice the function 

 

 8�i � 3�sin�i 4  i cos�i
iY  �  3V#�ii   (2.24) 

where j1(u) is the spherical Bessel function of the first kind (22). The function f(u) is 

similar to a sinc function, shown in equation 2.13, symmetric with maximum occurring at 

f(0) = 1. Hence, the correlation functions can be written as  

 

 

&�� � 3V# T2=IOK U
2=ITOKU 

 (2.25) 

 

2.3  Monostatic and Bistatic Cases 

 Apart from depicting the 6 models by means of MATLAB GUI-based simulation 

tools, each target’s reflectivity is also shown for two cases – monostatic and bistatic. 

Several scatterers are generated on the target for reflectivity. The number of scatterers is 

selected by the user, so more the number of scatterers the better the reflectivity. Once 

each target has a set location, it is given a random complex reflectivity. This reflectivity 

is used to determine the overall target reflectivity for various view angles for both the 

monostatic and bistatic cases. 

 

Monostatic case shows the variation in the magnitude of complex reflectivity as a 

function of the view angle for collocated transmitter and receiver. The location of the 

receiver and transmitter is determined by the View Distance Radius, which inputs the 

distance from the origin of the target that the transmitter and receiver are located. An 

array of transmitter and receiver coordinates is created making a circle around the center 

of the target at the inputted distance. The transmitter and receiver are always located on 

the x-y plane and therefore the z-values in the transmitter and receiver coordinates are 

zero. Determining the complex reflectivity for the target is the same for the 2-D and 3-D 

target models, which has been described below. 
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To determine the complex reflectivity the distance from the transmitter and the 

receiver to center of the target is calculated, along with the distance from the transmitter 

and receiver to each separate point of the target. The difference between these distances 

is then calculated and the value is divided by the speed of light, c. This uses the fact that 

the transmitted wave is traveling at the speed of light, and the difference in distance 

creates a difference in time for the signal to be received from each point in the target.  

These differences in time cause a change in phase, which is given by  

 

 φk � 2=8l�k (2.26) 

 

where, τi is the calculated differences in time, and fc is the center frequency of the system. 

The figure below (Figure 2.4) depicts the monostatic radar system setup.  

 

 

 

 

 

 

 

 

     

  Position-1 of Tx/Rx                                                         Position-3 of Tx/Rx 

 

Position-2 of Tx/Rx 
 

Figure 2.4: Monostatic Case for Radar Systems 

 

Each point’s complex reflectivity phase term is then determined from the expression 

 

 Ok �   k�2���mn (2.27) 

where ρi is the random complex reflectivity of the given point in the target. These values 

are then summed up for all of the points in the target. The absolute value is then taken 

and the values are converted to dB. They are then plotted for 360° around the target. 
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                                                                                                                              Receiver at Position-3 

 

 

 

     

                                Receiver at Position-1                                                   Receiver at Position-2 

 

Transmitter 

 

Figure 2.5: Bistatic Case for Radar Systems 

 

The same analysis is done for the bistatic case, which shows the variation in the 

magnitude of the complex reflectivity as a function of the receiver view angle, with the 

difference being the location of the transmitter and the receiver.  Here the transmitter is 

always located at the inputted distance away from the center of the target on the x-axis.  

The receiver location is then an array of coordinates creating a circle of inputted radius 

around the target center. The bistatic case changes overall distances that the transmitted 

signals have to travel and ultimately causes a different complex reflectivity. Figure 2.5 

shows the bistatic radar setup. 

 

2.4  Target Model Illustration 

 The following sequence of figures show the six models, described previously, by 

MATLAB simulation and GUI. These have been designed by John Vander Laan. The 

first/top GUI image in each figure displays target in bigger size with more scatterers. And 

in the following two GUI image, target is smaller in size with lesser scattering points. 

Both the number of scatterers and size of the target are user inputs so that they can be 

varied accordingly to get an idea of how the monostatic and bistatic alters with target 

extent and number of scatterers present. 
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Figure 2.6: 2-D Gaussian 

(Top) Scatterers: 40, Size: 0.5λ (Center) Scatterers: 20, Size: 0.25λ (Bottom) Scatterers: 5, Size: 0.1λ 
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Figure 2.7: 2-D Uniform Square 

(Top) Scatterers: 40, Size: 1λ (Center) Scatterers: 20, Size: 0.5λ (Bottom) Scatterers: 10, Size: 0.25λ 
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Figure 2.8: 2-D Uniform Circle 

(Top) Scatterers: 40, Size: 1λ (Center) Scatterers: 20, Size: 0.5λ (Bottom) Scatterers: 10, Size: 0.25λ 
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Figure 2.9: 3-D Gaussian 

(Top) Scatterers: 40, Size: 0.5λ (Center) Scatterers: 20, Size: 0.25λ (Bottom) Scatterers: 5, Size: 0.1λ 
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Figure 2.10: 3-D Uniform Cube 

(Top) Scatterers: 40, Size: 1λ (Center) Scatterers: 20, Size: 0.5λ (Bottom) Scatterers: 10, Size: 0.25λ 
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Figure 2.11 : 3-D Uniform Sphere 

(Top) Scatterers: 40, Size: 1λ (Center) Scatterers: 20, Size: 0.5λ (Bottom) Scatterers: 10, Size: 0.25λ 
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Chapter 3 ~ Detection Problem 

 

3.1  Overview 

 In our MIMO radar system, we have MT spatially distributed transmitters and MR 

spatially distributed receivers. A key assumption being made here is that all T/R modules 

are cooperating and that all the receivers can respond to all the transmitted signals. To 

keep matters simple, we note that the transmitters and receivers are not collocated, as this 

will eliminate any possibility of having reciprocal paths for which bistatic reflectivities 

are equal. Here we have MTMR distinct bistatic paths, for which we can compute target 

reflectivity using the models. For our detector model we are using four transmitters, and 

four receivers (MT = 4, MR = 4). In a standard grid model, the transmitters and receivers 

are located at the following coordinates in 2-dimensional setup 

 

 ��� � ��4, 5
    ��� � ��3, 5
    ��� � ��2, 5
    ��� � ��1, 5
 
��� � �1, 5
    ��� � �2, 5
    ��� � �3, 5
    ��� � �4, 5
 (3.1)  

and in 3-dimensional setup 

 

 ��� � ��4, 5, �1
    ��� � �1, 5, �1
 
��� � ��3, 5, �1
    ��� � �2, 5, �1
 
��� � ��2, 5, �1
    ��� � �3, 5, �1
 
��� � ��1, 5, �1
    ��� � �4, 5, �1
 

(3.2)  

We take the target to be at the center of the grid (0, 0) or (0, 0, 0). Figure 3.1 illustrates 

this bistatic radar system setup for our detector model. 

 

3.2  Devising the Detection Problem 

 Once we have established the setup in Figure 3.1, we proceed to compute uT and 

uR, the unit vectors pointing towards the transmitters and receivers respectively, using the 

equation 2.8, followed by the scalar A = |u|, where the size of A is 16×16. The diagonal 

terms of A are all zero. Using A, we calculate the complex reflectivity for our system for 

each of the six models using the correlation equations. 
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Figure 3.1: MIMO System Setup for Target Detection 

 

It is worth mentioning that the signals transmitted by these transmitters are coded 

waveforms that can be represented by a discrete sequence of complex code values. There 

are MT = 4 such signals of length N, where N is the time-bandwidth product for a single 

pulse approximately. The transmitted signal can be represented as an N×MT matrix S (for 

our setup, we have N = 1000). We have used orthogonal signal S for this MIMO system 

that will be discussed further in the following section. 

 

The complex reflectivity ρ(i, j) is the reflectivity for the bistatic path from the 

transmitter i to the receiver j, and these can all be represented by a channel matrix H that 

is MT ×MR in size. The steps we take to obtain H are given as follows, 

 

• Find complex reflectivity, Rcov using correlation equations 

• Cholesky Decomposition of Rcov to obtain an upper-triangular matrix 

• Multiply the upper-triangular matrix by CN(0, I) of size 1×16 

• Reshape the above 1×16 matrix to yield the 4×4 channel matrix H 

 

Assuming the signals are time-aligned on the target (a non-trivial assumption made for 

simplicity of the detection problem) the N×MR matrix of received signals can be written 

as shown by the expression (3.3), where W represents additive white noise. Note that Rcov 

must be a positive definite matrix.  
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 � �   �� �  � (3.3)  

We perform QR decomposition on the signal matrix S to result in an orthogonal matrix Q 

and an upper triangular matrix R of economy size. Without any loss of information, we 

perform the following operation on equation (3.3) 

 

 � � ��� � ���� � ��� (3.4)  

The resulting MTMR values in Y are then stacked into a K×1 column vector y, which is 

then used to devise the two hypotheses for target detection. 

 

 � �   � � � (3.5)  

 

 
 

Figure 3.2: Matrix Dimension representation of (3.3) 

 

3.3  Transmitted Signal  

 We have used statistically independent signals, or orthogonal signals, which are 

stacked in a long-and-skinny vector denoted by S (see Figure 3.2) of size N×MR. This 

allows us to assume that all the transmit signals are noncoherent waveforms. The steps 

shown below were followed to generate the orthogonal signals, 

 

• The N×MR complex exponential matrix in, Figure 3.3, is generated  

• Spreading signal: N×1 column vector of form – e 
jφ

, where φ ~ U[0, 2π]  i.i.d.  

• Columns of the complex exponential matrix is element-wise multiplied by the 

spreading signal, which spreads the spectrum of each column 
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Figure 3.3: Complex Exponential Matrix of S 

 

3.4   Hypothesis Testing 

 After orthogonal S is generated and undergone QR decomposition (16), we look 

into the hypothesis testing problem, which is 

 

 �0:    !  ~  #$�0, %�&
 (3.6)  

 �1:    !  ~  #$�0, '() � %�&
 (3.7)  

This is the familiar Gauss-Gauss detection problem (5,10). For the finite dimensional 

complex Gaussian version, this testing problem can be simplified as follows, 

 

• The observation is first scaled so that variance of each noise component is 1 

• A rotation is then applied to observation to which noise covariance is invariant 

• This operation transforms the signal covariance into a diagonal matrix Λ 

• Eigenvalue decomposition is performed on Rx as the next step  

• The diagonal elements λk are the eigenvalues of Rx  

• Scalar component, α in (3.6) is known and is responsible for SNR 

 

The transformed observation is denoted in vector form v, having the following hypothesis 

 

 �0:    *  ~  #$�0, &
 (3.8)  

 �1:    *  ~  #$�0, 'Λ � &
 (3.9)  
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3.4.1  Gauss-Gauss Detection Problem 

 In (3.6) we come across Rx which is obtained by the following expression. As a 

quick refresher, Rcov is the complex reflectivity matrix computed for each model from the 

correlation functions derived in Chapter 2. 

 

 ()  �   ,-./0 1 �234 1 ,-./05
 (3.10) 

However, Adiag is a MTMR×MTMR diagonal matrix acquired by stacking the elements of 

matrix R (from economy size QR decomposition of S) across its diagonal. Figure 3.4 

gives a visual representation of this matrix. 

 

 

Figure 3.4: Adiag matrix representation 

 

After Eigenvalue decomposition of Rx, hypothesis H1 is obtained by  

 

 �1  ~  67/85 1 ! (3.11) 

where,  umat  →  eigenvectors following the Eigenvalue decomposition of S 

  y       →  computed from equation (3.5) 

 

3.4.2  Eigenvalue Distribution 

The eigenvalues, λk exhibit exponential properties for both 2-D and 3-D Gaussian 

models. However, for the other four models, the eigenvalues decay rapidly with one of 

the values dominating. The eigenvalue distribution stem plots for each model are shown 

in the following sections, for two different sizes. It is worth observing that the eigenvalue 

plots depict uniform distribution with the increasing target extent. This phenomenon is 

consistent with all six models suggesting that the received signals become uncorrelated at 

the receiver end when the target expands in size appreciably. 
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Figure 3.5: Eigenvalue Distribution for 2-D Gaussian 

Target Extent: (Top) 0.5λ  and  (Bottom) 50λ 

 

 

 

Figure 3.6: Eigenvalue Distribution for 2-D Uniform Square 

Target Extent: (Top) 0.5λ  and  (Bottom) 50λ 
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Figure 3.7: Eigenvalue Distribution for 2-D Uniform Circle 

Target Extent: (Top) 0.5λ  and  (Bottom) 50λ 

 

 

 

Figure 3.8: Eigenvalue Distribution for 3-D Gaussian 

Target Extent: (Top) 0.5λ  and  (Bottom) 50λ 
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Figure 3.9: Eigenvalue Distribution for 3-D Uniform Cube 

Target Extent: (Top) 0.5λ  and  (Bottom) 50λ 

 

 

 

Figure 3.10: Eigenvalue Distribution for 3-D Uniform Sphere 

Target Extent: (Top) 0.5λ  and  (Bottom) 50λ 
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3.5  Test Statistics 

 At this point, we have generated our data for both H0 and H1 hypothesis. The 

likelihood ratio (17,18) becomes 

 

 9��
 �  :��; �1

:��; �0
 (3.12) 

 

9��
 �
<=>?∏ �1 � AB
>BC� D=�  E∏ F=|4H|I�JKH>BC� L

<=> ?∏ F=|4H|I>BC� D  
(3.13) 

After some algebraic manipulation, we obtain the following test statistic shown by the 

expression below. Plots of the test statistics for each target model are provided below (see 

Figures 3.11 – 3.16).  

 

The plots are histograms, with each plot having one thousand bars of equal bean 

width. For each simulation, the target extent is kept constant at 0.25λ, and there are 2×10
6
 

data points under each density function. The data points under each hypothesis, H0 and 

H1, are stored in different arrays and the test statistics were computed under each of the 

hypothesis. The two hypotheses histograms are first plotted separately, and then put 

together in one plot. Hence, the top plot in each figure depicts histogram of hypothesis 

H0, the center plot is the histogram of hypothesis H1, and the bottom plot is both the 

hypotheses combined on the same set of axes. Notice that for all the six different target 

models the histograms for both H0 and H1 do not vary appreciably, which is what we 

have expected while generating data for the detection problem. 

 

 M �  N|OB|�  P AB1 � ABQ
>

BC�
 (3.14) 

where,  K  →  MT * MR = 16 

  vk  →  each element under H0 and H1 

  λk  →  eigenvalues or Rx   
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Figure 3.11: 2-D Gaussian Hypothesis H0 and H1 
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Figure 3.12: 2-D Uniform Square Hypothesis H0 and H1 
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Figure 3.13: 2-D Uniform Circle Hypothesis H0 and H1 
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Figure 3.14: 3-D Gaussian Hypothesis H0 and H1 
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Figure 3.15: 3-D Uniform Cube Hypothesis H0 and H1 
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Figure 3.16: 3-D Uniform Sphere Hypothesis H0 and H1 
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Chapter 4 ~ Results 

 

 In this chapter, we will focus on interpreting our data obtained from the previous 

chapter for the test statistics, t for the two hypotheses, H0 and H1. In addition, to be able 

to work with the six different target models, we have the option of varying the parameters 

below to observe the change in the performance of target detection. 

 

• The spatial extent of the target (normalized by wavelength, λ). 

• Signal-to-noise ratio (SNR) of the transmit signal. 

 

For each of the criteria, we have generated plots which have been depicted in the sections 

to follow – first by holding the target extent constant fixed and altering SNR, and later 

reversing the process. It should be noted that the detector assumes the presence of a target 

and provides a statistical approach regarding its quality of performance. 

 

4.1  Receiver Operator Characteristics (ROC) 

 For the first simulation batch, we want to observe the ROC curves for each model, 

of constant size 0.25λ, by varying the received signal SNR. Recall that SNR changes with 

respect to the scalar α, from equation 3.7 which has been assumed to be known. We then 

vary the discrimination threshold that sweeps through the density functions (shown in 

Figures 3.11 – 3.16) in the direction, shown in Figure 4.1, by the arrow. 

 

As the thresholds sweeps from right to left, all points lying to the right of the 

threshold, under each hypothesis, are summed and stored in two different arrays. Each 

element in these arrays is then normalized by the total number of points present, which is 

a user input, under each density. For our convenience, the normalized elements under 

hypothesis H0 (shown in blue) are termed as the Probability of False Alarm (PFA) and 

those under H1 (shown in green) as the Probability of Detection (PD). The process is then 

repeated for a sequence of values of α, which alters the SNR of the received signals, to 

generate a series of different elements for both PFA and PD. Next we plot PD against PFA 

for varying SNR to produce a spectrum of ROC curves for each model. Figures 4.2 – 4.7 

illustrates these ROC curves.  
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From these plots we notice that the axes have a maximum of 1 since each element 

of the target statistic under both H0 and H1 have been normalized. Each time we change 

the signal SNR, we obtain one ROC curve. For a lower SNR, the ROC curve is further 

away from the probability of detection (PD) axis. Consequently, for a higher SNR value, 

the ROC curve will be closer to the PD axis. We observe a similar pattern for the series of 

ROC curves shown below. Lower SNR-ROC curves are further away from the vertical 

axis, whereas higher SNR-ROC curves are skewed more towards the top-left portion of 

the plot, which is closer to the vertical (PD) axis. From this phenomenon we can conclude 

that increasing the SNR of the signal yields better chances or target detection, or in other 

words, transmit signal selection have an influence on the detector performance. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: PDF and discrimination Threshold 

 

The above procedure is repeated, but this time we vary the target extent keeping 

the SNR of the received signal constant. Similarly, we obtain a series of ROC curves 

which are shown in Appendix B. These plots convey similar information about the target 

detection performance, showing that increase in target extent provides higher probability 

of detecting a target. We have also used the Kullback–Leiber (KL) divergence to observe 

similar characteristic of the detector performance with increase in the target extent. The 

following section provides details about the KL divergence, and its implementation in 

target detection performance. 
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Figure 4.2: ROC curve for 2-D Gaussian 
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Figure 4.3: ROC curve for 2-D Uniform Square 
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Figure 4.4: ROC curve for 2-D Uniform Circle 
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Figure 4.5: ROC curve for 3-D Gaussian 
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Figure 4.6: ROC curve for 3-D Uniform Cube 
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Figure 4.7: ROC curve for 3-D Uniform Sphere 
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4.2  Kullback–Leibler (KL) Divergence 

 In probability theory, KL divergence is a non-symmetric measure of divergence 

between two probability density functions P and Q. For the detector model, we have used 

the KL divergence to measure the approximate distance between density functions H1 

and H0 (12, 23-25). The expression for KL divergence is given below 

 

 �����||�� 	  ����� log� ����
�

 �  ���� log� ���
�

 (4.1)  

Substituting H0 for p(x) and H1 for q(x), we get 

 

 �����||�� 	  ����0� log� ���1�
�

 �  ���0� log� ��0�
�

  (4.2)  

The KL divergence is always non-negative, so 

 

 �����||��  �   0 (4.3)  

In order to preserve the symmetric nature of KL divergence (29,30) we perform 

 

 �����||�� � �����||�� (4.4)  

And for our detector model, this becomes 

 

 �����0� log� ���1�
�

 �   ���0� log� ��0�
�

� 

� ������1� log� ��0�
�

 �  ����1� log����1�
�

� 
(4.5)  

where, p(H0) and q(H1) are elements of the test statistics t for distributions H0 and H1 

respectively, computed using equation 3.14. The above expression is the KL divergence 

scalar value indicating the approximate distance between the density functions. A series 

of divergence values are generated by varying the targets’ sizes, in terms of wavelength λ, 

keeping SNR of received signal constant.  

 

The plots in Figures 4.8 – 4.13 show the KL divergence against the target extent 

for each model. Each element for the KL divergence has been normalized in order to put 
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an upper limit of 1, which is what we see on the vertical axis of these plots. When the 

target extent is small, the KL divergence is less, referring to the fact that the hypotheses 

for H0 and H1 are not too far apart from each other. On the contrary, when the target is 

larger in size, the density functions for both H0 and H1 are further apart resulting in a 

larger value for the KL divergence. Extrapolating these phenomena we can say that if 

there is no target present, both H0 and H1 density functions will overlap making the KL 

divergence zero; and when the target is very big in size, the signals received at receiver 

end becomes more and more uncorrelated, and the KL divergence will be almost 1 due to 

the density functions being very far apart.  

 

We observe similar pattern from the following plots for each target model. As the 

target extent increases, in terms of wavelength, the KL divergence increases accordingly 

which proves that the target extent have an impact on the performance of target detection. 

The bigger the target, the easier it is to detect. Appendix C illustrates similar phenomena, 

where SNR is altered, keeping the target extent constant for each model.  
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Figure 4.8: KL divergence of 2-D Gaussian 

 

 

 
 

Figure 4.9: KL divergence of 2-D Uniform Square 
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Figure 4.10: KL divergence of 2-D Uniform Circle 

 

 

 
 

Figure 4.11: KL divergence of 3-D Gaussian 
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Figure 4.12: KL divergence of 3-D Uniform Cube 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.13: KL divergence of 3-D Uniform Sphere 
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Chapter 5 ~ Recommendation & Future Work 

 

5.1  Recommendation 

 In chapter 3 we mentioned that the scalar α, is assumed to be a known quantity 

and changing the numeric value of this scalar will alter the SNR of the received signal. If 

this value is not known, it will significantly change the test statistics for detector model. 

In the scenario where α is unknown, we have to estimate its value. A couple of ways this 

can be done, but both approaches will be numeric since a closed form solution may not 

be possible to obtain. From the equations (3.6 – 3.7) we can perform (14) the generalized 

likelihood ratio test (GLRT) for the scalar α, which will look as follows 

 

 

GLRT� �
��	

  F��; 
�
F����   (5.1)  

Another approach to estimate α can be to 

 

• Find the log-likelihood function from equations (3.8 – 3.9). 

• Numerically compute the maximum likelihood of α. 

 

In either ways once α is estimated, the test statistic will be more precise and the detector 

will have better quality in performance.  

 

5.2  Future Work 

 The study and analysis conducted in this report brings forth scope for future some 

work. In the design of the detector, the following improvements are possible. 

 

5.2.1  Time Delay in Transmitted Signal 

For the detector we have used statistically independent signals, or orthogonal 

signals, that do not address the issue of time delays in reaching the target models from the 

transmitters. By using orthogonal signals, we have assumed that the signals are time 

aligned on the targets. This assumption was made primarily to simplify computation 

complexity. Potential work in this area would be to devise an algorithm to calculate time 
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delays between the transmitted signals and ensure that the received signals on the target 

models are time aligned. 

 

5.2.2  Hypoexponential Distribution 

The individual summand of the expression 3.14 are subject to an exponential 

distribution with mean αk. Sum of independent exponential random variables with 

differing means αk is said to have a hypoexponential distribution. When αk are all distinct, 

the tail probabilities of the hypoexponential distribution are easily found using Laplace 

transform techniques. The hypotheses becomes 

 

 �0:     
� �
λ�

1 � λ�      � � 1…� (5.2)  

 �1:     
� � λ�      � � 1…� (5.3)  

If the αk are not distinct, cancellation of coefficients of the Laplace transforms is highly 

probable, which would result in cancellation of density functions, and consequently loss 

of information from the tail probabilities. Potential work in this area would be to compute 

tail probabilities of hypoexponential distribution by ensuring that no cancellation of 

coefficients occurs. By developing a power series for the Laplace domain, this problem 

can be avoided to a great extent. 

 

5.2.3  Adaptive Sensing of Detection 

The spatial diversity MIMO radar model provides with a new problem to this 

well-known dichotomy between coherent and noncoherent processing, i.e. what one does 

with the received data after the additive white noise is included. With an active sensing 

modality like radar, we have the opportunity to influence the statistics of the received 

data before the effects of the noise, through the choice of the signal matrix S. One can 

transmit highly correlated signals thus achieving a high SNR gain on the target model, or 

one can transmit uncorrelated signals, thus illuminating the different aspects of the target 

in different ways. This is the analogue of coherent vs. noncoherent processing, on the 

transmit side of the problem (9,10,13). Here we have an analogous detection problem, 

where the data model becomes 



Page | 49  

 

 � �   �� �   (5.4)  

and one needs to choose between the presence (h ≠ 0) or absence (h = 0) of the target. 

The question then becomes, how does one choose S to maximize probability of detection 

or some other appropriate parametric metric.  

 

 Furthermore, with the appropriate processing of the data, the data vector can be 

written as, 

 

 ! �   Σ# � $ (5.5)  

where, u is the matrix of K independent target components with variances λk, and effect 

of the signal matrix is summarized in the diagonal matrix Σ whose diagonal elements σk 

are subject to the energy constraint 

 

 

% �   &'�(
)

�*
 (5.6)  

The problem then becomes a choice of how to illuminate the component of u to create the 

best detector. The general solution to this adaptive sensing for detection problem is open 

to further work. However, the solutions for two extreme cases, corresponding to coherent 

and noncoherent detection, are readily available.  
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Chapter 6 ~ Conclusion 

 

 In this report we have presented a total of six examples of 2-D and 3-D complex 

point target models. They are 2-D Gaussian, 2-D Uniform Square, 2-D Uniform Circle, 

3-D Gaussian, 3-D Uniform Cube, and 3-D Uniform Sphere. The MATLAB GUI toolbox 

provides the user with the option to change the target extent and number of scatterers 

accordingly. Monostatic and bistatic radar models are simulated in the toolbox to show 

the target reflectivity. 

 

 These targets models were incorporated into a MIMO Radar signal data for target 

detection. The MIMO system setup had four transmitters and four receivers, and the 

target is assumed to be at the center of our coordinate system. Complex reflectivity for 

each pair of bistatic view angle was computed to obtain information about the RCS of the 

targets. The correlation function for each of the models is mathematically derived, which 

are then used to compute the covariance matrix. The resulting hypothesis testing problem 

turns into a Gauss-Gauss detection problem. Statistically independent or, orthogonal 

signals were received by the targets to provide us with the convenience of assuming that 

these received signals are time aligned. This is a non-trivial assumption made to reduce 

mathematical complexity as it portrays a significant technical challenge in its own rights, 

something that can be looked into for future work following this project.  

 

We looked at the Eigenvalue distributions for each model, which appeared to be 

similar as expected. As the target extent becomes significantly large, these distributions 

tend to be uniform in nature suggesting that signals at the receiver became uncorrelated. 

The test statistic for the detection problem is generated, followed by histograms of the 

density functions for noise-only case (H0) and signal/target present case (H1). For both 

the hypothesis we have assumed that a scalar, α is known which is primarily responsible 

for governing the SNR of the system. In the case where we do not know α, we need to 

estimate it using methods proposed in the previous chapter.  

 

 At this stage, we have a detector ready. We then intend to show that the target 

parameters and transmit signal selection have an influence on the detector performance 
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through SNR. Based on the test statistic generated, empirical ROC curves are produced 

for each target model. Elements lying under hypothesis H1 will reflect the probability of 

detecting the target (PD). And elements under H0 can be assumed to be noise and so are 

termed as the probability of false alarm (PFA) for a fixed target extent. The procedure is 

repeated keeping the target extent constant and altering the SNR of the received signals, 

and results displayed by means of Kullback–Leibler (KL) divergence to make it visually 

intensive to depict more information about the detector. 

 

From the ROC curves and KL divergence plots, we can confirm that selection of 

transmit signals and target parameter/size noticeably influence the detector performance 

respectively. To reassure the claim we have generated additional figures in Appendix B 

and Appendix C, where we repeat the procedures by reversing the parameter constraints. 

Appendix B provides a sequence of ROC curves that are generated for varying target 

extent keeping SNR constant. Appendix C shows the KL divergence plots of all the six 

models for changing SNR values, with the target extent remaining the same. 
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Appendix A ~ Reflectivity Correlation 
 

 

 

Figure A.1: Reflectivity Correlation for 2-D Gaussian 

 

 

Figure A.2: Reflectivity Correlation for 2-D Uniform Square 

 

 

Figure A.3: Reflectivity Correlation for 2-D Uniform Cube 
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Figure A.4: Reflectivity Correlation for 3-D Gaussian 

 

 

Figure A.5: Reflectivity Correlation for 3-D Uniform Cube 

 

 

Figure A.6: Reflectivity Correlation for 3-D Uniform Sphere 
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Appendix B ~ Detector Performance 1 
 

ROC curves for target models with fixed SNR, and varying target size 

 

 

 

 

 

Figure B.1: ROC plot for 2-D Gaussian, for fixed SNR 
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Figure B.1: ROC plot for 2-D Uniform Square, for fixed SNR 
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Figure B.3: ROC plot for 2-D Uniform Circle, for fixed SNR 
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Figure B.4: ROC plot for 3-D Gaussian, for fixed SNR 
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Figure B.5: ROC plot for 3-D Uniform Cube, for fixed SNR 
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Figure B.6: ROC plot for 3-D Uniform Sphere, for fixed SNR 
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Appendix C ~ Detector Performance 2 
 

Kullback–Leibler divergence against SNR, for fixed target size 

 

 

Figure C.1: KL divergence of 2-D Gaussian, for fixed Target Size 

 

 

Figure C.2: KL divergence of 2-D Uniform Square, for fixed Target Size 
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Figure C.3: KL divergence of 2-D Uniform Circle, for fixed Target Size 

 

 

Figure C.4: KL divergence of 3-D Gaussian, for fixed Target Size 
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Figure C.5: KL divergence of 3-D Uniform Cube, for fixed Target Size 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C.6: KL divergence of 3-D Uniform Sphere, for fixed Target Size 
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