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AbstractAbstractAbstractAbstract    

An extrusion die is used to continuously produce parts with a constant cross section; 

such as sheets, pipes, tire components and more complex shapes such as window 

seals. The die is fed by a screw extruder when polymers are used.  The extruder 

melts, mixes and pressures the material by the rotation of either a single or double 

screw.  The polymer can then be continuously forced through the die producing a 

long part in the shape of the die outlet.  The extruded section is then cut to the 

desired length.  Generally, the primary target of a well designed die is to produce a 

uniform outlet velocity without excessively raising the pressure required to extrude 

the polymer through the die [1].  Other properties such as temperature uniformity 

and residence time are also important but are not directly considered in this work.  

Designing  dies for optimal outlet velocity variation using simple analytical 

equations are feasible for basic die geometries or simple channels.  Due to the 

complexity of die geometry and of polymer material properties design of complex 

dies by analytical methods is difficult.  For complex dies iterative methods must be 

used to optimize dies.  An automated iterative method is desired for die 

optimization.   

To automate the design and optimization of an extrusion die two issues must be 

dealt with.  The first is how to generate a new mesh for each iteration.  In this work, 

this is approached by modifying a Parasolid file that describes a CAD part.  This file 

is then used in a commercial meshing software.  Skewing the initial mesh to produce 

a new geometry was also employed as a second option.  The second issue is an 

optimization problem with the presence of noise stemming from variations in the 

mesh and cumulative truncation errors.  In this work a simplex method and a 

modified trust region method were employed for automated optimization of die 

geometries.  For the trust region a discreet derivative and a BFGS Hessian 

approximation were used.  To deal with the noise in the function the trust region 

method was modified to automatically adjust the discreet derivative step size and 

the trust region based on changes in noise and function contour.   
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Generally uniformity of velocity at exit of the extrusion die can be improved by 

increasing resistance across the die but this is limited by the pressure capabilities of 

the extruder.  In optimization, a penalty factor that increases exponentially from the 

pressure limit is applied.  This penalty can be applied in two different ways; the first 

only to the designs which exceed the pressure limit, the second to both designs above 

and below the pressure limit.  Both of these methods were tested and compared in 

this work. 
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IntroductionIntroductionIntroductionIntroduction    

The focus of this work was to develop a method to automatically optimize the design 

of polymer extrusion dies.  A finite element code was used for evaluation of designs 

and a numerical optimization algorithm was used to develop the new designs.  In 

this work a fishtail die or flat die was considered for forming flat sheets or films and 

a spiral mandrel die to produce pipe or ring shapes.  A well designed die minimizes 

velocity variation at the exit.  This is constrained by a limit on the allowable 

pressure differential across the die.  Other parameters such as residence time and 

temperature variation at exit are important but not directly considered in this work.  

For each die the project involved two distinct steps.  The first was to evaluate a 

proposed design and return an objective function value as a measure of performance.  

This involves building the model, meshing, running a finite element simulation and 

evaluating the result.  Commercial software packages were used for meshing and 

finite element simulation and will not be covered in detail. [2] [3]  The second step 

was to optimize the die design. The optimization was complicated because of long 

computation times to define the die and simulation.  A noisy objective function also 

complicated optimization.   

Production of an extruded polymer part starts with a screw extruder.  A screw 

extruder melts and pressurizes the polymer.  Thermoplastic pellets can be fed to the 

screw by a hopper.  The screw then rotates pushing the pellets forward; melting, 

mixing and pressurizing the material in the process.  Energy to melt the polymer is 

primarily supplied by viscous heating from the rotation of the screw.  Initially and 

when necessary, energy can be supplied by electric heating elements around the 

barrel.    A breaker plate is in front of the screw to prevent any solids from being 

extruded and to reduce the rotational motion of the polymer.  Screw extruders can 

be used to produce plastic products such as pipes, rods, sheets, and films.  More 

complex cross sectional shapes can be produced with profile dies.     

Flat dies and spiral mandrel dies are considered in this project for extrusion of 

sheets and pipes, respectively.  A flat die or fish tail die is used to produce sheets 

and films.  The polymer enters the die through a centered low aspect ratio inlet 



 

10 

 

channel and exits through a high aspect ratio rectangular shape.  The inlet leads to 

the manifold which is a large traverse channel that is the width of the final sheet.  

The manifold is angled towards the die outlet from the center to reduce flow 

resistance to the edges while increasing flow resistance to the center.  Following the 

manifold is a relatively narrow channel, the secondary manifold or island.  Two 

variations of the flat die are distinguished by the shape of the primary and 

secondary manifolds, see Figure 1.  In a fishtail die the length of the secondary 

manifold decreases linearly from center to edge creating a strong primary manifold.  

In a coat hanger die the length decreases non-linearly based on flow resistance of the 

die creating a curved primary manifold.  

  

Figure Figure Figure Figure 1111: Left: Fishtail die  Right: Coat: Left: Fishtail die  Right: Coat: Left: Fishtail die  Right: Coat: Left: Fishtail die  Right: Coat    hanger die; A: Primary Manifold  B: Secondary Manifoldhanger die; A: Primary Manifold  B: Secondary Manifoldhanger die; A: Primary Manifold  B: Secondary Manifoldhanger die; A: Primary Manifold  B: Secondary Manifold    

The fishtail die is simpler to produce but the coat hanger die has been shown to have 

better performance.  In this study a fishtail die will be developed, the original design 

can be seen in Figure 2. 

The secondary manifold improves flow due to its relatively high resistance.  This 

resistance combined with the low resistance in the manifold produce a flow that is 

relatively even across the secondary manifold.  At the end of the secondary manifold 

is the short narrow land.  The land is normally the thickness of the desired sheet or 

film. For some materials and geometries the polymer will expand after the exit of 

the die producing a thicker part than the land.  This is known as die swell and is 

caused by the strain rate sensitive elongational viscosity of the polymer.  To 

counteract this a slightly thinner land may be produced to account for die swell.  

Sheets can be produced that can either be used as sheets as in the boards and 

windows in an ice rink or may later be reformed in other processes such as vacuum 

forming to produce a refrigerator liner  [4].  [1] 



 

 

Figure Figure Figure Figure 2222:  :  :  :  Flow channeFlow channeFlow channeFlow channe

The spiral mandrel die produces a pipe or hollow cylinder shape.  In 

spiral mandrel die, considered in this work,

which is the portion of the die tha

The four channels follow a

the mandrel using a hemispherical 

helix, creating a channel that has

direction tangent to the helix

die inlet where the diameter 

through the channels.  The mandrel’s 

outlet.  As the mandrel’s diameter reduces the flow shifts from fully in the channels 

to fully in the gap between mandrel and OD of the die.  The spiral mandrel die can 

be seen below in Figure 

Figure Figure Figure Figure 3333: : : : Flow channel geometry of the spiral mandrel die used in this workFlow channel geometry of the spiral mandrel die used in this workFlow channel geometry of the spiral mandrel die used in this workFlow channel geometry of the spiral mandrel die used in this work
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Flow channeFlow channeFlow channeFlow channel geometry of the coatl geometry of the coatl geometry of the coatl geometry of the coat----hanger used in this studyhanger used in this studyhanger used in this studyhanger used in this study

The spiral mandrel die produces a pipe or hollow cylinder shape.  In 

considered in this work, four inlet channels lead to the mandrel, 

the portion of the die that will form the inside diameter (ID)

The four channels follow an expanding helical path.  The channels would be 

the mandrel using a hemispherical milling bit following the path of this expanding 

creating a channel that has at any given point a circular cross section in the 

direction tangent to the helix.  The mandrel is a conical section with a base 

diameter is equal to the part OD.  At the base the 

the channels.  The mandrel’s diameter then reduces to the part ID

As the mandrel’s diameter reduces the flow shifts from fully in the channels 

to fully in the gap between mandrel and OD of the die.  The spiral mandrel die can 

Figure 3. 

Flow channel geometry of the spiral mandrel die used in this workFlow channel geometry of the spiral mandrel die used in this workFlow channel geometry of the spiral mandrel die used in this workFlow channel geometry of the spiral mandrel die used in this work

hanger used in this studyhanger used in this studyhanger used in this studyhanger used in this study    

The spiral mandrel die produces a pipe or hollow cylinder shape.  In the variation of 

let channels lead to the mandrel, 

t will form the inside diameter (ID) of the pipe.  

The channels would be cut from 

bit following the path of this expanding 

any given point a circular cross section in the 

conical section with a base at the 

the entire flow is 

reduces to the part ID at the 

As the mandrel’s diameter reduces the flow shifts from fully in the channels 

to fully in the gap between mandrel and OD of the die.  The spiral mandrel die can 

    

Flow channel geometry of the spiral mandrel die used in this workFlow channel geometry of the spiral mandrel die used in this workFlow channel geometry of the spiral mandrel die used in this workFlow channel geometry of the spiral mandrel die used in this work    



 

12 

 

Another similar variation that is not considered in this work supports the mandrel 

with legs that radiate out to the OD.  This is known as a spider mandrel and is 

prone to weld lines due to the legs briefly separating the flow.  Smearing devices 

have been applied downstream of the spider legs.  These can be effective in reducing 

the effect of the separated flow but are often insufficient.   

Profile dies can produce complex parts which have a constant cross section in one 

dimension.  These dies can produce window seals, door trim and the components 

used to build a tire.   Profile dies are not well suited for optimization programs due 

to the wide variety of designs that may be produced.  Each new feature added to the 

topology would require the model generation and optimization code to be modified.  

Further, profile dies are complex.  The number of parameters that should be 

considered would be cumbersome in optimization.  

Current techniques for designing these dies require the time of experienced 

engineers and may need to be repeated for changes in die scale, shape, processing 

temperature, materials and flow rate.  The goal of this project is to develop a 

numerical optimization program that will autonomously find the best design.  This 

program would allow even an inexperienced engineer to quickly develop the die 

design that is considered optimal by simulation. 

Literature ReviewLiterature ReviewLiterature ReviewLiterature Review    

A well designed die should have uniform exit velocity and temperature distribution.  

A higher velocity in a given section will produce increased thickness in that section 

of the final part due to increased volumetric flow and higher elongational strain 

rate. [5]  Increased temperature will create a thinner section due to increased 

shrinkage.  A well designed die will also avoid excessive residence times and 

concentrated hot spots as overly high temperatures or prolonged time at high 

temperatures will degrade the polymer chains and change the properties of the 

material [4].  Non uniform residence times will lengthen the purging process that is 

required when materials or colors are changed and create variations in foaming or 

cross linking due to temperature history effects between the additives and the 
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polymer [6].  The most important of these concerns for a die designer is the uniform 

velocity at the exit with the constraint of a limited pressure source in the screw 

extruder.   

Typically a die would be designed by an experienced engineer.  To determine the 

shape of the die, a system of equations can be used to calculate the length of the 

secondary manifold on fishtail dies and to calculate both the secondary manifold 

length and primary manifold curvature on coat hanger dies.  The latter requiring an 

iterative solution.  These equations are for mean pressure loss or residence time for 

the die as a summation of a flow in the primary or secondary manifolds treated as 

separate fully developed flows.  A boundary condition is set for uniformity at the 

exit.  [1].  This method is limited when applied to more complex dies.  For example, 

the flow in the channels of the spiral mandrel die are distinctly angled away from 

the channel direction and multiple stream lines will lead to the same point at the 

outlet.  This contradicts the assumptions used and complicates calculating flow rates 

needed to develop the system of equations. 

It has also been shown that designs can be solved numerically.  The die design can 

be divided into a finite number of sub regions.  Each region is then solved as a short 

channel section dependent on material properties, channel geometry, material 

temperature and boundary conditions; volumetric flow rate and pressure at the 

section boundaries.  From this either the curvature of the primary manifold, length 

of the secondary manifold or height of the secondary manifold can be calculated.  

Further approximations for inlet losses between different segments can be included.  

This method allows more flexibility in die geometry and outlet boundary conditions.  

[1]. 

To allow for fine tuning of the die an adjustable land and choker bar may be added 

to the die when it is produced.  An adjustable land allows for a couple millimeters 

adjustment at the end of the land by deflecting the die wall inwards to adjust for die 

swell.  A choker bar is an adjustable section in the secondary manifold that can be 

used to increase flow resistance.  Either tuning tool can be used to make fine 

adjustments and allow a wider range of materials and conditions to be used in a 
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given die.  The process of physically adjusting these devices is complicated and 

requires an experienced operator or an automated system [1].   

This process can be improved by using computational fluid dynamics (CFD) 

software.  Using CFD code, 3D flow behavior can be modeled.  The effects of viscous 

heating due to shear at the walls and viscous heating due to elongation can be 

captured.  Applying typical CFD methods to polymers requires some modification to 

accurately account for non-Newtonian material properties.  The flow is initially 

simulated as Newtonian, then the shear rates from the initial solution are used to 

calculate the shear and elongational viscosity for a given element.  This process 

repeats using the previous solution until convergence.  An engineer must then 

review the results, improve the design, modify the CAD model and restart the 

simulation.  Similar to older methods this approach is time consuming and relies on 

the experience of the engineer to approach an optimal solution.  An approach to 

replace the engineers efforts with an optimization code would reduce the time the 

engineer would have to invest and reduce the time and cost of designing extrusion 

molds.  In practice this code has been separated in two parts; model and mesh 

generation in the first half and numerical optimization in the second [4]. 

An early study by Smith [6] on a flat die used 18 parameters that were varied to 

minimize pressure and residence time.  Velocity variance and volumetric flow rate 

were held as defined constants.  The problem was optimized using a Galerkin finite 

element method where a 2D mesh is defined to describe the in-plane cavity shape 

while 3D effects are modeled by treating height as a node property and applying a 

shape function to approximate the flow.   This study demonstrated that including 

uniform residence time distribution term into the objective function will affect the 

velocity variance at the optimum point.  

Flow approximation methods have been attempted by Michaeli [7] to reduce to 

computational load of successive FEA solutions.  Michaeli used a flow-analysis 

network (FAN) coupled with a finite element model to optimize a simple die.  The 

initial FEA solution was used to determine resistance values for sub regions.  These 

sub regions are then quickly optimized individually and these individual solutions 
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are used in the next iteration to be solved by FEA.   This method worked well when 

applied on a simple die with minimal lateral movement.  This method may become 

cumbersome when applied to more complex dies with significant lateral movement. 

In the work by Sun [5] both the flow simulation and die optimization processes were 

studied.  Sun used the Carreau model for shear viscosity and the Sarkar-Gupta 

model for elongational viscosity.  This was compared to the typical method of using a 

Newtonian model with shear thinning viscosity.  The latter model is considered 

sufficient in shear dominated flows but extrusion dies have elongational dominated 

regions.  Both models accounted for temperature dependence by the Arrhenius 

model.  Both a spiral mandrel die and flat die were considered in this portion of the 

study.  The first part of this study was to examine the improvement by this more 

complex model.  Pressure across the flat die varied by up to 17% between the models 

and it was determined simulation of extrusion dies should include modeling the 

strain rate dependence of elongational viscosity.  

The second portion of the Sun study focuses on a variation of the flat die, called a 

coat hanger die.  The optimization used was a nine dimensional line search 

algorithm which uses adjoint sensitivity analysis to measure the gradient and a 

BFGS estimation of the Hessian.  A constraint was added to limit the pressure to 

minimal increases from the original design.  This was accomplished by including an 

equality penalty factor on the pressure of the original design.  Since the goal is only 

to maintain a similar pressure to the original the weight of the penalty was not 

increased during optimization but instead maintained as a constant.  Compared to a 

finite difference gradient, the adjoint sensitivity analysis had limited improvement 

in accuracy.  This is due to the basis of the method, the stiffness matrix and the force 

vector, are found by a finite difference calculation.  This leads to the same errors as 

a finite difference gradient when the step size is either too large or too small.  The 

benefit is that this method does work well to reduce computational load.  With 

comparable accuracy it reduces computational time by a factor of nearly n+1, where 

n is the number of design parameters. 
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A flat die similar to the design used in this report was optimized by Lebaal [8] using 

a response surface method (RSM).  A Kriging interpolation is used to approximate 

the model after a number of FEA evaluations are performed.  The Kriging model is 

then optimized using multiple initial conditions to avoid local minima.  Using this 

system the velocity variation optimum was found and temperatures were shown to 

be more uniform due to the improved uniformity of viscous heating.  The FEA solver 

was REM3D ® and model changes were done by a MatLab® script. 

Optimization methods developed for other applications can also be applied to 

extrusion dies.  The Nelder-Mean simplex has been improved in a study by Kelley 

[9] that reduced the risk of stagnation by developing criteria similar to line search 

criteria to identify higher stagnation potential.  The solver would then restart by 

contracting the set of evaluation points used to determine the next iteration step.  

Then it would rearrange to an orthogonal set where one evaluation is in the 

direction of estimated steepest decent based on the previous set.  When predicting 

steepest decent, only the sign of the gradient is used since the stagnated set is a poor 

predictor of slope.  This study has shown a Nelder-Mead method can be improved by 

applying success criteria and restarting when necessary.   

When using any slope based method a discreet gradient would need to be calculated.  

Unfortunately sufficient noise can degrade or destroy the accuracy of a discrete 

gradient measurement.  Okano [10] used a stochastic noise reaction method 

successfully in approximating a gradient in the presence of noise.  Although this 

method was successful it requires too many function calls per gradient measure to 

be practical for this project. 

Davis [11] made a study that has investigated three proposed methods for noisy 

optimization problems that lack direct evaluation of gradients.  A simplex method 

modified to convert to steepest decent when close to solution worked best for the 

given problem.  A modified SQP (sequential quadratic programming) and a Nelder-

Mead method also performed well.  The gradient and Hessian were calculated from a 

set of points around the current best point using a least squared approximation.  

The points are within the trust region of the model and the number of points 
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increases as the optimum is approached.  Simultaneously the trust region is 

constricted when the optimum is estimated to lie within the trust region so that the 

set of points will be more concentrated around the expected optimum.   

Numerical OptimizationNumerical OptimizationNumerical OptimizationNumerical Optimization    

Nelder MeadNelder MeadNelder MeadNelder Mead    

In this study two different optimization algorithms were investigated.  These 

algorithms were initially developed as two dimensional test cases in matlab.  The 

first, a Nelder Mead simplex is the simpler of the two and can make a step forward 

with as little as 1 evaluation. This algorithm has been shown to work in noisy 

environments with some modification [9].  The Nelder Mead requires n+1 points 

organized in an orthogonal set, n was the number of dimensions in the optimization 

problem.  Orthogonality must be maintained or the algorithm would lose the ability 

to detect a gradient in a given direction.  A vector was drawn from the worst point to 

a mean point taken from the remaining points.  The next evaluation point was taken 

by multiplying this vector by a factor then adding it to the mean point.  At first the 

factor was taken to be one, that is the original vector was added to the mean point.  

This new point was then evaluated.  If this point was better than the any other point 

in the group, a factor of 2 would be immediately evaluated.  If the new point was not 

better than any other point in the group, a half step from the mean would be taken 

either in the same direction or the opposite direction and evaluated.  When the step 

with the factor 1 was an improvement from the previous worst point, the second step 

would be taken in the same direction.  When the first step was worse than the 

previous worst point, the second step would be taken in the opposite direction.  

Eventually the best value was taken and included in the new group of points.  If all 

values fail to improve on the worse point the simplex will converge by moving all 

points in towards the best point of the group.  The algorithm was tested with the 

Rosembrock function (Equation 1) and another function with multiple minima, 

(Equation 2).  Figure 4 shows the algorithm on the Rosembrock function with a 

normal mean and Figure 5 shows the same function with a weighted mean that 
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favors points with lower and better values.  In these plots the simplex triangle 

connects the three points required for two dimensional optimization.  Only the 

function value from these three points were used to determine the next step.  For 

both cases the algorithm initially focused on the large improvements moving to the 

center of the canyon.  Then both cases had to adjust and move through the canyon.  

Near the optimum many evaluations were used to as the algorithm approaches 

convergence.   Figure 6 and Figure 7, again with the normal mean and weighted 

mean respectively, use the multiple minima function but start around a single 

minimum for comparison.  Here it is more clear the advantage of the weighted 

mean.  In  Figure 7 the evaluation points are more closely centered around the 

optimum and fewer evaluations are needed.  In Figure 8 the algorithm uses the 

normal mean and demonstrates the algorithms inability to find a global minimum in 

a function with multiple minima.  Additional processes would be necessary to handle 

multiple minima.  

 

���, �� = �		 ∗ �� − ��� + �� − ���    

((((1111))))    

���, �� =    

������	∗�� + 	�����	 ∗ ����� + 	�����	 ∗ ������� + 	���������	 ∗ ��� − 	�����	 ∗ ��	 + 	��� + ��
∗ ��� +	���    

    ((((2222))))    
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Figure Figure Figure Figure 4444: Nelder Mead on : Nelder Mead on : Nelder Mead on : Nelder Mead on RosembrockRosembrockRosembrockRosembrock    functionfunctionfunctionfunction    

    

 

Figure Figure Figure Figure 5555: Weighted Nelder Mead with value weighting: Weighted Nelder Mead with value weighting: Weighted Nelder Mead with value weighting: Weighted Nelder Mead with value weighting    on Rosembrock functionon Rosembrock functionon Rosembrock functionon Rosembrock function    
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Figure Figure Figure Figure 6666: Nelder Mead: Nelder Mead: Nelder Mead: Nelder Mead    on on on on Equation 2Equation 2Equation 2Equation 2    

 

Figure Figure Figure Figure 7777: Weighted Nelder Mead with value weighting: Weighted Nelder Mead with value weighting: Weighted Nelder Mead with value weighting: Weighted Nelder Mead with value weighting    on on on on Equation 2Equation 2Equation 2Equation 2    
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Figure Figure Figure Figure 8888: Nelder Mead with multiple minima : Nelder Mead with multiple minima : Nelder Mead with multiple minima : Nelder Mead with multiple minima on Equation 2on Equation 2on Equation 2on Equation 2    

Comparing the Nelder Mead algorithm using a normal mean and a weighted mean 

revealed little practical difference.  Occasionally the weighted version would take a 

step that was more productive than the non-weighted would have but the overall 

number of function calls were comparable.  Despite this, the weighted version was 

investigated with the dies.  The exact rates for these sample problems was of 

minimal importance.  The actual problems studied were three and six dimensional 

and had to contend with a degree of noise.   

When optimizing the design of a die, the objective function which needed to be 

minimized is given in Equation 3.  The objective function measured the velocity 

variation at the exit.  A penalty was added to prevent the pressure across the die 

from increasing beyond a specified value.  When the first point was evaluated the 

pressure from the initial evaluation, or a user entered max pressure, was recorded 

as the pressure limit, ��.  The objective function, G, was then evaluated.  
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���� = ���� + �
� ∗ � ��� −  	��                                    

((((3333))))    

 x is the evaluation number and P is pressure.   !  is defined below and V, the 

velocity variation is 

���� = �		 ∗ "�� ∗ ∑ |%� − %&|���'�    

((((4444))))    

And the penalty factor ! is defined by 

�
� = �		 ∗ (���� 	� )                                            

((((5555))))    

In this case the objective function used an equality penalty factor because the term 

� ��� −  	�� in Equation 3 increases when the pressure was either above or below the 

pressure limit.  This typically is reasonable because it was expected that the best 

design will be at the pressure limit.  The equality penalty focused the search in a 

smaller area.  The other option was to only penalize a design when it was over the 

pressure limit.  Here  ��� is set to be equal to  	    if  ��� <  	.  .  .  .  In this case the 

algorithm was free to explore lower pressure designs and had the ability to move 

away from the pressure limit in cases of a local minima.  There was increased risk of 

becoming stuck in a local minima in the larger design space.  Both equality and in-

equality penalties have been tested in this study. 

Every design called for by the algorithm was checked for geometric validity.  For 

example, an ID must be less than an OD.  A function would correct these values and 

recheck the other dimensions with the corrected values.  If an original design value 

was invalid the user would be prompted to change the value.  The program would 

suggest the value with minimal change that would correct the problem. 
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Trust RegionTrust RegionTrust RegionTrust Region    

The trust region method was also first tested in matlab on two dimensional 

problems.  The same functions (Equation 1 and Equation 2) were also used to test 

the trust region method.   

A gradient based method using a BFGS Hessian approximation to take a dog leg 

step inside a trust region was used.  This method requires function evaluation and 

gradient evaluation at the current point.  The initial step was in the steepest decent 

direction.  The new point and its gradient were then evaluated.  The information 

about the change in slope was then used to estimate the Hessian matrix.  Now using 

the gradient and Hessian information, a model of the function was estimated and 

the minimum point of the estimated model was found.  If this point was further than 

a set distance from the current point, that is outside the trust region, then the step 

would have been to the edge of the trust region using a dog leg step.  A dog leg step 

initially would find the minimum point in the steepest decent direction.  If this was 

inside the trust region the new point would be located at the trust region limit 

linearly between this steepest decent minimum and the model estimated minimum, 

somewhere outside the trust region.  If the minimum in the steepest decent direction 

was outside the trust region, the step would be simply taken in the steepest decent 

direction to the trust region limit.  When the new value matched well or was better 

than the estimated value based on the model function the trust region was allowed 

to expand.  When the new value was worse than the current or shows much less 

improvement than expected the trust region would contract.  In the matlab test case 

the gradient was available analytically.  In the project the gradient had to be found 

using discrete derivatives.  This added evaluation calls and additional noise to the 

system when the discrete step become too small.  Figure 9 and Figure 10 show the 

gradient method solving the test cases.  The trust region algorithm was generally 

quicker than the Nelder Mead method on the test functions.  Also the trust region 

algorithm tended to test a narrower variety of points in searching.  It was expected 

that this would be a disadvantage when used on a noisy function where diversity of 

evaluation points may smooth noisy errors. 
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Figure Figure Figure Figure 9999: Gradient method on Rosenbrock: Gradient method on Rosenbrock: Gradient method on Rosenbrock: Gradient method on Rosenbrock    

 

Figure Figure Figure Figure 10101010: Gradient method with multiple minima: Gradient method with multiple minima: Gradient method with multiple minima: Gradient method with multiple minima    
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Considering Figure 9 and Figure 10 it is clear neither algorithm was useful in 

finding a global minimum.  As presented here these algorithms had no checks for 

local verses global minima.  These algorithms can be included in larger structures 

that do better with ignoring local minima but these require more complexity and 

more function evaluations than was initially deemed necessary for this project.  This 

fault was found to limit both algorithms when applied to the dies and was addressed 

in later versions of the programs.  At the trial state described above these 

algorithms show a clear ability to locate at least a local minimum 

After the initial point was evaluated a forward difference discrete derivative would 

then be calculated.  The discrete step size was set as a fixed percentage of the trust 

region with a lower limit enforced.  When the calculated discrete step was smaller 

than a lower limit, a central difference derivative would be calculated with both 

forward and backward steps at the lower limit value.  When the discrete gradient 

was being calculated the best objective function value was stored and compared to 

the central value.  This best value was typically a very small improvement and 

would be stored for possible later use.  The benefit of this small improvement was to 

add diversity in the derivative calculation which helped prevent stagnation.  The 

model estimated the optimum, a vector Pb away from the current point where 

 + ∗ , = −-                                            

    ((((6666))))    

β is the Hessian matrix and - is the gradient.  For the first iteration and when the 

Hessian was reset, β would be set to the identity matrix and the steepest decent 

direction would be used.  For subsequent iterations  

, = ,./�%�01� − ,./�%�01�∗�2∗�23∗,./�%�01�
�23∗,./�%�01�∗�2 + �2∗�23

�23∗�2                        

        

    ((((7777))))    

Where yk is the change in the gradient and sk is the change in the parameters. 
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If Pb was inside the trust region then it would be added to the current point and 

evaluated.  If Pb lay outside the trust region the vector to the minimum along the 

direction of steepest decent, Pu, is calculated.   

.1 = − -∗-3
-3∗,∗- ∗ 	-                                            

((((8888))))    

If Pu were outside the trust region, the direction of Pu would be taken to the edge of 

the trust region and evaluated.  When Pu was inside the trust region a dog leg 

method was applied to find a point on the edge of the trust region which would then 

be evaluated.  To find this step the parameter 4 in Equation 9 needed to be determined.  

[12] 

5� = ∑ 6| 1 + �7 − �� ∗ � + −  1�|6���'�                                 

((((9999))))    

Where ∆ is the radius of the trust region.  This can be converted to a quadratic of the 

form 

87� + 97 + : = 	                                            

((((10101010))))    

8 = ∑ � �+ −  �1����'�           

((((11111111))))    

9 = ∑ � �+ −  �1� ∗  �1 ∗ ���'�          

((((12121212))))    

: = ∑  �1� − 5���'�           

((((13131313))))    

And it can be shown that 4 > 0 when ∑ �=>? < Δ?A='B  which was the requirement to 

perform the dog leg step.  The step taken is then found to be 
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 =  1 + 7 ∗ � + −  1�                                        

((((14141414))))    

The change in the objective function for this step in the modeled approximation was 

found by  

5C0D�E	0+F�GH�%�	�1�GH�0� = 	-I ∗  +. � ∗  3 ∗ , ∗                              

((((15151515))))				
After the step was taken, the new point would be evaluated.  The resulting objective 

function value change is divided by ΔKLMNO	LPQNRS=TN	UVARS=LA to obtain ρ.   

ρ = G�x�
ΔZ[\]^	[_`]abcd]	e>fabc[f 

((((16161616))))    

This gives a measure of how well the model represents the actual function.  When ρ 

is less than .25 or ΔKLMNO	LPQNRS=TN	UVARS=LA is positive, ∆ would be reduced to a quarter 

its value.  ΔKLMNO	LPQNRS=TN	UVARS=LA can become positive when β is non-positive definite, 

so when this was found β was returned to the identity matrix.  The approximation if 

the Hessian is no longer accurate when β is non-positive definite.  If ρ was greater 

than .75 then ∆ would be doubled or raised to the upper limit, whichever were the 

smallest.  If ρ were less than η, the minimum acceptable value for ρ in optimization, 

the smaller of either the previous point or the best point from the last derivative 

would be returned and a new derivative would be calculated.  In this case η is 1/32.  

If the new point from the step is an improvement the new gradient will be taken and 

the process repeated until a minimum difference between consecutive points was 

found.   

If the new point was worse than the previous, a one dimensional model of the 

function in the direction of the step would be formulated.  This model assumed the 

second derivative was a constant and would calculate the step size to the inflection 

point.  This model used the value and slope at the current center, the distance of the 
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step and the value of the new point to formulate the model.  If this point is an 

improvement it is accepted.  This method has proven useful in dealing with steps 

that have significant penalty factors and reducing the step to the edge of the 

penalty.  If this line search point was larger the program would either return to the 

previous point or the best point from the last gradient calculation.  Then the 

gradient would be recalculated, normally with new discrete step sizes.  At this stage 

there is a potential for an infinite loop when the discrete derivative step size is at 

the lower limit and all points used to calculate the discrete derivative are worse than 

the center point.  This problem and issues with calculating an accurate derivative 

are addressed in the adaption for the flat die, where the trust region method was 

further refined. 

Flat Die Flat Die Flat Die Flat Die     

Algorithm AdaptAlgorithm AdaptAlgorithm AdaptAlgorithm Adaptatatatation for the Flat Dieion for the Flat Dieion for the Flat Dieion for the Flat Die    

Nelder MeadNelder MeadNelder MeadNelder Mead    

A simple check was done on the flat die to avoid non-orthogonal problems.  A design 

parameter in the worst point was offset a small amount when all the other points 

shared the same value for that design parameter.  This would not detect diagonal 

planes in the design space but prevented the points from becoming planer due to a 

single design parameter’s geometric limits.  In this way it was not a complete 

orthaogonality test.  The requirement for being orthogonal is a limit of the Nelder 

Mead algorithm.  If all points are in a plane the algorithm loses the ability to leave 

this plane.   

The Nelder Mead optimization algorithm used a weighting function for each design 

variable to reduce skewness in the design space.  This was needed since a fixed 

change in different variables result in different scales of changes in the objective 

function.  In the case of the flat die, a 1mm change in the land length was a much 

more significant change than a 1mm change in manifold depth.   To correct this the 



 

29 

 

initial set of points were selected with less sensitive design parameters further apart 

and more sensitive design parameters closer together.   

Trust RegionTrust RegionTrust RegionTrust Region    

The trust region method was further developed for the flat die.  These adaptations 

were not carried out with the spiral mandrel die.  Initially there were no weighting 

on the design parameters.  Unfortunately this leaves the trust region and discreet 

derivative equidistant for all parameters.   The problems this caused for the discreet 

derivative as well as other issues with the original algorithm were addressed in the 

following adaptations.   

To improve the accuracy of the discrete derivative, in the adaptation for the flat die, 

the uniform step size was replaced with an independent and adaptable scheme.  A 

target value for the change in objective function value controlled the discreet 

derivative step size for each parameter.  If the actual change were greater than 

110% of the target, the step size for that parameter was reduced to three quarters of 

the current value.  If less than 90% the step size was doubled.  Further, every 

evaluation of the derivative changed between forward difference and backward 

difference to increase the diversity of points evaluated.  The choice of central or 

single sided discrete derivatives was no longer determined by the trust region size.  

In this new version a single sided derivative was attempted first and if it failed the 

other half of the central derivative was evaluated and included.  A central derivative 

was done immediately when it was preceded by a failed step based on another 

central derivative.   

A final adaptation was used to reduce the effect of a value in a central derivative 

that was expected to be inaccurate.  When forward and backward values are both 

points worse than the central point, the derivative value is reduced by a factor of the 

smallest single design parameter derivative divided by the largest.  This did not 

affect the results when all points were worse than the center and focused the 

movement in directions of known improvement. 



 

30 

 

The infinite loop problem mentioned above could happen when the current iteration 

was in a local minima, often created by noise in the system.  This was addressed by 

increasing the discrete derivative step size when a central difference approximation 

was used and all values were worse than the center value.  To balance this, 

whenever a central difference discrete derivative is used and values are found that 

are better than at the center, the discrete step sizes are reduced, with a lower limit 

enforced.  This resulted in new points being evaluated each time until an improved 

point was found or the step size reached the upper limit, where the program would 

end.  While this did not guarantee avoidance of local minima it has been very useful 

for distinguishing local minima due to noise.  To further limit noise based local 

minima an evaluation was made after both the normal step and the short line search 

style evaluation failed and the trust region was smaller than the average discrete 

derivative step.  Here a step is taken in the same direction as both previous steps 

but at the length of the average discrete derivative step.  When this larger step is 

successful the trust region is reset to this length.  This prevents the trust region 

from spending too much time making steps on the scale of the noise as opposed to 

the true model contour.   

Geometry DescriptionGeometry DescriptionGeometry DescriptionGeometry Description    

The flat die produces a rectangular sheet or film.  The polymer enters the die 

through a centered inlet channel, in this case with an elliptical cross section with 

major and minor axis’s listed in Table 2 as major and minor.  This allows circular 

and elliptical inlets to be used with the same code.  The inlet channel length is 

defined by IL (inlet length) and blends into the manifold with a fillet, where the 

radius is listed as a parameter.  The manifold is a large transverse channel that 

distributes the flow across the die.  It is tapered towards the outlet in the x z plane 

and narrows in the y direction towards the edges.  The angle towards the outlet is 

controlled by MBAXZ (manifold base angle in the x z plane) on the back wall of the 

die and PCL (pre-land center length) in the front.  The manifold depth is at the 

maximum at MCD (manifold center depth) and decreases towards the edges at an 

angle of MBAXY (manifold base angle in the x y plane).  At the end of the manifold 
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the back edge curves forward to prevent long residence times in a corner.  The 

length and radius of this bend is controlled by MESL (manifold end sweep length).  

The initial manifold thickness is defined by MCFL (manifold center flat length).  

After the manifold, there is a relatively narrow channel, called the secondary 

manifold.  It is connected to the manifold by a sloped surface at an angle equal to 

half MA (manifold angle) and is meant to stop the flow until the entire manifold is 

filled. The secondary manifold and the rest of the die down stream are the width of 

the final shape, DW (die width).  After initial filling, the secondary manifold 

improves flow due to its relatively high resistance.  It forces the flow down the 

manifold to the edges of the die.  The dimensions SMD (secondary manifold depth) 

and SMCL (secondary manifold side length) will control this resistance.  At the end 

of the secondary manifold is the land.  The opening thickness in the land (LG) is 

normally the thickness of the desired sheet or film, although this may be slightly 

smaller to account for die swell.  The land also forces the flow to be more even 

through resistance.  This resistance is adjusted by the land length (dimension LL).  

The parameters listed are all modifiable at the start of the program but only the six 

parameters listed in Table 1 are considered in optimization.  These parameters were 

found in previous studies to have larger influence on the velocity distribution and 

pressure [Sun Yong]. 
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Table Table Table Table 1111: Variables: Variables: Variables: Variables    for thefor thefor thefor the    flat dieflat dieflat dieflat die    

Parameter Initial value 

PCL (mm) 80 

SMCL (mm) 20 

SMD (mm) 20 

LL (mm) 50 

MBAXY (radians) .492 ππππ 

MCD (mm) 64.6 

    

Table Table Table Table 2222: Flat die constant parameters: Flat die constant parameters: Flat die constant parameters: Flat die constant parameters    

Parameter Value Parameter Value 

Major (mm) 40 Minor (mm) 20 

Radius, inlet to manifold (mm) 7 IL (mm) 100 

DW (mm) 1500 IW (mm) 100 

MCD (mm) 60 MCFL (mm) 12 

MSFL (mm) 10 LG (mm) 9 

MBAXZ (radians) 
0.4831

π 
MA (radians) 

0.3332

π 

SMA (radians) 
0.3332

π 

Volumetric flow rate 

(Zg/i) .00335 

Inlet Temperature (K) 500 Wall Temperature (K) 450 
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Figure Figure Figure Figure 11111111: Drawing flat die: Drawing flat die: Drawing flat die: Drawing flat die    

ParasolidParasolidParasolidParasolid    

The Parasolid file format is a text based universal CAD file format used to describe a 

given geometry.  Parasolid files are commonly used to transfer models between 

different geometric modeling programs.  In this work, a parasolid file describing the 

die was re-written to describe each new design.  Then it was used by Simmetrix 

software to generate a mesh.  A parasolid file starts with a header section that logs 

information such as modeling program used, authors’ user name, date and time.  

Information could be added to the header without affecting later parsing functions.  

In this case the design parameters are added to the header file so that a user could 

open a previously used parasolid file and retrieve the dimensions.  Following the 

header is a long set of numbers and letters that contain the information describing 

the part.  In this data set geometric information defining points, edges and surfaces, 

as well as topological relations between these features are listed.  An entry will start 

with a number identifying what will be described next.  Following this number will 

be the number 255, if this is the first entry of this type, followed by topological 
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information.  At the end of the entry, if the entry describes geometric information, 

values relating dimensions will be listed.   

For example an entry to describe a vertex from the flat die in the code used in this 

project was "29 43 249 0 45 46 40 0 .5*MCD MCFL”.  The 29 identified this entry as 

a vertex.  The lack of a 255 means this was not the first vertex in the list.  The 

values 43, 249, 0, 45, 46, and 40 relate the topological information for this point, that 

is which edges and surfaces it was connected to.  The last three numbers described 

the coordinate; x=0, y=.5*MCD and z=MCFL.  This vertex was on the top of the die, 

in the center of the manifold.  Straight and circular edges were easily described in a 

similar manor.  Surfaces that were flat, cylindrical and conical were also easily 

described.  More complex edges and surfaces use B-splines and other geometric 

entities.   

The relatively simple flat die used around 150 entries for geometric information and 

many more for topological relations.  Topological relations were not changed, so new 

surfaces or edges could not be created or removed.  This method’s ability to 

consistently generate results for the flat die will be discussed next.  

MeshingMeshingMeshingMeshing    

The parasolid file could be generated for any valid set of parameters and using 

Simmetrix, a new mesh could automatically be generated.  Every mesh with new 

dimensions would be slightly different than the previous.  These differences would 

have some effect on the final results.  This randomness will be referred to as noise.  

To understand the magnitude of the noise in the system a test group of evaluations 

were run where each new point was modified by a small and equal step.  In a system 

without any noise very small changes made in a linear fashion would produce a 

smooth change in results.   Figure 12 is a portion of the study that clearly shows the 

noise effects.  The X axis in this plot is the total change in the six parameters from 

the original point as measured in six dimensional space.  In this plot the whole span 

is 1 mm, this would correspond to 0.2 mm change in each dimension.  The tight 

cluster of points are grouped ten times closer and span 0.1 mm across the group or 
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0.02 mm in each dimension.  The Y axis is the objective function used to measure the 

performance of the die.  Values tend to vary by up to 0.2 in the objective function due 

to noise.  Later in the study this information on the noise was required to set a 

target value for the change in the objective function when calculating a discreet 

derivative.  This degree of noise is considered manageable and was able to be 

ignored with relatively few added evaluations.   

Also in Figure 12, there are three data sets.  These were arranged to compare the 

effects of mesh density on the solution.  The number of layers refers to the number of 

elements across the depth direction of the die, that is in the direction of MCD.  While 

increasing mesh density does not produce a converging pattern the trends are very 

consistent.  It is expected that the optimum point for all three meshes would be 

approximately equal, as the slopes were well matched.  The six layer mesh was 

selected as it was expected to have the least amount of noise.  The four layer mesh 

was also tested in optimization for comparison. 

 

Figure Figure Figure Figure 12121212: Noise Study for 4, 6 and 8 layered meshes: Noise Study for 4, 6 and 8 layered meshes: Noise Study for 4, 6 and 8 layered meshes: Noise Study for 4, 6 and 8 layered meshes    



 

36 

 

ResultsResultsResultsResults    

Flat Die with Nelder MeadFlat Die with Nelder MeadFlat Die with Nelder MeadFlat Die with Nelder Mead    

Both the four and six layer meshes were tested with the Nelder Mead algorithm.  

Both meshes were unsuccessful at preventing stagnation, see Figure 13.  The six 

layer mesh was completely stagnated by the 50th evaluation.  The four layer mesh 

progressed further but stagnated at an objective function value of 13.5 mm/s.  In 

earlier versions of the program, which were less stable, the four and six layer 

meshes performed comparably.  It is expected the difference in performance on this 

version is coincidental and may turn out differently with a different original design.  

It is clear the Nelder Mead algorithm as used here was ineffective at preventing 

stagnation.   

As expected the algorithm was successful in maintaining the pressure near the 

limit.  Both versions of the Nelder Mead algorithm were tested using the in-equality 

pressure penalty.   

Earlier versions were developed with weighted and non-weighted means and shown 

relatively little difference in performance.  This algorithm did not include a function 

for re-expanding once inside a local minima, either created by noise or a true contour 

of the objective function.  With such a function this algorithm may have been able to 

find a solution.  Further development was not attempted as the trust region 

algorithm was identified as the faster method.   



 

37 

 

 

Figure Figure Figure Figure 13131313: Convergence for the Nelder Mead Algorithm on the flat die: Convergence for the Nelder Mead Algorithm on the flat die: Convergence for the Nelder Mead Algorithm on the flat die: Convergence for the Nelder Mead Algorithm on the flat die    

Flat Die with Trust Region Optimization Flat Die with Trust Region Optimization Flat Die with Trust Region Optimization Flat Die with Trust Region Optimization     

Program InputsProgram InputsProgram InputsProgram Inputs    

The parameters that define the die geometry were listed at the start of the program.  

The user supplied the program with the relevant geometric dimensions to describe 

the initial design of the die.  CFD boundary conditions and options were supplied at 

the same time.  These included the inlet and wall temperatures, volumetric flow 

rate, global mesh size and number of element layers across the thickness of the die.  

The current code allowed the option to reuse the dimensions and settings from the 

previous iteration to save time.  After the relevant parameters were selected, the 

user was prompted to input a maximum allowable pressure or allow the program to 

use the pressure from the initial evaluation as the limit.  A material data file was 

read separately and was generated using PolyXtrue software. [3]  This material file 
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was simply saved in the same directory as the optimization code and read during 

operation. 

Processing TProcessing TProcessing TProcessing Time ime ime ime     

Processing time is highly dependent on initial design and at this point in 

development may still be improved by tuning several optimization parameters.  

Generally a very good initial design would process for 2 days (48 hours) .  The 

program would reach the optimum after a day and spend the second day confirming 

the design is not located in a local minimum.  Less accurate initial designs, which 

are discussed here, took around 2 weeks.   

Program OutputsProgram OutputsProgram OutputsProgram Outputs    

The program script directly reports the parameters being optimized and objective 

function value but more useful to the user are the parasolid model and CFD 

simulation for the optimum design.  Also available during processing was a log of all 

designs evaluated, log of optimization activities and separate log of derivative 

function calls.   

Convergence Convergence Convergence Convergence RRRRateateateate    

The flat die was able to generate new meshes and was selected for further 

investigation with the second version of the trust region method.  The first version 

took 505 and 550 evaluations for the in-equality and equality penalty factors 

respectively.  In an attempt to improve performance, the discreet derivative step size 

was reduced by 25% rather than 55%, when the function contour required reductions 

of the discreet derivative step size.  Also the minimum discreet derivative target 

value and initial value were both set to .25 rather than .3 and .2 respectively.  The 

result were reductions to 344 evaluations for the in-equality penalty and 378 

evaluations for the equality penalty.  It can be seen in Figure 14 and Figure 15, the 

original design is quickly improved at the early stages of the program.  This quick 

pace was due to the contour of the objective function being steep.  The flatter 

sections were then where the code had more difficulty and needed to adjust the 

controlling parameters.  For example, between the 150th and the 200th evaluation of 
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the first version, the trust region was reduced due to poor steps.  These relatively 

short steps had difficulty with noise and the trust region was further reduced.  To 

prevent this from ending the program the algorithm took a step much larger than 

the trust region, based on the step size being used for the discreet derivative.  When 

this returned an improved objective function value the trust region was redefined to 

this larger size.  The code was successful at avoiding stagnating in local minima.  

The second version, both equality and in-equality penalties managed to move from 

an objective function value of about three, where there is an expected local minima, 

to the final values near one.  When all step types failed to find an improved design 

the code completed the other half of a central difference discreet derivative.  When 

all these discreet derivative points were evaluated as worse than the central point, it 

was expected that the current point was inside a local optimum.  The target change 

in objective function value for the discreet derivative was increased until an 

improved objective function value was found.  Naturally this method repeats at the 

global optimum where about 100 evaluations are used to check the surrounding 

design space.  When the change in objective function target value increases beyond a 

limit the program ends.   

 

Figure Figure Figure Figure 14141414: Improvement of objective function throughout Equality Penalty Trust Regio: Improvement of objective function throughout Equality Penalty Trust Regio: Improvement of objective function throughout Equality Penalty Trust Regio: Improvement of objective function throughout Equality Penalty Trust Region Optimizationn Optimizationn Optimizationn Optimization    
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Figure Figure Figure Figure 15151515: Improvement of objective function throughout In: Improvement of objective function throughout In: Improvement of objective function throughout In: Improvement of objective function throughout In----Equality Penalty Trust Region Equality Penalty Trust Region Equality Penalty Trust Region Equality Penalty Trust Region 
OptimizationOptimizationOptimizationOptimization    

Throughout the optimization the equality penalty held the pressure to within +/- 3% 

of the target value, 5.5 MPa.  Details on the development of the pressure term 

during optimizations can be found in Figure 40 and Figure 41 in the appendix.  A 

potential for improved processing time is evident from Figure 14 and Figure 15.  

Between the 275th and 350th evaluation 2 rows of solutions are found at objective 

function values of 8 and 13.  These values represent identical designs that were re-

evaluated as the algorithm searched the area around the optimum for better 

solutions.  These were the result of the system calculating the discreet derivative 

while a given parameter was at the upper limit value.  Processing time could be 

saved by logging all evaluations and taking the objective function from the first 

evaluation in cases of repeat design calls.  In Figure 16 and Figure 17, the repeated 

evaluations are also seen between the 275th and 350th evaluation as rows of constant 

values.  Because these plots separate the evaluations by design parameter the 

repetition can be seen more clearly.  Considering Figure 16 and Figure 17 around 

8% or 30 evaluations could be avoided.   
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Optimized DesignOptimized DesignOptimized DesignOptimized Design    

Figure 16 and Figure 17 illustrate the changes in the dimension parameters.  The 

angle MBAXY is not considered but it’s complement is used for this plot.  This is 

done to make the percentage change legible.  Similar to Yong Sun’s work, the land 

length (LL) was decreased when generally designers would increase this dimension 

to improve velocity distribution.  In this work we see that the LL initially increases 

before dropping below the original value.  Other reversing trends are seen in SMCL 

in Figure 16 and in SMD Figure 17.  These trends would be difficult for a designer to 

predict.  The increases in MCD and PCL are expected in poorly performing dies, as 

these increase the manifolds ability to move polymer to the edges of the die.  

Additional plots expanding the data in Figure 16 and Figure 17 can be found in the 

appendix in Figure 42 and Figure 43.  These figures show MBAXY and MCD from 

the inequality solution to continue to 5.1 and 3.5 times their original value and for 

both solutions values for SMCL below 0.  The negative values for SMCL were not 

considered in the algorithm but were attempted due to a programming mistake.   

 

Figure Figure Figure Figure 16161616: Dimensions throughout Equality Penalty Trust Region Optimization: Dimensions throughout Equality Penalty Trust Region Optimization: Dimensions throughout Equality Penalty Trust Region Optimization: Dimensions throughout Equality Penalty Trust Region Optimization    
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Figure Figure Figure Figure 17171717: Dimensions througho: Dimensions througho: Dimensions througho: Dimensions throughout Inut Inut Inut In----Equality Penalty Trust Region OptimizationEquality Penalty Trust Region OptimizationEquality Penalty Trust Region OptimizationEquality Penalty Trust Region Optimization    

Considering Table 3, two sets of equality and inequality optimizations were 

executed.  The second version improved convergence rates by adjusting several 

optimization parameters.  The first version solutions were near the same optimum.  

They differ primarily by SMCL and LL but have a very similar objective function 

values, 0.720 and 0.723 .  The second set of solutions did not converge to the same 

optimum.  The equality penalty seems to have approached the optimum located by 

the first set while the inequality, which was free to explore the designs with lower 

pressures, located a design optimum with a very large primary manifold volume.  In 

this case the inequality solution would have a higher potential for residence time 

problems.  A visual comparison the original die and the second version solutions are 

shown in Figure 18 through Figure 20. 
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    Table Table Table Table 3333: Initial and Final Dimensions: Initial and Final Dimensions: Initial and Final Dimensions: Initial and Final Dimensions    

Parameter 
Initial 

value 

1st 

Version  

Equality 

Penalty  

1st 

Version  

In-

Equality 

Penalty 

2nd 

Version 

Equality 

Penalty 

2nd 

Version     

In-

Equality 

Penalty 

PCL (mm) 80 136 131 124 110 

SMCL (mm) 20 13.5 23.7 10.7 8.97 

SMD (mm) 20 12.2 12.1 10.3 19.7 

LL (mm) 50 34.4 26.9 24.2 42.4 

MBAXY 

(radians) 
.492 ππππ .486    ππππ .486    ππππ .485    ππππ .457    ππππ 

MCD (mm) 64.6 112 116 102 211 

Evaluations 0 547 505 378 344 

Objective 

Function Value 
17 .720 .724 .811 1.41 

 

  



 

 

 

Figure Figure Figure Figure 18181818: Original Design Velocity Vector plot at Exit and Original Die Model: Original Design Velocity Vector plot at Exit and Original Die Model: Original Design Velocity Vector plot at Exit and Original Die Model: Original Design Velocity Vector plot at Exit and Original Die Model

Figure Figure Figure Figure 

Figure Figure Figure Figure 
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: Original Design Velocity Vector plot at Exit and Original Die Model: Original Design Velocity Vector plot at Exit and Original Die Model: Original Design Velocity Vector plot at Exit and Original Die Model: Original Design Velocity Vector plot at Exit and Original Die Model

Figure Figure Figure Figure 19191919: Second Solution set with Equality Penalty: Second Solution set with Equality Penalty: Second Solution set with Equality Penalty: Second Solution set with Equality Penalty    

Figure Figure Figure Figure 20202020: Second Solution set with In: Second Solution set with In: Second Solution set with In: Second Solution set with In----Equality PenaltyEquality PenaltyEquality PenaltyEquality Penalty    

 

: Original Design Velocity Vector plot at Exit and Original Die Model: Original Design Velocity Vector plot at Exit and Original Die Model: Original Design Velocity Vector plot at Exit and Original Die Model: Original Design Velocity Vector plot at Exit and Original Die Model    

 

 



 

 

Comparing the original design and the optimized illustrates how much of a 

difference is possible with 

Figure 20 are relatively different dies but perform similarly.  

in Figure 21 was six times faster in the center than the sid

viscous heating has an un

original dies temperature profile 

the die.  The optimized die

and from this a reasonably flat temperature distribution.  Compari

in Figure 18, Figure 19

overall and the manifold

negatively affect the residence time distribution as Smith had predicted in an earlier 

study.  Additional plots may be found in the appendix

detailing the first solution set.

Figure Figure Figure Figure 21212121: Velocity Distribution across: Velocity Distribution across: Velocity Distribution across: Velocity Distribution across
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Comparing the original design and the optimized illustrates how much of a 

le with two similar dies, Figure 18 and Figure 19

ly different dies but perform similarly.  The original

six times faster in the center than the sides and due to the un

heating has an un-even temperature profile.  The peaks at the edges of the 

original dies temperature profile are due to increased shear stress from the sides of 

the die.  The optimized dies on the other hand have a very flat velocity distribution 

and from this a reasonably flat temperature distribution.  Comparing the die models 

19 and Figure 20, it is seen that the optimized die

overall and the manifolds have greater volume.  These larger manifold

negatively affect the residence time distribution as Smith had predicted in an earlier 

Additional plots may be found in the appendix, Figure 38 

detailing the first solution set. 

: Velocity Distribution across: Velocity Distribution across: Velocity Distribution across: Velocity Distribution across    Die ExitDie ExitDie ExitDie Exit, from the second solution set, from the second solution set, from the second solution set, from the second solution set

Comparing the original design and the optimized illustrates how much of a 

19.  Figure 19 and 

The original die, seen 

es and due to the un-even 

at the edges of the 

due to increased shear stress from the sides of 

a very flat velocity distribution 

ng the die models 

, it is seen that the optimized dies are longer 

larger manifolds may 

negatively affect the residence time distribution as Smith had predicted in an earlier 

 and Figure 39, 

    

, from the second solution set, from the second solution set, from the second solution set, from the second solution set    



 

 

Figure Figure Figure Figure 22222222: Temper: Temper: Temper: Temper

Spiral Mandrel Die Spiral Mandrel Die Spiral Mandrel Die Spiral Mandrel Die 

Algorithm AdaptAlgorithm AdaptAlgorithm AdaptAlgorithm Adaptatatatation for the Spiral Mandrel Dieion for the Spiral Mandrel Dieion for the Spiral Mandrel Dieion for the Spiral Mandrel Die

Nelder MeadNelder MeadNelder MeadNelder Mead    

In the constriction step of the spiral mandrel die, a check 

points were co-planner and non

planer the second best point 

amount.  This was necessary because the limit between the helix section length and 

the lobe radius formed a diagonal planer limit in the design space.  Th

the Nelder Mead algorithm.  If all points are in a plane the algorithm loses the 

ability to leave this plane.

The Nelder Mead optimization algorithm use

variable to reduce skewness in the design space.

change in different variables result in different

function.  In the spiral mandrel die the lobe radius 

in the design space.  T

center point in the design space.  
46 

: Temper: Temper: Temper: Temperature Distribution acrossature Distribution acrossature Distribution acrossature Distribution across    DieDieDieDie    ExitExitExitExit, from the second solution set, from the second solution set, from the second solution set, from the second solution set

Spiral Mandrel Die Spiral Mandrel Die Spiral Mandrel Die Spiral Mandrel Die     

ion for the Spiral Mandrel Dieion for the Spiral Mandrel Dieion for the Spiral Mandrel Dieion for the Spiral Mandrel Die    

In the constriction step of the spiral mandrel die, a check was done to see if all 

planner and non-orthogonal.  If it is found that all the points 

planer the second best point would be offset orthogonally from the p

necessary because the limit between the helix section length and 

a diagonal planer limit in the design space.  Th

the Nelder Mead algorithm.  If all points are in a plane the algorithm loses the 

ability to leave this plane. 

Mead optimization algorithm useed a weighting function for each design 

variable to reduce skewness in the design space.  This was needed since a fixed 

change in different variables result in different scales of changes in the objective 

l mandrel die the lobe radius was increased by ten times when 

The initial three off-set points were a fixed 

in the design space.   

 

, from the second solution set, from the second solution set, from the second solution set, from the second solution set    

done to see if all 

that all the points were co-

offset orthogonally from the plane by a small 

necessary because the limit between the helix section length and 

a diagonal planer limit in the design space.  This is a limit of 

the Nelder Mead algorithm.  If all points are in a plane the algorithm loses the 

a weighting function for each design 

needed since a fixed 

changes in the objective 

increased by ten times when 

a fixed value from the 
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Trust RegionTrust RegionTrust RegionTrust Region    

The spiral mandrel die continued to increase the lobe radius by a factor of ten in the 

design space.  Otherwise the trust region code runs as described in the numerical 

optimization section. 

Geometry DescriptionGeometry DescriptionGeometry DescriptionGeometry Description    

The spiral mandrel die (Figure 23) produces a pipe or hollow cylinder shape.  In NX 

the die was defined by the outside diameter at the exit (OD), the inside diameter at 

the exit (ID), the lobe radius, the number of turns in the helix, the length of spiral 

section and the length after spiral section.  In this variation, the cross section of the 

four inlet channels were defined by an inside and an outside arc.  The inside arch 

was the lobe radius and the outside was the outside radius of the die, one half the 

OD.  The length of the inlet channels increased proportionally with changes in the 

OD.  The inlet channel then arcs to connect to the helix section with the bend radius 

defined below. 

�.�/jEj��E� = klmnko pq∗rs∗��1C+�/H1/���E���Htt�E�� u                                

((((17171717))))    

/jD�1�	0�	+��D = �0����H�∗v rs
rs0/����jEw

xyo��.�/jEj��E��                                 

((((18181818))))    

Where [eei]b is the original offset between the end of the inlet channel and the 

beginning of the helix.  This was then scaled with changes in the OD.  The four 

channels followed a helical path around the mandrel starting with a helical radius 

at the part OD and linearly increased towards the end of the die.  The final diameter 

was a function of lobe radius, OD, ID and length of lobes.  The angle of expansion for 

the helix radius was defined by 	z� and  z�. 

z� = j/G���pE0+�/jD�1�∗G0��z��E���Htt�E�� u                                    

((((19191919))))    
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z� = j/GHj� ( {jEE	Ht�G2����
E���Htj�H�/	t�E��|E���Htt�E��)                                

((((20202020))))    

���jE	D�jC�H�/	0�	t�E�� = (prs� u + Hj��z� − z�� ∗ �E���Htt�E���)                    

((((21212121))))    

The mandrel forms the inside wall of the cavity and was initially the diameter of the 

part OD so that the entire flow was in the channels.  It then linearly reduced to the 

part ID.   

To aid in development a template was made in Unigraphics so that the spiral 

mandrel die model was fully defined by 5 parameters.  All other dimensions in the 

model were automatically updated relative to these 5 parameters. 

Figure Figure Figure Figure 23232323: Spiral Mandrel Die Cross Section Veiw: Spiral Mandrel Die Cross Section Veiw: Spiral Mandrel Die Cross Section Veiw: Spiral Mandrel Die Cross Section Veiw    

ParasolidParasolidParasolidParasolid    

Development of a code for automatic generation of a parasolid model for a spiral 

mandrel die was attempted but was not successful.  The limiting factor was in the 

definition of the spiral sections.  Parasolid uses B-splines to define the surface and 

edges of the spirals.  The documentation that was available details the general form 

of how the points were weighted together to form the surface but does not include 

the B-spline basis functions.  In an attempt to replicate the changes in a B-spline 
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caused by a change in lobe radius, the movements of the points in the B-spline were 

investigated by creating three different models with varying lobe radiuses.  The 

points which define the surface of the spiral did not follow the surface but instead 

used the weighting factors included in the parasolid data.  The movements of these 

nodes were easily tracked and could be replicated.  Next, the intersection edge 

between the lobe surface and the ID conical surface would need to be updated.  This 

was unsuccessful due to the surface defined by the B-spline being an approximation 

of the intended surface.  Details on these difficulties are covered in the appendix.  

This inability to regenerate a parasolid file with new dimensions prompted another 

approach, which is discussed in the next section. 

Mesh Mesh Mesh Mesh skewingskewingskewingskewing        

Since automatic generation of the parasolid files for spiral mandrel dies was not 

successful a mesh skewing approach was attempted for minor modifications of the 

die geometry.  By changing the coordinates of the nodes in a previously generated 

finite element mesh a new die geometry could be created.  This new mesh would 

have elements with higher aspect ratios and less uniform growth rates but these 

effects were expected to be small for minor changes in the die geometry.  When 

moving nodes in the finite element mesh it was  important to accurately represent 

the die geometry.  The main cylindrical channel needed to expand linearly to 

maintain a conical inside wall.  The spiral channel also was required to remain as a 

circular cross section in the direction of the helix.  The primary limitation to how far 

a mesh could be skewed with this program was the movement of the elements 

between the channels.  The  requirement that the distribution channels had to 

maintain an aspect ratio forced significant element skewing in between the 

channels. 

In practice, skewing of the mesh to produce geometric change did not work in a 

standalone optimization program.  To illustrate the difficulties in this approach 

three different meshes are compared in their ability to simulate flow in dies with the 

same dimensions.  In Figure 24 (a) multiple points were evaluated between mesh A, 

the original mesh, and mesh C, a similar mesh generated later.  Mesh B was also 
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generated with an undistorted state half way between the two meshes to be used for 

comparison.  The undistorted dimensions for the meshes are listed in Table 4.  All 

dies used an inlet diameter of 23.75 mm and an outside diameter of 28 mm.  The 

meshes all had minor differences but were generally able to predict the same slope of 

the objective function.  In Figure 24 (b) the skewed mesh calculated the objective 

function with minimal noise when very close to the undistorted mesh but as seen in 

Figure 24 (c), too far from the undistorted mesh the noise would corrupt most 

discrete gradient calculations.   

Table Table Table Table 4444: Variable Parameters for undistorted meshes: Variable Parameters for undistorted meshes: Variable Parameters for undistorted meshes: Variable Parameters for undistorted meshes    

 Lobe Radius 
Helix Section 

Length 

Length after Helix 

Section 

Mesh A 3 mm 56 mm 16 mm 

Mesh B  3.25 mm 48 mm 22 mm 

Mesh C 3.5 mm 40 mm 28 mm 

Mesh D 3 mm 33 mm 26 mm 

Mesh E 5.5 mm 70 mm 40 mm 



 

 

Figure Figure Figure Figure 24242424: Distortion effects on Objective function : Distortion effects on Objective function : Distortion effects on Objective function : Distortion effects on Objective function 
and significant and significant and significant and significant 
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: Distortion effects on Objective function : Distortion effects on Objective function : Distortion effects on Objective function : Distortion effects on Objective function (a(a(a(a)))), , , , minimalminimalminimalminimal    noise near undistorted die designnoise near undistorted die designnoise near undistorted die designnoise near undistorted die design
and significant and significant and significant and significant noisenoisenoisenoise    further from undistorted die design (cfurther from undistorted die design (cfurther from undistorted die design (cfurther from undistorted die design (c))))    

 

noise near undistorted die designnoise near undistorted die designnoise near undistorted die designnoise near undistorted die design    (b(b(b(b) ) ) ) 
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Based on this, optimization programs were run on a given mesh until it was 

expected that the mesh was out of the region that it would work to an acceptable 

degree of accuracy.  At this point a new mesh would be manually generated and the 

optimization would continue.  An attempt was made to create a data base of meshes 

so that the program could automatically load an appropriate mesh.  Using this 

method and starting with mesh A, a set of meshes were worked though until 

reaching mesh D, listed in Table 4.  The noise near the point of convergence can be 

seen in Figure 25.  Here four off-set levels seem to be present.  This noise prevented 

different optimization schemes to converge to the same point.   It was expected that 

the differences would be caused by a non-continuous change between the meshes.   

As the node coordinates are modified to generate new die geometries, the finite 

elements can be skewed in a way to create an inverted element.  The program will 

check each element and correct the inversion by moving a node.  This correction 

creates non-continuous change as the die geometry is continuously changed.  For 

instance, in a die geometry two nodes were corrected, nodes 1196 and 8589.  Node 

1196 was changed the same amount for all points but node 8589 was change at four 

different levels.  However, it was not expected that this was the cause of the noise.  

When the amount of change was color coded by degree of correction and plotted it 

was seen that amount of correction was not correlated to the off-set level (Figure 25).  

This un-identified noise could not be resolved in this work.  Possible sources of noise 

include; the objective function calculation and variation in the node group used in 

objective function calculation, cumulative truncation error or non convergent 

solutions which are forced to stop at 25 iterations.   
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Figure Figure Figure Figure 25252525: Noise near Optimum found using trust region method: Noise near Optimum found using trust region method: Noise near Optimum found using trust region method: Noise near Optimum found using trust region method, with the correction to node 8589 , with the correction to node 8589 , with the correction to node 8589 , with the correction to node 8589 
noted in metersnoted in metersnoted in metersnoted in meters....    

ResultsResultsResultsResults    

Using the programs as described above optimization of the spiral mandrel die was 

attempted.  The initial condition was the undistorted state of mesh A and progressed 

through a series of meshes to mesh D, detailed in Table 4 above.  The velocity 

distribution measured halfway between the OD and ID around the exit can be seen 

in Figure 26 and Figure 27.  The original design and the solutions are similar and 

relatively good.  The original varies by about +/- 5% and the new solutions slightly 

less.  It can also be noted that the average center line velocity is higher in all 

optimized designs.  This was not desired but since it was not accounted for in the 

objective function the solver had no means of detecting it. 
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Figure Figure Figure Figure 26262626: : : : Velocity Distribution across Die Exit Velocity Distribution across Die Exit Velocity Distribution across Die Exit Velocity Distribution across Die Exit for Trust Region Solutions to the Spiral Mandrel Diefor Trust Region Solutions to the Spiral Mandrel Diefor Trust Region Solutions to the Spiral Mandrel Diefor Trust Region Solutions to the Spiral Mandrel Die....    

 

Figure Figure Figure Figure 27272727: Velocity Distribution across Die Exit for Nelder Mead Solution to the Spiral Mandrel Die: Velocity Distribution across Die Exit for Nelder Mead Solution to the Spiral Mandrel Die: Velocity Distribution across Die Exit for Nelder Mead Solution to the Spiral Mandrel Die: Velocity Distribution across Die Exit for Nelder Mead Solution to the Spiral Mandrel Die....    

The initial design, mesh A was selected as the initial design because it was expected 

to be near an optimum and would require limited distortion to reach the optimal 

design.  An initial design with expected poor performance may have shown greater 

improvement but would become cumbersome when using the mesh skewing method, 

as greater distortions would be required.  In Figure 28 the original design and 

modified die geometry are compared.  Even this relatively small change required ten 

meshes for the algorithm to search for the solution.   
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Figure Figure Figure Figure 28282828: Comparison of the Original Design and the Solution from the Trust Region Method using : Comparison of the Original Design and the Solution from the Trust Region Method using : Comparison of the Original Design and the Solution from the Trust Region Method using : Comparison of the Original Design and the Solution from the Trust Region Method using 
the Equality Penaltythe Equality Penaltythe Equality Penaltythe Equality Penalty....    

Figure 29 shows the progress of three optimization schemes when mesh D was used.  

The Nelder Mead method returned values much better than the trust region 

gradient methods but the better results from Nelder Mead method was probably due 

to inaccuracy in the mesh resulting from skewing effects.  In Figure 30, evaluations 

were performed for transformations between mesh D and mesh E, where mesh E is 

near the expected inaccurate Nelder Mead optimum.  In the figure, mesh D is 

undistorted on the left side, 0% between mesh D and mesh E.  At the right side mesh 

D is skewed to match the undistorted design of mesh E.  Figure 30 (a) illustrates 

that each mesh miscalculates the objective function when skewed, but the slope is 

similar.  Figure 30 (b) re-plots the data from mesh D in Figure 30 (a) so that small 

changes can be seen more clearly.  An example of the problem with the Nelder Mead 

solution and the general instability of the mesh skewing scheme can be seen here.  
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There was a small local minimum near the undistorted mesh.  The more cautious 

gradient method happened to find this minimum but the Nelder Mead method 

stepped over it and continued to the artificial minimum created by the inaccuracy of 

the skewed mesh.  As it was noted, and depicted in Figure 24 (b) and (c), the noise in 

evaluating a mesh was significantly smaller near the undistorted mesh than further 

away, so there was some confidence that the minimum near the undistorted mesh 

was correct while the minimum further away might be due to error.  Based on the 

problems discussed, optimization of the spiral mandrel die using this method was 

considered ineffective.  If a poor performing design was taken as the initial design 

too many meshes would have to be created manually to find the optimum.  To avoid 

this, the program could be limited to making small improvements to good designs.  If 

this were done, few meshes would be required to optimize but the gain would be 

quickly limited by the problems with noise.  This method would then be limited for 

use as a tool in manual optimization.  A program could evaluate gradient and 

Hessian information about a design and make recommendations to a designer who 

would then manually create the new model and mesh.  For this process to be 

efficient the designer would still need some experience to utilize the predicted 

gradient and Hessian for optimization of the die. 



 

 

Figure Figure Figure Figure 29292929: Solutions for Spiral Mandrel die using Nelder Mead and Trust Region methods: Solutions for Spiral Mandrel die using Nelder Mead and Trust Region methods: Solutions for Spiral Mandrel die using Nelder Mead and Trust Region methods: Solutions for Spiral Mandrel die using Nelder Mead and Trust Region methods
radius (mm) by iteration number; b) Length after helix section (mm) by iteration number; c)Length of radius (mm) by iteration number; b) Length after helix section (mm) by iteration number; c)Length of radius (mm) by iteration number; b) Length after helix section (mm) by iteration number; c)Length of radius (mm) by iteration number; b) Length after helix section (mm) by iteration number; c)Length of 
helixhelixhelixhelix    section (mm) by iteration number; d)Objective function (mm/s) with penalty factor by iteration section (mm) by iteration number; d)Objective function (mm/s) with penalty factor by iteration section (mm) by iteration number; d)Objective function (mm/s) with penalty factor by iteration section (mm) by iteration number; d)Objective function (mm/s) with penalty factor by iteration 
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: Solutions for Spiral Mandrel die using Nelder Mead and Trust Region methods: Solutions for Spiral Mandrel die using Nelder Mead and Trust Region methods: Solutions for Spiral Mandrel die using Nelder Mead and Trust Region methods: Solutions for Spiral Mandrel die using Nelder Mead and Trust Region methods
radius (mm) by iteration number; b) Length after helix section (mm) by iteration number; c)Length of radius (mm) by iteration number; b) Length after helix section (mm) by iteration number; c)Length of radius (mm) by iteration number; b) Length after helix section (mm) by iteration number; c)Length of radius (mm) by iteration number; b) Length after helix section (mm) by iteration number; c)Length of 

section (mm) by iteration number; d)Objective function (mm/s) with penalty factor by iteration section (mm) by iteration number; d)Objective function (mm/s) with penalty factor by iteration section (mm) by iteration number; d)Objective function (mm/s) with penalty factor by iteration section (mm) by iteration number; d)Objective function (mm/s) with penalty factor by iteration 
number; e)Pressure by iteration numbernumber; e)Pressure by iteration numbernumber; e)Pressure by iteration numbernumber; e)Pressure by iteration number    

 

: Solutions for Spiral Mandrel die using Nelder Mead and Trust Region methods: Solutions for Spiral Mandrel die using Nelder Mead and Trust Region methods: Solutions for Spiral Mandrel die using Nelder Mead and Trust Region methods: Solutions for Spiral Mandrel die using Nelder Mead and Trust Region methods.  a) Lobe .  a) Lobe .  a) Lobe .  a) Lobe 
radius (mm) by iteration number; b) Length after helix section (mm) by iteration number; c)Length of radius (mm) by iteration number; b) Length after helix section (mm) by iteration number; c)Length of radius (mm) by iteration number; b) Length after helix section (mm) by iteration number; c)Length of radius (mm) by iteration number; b) Length after helix section (mm) by iteration number; c)Length of 

section (mm) by iteration number; d)Objective function (mm/s) with penalty factor by iteration section (mm) by iteration number; d)Objective function (mm/s) with penalty factor by iteration section (mm) by iteration number; d)Objective function (mm/s) with penalty factor by iteration section (mm) by iteration number; d)Objective function (mm/s) with penalty factor by iteration 
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Figure Figure Figure Figure 30303030: Distortion near convergence for Spiral Mandrel die: Distortion near convergence for Spiral Mandrel die: Distortion near convergence for Spiral Mandrel die: Distortion near convergence for Spiral Mandrel die.  a) Comparison of objective fun.  a) Comparison of objective fun.  a) Comparison of objective fun.  a) Comparison of objective function ction ction ction 
values for mesh D and mesh E; b) Detail view of objective function values for mesh Dvalues for mesh D and mesh E; b) Detail view of objective function values for mesh Dvalues for mesh D and mesh E; b) Detail view of objective function values for mesh Dvalues for mesh D and mesh E; b) Detail view of objective function values for mesh D    
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ConclusionsConclusionsConclusionsConclusions        

The trust region method when applied to the flat die could successfully optimize the 

die with the presence of noise in the system.  The optimization program could be 

directly applied to other die geometries with the adaption of a the optimization 

parameters.  Maximum step size can be guessed a with knowledge of the typical 

variation in design parameters.   Only determining the new minimum discreet 

derivative target change would require some effort.  In this study the minimum 

discreet derivative target change was set to .25 the scale of noise in the system, 

which needed to be determined before running the optimization program.  A discreet 

derivative in a noisy system requires feedback to maintain appropriate discreet step 

sizes.  Adjusting the step size for each design parameter independently based on the 

resulting change in objective function was found to be effective in this work.  For 

efficiency and diversity, the forward and backward difference approximations can be 

alternated and central difference approximations used only when needed.  Allowing 

changes in the target value for the change in the discreet derivative not only allows 

the system to adjust between regions of steep and shallow gradient but also works to 

expand the search area outside a small local minimum.  When a minimum, either 

local or global, is found it is possible that a given design may be tested repeatedly 

resulting in a wastage of the computing resources.  Therefore, a system that logs and 

stores results to avoid repeat evaluations may be useful in reducing processing time.  

For some parameters the final optimized solution was found to be in the direction 

opposite to the  initial improvement.  This attribute would be difficult for a designer 

working on manual optimization to predict and supports the use of automated 

optimization algorithms not only as potential time savers but possibly finding better 

final designs than a designer would be able to find manually.  

Due to the inaccuracy in the prediction with skewed meshes, the usefulness of the 

mesh skewing concept was limited to finding a direction for the change in geometric 

parameters.  Knowing the direction of change the designer would then have to 

update the model and re-evaluate.  In this sense this program could be more of a tool 

for manual optimization than a automatic optimizer.  It was found there could be 
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some noise in the prediction even near the non-distorted geometry.  These may be 

due to the discretization error or due to a non-continuous change when the mesh is 

skewed.  But it could be shown that this is not related to the element correction 

scheme.  Although any opportunity to reduce the noise in this system would improve 

the results there will always be a degree of noise to deal with.  Considering the 

results from the flat die, it is more effective to develop methods to adapt to a noisy 

system than try to remove the noise altogether.   

Future WorkFuture WorkFuture WorkFuture Work    

The optimization program for the flat die developed in this work should be further 

tested for robustness.  In the present work, only a couple of starting die geometries 

have been tested for only one material and boundary condition set.  A sensitivity 

study could be done for the optimization parameters.  Both initial values and limit 

values for the trust region size and target objective function change for the discrete 

derivative may need to be adjusted for new dies.  Adjustment factors, such as how 

much the discrete derivative step size should increase when the change in objective 

function is too small, could be tuned to improve efficiency.  Further efficiency gains 

could be made by tracking all evaluations and results and using this data to skip re-

solving a given design.  

After the robustness of the optimization algorithm has been tested and optimization 

parameters have been fine tuned, a study on variations of optimal designs relative to 

boundary conditions and material parameters would be interesting.  How different 

are the optimum points for two different materials?  Does wall temperature affect 

the optimal design?  Can a trend be found to link changes in die width to changes in 

optimal design?  If such trends are found, a rule of thumb model could be developed 

that would quickly give a near optimal design before starting the optimization 

process. 

For the spiral mandrel die, a code could be developed using the mesh skewing 

scheme as a tool to aid in manual optimization.  This code could find gradient 

information and potentially Hessian information and make recommendations to the 
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designer for the next geometry to be attempted.  This code would be focused on 

minimizing the number of new die geometries that would require new meshes to be 

manually created.  This new code could use many evaluations near the undistorted 

mesh to improve the prediction of the new geometry further away from the 

undistorted mesh.  The Unigraphics NX model for the spiral mandrel die has 

already been developed for this purpose.  The designer would only have to modify 

three values in the expressions table or load an already modified expressions table to 

generate a new die geometry.  Once a die geometry is defined the new mesh could be 

generated easily manually.   
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AppendixAppendixAppendixAppendix    

GenGenGenGenerating Parasolid models for the Spiral Mandrel Dieerating Parasolid models for the Spiral Mandrel Dieerating Parasolid models for the Spiral Mandrel Dieerating Parasolid models for the Spiral Mandrel Die    

The limiting factor for the spiral mandrel die was in the definition of the spiral 

sections.  Parasolid uses B-splines to define the surface and edges of the spirals.  The 

documentation that was available details the general form of how the points were 

weighted together to form the surface but does not include the B-spline basis 

functions.  In an attempt to replicate the B-spline changes due to lobe radius 

changes the movements of the nodes in the splines were investigated.  The nodes do 

not follow the surface but instead use weighting factors included in the parasolid 

data.  The helix surface is controlled by 154 nodes (Figure 31),  which are in sets of 

twelve (Figure 32).  As the radius changes ten of the nodes move in or out from a 

central point linearly, two remaining nodes move linearly towards or away from 

each other.  Whereas when the twelve nodes were updated the helix B-spline would 

be easily replicated for the new lobe radiuses.  Attempting to replicate the edge 

between the helix and the inner wall of the die was more complicated.  Knowing the 

dimensions of the helix and the inner wall of the die the intersection could be 

calculated.  However, the geometric form created by this method did not pass the 

consistency checks applied by the meshing program.  The B-spline describing the 

surface is an approximation of the intended surface, see the approximation of the 

linearly expanding helical radius (Figure 33).  Without an ability to model the B-

spline defined surface, the intersection cannot be found.  
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Figure Figure Figure Figure 31313131: Nodes used to in Helix B: Nodes used to in Helix B: Nodes used to in Helix B: Nodes used to in Helix B----splinesplinesplinespline    
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Figure Figure Figure Figure 32323232: One set of 12 nodes from the Helix B: One set of 12 nodes from the Helix B: One set of 12 nodes from the Helix B: One set of 12 nodes from the Helix B----spline, spline, spline, spline, for threefor threefor threefor three    different lobe radiusesdifferent lobe radiusesdifferent lobe radiusesdifferent lobe radiuses    

 

Figure Figure Figure Figure 33333333: Radius of the helix as compared to linear, helix radius measured in NX 5.0: Radius of the helix as compared to linear, helix radius measured in NX 5.0: Radius of the helix as compared to linear, helix radius measured in NX 5.0: Radius of the helix as compared to linear, helix radius measured in NX 5.0    
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Results flat die, first Results flat die, first Results flat die, first Results flat die, first optimizationoptimizationoptimizationoptimization    

An earlier version of the trust region code for the flat die reached an optimum but at 

a slower rate.  Several optimization parameters were adjusted for the second 

optimization after reviewing the process this version of the program had taken.  

Following is a discussion of this first optimization.  The trends and conclusions are 

matching what is discussed earlier in this study. 

It can be seen in Figure 34, the original design is quickly improved at the early 

stages of the program.  This quick pace is due to the contour of the objective function 

being steep.  The flatter sections are then where the code has more difficulty and 

needs to adjust the controlling parameters.  For example, between the 150th and the 

200th evaluation, the trust region is reduced due to poor steps.  These relatively 

short steps have difficulty with noise and the trust region is further reduced.  To 

prevent this from ending the program the algorithm took a step much larger than 

the trust region.  When this returned an improved objective function value the trust 

region was redefined to this larger size.  Such a step is taken when the trust region 

is much smaller than the average step taken to find the gradient and both the 

normal step and the second shorter linear optimization step fail.  At the end about 

100 evaluations are used to check the area around the optimum to try to determine 

if the current point is a local or global optimum.  This is done by allowing the central 

difference discreet derivative to increase the target value for change in the objective 

function every time all evaluated points are worse than the central point.  When this 

target value increases beyond the limit the program ends.  Using the same format 

Figure 35 details the pressure values and shows that throughout the optimization 

the equality penalty held the pressure to near the target value, 5.5 MPa.    
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Figure Figure Figure Figure 34343434: Objective function progression for the flat : Objective function progression for the flat : Objective function progression for the flat : Objective function progression for the flat die, 2nd version trust region algorithm, first die, 2nd version trust region algorithm, first die, 2nd version trust region algorithm, first die, 2nd version trust region algorithm, first 
solution, and equality penaltysolution, and equality penaltysolution, and equality penaltysolution, and equality penalty    

    

Figure Figure Figure Figure 35353535:  Pressure progression for the flat die, 2nd version trust region algorithm, first solution, and :  Pressure progression for the flat die, 2nd version trust region algorithm, first solution, and :  Pressure progression for the flat die, 2nd version trust region algorithm, first solution, and :  Pressure progression for the flat die, 2nd version trust region algorithm, first solution, and 
equality penaltyequality penaltyequality penaltyequality penalty    

 

 



 

 

Figure Figure Figure Figure 36363636: Optimized Design Velocity Vector plot at Exit and Optimized Die Model: Optimized Design Velocity Vector plot at Exit and Optimized Die Model: Optimized Design Velocity Vector plot at Exit and Optimized Die Model: Optimized Design Velocity Vector plot at Exit and Optimized Die Model
solution set using an equality penaltysolution set using an equality penaltysolution set using an equality penaltysolution set using an equality penalty

Figure Figure Figure Figure 37373737: Optimized Design Velocity Vector plot at Exit and Optimized Die Model from the : Optimized Design Velocity Vector plot at Exit and Optimized Die Model from the : Optimized Design Velocity Vector plot at Exit and Optimized Die Model from the : Optimized Design Velocity Vector plot at Exit and Optimized Die Model from the 
solution set using an equality penaltysolution set using an equality penaltysolution set using an equality penaltysolution set using an equality penalty
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: Optimized Design Velocity Vector plot at Exit and Optimized Die Model: Optimized Design Velocity Vector plot at Exit and Optimized Die Model: Optimized Design Velocity Vector plot at Exit and Optimized Die Model: Optimized Design Velocity Vector plot at Exit and Optimized Die Model    from the first from the first from the first from the first 
solution set using an equality penaltysolution set using an equality penaltysolution set using an equality penaltysolution set using an equality penalty    

: Optimized Design Velocity Vector plot at Exit and Optimized Die Model from the : Optimized Design Velocity Vector plot at Exit and Optimized Die Model from the : Optimized Design Velocity Vector plot at Exit and Optimized Die Model from the : Optimized Design Velocity Vector plot at Exit and Optimized Die Model from the 
solution set using an equality penaltysolution set using an equality penaltysolution set using an equality penaltysolution set using an equality penalty    

 

from the first from the first from the first from the first 

 

: Optimized Design Velocity Vector plot at Exit and Optimized Die Model from the : Optimized Design Velocity Vector plot at Exit and Optimized Die Model from the : Optimized Design Velocity Vector plot at Exit and Optimized Die Model from the : Optimized Design Velocity Vector plot at Exit and Optimized Die Model from the first first first first 



 

 

Figure Figure Figure Figure 38383838: Velocity Distribution across Die Exit, from the first solution set: Velocity Distribution across Die Exit, from the first solution set: Velocity Distribution across Die Exit, from the first solution set: Velocity Distribution across Die Exit, from the first solution set

Figure Figure Figure Figure 39393939: Temperature Distribution across Die Exit, from the first solution s: Temperature Distribution across Die Exit, from the first solution s: Temperature Distribution across Die Exit, from the first solution s: Temperature Distribution across Die Exit, from the first solution s
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: Velocity Distribution across Die Exit, from the first solution set: Velocity Distribution across Die Exit, from the first solution set: Velocity Distribution across Die Exit, from the first solution set: Velocity Distribution across Die Exit, from the first solution set    

: Temperature Distribution across Die Exit, from the first solution s: Temperature Distribution across Die Exit, from the first solution s: Temperature Distribution across Die Exit, from the first solution s: Temperature Distribution across Die Exit, from the first solution setetetet    
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Additional figures for the flat die version of the trust region algorithmAdditional figures for the flat die version of the trust region algorithmAdditional figures for the flat die version of the trust region algorithmAdditional figures for the flat die version of the trust region algorithm    
 

 

Figure Figure Figure Figure 40404040:  Development of objective function throughout Equality Penalty Trust Region Optimization:  Development of objective function throughout Equality Penalty Trust Region Optimization:  Development of objective function throughout Equality Penalty Trust Region Optimization:  Development of objective function throughout Equality Penalty Trust Region Optimization    

 

Figure Figure Figure Figure 41414141    : Developmen: Developmen: Developmen: Development of objective function throughout Int of objective function throughout Int of objective function throughout Int of objective function throughout In----Equality Penalty Trust Region Equality Penalty Trust Region Equality Penalty Trust Region Equality Penalty Trust Region 
OptimizationOptimizationOptimizationOptimization    
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Figure Figure Figure Figure 42424242: Dimensions throughout Equality Penalty Trust Region Optimization (full data set): Dimensions throughout Equality Penalty Trust Region Optimization (full data set): Dimensions throughout Equality Penalty Trust Region Optimization (full data set): Dimensions throughout Equality Penalty Trust Region Optimization (full data set)    

 

Figure Figure Figure Figure 43434343: Dimensions throug: Dimensions throug: Dimensions throug: Dimensions throughout hout hout hout InInInIn----Equality Penalty Trust Region OptimizationEquality Penalty Trust Region OptimizationEquality Penalty Trust Region OptimizationEquality Penalty Trust Region Optimization    (full data set)(full data set)(full data set)(full data set)    
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