Analysis of a novel waste heat recovery mechanism for an I.C. engine

Jasdeep S. Condle
Michigan Technological University

Copyright 2012 Jasdeep S. Condle

Recommended Citation
http://digitalcommons.mtu.edu/etds/551

Follow this and additional works at: http://digitalcommons.mtu.edu/etds
Part of the Mechanical Engineering Commons
ANALYSIS OF A NOVEL WASTE HEAT RECOVERY MECHANISM FOR AN I.C. ENGINE

By
Jasdeep S. Condle

A REPORT
SUBMITTED In Partial Fulfillment Of The Requirements For The Degree Of
MASTER OF SCIENCE
(Mechanical Engineering)

MICHIGAN TECHNOLOGICAL UNIVERSITY
2012

COPYRIGHT © JASDEEP S. CONDLE 2012
This report, “Analysis of a Novel Waste Heat Recovery Mechanism for an I.C. Engine,” is hereby approved in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE IN MECHANICAL ENGINEERING.

Department of Mechanical Engineering-Engineering Mechanics

Signatures:

Report Advisor

__
Scott A. Miers

Department Chair

__
William W. Predebon

Date

__
Table of Contents

Chapter 1 Introduction .. 11

1.1 Rankine Cycle .. 11

1.2 Research Project ... 14

1.2.1 Heat exchanger between the coolant system and the working fluid 15

1.2.2 Heat exchanger between the exhaust system and the working fluid 17

1.2.3 Steam chamber within the modified piston assembly 18

1.2.4 Condenser, pump and piping .. 19

Chapter 2 Background/Literature Review .. 20

Chapter 3 Experimental Setup ... 22

3.1 Modeling of Waukesha 16V275GL+ engine: ... 24

3.1.1 Fuel consumption ... 24

3.1.2 Intake and exhaust valves .. 24

3.1.3 Firing order ... 25

3.1.4 Compressor, turbine and intercooler .. 26

3.1.5 Piping dimensions .. 26

3.2 Engine operation .. 27

3.2.1 Intake stroke ... 27

3.2.2 Compression stroke ... 27

3.2.3 Expansion stroke .. 27

3.2.4 Exhaust stroke .. 27

Chapter 4 Results ... 29

4.1 Engine Model Results ... 29
A.1.10 Assuming 2 cylinders are equipped with novel WHR system steam chambers ... 48

A.1.11 Assuming 6 cylinders are equipped with DYNAMAX steam chambers ... 49

A.1.12 Theoretical power generation from WHR ... 50

A.1.13 Total amount of recovered waste heat ... 50

A.1.14 Power generation BEFORE any parasitic losses 50

A.1.15 Estimated parasitic losses .. 50

A.1.16 Loss from working fluid pump power input 51

A.1.17 Loss from exhaust heat exchanger backpressure 52

A.3 Theoretical net efficiency ... 64

 A.3.1 Power input from fuel .. 64

 A.3.2 New efficiency of the system... 64

 A.3.3 Increase in net efficiency ... 65
List of Figures

Figure 1.1: Rankine cycle schematic and its characteristics [6] 12
Figure 1.2: Efficiencies of different working fluids for various turbine inlet temperatures [6] .. 13
Figure 1.3: T-s diagrams for different fluids [17] ... 13
Figure 1.4: Novel waste heat recovery system schematic .. 15
Figure 1.5: Coolant heat exchanger schematic [14] .. 16
Figure 1.6: Different types of compact heat exchangers [4] ... 17
Figure 3.1: Waukesha 16V275GL+ engine [7] .. 22
Figure 3.2: Sizing of the intake and exhaust valves .. 25
Figure 3.3: Schematic diagram of the modified piston assembly [25] 28
Figure 4.1: GT-POWER simulation results for brake power (HP) 29
Figure 4.2: GT-POWER simulation results for CO2 (g/hp-h) .. 30
Figure 4.3: GT-POWER simulation results for air flow (scfm) 30
Figure 4.4: GT-POWER results of exhaust gas flow rate (kg/hr) for 1 turbocharger 31
Figure 4.5: GT-POWER results of exhaust temperature (°C) .. 32
Figure 4.6: Pressure cycle with 2 steam power cycles every 2 crankshaft revolutions 34
Figure 4.7: LogP vs. LogV for the steam chamber ... 35
Figure 4.8: Intake and exhaust valve lift profiles ... 36
Figure 4.9: Trapped mass inside the steam chamber .. 37
Figure 4.10: Intake and exhaust lift profiles combined with the trapped mass within the steam chamber ... 38
Figure A.1.2: Efficiency of annular fins of rectangular profile [4] 58
Figure A.1.4: Predicted trend of pressure (psia) vs. volume (cu.ft) of the exhaust heat exchanger
List of Tables

Table 3.1: Performance data of the Waukesha 16V275GL+ engine [7]........................... 23
Table 3.2: Technical data of the Waukesha 16V275GL+ engine [7] 24
Table 3.3: Firing order .. 26
Table 4.1: Error (%) between the simulated engine model and the actual Waukesha
16V275GL+ engine.. 32
<table>
<thead>
<tr>
<th>Nomenclature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHR</td>
<td>Waste Heat Recovery</td>
</tr>
<tr>
<td>ORC</td>
<td>Organic Rankine Cycle</td>
</tr>
<tr>
<td>CAE</td>
<td>Computer-Aided Engineering</td>
</tr>
<tr>
<td>BDC</td>
<td>Bottom Dead Center</td>
</tr>
<tr>
<td>TDC</td>
<td>Top Dead Center</td>
</tr>
<tr>
<td>CAD</td>
<td>Crank Angle Degrees</td>
</tr>
<tr>
<td>k</td>
<td>Specific heat ratio</td>
</tr>
<tr>
<td>C_p</td>
<td>Specific heat at constant pressure</td>
</tr>
<tr>
<td>C_v</td>
<td>Specific heat at constant volume</td>
</tr>
<tr>
<td>\dot{m}</td>
<td>Mass flow rate</td>
</tr>
<tr>
<td>η</td>
<td>Efficiency</td>
</tr>
<tr>
<td>ρ</td>
<td>Density</td>
</tr>
<tr>
<td>φ</td>
<td>Volumetric flow rate</td>
</tr>
</tbody>
</table>
Abstract

Typical internal combustion engines lose about 75% of the fuel energy through the engine coolant, exhaust and surface radiation [6]. Most of the heat generated comes from converting the chemical energy in the fuel to mechanical energy and in turn thermal energy is produced. In general, the thermal energy is unutilized and thus wasted. This report describes the analysis of a novel waste heat recovery (WHR) system that operates on a Rankine cycle. This novel WHR system consists of a second piston within the existing piston to reduce losses associated with compression and exhaust strokes in a four-cycle engine. The wasted thermal energy recovered from the coolant and exhaust systems generate a high temperature and high pressure working fluid which is used to power the modified piston assembly. Cycle simulation shows that a large, stationary natural gas spark ignition engine produces enough waste heat to operate the novel WHR system. With the use of this system, the stationary gas compression ignition engine running at 900 RPM and full load had a net increase of 177.03 kW (240.7 HP). This increase in power improved the brake fuel conversion efficiency by 4.53%.
Chapter 1 Introduction

Thermal energy is predominantly released through the coolant and exhaust systems of a typical internal combustion engine. About 20% of the energy released during combustion power produced by burning fuel is able to be used for work output. The rest of the fuel energy is expelled from the engine as wasted heat [6]. The proposed WHR system makes use of this wasted heat and thus improves fuel conversion efficiency of the internal combustion engine. It makes use of a Rankine cycle to convert the thermal energy into useful work.

Previous work investigated the operation of a DYNAMAX™ technology on a class 8 diesel engine and showed a similar percentage of large amount of waste heat generated [1,2]. The natural gas spark ignition engine used for this project proportionally gives a larger amount of waste heat. The amount of useful work or exergy available is based on the temperature differences between the hot and cold reservoirs [1, 2]. The following section describes the use of a modified Rankine cycle which recovers the wasted energy from the coolant and exhaust systems to power the modified piston assembly.

1.1 Rankine Cycle

The Rankine cycle is a thermodynamic cycle that converts heat into work [6]. The Rankine cycle system consists of a turbine, pump, condenser and boiler. Figure 1.1 shows the ideal Rankine cycle and its characteristics in a temperature-entropy.
The ideal Rankine cycle consists of the following four processes:

1 – 2: compression via pump

2 – 3: heat delivery at constant pressure in a boiler

3 – 4: isentropic expansion via turbine

4 – 1: heat rejection at constant pressure in a condenser

The efficiency of the Rankine cycle is limited by the use of the working fluid. In a Rankine cycle system, the working fluid is reused continuously and follows a closed loop. Water is a commonly used working fluid but becomes inefficient for WHR at temperatures below 370°C [9, 10]. For temperatures below 370°C, the use of organic fluids increases the Rankine cycle efficiency [9, 10, 12]. An Organic Rankine Cycle (ORC) is a Rankine cycle that uses organic fluid. Figure 1.2 shows the efficiencies of different working fluids versus turbine inlet temperatures. Note there can be an issue of formation of liquid droplets on the turbine blades during the expansion process. To eliminate this possibility, an Organic Rankine Cycle (ORC) is used.
The three types of working fluids are dry, wet and isentropic which are shown in Figure 1.3. The type of working fluid is determined by the slope of the saturated vapor line on the T-s diagram. The slopes of dry, wet and isentropic fluids are positive, negative and infinite respectively. ORC systems use dry or isentropic working fluid because they are superheated after isentropic expansion. This eliminates the need for a superheated apparatus because there is no longer a concern that liquid droplets could form on the turbine blades [10]. The choice of working fluid is discussed in the following section.
1.2 Research Project

A stationary natural gas spark ignition engine was simulated in GT-POWER and a waste heat recovery system was used to evaluate the overall efficiency of the system. The engine simulated in this research was a Waukesha 16V275GL+ stationary natural gas spark ignition engine. The simulation software used in this project was GT-POWER from Gamma Technologies Inc., version 7.1.0.

GT-POWER is a Computer-Aided Engineering (CAE) tool used for the simulation of internal combustion engines. It is an industry standard simulation tool that is widely used by many leading vehicle and engine manufacturers worldwide [13]. The Waukesha 16V275GL+ engine model was optimized in GT-POWER until key output parameters were within 5% of the values specified by the manufacturer. An additional GT-POWER model was constructed to evaluate the waste heat recovery mechanism inside the existing engine piston. An exhaust heat exchanger was designed to produce the minimum possible pressure drop, thus minimizing the negative impact of the waste heat recovery mechanism.

Figure 1.4 shows a schematic of the external components associated with the waste heat recovery system.
Figure 1.4: Novel waste heat recovery system schematic

There are four primary components within the WHR system:

1.2.1 Heat exchanger between the coolant system and the working fluid

This heat exchanger is used to extract the thermal energy from the coolant system and raise the temperature of the working fluid. 100% propylene glycol replaces the commonly used ethylene glycol/water mixture within the coolant system. This was chosen to achieve an increased coolant temperature without the concern of boiling since the boiling point of propylene glycol, \(370^\circ F\) is higher than that of an ethylene glycol/water mixture \(225^\circ F\) \([1,2]\). Also, the working fluid had an increased temperature of \(250^\circ F\) before entering the exhaust heat exchanger, which reduced the size, back pressure and cost of the heat exchanger. Figure 1.5 shows a schematic of the single pass coolant heat exchanger used in the simulation.
The following assumptions and engineering decisions were made related to the coolant heat exchanger [1, 2]:

- 100% propylene glycol was chosen as the working fluid since it will boil at 2 bar pressure and 300°F.
- Due to the low peak temperature of 250°F within the engine coolant, the pressure (approximately 800 psia) of the working fluid entering the coolant heat exchanger was high enough to avoid a phase change from liquid to vapor.
- The mass flow rate of the working fluid within the coolant heat exchanger was assumed to be constant. Due to the multiple-cylinder engine configuration, it reduced fluctuations in the mass flow rate of the working fluid and thus this assumption was believed to be accurate.
1.2.2 Heat exchanger between the exhaust system and the working fluid

This heat exchanger is used to vaporize and superheat the working fluid. For a gas-to-gas heat exchange process, a compact heat exchanger is the optimum choice for the exhaust heat exchanger [4]. A fin – tube type compact heat exchanger which is shown in Figure 1.6 (b) was chosen as the exhaust heat exchanger.

![Different types of compact heat exchangers](image)

Figure 1.6: Different types of compact heat exchangers [4]

The following assumptions and engineering decisions were made related to the exhaust heat exchanger [1, 2]:

- The working fluid enters this heat exchanger as a saturated liquid, changes to saturated vapor and finally leaves the heat exchanger as a superheated vapor.
• The maximum temperature of the working fluid was limited to the maximum temperature of the exhaust.
• The back pressure that the engine exhaust stroke must overcome is calculated in the subsequent sections and it varies with the design of the heat exchanger. It is a very important parameter and a heat exchanger with the lowest backpressure is preferred.

1.2.3 Steam chamber within the modified piston assembly

The working fluid vapor is allowed to expand in the steam chamber located underneath the piston head. This configuration helps reduce the compression work and the exhaust work, thus increasing the power of the engine.

The following assumptions and engineering decisions were made related to the steam chamber [1, 2]:

• The steam chamber was designed to be of zero clearance and zero compression. This was done to achieve nearly instantaneous pressure increase to the inlet levels when the steam admission valve opened. The clearance height was set to 0.02 inches.
• When the steam admission valve closed, the steam chamber volume was increasing and the vapor followed a polytropic expansion process ($P^nV = constant$). The value of the polytropic exponent (n) was determined from the steam chamber model in GT-POWER.
• To maximize the power generated within the steam chamber, the exhaust steam valve timing was optimized to minimize the pumping work during the steam exhaust cycle.
• A cut – off ratio was defined as the volume of the steam chamber cylinder when the steam admission valve closes divided by the total volume of the steam chamber cylinder at bottom dead center (BDC). A cut – off ratio of
0.05 was chosen for this analysis, consistent with other steam chamber designs.

- The exhaust steam flows into the condenser which is at atmospheric pressure. This was done to convert the saturated vapor exhaust steam to saturated liquid with ambient air temperature. If the condenser pressure was higher or lower than atmospheric pressure, there would be a reduction in thermal efficiency and the possibility of air leakage into the system.

1.2.4 Condenser, pump and piping

The condenser replaces the position of the traditional radiator to provide the required heat transfer to the ambient air.

The following assumptions and engineering decisions were made related to the condenser, pump, and piping [1, 2]:

- The inlet pressure of the condenser was set at atmospheric (1 bar).
- To consider pumping losses through the piping, a 5% pressure drop was assumed between each component.
- The pump increases the pressure of the working fluid to maximize the amount of thermal energy recovered. This helped to maximize the work done during the polytropic expansion in the steam chamber.
Chapter 2 Background/Literature Review

Waste heat recovery involving a Rankine cycle utilizes sensible enthalpy from the hot exhaust gases coming out of the engine to heat the working fluid to superheated vapor and then the sensible enthalpy from the vapor is used to obtain useful work. Rankine cycles have been explored by automotive and power generation industry for many years. A review of some of the previous work using Rankine cycles for WHR is discussed below.

Brands, et al. [18] achieved WHR in a six cylinder, 14.5 L, Cummins NTC-400 diesel engine rated at 298 kW at 2100 RPM by turbo-compounding. This involved the use of a power turbine to recover energy from the exhaust gas. The authors demonstrated a 12.5% improvement in power and 14.8% net improvement in fuel economy due to WHR by Rankine cycle turbo-compounding.

Chen, et al. [20] reviewed many methods incorporated by various investigators to improve engine efficiency. They came to the conclusion of a possible multi-stage Rankine cycle with the 1st stage operating on water followed by a 2nd stage operating on R-11 (organic solvent) to recover high temperature exhaust heat and to enable low temperature exhaust WHR respectively. They also predicted a 15% improvement in efficiency through WHR.

An ORC system operating on trifluoroethanol designed for use with a Class 8, long-haul vehicle diesel engine was tested for improvements in engine efficiency. [21] A 12.5% increase in highway fuel economy was achieved with this system.

Teng, et al. [22] analyzed a supercritical ORC system of WHR from heavy duty diesel engines. The exhaust WHR was analyzed from the perspectives of the first and second law of thermodynamics. They predicted up to a 20% improvement in engine power using a supercritical ORC.
The Rankine cycle efficiency of various wet, dry and isentropic fluids was examined by Chammas, et al. [6]. They presented a concept to recover waste heat from high and low temperature of the exhaust and engine coolant respectively. They concluded that to eliminate the need of a superheating apparatus, the Rankine cycles should operate on dry or isentropic fluids. Simulations predicted a 32% improvement in fuel economy and also the energy from both exhaust and engine coolant can be recovered to a certain limit (2nd law efficiency).

Stationary IC engines were investigated by Vaja, et al. [23] for WHR using a thermodynamic analysis. They predicted a 12% improvement in thermal efficiency. Various working fluids were tested and benzene showed the highest improvement. A critical heat exchanger was needed to be designed in their analysis to achieve the predicted results.

The improvement in engine efficiency using Rankine cycles for WHR has been analyzed, simulated and tested by various individuals for many types of engines. A common conclusion obtained from the literature review is that using Rankine cycles for WHR has the potential to improve the overall engine efficiency. Based on the results of the above discussed papers, the current research project of a novel waste heat recovery mechanism for an I.C. engine using an ORC was continued.
Chapter 3 Experimental Setup

The Waukesha 16V275GL+ stationary gas compression engine shown in Figure 3.1 was modeled in GT-POWER to simulate the performance parameters of the engine. The simulated model does not exactly match the data given by the company since propriety data such as valve timings and lift at every angle was not obtained.

Table 3.1 and Table 3.2 were obtained from the data provided by the manufacturer [7]. The data provided was not sufficient to accurately model the engine without making some assumptions, which will be discussed in the following sections.
Table 3.1: Performance data of the Waukesha 16V275GL+ engine [7]

<table>
<thead>
<tr>
<th>PERFORMANCE DATA @ 900 RPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power bhp (kWb)</td>
</tr>
<tr>
<td>BSFC (LHV) Btu/bhp-hr (kJ/kWh)</td>
</tr>
<tr>
<td>NOx g/bhp-hr (mg/Nm3 @ 5% O2)</td>
</tr>
<tr>
<td>CO g/bhp-hr (mg/Nm3 @ 5% O2)</td>
</tr>
<tr>
<td>NMHC g/bhp-hr (mg/Nm3 @ 5% O2)</td>
</tr>
<tr>
<td>THC g/bhp-hr (mg/Nm3 @ 5% O2)</td>
</tr>
<tr>
<td>Methane g/bhp-hr (mg/Nm3 @ 5% O2)</td>
</tr>
<tr>
<td>Formaldehyde g/bhp-hr (mg/Nm3 @ 5% O2)</td>
</tr>
<tr>
<td>CO₂ g/bhp-hr (g/Nm3 @ 5% O2)</td>
</tr>
<tr>
<td>CO₂e (greenhouse gas) g/bhp-hr (g/Nm3 @ 5% O2)</td>
</tr>
<tr>
<td>Heat rejection to jacket water Btu/hr*1000 (kW)</td>
</tr>
<tr>
<td>Heat to lube oil Btu/hr*1000 (kW)</td>
</tr>
<tr>
<td>Heat rejection to intercooler Btu/hr*1000 (kW)</td>
</tr>
<tr>
<td>Total exhaust heat Btu/hr x 1000 (kW)</td>
</tr>
<tr>
<td>Heat to radiation Btu/hr x 1000 (kW)</td>
</tr>
<tr>
<td>Induction air flow SCFM (Nm³/hr)</td>
</tr>
<tr>
<td>Exhaust gas flow rate lb/hr (kg/hr)</td>
</tr>
<tr>
<td>Exhaust stack temperature °F (°C)</td>
</tr>
</tbody>
</table>
Table 3.2: Technical data of the Waukesha 16V275GL+ engine [7]

<table>
<thead>
<tr>
<th>TECHNICAL DATA</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cylinders</td>
<td>V16</td>
</tr>
<tr>
<td>Piston displacement</td>
<td>17398 cu.in. (285 L)</td>
</tr>
<tr>
<td>Compression ratio</td>
<td>9:1</td>
</tr>
<tr>
<td>Bore & stroke</td>
<td>10.83” x 11.81” (275 x 300 mm)</td>
</tr>
<tr>
<td>Jacket water system capacity</td>
<td>133 gal. (503 L)</td>
</tr>
<tr>
<td>Lube oil capacity</td>
<td>275 gal. (1040 L)</td>
</tr>
<tr>
<td>Starting pressure</td>
<td>150 psi (10.3 bar)</td>
</tr>
<tr>
<td>Fuel pressure</td>
<td>45 – 60 psi (3.1 – 4.1 bar)</td>
</tr>
<tr>
<td>Dimensions l x w x h inch (mm)</td>
<td>237.4(6026) x 91.3 (2320) x 126.4"(3211)</td>
</tr>
<tr>
<td>Weight lb (kg)</td>
<td>66,000 (29,835)</td>
</tr>
</tbody>
</table>

3.1 Modeling of Waukesha 16V275GL+ engine:

3.1.1 Fuel consumption

The fuel consumed by the engine was calculated using the BSFC and power which were provided by the manufacturer.

\[
\text{Fuel consumption} = 9035 \left(\frac{kJ}{kWh} \right) \times 3244 \left(\frac{kJ}{s} \right) = 8141.538 \left(\frac{kJ}{s} \right) \quad \text{Eq. 1}
\]

Knowing the lower heating value of the fuel (methane), the mass flow rate of fuel consumption was able to be calculated.

\[
\text{Mass flow rate of fuel consumption} = \frac{8141.538 \text{ kJ/sec}}{50,000 \text{ kJ/kg}} \times \frac{1000 \text{ g}}{\text{kg}} = 162.83 \text{ g/sec} \quad \text{Eq. 2}
\]

3.1.2 Intake and exhaust valves

The diameter of the intake and exhaust valves was not provided by the manufacturer of the engine. It is known that intake valves are typically larger than exhaust valves as it is more difficult to get air into the engine than out of the engine.
Having information about the bore size of the engine, the size of the intake and exhaust valves was calculated as shown in Figure 3.2.

Intake valve = 4.25 in (107 mm)

Exhaust valve = 3.60 in (90 mm)

![Figure 3.2: Sizing of the intake and exhaust valves](image)

3.1.3 Firing order

The firing order of the engine was obtained by directly contacting the company. The numbers shown in Table 3.3 indicate the number of the cylinder. For example, the first ignition sequence included both cylinders 1 and 9.
Table 3.3: Firing order

<table>
<thead>
<tr>
<th>Firing Order</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cylinder No.</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>

3.1.4 Compressor, turbine and intercooler

To model the compressor and turbine of the turbocharger, compressor and turbine maps that existed within GT-POWER were used. Instead of generating new pressure maps according to the engine to be modeled, a multiplier option in GT-POWER was utilized to match the requirements of the engine specifications. A charge air cooler (intercooler) inlet temperature of 327 K was specified.

3.1.5 Piping dimensions

Piping dimensions play an important role in modeling an engine. The efficiency of the engine model decreases with increasing pipe lengths [24]. To obtain an approximate piping dimension, all other parameters were kept constant and only the piping dimensions were changed. All the dimensions for the pipes which include inlet, outlet diameter and length were between 200 mm to 500 mm.

Data from the manufacturer and assumed/calculated data were used to model the engine. The model was finally optimized to get the desired power output of 4350 HP by varying the cam timing angles. Another model was developed as a single cylinder in GT-POWER having properties of the steam chamber. Its analysis is done in the following sections.
3.2 Engine operation

Figure 3.3 shows a schematic diagram of the modified piston assembly. Note that there are two steam power strokes per two crankshaft revolution.

3.2.1 Intake stroke

The residual steam from the previous stroke is expelled into the condenser at 1 atm, 212 °F (Refer Figure 1.4) where the vapor condenses to liquid. This liquid is pumped to a higher pressure and enters the coolant heat exchanger which increases the temperature of the working fluid. Finally, the working fluid undergoes a phase change in the exhaust heat exchanger and it is superheated to 800psia, 747°F. This superheated vapor is then used in the next stroke.

3.2.2 Compression stroke

Recoverable exhaust steam is fed into the steam expansion chamber where it expands and pushes the engine piston upwards. This helps in reducing losses associated with the compression stroke and thus gives more power output.

3.2.3 Expansion stroke

During the expansion stroke, the residual steam from the previous stroke is expelled into the condenser and undergoes the same process as that described during the intake stroke.

3.2.4 Exhaust stroke

The superheated vapor helps in removing the hot exhaust gases from the engine during the exhaust stroke and the working fluid follows the closed loop again.
Figure 3.3: Schematic diagram of the modified piston assembly [25]
Chapter 4 Results

4.1 Engine Model Results

The Waukesha 16V275GL+ engine was simulated at 900 RPM at full load as per design requirements. The following figures show that the simulated engine model is within 5% error of the data provided by the manufacturer. Figure 4.1 shows the brake power output of the engine from the simulation at 900 RPM.

![Brake Power (HP) vs. Engine Speed (RPM)](image)

Figure 4.1: GT-POWER simulation results for brake power (HP)

Figure 4.2 shows the specific CO2 emission level from the simulation at 900 RPM.
Figure 4.2: GT-POWER simulation results for CO2 (g/hp-h)

Figure 4.3 shows the air flow result for the simulation at 900 RPM and full load.

Figure 4.3: GT-POWER simulation results for air flow (scfm)
Figure 4.4 displays the mass flow rate of the exhaust from the engine at 900 RPM according to the simulation results.

![Figure 4.4: GT-POWER results of exhaust gas flow rate (kg/hr) for 1 turbocharger vs. Engine Speed (RPM)](image)

Figure 4.4: GT-POWER results of exhaust gas flow rate (kg/hr) for 1 turbocharger

Figure 4.5 shows the exhaust gas temperature of approximately 397°C at 900 RPM and full load, from the simulation.
Data from the manufacturer and results from the simulated model were compared and error (%) was calculated. Table 4.1 shows that the simulated engine model was within 5% error of the data provided by the manufacturer.

Table 4.1: Error (%) between the simulated engine model and the actual Waukesha 16V275GL+ engine

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Waukesha 16V275GL+</th>
<th>Simulated Model</th>
<th>Error (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power (kW)</td>
<td>4350</td>
<td>4349</td>
<td>0.023</td>
</tr>
<tr>
<td>CO2 emissions (g/hp-hr)</td>
<td>391</td>
<td>386</td>
<td>1.3</td>
</tr>
<tr>
<td>Air flow (scfm)</td>
<td>11702</td>
<td>11965</td>
<td>2.2</td>
</tr>
<tr>
<td>Exhaust gas flow rate (kg/hr)</td>
<td>23870</td>
<td>24812</td>
<td>3.9</td>
</tr>
<tr>
<td>Exhaust temperature (°C)</td>
<td>386</td>
<td>397</td>
<td>2.9</td>
</tr>
</tbody>
</table>
4.2 Analysis of the Steam Chamber

A single steam cylinder model was created in GT-POWER having the required properties of the steam chamber. During the steam power stroke, the steam chamber undergoes a polytropic expansion process, $PV^n = C$, where n and C are polytropic exponent and constant, respectively. The value of ‘n’ was determined from GT-POWER and it was found to be between 1.27 and 1.28 for the Waukesha 16V275GL+ engine.

For an isentropic process, the specific heat ratio $k = \frac{C_p}{C_v}$ of steam was determined to be:

$$\frac{0.445 \text{ (Btu/(lb-R))}}{0.335 \text{ (Btu/(lb-R))}} = 1.328$$ \hspace{1cm} \text{Eq. 3}

The value of ‘n’ should be closer to ‘k’ because a value of 1 would indicate a slow process with large amounts of heat transfer [1]. The steam inlet valve was opened for a duration of 24 crank angle degrees (CAD) and steam at 747°F and 800 psia was dispersed into the steam chamber. The following section describes the various properties of the steam chamber.
Figure 4.6: Pressure cycle with 2 steam power cycles every 2 crankshaft revolutions

Figure 4.6 shows the pressure variation inside the steam chamber for the entire 720 CAD and the required pressure of 800 psia is observed.
Figure 4.7: LogP vs. LogV for the steam chamber

Figure 4.7 shows the variation of pressure and volume inside the steam chamber on logarithmic coordinates. The slope of the expansion line was calculated after the inlet valve closes, $V/V_{\text{max}} = 0.05$. It was calculated to be 1.28. The slope can also be found directly from GT-POWER.

4.2.1 Optimization of valve timings

The steam chamber was designed with two inlet and two outlet valves. This was done to reduce the maximum lift requirements due to the required short lift durations. [2]

4.2.2 Inlet steam valve:

To attain a cutoff ratio of 5%, the inlet steam valve was set to open at top dead center fired (TDCF) for a duration of 24 crank angle degrees. Due to the very short duration (24 CAD), this lift profile would not be possible in an actual engine due to excessive valve acceleration.
4.2.3 Exhaust steam valve:

For the exhaust steam valve, the GT-POWER model was optimized to produce maximum power. Figure 4.8 shows the lifts profiles for both the intake and exhaust valves.

![Figure 4.8: Intake and exhaust valve lift profiles](image)

Figure 4.8 shows that the model was optimized to make sure that there was no backflow of working fluid from the condenser to the steam chamber. This phenomenon occurs only when the pressure inside the steam chamber falls below the atmospheric pressure which was the current pressure inside the condenser.
Figure 4.9: Trapped mass inside the steam chamber

Figure 4.10 combines the steam intake valve and the steam exhaust valve lift profiles with the trapped mass inside the steam chamber. Note that the steam exhaust valve closes at 360 TDC as this proves out to be the crank angle for the maximum power generated.
The steam chamber was designed and simulated to make sure that the steam entering the steam chamber was at 800 psia, 747 °F. The exhaust and inlet valves had lifts of approximately 0.9 in and 0.7 in respectively. The trapped mass within the steam chamber was 0.0126 lb. Due to the optimization of the steam chamber model for maximum power output, there was no backflow of working fluid into the condenser.
Chapter 5 Conclusions and Future Work

5.1 Conclusions

The goal of this project was to quantify the improvement in brake fuel conversion efficiency of a large stationary IC engine. The proposed project was evaluated through simulation with GT-POWER. A Waukesha 16V275GL+ stationary spark ignition engine was simulated and studied in GT-POWER with respect to a novel waste heat recovery system.

An additional steam chamber model was built in GT-POWER to meet the requirements of the steam entering the steam chamber. An exhaust heat exchanger was designed to produce the minimum possible pressure drop, thus minimizing the negative impact of the waste heat recovery mechanism.

With the implementation of a piston-in-piston design, calculations show that there is a measureable improvement in the overall efficiency of the engine. There was enough waste heat which was recovered and used to result in an increase of 177 kW (241 HP) with a 4.53% increase in brake fuel conversion efficiency.

According to the cost of natural gas as per industry standards ($5/cu. ft), the total cost of fuel that is required to run the Waukesha 16V275GL+ natural gas stationary engine is $1,266,303.393. With the use of the novel WHR system, this cost would reduce to $1,241,972.43 resulting in a profit of $24,330.96.

Assuming an ideal process (Carnot cycle), the power that could be generated is equal to 1203 hp with an overall brake fuel conversion efficiency of 27.65%.

5.2 Future Work

The steam inlet and exhaust valves were set to open inwardly into the steam chamber. Future work will be able to modify this design by changing the orientation of the valves to open outwardly from the steam chamber. This would cause changes in the thermodynamic properties of the working fluid. Validation of the novel WHR system
during transient conditions and condensation of water within the steam chamber needs further testing. This report does not take into account the changes that would take place if the steam entering the steam chamber is not at 800 °F and 800 psia. It was assumed constant as the Waukesha 16V275GL+ runs at only one speed (900 RPM) and full load.

The simulated model results will be different from the practical use of the novel WHR system. A small scale prototype incorporating this concept would be beneficial.
Bibliography

Appendix A

A.1 Calculations

Exhaust gas properties were determined from GT-POWER at 900 RPM and full load.

A.1.1 Exhaust gas properties

Temperature of the exhaust gas, $T_{\text{high_exhaust}} = 747 \, \text{(°F)}$

Mass flow rate of the exhaust gas, $\dot{m}_{\text{exhaust gas}} = \frac{27350.516 \, (lb)}{3600 \, (s)} = 7.597 \, (lb) \, (s)$

Specific heat of the exhaust gas, $C_{p_exhaust gas} = 0.2724157 \, (BTU \, lb^{-1} \, ^{\circ}F^{-1})$

The exit temperature of both the incoming working fluid and exhaust gas to and from the exhaust heat exchanger was assumed to be 250 (°F). Practically, this is not possible unless the heat exchanger was infinitely long. The heat exchanger was assumed to be 80% efficient.

A.1.2 Waste heat recovery from the exhaust heat exchanger

$\text{WHR}_{\text{exhaust}} = \dot{m}_{\text{exhaust gas}} \times C_{p_exhaust gas} \times \Delta T \times \eta_{\text{heat_exchanger}}$

$\text{WHR}_{\text{exhaust}} = 27350.516 \, (lb) \times 0.2724157 \, (BTU \, lb^{-1} \, ^{\circ}F^{-1}) \times (747 - 250) \, (^{\circ}F) \times 0.8$

$\text{WHR}_{\text{exhaust}} = 2,962,402.281 \, (BTU \, hr)$

This value was used to determine the mass flow rate of the working fluid to maximize the recovered energy. Since the working fluid entering the exhaust heat
exchanger undergoes a complete phase change, the energy required to raise the temperature of the working fluid was calculated at the three phases – liquid, vapor and superheated steam.

A.1.3 **Energy required to raise the temperature of the working fluid from 250 °F to 518 °F**

\[
C_{p,\text{water}_{384}^\circ F} = 1.071 \left(\frac{\text{BTU}}{\text{lb} \cdot \circ F} \right) \quad \text{[average of 250 (°F) and 518 (°F) = 384 (°F)]}
\]

\[
\text{Power}_{250\text{-to-518}} = \dot{m}_{\text{working_fluid}} \times C_{p,\text{water}_{384}^\circ F} \times (518 - 250) \quad \text{(°F)} \quad \text{---------- 1}
\]

A.1.4 **Energy required to evaporate the working fluid at 518 °F and 800 psia**

\[
\text{Evaporation enthalpy}_{800\text{ psi}} = 689.48 \left(\frac{\text{BTU}}{\text{lb}} \right)
\]

\[
\text{Power}_{\text{evaporation}} = \dot{m}_{\text{working_fluid}} \times \text{Evaporation enthalpy}_{800\text{ psi}}
\]

\[
\text{Power}_{\text{evaporation}} = \dot{m}_{\text{working_fluid}} \times 689.48 \left(\frac{\text{BTU}}{\text{lb}} \right) \quad \text{------------------ 2}
\]

A.1.5 **Energy required to raise the temperature of the working fluid from 518 °F to 747 °F**

\[
C_{p,\text{steam}_{659}^\circ F} = 0.6634 \left(\frac{\text{BTU}}{\text{lb} \cdot \circ F} \right)
\]

\[
\text{Power}_{518\text{-to-747}} = \dot{m}_{\text{working_fluid}} \times C_{p,\text{steam}_{659}^\circ F} \times (747 - 518) \quad \text{(°F)} \quad \text{---------- 3}
\]
A.1.6 Total energy required to raise the temperature of the working fluid from 250 °F to 747 °F

\[\text{Power}_{250 \, \text{to} \, 747} = \text{Power}_{250 \, \text{to} \, 518} + \text{Power}_{\text{evaporation}} + \text{Power}_{518 \, \text{to} \, 747} = \text{WHR}_{\text{exhaust}}\]

\[\text{Power}_{250 \, \text{to} \, 747} = \mathbf{1} + \mathbf{2} + \mathbf{3}\]

\[2,962,402.281 \left(\frac{\text{BTU}}{\text{hr}} \right) = \dot{m}_{\text{working fluid}} \times (287.028 + 689.48 + 151.91) \left(\frac{\text{BTU}}{\text{lb}} \right)\]

Mass flow rate of the working fluid to maximize recovery of the exhaust gas,

\[\dot{m}_{\text{working fluid}} = 2625.25 \left(\frac{\text{lb}}{\text{hr}} \right) = 0.729 \left(\frac{\text{lb}}{\text{s}} \right)\]

Using \(\dot{m}_{\text{working fluid}}\) in the above equations

\[\text{Power}_{250 \, \text{to} \, 518} = 2625.25 \left(\frac{\text{lb}}{\text{hr}} \right) \times 1.071 \left(\frac{\text{BTU}}{\text{lb} \cdot ^\circ\text{F}} \right) \times (518 - 250) \left(^\circ\text{F} \right)\]

\[= 753,520.257 \left(\frac{\text{BTU}}{\text{hr}} \right)\]

\[\text{Power}_{\text{evaporation}} = 2625.25 \left(\frac{\text{lb}}{\text{hr}} \right) \times 689.48 \left(\frac{\text{BTU}}{\text{lb}} \right) = 1,810,057.37 \left(\frac{\text{BTU}}{\text{hr}} \right)\]

\[\text{Power}_{518 \, \text{to} \, 747} = 2625.25 \left(\frac{\text{lb}}{\text{hr}} \right) \times 0.6634 \left(\frac{\text{BTU}}{\text{lb} \cdot ^\circ\text{F}} \right) \times (747 - 518) \left(^\circ\text{F} \right)\]

\[= 398,824.30 \left(\frac{\text{BTU}}{\text{hr}} \right)\]

\[\text{Power}_{250 \, \text{to} \, 747} = 753,520.257 \left(\frac{\text{BTU}}{\text{hr}} \right) + 1,810,057.37 \left(\frac{\text{BTU}}{\text{hr}} \right) + 398,824.30 \left(\frac{\text{BTU}}{\text{hr}} \right)\]

\[\text{Power}_{250 \, \text{to} \, 747} = 2,962,401.932 \left(\frac{\text{BTU}}{\text{hr}} \right)\]

\[\text{WHR}_{\text{exhaust}} \approx \frac{\text{Power}_{250 \, \text{to} \, 800}}{2,962,402.281} \approx 2,962,401.932 \left(\frac{\text{BTU}}{\text{hr}} \right)\]
A.1.7 **Maximum WHR from coolant heat exchanger**

The mass flow rate of the working fluid and the maximum temperature of the coolant limit the amount of recoverable energy from the coolant heat exchanger. Exhaust energy analysis must be used to determine the mass flow rate of the working fluid. The maximum temperature of the coolant was set to 250°F. The incoming working fluid had its temperature set to 212 °F to reduce the size of the condenser.

A.1.8 **Energy required to raise the temperature of the working fluid from 212 °F to 250 °F**

\[C_{p, water, 231°F} = 1.011 \left(\frac{BTU}{lb*°F} \right) \]

\[\text{Power}_{212 \text{ to } 250} = \dot{m}_{\text{working fluid}} \times C_{p, water, 231°F} \times \Delta T \]

\[\text{Power}_{212 \text{ to } 250} = 2625.25 \left(\frac{lb}{hr} \right) \times 1.011 \left(\frac{BTU}{lb*°F} \right) \times (250 - 212) °F \]

\[\text{WHR}_{\text{coolant}} = \text{Power}_{212 \text{ to } 250} = \text{Power}_{\text{coolant}} = 100,856.854 \left(\frac{BTU}{hr} \right) \]

A.1.9 **Steam chamber bore size**

The steam chamber bore size is greatly affected by the number of steam chambers incorporated in the simulated engine model. The following section shows the different bore sizes that were calculated and a reasonable bore size was chosen.

Density of steam@747 °F, 800psia, \(\rho_{747°F, 800psia} = 1.141 \left(\frac{lb}{ft^3} \right) \)

\[\dot{m}_{\text{working fluid}} = 2625.25 \left(\frac{lb}{hr} \right) = 0.729 \left(\frac{lb}{s} \right) \]

Volumetric flow rate of the super-heated steam into the steam chamber,
\[\Psi_{\text{working fluid}} = \frac{m_{\text{working fluid}}}{\rho_{800^\circ F, 800\text{psia}}} = 0.638 \left(\frac{ft^3}{s}\right) \times \frac{1.728 \left(\frac{in^3}{s}\right)}{1 \left(\frac{ft^3}{s}\right)} = 1104.04 \left(\frac{in^3}{s}\right) \]

A.1.10 Assuming 2 cylinders are equipped with novel WHR system steam chambers

\[\Psi_{\text{working fluid}} = \Psi_{\text{steam chamber}} \times 0.05 \text{ (cut off)} \times 2 \text{ cylinders} \]

\[\Psi_{\text{steam chamber}} = \frac{\Psi_{\text{working fluid}}}{0.05+2} = \frac{1104.04}{0.05+2} \left(\frac{in^3}{s}\right) = 11040.420 \left(\frac{in^3}{s}\right) \]

\[\Psi_{\text{steam chamber}} = \pi \left(\frac{\text{bore}_{\text{steam chamber}}}{2}\right)^2 \times \text{stroke}_{\text{engine piston}} \times N \]

\[\text{bore}_{\text{steam chamber}} = \sqrt{\frac{\Psi_{\text{steam chamber}}}{\pi \times \text{stroke}_{\text{engine piston}} \times N}} \times 2 \]

\[= \sqrt{\frac{11040.420}{\pi \times 11.811 \left(\frac{in}{s}\right) \times 15 \left(\frac{rev}{s}\right)}} \times 2 \]

\[= 8.90 \text{ (in)} \]

Volume of the steam chamber, \(V_{\text{steam chamber}} = \pi \left(\frac{\text{bore}_{\text{steam chamber}}}{2}\right)^2 \times \text{stroke}_{\text{engine piston}} \)

\[= \pi \left(\frac{8.90 \text{ (in)}}{2}\right)^2 \times 11.811 \text{ (in)} \]

\[= 736.028 \text{ (in}^3) \]

Volume displacement of the engine piston,

\[V_{\text{engine piston}} = \pi \left(\frac{\text{bore}_{\text{engine piston}}}{2}\right)^2 \times \text{stroke}_{\text{engine piston}} \]

\[= \pi \left(\frac{10.82}{2}\right)^2 \times 11.811 \]

\[= 1086 \text{ (in}^3) \]
Ratio displacement = \frac{V_{\text{engine piston}}}{V_{\text{steam chamber}}} = \frac{1086 (\text{in}^3)}{620.828 (\text{in}^3)} = 1.475

A.1.11 Assuming 6 cylinders are equipped with DYNAMAX steam chambers

\hat{\Psi}_{\text{working fluid}} = \hat{\Psi}_{\text{steam chamber}} \times 0.05 \text{ (cut off)} \times 6 \text{ cylinders}

\hat{\Psi}_{\text{steam chamber}} = \frac{\hat{\Psi}_{\text{working fluid}}}{0.05 \times 6} = \frac{1104.04}{0.05 \times 6} \left(\frac{\text{in}^3}{\text{s}} \right) = 3680.13 \left(\frac{\text{in}^3}{\text{s}} \right)

\hat{\Psi}_{\text{steam chamber}} = \pi \times \left(\frac{\text{bore}_{\text{steam chamber}}}{2} \right)^2 \times \text{stroke}_{\text{engine piston}} \times N

\text{bore}_{\text{steam chamber}} = \sqrt{\frac{\hat{\Psi}_{\text{steam chamber}}}{\pi \times \text{stroke}_{\text{engine piston}} \times N}} \times 2

= \sqrt{\frac{3680.13}{\pi \times 11.811 (\text{in}) \times 15 (\text{rev/s})}} \times 2

= 5.14 \text{ (in)}

Volume of the steam chamber, \(V_{\text{steam chamber}} = \pi \times \left(\frac{\text{bore}_{\text{steam chamber}}}{2} \right)^2 \times \text{stroke}_{\text{engine piston}} \)

= \pi \times \left(\frac{5.14 (\text{in})}{2} \right)^2 \times 11.811 (\text{in})

= 245.342 (\text{in}^3)

Volume displacement of the engine piston,

\(V_{\text{engine piston}} = \pi \times \left(\frac{\text{bore}_{\text{engine piston}}}{2} \right)^2 \times \text{stroke}_{\text{engine piston}} \)

= \pi \times \left(\frac{10.82}{2} \right)^2 \times 11.811

= 1086 (\text{in}^3)
\[
\text{Ratio displacement} = \frac{V_{\text{engine piston}}}{V_{\text{steam chamber}}} = \frac{1086 \text{ (in}^3\text{)}}{245.342 \text{ (in}^3\text{)}} = 4.42
\]

A.1.12 Theoretical power generation from WHR

The steam chambers were assumed to be 20\% efficient which is a close approximation by the results acquired from GT-POWER and as per design requirements.

A.1.13 Total amount of recovered waste heat

\[
\text{Power}_{\text{recovered}} = \text{Power}_{\text{coolant}} + \text{Power}_{\text{exhaust}} = 100,856.854 \left(\frac{\text{BTU}}{\text{hr}}\right) + 2,962,401.932 \left(\frac{\text{BTU}}{\text{hr}}\right) = 3,063,258.786 \left(\frac{\text{BTU}}{\text{hr}}\right)
\]

A.1.14 Power generation BEFORE any parasitic losses

\[
\text{Power}_{\text{generated}} = \text{Power}_{\text{recovered}} \times \eta_{\text{steam engine}} = 3,063,258.786 \left(\frac{\text{BTU}}{\text{hr}}\right) \times 0.2 \]

\[
= 612,651.7572 \left(\frac{\text{BTU}}{\text{hr}}\right)
\]

\[
= 612,651.7572 \left(\frac{\text{BTU}}{\text{hr}}\right) \times \left(\frac{1(\text{hr})}{60 \text{ (min)}}\right) \times \left(\frac{778(\text{hp})}{33,000 \left(\frac{\text{BTU}}{\text{hr}}\right)}\right)
\]

\[
= 240.72 \text{ (hp)}
\]

A.1.15 Estimated parasitic losses

The parasitic losses were calculated from the loss to operate the working fluid pump and the loss from the exhaust heat exchanger back pressure.
A.1.16 Loss from working fluid pump power input

The pump and the alternator that supplies the necessary electrical power were considered to be 80% efficient. Also, a 5% pressure drop was assumed across every component in the system.

Pump efficiency, $\eta_{\text{pump}} = 0.8$

Alternator efficiency, $\eta_{\text{alternator}} = 0.8$

Incoming pressure to the working fluid pump, $\text{pressure}_{\text{in}} = 14.7 \left(\frac{\text{lb}}{\text{in}^2}\right)$

Outgoing pressure to the working fluid pump $\text{pressure}_{\text{out}} = 1,034 \left(\frac{\text{lb}}{\text{in}^2}\right)$

Change in pressure, $\Delta P = \text{pressure}_{\text{out}} - \text{pressure}_{\text{in}}$

$$= 1,034 \left(\frac{\text{lb}}{\text{in}^2}\right) - 14.7 \left(\frac{\text{lb}}{\text{in}^2}\right)$$

$$= 1,019 \left(\frac{\text{lb}}{\text{in}^2}\right) \times \left(144 \left(\text{in}^2\right)/1 \left(f t^2\right)\right)$$

$$= 146,779 \left(\frac{\text{lb}}{\text{in}^2}\right)$$

Density of water at $212 \degree F$, $\rho_{\text{water, 212F}} = 59.83 \left(\frac{\text{lb}}{f t^3}\right)$

Mass flow rate of the working fluid, $\dot{m}_{\text{working fluid}} = 2625.25 \left(\frac{\text{lb}}{\text{hr}}\right) = 0.729 \left(\frac{\text{lb}}{s}\right)$

Volumetric flow rate of the working fluid as a liquid,

$$\psi_{\text{working fluid, liq}} = \left(\frac{\dot{m}_{\text{working fluid}}}{\rho_{\text{water, 212F}}}\right) = \left(0.729 \left(\frac{\text{lb}}{s}\right)\right) = 0.0121 \left(\frac{f t^3}{s}\right)$$

Power to operate working fluid pump,
\[
\text{Power}_{\text{loss_pump}} = \left(\frac{\dot{\omega}_{\text{workingfluid_liq}} \cdot \Delta P}{\eta_{\text{pump}} \cdot \eta_{\text{alternator}}} \right) = \left(\frac{0.0121 \left(\frac{ft^3}{s} \right)^3 \cdot 146.779 \left(\frac{lb}{in^2} \right)}{0.8 \cdot 0.8} \right)
\]

\[
= 2794.42 \left(\frac{ft \cdot lb}{s} \right) \cdot \left(\frac{1 \text{ (hp)}}{550 \left(\frac{ft \cdot lb}{s} \right)} \right) = 5.08 \text{ (hp)}
\]

A.1.17 Loss from exhaust heat exchanger backpressure

A finned-tube, compact heat exchanger was designed as the exhaust heat exchanger to achieve pressure drops as low as possible. Different configurations were used and the optimum one is chosen as the exhaust heat exchanger. A typical finned-tube, compact heat exchanger configuration is given below.

A.2 DESIGN OF THE HEAT EXCHANGER [4]

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tube outside diameter, D_o</td>
<td>0.64 in = 0.053 ft</td>
</tr>
<tr>
<td>Tube inside diameter, D_i</td>
<td>0.543 in = 0.045 ft</td>
</tr>
<tr>
<td>Fin pitch</td>
<td>902.23 per feet</td>
</tr>
<tr>
<td>Flow passage hydraulic diameter, D_h</td>
<td>0.26 in = 0.021 ft</td>
</tr>
<tr>
<td>Fin thickness, t</td>
<td>0.01 in = 0.0008 ft</td>
</tr>
<tr>
<td>Free-flow area/frontal area, (\sigma)</td>
<td>0.449</td>
</tr>
<tr>
<td>Heat transfer area/total volume, (\alpha)</td>
<td>6.83 in^2/in^3 = 82 ft^2/ft^3</td>
</tr>
<tr>
<td>Fin area/total area, A_f/A</td>
<td>0.830</td>
</tr>
<tr>
<td>Frontal area, A_f</td>
<td>0.20 m^2 = 2.152 ft^2</td>
</tr>
</tbody>
</table>
All the equations used in this design calculation were obtained from [4]

- Effectiveness, \(\varepsilon = \frac{q}{q_{\text{max}}} \)

where, effectiveness is assumed to be 80%, \(\varepsilon = 0.8 \)

[Heat exchanger efficiency]

Maximum possible heat transfer rate, \(q_{\text{max}} = \dot{m}_{\text{exhaustgas}} \times C_{p,\text{exhaustgas}} \times \Delta T \)

\[
= 27350.516 \left(\frac{\text{lb}}{\text{hr}} \right) \times 0.2724157 \left(\frac{\text{BTU}}{\text{lb} \cdot ^\circ\text{F}} \right) \times (747 - 250) \left(^\circ\text{F} \right)
\]

\[
= 3,703,002.851 \left(\frac{\text{BTU}}{\text{hr}} \right)
\]

Actual heat transfer rate, \(q = q_{\text{max}} \times \varepsilon \)

\[
= 3,703,002.851 \left(\frac{\text{BTU}}{\text{hr}} \right) \times 0.8
\]

\[
= 2,962,402.281 \left(\frac{\text{BTU}}{\text{hr}} \right)
\]
• \(q_{\text{max}} = C_{\text{min}} \left(T_{h,i} - T_{c,i} \right) \)

where, \(C_{\text{min}} = \) heat capacity rate of cold fluid

\(T_{h,i} = \) Inlet temperature of hot fluid, air = 747 °F

\(T_{c,i} = \) Inlet temperature of cold fluid, water = 250 °F

Therefore, heat capacity rate of cold fluid, \(C_{\text{min}} = \frac{q_{\text{max}}}{(T_{h,i} - T_{c,i})} \)

\[
C_{\text{min}} = 3,703,002.85 \left(\frac{\text{BTU}}{\text{hr}} \right)
\]

\[
C_{\text{min}} = 7450.70 \left(\frac{\text{BTU}}{\text{hr \, °F}} \right)
\]

• \(q = C_{\text{max}} \left(T_{c,o} - T_{c,i} \right) \)

where, \(C_{\text{max}} = \) heat capacity rate of hot fluid

\(T_{c,o} = \) Outlet temperature of cold fluid, water = 747 °F

\(T_{c,i} = \) Inlet temperature of cold fluid, water = 250 °F

Therefore, heat capacity rate of cold fluid, \(C_{\text{max}} = \frac{q}{(T_{c,o} - T_{c,i})} \)

\[
C_{\text{max}} = 2,962,402.281 \left(\frac{\text{BTU}}{\text{hr}} \right)
\]

\[
C_{\text{max}} = 5960.56 \left(\frac{\text{BTU}}{\text{hr \, °F}} \right)
\]

\[
\frac{C_{\text{min}}}{C_{\text{max}}} = \frac{7450.70}{5960.56} = 1.25 \approx 1
\]
Assumptions:

- $C_{\text{min}} / C_{\text{max}} = 1$. This is because C_{min} cannot be greater than C_{max} and the problem is faced due to the assumption of 250 °F temperatures of both the incoming working fluid and outgoing exhaust gas. Again, if both the temperatures are equal, the exhaust heat exchanger would be infinitely long. It would be reasonable to assume a different temperature of the outgoing exhaust gas, which is calculated in the following sections.

Assuming negligible fouling effects and

$$\frac{1}{U_h} = \frac{1}{h_c \left(\frac{A_c}{A_h} \right)} + A_h R_w + \frac{1}{\eta_{o,h} h_h}$$

Where, $U_h =$ overall heat transfer coefficient based on the gas (hot) side surface area

- h_c & $h_h =$ cold & hot side convection coefficients respectively

- A_c & $A_h =$ total gas-side (hot) and water-side (cold) surface areas respectively

- $R_w =$ Wall conduction resistance

- $\eta_{o,h} =$ Overall hot side efficiency

- Assuming negligible fin thickness,
 $$\frac{A_c}{A_h} \approx \frac{D_i}{D_o} \left(1 - \frac{A_{f,h}}{A_h} \right)$$

where, $A_{f,h} =$ total gas-side area associated with the fins

$$\frac{A_c}{A_h} \approx \frac{0.045 \text{ ft}}{0.053 \text{ ft}} \left(1 - 0.830 \right) \approx 0.143$$
\[A_h R_w = \frac{\ln\left(\frac{D_0}{D_i}\right)}{2\pi k/A_h} = \frac{D_i \ln\left(\frac{D_0}{D_i}\right)}{2k\left(\frac{\Delta T}{A_h}\right)} \]

\[= \frac{0.543 \text{ (in) ln} \left(\frac{0.645}{0.543}\right)}{2 \times 1642.42 \left(\frac{\text{BTU in}}{\text{hr ft}^2\text{F}}\right) \times 0.143} \]

\[= 1.98 \times 10^{-4} \left(\frac{\text{hr ft}^2\text{F}}{\text{BTU in}}\right) \]

where, the core configuration for the heat exchanger in table 2 is fabricated from aluminum. Therefore, the value of k,

\[k = 237 \text{ W/m*K} = 237 \times 6.93 \left(\frac{\text{BTU in}}{\text{hr ft}^2\text{F}}\right) = 1642.41 \left(\frac{\text{BTU in}}{\text{hr ft}^2\text{F}}\right) \]

- Maximum mass velocity, \(G = \frac{m}{\sigma A_{fr}} \)

\[G = \frac{7.59 \left(\frac{\text{lb}}{\text{sec}}\right)}{(0.449) \times 2.152 \text{ ft}^2} \]

\[G = 7.85 \left(\frac{\text{lb}}{\text{sec ft}^2}\right) \]

- Reynolds number \(Re = \frac{G \times D_h}{\mu} \)

where, \(\mu \) for air @ 1 atm pressure, 800 °F = 338.8 x 10^{-7} N.s/m² = 227.66 x 10^{-7} lb/ sec*ft

Therefore, Reynolds number \(Re = \frac{7.85 \left(\frac{\text{lb}}{\text{sec ft}^2}\right) \times 0.021 \text{ ft}}{227.66 \times 10^{-7} \left(\frac{\text{lb}}{\text{sec ft}^2}\right)} = 7262.11 \)

From the Figure A.1.1, \(j_h = 0.007 \) [4]
Figure A.1.1: Friction factor, f and heat transfer factor, j_h for a circular tube, circular fin heat exchanger [4]

- Hot side convection coefficient, $h_h = j_h \times \frac{G \times C_p}{Pr^{2/3}}$

where, $C_p = 0.256 \left(\frac{BTU}{lb \cdot °F}\right)$ for air @ 1 atm and 800 °F

$Pr = 0.695$ for air @ 1 atm and 800 °F

$$h_h = 0.007 \times \frac{7.85 \left(\frac{lb}{sec \cdot ft^2}\right) \times 0.256 \left(\frac{BTU}{lb \cdot °F}\right)}{(0.695)^{\left(\frac{2}{3}\right)}}$$

$$h_h = 64.54 \left(\frac{BTU}{hr \cdot ft^2 \cdot °F}\right)$$

- Cold side convection coefficient, $h_c = 8517.39 \left(\frac{BTU}{hr \cdot ft^2 \cdot °F}\right)$
From the figure A.1.2, the fin efficiency is determined.

Figure A.1.2: Efficiency of annular fins of rectangular profile [4]

Where, \(r_{2c} = 0.56 \text{ in} \), \(r_{2c}/r_1 = 1.75 \), \(L_c = 0.24 \text{ in} \), \(A_p = 2.43 \times 10^{-3} \text{ in}^2 \), \(L_c^{3/2}(h_h / kA_p)^{1/2} = 0.34 \)

Using the above values, fin efficiency \(\eta_f \approx 89\% \)

Therefore, overall efficiency of hot – side, \(\eta_{o,h} = 1 - \frac{A_f}{A} \left(1 - \eta_f \right) \)

- \(\eta_{o,h} = 1 - 0.830 \left(1 - 0.89 \right) = 91 \% \)
Finally, putting all the calculated values in the equation,

$$\frac{1}{U_h} = \frac{1}{h_c \frac{A_c}{A_h}} + A_h R_w + \frac{1}{\eta_{o,h} h_h}$$

$$\frac{1}{U_h} = \frac{1}{8517.39 \left(\frac{\text{BTU in}}{\text{hr ft}^2\text{F}} \right) x (0.143)} + 1.98 \times 10^{-4} \left(\frac{\text{hr ft}^2\text{F}^2}{\text{BTU in}} \right) +$$

$$\frac{1}{0.91 \times 64.54 \left(\frac{\text{BTU in}}{\text{hr ft}^2\text{F}} \right)}$$

- Overall heat transfer coefficient based on hot – side surface area, $U_h = 55.41$ (BTU/hr ft2 F)

Number of transferable units (NTU) is an important parameter in designing a heat exchanger. This value can be obtained from either using the figure A.1.3 or using the following equation.

$$\varepsilon = 1 - \exp \left[\left(\frac{1}{C_r} \right) (NTU)^{0.22} \{ \exp[-C_r (NTU)^{0.78}] - 1 \} \right]$$

where, $\varepsilon = 0.8$ and $C_r = C_{\text{min}}/C_{\text{max}} = 1$

$$0.8 = 1 - \exp \left[\left(\frac{1}{1} \right) (NTU)^{0.22} \{ \exp[-1(NTU)^{0.78}] - 1 \} \right]$$

NTU ≈ 8.1
Figure A.1.3: Effectiveness of single-pass, cross-flow heat exchanger with both fluid unmixed

From the figure [A.1.3], on extrapolating the curve for \(C_{\text{min}}/C_{\text{max}} = 1 \), NTU \(\approx 8.1 \)

The required gas-side heat transfer surface area \(A_h \) is calculated from \(NTU = \)

\[
\frac{U_h \times A_h}{C_{\text{min}}} = \frac{NTU \times C_{\text{min}}}{U_h}
\]

\[
A_h = \frac{8.1 \times 7450.70 \left(\frac{\text{BTU}}{\text{hr} \cdot \text{F}} \right)}{55.41 \left(\frac{\text{BTU}}{\text{hr} \cdot \text{ft}^2 \cdot \text{F}} \right)}
\]

\[
A_h = 1089.16 \text{ ft}^2
\]

Required heat exchanger volume, \(V = \frac{A_h}{\alpha} = \frac{1089.16 \text{ ft}^2}{82 \left(\frac{\text{ft}^2}{\text{ft}^3} \right)} = 13.28 \text{ ft}^3 \)
Temperature of the gas leaving the heat exchanger, \(T_{h,o} = T_{h,i} - \frac{q}{C_{min}} \)

\[
T_{h,o} = 800 \, ^\circ\text{F} - \frac{2,962,402.281 \, \text{Btu} \, \text{hr}^{-1}}{6732.732 \, \text{Btu} \, \text{hr}^{-1} \, ^\circ\text{F}}
\]

\(T_{h,o} = 402.39 \, ^\circ\text{F} \)

i. Following the assumption of \((C_{min}/C_{max}) = 1\), the exit temperature of the exhaust gases from the exhaust heat exchanger should be 402.39 °F.

ii. If \((C_{min}/C_{max}) \approx 1\) (ie. 0.9 – 1.2), then the exit temperature of the exhaust gases from the exhaust heat exchanger can be in the range of 250 °F – 402.39 °F.

iii. Using 250 °F as the exit temperature of the exhaust gases, the pressure drop calculated below would be 0.511 psi.

iv. For a more reasonable set of calculations, the temperature of 402.39 °F is used to calculate the pressure drop.

From the figure [17], friction factor = 0.028

\[
\left(\frac{A}{A_{ff}} \right) = \left(\frac{aV}{\sigma A_f} \right) = \left(\frac{82 \left(\frac{ft^2}{ft^3} \right) \times 13.28 \frac{ft^3}{ft^2}}{0.449 \times 2.152 \, ft^2} \right) = 1126.99
\]

Pressure drop, \(\Delta P = \frac{G^2 \nu_i}{2} \left[(1 + \sigma^2) \left(\frac{\nu_o}{\nu_i} - 1 \right) + f \left(\frac{A}{A_{ff}} \right) \left(\frac{\nu_m}{\nu_i} \right) \right] \)

Inlet specific volume of air, \(\nu_i(800^\circ\text{F}) = 32.19 \, (\text{ft}^3/\text{lb}) \)

Outlet specific volume of air, \(\nu_o(402.39^\circ\text{F}) = 15.20 \, (\text{ft}^3/\text{lb}) \)

Average of inlet and outlet specific volume, \(\nu_m(579.995^\circ\text{F}) = 23.69 \, (\text{ft}^3/\text{lb}) \)
\[
\Delta P = \frac{(7.85 \frac{lb}{sec \ast ft^2})^2 \times 32.19 (ft^3/lb)}{2} \left[(1 + 0.202) \left(\frac{15.20}{32.19} \right) - 1 \right] + 0.028(1126.99) \left(\frac{23.69}{32.19} \right)
\]

\[
= 2882.97 \frac{lb}{sec^2 \ast ft}
\]

\[
= 4296 \text{ (N/m}^2\text{)}
\]

- \(\Delta P = 0.623\ \text{psi}\)

The exhaust heat exchanger calculations were limited to the specifications provided in table 1 and the pressure drop calculated is 0.623 psi which is reasonably good. Since the size of the Waukesha 16V275GL+ engine is very large (9054 mm x 2565 mm) compared to the size of the exhaust heat exchanger (13.28 ft\(^3\)), parameters in table 2 can be adjusted to reach the lowest possible backpressure. To attain a zero psi backpressure, the heat exchanger must be infinitely long. The trend of the backpressures versus volume of the exhaust heat exchanger is predicted and plotted in the figure below.
Figure A.1.4: Predicted trend of pressure (psia) vs. volume (cu.ft) of the exhaust heat exchanger

After the estimation of required backpressure for the exhaust heat exchanger, losses due to it are calculated below.

\[
\text{Pressure}_{\text{exhaust HE}} = 0.623 \left(\frac{\text{lb}}{\text{in}^2} \right) \times \left(\frac{144 \text{ (in}^2)}{1 \text{ (ft}^2)} \right) = 89.712 \left(\frac{\text{lb}}{\text{ft}^2} \right)
\]

\[
\dot{m}_{\text{exhaust gas}} = \frac{27350.516 \left(\frac{\text{lb}}{\text{hr}} \right)}{3600 \text{(s)}} \approx 7.597 \left(\frac{\text{lb}}{\text{s}} \right)
\]

\[
\rho_{\text{exhaust gas}} = 0.033 \left(\frac{\text{lb}}{\text{ft}^3} \right)
\]

Volumetric flow rate of the exhaust gas,

\[
\psi_{\text{exh gas}} = \left(\frac{\dot{m}_{\text{exhaust gas}}}{\rho_{\text{exhaust gas}}} \right) = \left(\frac{7.597}{0.033} \right) \left(\frac{\text{ft}^3}{\text{s}} \right) = 230.21 \left(\frac{\text{ft}^3}{\text{s}} \right)
\]
\[
\text{Power}_{\text{loss, exhaust}} = \forall_{\text{exh gas}} \times \text{Pressure}_{\text{exhaust HE}}
\]
\[
= 230.21 \left(\frac{\text{ft}^3}{\text{s}} \right) \times 89.712 \left(\frac{\text{lb}}{\text{ft}^2} \right)
\]
\[
= 20652.59 \left(\frac{\text{ft}^3\text{lb}}{\text{s}} \right) \times \left(\frac{1 \text{ (hp)}}{550 \left(\frac{\text{ft}^3\text{lb}}{\text{s}} \right)} \right) = 37.55 \text{ (hp)}
\]

Total parasitic losses, \(P_{\text{loss_total}} = 37.55 \text{ (hp)} + 5.08 \text{ (hp)} = 42.63 \text{ hp} \)

A.3 Theoretical net efficiency

A.3.1 Power input from fuel

\(\text{Power}_{\text{brake}} = 4350 \text{ (hp)} \)

\(\eta_{\text{brake_fuel_conversion}} = 0.3691 \)

\[
\text{Power}_{\text{fuel}} = \left(\frac{\text{Power}_{\text{brake}}}{\eta_{\text{brake_fuel_conversion}}} \right) = 11785.424 \text{ (hp)}
\]

A.3.2 New efficiency of the system

\[
\eta_{\text{ci/steam}} = \left(\frac{\text{Total power out}}{\text{Total energy rate in}} \right) \times 100 \%
\]
\[
= \left(\frac{\text{Power}_{\text{brake}} + \text{Power}_{\text{gen}} - \text{Power}_{\text{total_loss}}}{\text{Total energy rate in}} \right) \times 100 \%
\]
\[
= \left(\frac{4350 \text{ (hp)} + 240.72 \text{ (hp)} - 42.63}{11785.424} \right) \times 100 \%
\]
\[
= 38.58 \%
\]
A.3.3 Increase in net efficiency

\[\eta_{\text{increase}} = \frac{\eta_{\text{ci/steam}} - \eta_{\text{brake fuel conversion}}}{\eta_{\text{brake fuel conversion}}} \]

\[= \frac{0.3858 - 0.3691}{0.3691} \]

\[= 0.0467 \text{ or } 4.53\% \]

Note: The backpressure can be reduced to lower than 0.623 psia depending on the required size of the heat exchanger.