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Abstract

Linear programs, or LPs, are often used in optimization problems, such as improving
manufacturing efficiency or maximizing the yield from limited resources. The most
common method for solving LPs is the Simplex Method, which will yield a solution, if
one exists, but over the real numbers. From a purely numerical standpoint, it will be
an optimal solution, but quite often we desire an optimal integer solution. A linear
program in which the variables are also constrained to be integers is called an integer
linear program or ILP. It is the focus of this report to present a parallel algorithm for
solving ILPs. We discuss a serial algorithm using a breadth-first branch-and-bound
search to check the feasible solution space, and then extend it into a parallel algorithm
using a client-server model. In the parallel mode, the search may not be truly breadth-
first, depending on the solution time for each node in the solution tree. Our search
takes advantage of pruning, often resulting in super-linear improvements in solution
time. Finally, we present results from sample ILPs, describe a few modifications to
enhance the algorithm and improve solution time, and offer suggestions for future
work.
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Chapter 1

Introduction, Notation, and
Background

Linear programs are often used to optimize manufacturing efforts or maximize the
use of limited resources. For example, a factory might like to maximize their output,
profit, or efficiency given constraints such as the cost of raw materials, time required
to produce various products, and the profitability of each part. The solution to such
a problem is the quantity of each product desired, and the maximized target figure.
Given a set of limited resources, a set of possible products or goals, and the cost
of building each product or achieving each goal, a linear program will produce the
optimum quantities of product[6].

Definition 1. Let A = [a;;] be an m x n matriz where a;; € R, ¢ € R" and b € R™
be vectors. Then a linear program (LP) is defined as finding X € R™ such that we
maximize Z = ¢t X, subject to AX < b [f].

Example 1. The set of equalities in the following linear program can be visualized as
the solid cube with edge length 10.5, having one corner at the origin. For simplicity,
we choose to maximize the sum of the coordinates:

mazimize Z = r1 + T9 + X3
r; < 10.5

To < 10.5

r3 < 10.5

—x1 <0

—x9 <0

—x3 <0

An obuvious solution to the problem is Z = 31.5, which occurs at x1 = x9 = x3 = 10.5.
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In matriz form, we can state the problem as follows:

1 0 0 (105
0 1 0 10.5 X
0 0 1 10.5
A=V _4 o o b= ol “~ }
0 -1 0 0
0 0 -1 0]

The solution X is called feasible if it satisfies AX < b, and optimal if there is no
other feasible solution yielding a larger value of Z = ¢ X.

Clearly, depending on the tightness of the constraints, there may be multiple fea-
sible solutions. There may even be multiple feasible solutions that yield the same
optimal objective function value (profit, for example). With fewer variables and con-
straints, it is quite often possible to generate a feasible solution simply by inspection,
though it may not necessarily be optimal. For more complicated linear programs, or
for computerized application, we need a generalized method.

1.1 Simplex Method

The most common method for solving LPs is the simplex method. In order to take
advantage of it, the problem statement is converted into standard form [6]. Surplus
and slack variables are added to the inequalities, changing them to strict equalities and
adding the condition that z; > 0; and Z is negated so that the goal is minimization.
The definitions of feasible and optimal are appropriately reworded to reflect standard
form. It is this standard form that our program expects as input.

Definition 2. Standard Form Let A,c,b, and X be defined as before. We add
variables s1, ..., sy, to produce A" = [A|l,],d = [c|0...], X" = [z|s] and define Z' =
[—Z1]0...] such that the problem can be stated as finding X such that we minimize
7' =dTX, subject to A'’X =b and x; > 0 [6].

It is convenient to represent A, b, and ¢ as a consolidated tableau, for purposes of
variable passing and data management. We define the tableau as:

Alb
Tableau := (1.1)

14



Example 2. Ezample, adjusted to standard form would be:

minimize 4 = —T1 — Tg — T3
r1+s1 =105

Ty + 5o = 10.5

T3+ s3 = 10.5

x; > 0,8 >0

The corresponding tableau 1s:

1 0 010 0]105
0 1 0010105
0 0 100 1/105
-1 -1 =10 0 0] O

Note the absence of explicit constraints for x; > 0, as they are implied by stan-
dard form. Strictly speaking, any original x;’s which were unrestricted would require
substitution of z; = 2} — x! where 2/ > 0,2” > 0 to ensure non-negative values for
all variables. For simplicity, we are assuming the original variables all had implied
non-negativity constraints. Also note the addition of slack variables s; and the re-
sulting identity submatrix in the tableau. This tableau is the input for the simplex
algorithm.

The top-level of the simplex algorithm itself consists of three phases, described

15



here in pseudo-code: [0

Algorithm 1.1.1: SiMPLEX(Tableau,nVars,nEqs)

Unbounded «+— false
Infeasible — false
PHASEQ(T ableau, nV ars, nFqs)

if Infeasible
output ("Program is infeasible after phase 0")
then
return
PHASEL (T ableau, nV ars, nFEqs)
if Infeasible
" g 1 3 "
then output ("Program is infeasible after phase 1")
return

PHASE2(Tableau,nVars,nEqs)
if Unbounded
output ("Program is unbounded after phase 2")
then
return
7 «— —Tableau[nEqs + 1,nVars + 1]
for j — 1 to nVars
do X[j] — 0
for : — 1 to nkqgs
do X |[pivots[i|]] = Tableau[i,nV ars + 1]
return (X, 7)

The phases themselves are described as follows. For a more thorough discussion
and sample coding of all three phases, see [6].

Phase 0: Find a basic solution, or show that the program is infeasible. This solution
may not meet the added constraint x; > 0.

Phase 1: Create a basic feasible solution from the basic solution, if necessary, or
show that the program is infeasible. This solution meets all the constraints, but
may not be optimal.

Phase 2: Improve the basic feasible solution (minimize Z) to get the final solution,
or show that the program is unbounded.

The simplex algorithm as presented so far will yield a solution, if one exists,
over the real numbers, z; € R. From a purely numerical standpoint, it will be
an optimal solution, though others may exist with the same Z for different values
of X. Quite often, however, we desire an integer solution. In the simple factory
case above, it would be difficult and not particularly useful to produce a fraction of
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various products. In other applications, particularly combinatorial or graph theory
applications, the problem itself may simply be discrete, and thus an integer solution
to the model is appropriate. However, the simplex method alone does not provide a
deterministic algorithm for finding integer solutions.

A linear program in which the variables X are also constrained to be integers
is called an integer linear program (ILP). It is the focus of this report to present a
parallel algorithm for solving ILPs.

1.2 Linear Relaxation

An obvious integer solution to Example B is 7 = —30, occurring at z; = x5 =
x3 = 10. We note that the function defining Z is a simple coordinate sum, and
choose the largest integer coordinates that satisfy all constraints. This example is
simple, however, and in practice, the integer solution is not always so obvious (or
even necessarily near the real solution). Another obvious method would be to check
all feasible integer combinations, but such an exhaustive search on the solution space
would be impractical for larger problems.

To find integer solutions to a linear program in general, we can use the concept of
linear relaxation. We fix some initial assignment x1,...,x; to be integers but “relax”
the integer constraint and allow the remaining x;.4 ...z, to be any real value, and
solve the remaining program. We can take advantage of the fact that any integer
solution of the original problem is also a solution over the reals. In fact, for a given
initial assignment, the best possible integer solution can be no better than the best
possible real one. Furthermore, if during the initial phase of the search, we find an
integer solution (i.e. where the remaining x;.1,...,2, happen to be found to be
integers), we then have an upper bound on the optimal value of Z. Continuing in the
search, we can ignore cases where the real solution has a Z value greater than our
bound (recall that we are minimizing Z). We may further improve our bound with
new integer solutions, and our hope is that this allows for significant pruning of the
search.

Applying this method to Example B, we would begin by setting z; = 0 (the
minimum value for ), adjusting the tableau, and solving the remaining LP. This
would yield the solution (0,10.5,10.5) with Z = —21. We proceed by setting z; = 1
and repeating the process. At x1 = 10, we have Z = —31 and at x; = 11 the problem
becomes infeasible.

Note that we haven’t found any integer solutions yet (all so far involve xy =
x3 = 10.5), and thus cannot prune the search. We start over with x; = 0, but also set
x9 = 0. We adjust the tableau and solve to find the solution Z = —10.5 at (0,0, 10.5).
This round of linear relaxation, setting two variables at a time, continues until the
problem yields Z = —30.5 at (10, 10, 10.5).

The last round begins by setting all three variables to be integers, and ranging
through the feasible values. Obviously, all solutions in this round will be integer ones,

17



but the process has resulted in an exhaustive search. We did not find any integer
solutions until the last round of linear relaxation, and although our hope is to avoid
this, it does also depend on the structure of the problem to some extent.

We present another example, showing how the tableau is affected by the linear
relaxation:

Example 3. Consider the following ILP, given first in equation form, then in our
standard tableau form with slack variables:

4x — 5y < 10
r+ 12y < 48
z,y >0

mazximize y
4 =5 1 0110

1 12 0 148
0 -1 000

This can be easily visualized in two dimensions as intersecting lines. We want to
minimize —y (or, more intuitively, maximize y). Drawing this out is straightforward,
and we can shade the region representing the inequalities so as to visualize the feasible
solution space. Clearly, the optimal solution is (x,y) = (0,4), where the objective
function takes on the value Z = —y = —4.

4x-5y =10

Z=-y

X+ 12y =48
aty=2--

Figure 1.1: Graphical representation of Example

To generalize the process, we’ll denote the variables as 1 = x, x5 = y, x5, and x4,
where the latter two are the slack variables. Applying our process of linear relaxation,
we would start by setting z; = 0 and solving the remaining LP over the reals. The
tableau with z; = 0 is simply:

~5 1 0]10
12 0 1|48
1 00]0
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We apply the standard simplex algorithm to get zo = 4 and Z = —4. This
happens to be an integer solution, and so we know that the final Z will be at most
—4. Being an integer solution, we do not need to iterate on x5 for x; = 0 either.

Continuing to iterate, setting x; = 1, we get this tableau:

-5 1 0|6
12 0 147
-1 0 0]

Applying the simplex algorithm, we get x5 ~ 3.92 and Z = —3.92. This is not
an integer solution, but also has a larger Z value, and thus we won’t need to iterate
on o for x1 = 1. Without the pruning, and only the two variables, that would have
resulted in an exhaustive search.

We now continue with x; = 2,3, ... until the LP with tableau

-5 1 0|10 —4x,
120 1| 48—

becomes infeasible. It is infeasible when x; = 7. For each iterative choice for z,
there were no more integer solutions, and each successive value of Z became larger.
Had we not stumbled on an integer solution at x; = 0, and thus set an upper bound
on Z, the process would continue by iterating on x5 for each 1 =0,1,2,...,6.

Of course, it is also possible that an ILP has no solution because it is either
unbounded or infeasible over the reals, but that can be found out by finding the
solution over the reals first. In our parallelization method, that initial run over the
reals is also necessary for other reasons, as we will see later in Section B4l

Finally, the “worst” scenario for an integer linear program would be one where
there is a real solution, but no integer solutions. In this case, the search will not
be pruned and we end up with an exhaustive search. In a majority of applications,
however, this is probably the least likely case, while it may be more common in
theoretical problems.
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Linear relaxation can be described programmatically as a recursive process:

Algorithm 1.2.1: LINEARRELAXATION(T ableau,nVars,nEqs, X, nFized)

comment: status variables

Done «— false
Found < false
Prune <+ false
comment: set up the new tableau

for i < nFized + 2 to nVars
do {for j«— 1tonEqgs+1
do newTableau[i — 1][j] < Tableaul[d][]]
comment: substitute for the new fixed variable

if nFized = nVars
then Done «— true
nFired «— nFived + 1
X[nFized] — 0
while Prune = false and Done = false
(newTableau < SUBTABLEAU(Tableau,nVars,nEqs, X, nFized)
(X, Z) <« SimPLEX (newT ableau,nVars — 1,nEqs)
if Infeasible
then Prune < true

else if Unbounded

th Done — 1
°% ) return ( false )

do else if INTEGERSOLUTION(X)
( comment: check for improvement

if |[Found or (Z < Zp)
then )Z(B - i
B =
then Prune «— true
\ Found <+ true
LINEARRELAXATION(T ableau, nVars,nEqs, X, nFired)
| X[nFized) «— X[nFized] + 1
return (Found)

20



Chapter 2

Existing Methods

Much of the prior work on such algorithms occurred in the late 1980s through the late
1990s, with much general parallelization research going back to the 1970s. It is unclear
whether the speed improvements in hardware, the massive parallelization possible
with today’s computer systems, or simply that current algorithms are adequate to
solving today’s ILPs led to the gap in research since the late 1990s.

Many papers reference [, which covers the broader topic of Integer and Combina-
torial Optimization in general. Chapter I1.4, section 2 outlines the basic approach we
take here, and defines some theoretical optimizations for breaking up problems and
choosing branching variables, such as “degradations” and “penalties”. We took a dif-
ferent approach to breaking up the work, while following later, less computationally-
intensive methods for branching.

Also in 1988, [3], a parallel solution that achieved super-linear efficiency on sev-
eral test problems using a hybrid branch-and-bound and cutting-plane method was
presented. At each node of the tree, the problem was split into two sub-problems and
offered back in sort of a queue. It is not clear to us if there is any optimization in the
choice of branching variables, or specifically how a node is “fathomed”. In this model,
there is a notion of a master process in the sense that one processor performs certain
setup and pre-calculation, while the rest of the algorithm depends on set of shared
resources, termed the “monitor”. Our algorithm is similar, but incorporates a ded-
icated master process which maintains control over the work queue and assimilates
the results from the client processors. We similarly left out potential optimizations of
variable choice and branching priorities initially, in an effort to achieve simple proof-
of-concept and implementation. Many suggestions for improving our approach are
listed in Section Bl

The 1993 survey paper [B] provides a high-level overview of the concepts involved
in branch-and-bound parallelism in general, of which the ILP is a subset. Our code
falls into the "Parallelism of type 2" classification, and is a “Strategy on request”
“Asynchronous Single Pool” design, in the terminology of this survey. We have a
master process, but the clients build the branch-and-bound tree, adding work while
iterating at each node. The master may later remove work as obsolete, which is how
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we hope to achieve super-linear improvements in performance.

In 1997, [I] builds on the general algorithm in [7] and largely follows the tree
structure and hybrid method of [3]. The authors incorporate the use of “penalties”
from [7] in order to better optimize the choice of branching variable, but agrees with
that source that many commercial solvers have abandoned such calculations as they
have proven to be computationally-intensive for larger problems.

Finally, much of the structure and methodology of our algorithm follows closely to
that presented in [6] from 2005. In particular, our method incorporates Bland’s Anti-
cycling Rule to avoid cycling while converging on a solution. This rule is applicable
to the general simplex algorithm, and is not particular to ILPs or linear relaxation.
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Chapter 3

Serial Implementation

The serial implementation is essentially a branch-and-bound search on the feasible
solutions over the integers. We hope that the search can be pruned by taking advan-
tage of the previously-mentioned concepts within the simplex algorithm and linear
relaxation.

3.1 Tableau

We took advantage of indexing conventions in the C programming language, whereby
an array of length n is referenced by indices [0, ...,n — 1], to allow the use of a single
tableau variable for all phases of the simplex algorithm[6]. The description given in
Figure [T forms the bulk of a simple doubly-indexed array, but with the upper left
entry from A in cell (1, 1) instead of (0,0). Row 0 and column 0 are used in Phase 1 to
store the additional costing variables and optimal value function. There is somewhat
of a trade-off between simplicity in function calls by passing a single tableau variable
versus complexity in indexing during matrix operations due to the dual-use of the
array.

3.2 Solution Tree

The solution space for the search can be viewed as a tree with levels I =0...m [1.
At each level [ > 1, we create a node for each feasible value of x;, given the values
that have already been set higher in the tree for x; ...x;_;. A sample tree is given as
Figure Bl The top node, [ = 0, has no real meaning in this model as far as assigning
any value to any x;.

At each node, we use linear relaxation with z;...z; as integers and solve for the
remaining ;.1 ..., using the simplex method. There are four possible results, and
we employ a decision tree with backtracking:

1. If the program is unbounded at any point, then the entire original problem is
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unbounded and we are done. We have chosen integers for X, and because the
program is unbounded at this stage, can choose any integers we wish for some
particular x;,7 > [.

. If the program is infeasible, we can prune the search below that node, as no
feasible solutions exist for that particular value of x;. We backtrack and continue
the search on a different branch of the tree. [7]

. At this point, the program has a solution, so we check to see if it happens to be
integer. If so, we have a bound on Z. If this is an improvement on an existing
bound (or if we have no existing bound), we keep the value.

Regardless, for an integer solution, we also prune the search. Below this node,
we know the best solution and we know it to be integer.

. If the solution is not integer, we simply add nodes below for values of x;,; as
long as [ < n, and continue searching the tree.

. Once we have exhausted all feasible solutions (I = n), we backtrack up to the
nearest level with unsolved nodes.

We also refer to these nodes as “cases”, which abstracts it away from a tree and
makes the transition to an optimized parallel algorithm a bit more intuitive later.
We refer to the level of relaxation in a case by indicating the number of variables
explicitly set to be integers, as in a “2-variable case” or “5-variable case”.

There are a few aspects of this serial algorithm worth covering in greater detail.

3.3 Queuing

We used queuing rather than a true tree structure in the serial implementation, be-
cause it simplified the later conversion to parallel. The queue starts out with a single
node, and the algorithm pushes additional nodes onto it as more feasible cases are
found. The algorithm terminates when the queue is empty, and if we have an integer
solution at that point, it is the optimal one.

no assignments

Figure 3.1: Example solution tree
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The net effect of the queuing is that the overall search is breadth-first, while each
case generates more cases one level deeper. Our claim is that this allows for faster
pruning of the search by providing a broader distribution of work early in the search.
Quite often, fixing relatively few variables as integers in a linear program will result
in the entire solution being integer|7].

Finally, the queuing model allowed for simpler memory management in the actual
code. Dynamic allocation of queue nodes for cases and a linked-list for the queue
itself obviate knowing the size of the tree in advance.

The description given in Algorithm [L21] is a depth-first search. Algorithm B3]
shows the modified pseudo-code for linear relaxation using a queue, thereby changing
the process to breadth-first. The GETCASE() and PUTCASE() functions simply take
data from the queue (a “pop”) or place data on the queue (a “push”), and the queue
itself uses a linked-list to model a first-in-first-out (FIFO) stack. The actual queue
management code can be found in the appendix.
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Algorithm 3.3.1: QUEUEDLINEARRELAXATION(T ableau, nV ars,nEqs, Queue)

Done «— false

Prune «+— false

while (nFized, X, Z.4s¢) < GETCASE(Queue)

do

return

(comment: don’t bother unless there is possible improvement

if Found and (Zcase > Zfound)
then Prune « true
nFizxed «— nFixed + 1
X[nFized) < 0
while Prune = false and Done = false

do

(newTableau < SUBTABLEAU(T ableau,nVars,nEqs, X, nFizred)
(X, Z) « SimpLEX(newT ableau,nVars — 1,nEqs)
if Infeasible
then Prune < true
comment: Infeasible here means look no further on this branch

else if Unbounded
Done +— 1
return
comment: Unbounded anywhere is unbounded, period. We are done.

then

else if INTEGERSOLUTION(X)
( comment: check for improvement

if |Found or (Z < Zyes)
then Zpest = Z

Xbest =X
then Prune <+ true

Found «+— true

\

else if nFixed # nVars
then PUTCASE(Queue, nFized, X, 7)
comment: We have more potential, queue for later

| X [nFized] «— X[nFized] + 1
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3.4 Feasibility

At each level of the tree, we enumerate feasible values of z; — that is, values of z; for
which there exists a solution to the relaxed problem having fixed integer values for
x1,...,x; and real values for z;.1,...,x,. This is not as obvious as it sounds, for we
cannot just start at x; = 0 and stop when we reach our first infeasible result. It’s
quite possible that the feasible range for x; is something like 2 < z; < 10, for example.

To get around this, we again take advantage of the simplex solution over the reals.
At the previous level [ — 1, we solved for the remaining variables, including x;, over
the reals. Let z;, represent the optimum real value of z; for a given case. To find
the possible range of integers for assignment to z;, then, we split the work into two
ranges: upward from [z, | and downward from |z, |. This is done to more efficiently
limit the range of each variable: had we started at x; = 0, we would need to iterate
upward until the LP first becomes feasible, then continue until it is not. We continue
trying each integer value until the solution on the remaining variables is infeasible.
In practice, one of the two cases generated is often infeasible from the start because
the optimal real value is near or at a boundary constraint.

3.5 Pruning the Search

Pruning of the search depends on finding an integer solution. It is quite possible that
the search for a given program might not prune until very late, or indeed, not at all
(no integer solution). In the initial phase, before any bounds have been found, we do
get values for the real solution. Those values are another bound, but in this serial
implementation, are not used. It may be possible to take advantage of them to a
limited extent for imposing a priority on the queue.

Again viewing the solution space as a tree, where level [ of the tree consists of
nodes corresponding to all feasible values of x; for the set values of x; ... x;_1, pruning
is done in the literal arboreal sense. For example, consider the sample tree given in
Figure Bl and suppose that setting x1 = 0,25 = 2 makes the problem infeasible.
Obviously, there is no point in continuing down that branch. The search is pruned
at that node, cutting off the tree below that point, yielding Figure B2l The search
would then continue with the node z; = 1.

e

T9 =10 o =1 o = 2 infeasible Ty =2 To =3
1’3—1 ...... ZL’3—]_ ...... ZL’3—]_ ...... 1’3:1 ......

Figure 3.2: Pruned solution tree
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With the use of a queue to store cases for later evaluation, pruning the tree for
infeasibility amounts to not pushing the case under current evaluation onto the queue.

Further pruning can happen if we encounter an integer solution. That solution
provides an upper bound on Z, and we further prune branches of the tree that have
Z values which cannot improve on that bound. With the queue structure in this
situation, a case is pulled off, found to have no improvement over the known Z
bound, and simply dropped.
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Chapter 4

Parallel Implementation

In the parallel implementation, we break down the program structurally to allow
the use of multiple processors. Again, the intention is to speed up pruning of the
search. At the very least, we should achieve a linear improvement in the speed of the
search itself. The appropriate method for a given problem depends on the quantity
of the data, the type and complexity of the algorithm, and the amount of bandwidth
required for data access and communication.

4.1 Parallel Methods

Parallel algorithms take advantage of problem structure in order to speed up process-
ing by spreading the work over multiple compute nodes. There are several general
methods to accomplish this, covered briefly here. All methods reduce to effectively
breaking up the dataset to be considered in some fashion (termed "grain size"), and
establishing an appropriate communication and control system between processing
nodes (the "topology") [4].

One simple form is to manually break up the problem. This may be a matter
of giving a subset of data to be processed to each of several compute nodes, then
comparing the results. Testing and analysis problems may fall into this category,
and the unmodified serial algorithm is employed in parallel on each dataset. This
method has a large grain size and the advantage of not having to develop a specialized
parallel algorithm, but only affords a linear improvement on speed. There is no
communication necessary between compute nodes in this model.

Shared memory parallelization often relies on numerical methods to perform large
calculations in parallel. Part of the algorithm itself breaks down the model or data,
rather than having to do it manually, and all processing nodes access the single dataset
directly [4]. This method is generally limited to specialized hardware, often a single
physical machine with several CPUs and an larger amount of memory. This method
is by far the fastest, because memory access is at local bus speeds, and because of
the generally small-grain breakdown of data. However, it is limited in scalability
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by the physical specifications of the machine, in particular the bandwidth available
for inter-node communication. Larger systems may take advantage of specialized, or
even commodity, network connections in order to extend the parallelization to other
physical machines. Examples of programming libraries and compilers for this model
include MPI (Message Passing Interface) and UPC (Uniform Parallel C).

A recent example of specialized hardware for shared-memory applications is the
GPU — Graphics Processing Unit. Once simply dedicated to running a computer’s
graphical display, modern GPUs are designed with broader computation in mind.
Units with upwards of 400 processor nodes are not uncommon, and there is work
toward standard programming interfaces underway. The processing nodes are simple,
and very specifically designed for small-grain algorithms.

Distributed memory parallelization lies at the other end of the spectrum, where
each processing node has its own dedicated exclusive memory, and runs a copy of the
algorithm. The individual nodes can either negotiate among themselves, as in the
shared-memory model, or there may be a dedicated "master" node handing out work
sets to other nodes for actual processing. A client-server algorithm is an example
of the latter, and offers somewhat of a middle-ground when the problem space has
obvious discrete blocks of computational work. A master server distributes pieces
of work at the request of several clients, giving the advantage of scale over several
physical machines. The limiting factor here is the speed of communication between
the master and each client, while the scalability is only limited by the how many
clients the master can track. MPI is also applicable in this model, as it allows generic
communication between compute nodes, independently from any shared hardware
resources such as memory.

4.2 Client-Server

In our problem, we have a tree structure in which each node in the tree requires
running the simplex algorithm on a matrix and comparing the results with those of
other nodes (a decidedly large grain size). The amount of data required to describe
a case is minimal (simple topology) and together with the initial tableau describes
an independent chunk of computation work, thus the client-server model suits it very
well. MPI may be a good choice for communication, but it is simpler to implement
the first version with a straightforward text-based network command protocol and a
single master node. In addition, given the speed of the simplex algorithm on large
LPs, we expect a majority of algorithm time to be taken in the computation rather
than the communication.

In our algorithm, the master initially distributes copies of the original data, and
then hands out cases, accepts the results and handles potential search pruning, while
the clients run the simplex algorithm. The only significant computation the master
does is for the initial case, to find out if the problem is infeasible or unbounded, or
else determine the optimal real value of x;.
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This model has been successfully used in many high-profile community-processing
efforts, including Seti@Home|2] and Folding@Home[8]. In our code, the network
communication consists of simple text-based protocol. The master process is started
first, and given a file name and number of clients to expect. The file contains the
matrix description of the linear program. As each client connects to the master, it is
immediately given a copy of that file, and then waits to be issued a case. The rest of
the process is controlled by a simple protocol using the command set in Table BTl

Table 4.1: Client-Server Protocol

Command Issued by | Definition Response(s)
request client Client requests a case | Master responds with
from the master for | ‘case’, ‘done’, or ‘wait’
processing
case nFixed X;, Z;, | master | Master gives a case to | Client processes case
client and returns results
with ‘results’
done master | All cases have been | Client disconnects and
handled exits
wait master | Master tells client to | Client waits a pre-
wait a predetermined | determined time, then
amount of time repeats the original re-
quest
bye client Client announces in- | Master removes client
tention to disconnect | from list and re-
distributes work as
appropriate
results client Client announces re- | Master queues,
sults of processing prunes, or stops
processing as appro-
priate

4.3 'Traversal of the Solution Space

The parallel implementation, when combined with the queue structure for the solution
tree, produces a traversal that is really neither depth-first, nor breadth-first. Consider
the depth-first labeling of the tree in Figure Bl

A depth-first search would traverse it in lexicographical order, from node A to node
V. The queue structure in the serial implementation, however, effectively produces a
breadth-first search, beginning with A, N, and then B, F, J, ....

In the parallel implementation, each client works at one node evaluating feasible
cases to create nodes below it, just as in the serial version. Depending on the feasibility
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Figure 4.1: Labeled solution tree

of each node and the time it takes to solve each case, however, the client that put
a case on the queue might very well not be the one that ends up checking it later.
Each client will traverse in a somewhat random pattern, but since all clients use
the same work queue, all feasible cases are eventually handled. For example, two
clients running through the tree in Figure ELT might evaluate cases as follows, where
(@ designates a possible work queue at various points:

1. @ = [a]: CPUI1 gets the single initial case, iterates on 1, and produces nodes
A and N (@ = [AN]). By the time CPUL is done iterating, CPU2 has already
started on A, so CPUI1 continues at N, iterating on zs, and produces O and S.

2. Meanwhile, CPU2 started out idle, waiting for work. Once the queue started to
fill, it was assigned node A, and produced nodes B, F, and J. Combined with
the work CPU1 is producing, the queue could be just about any interleaving of
B, F, J, and O, S, such as QQ = [BOFS/J]|.

3. Whichever client completes its run on x5 first would get node B, iterate on
x3, and produce C, D, and E. The other client might get node O (as in the

possible @ given above), and the resulting queue could be something like Q) =
[FSJCDPQER].

4. ...and so on, with each client pulling the next available piece of work from the
queue, and the results of all clients being pushed onto the queue in the order of
generation.

Note that in step 3, it is possible that node O might come up for processing
before nodes F and J, thus the search is not exactly breadth-first. Nodes F and J will
get handled in the order in which they were queued, provided no improved bound
on 7 has been found in the meantime. If such a bound has been found, any node
having a higher optimal Z value over the reals would be pruned when it comes up for
consideration, saving processing time. It is worth mentioning in particular that this
potential bound might be found by any one of the clients, but affects all clients from
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that point onward. The master keeps track of these bounds and integer solutions,
and checks future cases against them when handing out work to its clients.

4.4 Defining “Done”

One concern with the combination of queued cases to represent a solution space,
and client-server communication to distribute work, is how to know when the entire
algorithm is “done”. Obviously, this happens when there is no more work to be
processed, however, that is not necessarily equivalent to having an empty queue.
Rather, we are done when the queue is empty and all work distributed to clients has
been completed and reported. This is redundant in the serial model, since there is
essentially one client, but important in the parallel one.

Initially, the queue only has one case, and all clients request work. As we saw
in the description in section B3, only one client gets anything to process, and the
other clients must wait, rather than exit — there will likely be plenty of work once we
know the feasible range of x;. We accomplish this by keeping track of the case we
have assigned to each client in a separate array, and are “done” when the main work
queue and client work array are empty. We also gain some robustness in the ability
to reassign cases, should a client disconnect without reporting its results.

A secondary issue with completion concerns the simplex algorithm itself. Under
certain circumstances, the simplex algorithm may cycle — that is, it does not terminate
on a solution, but rather continues in an endless cycle. One common method to
counter this is to apply Bland’s Rule[6], whereby pivots are chosen by specific criteria
during phases II and III, guaranteeing that the algorithm will not cycle.
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Chapter 5

Empirical Analysis and Conclusions

In the course of this project, several hurdles were encountered in stages. In early
runs, it became clear that zero-one matrices, such as those found in many graph theory
problems, did not lend themselves to the work breakdown used here. Specifically, each
variable did not have much of a feasible range, and a feasible case would generate only
one or two (z;41 € {0,1}) cases for further investigation. Also, these problems seemed
to exhibit a tendency to arrive at an integer solution very early and with little or no
room for improvement, and not actually test out the branching and parallelization of
the solver.

Finding example problems proved to be much more difficult than expected. There
are a few example problems and problem sets mentioned in the references [II, 3],
but the format necessitated a conversion utility in order to prepare the LP for our
solver, and a code change to the solver itself in order to better handle slack variables.
Furthermore, the sample problems were given as general LPs, and as such did not list
an integer solution (or indeed, if one even existed). On one run of such an LP, the
work queue consumed all available memory over the span of two days, and crashed
the master node — without so much as a token integer solution. The best alternative
was to contrive examples with verifiable integer solutions, such as the cube, box, and
house problems discussed below.

Motivated by the long run-times of the older sample problems (where it is not
clear an integer solution even exists), we went ahead and implemented some simple
queuing and relaxing optimization ideas, but found them not as helpful as expected.
More are mentioned in section The results were surprising at first, but obvious
upon further inspection. One may expect that placing an ordering on the queue,
such as by bound, would improve solution time. In practice, though, this resulted in
a depth-first search. While solving a relaxed case with fixed variables z...x3, for
instance, there are likely several feasible values for x4 that have very similar bounds.
Queuing these cases based on those bounds would result in the master handing out
nodes farther down this branch of the solution tree, rather than more broadly across
it. Along with this behavior, the simple linked-list structure employed for the queue
quickly became cumbersome while adding cases for future consideration, due to the
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linear nature of traversal while comparing bounds. An alternate data structure could
avoid this, and allow further evaluation of queue prioritization. An index into the
queue based on the sorting criteria would preclude a full linear search, but a binary
tree might be a better choice to allow faster insertions.

On the linear relaxation side, it seemed likely that different column orderings of
the tableau might affect solution time. We wrote a pre-processor that looks at three
criteria: affect on Z (smallest non-zero ¢;), number of applicable constraints (rows of
A where A;; # 0), and level of constraint (smallest ratio of A;; to b; for a given ).
The rationale for the first is to maximize the effect on Z in hope that it will lead
to early pruning. For the latter two, we hope to look first at variables with smaller
feasible ranges (or more constraints), and get a broad view of possible Z values early
in the run.

Finally, the input format itself was modified slightly to allow the specification of
which x; must be integers. This was done to allow distinction of actual program
variables from slack variables (which are not generally subject to the integer require-
ment), but has the added benefit of making the solver able to handle mixed integer
linear programs (MILPs) as well as ILPs.

5.1 Tabulation of Results

In each example problem, we optimized the column order several ways for comparison
of various methods. The notations under the "PreP" column, such as "zcr", indicate
the sorting method applied to the tableau columns, as discussed earlier, where "z"
sorts by the largest effect a given z; has on Z, "c" sorts by the number of constraints
in which z; appears, and 7 sorts by the smallest ratio of A;;/b; for constraints in which
x; appears. Thus, the notation "zcr" means the tableau columns were sorted first by
z, then by c, then by r. Similarly, a minus sign in front of any sort letter indicates
the sort was reversed for that criterion.

We ran the example problems under varying number of processors, from 1 to 8§,
to gauge the effect of parallelization. As a check for possible variation in run-time,
we ran versions (CPUs and pre-processing) of a few cases several times and found the
performance results very consistent. The system used for the runs was a quad-core
Intel i7 920 running at 2.67GHz, and having 6GB of main memory. The quad-core
CPU had hyperthreading enabled, making it appear as though it were an 8-core
CPU with (at least for our use) corresponding performance. Both master and client
processes were run on the same machine, due to the relatively small CPU-load of the
master and low memory-usage of the clients.

The metrics tracked and reported are number of clients (Cl), number of cases
queued (Qd), number of cases offered to clients (Of), number rejected (Rj), number
pruned (Pr), and elapsed time (Et). As aggregate measurements of efficiency, we
define algorithm time (At) to be Cl % Et, and rate of cases per second (Rt) to be
Qd/Et. We expect linearity for Et and Rt, proportional to the number of processors.
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We expect a relatively constant value for Rt/Cl for a given LP, dependent on the
size of the tableau (and thus, number of pivots). The cases presented here have small
tableaus, as the parallel algorithm employed is more greatly affected by the tree size
rather than the number of pivots.

5.2 Case 1: Cube

This problem is the tableau given as ExamplePl Due to the symmetry in this problem,
none of the pre-processing sorts have any effect. Results are summarized in Table Bl

Of note, there were no cases rejected until 4 client processors were employed; and
the improvement in solving rate (Rt) was not linear. This is a relatively small LP,
with a small solution space. By changing the right-hand side of the constraints to
be 100.5 instead of 10.5, we should see longer solution times and better linearity.
Results are shown in Table b2 and indeed, the solving rate is quite linear. However,
the time-to-solution (At) from one to two processors was super-linear, and did not
improve much with the addition of more processors. This super-linearity is a by-
product of the queuing, where some 3-variable cases were considered before finishing
all 2-variable ones, and is what we hope will happen to improve solution time.

As mentioned above, the symmetry of this problem defeats two of the pre-processor’s
sorting criteria. If we now further modify the LP to have differing right-hand side
values, we can test the ratio sorting, "r". The reverse sort is denoted with a "-r"
in the table. Each variable still only appears in a single constraint, and all variables
have the same coefficient in Z, so the "z" and "c" sortings have no effect. Visually, we
are simply changing our cube to a box whose dimensions are 100.5, 200.5, and 300.5.
Results are given in Table B2 and we see sorting by the minimum ratio generally
improved solution time and resulted in fewer queued cases. This makes sense, as the
use of linear relaxation on this LP results in an exhaustive search of the solution
space. If we start with the variable having the largest feasible range (i.e. the longest
side of the box), and work backwards to the variable with the smallest range (and
recall that cases are split into up- and down-ranges), we end up considering at least
2 % 300 * 200 = 120000 cases (in a single-processor run). If, as with the "r" sorting,
we start with the variable having the smallest range, we end up considering just over
2 % 100 % 200 = 40000 cases.

To test the "z" sort, we revert to the plain larger cube, and modify the coeffi-
cients in Z. These results are summarized in Table B4 but most of the performance
differences resulted from the algorithm iterating through a list of integer solutions in
the case of "-z", due to the relatively small change induced in the value of Z by the
x; having the smallest coefficient.
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Table 5.1: 10.5 unit cube results

PreP ClI Qd Of Rj Pr Et At Rt

none 1 266 26 0 240 6.36 6.36 41.7
2 266 26 0 240 4.68 9.36 56.6
4 232 26 17 205 3.17 127 729
8 226 30 20 196 2.58 20.6 87.2

Table 5.2: 100.5 unit cube results

PreP Cl Qd Of Rj Pr Et At Rt

none 1 20606 206 0 20400 420 420 49.1
2 5306 56 75 5250 55.7 111 95.2
4 4916 56 270 4860 26.9 108 183
8 4906 59 275 4847 144 115 341

Table 5.3: 100.5 x 200.5 x 300.5 unit box results

PreP (I Qd Of Rj Pr Et At Rt
r 1 40806 206 0 40600 825 825 49.5
10508 56 74 10452 108 215 97.6
9716 56 470 9660 50.9 204 191
9702 57 477 9645 265 212 366
121606 606 0 121000 2456 2456 49.5
11314 58 72 11256 116 232 97.7
10304 56 376 10248 53.8 215 191
9718 58 669 9660  26.5 212 367

1
—
CO = DN — 00 = I

Table 5.4: Minimize Z = —100x; — 10z — x3 over 100.5 unit cube

PreP C1 Qd Of Rj Pr Et At Rt
Z 1 20606 206 0 20400 420.4 4204 49.0
5308 56 74 5252 557 1114 953
4916 61 270 4855 27.0 108.0 182.0
4904 58 276 4846 144 1155 3395
20606 504 0 20102 434.1 4341 475
5390 412 2962 4978 64.6 129.3 834
5004 412 3155 4592 314 1256 159.4
4994 412 3160 4582 16.7 133.6 299.0

[
N
CO = DN — 00 = I
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5.3 Case 2: House

As a slightly more complicated test case, we produced the "house". Again, able to be
visualized in three dimensions where the familiar (z,y, z) correspond to (z1,x2,z3)
in the LP, this figure resembles a house in the x — y plane, and has a slanted face.
We have chosen two functions for Z. In the first LP, designated “House 17, the real
solution is at the house’s peak (4,9.5,1.5) with Z = —9.5, while the integer solution
is just below it at (4,9,2) with Z = —9. These results are seen in Table B3 The
second LP, designated “House 2”7, has a real solution at the top of the right wall
(7.5,8.1875,0) with Z = —88.75, while the integer solution is still near the peak at
(5,9,0) with Z = —87.5. These results are given in Table (.8l This is a simple
example of where the integer solution is not intuitively near the real solution.

Example 4. Tableau for House 1:

7.5 ]
64
88
11
5
0

=3O = 0o o O
SO OO O
S| OO = OO O
ol o O OO

O|l—= O W W
SO O OO
OO OO = O
oSl oo~ OO

Example 5. For House 2, we change Z to be nearly parallel to one of the constraints:

1 001000 0[75]

3 800100 0fo4

- 3 800010 0f8
0 110001 o0f1

1 000000 —1|.5
31 800000 0] 0]
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Table 5.5: House 1 results

PreP ClI Qd Of Rj Pr Et At Rt
crz 1 16 8 0 8 06 06 248
2 16 8 0 8 13 26 121
4 16 8 0 8 13 53 121
8§ 16 8 0 8 13 106 12.1
czr 1 22 4 0 18 06 06 36.6
2 22 4 0 18 1.0 21 21.1
4 22 4 0 18 1.0 42 212
8§ 22 4 0 18 1.0 83 212

Table 5.6: House 2 results

PreP ClI Qd Of Rj Pr Et At Rt
Crz 1 16 10 0 6 0.8 08 209
2 16 10 0 6 1.0 21 154
4 16 10 0 6 1.0 42 153
§ 16 10 0 6 1.0 83 154
zcr 1 22 4 0 18 06 06 36.6
2 12 4 5 8 12 24 100
4 10 4 6 6 12 48 83
§ 10 4 6 6 1.2 96 83
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5.4 Depth-first Enhancement

The final enhancement considered for this solver was an attempt to quickly find an
integer solution that may be near the real one. Any such solution will allow pruning
of the tree, and can only help improve solution times.

We call this method a drill, and it is essentially a binary depth-first search down
either side of the real solution. It is run first and only once, by injecting a special case
into the queue as the first case. The rest of the queued work then follows as described
previously. It is binary in the sense that at each level [ it follows two paths to the
next level down, setting x; = [x;,,] and x; = [2;,]. It only generates bounds based
in integer solutions (if found), and does not create further cases for queuing. Once
the client processor running the drill has finished, it joins the other clients working
on the rest of the queue as usual.

Using the house in Example ] the solver would consider only 1 = 3 and z; = 4 at
the first level. At the next level for x; = 4, it would only look at zo = 9 and x5 = 10,
and so on, until all integer variables have been fixed, or no solution is found. If an
integer bound is found, the master will be able to prune the queue for subsequent
processing.

In Figure Bl we show this process graphically. The nodes in bold indicate the
actual relaxed solution found. For instance, at 1 = 3 and zo = 9, the algorithm
arrives at xs = 2 without having to explicitly set z3 to be an integer. The nodes
in parentheses are shown for completeness to indicate where a non-integer solution
exists, but are not visited by the drill because they are not integer-valued. Nodes
which are struck-through are infeasible.

1'1:3 w1:4

T N o N
To =09 (2 = 9.125) 2o =10 To =0 (2 = 9.5) 2o =10
PN PN

x3:1w3:2 ZL’3:12L‘3:2
Figure 5.1: Nodes checked by drill

The drill would examine every integer node in the tree in Figure Bl and would
find the integer solutions at (3,9,1), (3,9,2), (4,9,1), and (4,9,2). All have Z = -9,
which sets a nice upper bound for minimizing Z. In fact, all of these solutions are
optimal integer solutions for this particular ILP, and the subsequent algorithm will
not improve on them, but will instead prune most of the tree.

In many LPs, this method actually finds the optimal integer solution because it
happens to be near the optimal real solution. In the case of the house in Example
Bl it does not, because the integer solution has x; = 5, while the drill process would
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only consider y = 7 and x; = 8. However, the drill does find an integer solution at
(7,8,0) with Z = —8, which provides a fairly tight bound for the final solution. Thus,
any integer solution will improve the solver time by providing a bound for pruning
early in the run.

5.5 Conclusions

Without a large number of example ILPs, it is difficult to draw many solid conclusions
about the efficiency or effectiveness of the algorithm in this approach. Out of the six
examples created and analyzed, most showed super-linear improvements in solution
time going from one to two processors. However, the examples were all 3-dimensional,
and this may be due to timing alone. Any 3-variable case (one where 3 variables are
being set to integer values) queued will result in an integer solution, and thus, an
upper bound on Z. If such a case is queued prior to other 2-variable cases, and
produces a relatively tight bound on Z, this could drastically reduce solution time.

The pre-processing options showed some promise, with the greatest difference
seen in Table Again, however, this may have been a by-product of the simple
3-dimensional examples. The pre-processing for that example was type "r", and
essentially caused an exhaustive search to iterate through variables with narrower
feasible ranges first.

The drill concept showed the most promise in achieving reliably super-linear per-
formance overall. It does not take long to run, because of its limited scope, and any
resulting bound may drastically increase pruning and reduce solution time. Further-
more, it may be that such a search often discovers the optimal integer solution, if
it commonly lies near the real solution. In this sense, the advantage of a parallel
algorithm over a serial one would at best boil down to the ability to consider more
cases per second — a linear improvement in the final search.
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Chapter 6

Future Projects

Several ideas came to mind as the example code was produced, requiring what could
be significant modification to large amounts of the code, and not directly in line with
the purpose of this report. They are listed here as possibilities for future work and
development of the parallel algorithm.

6.1 Improving Linear Relaxation Methodology

The concepts behind linear relaxation are straightforward; however, in practice, there
are some caveats from an efficiency standpoint. At each level of the tree, we need
to use a submatrix A; of A as well as adjust b for the fixed values Xy. The process
behind the simplex algorithm is destructive — it alters the entries in the tableau while
solving — thus we need to preserve A somehow. The obvious method is to copy A
and make the changes, but this becomes quite inefficient for programs with large
numbers of variables and/or constraints. The vast majority of the copied data hasn’t
changed since the last copy. The time spent copying may rise proportionally to the
time spent solving, due to the matrix manipulation routines, but overall there is
room for improvement in setting up each case. A careful transition from one case
to another, searching depth-first, may yield a solver routine that references the data
that has changed separately, while still preserving the original matrix in its entirety.
Essentially, this pushes the functionality of SUBTABLEAU() down into the simplex
algorithm itself and trades inefficiency for some additional complexity.

6.2 Drill Often

Our implementation of the drill was a single run at the beginning of the work queue.
We noted that in Example Bl the integer solution was not near enough to the real
solution to be found by the drill process. It may be desirable to run the drill more
than once, from different starting points, in an attempt to establish a bound for Z.
The criteria for subsequent drilling could be based on the number of cases processed,
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the elapsed run-time, or some definition of distance from the coordinates used in
the initial run. This would likely be most useful when no integer bound has been
established, or when the existing bound is not resulting in significant pruning.

6.3 Multiple Solutions

It is possible to have multiple optimal solutions to a linear program. This simply
amounts to having several X sets yielding the same value for Z. Consider the 2-
variable problem in Section [[Z had the upper bound been simply xo = 4. The
simplex algorithm, as implemented here, does not provide for multiple optimal so-
lutions, and instead just produces the first such solution it finds. There are known
methods for finding multiple solutions that could be incorporated if required [7].

Depending on the application, the user may wish to have the first solution, all
solutions, or only a subset of solutions with certain extra conditions satisfied. In the
latter instance, the program could offer alternatives and allow the user to choose the
direction to take.

6.4 Optimized Queuing

The queue implemented here is a simple FIFO — First-In, First-Out. A few modi-
fications were tested, but the improvements were minimal and short-lived. Simply
prioritizing on the upper bound led to a depth-first search, while trying to guarantee
a pure breadth-first search caused performance problems once the queue became very
large.

Still, while the algorithm skips cases whose bounds have already been superseded
(once an integer solution is found), there may be room for improvement prioritizing
cases. The queue might take the form of an index into the existing queue structure,
or an entirely different structure such as a balanced binary tree. Either should require
only modification of the PUTCASE() and GETCASE() routines. New cases are as-
signed some sort of score, and inserted into the tree where appropriate. Examination
of various scoring methods might result in an improved algorithm, being one in which
the pruning has a greater limiting effect on the search.

Suggestions for scoring methods to test include ordering by Z, ordering by [ (which
happens to a large extent already, implicitly by design), and ordering by the number
of possible values for a given z; (ascending or descending).

6.5 Optimize the Choice of Fixed Variables

Our code simply starts fixing variables at x1, and proceeds in order as far as it needs
to go. According to [7], there are some heuristics that may be employed in choosing
which variables to fix first. The internal manipulation to achieve this may require
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significant coding, however, the user can also manually reorder variables if he or she
is aware of any benefit to a specific ordering.

6.6 Matrix Routines

In this code, we wrote our own matrix manipulation. The operations are simple, being
largely just pivoting and producing submatrices, but the use of a matrix manipulation
library such as BLAS or LAPACK may still realize a performance improvement. In
addition to time, such libraries may employ memory-optimized storage for matrices,
reducing the footprint of larger linear programs. The change in coding to do this
would be significant, as the use of such libraries likely involves specialized data types
and function calls.

6.7 Network Routines

The actual client-server protocol and supporting code was a source of several par-
ticularly nagging bugs. In hindsight, it would have been worthwhile to investigate
existing client-server modules to see if one could be adapted, rather than develop our
own, educational though the process was. The end result, however, was quite flexible,
where clients can come and go as they please, and the master automatically adjusts
and re-queues work appropriately. Our protocol is also simple and ASCII-based,
allowing easy debugging of the interactions.

6.8 Other Parallel Methods

The original choice of a client-server model seems to be appropriate, however, it
may still be worthwhile to examine other methods. There may be other areas of
the code which could be further parallelized, such as matrix manipulation. Shared-
memory models for the queue might produce performance improvements over that of
the network protocol. Using MPI in place of explicit sockets might allow for different
flexibility and additional robustness.
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Appendix A

Code Listings

A.1 Overview

The code comprising the pre-processor and parallel algorithm, including the drill
routine, is presented here. The pre-processor and conversion utility for the MPS
format were written in Perl, while the parallel algorithm itself was written in C. For
the latter, a Makefile is included. The C code compiles into a single executable which
acts as a master or client, depending on the command line invocation.

Individual files are as follows:

Makefile used to compile the algorithm code, by typing "make"

client.c client portion of the algorithm

drill.c drill routines

main.c initial program logic to check syntax and invoke master or client code
master.c master portion of the algorithm

phases.c phases of the simplex algorithm

queue.c queue management routines

queue.h definitions and function templates for the queue

solver.c main solver routine which handles cases and invokes the simplex algorithm
on them

solver.h definitions and function templates for algorithm
utils.c miscellaneous file and matrix routines

solver resulting single executable
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mps2mat convert MPS format to our format

optimize optimize column order in a tableau

A.2 Usage

Usage of the executables, where italicized command-line arguments are optional:

solver -m filename numclients
Initiate a solver run as the master. filename is the name of the file containing
the ILP. numclients is optional, but if given, the master waits until that many
clients have connected before beginning the run.

solver -c¢ hostname
Initiate a solver run as a client. hostname is the name of the master machine
to connect to.

solver -f filename
Initiate a solver run only for overall feasibility. Only runs a single simplex
instance. filename is the name of the file containing the LP.

mps2mat -revcost mpsfile > matfile

Convert the MPS format found in mpsfile to our tableau format and put the
result in matfile. If the optional -revcost is given, take the cost (Z) row to be the
negative of that found in mpsfile. The MPS format did not have a mechanism
to specify whether to maximize or minimize a given LP, leaving the choice up
to the operator.

optimize method matfile > newmatfile

Re-order columns in matfile by method and put the resulting tableau in newmatfile.
method is any combination and order of 'z’, 'c’, and 'r’, such as 'zcr’, ’crz’, etc...
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A.3 Parallel Solver

Listing A.1: Makefile

CFLAGS=—¢
LDFLAGS—Im

default: solver

solver: main.o client .o master.o solver.o phases.o utils.o queue.o drill
.0

main.o: main.c solver.h
master.o: master.c solver.h
client .o: client.c solver.h
solver.o: solver.c solver.h
drill.o: drill.c solver.h
phases.o: phases.c solver.h
utils.o: utils.c solver.h
queue.o: queue.c queue.h

clean:
rm —f x.log *.0 solver

tar: parallel.tar.gz

parallel .tar.gz: *.c *.h Makefile
tar cvfz parallel.tar.gz *.c x.h Makefile
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Listing A.2: main.c

#include "solver.h"

FILE +«LOG, =IN, *OUT;
int MASTER;

int phase;

int *xoptX, xfixed;

int found = 0;

double best = 0;

int fileRows , fileCols;

int main(int argc, char xargv][])

{

char filename[256], logname[256];
int i, minclients;

// decide master vs. client
if (((arge < 3) && !stremp (argv[1l],"—c")) || ((arge < 3) && !stremp(
argv[1],"-m"))) {

fprintf(stderr, "USAGE: _%s_{—m_filename _#clients_|_—c_hostname}\n",

argv[0]) ;
fprintf(stderr, "\tset_up_master_(—m)_or_client_(—c)_process\n");
} else {
strepy (filename , argv|[2]);

strepy (logname |, filename) ;
strcat (logname ,argv[1]) ;
strcat (logname ,".log");

LOG = fopen (logname ,"w") ;

NN N N

stamp ;

if (!'strcmp (argv([1],"-f")) { // feasibility check only

debug (" feasibility _check\n");
feasibility (argv[2]) ;

} else if(!strcmp(argv[l],"-c")) { // we have a hostname, become
client and join

debug ("becoming_client\n");
client (argv[2]); // pass the hostname

} else { // must be the master

debug ("becoming_master\n") ;
minclients = 0;
if (argec > 3) minclients

atoi(argv[3]);
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master (argv[2],minclients); // pass the filename
if (found) {

printf("Integer_solution _found:\n");
for (i=0; i < fileCols —1; i++) {

printf ("\tX[%d ] _=%d\n", i+1, optX[i]);
}
printf ("\tZ_=_%f\n", best);
} else {

printf ("No_integer _solutions_found\n");

}

fclose (LOG) ;

}

exit (0);

Y // main
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Listing A.3: master.c

#include "solver.h"

int qsize = 0;
int feas only — 0;
queue *q;

int feasibility (char xfilename)

{

int rc;
feas _only = 1;
rc = master(filename ,0);

printf ("done_with_feasibility .\n");
return(rc);

}

int master(char xfilename, int minclients)

{

double xxtab, *xinittab; // tableau
int xprows; // pivot column by row
int vars; // number of variables
int eqs; // number of inequalities
int r, rc;

case _t *up_case, xdn_case, xdr_case;
FILE «fp;

// now figure out initial case over the reals
stamp;
fp = fopen(filename, "r");

if (fp) {

tab = read file(fp,&eqs,&vars);
fclose (fp);

} else {

perror (filename) ;
exit (0) ;

}

stamp ;

optX = malloc(vars * sizeof(int));
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//
//

for (r=0; r < vars; r++) {
optX[r] = 0;

}

printf("initial tableau:\n");
print_table(tab,eqs,vars);

// sync threads and start solving
printf("setting _up_initial _case\n");

q = newqueue () ;

prows = malloc ((eqs+2) * sizeof(int));

for(r=1; r<= eqs; r++) prows|[r|=-1;

up case = malloc(sizeof(case t));

dr case = malloc(sizeof(case t));

dn_case = malloc(sizeof(case t));

up_case—>numfixed = dn_case—>numfixed = dr_ case—>numfixed = 0;
up case—>fixed = dn case—>fixed = dr_ case—>fixed = NULL;
up case—>nextvar = dn_ case—>nextvar = dr_ case—>nextvar = 0;
up _case—>direction = 1;

dn_case—>direction = —1;

dr case—>direction = O0;

k)
up_case—>tableau = dn_case—>tableau = dr case—>tableau = NULL;

// compute real solution wusing up_ case for now
subtableau(tab, eqs, vars, up_ case);

rc = simplex (up_case—>tableau, prows, eqs, vars);
stamp;

if (rc = FOUND) {

printf ("program_has_real_solution\n");
for(r = 1; r <= eqgs; r++) {

if (prows[r] != —-1) {

printf ("\tX[%d] _=%f ,_Z_contrib _%f\n", prows|[r], up_case—>

tableau[r][vars+1],
up_case—>tableau[r][vars+1] * tab[egs+1][prows[r]]);

}

if(prows[r] == 1) {
up_case—>nextvar = up_case—>tableau[r]|[vars+1];
dn_case—>nextvar = up_case—>tableau[r|[vars+1];
dr_case—>nextvar = up_case—>tableau[r|[vars+1];
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}

printf ("\tZ_=_%f\n", up_case—>tableau[r][vars+1]);

printf("initial X[1]_=_%.3f\n", up_case—>nextvar);

up_case—>bound = dn_ case—>bound = —up_case—>tableau[r || vars+1];
#ifdef USE DRILL

// put drill case on the queue

putcase(q,dr case); qgsizet+;
#Hendif
// put two cases on the queue, searching in opposite directions.
putcase(q,up_ case); qsize+t+;
putcase(q,dn_case); qsize+t+;

// initial tableau was just for real solution. mnot needed for queue

for (r=0;r<=eqs;r++) free(up_case—>tableau|r]) ;
up_case—>tableau = NULL;

if (!feas only) { // start the queue

printf("waiting _for_connections...\n");
rc = queuemgr(tab , minclients);

printf ("done_solving.\n");
}
} else { // we’re done early
if (found) { // we found an optimal integer solution somewhere
puts ("integer _solution _found");
printf ("\tZ_—%f\n", best);
for (r=0; r < vars; r++) {

printf ("\tX %d_=_", r+1);
printf ("%d\n" ,optX[r]) ;

}
} else if(rc == UNBOUNDED) { // program was unbounded
puts ("program_is_unbounded") ;

} else if(rc == INFEASIBLE) { // program was infeasible
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puts ("program_is_infeasible");
} else { // shouldn’t get this far

puts ("unspecified _error");

}

return (0) ;

}

int queuemgr(double xxtab, int minclients) {

int s, s2, addrlen;

char hostname[256], xinaddr, xargs;
struct sockaddr in addr, addr2;
struct hostent xhost;

struct addrinfo xaddress;

FILE «fp;

char buf[256], cmdline[256];
int done;

fd _set fds;

int i,j;

case t *CASE, xupnewc, xdnnewc;
client _t =xclient;

int clicnt , numclients;

int clientrc , assigned, vars, rc;
double clientZ;

queue #*cq;

node xcn;

int r, on;

int cases queued, cases_ offered , cases pruned, cases rejected;
double rate queued;

struct timeval runstart, runstop;

suseconds t runtime;

cases _queued = qsize; // initial case
cases offered = cases pruned = cases rejected = 0;
runstart .tv_sec = 0;

// set up the server socket and start listening

printf ("setting _up_master_socket\n");

gethostname (hostname , sizeof(hostname));

if ((s = socket (PF_INET,SOCK STREAM,0)) < 0) {
perror ("socket()");
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exit (errno);

}

printf("getting_address_for_hostname_"%s’\n", hostname);
if (!(host = gethostbyname ((charx)hostname))) {

perror ("gethostbyname () ") ;

exit (errno);

}

/x
if (getaddrinfo (hostname, NULL, NULL, &address)) {
perror("getaddrinfo ()");
exit (errno);
}
*/

printf ("config_socket\n");

addr.sin_fami