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Project Summary 

To mitigate greenhouse gas (GHG) emissions and reduce U.S. dependence on imported oil, the 
United States (U.S.) is pursuing several options to create biofuels from renewable woody 
biomass (hereafter referred to as “biomass”). Because of the distributed nature of biomass 
feedstock, the cost and complexity of biomass recovery operations has significant challenges that 
hinder increased biomass utilization for energy production. To facilitate the exploration of a wide 
variety of conditions that promise profitable biomass utilization and tapping unused forest 
residues, it is proposed to develop biofuel supply chain models based on optimization and 
simulation approaches. The biofuel supply chain is structured around four components: biofuel 
facility locations and sizes, biomass harvesting/forwarding, transportation, and storage. A 
Geographic Information System (GIS) based approach is proposed as a first step for selecting 
potential facility locations for biofuel production from forest biomass based on a set of 
evaluation criteria, such as accessibility to biomass, railway/road transportation network, water 
body and workforce. The development of optimization and simulation models is also proposed. 
The results of the models will be used to determine (1) the number, location, and size of the 
biofuel facilities, and (2) the amounts of biomass to be transported between the harvesting areas 
and the biofuel facilities over a 20-year timeframe. The multi-criteria objective is to minimize 
the weighted sum of the delivered feedstock cost, energy consumption, and GHG emissions 
simultaneously. Finally, a series of sensitivity analyses will be conducted to identify the 
sensitivity of the decisions, such as the optimal site selected for the biofuel facility, to changes in 
influential parameters, such as biomass availability and transportation fuel price. 

Intellectual Merit 
The proposed research will facilitate the exploration of a wide variety of conditions that promise 
profitable biomass utilization in the renewable biofuel industry. The GIS-based facility location 
analysis considers a series of factors which have not been considered simultaneously in previous 
research. Location analysis is critical to the financial success of producing biofuel. The modeling 
of woody biomass supply chains using both optimization and simulation, combing with the GIS-
based approach as a precursor, have not been done to date. The optimization and simulation 
models can help to ensure the economic and environmental viability and sustainability of the 
entire biofuel supply chain at both the strategic design level and the operational planning level.  

Broader Impacts 
The proposed models for biorefineries can be applied to other types of manufacturing or 
processing operations using biomass. This is because the biomass feedstock supply chain is 
similar, if not the same, for biorefineries, biomass fired or co-fired power plants, or 
torrefaction/pelletization operations. Additionally, the research results of this research will 
continue to be disseminated internationally through publications in journals, such as Biomass 
and Bioenergy, and Renewable Energy, and presentations at conferences, such as the 2011 
Industrial Engineering Research Conference. For example, part of the research work related to 
biofuel facility identification has been published: Zhang, Johnson and Sutherland [2011] (see 
Appendix A). There will also be opportunities for the Michigan Tech campus community to 
learn about the research through the Sustainable Future Institute. 
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1. Introduction  

Oil consumption in the United States (U.S.) transportation sector contributes to a range of 
societal problems, including climate change, health related air pollution, the U.S. oil dependence 
and oil related national security concerns [1]. In 2009, the transportation sector consumed over 
27% of total U.S. energy consumption and 72% of the nation’s oil consumption [2]. The carbon 
emissions resulting from transportation fuel consumption were almost one-third of the U.S. total 
[1,3]. The Energy Information Administration (EIA) forecasted an annual growth in 
transportation energy consumption of 1.7% between 1999 and 2020 [4]. If the projected growth 
rate holds, U.S. transportation energy and greenhouse gas (GHG) emissions will increase from 
current levels by 46% by 2020 [1]. The U.S. oil production peaked in 1970, and the U.S. is more 
dependent on foreign oil than at any time in history, importing 60% of its supplies in 2006 [5].  

Concerns rise from both general public and government officials over the perceived economic 
and security vulnerabilities resulting from the high level of U.S. dependence on foreign oil [5]. 
The U.S. is pursuing several options to create biofuels from renewable biomass and thus reduce 
dependence on imported fossil fuels and mitigate GHG emissions. Renewable biomass feedstock 
include agricultural residues, energy crops (e.g., switchgrass, miscanthus, energy cane, sorghum, 
polar, and willow), forest resources (e.g., forest thinnings, wood chips, wood wastes, small 
diameter trees), and urban wood wastes [6]. Using biochemical or thermo-chemical processes, 
renewable biomass can be converted to biofuels such as ethanol, methanol, diesel, gasoline, and 
methane [7]. Perlack et al. [8] suggest that 30% of the present consumption of petroleum 
products can be displaced by biofuels in the U.S. by 2030. A joint biofuels systems analysis 
project, “90-Billion Gallon Biofuel Deployment Study,” conducted by Sandia National 
Laboratories and the General Motors Research and Development Center, assessed the feasibility, 
implication, limitations, and enablers of large-scale production of biofuels in the U.S. [9].  This 
study concluded that producing 90 billion gallons (341 billion liters) of biofuels from biomass 
each year in the U.S. is feasible [10]. Sensitivity analysis also demonstrated that cellulosic 
biofuels can compete with petroleum products at a reasonable price based on specific 
assumptions [10].  

Biofuels production from various lignocellulosic biomass types such as wood, agriculture 
residues and forest residues have the potential to be a valuable substitute for, or complement to, 
gasoline [11]. This research focuses on biofuel production from forest-based woody biomass 
feedstock, including forest residues and low value pulpwood, primarily used by paper mills. Ince 
and Durbak [12] stated that declining demand for pulpwood by the paper products industry has 
led to alternative uses for a readily available woody biomass feedstock. In the Southern U.S. (the 
major pulp producing area), pulpwood demand decreased by 7.5% from 1994 to 2003 while the 
supply of pulpwood increased due to increased acreage and improved management intensity of 
pine plantations [13-14]. The USDA Forest Service forecasts that the U.S. demand for pulpwood 
will continue to decline in the next decade; this allows surplus pulpwood to be used for biofuel 
production [14].  

One of the most important and challenging aspects of biofuel production is the design and 
operation of biomass supply chain networks [6]. The lack of experience with time-sensitive 
collection, transportation, and delivery operations to ensure year-round supply of large amounts 
of biomass feedstock is a barrier to widespread implementation of biorefinery technology [15]. 
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To promote biofuel production from renewable biomass, several research questions need to be 
addressed and include: i) what is the optimal number, locations, and sizes of the biofuel 
facilities?, ii) what are the optimal suppliers for a biofuel facility and the amount of biomass they 
can supply over a specific period?, iii) how does the limited availability of biomass feedstock 
during the spring breakup period impact the supply chain?, iv)  what is the 
optimal schedule for harvesting and delivering to ensure there is sufficient biomass available to 
be processed each day at a biofuel facility?, v) what is the minimum delivered cost, energy 
consumption and GHG emission for a biofuel facility of a particular size, using both total and 
average measure?, and vi) what decisions are influential in affecting the parameters, such as fuel 
price and biomass availability? 

This research will investigate these research questions by applying a GIS model for the location 
selection of biofuel facilities. GIS can assist in location selection process through using spatial 
and statistical methods to analyze attribute and geographic information. The second phase will 
apply optimization and simulation techniques to the biofuel supply chain. The availability of 
such models will allow decision makers to design logistics that minimizes the total system cost, 
energy consumption and GHG emissions of biofuel. The next section elaborates on recent 
research on biofuels from biomass and how this research will address those gaps. 

2. Literature Review 

There is an extensive body of literature focusing on models and solutions that can be used as 
decision support tools for strategic analysis as well as tactical planning of biomass feedstock 
supply. As noted above, this decision support includes GIS to produce a comprehensive 
decision-making system [6]. The literature review provided below is based on a variety of 
articles/reports that were deemed to be relevant to this research. The articles/reports were chosen 
from two sources. In general, journal articles reviewed were chosen from database searches 
including keywords such as mathematical model, biomass supply chain, and cellulosic feedstock. 
Databases searched included but were not limited to Science Direct and Web of Knowledge. A 
series of reports developed by National Laboratories and governmental agencies (e.g., EIA) were 
reviewed either based on personal communication with them, or the focus area for the existing 
biofuel supply chain models. 

2.1 Facility location  
A variety of methodologies for facility location decision making were reviewed that have been 
presented in the technical literature. The focus was on traditional facility location analysis 
techniques, including basic quantitative methods and methods using both qualitative and 
quantitative criteria. Then, approaches that combine GIS systems with other models were 
evaluated. Lastly, GIS-based approaches that have been employed to address issues related to 
bioenergy facility locations were examined. 

Facility location problems may be classified into two main categories: single facility location and 
multi-facility location [16]. One technique for making single facility location decisions is the 
Weber model, which employs a center-of-gravity approach for site selection, and was employed 
by Drezner and Wesolowsky [17] and Wesolowsky [18]. Various techniques for locating 
multiple facilities simultaneously were studied by Brimberg et al., such as alternative location-
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allocation, projection, Tabu search, p-median, genetic search, and different variable 
neighborhood searches [19]. Additional traditional facility location analysis techniques include 
location rating factor and load-distance [20].  

Several basic quantitative methods for location selection have been applied in prior research and 
are relevant to this research study. These include mathematical modeling approaches such as data 
envelopment analysis modeling and binary integer linear programming model [21]. Approaches 
considering both qualitative and quantitative criteria for selecting the optimal location for a new 
facility were developed and applied, including Blin’s fuzzy model, fuzzy synthetic evaluation, 
Yager’s weighted goals method, and fuzzy analytic hierarchy process [22]. A hybrid method of 
selecting the best facility location considered critical factors for the first time, besides the 
commonly used objective and subjective factors [23]. The critical and subjective factors were 
defined from decision maker’s judgments which are often linked to real world concerns [23]. 
However, these methods cannot handle spatial data. An important trend in location selection is 
using GIS-based techniques for making single- and multiple- facility location decisions. The 
advantage of using a GIS-based approach is that GIS is able to analyze both spatial and non-
spatial data. 

The integrated approaches of GIS and other quantitative and qualitative models, have been 
developed and applied in decision support systems for selecting locations, including a GIS-based 
simulated annealing algorithm for identifying waste disposal sites [24], an integrated approach of 
GIS and location-allocation model to identify the best location for public facility planning [24], 
GIS combined with expert knowledge to determine adequate potential soil aquifer treatment 
(SAT) sites for groundwater recharge of the Hammamet-Nabeul aquifer located in the ‘Cap Bon’ 
peninsula in north east Tunisia [26], an integrated approach of GIS technology and a landfill 
diagnosis method to assist in landfill sitting assessment [27], and an integrated model of GIS and 
fuzzy logic for taxicab stand location decisions [28]. The capability to handle spatial data with 
GIS was employed to analyze spatial associations between geothermal exploration and 
environmental evidence layers to determine the appropriate sites for exploratory wells in the 
Northwest Sabalan geothermal field [29]. In a word, the integrated approaches of GIS and other 
quantitative and qualitative models have proved to be an effective method in decision support 
systems for selecting locations. 

With the growing interest in exploring renewable energy usage, GIS has proved to be an 
effective tool to address issues related to biomass availability and biomass logistics. Graham et 
al. [30] utilized GIS for a state-level modeling system to estimate regional geographic variations 
on delivered energy crop feedstock costs, and environmental impacts of switching from 
conventional crops to energy crops. Frombo et al. [31] introduced the GIS-based Environmental 
Decision Support System (EDSS) for strategic planning of optimal forest biomass logistics. 
Haddad and Anderson [32] identified potential supply locations of corn stover for bioenergy 
production by applying GIS. Voivontas et al. [33] estimated the biomass potential for power 
production from agriculture scraps based on GIS.  

Certain features of GIS have been applied to address issues related to bioenergy facility 
locations. A proposed algorithm for generating a marginal price (or maximum delivered cost) 
surface was developed by Noon et al. [34] using a GIS-based analysis to identify potential 
ethanol conversion plant locations. The marginal price was composed primarily of transportation 
cost without considering farmgate price and competition for feedstock of nearby potential plants.  
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Employing the marginal price surface approach for locating bioenergy facilities location, 
Panichelli and Gnansounou [35] considered site competition for biomass resources to develop a 
methodology for farmgate price calculation. A delivery cost surface based on GIS technology to 
compare two pricing strategies, fixed and discriminatory, was developed by Zhan et al. [36] to 
evaluate the economic variability of building a switchgrass-to-ethanol conversion facility in 
Alabama. Perpina et al. [37] applied GIS to analyze and identify optimal biomass logistics and 
transport strategies to locate bioenergy plants.  

A GIS-based approach for identifying biofuel facility locations is proposed. The GIS analysis 
takes into account a series factors which have not been considered simultaneously in previous 
research. These factors include (a) county boundaries, (b) a railroad transportation network, (c) a 
state/federal road transportation network, (d) city and village distributions, (e) a population 
census, (f) a pulpwood production, (g) a water body (rivers, lakes, etc.), and (h) no co-location 
with any other competitors for biomass feedstock. The details will be described in the next 
couple of sections. 

2.2 Supply chain model  
Information from previously developed biomass supply chains formed the foundation for the 
development of the supply chain in this research. The National Biofuels Plan developed by the 
Biomass R&D Board focuses on biomass feedstock processing and logistics that relate to the 
supply chain, such as harvesting process, storage facilities, and transportation of the feedstock 
[38]. The biofuel plan is based on the use of agricultural residues and woody residues as biomass 
feedstock [38]; for the present research, the supply chain is assumed to employ logs, which in the 
past were in demand by paper mills. The Idaho National Laboratory (INL) developed a uniform-
format feedstock supply chain that can be implemented at a nationwide level [39-40]. The Sandia 
National Laboratories (SNL) developed a model that considers cellulosic ethanol from various 
biomass feedstock types, such as corn, agricultural residues, energy crops, and forest residues, to 
support the national goal of producing 90 billion gallons (341 billion liters) of biofuels each year 
in the U.S. by 2030 [41-42]. The Oak Ridge National Laboratory (ORNL) investigated the 
feasibility of expanding the ethanol industry, and specifically focused on the additional 
infrastructure that needs to be built [43].  

Gronalt and Rauch [44] investigated the issue of centralized and decentralized chipping when 
designing a forest fuel network in order to meet the varying demands of each plant 
simultaneously using numerous storage facilities and terminals. Gunnarsson et al. [45] proposed 
a solution to the supply chain problem involving a forest fuel network structure through a large 
mixed integer linear programming (MILP) model. The fuels are forest residues from harvest 
areas or byproducts from sawmills, and are supplied to a combined heat and power (CHP) plant. 
De Mol et al. [46] created both simulation and optimization models for the network structure of 
biomass fuel collection. The network structure covers nodes including source locations, 
collection sites, transshipment sites, pre-treatment sites, and the energy plant. Road, water, and 
rail transportation modes are the three different choices to connect nodes [46]. McNeil 
Technologies, Inc. [47] investigated the feasibility of building a biomass-fuelled combined heat 
and power (CHP) plant in Jefferson County, Colorado. Several scenarios were considered 
including centralized and decentralized facilities, various conversion techniques, and different 
harvesting processes. Sokhansanj et al. [48] developed an integrated biomass supply analysis and 
logistics model (IBSAL) for supplying corn stover to a biorefinery through harvesting, storage, 
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and transportation. The IBSAL model examines costs and optimum conditions for harvesting and 
transportation logistics of biomass material.  

Huang et al. [49] proposed a mathematical model that integrates spatial and temporal dimensions 
for strategic planning of ethanol supply chain systems. This model incorporates dynamics issues 
in long-term strategic planning of biofuel systems, which was seldom considered in previous 
literature [49]. Eksioglu et al. [50] developed a mathematical model to design biomass-to-
biorefinery supply chain and manage the logistics of a biorefinery. This model took an integrated 
view of biomass harvesting, inventory, transportation processes and biorefinery location. Parker 
et al. [51] built an integrated model based on GIS and mathematical programming to evaluate the 
economic potential and infrastructure requirements of hydrogen production from agricultural 
residues. Rentizelas et al. [52] built and optimized a multi-biomass supply chain model for tri-
generation energy (electricity, heating and cooling) production to maximize the financial yield of 
the investment for investors. Luo et al. [53] proposed a detailed technical design combining with 
economic and environmental analysis of a lignocellulosic feedstock (LCF) biorefinery producing 
ethanol, power and high-value chemicals (succinic acid and acetic acid). 

A new analytical tool that integrates cost, energy savings, GHG considerations, scenario analysis 
and a Geographic Information System was developed to provide a comprehensive analysis of 
alternative systems for optimizing biomass energy production [54]. A two-stage mixed integer 
mathematical model was developed to optimize biomass supply chain networks under 
uncertainty, such as supply amounts, market demand, market price, and processing technologies 
[55]. The logistics of supplying forest biomass to a potential power plant was investigated using 
a simulation model which was developed by extending the Integrated Biomass Supply Analysis 
and Logistics (IBSAL) model [56].The simulation model evaluated the delivered feedstock cost, 
the equilibrium moisture content, and carbon emission from the logistic operations [56]. A MILP 
model was created to optimize ethanol supply chain configuration in terms of profitability and 
financial risk on investment [57]. The biofuel supply chain covers from the upstream fuel 
production, such as biomass cultivation, biomass delivery, and fuel production, to the 
downstream, such as biofuel distribution to demand centers [57].  

The strategic design and planning of corn grain- and stover-based bioethanol supply chains 
through first and second generation technologies were addressed [58]. A MILP model was 
created to optimize the environmental (in terms of overall GHG emissions) and financial (Net 
Present Value, NPV) performances simultaneously [58]. A MILP model was developed to 
optimize a biomass-to-ethanol supply chain in terms of net present value in a 9-state region in the 
Midwestern United States [59]. Perimenis et al. proposed the basic framework for a decision 
support tool to evaluate biofuel production pathways from biomass production to biofuel end-use 
[60]. The tool integrates the technical, economic, environmental and social aspect with a goal of 
identifying an alternative solution that optimizes all the criteria [60].  

A mixed integer-linear optimization model was developed and implemented to assess potential 
biofuel supply across the Western United States from agricultural, forest, urban, and energy crop 
biomass [61]. The model is to determine the optimal locations, technology types and sizes of 
biorefineries to satisfy a maximum profit objective function applied across the biofuel supply 
and demand chain from site of feedstock production to the product fuel terminal [61]. The 
technology types and biofuel demand chain are beyond the scope of the present study. A MIPL 
model, named BioFeed, was developed focusing on the feedstock production and provision 



6 
 

activities between farms growing energy crops and the biorefinery, such as harvesting, raking, 
baling, storage, handling and transportation [62]. A MIPL model was formulated and 
implemented to determine (1) the number, location, and size of the two types of processing 
facilities, and (2) the amounts of biomass, intermediate products, and final products to be 
transported between the selected locations over a selected period [63]. A combined life cycle 
analysis and supply chain optimization approach was proposed to access the economic and 
environmental sustainability of ethanol production systems [64]. The objective functions are to 
maximize the net present value and to minimize the total daily GHG impact associated [64].  
 
The comparison description in previous paragraphs summarizes previous studies on design of 
biofuel supply chain. There is limited work in the area of modeling woody biomass supply 
chains as it has primarily focused on other forms of biomass and/or used only optimization or 
simulation but not both simultaneously. Exploring the potential utilization of low value 
pulpwood, which was primarily used by paper mills, as biomass feedstock for biofuel production 
has never been done. Additionally as a precursor to optimization or simulation modeling, GIS 
have been used as a determinant of specific multiple locations. All three methodologies used 
together have not been done to date. In addition, evaluating the influence of spring breakup, 
which is exclusive to northern climates with snow and ice, on the biofuel supply chain has not 
been addressed. Since roads are restricted during spring breakup period, there is a need to have 
additional inventory on hand at the biofuel facility. Not properly addressing this issue, including 
efforts to build up and store inventory, will either lead to plant shutdown or produce increased 
total system cost due to the need of securing biomass from prohibitively expensive sources. 

3. Research Objective  

To promote biofuel production from renewable biomass, several research questions need to be 
addressed and include: i) what is the optimal number, locations, and sizes of the biofuel 
facilities?, ii) what are the optimal suppliers for a biofuel facility and the amount of biomass they 
can supply over a specific period?, iii) how does the limited availability of biomass feedstock 
during the spring breakup period impact the supply chain?, iv) what is the 
optimal schedule for harvesting and delivering to ensure there is sufficient biomass available to 
be processed each day at a biofuel facility?, v) what is the minimum delivered cost, energy 
consumption and GHG emission for a biofuel facility of a particular size, using both total and 
average measure?, and vi) what decisions are influential in affecting the parameters, such as fuel 
price and biomass availability? With this in mind, the following research objective is proposed: 

Development of an Optimization Model for Biofuel Facility Size and Location and a 
Simulation Model for Design of a Biofuel Supply Chain 

Task 1: Identify Candidate Biofuel Facility Locations Using Geographic Information 
System Based Approach 

A GIS-based approach has been proposed to preselect several candidate locations for biofuel 
production based on a set of evaluation criteria, such as accessibility to biomass, railway/road 
transportation network, water resource (e.g., rivers and lakes), and trainable workforce. 
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Task 2: Develop an Optimization Model for the Biofuel Supply Chain 

The optimization model and supporting information will be developed after candidates for the 
biofuel facility location have been identified. The optimization model will be used to determine 
(1) the optimal number, locations, and sizes of the biofuel facilities, and (2) the amounts of 
biomass to be transported between the harvesting areas and the biofuel facilities over a selected 
period, and minimize the objective function that considers the delivered feedstock cost, energy 
consumption and GHG emissions simultaneously.  

Task 3: Develop a Simulation Model for the Biofuel Supply Chain 

Compared with the optimization model, the simulation model provides a more refined, complex, 
and dynamic understanding of the 20-year operation of the biomass-to-biofuel system. The 
simulation model will be used to examine strategies that ensure availability of biomass feedstock 
during the spring breakup period. The simulation model will also be used to evaluate the 
suitable schedule for harvesting and delivering to ensure there is sufficient biomass available to 
be processed each day at a biofuel facility. The objectives will be to minimize delivered cost, 
energy consumption and GHG emission for a biofuel facility of a particular size, using both total 
and average measure.  

Task 4: Conduct Sensitivity Analysis to Evaluate the Impact of Different Parameters on 
Optimal Decisions 

A series of analyses will be conducted to understand the sensitivity of the decisions (e.g., the 
optimal site selected for the biofuel facility), to changes in influential parameters, including 
biomass availability and transportation fuel price. 

The following section will describe these tasks in detail. 

4. Task Descriptions  

Task 1: Identify Candidate Biofuel Facility Locations Using Geographic Information 
System Based Approach 
“To implement cost-effective biofuel production, the selection of the best location for a 
processing facility becomes a critical concern. This is because biomass feedstock is 
geographically dispersed, and the location of a biofuel facility significantly influences 
transportation costs. A GIS based approach is proposed for selecting potential facility locations 
for biofuel production from forest biomass based on a set of evaluation criteria. The GIS analysis 
takes into account the following factors: (a) county boundaries, (b) a railroad transportation 
network, (c) a state/federal road transportation network, (d) city and village distributions, (e) a 
population census, and (f) a pulpwood production” [65] (p. 3952, see Appendix A). This method 
is extended by considering other two factors (g) a water body (rivers, lakes, etc.), and (h) no co-
location with any other competitors for biomass feedstock. 

“The GIS-based approach was applied to the Lower Peninsula of Michigan (the L.P.) and nine 
potential biofuel facility locations were selected. The names of the nine potential sites as well as 
the distance (miles) to the closest co-fired power plant, is shown in Table 1. The map in Figure 1 
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shows the distribution of the nine potential sites” [66] (p. 10-11). 
 

Table 1 Potential Site for Biorefinery in the L.P., Michigan 

City / Village 
Distance to a Nearest Biomass 

Power Plant (miles) 

Manton City 11.19 
Roscommon Village 12.81 

Kingsley Village 23.86 
Kalkaska Village 23.94 

Gaylord City 25.49 
Clare City 33.97 

West Branch City 35.29 
Traverse City  36.03 
Boyne City 41.24 

 

Figure 1 Nine Potential Biofuel Facility Locations in the L.P., Michigan 
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The potential harvesting areas (biomass feedstock suppliers) for each candidate location within 
its 100-mile radius were also identified using GIS analysis. Figure 2 shows the distribution of the 
potential harvesting areas for the Gaylord City. 

 

Figure 2 Potential Harvesting Areas for the Gaylord Facility within 100-Mile Radius 

Task 2: Develop an Optimization Model for the Biofuel Supply Chain 
The biofuel supply chain is structured around four components: biofuel facility locations and 
sizes, biomass harvesting/forwarding, transportation, and storage. An optimization model is 
proposed to enable the selection of biomass locations, biorefinery capacities, and the logistics of 
transportation from biomass locations to the biorefineries. A mixed integer linear programming 
(MILP) model will be formulated and implemented in a software package (mathematical 
programming language, MPL) using databases built in Excel. The MILP will represent decisions 
regarding (1) the optimal number, locations, and sizes of the biofuel facilities, and (2) the 
amounts of biomass to be transported between the harvesting areas and the biofuel facilities over 
a selected period, and minimize the objective function of the delivered feedstock cost, energy 
consumption and GHG emissions simultaneously. 

Mathematical model 

Indices 
 I Set of harvesting sites, indexed by i  
 J Set of potential locations for biorefinery, indexed by j  

Model Inputs 

 cij Unit cost ($/ton) of biomass, including stumpage price, harvesting/forwarding cost, and 
transportation cost  

 eij Unit energy consumption  (1000 Btu/ton), associated with harvesting/forwarding and 
transportation 

 gij Unit GHG emissions (lb/ton), associated with harvesting/forwarding and transportation 
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 bi  Biomass availability (ton) at harvesting site i 
 r Conversion rate (gallons biofuel /green ton of biomass)  
 D Total biofuel demand (MGY) per year 
 wc Weight (%) of cost 
 we Weight (%) of energy consumption   
 wg Weight (%) of GHG emissions 

Decision Variables 
 qij Amount (ton) of biomass at harvesting site i shipped to biofuel facility j 
 j Equals to 1 if a biorefinery is built at site j, and 0 otherwise 
 sj Size (MGY) of a biofuel facility, if any, to be built at site j 

Objective Function  
The objective is to minimize the biofuel supply chain system “cost” (C) that is the weighted sum 
of the delivered feedstock costs, energy consumption and GHG emissions.  

I J

ij c ij e ij g ij
i 1 j 1

C (c w e w g w ) q
 

         

Constraints/Limitations 

 Constraint at harvesting site 
 The delivered amount of each biomass cannot exceed its corresponding maximum 

availability at harvesting area i 
J

ij i
j 1

q b


  ∀	i (1) 

 Constraints at biorefinery 
 The demand for biomass of a biorefinery at location j equals supply. 

I

ij j
i 1

q 1000000 s / r


   ∀ j (2) 

 The biofuel production meets the biofuel demand per year 

1
j

J

j

s D


                                                                                                                      (3) 

  Set up the lower and upper bounds of facility size 
30 50j j js      ∀	j (4) 

 
 Nonnegative constraint 
 Amount (tons) of biomass transported from harvesting area i to biorefinery j is 

nonnegative 

ijq 0  ∀	i, ∀	j  (5) 

 Binary constraint 

(0,1)j                                                   ∀	j                                                                (6)                 
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The MPL model was run by changing the demand for biofuel from 50 MGY per year to 300 
MGY per year in increments of 50 MGY to examine the sensitivity of decisions on demand. The 
results are shown in Table 2. 

Table 2 MPL Results of Facility Size at Each Location 

 

An Excel-based optimization model with a user friendly input screen has been developed for the 
Forestry Biofuel Statewide Collaboration Center (FBSCC). “Due to the Excel Solver size 
limitations regarding the number of changing cells and number of decisions, the model focused 
on single location and three multi-location configurations over a single time period (one year). 
For the single location models, cost, emissions, and energy were minimized to optimize the 
individual attributes. In the case of the multi-location configurations, only cost was evaluated. 
The model also allows for sensitivity analysis by changing inputs to evaluate different scenarios. 
The underlying model is a linear optimization model based on transportation networks” [66] (p. 
30). 

Task 3: Develop a Simulation Model for the Biofuel Supply Chain 
In this task, a biofuel supply chain simulation model will be built around biomass 
harvesting/forwarding, transportation and storage, and will be evaluated using multiple criteria 
including the delivered feedstock cost, energy consumption, and GHG emissions. Compared 
with the optimization model, the simulation model provides a more refined, complex, and 
dynamic understanding of the 20-year operation of the biomass-to-biofuel system. The 
simulation model is develop to: i) address the limited availability of biomass feedstock during 
the spring breakup period, ii) find the suitable schedule for harvesting and delivering to ensure 
there is sufficient biomass available to be processed each day at a biofuel facility, and iii) 
calculate the minimum delivered cost, energy consumption and GHG emission for a biofuel 
facility of a particular size, using both total and average measure. 

“The simulation model will be built using Arena Simulation Software [67]. The model consists 
of three sub-models: reading model inputs, supply activities, and daily biomass processing 
(Figure 3). Sub-models communicate with each other via signals. Two types of signals are 
created: transportation signals (the solid arrows in Figure 3) and reading data signals (the open 
arrow in Figure 3). Transportation signals can either come from the sub-model of “reading model 
inputs” or the daily biomass processing sub-model. “Reading data signals” are created by the 
supply sub-model and sent to the reading model inputs sub-model” [66] (p. 46).  

 

Manton Roscommon Kingsley Kalkaska Gaylord Clare 
West 
Branch 

Traverse 
City 

Boyne 
City 

0.00 0.00 0.00 0.00 50.00 0.00 0.00 0.00 0.00 50.00
34.75 0.00 0.00 0.00 30.00 0.00 35.25 0.00 0.00 100.00
30.00 0.00 0.00 30.00 30.00 30.00 30.00 0.00 0.00 150.00
30.00 0.00 30.00 0.00 30.00 35.24 44.76 0.00 30.00 200.00
46.88 30.00 30.00 0.00 30.00 50.00 33.12 0.00 30.00 250.00
50.00 39.47 50.00 0.00 30.53 50.00 50.00 0.00 30.00 300.00

Facility Size (MGY) at Each Location Total 
Demand 
(MGY)
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Figure 3 Simulation Model Logic 

The utility of the simulation model may be demonstrated by considering the location of a biofuel 
facility in the L.P. of Michigan. Nine potential biofuel facility sites in the L.P. were preselected 
by employing the GIS-based method described in Task 1. One simulation was run for a biofuel 
facility of 50 MGY in the city of Gaylord, Michigan. “The start date for the simulation was set as 
Nov 1st, 2011 and the model run length was 350 days a year, 20 years in total. The time step 
during the simulation was set as one day. The inventory (tons) changes as a function of time 
following the pattern demonstrated in Figure 4. Table 3 shows the eight most preferable 
harvesting areas (ordered by the distance from a harvesting area to the facility) for supplying the 
Gaylord plant” [66] (p. 55).  
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Figure 4 Inventory Level for a Facility Size of 50 MGY in Gaylord Operating 20 Years 

Table 3 Eight Optimal Harvesting Areas for Supplying Gaylord Plant 

Order 
Harvesting 

Area 
Rectilinear 

Distance (mile) 
Biomass 

(green tons) 
1 Otsego 4.023 274,920 
2 Antrim 24.754 134,827 
3 Crawford 27.196 120,789 
4 Montmorency 27.607 200,041 
5 Cheboygan 37.356 225,280 
6 Charlevoix 40.748 96,751 
7 Kalkaska 43.740 171,816 
8 Emmet 44.968 28,450 

Multiple simulation runs have been made for different facility size of 30 MGY, 40 MGY, and 50 
MGY and different biofuel facility locations. The results are consistent with the Excel-based 
optimization model.  

Task 4: Conduct Sensitivity Analysis to Evaluate the Impact of Different Parameters on 
Optimal Decisions  
“The foregoing analysis made a number of assumptions, such as biomass availability, 
transportation fuel price, and biomass conversion rate. With this in mind, a series of analyses will 
be conducted to identify the sensitivity of the decisions, such as the optimal site selected for the 
biofuel facility, to influential parameters. This sensitivity analysis will consider parameters 
including biomass availability and fuel price. For investigating the sensitivity to changes in fuel 
price and biomass availability, deviations from the base case will be considered” [65] (p. 3957).  

Fuel price will have an impact on transportation cost. In order to evaluate the effect of fuel price 
on the cost, the alternative fuel prices shown in Table 4 will be evaluated. The prices considered 
were i) the average fuel price for 2009 (2009 Avg.), ii) the highest price for 2009 (2009 Max.), iii) 
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the lowest price for 2009 (2009 Min.), and iv) the highest price for the five years between 2007 
and 2011 (5 Yr. Max) [68]. 

Table 4 The Alternative Fuel Prices 

Date Diesel Fuel ($/L) Diesel Fuel ($/gal) 
Sept 2011 Avg.  1.014 3.840 

2009 Avg.  0.651 2.464 
2009 Min.  0.553 2.092 
2009 Max.  0.738 2.792 
5 Yr. Max  1.242 4.703 

“In the base case study, the amount of biomass that could be sustainably harvested annually was 
taken directly from the net forest growth. It is likely that not all biomass will be available for a 
biofuel facility because of other competing uses for the same biomass. Competitors for biomass 
may come from paper mills, co-fired power plants, and other existing bioenergy facilities. To 
consider situations where less than 100% of the low value pulpwood and forest residues is 
available for biofuel production, several other biomass availability percentages will be 
considered: from 50% to 100% in increments of 10%” [65] (p. 3959).This parameter may expect 
the selection of the optimal biofuel facility location decision and other operational level 
decisions, such as the amount of biomass harvested per day on each harvesting area. 

5. Intellectual Merit  

The proposed research will facilitate the exploration of a wide variety of conditions that promise 
profitable biomass utilization in the renewable biofuel industry. The GIS-based facility location 
analysis considers a series of factors which have not been considered simultaneously in previous 
research. Location analysis is critical to the financial success of producing biofuel. The modeling 
of woody biomass supply chains using both optimization and simulation, combing with the GIS-
based approach as a precursor, have not been done to date. The optimization and simulation 
models can help to ensure the economic and environmental viability and sustainability of the 
entire biofuel supply chain at both the strategic design level and the operational planning level. 

6. Broader Impacts  

The proposed models for biorefineries can be applied to other types of plants. This is because the 
biomass feedstock supply chain is similar, if not the same, for biorefineries, biomass fired or co-
fired power plants, or torrefaction/pelletization operations. Additionally, the research results of 
this research will continue to be disseminated internationally through publications in journals, 
such as Biomass and Bioenergy, and Renewable Energy, and presentations at conferences, such 
as the 2011 Industrial Engineering Research Conference. For example, part of the research work 
related to biofuel facility identification has been published: Zhang, Johnson and Sutherland 
[2011] (see Appendix A). There will also be opportunities for Michigan Tech campus 
community to learn about the research through the Sustainable Future Institute. 
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7. Timeline  

The tasks associated with the proposed research will be completed according to the timeline 
shown in Table 5. 

Table 5 Timeline for Completion of Tasks 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sept Oct Nov Dec Jan Feb Mar Apr May
Task 1: Identify Candidate Biofuel Facility Locations 
Using Geographic Information System based Approach

Literature 
review

Task 3: Develop a Simulation Model for the Biofuel 
Supply Chain

Literature 
review

Task 4: Conduct Sensitivity Analysis to Evaluate the 
Impact of Different Parameters on Optimal Decisions

Manuscript 
Preparation

Conduct sensitivity 
analysis

Literature review

Manuscript 
Preparation

Refine the model
Manuscript 
Preparation

2011 2012

Completed

Task

Task 2: Develop an Optimization Model for the 
Biofuel Supply Chain

Excel-based model completed

Refine the 
model

Program 
MPL model
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a b s t r a c t

There is growing interest in the production of biofuels from woody biomass. Critical to the

financial success of producing biofuel is identifying the optimal location for the facility.

The location decision is especially important for woody biomass feedstock owing to the

distributed nature of biomass and the significant costs associated with transportation. This

study introduces a two-stage methodology to identify the best location for biofuel

production based on multiple attributes. Stage I uses a Geographic Information System

approach to identify feasible biofuel facility locations. The approach employs county

boundaries, a county-based pulpwood distribution, a population census, city and village

distributions, and railroad and state/federal road transportation networks. In Stage II, the

preferred location is selected using a total transportation cost model. The methodology is

applied to the Upper Peninsula of Michigan to locate a biofuel production facility. Through

the application of the two-stage methodology, the best possible location for biofuel

production was identified as the Village of L’anse in Baraga County. Also investigated are

the sensitivity of transportation cost and the optimal site for biofuel production to changes

in several key variables. These additional variables included fuel price, transportation

distance, and pulpwood availability. By applying sensitivity analysis based on limited

availability of feedstock, the City of Ishpeming emerged as another viable location for the

production facility.

ª 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The United States (U.S.) is pursuing several options to create

biofuels from renewable biomass and thus reduces depen-

dence on imported fossil fuels and mitigate greenhouse gas

(GHG) emissions. Perlack et al. [1] suggest that 30% of the

present consumption of petroleum products can be displaced

by biofuels in the U.S. by 2030. A joint biofuels systems anal-

ysis project, “90-Billion Gallon Biofuel Deployment Study,”

conducted by Sandia National Laboratories and the General

Motors Research and Development Center, assessed the

feasibility, implication, limitations, and enablers of large-

scale production of biofuels in the U.S. [2]. This study

concluded that producing 90 billion gallons (341 billion liters)

of biofuels from biomass each year in the U.S. is feasible [3].

Sensitivity analysis also demonstrated that cellulosic biofuels

can compete with oil at a reasonable price based on specific

assumptions [3].
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To implement cost-effective biofuel production, the

selection of the best location for a processing facility becomes

a critical concern. This is because biomass feedstock is

geographically dispersed, and the location of a biofuel facility

significantly influences transportation costs. We present

a new two-stage methodology for identifying the optimal

facility location for biofuel production from forest biomass.

Stage I uses a Geographic Information System (GIS) to identify

potential facility locations for biofuel production from forest

biomass for a given study area. The GIS analysis takes into

account the following factors: (a) county boundaries, (b)

a railroad transportation network, (c) a state/federal road

transportation network, (d) city and village distributions, (e)

a population census, and (f) a pulpwood production. In stage

II, a rectangular grid system is established across the study

area using the Public Land Survey System (PLSS).1 Using the

PLSS, a total transportation costmodel is then established and

utilized to find the optimal site for biofuel production from

forest biomass. Our study focused on low value pulpwood,

primarily used by paper mills, as the feedstock for biofuel

production. Ince and Durbak [4] stated that declining demand

for pulpwood by the paper products industry has led to

alternative uses for a readily available woody biomass feed-

stock. In the Southern U.S. (the major pulp producing area),

pulpwood demand decreased by 7.5% from 1994 to 2003 while

the supply of pulpwood increased due to increased acreage

and improvedmanagement intensity of pine plantations [5,6].

Total U.S. pulpwood demand was forecast to continue

declining in the next decade by the USDA Forest Service and

surplus pulpwood can be used for ethanol production [6]. The

process technologies used to convert forest residues to

lignocellulosic ethanol can be applied to pulpwood feedstock.

The research begins with a brief literature review that

describes previouswork that has been conducted on the facility

location problem,with specific emphasis on biofuel production

facilities. Special attention is placed on research relating to the

application of GIS to site selection. Next, the two-stage meth-

odology for identifying the optimal location for biofuel produc-

tion from forest biomass is described. Themethodology is then

applied in a case study for Michigan’s Upper Peninsula (or the

U.P. of Michigan) to identify the best site to locate a facility.

Following the case study, a sensitivity analysis is performed to

assess the effect of several key variables, i.e., fuel price, trans-

portation distance, and pulpwood availability, on trans-

portation cost. Sensitivity analysis also revealed an alternative

production site if biomass availability is less than expected.

Lastlywe summarize our research findings, describe important

conclusions, and present guidance for future research.

2. Literature review

A variety of methodologies for facility location decision

making were reviewed that have been presented in the

technical literature.We focused on traditional facility location

analysis techniques, including basic quantitative methods

and methods using both qualitative and quantitative criteria.

Then, approaches that combine GIS systems with other

models were evaluated. Lastly, GIS-based approaches that

have been employed to address issues related to bioenergy

facility locations were examined.

Facility location problems may be classified into two main

categories: single facility location and multi-facility location

[7]. One technique for making single facility location decisions

is the Weber model, which employs a center-of-gravity

approach for site selection, and was employed by Drezner

and Wesolowsky [8] and Wesolowsky [9]. Various techniques

for locating multiple facilities simultaneously were studied by

Brimberg et al., such as alternative locationeallocation,

projection, Tabu search, p-median, genetic search, and

different variable neighborhood searches [10]. Additional

traditional facility location analysis techniques include loca-

tion rating factor and loadedistance [11].

Several basic quantitative methods for location selection

have been applied in prior research and are relevant to this

research study. These include mathematical modeling

approaches such as data envelopment analysis modeling and

binary integer linear programming model [12]. Approaches

considering both qualitative and quantitative criteria for

selecting theoptimal location for anewfacilityweredeveloped

and applied, including Blin’s fuzzy model, the fuzzy synthetic

evaluation, Yager’sweighted goalsmethod, and fuzzy analytic

hierarchy process [13]. A hybrid method of selecting the best

facility location considered critical factors for the first time,

besides the commonly used objective and subjective factors.

The critical and subjective factors were defined from decision

maker’s judgments which are often linked to real word

concerns [14]. However, these methods cannot handle spatial

data. An important trend in location patterns is using GIS-

based techniques for making single- and multiple-facility

locationdecisions. TheadvantageofusingGIS-basedapproach

is that GIS is able to analyze both spatial and non-spatial data.

The integrated approaches of GIS and other quantitative

and qualitative models, have been developed and applied in

decision support systems of selecting locations, including

a GIS-based simulated annealing algorithm for identifying

waste disposal sites [15], an integrated approach of GIS and

locationeallocation model to identify the best location for

public facility planning [16], GIS combined with expert

knowledge to determine adequate potential soil aquifer

treatment (SAT) sites for groundwater recharge of the Ham-

mameteNabeul aquifer located in the ‘Cap Bon’ peninsula in

north east Tunisia [17], an integrated approach of GIS tech-

nology and a landfill diagnosis method to assist in landfill

sitting assessment [18], and an integrated model of GIS and

fuzzy logic for taxicab stand location decision [19]. The capa-

bility of handling spatial data of GIS was employed to analyze

spatial associations between geothermal exploration and

environmental evidence layers to determine the appropriate

sites for exploratory wells in the Northwest Sabalan

geothermal field [20]. In a word, the integrated approaches of

GIS and other quantitative and qualitative models have been

proved to be an effective method in decision support systems

of selecting locations.

1 PLSS was developed by the Land Ordinance of 1785 and is
a method used in U.S. to survey and identify land. Its basic units
of area are the township and section. The PLSS typically divides
land into 6-mile-square townships. Townships are subdivided
into 36 one-mile-square sections.
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With the growing interest in exploring renewable energy

usage, GIS has proved to be an effective tool to address issues

related to biomass availability and biomass logistics. Graham

et al. [21] utilized GIS for a state-level modeling system to

estimate regional geographic variations on delivered energy

crop feedstock costs, and environmental impacts of switching

from conventional crops to energy crops. Frombo et al. [22]

introduced the GIS-based Environmental Decision Support

System (EDSS) for strategic planning of optimal forest biomass

logistics. HaddadandAnderson [23] identifiedpotential supply

locations of corn stover for bioenergy production by applying

GIS. Voivontas et al. [24] estimated the biomass potential for

power production from agriculture scraps based on GIS.

Certain features of GIS have been applied to address issues

related tobioenergy facility locations.Aproposedalgorithmfor

generating a marginal price (or maximum delivered cost)

surface was developed by Noon et al. [25] using a GIS-based

analysis to identify potential ethanol conversion plant loca-

tions. The marginal price was composed primarily of trans-

portation cost without considering farmgate price and

competition for feedstock of nearby potential plants. Employ-

ing themarginal price surface approach for locating bioenergy

facilities location, Panichelli and Gnansounou [26] considered

site competition for biomass resources to develop a method-

ology for farmgate price calculation. A delivery cost surface

based on GIS technology to compare two pricing strategies,

fixed and discriminatory, was developed by Zhan et al. [27] to

evaluate the economic variability of building a switchgrass-to-

ethanol conversion facility in Alabama. Perpina et al. [28]

applied GIS to analyze and identify optimal biomass logistics

and transport strategies to locate bioenergy plants.

Based on the study on previous literature, a two-stage

methodology was developed and described below.

3. A new methodology for facility location

As has been noted, we propose a two-stage methodology to

identify the best location for biofuel production facility. The

two stages are (1) identify potential pulpwood-to-biofuel

facility locations based on a GIS approach (stage I), and (2)

selection of the optimal biofuel facility location based on

a total transportation cost model (stage II). Fig. 1 outlines the

steps in each stage and shows the relationship between the

two stages [29].

3.1. Stage I: site candidate identification via GIS

The purpose of stage I (Fig. 1) within the methodology is to

utilize GIS to identify potential pulpwood-to-biofuel facility

locations. Six types of information were considered in the GIS

analysis: (a) county boundaries, (b) a railroad transportation

network, (c) a state/federal road transportation network, (d)

city and village distributions, (e) a population census, and (f)

pulpwood production. County boundaries form the spatial

basis of the GIS analysis. State/federal road and railroad

transportation networks were incorporated to ensure timely

delivery of biomass feedstock and biofuels. Truck trans-

portation was included because it is the principal method of

transporting feedstock and biofuels in stage II. The railroad

network is another delivery alternative because it offers

a lower transportation cost than trucking.

In the application of GIS, several assumptions were made.

These included

� Low-valued pulpwood was chosen as the feedstock for the

potential biofuel facility because of the declining demand

for pulpwood by the paper products industry and the

increasing supply due to increased acreage and improved

management intensity of pine plantations [4e6].

� The annual pulpwood availability is assumed to be

uniformly distributed within each county in the region of

interest. Pulpwood data is available from the USDA Forest

Service, Forest Inventory and Analysis National Program.

The original data is provided in cubic foot and was con-

verted to tonne (conversion factors of 30 dry lbs per cubic

foot (481 kgm�3) [1] and 2205 lbs per Mg or one tonne was

used).

� The biofuel facility will operate at a production rate of

189 million liters (50 million gallons) of biofuel per year,

which is a medium-sized biofuel facility, as discussed in

Ref. [30]. The biofuel facility size was determined by inves-

tigating the tradeoff between economies of biorefinery size

and feedstock transportation costs [30].

� Based on a conversion yield of 334 LMg�1 (80 gallons dry -

ton�1) of woody biomass [31], a higher quantity of

635,000 Mg (700,000 tons) of dry feedstock will be required

per year by accounting for dry matter loss during storage

and transportation.

� Accessibility to the state/federal road transportation

network and the railroad transportation network (i.e., the

facility is within 1.61 km (onemile) of a network) is required.

This guarantees that the input (pulpwood feedstock) and

output (biofuel products) can be easily transported.

� Only cities and villages with populations greater than 1000

were considered for locating the biofuel facility, to ensure

the availability of a workforce.

Based on these assumptions, the GIS algorithm can iden-

tify potential locations for pulpwood-to-biofuel conversion

facilities. GIS operations are the central part of the method-

ology for the stage I analysis. The GIS operation consists of the

eight steps that are described in Appendix. In short, the steps

record the basic geographic and demographic data for the

region of interest, define the biomass density for each county,

select cities/villages within 1.61 km (one mile) of a state/

federal road or railroad; and from this reduced set of cities/

villages, identify those municipalities with a population

greater than 1000. Thesemunicipalities are the candidate sites

identified from stage I analysis and that will serve as input for

stage II of the analysis.

3.2. Stage II: cost-optimal location

The objective of stage II of the methodology is to identify the

cost-optimal location for biofuel production from forest

biomass. Stage II builds upon the results of stage I, which used

a GIS-based approach that considered a variety of important

factors (Fig. 1) to select a number of candidate facility sites.

The potential sites identified in stage I serve as unique
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demand locations/points for stage II. The rectangular grid

system establishes a set of 1 mile� 1 mile cells (the minimum

information unit) across the study area of interest. The cost

considered in this study is the total transportation cost when

the 635,000 Mg (700,000 tons) of demand is met. The model

considers each candidate facility location as a demand point.

For a given demand point, the model calculates the rectilinear

distances between the demand point and a number of supply

points (centroids of the PLSS cells). These distances are used

as approximations of the actual transportation distances. The

weights are the quantity of biomass in each cell. The optimal

site for biofuel production from forest biomass is identified as

the site with the minimum total transportation cost.

3.2.1. Relation for transportation cost rate
The relation for transportation cost rate is based on the work

presented by Hicks [32]. In this prior effort, three companies

from the U.P. of Michigan were investigated for their cost

structure. The trucking cost associated with transporting

a variety of loads under different fuel prices was recorded. A

linear regression equation was established based on the data,

and is shown in Equation (1):

Fig. 1 e Overview of methodology.

b i om a s s an d b i o e n e r g y 3 5 ( 2 0 1 1 ) 3 9 5 1e3 9 6 13954



Author's personal copy

CT ¼ 4:29þ 0:0459� dþ 0:0078� CF � 0:705� d: (1)

In Equation (1), CT is the one-way transportation rate ($Mg�1)

from a supply point to a demand point, d is the one-way

transportation distance (km) from a supply point to

a demand point, and CF is the fuel price ($ L�1). This trans-

portation cost rate is, in effect, a transportation cost per unit.

The coefficient of determination for the fitted line was

R2¼ 0.9703 [32]. The equation consists of three components:

fixed cost, variable (distance-dependent) cost, and fuel cost

differential. The fixed cost rate of 4.29 $Mg�1 covers the cost

of loading and unloading the biomass and other miscella-

neous expenses [32].

The constant coefficient associated with fuel cost,

0.705 $ L�1, corresponds to average fuel cost for Oct 2009 [32].

In general, the actual fuel cost will not be equal to this cost. If

the fuel cost is indeed 0.705 $ L�1, the one-way transportation

cost rate ($Mg�1), CT, simplifies to:

CT ¼ 4:29þ 0:0459� d: (2)

3.2.2. Total transportation cost model
The total transportation cost model uses the transportation

cost rate relation established above in concert with the

supply-demand distances and the amount of available

biomass to calculate the total transportation cost. The

procedure for finding the total transportation cost for the

candidate facility sites is shown below.

Candidate facility locations may be denoted as demand

points (j¼ 1, 2, 3, ., m). The study area is divided into N cells

(the area of each cell is one squaremile). A pixel is placed at the

centroid of each cell, and this pixel serves as the supply point

for the cell. Associatedwith each supply point (k¼ 1, 2,., N) is

the quantity (Qk) of pulpwood available. The quantity (Mg) of

pulpwood Qk is calculated as:

Qk ¼ ðQc �AkÞ=Ac (3)

where Qc is the total quantity (Mg) of pulpwood that may be

renewably recovered annually for a county, Ak is the area

(km2) of the kth cell, and Ac is the area (km2) of a county.

For the jth demand point the rectilinear distance (km) is

calculated for all possible supply (k) points. The N cells are

reordered and renumbered (i¼ 1, 2, ., N) from the lowest to

the highest based on the rectilinear distance. The available

quantity (Mg) of biomass is then summed across the supply

points beginning with the shortest distance until the sum

meets or exceeds 635,000 Mg (the amount of biomass needed

to meet the demand of the processing facility). The number of

supply points that must be considered to meet this condition

is termed n. When this condition is met, Dj (Mg) is set equal to

the sum as displayed in Equation (4):

Dj ¼
Xn

i¼1

Qi: (4)

where Qi is the annual quantity (Mg) of biomass available at

the ith supply point, andDj is the total amount (Mg) of biomass

supplied from the n supply points.

The transportation cost associated with delivering the

biomass at the supply points to the candidate facilitymay now

be determined by multiplying the cost rate for each of the n

supply points by the associated biomass at that point. The

transportation cost rate corresponding to the ith supply point

and the jth demand point is termed Cij ($Mg�1), and found

using Equation (1) (the rectilinear distance (km) between the

ith supply point and the jth candidate facility location, dij, is

calculated and used in the transportation cost rate). The total

transportation cost for the jth demand point, TCj ($), is then

found using Equation (5).

TCj ¼
Xn

i¼1

�
Cij �Qi

�
(5)

The average transportation cost per unit of biomass ($Mg�1)

for the jth demand point, ATCUj, is calculated using Equation

(6) by dividing the total transportation cost for the jth demand

point (TCj) by the total demand at demand point j (Dj). ATCUj is

given by:

ATCUj ¼ TCj=Dj (6)

The total transportation distance (km) associated with the

jth demand point, TDj, is calculated with Equation (7):

TDj ¼
Xn

i¼1

dij �Qi (7)

where dij is the rectilinear distance (km) between the ith

supply point and the jth candidate facility location.

Finally, the average transportation distance per unit of

biomass (kmMg�1) for the jth demand point, ATDUj, is

calculated using Equation (8):

ATDUj ¼ TDj=Dj (8)

Next, the two-stage methodology described above is applied

in a case study for Michigan’s Upper Peninsula.

4. Case study for Michigan’s upper
peninsula

Forest resources, a widely available source of sustainable

biomass, hold promise for energy production in Michigan [33],

since more than half of State’s land area is classified as

forestland. A study of growth/removal ratios, calculated for

the Great Lakes States from the national forest inventory,

suggests significant opportunities for forest biomass as a bio-

fuel feedstock [34]. Since 80% of the land area of Upper

Peninsula of Michigan is forested it was selected as the region

of interest to apply the methodology established above.

4.1. GIS identification of promising locations for
a biofuel facility

Data required for stage I analysis, including county bound-

aries of the U.P., the railroad transportation network, the

state/federal road transportation network, and city and village

locations in the U.P., was retrieved from the Michigan

Geographic Data Library [35]. Michigan census data was

obtained from the U.S. Census Bureau. The census data for all

cities and villages in the U.P. in 2006 was integrated into a GIS

data layer. The amount of forest biomass for biofuel produc-

tion was obtained from the USDA Forest Service, Forest
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Inventory and Analysis National Program. Timber Product

Output (TPO) Reports [36] include total timber product output

as the volume harvested from all sources. Low-valued pulp-

wood was chosen as the feedstock for the potential biofuel

facility because it is an underutilized, abundant resource in

the L.P. Table 1 shows annual pulpwood production by county

in 2006. Using conversion factors of 30 lbs (dry weight basis)

per cubic foot (481 kgm�3) [1] and 2205 lbsMg�1, the total

amount of pulpwood that may be annually harvested sus-

tainably is about 1.36 million Mg (1.50 million tons), which

exceeds the demand requirements for a processing facility.

Based on an analysis of all the decision factors impacting

pulpwood-to-biofuel facility location, thirteen candidate bio-

fuel facility locations (Table 2) were identified: four villages

and nine cities. The potential sites were transferred into point

geometry and represented the demand points. All candidate

sites are accessible to the state/federal road transportation

network and the railroad transportation network: each is less

than 1.61 km (one mile) from a network. This guarantees that

the input (pulpwood feedstock) and output (biofuel product)

can be easily transported. Also, each candidate site has access

to more than 635,000 Mg (700,000 tons) of pulpwood available

for biofuel production. Furthermore, to ensure the biofuel

facility has enough workers, each candidate site has a pop-

ulation greater than 1000. The spatial location of these

candidate sites is shown in the map in Fig. 2.

Based on the preliminary selection of potential sites for

biofuel production from forest biomass, attention turned to

performing stage II of the methodology.

4.2. Determining the optimal biofuel facility location

Based on the stage I analysis, thirteen potential city/village

sites in the U.P. of Michigan were identified for a biofuel

production facility. These serve as inputs for the stage II

analysis, which seeks to identify the best location by applying

the total transportation cost model.

The first step in the stage II analysis was to apply the PLSS

grid system to the U.P. of Michigan to create cells of one

square mile [37]. To calculate the potential pulpwood within

each cell, a GIS operation was performed where the PLSS grid

layer was intersected with the county layer, the latter layer

having been joined with the pulpwood availability informa-

tion. The quantity of pulpwood associated with each cell was

calculated using Equation (3).

As has been noted, a pixel is created at the centroid of each

cell in the PLSS grid; this pixel serves as a potential supply

point for each demand point. The GIS application is used to

calculate the rectilinear distance associated with every pair of

supply and demand points that is considered. As a base case,

the fuel price was assumed to be 0.705 $ L�1 [32]. Therefore,

the simplified transportation cost rate relation, Equation (2),

was used to calculate the transportation rate.

The methodology discussed above was applied to each

candidate facility location (demand point). For every demand

point, transportation distances were calculated for the supply

points, and sorted from the smallest to largest. Then sufficient

supply points were considered to ensure that facility biomass

demand of 635,000 Mg (700,000 tons) would be met. The TC,

ATCU, TD and ATDU were calculated using Equation (6).

Based on the case study, the optimal site for biofuel

production from forest biomass in the U.P. of Michigan was

identified to be the Village of L’anse in Baraga County (Table 3).

A total of 8021 supply pointswere needed (Fig. 3) to provide the

biomass for the L’anse-based biofuel facility.

Table 3 displays the TC values for each candidate site, with

the costs displayed from lowest to highest. The L’anse has the

smallest TC of 4.32 million $ andATCUat 6.81 $Mg�1. The Sault

SteMariehas thehighestestimatedTCandATCUat7.50 million

$ and 11.82 $Mg�1 respectively. The estimated TD for Sault Ste

Marie is about 115 millionkmand theATDUfor theCity of Sault

Ste Marie is approximately 164.15 kmMg�1. The estimated TD

for L’anse is about 38million km. While the ATDU for a site in

L’anse isapproximately54.72 kmMg�1, somebiomasswill have

to be transported longer distances and some closer distances;

thehistogramshown in Fig. 4 shows the distributionassociated

with how far the biomassmust be transported.

Followed analysis examines the sensitivity of the solutions

obtained from the proposed methodology to changes in these

assumptions.

Table 1 e Annual pulpwood production for the U.P. 2006.

County Pulpwood quantity

1000 cu ft 1000 dry lbs 10,000 dry Mg

Alger 4734 142,020 6.44

Baraga 7666 229,980 10.43

Chippewa 3670 110,100 4.99

Delta 7224 216,720 9.83

Dickinson 5884 176,520 8.01

Gogebic 7910 237,300 10.76

Houghton 6887 206,610 9.37

Iron 7103 213,090 9.67

Keweenaw 3334 100,020 4.54

Luce 4294 128,820 5.84

Mackinac 3794 113,820 5.16

Marquette 16,573 497,190 22.55

Menominee 5468 164,040 7.44

Ontonagon 8026 240,780 10.92

Schoolcraft 7398 221,940 10.07

Total 99,965 2,998,950 136.03

Table 2 e Potential sites for biofuel production from
pulpwood in the U.P.

City/village County Longitude Latitude

Newberry Luce �85.51 46.35

L’anse Baraga �88.45 46.75

Baraga Baraga �88.49 46.78

Ontonagon Ontonagon �89.31 46.87

Menominee Menominee �87.62 45.12

Norway Dickinson �87.91 45.80

Iron Mountain Dickinson �88.06 45.83

Gladstone Delta �87.04 45.85

Manistique Schoolcraft �86.25 45.96

Munising Alger �86.64 46.42

Sault Ste Marie Chippewa �84.37 46.48

Ishpeming Marquette �87.67 46.49

Negaunee Marquette �87.60 46.50
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5. Sensitivity analysis and discussion

The foregoing analysis made a number of assumptions, e.g.,

a fuel price of 0.705 $ L�1. With this in mind, a series of anal-

yses were conducted to identify the sensitivity of the trans-

portation cost and optimal site selected for the biofuel facility

to influential parameters. This sensitivity analysis considered

three parameters: fuel price, distance function employed, and

pulpwood availability. For investigating the sensitivity to

changes in fuel price and pulpwood availability, deviations

from the base case were considered. The methodology

described above utilized a rectilinear distance function

between supply and demand points to estimate trans-

portation distance; the effect of using a Euclidean distance

function was also considered. The TC and ATCU were calcu-

lated for each case examined.

5.1. Fuel price influence on transportation cost

In the case study for the U.P. of Michigan, fuel price played an

important role in the transportation cost model. In order to

evaluate the effect of fuel price on the cost, the alternative fuel

prices shown in Table 4 were evaluated for the L’anse-based

biofuel facility. The prices considered were (i) the average

fuel price for 2007 (2007 avg.), (ii) the highest price for 2007

(2007 max.), (iii) the lowest price for 2007 (2007 min.), and (iv)

the highest price for the five years between 2005 and 2009 (5 yr.

max). The estimated TC and ATCU for the L’anse facility

location for the different fuel prices are shown in Table 4.

First, it should be noted that any change in the fuel price

will have no effect on the optimal location for the biofuel

Fig. 2 e Potential sites for biofuel production in the U.P.

Table 3 e Estimated TC, ATCU, TD and ATDU for each
potential site in the U.P.

City/village TC
(million $)

ATCU
($Mg�1)

TD
(million km)

ATDU
(kmMg�1)

L’anse 4.32 6.81 38.42 60.49

Baraga 4.35 6.86 39.16 61.65

Ishpeming 4.36 6.87 39.37 62.00

Negaunee 4.42 6.97 40.84 64.31

Gladstone 4.73 7.44 48.11 75.77

Munising 4.76 7.50 49.02 77.19

Norway 4.77 7.52 49.24 77.52

Iron Mountain 4.83 7.61 50.64 79.72

Ontonagon 4.93 7.76 52.94 83.36

Manistique 5.04 7.94 55.70 87.71

Newberry 5.36 8.45 63.45 99.93

Menominee 6.59 10.38 92.88 146.25

Sault Ste Marie 7.50 11.82 114.82 180.95
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facility. The selection of the optimal location for the biofuel

production depends on the biomass distribution around

demand points. In Table 4 it is clearly evident that both the TC

and the ATCU change in proportion to the fuel price. The

smallest TC is approximately 4.25 million $, corresponding to

the minimum fuel price of 0.637 $ L�1; the associated ATCU is

6.70 $Mg�1. The largest TC is 4.89 million $, for the 5 yr. max

fuel price of 1.258 $ L�1, and the resulting ATCU is 7.70 $Mg�1.

5.2. Distance function influence on transportation cost

The influence of utilizing a Euclidean distance function on

transportation cost was explored. With L’anse as the facility

site, the Euclidean distance function produces an ATDU of

43.45 kmMg�1 (as opposed to the 54.72 kmMg�1 found with

the rectilinear distance function). A tortuosity factor (the

product of the tortuosity factor and the Euclidean distance is

the actual distance traveled) was introduced into the

Euclidean distance function to account for irregularities in the

road network connecting supply regions and a biofuel

production facility [38e41]. Tortuosity factors ranging from 1.0

to 3.0 [38] were considered. The adjusted Euclidean distances

Fig. 3 e Supply region for the L’anse facility location.

Fig. 4 e Distance traveled by biomass for the L’anse facility

location.

Table 4 e Estimated TC and ATCU for the L’anse biofuel
facility on different fuel prices.

Date Diesel fuel
price ($ L�1)

TC
(million $)

ATCU
($Mg�1)

Oct 2009 avg. 0.705 4.32 6.81

2007 avg. 0.763 4.38 6.90

2007 min. 0.637 4.25 6.70

2007 max. 0.909 4.53 7.14

5 yr. max 1.257 4.89 7.70
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were then used as the transportation distances in the trans-

portation cost model for the L’anse-based biofuel facility.

The calculated TC and ATCU for the different tortuosity

factors are shown in Table 5. It is clear that as the tortuosity

factor increases, so do the values for the TC and the ATCU. For

a tortuosity factor of 1.0, the TC, ATCU, and ATDU are

4.00 million $, 6.30 $Mg�1, and 43.45 kmMg�1 respectively. For

the rectilinear distance function, the corresponding values are

4.32 million $, 6.81 $Mg�1, and 54.72 kmMg�1. For a tortuosity

factor of 3.0, the TC is 6.55 million $, the ATCU is 10.31 $Mg�1

and the ATDU is 131.97 kmMg�1.

5.3. Pulpwood availability influence on selection of
optimal site

In the base case study, the amount of pulpwood that could be

sustainably harvested annually was taken directly from Table

1 (pulpwood production data). It is likely that not all biomass

will be available for a biofuel facility because of other

competing uses for the same biomass. Competitors for

biomass may come from paper mills, co-fired power plants,

and other existing bioenergy facilities. To consider situations

where less than100%of the lowvaluepulpwood is available for

biofuel production in the U.P., several other pulpwood avail-

ability percentages were considered: from 50% to 100% in

increments of 10%. Table 6 illustrates the different optimal

sites for biofuel production based on different pulpwood

availability levels in the U.P. The City of Ishpeming was iden-

tified to be the optimal site for levels of pulpwood availability

ranging from 50% to 70%. L’anse was identified as the optimal

site when the pulpwood availability is higher (from 80% to

100%). As has been noted, the selection of the optimal location

for biofuel production depends on the biomass distribution

around demand points, which explains why the best location

shifts as the pulpwood availability changes.

6. Summary and conclusions

A two-stage methodology to identify the optimal facility

location for biofuel production from forest biomass has been

described. Stage I uses a GIS-based approach to identify

potential biofuel facility locations for a given region of

interest. The GIS analysis considers such factors as the county

boundaries, a county-based pulpwood distribution, city and

village distributions, population data, and railroad and state/

federal road transportation networks. In stage II, the PLSS is

used to generate a grid of one-square-mile cells. A trans-

portation cost model was introduced that sums the costs

associated with transporting the sustainably harvestable

biomass in each cell to a given potential facility site. The

transportation distance is approximated by the rectilinear

distance between a pair of supply and demand points. The

optimal site for biofuel production is the site that has the

minimum transportation cost. The methodology was applied

to the U.P. of Michigan as a case study. The optimal location

for biofuel production from pulpwood was found to be the

Village of L’anse. The influence of fuel price, distance func-

tions employed, and pulpwood availability on transportation

cost was evaluated through a series of sensitivity analyses.

Sensitivity analysis was also conducted to assess the influ-

ence of the availability of pulpwood on the selection of the

optimal site for biofuel production.

The conclusions from this research include

� The Village of L’anse was identified to be the optimal loca-

tion for biofuel production from low-valued pulpwood in the

base case study in the U.P. The TC was approximately

4.32 million $ and the ATCUwas estimated to be 6.81 $Mg�1

with an ATDU of 54.72 kmMg�1.

� The sensitivity analysis showed that fuel prices, trans-

portationdistance, andpulpwoodavailabilityhave influence

on transportation cost. Pulpwood availability also influences

the selection of the optimal site for biofuel production.

� The City of Ishpeming was identified to be the optimal site

for biofuel production from forest biomass in the U.P. of

Michigan for low levels of pulpwood availability (50e70%).

The Village of L’anse was identified to be the optimal site

when the pulpwood availability is higher (80e100%).

� A GIS-based approach, integrated with other mathematical

models, was an efficient and practical method for identi-

fying the optimal sites.

The utility of the two-stage site selection methodology has

been demonstrated. There is little difference between location

selections for a less capital-intensive power plant or a higher

capital biodiesel plant because the supply chain is similar, if

not the same. The methodology can also be easily applied to

other regions in the U.S. With GIS it is relatively easy (the first

stage of the methodology) and other data layers for different

Table 5 e ATDU, TC, and ATCU for a biofuel facility in
L’anse based on a Euclidean distance function and
different tortuosity factors (for reference, the Euclidean
distance function produces an ATDU of 47.91 kmMgL1).

Tortuosity
factor

ATDU
(kmMg�1)

TC
(million $)

ATCU
($Mg�1)

1.0 47.91 4.00 6.30

1.3 62.10 4.38 6.90

1.5 72.75 4.64 7.30

1.7 81.62 4.89 7.70

1.9 92.27 5.15 8.10

2.1 101.14 5.40 8.51

2.3 111.78 5.66 8.91

2.5 120.66 5.91 9.31

2.7 129.53 6.17 9.71

2.9 140.17 6.42 10.11

3.0 145.50 6.55 10.31

Table 6 e Optimal sites for biofuel facility on different
pulpwood availability in the U.P.

Pulpwood
availability (%)

Optimal site TC
(million $)

ATCU
($Mg�1)

50 Ishpeming 5.25 8.27

60 Ishpeming 4.97 7.83

70 Ishpeming 4.77 7.51

80 L’anse 4.59 7.23

90 L’anse 4.44 6.70

100 L’anse 4.32 6.81
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regions of the U.S would be required. The second stage of the

methodology can be adapted to other regions of the U.S.

Further studies will consider different regions of interest for

forest-based biofuel production.
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Appendix

The GIS operation consists of the eight steps described below.

� Create a geodatabase to include all input features used for

analysis;

� Join pulpwood information to counties;

� Based on the biomass available for each county, calculate

the biomass density (Mg km�2) for each county;

� Join population census information to cities and villages;

� Build a 1.61 km (one mile) buffer around state/federal roads

and railroads;

� Select cities and villages within the state/federal roads and

railroads buffer;

� Select cities and villages with a census population greater

than 1000;

� Transfer potential sites into point geometry (thesewill serve

as demand points in stage II).
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[7] Esnaf S, Küçükdeniz T. A fuzzy clustering-based hybrid
method for a multi-facility location problem. J Intell Manuf
2009;20:259e65.

[8] Drezner Z, Wesolowsky GO. The expected value of perfect
information in facility location. Oper Res 1980;28(2):395e402.

[9] WesolowskyGO. Probabilisticweights in the one-dimensional
facility location problem. Manage Sci 1977;24(2):224e9.

[10] Brimberg J, Hansen P, Mladenovic N, Taillard ED.
Improvement and comparison of heuristics for solving the
uncapacitated multisource Weber problem. Oper Res 2000;
48(3):444e60.

[11] Krajewski LJ, Ritzman LP, Malhotra MK. Operations
management. 9th ed. Pearson Education, Inc; 2009.

[12] Cheng EWL, Li H. Exploring quantitative methods for project
location selection. Build Environ 2004;39:1467e76.

[13] Kahraman C, Ruan D, Dogan I. Fuzzy group decision-making
for facility location selection. Inf Sci 2003;157:135e53.

[14] Tabari M, Kaboli A, Aryanezhad MB, Shahanaghi K, Siadat A.
A new method for location selection: a hybrid analysis. Appl
Math Comput 2008;206:598e606.

[15] Muttiah RS, Engel BA, Jones DD. Waste disposal site selection
using GIS-based simulated annealing. Comput Geosci 1996;
22:1013e7.

[16] Yeh AG-O, Chow MH. An integrated GIS and
locationeallocation approach to public facilities planning e

an example of open space planning. Comput Environ Urban
1996;20:339e50.

[17] Kallali H, Anane M, Jellali S, Tarhouni J. GIS-based multi-
criteria analysis for potential wastewater aquifer recharge
sites. Desalination 2007;215:111e9.

[18] Zamorano M, Molero E, Hurtado Á, Grindlay A, Ramos Á.
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Abstract 

One of the critical elements for promoting ethanol production from woody biomass is defining 

the optimal ethanol plant location. The woody biomass feedstock and transportation costs are 

geographically dependent. A Geographic Information System (GIS) based approach was applied 

to identify potential pulpwood-to-biofuel facility locations. The approach uses a county-based 



pulpwood distribution, a population census, and railroad and state/federal road transportation 

networks. The preferred location will be selected using a weighted-average transportation cost. 

Keywords: GIS, biomass, biofuel, transportation cost, optimal facility location 

Introduction  

To reduce dependence on imported fossil fuels and to mitigate greenhouse gas (GHG) emissions, 

the United States (U.S.) is pursuing several efforts to exploit renewable biomass to produce 

biofuels as an alternative for transportation fuel. This is one of several possible options. The U.S. 

Department of Agriculture (USDA) and the U.S. Department of Energy (DOE) Biomass 

Research and Development Technical Advisory Committee members envisioned the potential of 

a 30% replacement of the present consumption level of petroleum products with biofuels in the 

U.S. by 2030 (Perlack et al., 2005). A joint biofuels systems analysis project, “90-Billion Gallon 

Biofuel Deployment Study”, conducted by Sandia National Laboratories and General Motors’ 

Research and Development Center between March and November 2008, assessed the feasibility, 

implication, limitations, and enablers of large-scale production of biofuels in the U.S.  Based on 

a series of analyses, the research teams concluded that producing 90 billion gallons of biofuels 

from biomass each year in the U.S. is feasible. The sensitivity analyses also demonstrated that 

cellulosic biofuels can compete with oil at a reasonable price based on specific assumptions  



(West et al., 2009). Forest biomass is geographically dependent and the location of a biofuel 

facility significantly influences the delivery cost.  Selection of the best location for a processing 

facility becomes a critical element for cost-effective biofuel production.  

A methodology using two-phases for identifying the optimal facility location for biofuel 

production from forest biomass was developed. Phase I used Geographic Information System 

(GIS) to identify potential pulpwood-to-biofuel facility locations in a study area. The GIS 

analysis considers such factors as a county-based pulpwood distribution, a population census, 

and railroad and state/federal road transportation networks. In phase II, the Public Land Survey 

System (PLSS) was used to generate a one-square-mile grid system as the minimum analysis 

unit. A weighted-average transportation cost model that utilized a transportation cost model was 

developed. The optimal site for biofuel production will be identified through the use of the two-

phase methodology.   

The literature review summarizes some of the key research findings regarding the selection of 

the optimal plant location.  Gaps in the current research have been identified and serve as the 

basis for the development of the proposed two-phase selection methodology.  



Literature Review 

GIS is considered an effective tool to address issues related to biomass availability and cost, and 

issues related to bioenergy facility locations (Graham et al., 2000). Graham et al. (2000) applied 

GIS using a state-level modeling system for estimating regional geographic variations on energy 

crop feedstock costs and supplies (farmgate and delivered), and environmental effects of 

switching from conventional crops to energy crops.  Haddad and Anderson (2008) applied GIS 

to identify potential supply locations of corn stover for bioenergy production. Voivontas et al. 

(2001) estimated the biomass potential for power production from agriculture scraps based on 

GIS.  

Selected components of GIS have been employed to optimize biofuel production. Noon et al. 

(2002) proposed an algorithm for generating a marginal price (maximum delivered cost) surface 

and applied this methodology to identifying potential ethanol production plant locations. 

Panichelli and Gnansounou (2008) took into account site competition for biomass resources and 

developed a methodology for farmgate price calculation.  

In previous research, different biomass feedstocks were used to produce biofuels and 

bioproducts. The most commonly used biomass feedstocks are agricultural residues (e.g., corn 

stover and wheat straw), energy crops (e.g., short rotation woody crops (SRWC) and 



switchgrass), and forest residues. In this study, pulpwood, which has been primarily used by 

paper mills, was the feedstock for biofuel production. Because of the declining demand for 

pulpwood by the paper products industry (Ince, 2001), this is an alternative use for a readily 

available woody biomass feedstock. Based on the gaps identified in the literature review, a two-

phase methodology was developed and will be described in the next section. 

Methodology  

The methodology consists of two phases of analysis: (1) identify potential pulpwood-to-biofuel 

facility locations based on a GIS approach (phase I), and (2) selection of the optimal biofuel 

facility location based on a weighted-average transportation cost model (phase II). Figure 1 

outlines the steps in each phase and shows the relationship between the two phases. 



 

Figure 1 Overview of methodology 



GIS Identification of Potential Locations for Pulpwood-to-Biofuel Facilities 

In phase I (Figure 1), GIS is used to identify potential pulpwood-to-biofuel facility locations. The 

required data for the GIS analysis included seven categories: county boundary, railroad 

transportation network, state/federal road transportation network, city distribution, village 

distribution, population census, and pulpwood production.  

Prior to analysis, it is necessary to make several assumptions regarding the application of GIS: 

• The unit of measure of pulpwood is commonly in million cubic feet. A conversion factor of 

30 lb per cubic feet is used.  

• Only one percent of pulpwood production is available for biofuel production. The one 

percent assumption of pulpwood used for biofuel production is based on the consideration of 

sustainable harvesting of forest resources and competition for the raw material from other 

biofuel and bioproducts industries and the pulp and paper industries. 

• Because the pulpwood production information is county-based, a uniform distribution was 

used to describe pulpwood production within each county.  

• The biomass conversion plant has a medium capacity production of 50 million gallons of 

biofuel per year (Tembo et al., 2003).  



• Based on a conversion yield of 80 gallons/dry ton of biomass (Aden et al., 2002), the biofuel 

facility will have a demand for approximately 700,000 dry tons of feedstock per year.  

• The trucking distance (haul radius) is 50 miles or less, with the biofuel facility location at the 

center of the biomass harvesting area.  

• The biofuel facility is accessible to state/federal road or railroad transportation networks (i.e., 

the facility is within one mile of a network).  This guarantees the input (pulpwood feedstock) 

and output (biofuel products) can be easily transported.  

• The biofuel facility will be located in a city or village with a population greater than 1,000 to 

ensure that enough workers are available for the plant. 

After the assumptions were made, the GIS operations involved in identification of potential 

locations for pulpwood-to-biofuel facilities are detailed. GIS operations are the central part of the 

methodology of the first phase of the analysis. The operations consist of the 7 steps described 

below.  

1) Create a geodatabase to include all input features used for analysis; 

2)  Join pulpwood information to counties; 

3) Calculate tons per square mile within each county; 



4) Join population census information to cities and villages; 

5) Build a one-mile buffer around state/federal roads and railroads; 

6) Select cities and villages within the state/federal roads and railroads buffer; 

7) Select cities and villages with a census population greater than 1,000.  

After completing the phase I analysis, additional information is available to complete phase II of 

analysis. 

Determining the Optimal Biofuel Facility Location 

The objective of phase II (Figure 1) of analysis is to identify the best location for biofuel 

production from forest biomass. A preliminary selection of potential sites was performed in 

phase I based on the GIS approach by examining a series of decision factors. Potential sites 

identified from phase I, including cities and villages, were transferred into point geometry that 

represent demand points. The PLSS1 grid system (1 mile x 1 mile) was used as the minimum 

information unit over the study area. A weighted-average transportation cost model was 

                                                 
1 PLSS was developed by the Land Ordinance of 1785 and is a method used in U.S. to survey and identify land. Its 

basic units of area are the township and section. The PLSS typically divides land into 6-mile-square townships. 

Townships are subdivided into 36 one-mile-square sections. 



developed. The optimal site for biofuel production from forest biomass was identified to be the 

one with the minimum weighted-average transportation cost. 

Transportation Cost Model 

The transportation cost model used for the analysis was developed by Hicks et al. (2009). Three 

companies from Michigan were investigated for their tariff rate structures and used to develop 

the model for the Upper Peninsula (U.P.) of Michigan. All of the U.P. tariff rates were converted 

to dollars per ton and plotted against transportation distance. Linear regression was used to fit a 

line to the U.P. tariff rate data. Equation Error! Reference source not found. provides the 

transportation cost CT, in dollars per mile per ton:  

 (1)

where CT is the one-way transportation cost ($/ton) from a supply point to a demand point, d is 

the one-way transportation distance (miles) from a supply point to a demand point, and CF is the 

fuel price ($/gallon). The coefficient of determination for the fitted line was R2 = 0.9703. The 

equation consists of three components: base cost, mileage cost, and fuel cost differential. The 

base cost rate of $3.89/ton covers the cost of loading and unloading. 



The fuel cost differential term arises because the average fuel cost of $2.67/gal, as was the case 

in Oct 2009, will not be the case in general. If the fuel cost rate is indeed $2.67/gal, the one-way 

transportation cost, CT, simplifies to: 

 (2)

The transportation cost model was used in the section below to build the weighted-average 

transportation cost model. 

Weighted-Average Transportation Cost Model 

Candidate facility locations are referred as demand points (j = 1, 2, 3, …, m). Take one demand 

point for example, the 50-mile biomass harvesting area for the demand point is divided into n 

cells (the area of each cell is one square mile). A pixel is placed at the centroid of each cell, and 

this pixel serves as the supply point for the cell. Associated with each supply point i (i = 1, 2, …, 

N) is the quantity (Qi) of pulpwood available. The quantity of pulpwood Qi is calculated as: 

 
(1)

where Qc is the total quantity of pulpwood available in a county, Ai is the area of cell or pixel i, 

and Ac is the area of a county. 

The Euclidean distance is calculated between any pair of supply and demand points and used as 

the distance in the transportation cost model. A per unit transportation cost Cij is calculated using 



the transportation cost equations. The transportation costs are sorted from the lowest to the 

highest. The available quantity of biomass Qi at each supply point is summed (Sj) beginning with 

the lowest transportation cost until the sum meets or exceeds 700,000 tons. When this condition 

is met, Dj is set equal to Sj (Equation (2)).  

 

(2)

where Qi is the available quantity of biomass at each supply point, Sj is the total quantity biomass 

available from the n supply points, and Dj is of the amount of biomass feedstock required at each 

demand point. The weighted-average transportation cost Cavg(j) is calculated in Equation Error! 

Reference source not found., i.e., the transportation cost is weighted by the available biomass at 

each supply point. 

 

(3)

where Cij is per unit transportation cost ($/ton) and Cavg(j) is weighted-average transportation 

cost ($/ton). 

The weighted-average transportation distance, Lavg(j), is calculated in Equation (4): 

 

(4)



where Lij is the Euclidean distance between any supply point i and any candidate facility location 

j.  

Summary and Conclusions 

A two-phase methodology to identify the optimal facility location for biofuel production from 

forest biomass was developed. Phase I used GIS to identify potential pulpwood-to-biofuel 

facility locations in a study area. The GIS analysis considers such factors as a county-based 

pulpwood distribution, a population census, and railroad and state/federal road transportation 

networks.  In phase II, the PLSS was used to generate the one-square-mile grid system as the 

minimum analysis unit. A weighted-average transportation cost model was developed. The 

optimal site for biofuel production will be identified as the one with the minimum weighted-

average transportation cost.  

Further Research 

The methodology developed in this study will be applied in a case study: Michigan's Upper 

Peninsula, to identify the best location for biofuel production from forest biomass.  Different 

types of sensitivity analysis will be conducted to identify the impacts of different parameters on 

the results, especially to identify the parameters that most influence the decision.  
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Abstract 

To reduce U.S. dependence on imported oil and to reduce carbon emissions, renewable 

biofuel production from biomass has seen emerging interest. This study focused on life 

cycle greenhouse gas emission impacts of forest biomass supply chain for ethanol 

production. The life cycle stages considered include biomass harvesting/forwarding, and 

transportation via truck/rail. The comparison system is a supply chain for petroleum-

based fuel production, exemplified using data specific to the U.S. The results show that 

from feedstock supply perspective, biofuel production from forest biomass is more 

environmentally friendly (about 50-70% less greenhouse gas emissions) compared with 
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petroleum based fuel production. Forest biomass supply by rail performs better (about 15 

million kg less carbon emissions) than truck supply.  

Keywords: LCA, biomass supply chain, greenhouse gas emissions 

Introduction 

In recent years the U.S. has imported slightly more than one-half of its oil needs from 

foreign sources [1]. Such a high dependence increases U.S. strategic vulnerability and 

prompts more research on renewable energy production. Production of ethanol from 

renewable biomass, which could be a substitute for gasoline, has seen increased interest. 

A general assumption applied to biofuels is the carbon neutrality assumption that would 

underestimate greenhouse gas (GHG) impact/carbon footprint of the products. Carbon 

emissions are not considered across the biomass feedstock supply chain while the 

emissions are not insignificant [2].  

To evaluate the environmental impacts associated with biofuels production and 

identify any opportunity for environmental improvement, Life Cycle Assessment (LCA) 

has proven to be an effective method [3-4] but few LCA studies on second-generation 

biofuels are currently available. Slade et al. [5] evaluated the GHG emissions 

performance of cellulosic ethanol supply chains in Europe. Blottnitz and Curran [6] 

reviewed the assessments conducted on bio-ethanol as a transportation fuel from a net 

energy, GHG, and environmental life cycle perspective. However, many uncertainties, 

such as the type of biomass, regional differences, transportation modes, and system 

boundaries, are involved in the application of LCA method which results in wide 

variation in the outcomes [2]. This study focused on life cycle greenhouse gas emissions 

of regional forest biomass feedstock supply systems for ethanol production.  The 



 

 

 

 

components of the supply chain include biomass harvesting/forwarding, and 

transportation via truck/rail. The comparison system is a supply chain for petroleum-

based fuel production in U.S. refineries, including life cycle stages of crude oil mix 

extraction/processing within exporting countries, crude oil mix transport within exporting 

countries via pipeline, crude oil mix ocean transport to domestic ports via tanker, and 

crude oil mix domestic transport via pipeline. 

LCA Methodology and Data 

Functional Unit 

Due to the low energy content of ethanol, 1.5 gallons of ethanol has the energy equivalent 

(120MJ) of 1 gallon of gasoline [7]. The function unit is defined as the energy (4 PJ) that 

50 million gallons of ethanol can provide. For gasoline, 33.3 (50/1.5) million gallons of 

gasoline are needed to provide the same amount of energy (4 PJ). The lifetime is one year. 

To produce ethanol 50 million gallons per year (MGY), one million green tons of forest 

biomass are needed by considering a conversion factor of 50 gallons of biofuel per green 

ton of biomass. To produce 33.3 MGY of gasoline 1.71 million barrels (71.79 million 

gallons) of crude oil mix are needed by assuming 19.5 gallons of gasoline can be refined 

from one barrel of crude oil mix which is 42 US gallons.  Other project assumptions are 

listed below. 

 Logs are used as biomass feedstock for biofuel production due to their abundance in 

the study area of Michigan; 

 For a biorefinery producing 50 MGY of ethanol, daily demand for biomass feedstock 

is about 2,860 green tons. This assumes the biorefinery operates 350 days (50 weeks) 

per year with 2 weeks for maintenance; 



 

 

 

 

 Biomass feedstock delivered by diesel truck or diesel railcars with an average one-

way transportation distance of 67 miles (2/3 of 100 miles radius following Overend’s 

approach to calculate the average haul distance [8]);  

 Trucks/railcars return 67 miles to harvesting areas carrying an empty load; 

 With the railway supply system, 10 miles (20 miles for a round trip) of truck 

transportation is required to deliver biomass from landings to rail spurs; 

 Truck capacity is 45 tons while railcar capacity is 80 tons with 36 railcars per 

shipment;  

 About 72 trucks are needed each day while only one rail shipment is needed to 

deliver the same amount of biomass; 

 Trucks have a lifetime of 10 years while the locomotive and railcars have a lifetime 

of 22 years; 

 The moisture content is constant throughout the supply chain at 50%; 

 No dry matter loss is taken into account through the supply chain; and 

 All environment loads are assigned to the main product (ethanol); no allocation is 

conducted. 

Data Tables and Sources 

Data regarding GHG emissions associated with biomass harvesting/forwarding, and 

transportation activities were collected from various sources. GHG emissions associated 

with machine construction, maintenance and replacing capital equipment are also 

considered. Tables 1 and 2 show GHG emissions factors and input data for forest 

biomass harvesting and transportation, respectively. The energy intensities required to 

extract/process, and transport crude oil to the U.S. are illustrated in Tables 3 and 4.  



 

 

 

 

Item Data Source 

Harvesting 

Gallons diesel / hr 19 L / hr, full processor White 2005 [9] 

Productivity / hr 4 cords/hr , 2.35 tons/cord Logger interviews [10] 

Diesel emissions 

factor 

13.63 kg GHGs / gal GREET upstream 

production  [11]   + 

US LCI combustion  [12]  

Emissions for 

machine production, 

maintenance 

41,873 kg GHGs production 

50% addition for lifetime repairs 

Normalized to 160,000 lifetime green 

tons 

Athanadiassis 2002 [13] 

 (based on forwarder) 

Assumed repair, lifetime 

production 

Lifetime use of oils, 

lubricants 

4% of lifetime fuel use 

14,000 lifetime operating hours 

Klvac 2003 [14] 

Assumed lifetime operation 

Oil, lubricant 

emissions factor 

261 g GHGs / L Athanadiassis 2000 [15] 

Forwarding 

Gallons diesel / hr 11 L / hr, bunk forwarder White 2005 [9] 

Productivity / hr 4 cords/hr , 2.35 tons/cord Logger interviews [10] 

Diesel emissions 

factor 

13.63 kg GHGs / gal GREET upstream 

production  [11]   + 

US LCI combustion  [12]  

Emissions for 

machine production, 

maintenance 

41,873 kg GHGs production 

50% addition for lifetime repairs 

Normalized to 160,000 lifetime green 

tons 

Athanadiassis 2002 [13] 

Assumed repair, lifetime 

production 

Lifetime use of oils, 

lubricants 

3% of lifetime fuel use 

14,000 lifetime operating hours 

Klvac 2003 [14] 

Assumed lifetime operation 

Oil, lubricant 

emissions factor 

261 g GHGs / L Athanadiassis 2000 [15] 

Total  

GHGs / green ton  

(Harv. & Forw.)   

12.26 kg GHGs / Green ton 

6.6% due to non-operational factors 

 

Table 1 Data and assumptions for roundwood harvesting/forwarding 

 

  



 

 

 

 

Item Data Source 

Truck transportation   

Diesel emissions 

factor 

13.63 kg GHGs / gal GREET upstream 

production  [11]   + 

US LCI combustion  [12]  

Log truck fuel use per 

ton-mile 

3.61 miles / gallon 

45 ton loaded average 

50% loaded miles 

0.0123 gal / ton-mile 

Logger interviews [10] 

Emissions for log 

truck production, 

maintenance 

55,400 kg GHGs 

 

Ecoinvent database for 40-t 

lorry production, 

maintenance [16] 

Lifetime ton-miles of 

log truck 

10 yr productive life 

75,000 miles / yr 

45 ton loads, 50% loaded miles 

Interviews with forest 

products industry workers 

Total Log Truck 

GHGs / ton-mile 

0.171 kg GHGS/ ton-mile 

1.75% non-operational factors 

 

Rail transportation   

Diesel emissions 

factor 

13.63 kg GHGs / gal GREET upstream 

production  [11]   + 

US LCI combustion  [12]  

Rail emissions factor 

per ton-mile 

0.0015 kg GHGs / ton-mile CN Railroad [17] 

Emissions for rail 

equipment production, 

maintenance 

2,537,000 kg GHGs  Ecoinvent database for 

long-distance train 

production, maintenance, 

no rail lines included [16] 

Lifetime ton-miles of 

rail equipment 

20,000,000 lifetime miles 

2,000 tons loaded 

Assumed values 

Total Rail 

 GHGs / ton-mile 

0.0345 kg GHGS/ ton-mile 

0.17 % non-operational factors 

 

Table 2 Data and assumptions for truck and rail transportation 

 

 

  



 

 

 

 

Life Cycle Stage  Fuel 

Source 

Energy 

Intensity 

Unit Data Source 

Transport Within 

Exporting Countries via 

Pipeline 

Electricity 260 Btu/ton-mile DOE/NETL 

report[18] 

Ocean Transport To 

Domestic Ports via Tanker 

Heavy 

Fuel Oil 

5.5 Btu/bbl-nautical 

mile 

Domestic Transport via 

Pipeline 

Electricity 12,997 Btu HHV/bbl 

Table 3 Energy Intensity of Crude Oil Mix Supply Chain  

 

Life Cycle Stage  Emissions (kg/bbl crude oil) Data Source 

CO2 CH4 N2O 

Extraction/Processing  23.5 0.525 0.000641 DOE/NETL 

report[18] Transport within Exporting 

Countries via Pipeline 

0.863 0.001 0.0000112 

Ocean Transport to Domestic 

Ports via Tanker 

5.54 0.000404 0.000141 

Domestic Transport via 

Pipeline 

2.81 0.00327 0.0000365 

Table 4 GHG Emissions Associated with Crude Oil Mix Supply Chain  

Life Cycle Diagram 

The life cycle diagram for forest biomass supply chain and crude oil supply chain are 

illustrated in Figures 1 and 2. The biomass feedstock supply chain starts at forest areas to 

harvest logs. Then logs are forwarded to roadside collection points waiting for trucks. 

The loaded trucks transport logs either directly to a processing facility or to railway spurs 

for transaction. The crude oil supply system in U.S. refineries includes life cycle stages of 

crude oil mix extraction/processing within exporting countries, crude oil mix transport 

within exporting countries via pipeline, crude oil mix ocean transport to domestic ports 

via tanker, and crude oil mix domestic transport via pipeline. 
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Figure 1 life cycle flow diagram of forest biomass supply chain 
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Figure 2 life cycle flow diagram of Crude Oil supply chain 

LCA Results and Discussion 

Based on the comparative life cycle analysis for the two supply chain systems, the results 

are shown in Tables 5-8. Table 5 shows the comparative results of total GHG emissions 

and GHG emissions per energy unit throughout the three supply chain systems. The 

proposed 50 MGY biofuel facility results in the emission of 8.794 g by truck and 5.076 g 

by rail CO2 equivalent per megajoule (MJ) of ethanol produced, when no co-product 

credits are considered.  Compared to petroleum gasoline, which emits 16.773 g CO2 

equivalent per MJ (2005 baseline), this is a 50-70% reduction in greenhouse gas (GHG) 

emissions. The forest biomass supply system by rail performs better (about 15 million kg 

less GHG emissions) than the forest biomass supply via truck. Breakdown analysis 

(Tables 6-8) of each supply chain system is examined to identify which life cycle stage 



 

 

 

 

accounts for the most carbon emissions. For forest biomass supply chain system via truck 

(Table 6), the life cycle stages of truck operations generates the most carbon footprint 

(64%) while carbon emissions resulting from truck production/maintenance is less than 

2%. For forest biomass rail supply system (Table 7), carbon emissions from rail 

locomotive and cars operations accounts for about 40% while biomass 

harvesting/forwarding about 56% and emissions due to rail locomotive and cars 

production/maintenance is insignificant. For crude oil supply to U.S. refineries (Table 8), 

crude oil extraction and processing is the largest carbon emissions source (about 60%). 

Item million kg CO2 eq g CO2 eq/MJ energy 

Biomass Supply Chain by Truck  35.174 8.794 

Biomass Supply Chain byRail 20.303 5.076 

Crude Oil Supply Chain  67.092 16.773 

Table 5 GHG Emissions of Biomass Supply Chain and Crude Oil Supply Chain 

 

LC Stage million kg CO2 eq % 

Harvesting/Forwarding Operations 11.451 32.55% 

Harvesting/Forwarding Machines 

Production /Maintenance 

0.809 2.30% 

Truck Operations 22.513 64.00% 

Truck Production / Maintenance 0.401 1.14% 

Total 35.174 100% 

Table 6 GHG Emissions of Biomass Supply Chain by Truck 

 

LC Stage million kg CO2 eq % 

Harvesting/Forwarding Operations 11.451 56.40% 

Harvesting/Forwarding Machines 

Production /Maintenance 

0.809 3.99% 

Rail Locomotive/Car Operations 8.029 39.55% 

Rail Locomotive/Car Production / 

Maintenance  

0.014 0.07% 

Total 20.303 100% 

Table 7 GHG Emissions of Biomass Supply Chain by Rail 

 

  



 

 

 

 

LC Stage million kg CO2 eq % 

Crude Oil Mix Extraction/Processing 40.185 59.90% 

Crude Oil Transport within Exporting Country 3.648 5.44% 

Crude Oil Mix Ocean Transport to Domestic Ports 11.369 16.95% 

Crude Oil Mix Domestic Transport (pipeline) 11.889 17.72% 

Total 67.092 100% 

Table 8 GHG Emissions of Crude Oil Supply Chain 

 

Conclusions  

From woody biomass feedstock supply perspective, ethanol production from forest 

biomass is more environmentally friendly compared with petroleum-based fuel 

production. Research focused on improving biomass recovery efficiency will help to 

reduce carbon emissions further. For forest biomass supply, the rail supply system 

produces fewer amounts of carbon emissions compared with the truck supply system. 

However, to choose one supply chain system over another, additional criteria, such as 

system cost and the availability of rail system, should be examined. To make a reasonable 

decision, further investigation is required.  
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Abstract 

 
To reduce U.S. dependence on imported oil and reduce carbon emissions, biofuel production from renewable 
biomass is receiving increasing interest. However, due to the distributed nature of biomass feedstock, the cost and 
complexity of biomass recovery operations result in significant challenges that hinder the increased biomass 
utilization for energy production. This paper describes the development of a simulation model using Arena for the 
biomass supply chain for biofuel production in Michigan. The model describes the supply chain from landing sites 
to the biorefinery, including biomass harvesting, transportation, and on-site storage. The simulation model is driven 
by both the daily biomass production at harvesting sites distributed across a harvesting region and the daily demand 
for biomass feedstock at a biorefinery located in the center of the region. The supply chain model is evaluated using 
multiple criteria that include the delivered feedstock cost, energy consumption, and greenhouse gas (GHG) 
emissions. Other considerations include the average age of the in-field biomass inventory and road restrictions 
associated with spring thaw that limit use of truck transportation on certain roads. The utility of the supply chain 
simulation model is demonstrated by considering a biomass supply chain for a biorefinery in the lower peninsula of 
Michigan. 
 
Keywords 
Biomass supply chain, simulation, delivered feedstock cost, energy consumption, greenhouse gas emissions 
 
1. Introduction 
To reduce carbon emissions and reduce U.S. dependence on imported oil, renewable biofuel production from 
biomass has received increasing interest. However, due to the distributed nature of biomass feedstock, the cost and 
complexity of biomass recovery operations result in significant challenges that hinder increased biomass utilization 
for energy production [1, 2]. To facilitate the exploration of a wide variety of conditions that promise profitable 
biomass utilization, a supply chain model has been designed and implemented using Arena Simulation Software [3]. 
Model simulations provide a number of economic and environmental performance measures for each condition that 
is considered. Ultimately, it is desired to employ the simulation model to find conditions that minimize the delivered 
feedstock cost, energy consumption, and greenhouse gas (GHG) emissions.  
 

http://www.arenasimulation.com/Products_Products.aspx


Zhang, Johnson, Johnson, and Sutherland 

There is extensive literature focusing on biomass supply [4-9], which relates to the supply chain model developed in 
this study. Information from previously developed biomass supply chains formed the foundation for the 
development of the supply chain in this case study. The National Biofuels Plan developed by the Biomass R&D 
Board focuses on biomass feedstock processing and logistics that relate to the supply chain, such as harvesting 
process, storage facilities, and transportation of the feedstock [4]. The biofuel plan is based on the use of agricultural 
residues and woody residues as biomass feedstock; for the present research, the supply chain is assumed to employ 
logs, which in the past were in demand by paper mills. The Idaho National Laboratory (INL) developed a uniform-
format feedstock supply chain that can be implemented at a nationwide level [5-6]. This is different from the scope 
of a supply chain for a biofuel facility located in Michigan. The Sandia National Laboratories (SNL) developed a 
model that considers cellulosic ethanol from various biomass feedstock types, such as corn, agricultural residues, 
energy crops, and forest residues, to support the national goal of producing 90 billion gallons (341 billion liters) of 
biofuels each year in the U.S. by 2030 [7-8]. The Oak Ridge National Laboratory (ORNL) investigated the 
feasibility of expanding the ethanol industry, and specifically focused on the additional infrastructure that needs to 
be built [9]. Examination of this additional infrastructure requirement is beyond the scope of the present study.  
 
2. Simulation Model Design 
The development of a biomass feedstock supply chain for a facility considers a number of key activities and 
processes: biomass harvesting and forwarding to a roadside collection point, transportation from the roadside 
collection point to the processing facility by rail or truck, and on-site storage. Size reduction (chipping) activity is 
assumed to occur at the biofuel facility where the biomass can be processed most efficiently [10]. The purpose of a 
simulation model is to evaluate the supply chain based on multiple criteria that include the delivered feedstock cost, 
energy consumption, and GHG emissions. The delivered feedstock cost consists of stumpage cost (payment to 
loggers), loading cost, transportation cost, unloading cost, and storage cost. For the supply chain, energy use 
intensity and GHG emissions are assumed to only be associated with harvesting/forwarding and transportation 
activities. Other considerations of the model include the average age of the in-field biomass inventory and road 
restrictions associated with the spring thaw that limit use of truck transportation during that time. 
 
The simulation model was built using Arena Simulation Software [3]. The model consists of four sub-models: 
initialization, harvesting areas, biorefinery, and daily biomass processing. The simulation model is driven by both 
daily demand for biomass feedstock at a biorefinery and the daily biomass recovery at harvesting sites distributed 
across a harvesting region (the biorefinery is located at the center of the region). In other words, it is a combined 
“pull” and “make-to-order” supply chain system. Each day the biorefinery requires a specified quantity of biomass 
feedstock from harvesting areas or on-site storage. Figure 1 illustrates the model logic. The detailed logic for each 
sub-model is described separately below. 
 

 
 

Figure 1: Logic for biomass supply chain model 
 

2.1 Initialization  
One of the two drivers that dictate the character of the supply chain is the daily biomass demand of the 
bioprocessing facility. The second is the amount of biomass that is recovered daily at all the harvesting sites. The 
initialization procedure (Figure 2) reads two types of data for model configuration before beginning the simulation: 
the daily biomass recovery (biomass harvesting plans) at the harvesting areas within a given region and 
transportation distances from all the harvesting areas to the biorefinery. 



Zhang, Johnson, Johnson, and Sutherland 

 

 
 

Figure 2: Sub-model design for reading harvesting plans and haul distances 
 

2.2 Harvesting Areas  
Harvesting areas may be placed into two categories: harvesting areas with rail access and harvesting areas without 
rail access. For harvesting areas with rail access, two transport modes are available: road and railway, while only 
truck transportation is available for areas having no rail access. The harvesting area sub-model (Figure 3) starts with 
the biomass located at the landing areas. Therefore, no harvesting and forwarding activities are considered. The 
transportation activity consists of loading transporters, transporting, and unloading transporters at the biorefinery. In 
Figure 3 two harvesting sites (site one has railway access and site two has no railway access) are indicated as two 
biomass feedstock supply locations for a biofuel facility. 

 

 
 

Figure 3: Sub-model design for harvesting areas  
 

2.3 Biorefinery  
At the biorefinery, as transporters arrive they are unloaded and the on-site inventory is updated. Total truck numbers 
and railcars numbers are also updated as appropriate. The sub-model logic for the biorefinery operation is shown in 
Figure 4. 
 

 
 

Figure 4: Sub-model design for biorefinery operations 
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2.4 Daily Biomass Processing 
As has been noted, one of the supply chain drivers that influence the model is the daily demand for biomass 
feedstock at a biorefinery. This biomass processing sub-model (Figure 5) is responsible for dictating the daily 
biomass demand at a biorefinery. Each day a production target (control entity) is issued and then the biorefinery 
prepares a certain amount of biomass either from the on-site inventory or using fresh biomass (biomass that is 
delivered to the biorefinery on the day it is needed) to process based on the daily requirement/production target. 
Generally, the inventory is managed using a First-In First-Out (FIFO) method. This is to ensure that the oldest 
biomass is processed first. After batching out, the inventory is updated and the average biomass age is also tracked 
to calculate the storage cost.  
 

 
 

Figure 5: Sub-model design for biomass processing 
 

2.5 Graphical User Interface  
An easy-to-use graphical user interface has been developed for the simulation model. The interface (Figure 6) allows 
users to type in model parameters before running the model. The model parameters are classified into four 
categories: cost coefficients, energy intensity coefficients, GHG emission coefficients, and transportation 
coefficients.  
 

 
 

Figure 6: Graphical user interface 
 

3. System Performance Measures 
The previous section described a model that has been developed to simulate the supply chain for a biomass 
processing facility. This section discusses several measures that may be used to characterize the performance of the 
system, and methodologies are presented to calculate the delivered feedstock cost, energy consumption, and GHG 
emissions using the simulation model.  
 
3.1 Delivered Feedstock Cost  
The delivered feedstock cost consists of stumpage cost, loading cost, transportation cost, unloading cost, and storage 
cost. The stumpage cost is the payment made to loggers. The unit stumpage cost (h, $/ton) is assumed to be constant 
for all the harvesting areas within the study region (i = 1, 2, …, I) in any time period (t = 1, 2, …, T). The daily 
biomass recovery at harvesting area i is defined as qit. The stumpage cost (Ch, $) is calculated as: 

                                                       
T I

h it
t 1 i 1

C h q
= =

= ⋅∑∑                                                                      (

The tran

1) 

 
sportation cost (Ctr, $) consists of two majo terms: one for truck transportation and one for rail r 

transportation. The truck transportation cost has a fixed cost (tlu, $/ton, which includes one loading and unloading 
routine) and a variable (distance-dependent) cost (td, $/ton-mile). The rail transportation cost also has a fixed cost (rlu, 
$/ton, which includes one loading and unloading routine) and a variable (distance-dependent) cost (rd, $/ton-mile). 
The transportation cost is calculated as:  
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                                         ( ) ( ) ( )
T I

tr lu d i lu d i it
t 1 i 1

C t t d r r d 1
= =

= + ⋅ ⋅α + + ⋅ ⋅ −α q⋅⎡ ⎤⎣ ⎦∑∑                         (2) 

where di is the transportation distance from harvesting area i to the biorefinery and α is the percentage of biomass 
that is transported by truck.  
 
For northern climates with snow and ice, there is a need to have extra inventory on hand at the biofuel facility, since 
roads are closed during the period of spring breakup. The cost or storing this inventory is determined by the spring 
breakup duration (Dsb), daily feedstock demand (Cap) at a biorefinery, and the time (Dp) it takes to build up the on-
site inventory from which the biorefinery consumes biomass feedstock during spring breakup. The unit storage cost, 
s, is expressed in $/ton-month. It is assumed that there are 30 days in a month. The storage cost (Cs, $) is calculated 
as: 

                                                       
( )sb p sb

s

D Cap D D s
C

2 30

⋅ ⋅ +
= ⋅                                                (3) 

 
The overall delivered feedstock cost (Call, $) is the sum of stumpage cost, transportation cost, and storage cost. The 
calculation is  

                                                       all h tr sC C C C= + +                                                                  (4) 

 
3.2 Energy Consumption  
Energy consumption (MJ) is assumed to only be associated with harvesting/forwarding and transportation activities. 
The energy consumed per unit of biomass (MJ/ton) for harvesting/forwarding is termed fh, ftruck is the truck 
transportation energy intensity (MJ/ton-mile), and frail is the rail transportation energy intensity (MJ/ton-mile). The 
energy used in harvesting/forwarding (Fh, MJ) is calculated as:  

                                                       
T I

h h
t 1 i 1

F f
= =

itq= ⋅∑∑                                                                      (

 
ran

5) 

sportation energy consumption (Ftr, MJ) for truck/rail is calculated as:  T

                                                       [ ]
T I

tr truck rail i it
t 1 i 1

F f f (1 ) d
= =

q= ⋅α + ⋅ −α ⋅ ⋅∑∑                                 (6) 

 
he overall energy consumption (Fall, MJ) is the sum of energy use associated with harvesting/forwarding, and T

transportation, and is given by Equation (7):  

                                                       allF h trF F= +                                                                             (7) 

HG Emissions  
rms of the processes that deliver biomass to a processing facility, GHG emissions (kg) are assumed to only be 

ting/forwarding and transportation activities. wh is the GHG emissions per unit of biomass 

 
3.3 G
n teI

associated with harves
(kg/ton) for harvesting/forwarding and wtruck is the truck transportation GHG emission intensity (kg/ton-mile) and 
wrail is the rail transportation GHG emission intensity (kg/ton-mile). GHG emissions (Wh, kg) associated with 
harvesting/forwarding are then calculated as:  

                                                       
T I

hW w qh it
t 1 i 1= =

= ⋅∑∑                                                                  (8) 

And, the GHG emissions (Wtr, kg) associa n are ted with transportatio

                                                       [ ]tr truck
t 1 i 1

W w w
= =

T I

rail i it(1 ) d q= ⋅α +∑∑ ⋅ −α ⋅ ⋅                           (9) 

The overall GHG emissions (Wall, kg) a
transportation:  

re the sum of the emissions associated with harvesting/forwarding and 

                                                       all h trW W W= +                                                                     (10) 
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4. Model Application and Results 

del may be dem
e Lower Peninsula of Michigan (the L.P.). Nine potential biofuel facility sites in the L.P. were preselected by 

ion of interest, 51 harvesting areas have biomass that is accessible. Of 

The utility of the supply chain simulation mo onstrated by considering the location of a biorefinery in 
th
employing GIS-based methods. For the reg
these 51 harvesting areas, only 10 have no railway access. Figure 7a shows the nine biomass feedstock demand 
locations (facility sites) that were considered. Since harvesting areas at a great distance from a facility site would 
require significant transportation costs, only harvesting areas within 100-mile radius of a facility location were 
considered. Figure 7b shows the 37 biomass harvesting areas for the Manton facility (demand) location. 

 

                              
 

Figure 7: Biomass feedstock demand and supply locations 
(a) Biomass feedstock demand locations in the L.P.                (b) Biomass feedstock supply locations for Manton  

4.1 Data Collection 
S  
sp  

availability for biofuel production) was estimated based on historical harvesting data. Spring 

he daily demand at the 

en tons (conversion factor is approximately 50 gallons of biofuel 
n ton of biomass). These estimates are based on the assumption that the biorefinery operates 

 

pecific data collected for the study region includes the potential biofuel facility locations, biomass harvesting plans,
ring breakup details, cost intensity, fossil energy consumptions intensity, and GHG emissions. A plan for biomass

harvesting (biomass 
breakup considerations are dictated by Michigan state law that indicates that the months of March, April, and May 
are automatically reduced loading months, but the statute also allows the Michigan Department of Transportation 
(MDOT) and each county road commission to implement restrictions earlier or suspend reduced load requirements, 
depending upon weather conditions [11]. Since spring breakup ends early in the L.P., an assumption is that March 
and April are included in the spring breakup. Other assumptions are as follows. 

• Harvesting sites 
o Harvesting sites are distributed across a 100-mile radius of a biorefinery;  
o Harvesting sites are defined on a county-basis. The centroid of each county serves as the point from 

rted to the processing facility; which biomass is transpo
 Daily biomass reco overy at harvesting areas is approximately equal to t

biorefinery for about half the year; the recovery must be higher in the four months before spring 
breakup and is negligible for the two month spring breakup duration;  

o The biomass harvesting plans define the amount (tons) of biomass feedstock to be harvested at each 
harvesting site per week; 

o It is assumed that no feedstock will be transported over the Mackinac Bridge from the Upper Peninsula 
of Michigan (the U.P.) to the L.P. Rather, it is assumed that feedstock generated in the U.P. will be 
consumed by U.P.-based activities;  

• Biorefinery 
o The biorefinery is located in the center of the harvesting region;  
o For a biorefinery producing 50 million gallons of ethanol per year (MGY), the daily demand for 

 feedstock is about 2,860 grebiomass
per gree
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350 days (50 weeks) per year with 2 weeks for maintenance; 
• Spring breakup 

o The spring breakup is assumed to be March 1 through April 30 for all the harvesting areas;  
o The rate of feedstock harvesting and delivery will remain constant during the period from June 1 

through October 31. The rate of biomass production will increase from November 1 through the end of 
 anticipation of the spring breakup. Starting with November 1st, 50% (2,860/2 = 1,430 

uild up the 

tation distances from the harvesting areas to the biorefinery are calculated using rectilinear 

ock is delivered by diesel truck or diesel railcars. This is important because we are 
in estimation of energy consumptions and GHG emissions associated with biomass 

ars return to the harvesting areas carrying an empty load; 

railcar has a capacity of 75 tons; 
rail and 80% by truck; 

is transported immediately after being harvested which leaves no time for drying; 
e supply chain; therefore biomass weight delivered 

 dry matter loss, for example, weight loss during storage due to insect infestation, is taken into 

350 days. The time step during the simulation was set as one 
ay. The on-site biomass inventory (tons) changes as a function of time following the pattern demonstrated in Figure 

ous that there are three phases in the chart. For the first 16 weeks (112 days), the harvesting areas 

February in
green tons) more biomass need to be harvested and delivered to biorefinery every day to b
inventory;   

o Demand for biomass feedstock at biorefinery during spring breakup is pulled from on-site inventory 
only; 

• Transportation 
 The transporo

distances;  
o Biomass feedst

interested 
transportation;  

o Trucks/railc
o Trucks/railcars conduct self loading and unloading. No additional/independent loaders/unloaders are 

needed; 
o Every truck and 
o For harvesting areas with rail access, 20% of biomass is delivered via 

• Other 
 Biomass o

o The moisture content remains 50% throughout th
from harvesting areas to biorefinery stays the same;  

o No
account throughout the supply chain. 

 
4.2 Results 
A pilot run was made for a biofuel facility located in the city of Manton, Michigan. The start date for the simulation 
was set as Nov 1st, 2010 and the model run length was 
d
8. It is obvi
produce 50% more biomass every day than the daily demand to build up the inventory. The inventory peaks at 
150,000 tons on day 112. Starting with the 17th week (day 113), the spring thaw starts and no biomass is allowed to 
be transported. The daily requirement for biomass at the biorefinery is met by pulling biomass from the on-site 
inventory. The spring breakup ends at the end of 24th week (day 168) and since then a regular operation plan (daily 
demand is met by daily transportation) is executed, and the on-site inventory is essentially zero. 
 

 
 

Figure 8: On-site inventory tracking 
 

The system performance measures are listed in Figure 9. Three categories of sults are included: the delivered 
edstock cost (the 1st column), energy use (the 2rd column) and GHG emissions (the 3rd column). The total delivered 

feedstock cost is about 18.8 million do tock cost is 18.8 $/ton. The stumpage 
cost represents about 50% of the total delivered feedstock ost while the storage cost makes up only 4.5%. The total 

re
fe

llars and the average delivered feeds
 c

energy use is about 241,110 GJ and the average energy consumption is about 241.1 MJ/ton of biomass. The energy 
use associated with harvesting/forwarding represents about 57% of the total energy consumption, and truck 
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operations account for about 41%. The GHG emissions are about 21.7 million kg and the average energy 
consumption is about 21.7 kg/ton. The GHG emissions associated with harvesting/forwarding are about 51% of the 
total energy consumption, while truck operations represent about 47%.  
 

 
 

Figure 9: System performance indicators 
 

5. Conclusions
A supply chain m del has been developed for biomass supply to biofuel facilities. The model considers key 
activities of the s ly chain, inclu rtation, and on-site storage. The 
supply chain is dr en by both daily demand for biomass feedstock at a biorefinery and daily biomass recovery at 

 model is evaluated using three key performance indicators: the delivered feedstock cost, energy 

anagement (in press). 
Tatsiopoulos, I.P., and Tolis, A., 2009, “An optimization model for multi-biomass tri-

tion energy supply,” Biomass and Bioenergy, 33, 223-233. 

mass Research & 

mass feedstocks and logistics for ethanol 

rojects/d/1006_ch2m.pdf. 

Summary,” Available at: 

eichmuth, D., Larson, R., Ellison, J., Taylor, R., 

ers/90-Billion-Gallon-

 
o

upp
iv

harvesting sites. The

ding biomass harvesting/forwarding, transpo

consumption, and GHG emissions. The model also considers the average age of the in-field biomass inventory and 
road restrictions associated with spring thaw that limit use of truck transportation on certain roads. The utility of the 
supply chain simulation model has been demonstrated through a simulation that considers a supply chain for 
biomass feedstock for several biorefinery locations in the L.P. of Michigan. 
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