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Abstract

The significance of wind as a renewable source of power is growing with the increasing

capacity of individual utility-scale wind turbines. Contemporary wind turbines are capable

of producing up to 8 MW and consequently, their rotor sizes are rapidly growing in size.

This has led to an increased emphasis on studies related to improvements and innovations

in load-control methodologies. Most often than not, controlling the loads on an operational

turbine is a precarious scenario, especially under high wind loading. The up-scaling of

turbine rotors would thus benefit from a rationale change in load control through method-

ologies such as variable-speed stall, flexo-torsional adaptive blades, and active flow-control

devices.

This thesis work extends the capabilities of an aeroelastic code to provide a platform to

analyze wind turbines with flow-control devices as active load control techniques. It also

explores the effectiveness of such devices under rapid load-control scenarios relevant to

benchmark turbines. Pre-determined rapid control actions such as pitching and trailing-

edge flap actuation are implemented under nominal operating conditions. The benchmark

turbine designed by National Renewable Energy Laboratory (NREL), which is an upwind

three-bladed rotor rated at 5 MW forms the test bed for the current thesis study. The goal

is to obtain an overall understanding of the aeroelastic rotor response of utility-scale wind

turbines under rapid control actions, paying special attention to the power of actuation.

xxvii





Chapter 1

Introduction

Wind is a major source of clean and sustainable energy and hence has a promising share in

the future of renewable power. In Europe alone, wind accounts for 16.7% of total installed

capacity (expanding from 6% in 2005), making it the second largest source of energy by

capacity [9]. The increasing penetration of wind power puts more emphasis on the pre-

dictability of power production and hence, aerodynamically reliable turbine blade designs

are growing in importance. The utility-scale market has been dominated by huge turbines

that help to reduce the cost of energy, and heavier rotors are posing a bottleneck in expand-

ing the capabilities of existing load-control techniques.

Utility-scale wind turbines comprises of three-bladed Horizontal Axis Wind Turbines

(HAWT) installed onshore or offshore to capture the potential in higher winds. Today,

1



Figure 1.1: A Siemens SWT-7.0 shown to depict the realistic size of state-of-the-art
turbine rated at 7MW with a rotor of 154m diameter [1]. (See appendix A.1 for copyright
statement)

individual wind turbines are capable of producing multi-megawatts of power. Recent stud-

ies conducted by [10] as part of the UpWind Project undertaken by European Wind Energy

2



Association on huge offshore turbines indicate the capability to generate 20 MW with ro-

tor diameters of 250 m. State-of-the-art turbines such as the Vestas V164-8.0 MW, are

designed to generate up to 8 MW and have rotor diameters up to 164 m [11, 12, 13]. An

example of most recent operational turbines installed by Siemens is the SWT-7.0-154, and

is shown in figure 1.1. With rotor diameters of 154 m, these turbines use huge blades that

are up to 75 m long (see figure 1.2 to obtain a perspective of their proportional size). Var-

ious other operational wind turbines today have rotor diameters of more than 100 m [14].

Through the economies of scale factor they show a definitive trend towards upscaling of

rotor size for higher power production at reduced cost. More swept area from longer blades

increases the power produced due its dependence on square of the rotor diameter. These

longer blades are however heavier and the down-side is presented by the cubical depen-

dence of weight on the rotor diameter. These dependencies on rotor diameter are important

in studies related to HAWT [15] and is known as the square-cubed law. Stretching the

capabilities of existing load-control techniques such as pitching, stall-control, and yaw-

ing still present a bottleneck with the growing size of the turbine rotors. This has led to

a deeper emphasis on studies related to improvements and innovations in dynamic load-

control methodologies [16, 17, 18].

3



Figure 1.2: A 75m long composite blade used on the Siemens SWT-7.0 wind turbine puts
in perspective the size of turbine blades [2]. (See appendix A.1 for copyright statement)

1.1 Dynamic Load Control in Wind Turbines

Wind turbines are complex machines involving various dynamics and are subjected to fluc-

tuating wind loads during operation. Most often than not, controlling the loads acting on

an operational turbine is a precarious scenario, especially under high wind loading. Dy-

namic control of wind turbines alter certain aspects of the machine based on instantaneous

operational state, causing a control action. The purpose varies from optimizing power gen-

eration to controlling loads acting on them and even to the extent of halting operation. The

4



methodology adopted for load control can be broadly categorized into mechanical, elec-

trical, and aerodynamic; and there is a wide-ranging study to improve specific aspects of

some of these control techniques [19, 20, 21, 22]. The current thesis work focus is one

innovations in aerodynamic load controls.

1.2 Aerodynamic Control

This approach involves dynamically adapting the aerodynamics of the rotor by altering

the orientation of the blade and/or rotor with respect to the wind. Methodology adopted

in implementing such controls can be classified as passive and active. Passive methods

make use of inbuilt characteristics such as the geometry of the turbine in an open-loop

methodology. On the other hand, active load control alters specific machine attributes

based on a feedback-response approach. Bianchi et al. [23] provides details of various

aerodynamic load control approaches in use today. Some of the more important of these

are yaw control [24, 25], stall control [26], active stall control [27], passive control using

aeroelastic devices [28], and pitch control [29, 30, 31, 32, 33]. In yaw control, the entire

rotor is turned in to the direction of wind, but this involves high gyroscopic loads especially

in utility-scale wind turbines with huge rotors. Stall control relies on the aerodynamic stall

as a result of high angles of attack achieved by the aerodynamically active sections of the

blade, either as a geometric feature or by turning the blade to stall. This results in reduced

power production due to a drop in lift generation. However, the fatigue loads associated
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with this state of blade operation are so high that effective load mitigation demands closer

study on blade construction and materials. Active pitch control is preferred over both these

approaches for next generation utility scale super wind turbines.

Control by pitch action accounts for a significant share of present day load-control method-

ology. In this approach, the turbine blade is rotated about its longitudinal axis to alter its

orientation to wind and hence modifying the aerodynamic loads on the rotor. Most com-

mercial turbines with pitch-control systems use a proportional-integral collective pitching

approach to prevent detrimental structural loads, and limit the power generated to their

rated value during high winds [34]. Under these regimes of operating condition of above

rated wind speeds, the goal is to reduce the aerodynamic torque by pitching to feather and

thus restricting the generated power. This also ensures reduction in the overall aerodynamic

loads acting on the rotor obtained by lower angles of attack effected as a result of feather-

ing. This ability to control the shaft torque through pitching is more beneficial compared

to stall-controlled turbines that produce high stochastic loads during operation. Collective

pitching can be considered useful in restricting the overall power generation at high winds,

whereas individual pitching has the added advantage of mitigating cyclic loads that are

more detrimental in fatigue damage of the turbines [32, 33, 35, 36]. However, full span

pitch controls are becoming increasingly difficult to manage with the up-scaling of turbine

rotors - heavier blades need higher amounts of energy to be pitched. Lack of scalability

of load mitigation studies hinders the increase in blade lengths. Today, a lot of research is

underway to tackle this bottleneck to an effective control mechanism [37, 38, 39].
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Figure 1.3: Schematic depiction of fractional flow-control devices used for trimming
control on airplanes.

The up-scaling of turbine rotors would benefit from a rationale change in load control in-

volving methodologies such as variable-speed stall, flexo-torsional adaptive blades, and

active flow-control devices. Variable-speed stall machines use a control strategy combin-

ing aerodynamic characteristics of rotor blades and doubly-fed induction generation with

power electronics to regulate torque, power, and reduce drive-train loads [15]. By con-

trolling the rotor speed, turbines aim at increasing energy capture at low winds and hence

maximizing power production, and limiting the rotor power to the rated output value at

high winds. Such machines perform better than constant-speed stall machines in reducing

extreme loads on the rotor and drive train by employing what is known as “soft stall”. At

high winds, the blades still operate in stall but in a more benign way [40]. However, the

inertial loads acting on the rotor blades are a hold-up for up-scaling of such machines. Use

of adaptive flexo-torsional blade designs are an alternative strategy [41, 42, 43, 44] where

certain span sections of the blade twists as they bend under wind load, altering the angle
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of relative wind. The variable twist through the blade span passively changes the angle of

attack for specific sections reducing the lift generated. However, a realistically attainable

optimum twist distribution would restrict the bending-torsion coupling to the aerodynam-

ically active part of the blade. Another strategy proposes the use of active flow control

devices [37, 45]. These devices are attachments on wings/blades capable of changing the

aerodynamic behavior and are widely used in aeronautical applications. Increasing the lift

generated by modifying the camber of the airfoil and/or modifying the flow around it has

led these devices to be known as high-lift devices. Slats attached near the nose and tail-end

attachments called flaps are examples of such devices that have been studied for use on

airplane wings as early as 1914 [46, 47]. As light-weight devices, they are easier to handle

and are capable of causing significant changes to the flow through minimal adjustments.

Such innovative load-control approaches are less energy intensive and their relevance in

future wind turbines are increasing compared to existing traditional techniques.

1.3 Flow-Control Device for Load Control

Flow-control devices (FCD) can be widely classified as active and passive based on the

scope of fluid flow alterations. Whereas a passive device merely mixes the high momen-

tum fluid flow and lowmomentum particles, an active device induces additional energy into

the system. Passive devices are fixed attachments that are designed to alter flow properties

in a predicted manner, and their relative position with the airfoil cannot be modified. On

8



the other hand, active devices are designed to alter their configuration with changes in the

flow enabling control of desired aerodynamic characteristics. Flaps and ailerons used on

airplane wings are typical examples of active flow control devices. Flaps are adjustable

panels near the root of the wing operated during take-off and landing to increase lift gen-

erated whereas ailerons are control surfaces towards the tip that provide lateral control

for rolling. These devices have fractional chord lengths with respect to the corresponding

airfoil chords and are easy to regulate [48]. Figure 1.3 depicts and example of actively con-

trollable fractional trailing-edge devices used on airplane wings. Such devices are widely

used to effect swift and minor alterations to the flight known as trimming. In the recent

past, the interest in using such light weight devices on wind turbine rotor blades has been

growing, and studies related to trailing-edge flaps conducted by Jost et al. [49], Wilson et al.

[50], Behrens and Zhu [51], Barlas et al. [52], and Castaignet et al. [53] are significant in

this context.

Flow-control devices are used on wind turbine blades either to delay stall or to regulate

lift generation by modifying the fluid flow around airfoil sections [54, 55, 56, 57, 58].

Device shape, location on the blade, relative position with airfoil sections, and instanta-

neous configuration determine flow modification. Trailing-edge flaps among these devices

are primarily important to the current study [46, 59]. These external modular attachments
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Figure 1.4: Schematic view of the trailing-edge flap and the modular attachment

are designed to be regulated with low-energy actuators, enabling swift control for opti-

mized blade performance over a wide range of wind conditions. Generating ample mo-

mentum for actuation under load ensures a cost effective and less energy intensive con-

trol approach. The structural similarities of wind turbine rotors to helicopter rotors makes

studies on smart actuator systems by the European Rotorcraft Forum [60] relevant to the

current study. Wind tunnel investigations conducted by the National Advisory Commit-

tee for Aeronautics (N.A.C.A.) have shown that external trailing-edge flaps act as high-lift

devices and their extent of influence depends on the size, profile, hinge location, and rel-

ative angle of actuation [61, 62, 63]. Numerical studies have also shown improvement in

lift behavior for multi-element airfoils derived from airfoil sections typically used for wind

turbine blades [64]. Aerodynamic alterations through relative positioning can assist in load

mitigation and being lighter assures faster response. Additionally, using a modular concept
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as depicted in figure 1.4 ensures minimal alteration to the manufacturing process for ex-

isting turbine blades. Such fractional chord flaps also make it easier on manufacturers for

customizing these external attachments for specific blade designs. On the outlook, this ap-

proach seems to stand out compared to full-span pitching, yaw corrections, or stall control

techniques. However, a comprehensive understanding of the effects of trailing-edge flaps

on rotor dynamics is crucial to develop an optimum design for control.

1.4 Focus of study

Load control on wind turbines is widely studied and there is significant progress in under-

standing most of the approaches discussed above. However, studies focusing on control of

rapid load variations that occurs within rotational cycles of turbine rotors are scarce. This

is in spite of the fact that sources for such fluctuations like tower interference and gust load-

ing are always a concern to the fatigue life. Even in the case of most commonly used pitch

control, studies on conventional pitching to mitigate long-term variations are widespread.

But there is very little progress towards studies on short-term pitch actions. Consequently,

the boundaries of pitching as an effective methodology for rapid action control are not well

understood. With respect to flow-control devices, the response of a flexible rotor that in-

cludes the coupled modes of deformation and aerodynamics is missing in current studies.

As light weight devices they profess to have swift response and be easier to manage under

dynamic operating conditions.
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This thesis work extends the capabilities of an aeroelastic code to create a platform to ana-

lyze wind turbines with flow-control devices as active load control techniques, and also ex-

plores the effectiveness of such devices under rapid load-control scenarios. Pre-determined

rapid control actions such as pitching and trailing-edge flap actuation are implemented on

a benchmark turbine under nominal operating conditions. The goal is to understand the

aeroelastic rotor response of utility-scale wind turbines under rapid control actions, paying

special attention to the power of actuation.

1.5 Thesis outline

This chapter provided a brief background on the significance of utility-scale wind turbines,

some commonly used load control techniques, and the bottleneck in dynamic load control.

Chapter 2 will discuss the details of the model used in numerical assessment of wind tur-

bines, expansion of the control module for the integration of flow-control devices as active

load control techniques, and key aspects of computing the power involved in rapid control

actions such as pitching and flap-actuation. Then in chapter 3, we present the numerical

results from the extensive aeroelastic analysis of a benchmark wind turbine. After a brief

introduction on the need for rapid load control action on wind turbines, this chapter will

explore conventional pitching and flap-actuation independently as rapid load control tech-

niques. Finally, chapter 4 will briefly discuss the key outcomes of this thesis study on active

flow-control devices for wind turbines and provide recommendations for further research.
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Chapter 2

Numerical Model

Turbine blades are highly complicated structures undergoing cyclical rotation in dynamic

wind conditions. The combination of various factors such as fluctuating rotor loads, cou-

pled aeroelastic behavior of turbine blades, interaction of blades with the tower, and a

coupled control system makes the wind turbine a highly complex machine. The increasing

size of the rotor and these interlinking factors make wind-tunnel studies of next generation

super turbines difficult and hence necessitates full scale studies using computer models.

One of the challenges in numerical study is the high computational cost involved in solving

a complex non-linear 3-dimensional coupled aeroelastic problem. Numerically this prob-

lem has been resolved either as a full 3-D model or in a dimensionally-reduced manner.

Full-3D simulations are computationally expensive limiting the ability to execute a wide

range of cases, where different rotor designs need to be tested in various wind scenarios
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and using a range of control-strategies. Dimensionally-reduced methodology are hence

preferred and employ either a vortex modeling or a stream-tube approach. The effective-

ness of the model adopted also depends on its ability to alternate between the aerodynamic

behavior and structural response and hence represent the coupled aspects of the turbine ro-

tor. Reduced-order approaches typically model the structure as a Bernoulli or Timoshenko

beam, either by the means of a discretization method (like finite elements) or by a modal

description using limited finite number of deformation modes in the solution. The flow

problem is normally solved through the well-known Blade Element Momentum (BEM)

model. A combination of these two approaches allows a fully non-linear coupled scheme

to represent the complexities involved (see [65] for a comprehensive discussion). Tradi-

tional aeroelastic modeling through codes such as FAST, and Aerodyn are based on this

technique [66, 67, 68]. Though this approach provides a deep insight into the complex dy-

namics of a coupled multi-physics problem, there is a dearth in definition of the feedback

introduced by the intrinsic coupling of the structural and aerodynamic modes.

The present study uses a novel numerical model capable of handling the aforementioned

complexities. The current chapter introduces specific details of this numerical model, how

it is implemented, and on how the control module capabilities are extended to integrate

flow-control devices for active load control. Further, we will also discuss some of the key

aspects related to computing power required for control actuation, which are relevant in the

assessment of contemporary and innovative control techniques.
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2.1 DynamicRotor Deformation - Blade ElementMomen-

tum (DRD-BEM) Model

The numerical model used in this research is highly capable of representing the coupled

multi-physics phenomena using two advanced numerical schemes. First, the structural

response of heterogeneous composite blades is modeled to represent the complex modes

of blade deformation while optimizing the computational expense [69]. Second, the flow

behavior is represented using an innovative aerodynamic momentum model with capabili-

ties to transform velocities, forces, and geometrical features through orthogonal matrices.

Instantaneous deformed configuration of the rotor and their effects in computation of aero-

dynamic loads are completely represented in this approach known as the Dynamic Rotor

Deformation - Blade Element Momentum model (DRD-BEM). This is achieved by the

transformation of velocities acting at the rotor level through a series of orthogonal matri-

ces projecting them on to the blade section, and in the same way re-projecting the forces

and deformations acting at blade sections back to the rotor orientation. These numerical

schemes work in the context of a multi-physics solver called the CommonODE Framework

(CODEF), which also include modules that model the dynamics of the control system and

electromechanic devices on the drive-train. The key features of DRD-BEM will be de-

scribed in the following sub-sections, and for more details the reader is referred to Ponta

et al. [70].
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Among the stream-tube family of flow modeling for wind turbines, the Blade Element Mo-

mentum (BEM) model is widely used in the design and analysis of horizontal-axis wind

turbine rotors (see [15] and [3] for further details of a classical BEM implementation). The

classical formulation equates the change in momentum across an actuator disk with the

aerodynamic forces computed at the blade sections using trigonometric functions to project

velocities and forces. However, this is constructed on the assumption that cross-section of

the blade are perpendicular to the radial axis of the actuator disk that is contained in the ro-

tor’s plane. This prevents BEM from considering various misalignments of blade sections

associated with highly flexible blades during rotor operation, and hence misrepresenting the

aerodynamic forces. The basics of the momentum theory remains valid and the actuator

disk theory is extended for their application to horizontal axis turbine rotors. The equa-

tion of momentum changes is performed through consideration of a series of blade section

elements that correspond to annular actuator rings at the rotor’s plane corresponding to con-

centric stream-tubes. However due to blade deformations, these elemental cross-sections

vary in thickness and alignment across the time-step analysis, misrepresenting the area of

the annular actuator ring in momentum computation. Hence, the mathematical formula-

tion should be able to consider the velocities projected at the instantaneous orientation of

blade sections in computing the aerodynamic forces, and also use these resulting forces

re-projected to the instantaneous deformed configuration of the annular actuators in the

momentum equation. Additionally, recalculation of the annular actuator area needs to be

performed based on instantaneous rotor deformations in equating the change in momentum
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along the stream tubes.

The DRD-BEM model used in the current study also belongs to the stream-tube family of

interference models. However, a complete reformulation was adopted to take into account

the misalignments at blade sections and modifications to annular actuator configurations,

ensuring the resulting model fully represents the dynamic rotor deformation effects in a

manner compatible with advanced structural models. This was achieved through the use

of orthogonal matrices that act as linear operators in transforming the velocities and forces

through a series of coordinate systems, each of which represents an important structural

aspect of the rotor. The series of transformations begin at the global coordinate system

aligned with the incident wind and goes through various intermediate stages culminating

at the instantaneous position and attitude of the blade sections, where the axes are defined

by a triad aligned along chord-normal, chord-wise, and span-wise directions. Figure 2.1

shows a schematic representation of the Blade Element Momentum model, with an annular

actuator disc depicted on the left side for the corresponding blade element shown on the

right side. The forces acting on the blade element of span-wise length δl are projected on

to the hub, to compute the change in momentum across the corresponding annular actuator

with radial thickness δrh at a radius of rh from the hub center. The hub coordinate system h

here is defined in accordance with the International Electrotechnical Commission (IEC) [4]

(see figure 2.2, and the discussion about expressions 2.10 to 2.13 in sub-section 2.1.2).

Systematically equating this change in momentum ensures that the alteration to the area

swept by the annular actuator is updated at every time step of the analysis. With defining
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Figure 2.1: Schematic view of the dynamic generation of the annular actuator swept by a
blade element (adaptation of a scheme presented in Burton et al. [ 3]). Left panel: turbine
rotor with annular actuators, center panel: blade elements that correspond to the annular
actuator, and right panel: a representation of Generalized Timoshenko Beam model for
a generic beam section that also shows the reference-line, beam sections, and respective
coordinate systems before and after deformation.

the hub coordinate system, h at the hub of the rotor, it is also important to note the inter-

ference causes the stream-tube that is initially aligned with the direction of incident wind,

deflects after passing through the annular actuator. This extend of the forces exerted on the

flow (due to the presence of an actuator) will determine the amount of this deflection (see

discussion about expression 2.1 in section 2.1.2). This technique allows to automatically

include not only the misalignment caused by instantaneous blade deformation and/or pre-

conforming manufacturing processes, but also the misalignments caused by the action of

various mechanical devices that control yaw, pitch, and azimuthal (main shaft) rotations.

Through this consistent mathematical formulation, even alterations in wind direction and

changes in design characteristics such as tilt and cone angle could be accounted for in the

same manner.
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Figure 2.2: Schematic representation of hub coordinate system according to standards
from the International Electrotechnical Commission (IEC) [4]

2.1.1 Blade structural model: The dimensional-reduction technique

for beams

The numerical representation of the rotor blade structure is based on an advanced model

capable of taking into account the increased flexibility of advanced blade designs. Be-

fore describing the detailed approach for DRD-BEM model, a brief description of the key

features of this structural model is presented here. For a further details related to the imple-

mentation of our model and a discussions on historical background, please refer to Otero

and Ponta [69] and the references therein. Otero and Ponta [69] also covers some studies

conducted using the to the analyze vibrational modes of composite laminate wind turbine

blades.

Reduced-order approaches to study rotor blades as slender beams amounts to substantial
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Figure 2.3: Depiction of a typical blade internal structure using a box-spar that is char-
acterized by significant build-up of material on the spar cap zone between the shear webs.
A balsa-core sandwich construction with triaxial fiberglass laminate is used in the design
for exterior shell and shear webs Griffin [5].

savings in computational effort in comparison with a full 3-D analysis. However, the com-

plex internal structure and heterogeneous distribution of material properties makes it chal-

lenging to accurately represent the complete blades characteristics using traditional ap-

proaches. See figure 2.3 from [5], for a typical example of a blade internal structure. Some

of the traditional beam theories used in modeling turbine blades are the Euler-Bernoulli

beam theory and standard Timoshenko beam theory. Their ad hoc kinematic assumptions

however amount to intoruction of significant errors, especially when blades vibrate at wave-

lengths shorter than their length [71]. The Generalized Timoshenko Beam Model (GTBM)

technique, used in the current study overcomes these limitations.

Originally proposed by Prof. Hodges and his collaborators [72, 73], the GTBM is a dimen-

sional reduction technique for complex beams which may have a curved and/or twisted

profile. It uses the same variables as the traditional Timoshenko beam theory, but the
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hypothesis of beam sections remaining planar after deformation is abandoned. The gener-

alized approach takes into consideration the possibility of warping during deformation and

uses a 2-D finite-element mesh to estimate the real warping of deformed sections. Through

a mathematical procedure the 3-D strain energy of the beam is re-written for an equivalent

one-dimensional beam in terms of the six classical variable used in traditional Timoshenko

theory - the extensional strain, two transverse shear strains, the torsional curvature, and two

bending curvatures. The complex geometry of blade-sections are reduced into a stiffness

matrix for the the equivalent 1-D beam problem, and is then solved along the reference-line

L, which represents the axis of the beam in its original configuration (see right panel of

figure 2.1). In an asymptotic sense, the strain energy computed for the reduced 1-D model

will be equivalent to the original strain energy of the 3-D blade structure.

From the numerical point of view, elimination of the ad hoc kinematic assumptions of the

traditional Timoshenko theory produces a fully populated 6x6 symmetric stiffness matrix

for the 1-D beam, instead of only the 6 individual stiffness coefficients of the traditional

theory. This means that now the 6 modes of deformation are fully coupled, and it is why

this technique is referred to as a generalized Timoshenko theory. Thus, bending and trans-

verse shear in two directions, extension, torsion, and the coupled modes of deformation

(like bending-torsional or bending-bending) are fully represented in a consistent theoreti-

cal frame.

Essentially, through the GTBM we are able to decouple a 3-D nonlinear elasticity problem
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into a linear 2-D cross-sectional analysis (which may be solved a priori), and a nonlinear 1-

D unsteady problem for the equivalent beam, which is solved using an advanced ordinary

differential equation (ODE) algorithm at every time-step. The a priori 2-D analysis can

be performed in parallel for multiple sections along the blade span, calculating the 3-D

warping functions, and finding the stiffness matrix for the equivalent 1-D beam. Once

the history of deformation for the ODE solution of the 1-D beam problem is obtained,

the associated 3-D fields (displacements, stresses, and strains on the blade sections) at

each time step can be recovered, a posteriori, using the 3-D warping functions calculated

previously.

As can be seen in the right panel of figure 2.1, a system of coordinates intrinsic to the beam

section, (xL, yL, zL), is used to represent the kinematic and dynamic variables along the

original reference-line L. The intrinsic system follows the deformation of the beam into

the instantaneous configuration l to become (xl, yl, zl). When this technique is applied

to blades, the intrinsic system remains aligned to the blade sections in the chord-normal,

chord-wise, and span-wise directions. Thus, even during large displacements and rotations

as observed in contemporary turbine blades, this technique allows accurate tracking of the

position and alignment of airfoil sections as a natural outcome of the 1-D finite-element

solution.

The solution of the 1-D model for the equivalent beam, as schematically indicated in the
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right panel of figure 2.1, is itself divided in two parts: dynamic and kinematic, each as-

pect represented through their respective set of equations (see Otero and Ponta [69] for a

comprehensive description, including the complete mathematical derivations).

The dynamic part is written in terms of 4 vectorial quantities (i.e. 12 variables): linear

velocity, angular velocity, force, and moments. The generalized velocity vectors represent

the vibrational aspects and comprise of three variables each - 3 linear velocities vstr and the

3 angular velocities ωstr). The generalized forces on the beam section are composed of the

axial and the 2 shear forces contained inFstr, plus the torsional and the 2 bending moments

contained inMstr. The 6 components of the generalized forces are directly related with the

6 variables of the Timoshenko theory through the 6 × 6 stiffness matrix for the equivalent

beam mentioned above. The dynamic equations are essentially nonlinear, and could be

either solved iteratively in a linearized mode to get steady-state solutions, or as a system

of ordinary differential equations (ODEs) by means of an adaptive variable timestep ODE

solver to get time dependent solutions.

The dynamic part of the solution also includes the inertia properties of the blade. Like the

elastic properties discussed previously, these too are dimensionally-reduced to produce a

6× 6 inertia matrix for the equivalent beam at each position along the reference-line. This

matrix contains the mass per unit length, and the moments of inertia of first and second

order for each blade section along the span. These are obtained from a two-dimensional in-

tegration performed over the area of each blade section which takes into account the details
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of its shape and its distribution of material properties. In this way, a full three-dimensional

representation of the inertia properties of the blade are introduced into the dynamic solu-

tion. When operating in conjunction with the linear and angular velocities (vstr, and ωstr),

this matrix produces the 6 components of the linear and the angular momentum of the vi-

brational motion of the blade sections, and the inertia forces and moments associated with

them. It also allows to compute the inertia forces associated with the rotation of the main

shaft and the action of mechanisms like yaw or pitch. Thus, centrifugal, Coriolis, angu-

lar, and linear acceleration effects are completely accounted for in a full three-dimensional

representation (see also the discussion about the computation of gravitational forces in sub-

section 2.1.2).

The kinematic part uses as input the previous solution of the dynamic part to produce the

displacements, ustr, and the orthogonal matricesClL representing the rotations of the blade

sections from the original configuration L to the deformed one l. The kinematic equations

are highly nonlinear in nature due to the transcendental relations in the parametrization

of rotations, and are solved through an iterative scheme, at each step of a time-dependent

solution from the ODE algorithm.

UpdatingClL at every timestep of the ODE solution of the structural model, is key to trans-

ferring information between the structural and the aerodynamic models, together with the

displacements of the reference-line ustr, and the linear and angular vibrational velocities of

the blade sections (vstr and ωstr). On the other hand, aerodynamic load information from
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the aerodynamic model is fed into the structural solution by means of the distributed aero-

dynamic forces due to lift, drag and the aerodynamic pitch moment on the airfoil sections.

2.1.2 DRD-BEM procedure

The algorithm for DRD-BEM model is a sequential process involving a series of tasks

performed in thr following order:

I Modification of incident wind by action of the annular actuator

First, we shall consider the velocity vector of flow passing through an annular actuator

aligned with the hub coordinate system h. The presence of the actuator disk in the flow

path causes an interference, which is measured on the flow velocity using two induction

factors. A deficit in the axial velocity is determined as the effect of an axial induction

factor a that represents the interference in the direction normal to the actuator. And

an increase in tangential velocity results from the tangential induction factor a′ that

represents the radial interference in a direction tangential to the rotor. Then the free-

stream wind is modified at the hub providing the velocity vector of wind going through

the actuator as,

Wh =

⎡
⎢⎢⎢⎢⎢⎢⎣

W∞hx(1− a)

W∞hy + Ω rha
′

W∞hz

⎤
⎥⎥⎥⎥⎥⎥⎦
, (2.1)
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whereW∞h is the undisturbed wind velocity field referred to the hub coordinate sys-

tem, Ω is the angular velocity of the rotor, and rh is the instantaneous radial distance

of the annular actuator (as shown in figure 2.1). As mentioned earlier, the concentric

stream-tubes associated with each blade element are initially aligned with the hub co-

ordinate system, and is deflected after passing through the actuator as a result of the

forces acting on the flow particles from the actuators. The three-dimensional construc-

tion ofWh reflects this notion, reflected in the changes fromW∞h. Any changes in the

orientation of incident wind due to rotor features such as a tilted rotor and/or yawing

angle are represented in theW∞h beforehand, through a transformation fromW∞wind

with the use of orthogonal matrices. From this position, a series of orthogonal matrices

are used to transformWh through a set of coordinate systems to eventually obtain the

instantaneous velocity of wind as seen by the blade element.

Orthogonal three dimensional matrices work in a twofold manner: they can act as a lin-

ear operators to transform vectors between two coordinate systems, or as mathematical

representation of a rotation in the three-dimensional space (that is why they usually are

simply referred to as rotation matrices). The case of coordinate transformation can be

seen as a rotation of the first coordinate system to make it coincident with the second

one.

The transformation ofW∞wind intoW∞h happens in a sequence of transformation, of

which the first orthogonal matrix represents the yawing misalignment and is denoted by

CΔθyaw . This will take into account any misalignment between the wind direction and
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Figure 2.4: Definition of cone and tilt angles for upwind wind turbines, according to
standards from the International Electrotechnical Commission (IEC) [ 4]

the nacelle orientation, represented by the angle Δθyaw, analogous to a rotation around

the vertical axis of the turbine. The matrix used in this transformation has the following

form, resulting in the wind velocity being expressed in the nacelle coordinate system,

CΔθyaw =

⎡
⎢⎢⎢⎢⎢⎢⎣

cos(−Δθyaw) sin(−Δθyaw) 0

− sin(−Δθyaw) cos(−Δθyaw) 0

0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦
, (2.2)

where Δθyaw = θyaw − θ∞, with θyaw being the nacelle orientation and θ∞ the direc-

tion of the free-stream wind. The minus sign is due to the fact that Δθyaw is defined

positive counter-clockwise according to technical specification of IEC (TS 61400-13

IEC:2001), and both θyaw and θ∞ are defined positive in clockwise sense from the

North as in a compass rose.
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To obtain the wind velocity as projected at the hub coordinate system, there are two

more transformations that considers the tilt orientation and azimuthal position. The

vertical misalignment of turbine axis due to a tilting angle is considered as defined in

the IEC standards [4] (see figure 2.4). First, a rotation around the horizontal axis of

the nacelle system is contained in the tilting matrix Cθtlt . This transforms the velocity

vector into a coordinate system that aligns the first axis parallel to the turbine shaft.

Second, the azimuthal matrixCθaz transforms the wind velocity into the hub coordinate

system h, by rotating around the main shaft to the instantaneous blade position. The

hub coordinate system is depicted in figure 2.2. This results in in expression for the

unperturbed wind velocity projected at the hub coordinate system:

W∞h =
(
CθazCθtltCΔθyawW∞wind

)
. (2.3)

II Projection of wind velocity on the blade section coordinate system

Moving ahead from the hub coordinate system,Wh will be projected through several

coordinate systems to align the velocity with the instantaneous blade section. First of

these transformations are represented in the coning matrixCθcn . This is a linear opera-

tor that takes into account the coning angle for the rotor (see figure 2.4), characterizing

a rotation around the second axis of the hub coordinate system. This matrix could either

represent coning as a in-built feature of the turbine as in the case of NREL-5MW ref-

erence wind turbine [74], or a control mechanism that intends to vary the coning angle
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Figure 2.5: Blade coordinate system according to standards from the International Elec-
trotechnical Commission (IEC) [4]

during operation. Either way, there will be a misalignment due to the coned rotor and

the current code is designed to include both. For a detailed description of the concept of

coning rotors and their effects see Jamieson [75], Crawford [76], Crawford and Platts

[77].

Similarly, the pitching transformation matrix Cθp involves a rotation around the pitch

axis of the blade, which is the third axis of a coordinate system obtained from the

sequence of transformations. The pitch angle θp again, could be a design feature of

the turbine at various operational conditions or the result of a control mechanism, and

reflects changes in pitch most often introduced by actuators of the control system. As

per IEC standards [4] (see figure 2.5), we are now representing the velocity of wind

at the so-called blade coordinate system denoted as b. As an example of these linear

operators, the matrix of transformation for pitching is presented here.
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Cθp =

⎡
⎢⎢⎢⎢⎢⎢⎣

cos(−θp) sin(−θp) 0

− sin(−θp) cos(−θp) 0

0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦
, (2.4)

with θp = θp0 + θpctrl, the pitch angle, composed by θp0 , a fixed angle set up as a

constructive feature, and θpctrl , the pitch angle varied by the control system. The minus

sign appears here due to the sense in which positive pitch angles are defined in the IEC

standards.

For turbines that use tilt or yaw as control mechanisms, a similar scheme could be

used to adopt the respective rotational matrices to include the angular alterations from

the control action. The interaction with control and/or electromechanical modules also

requires a constant update of the matrices associated with mechanical devices. For

example, in addition to the use of representing the instantaneous blade position, the

azimuth matrix Cθaz could also reflect certain control operations such as the use of

variable rotor speed. Such action alter the dynamics of the electromechanical drive

train for varying the rotor’s angular speed Ω.

The coordinate system at the instantaneous configuration of blade section represented

as (xl, yl, zl) are defined along the deformed reference-line l (see right panel of fig-

ure 2.1). After the pitching rotation, two more orthogonal matrices are involved in this

transformation process. The first among them is based on the geometrical alignment of

the blade sections along the span defined during the blade design, which could include

pre-defined curvatures from bend or twist blades. Along its longitudinal axis L, the
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blade axis is no longer rectilinear and the third-axes of blade sections does not neces-

sarily align with the third-axis of blade coordinate system b (shown in figure 2.5). As

it was mentioned earlier, the intrinsic system L is aligned to the blade sections in the

chord-normal, chord-wise, and span-wise directions. Thus, the above mentioned cur-

vatures can reflect either an design twist along the longitudinal axis, or a combination

of twist and pre-bending on the other two axes (i.e. coning-wise/sweeping-wise). To

this end, the next orthogonal matrix CLb represents the transformation from the blade

coordinate system b to the reference line L of the blade in its original non-deformed

configuration. This intrinsic system of coordinate for L are presented as a combination

of xL, yL, and zL. The second orthogonal matrix involved in this last stage of transfor-

mation is denoted asClL, and is provided by the solution of the kinematic equations on

the structural model (as explained in sub-section 2.1.1), which transforms vectors from

system L to the instantaneous deformed system l.

These series of transformations allow the representation of the wind velocity vector

Wh in the coordinate system of the blade section. At this point, we will also add

the vibrational velocities vstr of the blade section (coming from the structural model),

and the mechanical velocity components vmech, which are already expressed in the l

system. The vmech represents motion of the blade sections due to the combined effects

of mechanical devices such as yaw, pitch, and azimuthal rotations. Thus, the expression

for wind velocity relative to the blade section,Wl, is defined as
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Wl =
(
ClLCLbCθpCθcnWh

)
+ vstr + vmech. (2.5)

III Computation of aerodynamic loads using Blade Element Theory

Aerodynamic lift and drag forces acting at blade sections are computed using the sec-

tional lift coefficients and the relative wind velocity. The aerodynamic coefficients are

defined for each airfoil profile (at the respective sections) based on the relative angle of

attack, α. Now, with the knowledge of the magnitude of wind velocity relative to the

blade section, |Wl|, and its angle of attack α, the sectional lift and drag forces per unit

length of span are computed as,

dFlift =
1

2
ρCl |Wl|2 c, (2.6)

dFdrag =
1

2
ρCd |Wl|2 c, (2.7)

where Cl and Cd are the lift and drag coefficients for the corresponding angle of attack,

ρ is the air density, and c is the chord length of the airfoil section. The total aerodynamic

load acting on the sectional blade element aligned with relative wind direction has

components corresponding to the lift and drag forces and is given by
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δFrel =

⎡
⎢⎢⎢⎢⎢⎢⎣

dFlift

dFdrag

0

⎤
⎥⎥⎥⎥⎥⎥⎦
δl, (2.8)

where δl is the span of the sectional blade element as shown in the center panel of

figure 2.1.

IV Aerodynamic forces on the hub coordinate system

The aerodynamic forces observed at the blade section needs to be re-projected back

to the hub coordinate system, which is again achieved through the use of orthogonal

matrices. One important and much useful property of orthogonal matrices is that their

transpose is equal to their inverse. This property is made use to transform the aerody-

namic load δFrel back to the h coordinate system, which is conveniently achieved by

transposing the same orthogonal matrices and using them in the reverse order. Hence,

the aerodynamic load on the blade element is expressed in h coordinate as

δFh = CT
θcnC

T
θpC

T
LbC

T
lLCLthal dFrel δl, (2.9)

whereCLthal is the matrix which projects the lift and drag forces onto the chord-normal

and chord-wise directions, which are aligned with the coordinates of l. Expression (2.9)

could be re-written as δFh = dFh δl, or in components
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δFh =

⎡
⎢⎢⎢⎢⎢⎢⎣

δFhx

δFhy

δFhz

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

dFhx

dFhy

dFhz

⎤
⎥⎥⎥⎥⎥⎥⎦
δl, (2.10)

where dFh = CT
θcn

CT
θp
CT

LbC
T
lLCLthal dFrel.

V Equating forces from Blade Element Theory andMomentum Theory

Finally, the components of the force coming from the blade element theory δFh are

equated to the rate of change of momentum through the corresponding annular actuator.

The aerodynamic force component normal to the annular actuator δFhx , is equated to

the change in axial momentum onW∞hx associated with the axial interference factor a

(see expression 2.1), which after some algebraic modifications give

dFhx = fth
4π ρ rh

B

(
W 2

∞hx
a (1− a) + (a′Ω rh)

2
) δrh

δl
, (2.11)

where fth is the combination of the tip and hub loss factors described in more detail later

(sub-section 2.1.3), and B is the number of blades used on the rotor. Here we included

the term (a′Ω rh)
2, which takes into account the fact that the rotation of the wake causes

a pressure drop behind the actuator equal to the increase in dynamic head [3]. The term

δrh
δl
involves the transformation of δl into δrh, which is performed by means of the same

set of orthogonal matrices already described. The tangential component δFhy , is then

equated to the corresponding change in tangential momentum associated with induction
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factor a′ which gives

dFhy = fth
4π ρ rh

B
|W∞hx | (1− a) (Ω rh) a

′ δrh
δl

. (2.12)

VI Iterative solution for the induction factors

As is observed in classic BEM approach, the set of equations (2.11) and (2.12) form a

nonlinear system where the unknowns are the two induction factors a and a′. For each

of the blade section elements, these equations are solved by an iterative process within

each timestep of the aeroelastic solution. In traditional implementations of BEM, this

is usually solved by functional iteration schemes starting from an initial guess value.

Given the more complex nature, the DRD-BEM uses an advanced optimization algo-

rithm to improve the stability and the speed of convergence of the iterative process. To

this end, an implicit expression for a is formed from equation (2.11),

aRes = dFhx − fth
4π ρ rh

B

(
W 2

∞hx
a (1− a) + (a′Ω rh)

2
) δrh

δl
, (2.13)

and equation (2.12) results in an explicit expression for a′ as

a′ =
dFhy B

fth 4π ρ rh |W∞hx| (1− a) (Ω rh)
δrh
δl

(2.14)

To determine the final interference factors at each time step, the zero of equation (2.13)

is solved for by minimizing the residual aRes. This solves for the axial induction factor
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a, while the a′ solution from equation 2.14 acts as a constraint at every time step. An

adaptive algorithm based on a combination of bisection, secant, and inverse quadratic

interpolationmethods is used in solving the minimization problem. The main advantage

of this close-interval method (instead of the traditional iteration from an initial guess

value), is that the search is always bracketed between two limiting values that enclose

the range where the solution is expected. It avoids the situation where the solution

overshoots and diverges, or gets trapped into an endless loop. This ensures that the

convergence criteria, and the error check, are constantly monitored by an efficient, and

highly reliable numerical scheme [78, 79].

VII Computation of distributed loads on the blade structure

The dynamic loads acting on the blade structure, required by the GTBM structural part

of the numerical model (see sub-section 2.1.1), are to be provided from the DRD-BEM

model. These are computed as distributed loads and moments per unit span length

of the blade, and are expressed in intrinsic system of coordinates at the instantaneous

deformed configuration l. The distributed loads have two main components: one con-

tributed from the aerodynamic forces, and the other from gravitational action.

After the deteremination of induction factors (in step VI) through convergence, the

aerodynamic forces acting at each blade section are re-determined taking the interfer-

ence into consideration. To this end, steps I to III are repeated but this time expressing

them in system l. That is, dFl = CLthal dFrel, where the first two components give the
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chord-normal and the chord-wise aerodynamic loads. The traditional formula for com-

putation of aerodynamic moment is used to determine dMaer acting at airfoil sections

per unit span of the blade,

dMaer =
1

2
ρCm |Wrel|2 c2. (2.15)

where ρ is the density of air, Cm is the aerodynamic pitch coefficient of the airfoil

section at the corresponding angle of attack α, Wrel is the velocity of relative wind at

the airfoil section, and c is the airfoil chord. The computation of aerodynamic forces

and moment here (as well as in step III) would adopt a slightly different approach to

use updated aerodynamic coefficients for blade sections, when they are fitted with flow-

control devices. This is done through a consistent algorithm that checks for the presence

or absence of such devices at every time-step, and will be discussed in more detail in

section 2.2.

The three-dimensional contribution of the gravitational action to the distributed forces

and moments along the span is computed for the instantaneous position and attitude of

each blade section. To this end, we use the same inertia properties included in the 6×6

dimensionally-reduced inertia matrix for the equivalent beam, previously described in

sub-section 2.1.1. The numerical code has the capacity to switch the gravitational load

on or off according to the preferences of the user.

With these inputs from DRD-BEM, the structural model is able to produce the dynamic
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and kinematic variables to characterize the rotor deformation. The next iteration of the

process involves the inclusion of various corrective factors that are necessary in these

computations.

2.1.3 Dynamic update of corrective factors

The implementation of the DRD-BEM also contains some additional improvements in the

form of correction factors that are dynamically updated. Whereas in most traditional ver-

sions of BEM, such factors are pre-computed and remain constant along the calculation.

The dynamic correction factors used in DRD-BEM aredescribed below:

† Airfoil aerodynamic data from static wind-tunnel tests are corrected at every time-

step of the analysis, and considers both rotational-augmentation and dynamic-stall

effects. The rotational-augmentation correction is based on the well-know models

of Du and Selig [80] and Eggers [81]. And the dynamic-stall model is based in

the works of Leishman and Beddoes [82, 83, 84]. The code also has the capacity

to switch between three options for its application: it could be applied at each step

of the iterative solution for the interference factors plus at the computation of the

aerodynamic loads (i.e. at steps III and VII); it could be applied only during the

computation of the aerodynamic loads after the iterative solution have converged

(i.e. only at step VII); or it could be totally switched off.
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† The model is capable of using multiple data tables for the aerodynamic coefficients

of the airfoil sections. These multiple data sets could be associated with different

Reynolds numbers, with the static presence or active actuation of flow-control de-

vices (such as flaps, ailerons, tabs, or spoilers), or with any other factor that modifies

the original curves of coefficients versus angle of attack. The data on these tables are

interpolated at every time-step providing updated coefficient values that account for

the instantaneous aerodynamic conditions and/or control actions on the flow-control

devices. This feature opens interesting possibilities for future studies and will be

discussed in great detail in a later part of this thesis work.

† To ensure the availability of data for a range of angles of attack ±180◦, we use the

well known extrapolation method proposed by Viterna and Janetzke [85], which is

also applied in real-time like the other corrections previously mentioned (i.e. they are

applied at every computation of the aerodynamic forces made in steps III and VII).

Our model also incorporates several empirical corrections that are typically present in state-

of-the-art BEM models (see [3, 15]):

† BEM theory does not account for the influence of vortices being shed from the blade

tips into the wake on the induced velocity field. These tip vortices create multiple

helical structures in the wake which play a major role in the induced velocity distri-

bution at the rotor. To compensate for this deficiency in BEM theory, a tip-loss model
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originally developed by Prandtl is implemented as a correction factor to the induced

velocity field [86]. In the same way, a hub-loss model serves to correct the induced

velocity resulting from vortex being shed from the blade roots at the rotor hub. Both

are condensed in the fth factor included in equations (2.11) to (2.14).

† Another modification needed in the any model based on momentum theory is the

correction of the thrust on the annular actuator when operating in the so-called

“turbulent-wake ”state. This correction plays a key role when the turbine operates

at high tip speed ratios and the axial induction factor a is greater than 0.5 (in prac-

tical implementations, this limit is lowered to about 0.3 to 0.45, depending on the

corrective curve adopted). At a = 0.5, the parabola representing the thrust coeffi-

cient CT as a function of a reaches its vertex (see figure 2.6), and beyond that, the

basic assumptions of momentum theory on a stream-tube becomes invalid as part of

the flow in the far wake that starts to propagate upstream. Physically, this flow rever-

sal cannot occur and what actually happens is that more flow entrains from outside of

the wake creating vortex structures and increasing the turbulent activity. This slows

down the flow passing through the rotor, but the thrust continues to increase.

Glauert [6] was the first to propose an empirical correction to overcome this limi-

tation in momentum theory. He fitted a parabolic function to the experimental data

from Lock and Townend [8] for wind turbines operating in the turbulent wake state.

Glauert’s fitting function is tangent to the stream-tube CT curve at a = 0.4 (see

figure 2.6). Other authors such as Burton et al. [3] and Wilson [87] also proposed
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Figure 2.6: Graphical representation of the thrust coefficient CT in function of the ax-
ial induction factor a. The parabolic curve given by conservation of momentum in the
stream-tube; Glauert [6] and Buhl [7] empirical relations fitting Lock and Townend [8]
experimental data; and the Power-Law fitting proposed here to minimize the error. The
parabolicCT curve form stream-tube theory is shown here affected by a tip-hub loss factor
fth = 0.9 to illustrate the gap-problem on the Glauert approach.

alternative fitting functions to the experimental data. Nevertheless, a discontinuity

between the fitting function and the stream-tube CT function appears when correc-

tion factors for tip and hub losses are taken into account [7]. This discontinuity be-

comes critical when the induction factors are to be obtained by iterative approaches.

Buhl [7] proposed a new empirical relationship for the thrust coefficient that solves

the gap-problem by ensuring a tangent matching with the stream-tube CT function

regardless if it is affected by corrective factors for tip and hub losses.

The model used in this study is able to employ different empirical relations fitting

the experimental data by Lock and Townend [8], that could be chosen through a

switch in the input. A new corrective curve is also introduced based on a Power-Law

fitting, which substantially reduces the error of approximation to Lock and Townend
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[8] empirical data and also avoids the gap-problem. This is because the Power-Law

fitting always intercepts the stream-tube CT function regardless of the corrective

factors for tip and hub losses applied. Both, Buhl [7] curve, and our Power-Law

fitting are shown in figure 2.6.

† The influence of the tower on the flow field around the blade must also be modeled.

We use the models developed by Bak et al. [88] and Powles [89], which provide the

influence of the tower on the local velocity field at all points around it. These models

account for the increase in wind speed around the sides of the tower, the appearance

of cross-stream velocity components, the deceleration of the flow at the stagnation

zone upstream of the tower, and the velocity deficit in the separated wake behind it

in case the rotor operates in a downwind configuration.

2.1.4 The Common ODE Framework (CODEF)

The previous sections covered the numerical approach from the perspective of interaction

between the structural and aerodynamic models and how they combine to fully utilize the

advanced capabilities. This is achieved through an integration of the multi-physics of these

models using an ODE time-step solution. And such a platform gives the flexibility to

include various other aspects that affects the dynamics of the rotor, such as the control-

system, and electromechanical devices.
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Hitherto, we have seen how our structural model will interact with our aerodynamic model

providing a comparable level of description in order to make full use of the advanced capa-

bilities of both models. This notion of integral dynamic multi-physics modelling through

an ODE solution in time could be extended to include other aspects that greatly affect the

dynamics of the rotor and the overall performance of the wind-turbine, like the response of

the control-system and/or the turbine’s electromechanical devices.

Blade Structure 
GTBM 

Rotor Flow 
DRD-BE(M) 

Drive-Train 
Electromechanics 

Turbine 
Control System 

Adaptive 
ODE Solver 

Farm Flow 
KLE 

Farm Microgrid 
MG-Level 1 

Farm Collective 
Control System 

Individual Turbines 

Wind Farm 

Figure 2.7: Schematic diagram of the Common ODE Framework (CODEF)

As discussed in section 2.1, the equations of motion for the 1-D finite-element problem

of an equivalent beam are solved using a nonlinear adaptive ODE solver. This solver is

based on a variable-timestep/variable-order ODE algorithms that monitors the truncation

error at each time-step of the solution. It also attempts to minimize the truncation error

that ensures stability and higher efficiency of the time-marching problem. Above all, the

use of a non-linear adaptive ODE algorithm allows a natural integration of the various

multi-physics aspects of the problem. Including the differential equations that model the

control system and interactions with electromechanical devices allows their integration into
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the system, modifying the boundary conditions of the aeroelastic problem and vice-versa.

Figure 2.7 shows a schematic diagram of this global scheme indicating the interrelation

between the different modules. These modules may be treated individually, interfacing

with the common ODE routine. And adopting a modular approach allows individual up-

dates/modifications to the modules, making possible a continuous enhancement of the code

in a simplified manner. Moreover, it opens the door in the future for an interconnection of

the dynamics of individual turbines into an integral simulation of their collective dynamics

within a wind-farm, including all physical aspects of turbine-to-turbine interaction: aero-

dynamic, electrical, and collective control at farm-level.

The dynamics of the control-system module and its integrated functions in the ODE frame-

work can be extended to introduce innovative control techniques. A feedback-based ap-

proach involving the electro-mechanical components of the turbine in a closed-loop in-

teraction with the control module is necessary for this. It involves the simulation of an

integrated system of sensors, actuators, and the control devices itself, and will enable the

dynamic updation of the aeroelastic, structural, and control-system properties on a real-

time basis.
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2.2 FCDModule

In the context of this study, flow-control devices (FCD) are fractional devices on turbine

blades that can be triggered to alter the air-flow dynamics near the rotor. They are also de-

signed to dynamically change configuration during the turbine operation using low energy

actuation mechanisms enabling them to actively control the flow and the resulting dynam-

ics of the machine. Use of such devices in controls bring a two-fold advantage of the ability

to vary the control parameter for a range of values while making use of minimal power to

execute the control action. Fractional-chord trailing-edge flaps that can be fitted as modular

attachments on to existing benchmark blades are of key interest in the current study (see

figure 1.4 in chapter 1). Among other properties, flaps have the ability to either revitalize

separated boundary layer or create the separation near the trailing edge of blades based on

the relative angle of arrangement with the original airfoil section.

Aerodynamic loads on the blade is a cumulative effect of forces and moments acting along

each section of the blade, which are given by equations 2.6, 2.7, and 2.15 (see section 2.1.2

for details). At the sectional level, these forces are primarily determined based on the non-

dimensional aerodynamic coefficients of lift Cl, drag Cd, and pitching moment Cm. These

coefficients characterizes each airfoil section, with their values dependent on the angle of

attack α. The aerodynamic forces acting at blade sections are modified when airfoil sec-

tions are fitted with trailing-edge flaps, and the behavioral alterations depend on properties
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Figure 2.8: Aerodynamic characteristics of a NACA 643-618 attached with a 20%-chord
Clark Y profile trailing-edge flap actuated at configurations β = −5◦, 0◦, and 5◦, plotted
against angle of attack α; (a) coefficient of lift C l, (b) coefficient of drag Cd, and (c)
coefficient of pitching moment Cm

such as the flap chord, flap span, and the extend of flow alteration based on the airfoil-flap

configurations. Fractional FCDs such as the trailing-edge flaps modifying airflow near the
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airfoil trailing-edge causing noticeable variations in the aerodynamic characteristics of the

airfoil, providing a new set of aerodynamic coefficients for each configuration.
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Figure 2.9: Aerodynamic characteristics of a DU 93-W-210 attached with a 20%-chord
Clark Y profile trailing-edge flap actuated at configurations β = −5◦, 0◦, and 5◦, plotted
against angle of attack α; (a) coefficient of lift C l, (b) coefficient of drag Cd, and (c)
coefficient of pitching moment Cm
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The modified aerodynamic coefficients were computed for two key airfoils -

NACA 643-618 and DU 93-W-210, when attached with a 20%-chord Clark Y profile

trailing-edge flap. These airfoil sections are among the more aerodynamically efficient sec-

tions and are widely used in contemporary wind turbine blade designs, such as the bench-

mark wind turbine designed by National Renewable Energy Laboratory (NREL), known

as the NREL-5MW Reference Wind Turbine (RWT). On such a blade, these two airfoil

sections cumulatively make up about 45% of the span, as indicated in figure 2.10. The

inner regions of the blade (closer to the root) have airfoils that are thicker to ensure struc-

tural stability, whereas the outer regions (closer to the tip) use thinner airfoils that have

higher aerodynamic efficiency. A major share of this aerodynamic contribution to blade

operation originate from the regions shaded in figure 2.10, which are essentially the span

region equipped to be attached with trailing-edge flaps. The relative positioning of the

trailing-edge flap adopted in this study will be depicted later in section 2.3. As mentioned

earlier, the configuration of the airfoil-flap assembly plays a key role in determining the

quantitative modification in aerodynamic behavior. These airfoil sections were studied for

a range of configurations of the airfoil-flap assembly, and is defined using the relative angle

β between the airfoil and flap chords. The repository for aerodynamic characteristics of

these airfoil section are available for a range of β = −5◦ to β = 5◦, evaluated at regular

intervals of β configurations. Figure 2.8 shows the non-dimensional sectional coefficients

of lift, drag, and pitching moment characterized for NACA 643-618, and figure 2.9 shows

the same for DU 93-W-210. Aerodynamic coefficients of these two key airfoil sections
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Figure 2.10: Schematic representation of an NREL-5MW RWT blade, with the shaded
region indicating the aerodynamically active span sections that could potentially be config-
ured to include a Clark Y trailing-edge flap.

with attached trailing-edge flaps present valuable data for the design of future innovative

turbine blades with active flow- control devices. These properties were obtained from an

extensive study on two-dimensional flow characterization for a wide range of airfoils-flap

assemblies. A steady-state pressure-based computational fluid dynamic solver was used to

this effect, and the range of flap configurations cover a substantial set of scenarios relevant

to wind turbine operating conditions. For more details of this study, the reader is referred

to [90] and the references therein.

The control system module in CODEF currently has the ability to integrate the dynamics of

control techniques such as yaw, pitch, and coning. Using trailing-edge flaps as a prototype,

the module is extended with the capability to incorporate the dynamics of flow-control de-

vices (FCD), simulating the interaction of such control actions with the dynamic aeroelastic

response of the rotor. This means that the effects on the rotor dynamics from a control de-

cision of the FCD module and vice-versa will be evaluated at every instant of the dynamic

numerical simulation. The aerodynamic characteristics of modified airfoil sections fitted

with fractional trailing-edge flaps are made available to the control module, which has a

functionality to interpolate the coefficients from the repository based on the instantaneous
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configuration. At each instant of the time-step analysis (see section 2.1.2), based on the

instantaneous input to the control module, the adaptive algorithm evaluates the presence or

absence of a trailing-edge flap for each section of the blade. As a result, each blade section

adopts either their original aerodynamic characteristics (in the absence of FCD) or accept

an updated set of values (in the presence of FCD). The flowchart shown in figure 2.11

gives an overview of the functional algorithm that is used by the control system module

of CODEF. The aerodynamic coefficients and the resulting loads acting at each airfoil sec-

tions will now depend on two instantaneous parameters - angle of attack α at the blade

section, and angle of flap actuation β defining the airfoil-flap configuration. The adaptive

ODE framework ensures that structural deformations and their effects on the aerodynamic

loads that arise as a result of such aerodynamic alterations, are also considered through the

natural integration of the multi-physics of the machine.

2.3 Power of Control Actuation

For a comparative evaluation of innovative load-control techniques in rapid response sit-

uations, an aeroelastic analysis is performed on a benchmark wind turbine. Conventional

pitch-control and flap-actuation control are independently implemented on pre-determined

load-control scenarios. The dynamic response of the rotor is assessed for the entire time

of operation and the power needed for performing the control action Pctrl is computed.

This section will discuss the analytical approach use to determine Pctrl for both pitching
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Figure 2.11: Algorithm adopted by DRD - BEM to use updated aerodynamic properties
of airfoils attached with flow-control devices.

and flap-actuation control approaches from the numerical results of the aeroelastic analysis.

The power required for control action is determined at every instant of the turbine operation

and is computed as

Pctrl = Mctrl ωctrl. (2.16)

where Mctrl is the total control moment, and ωctrl is the angular velocity of the control
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action. Here, the control moment is defined as the total moment required to effectuate a

control action that involves overcoming the instantaneous aerodynamic moment,Maer, and

the inertial momentMiner of the control device. In the case of pitch-control the device is

entire blade while only the fractional-span flap is considered as the device in flap-actuation

control.

2.3.1 Conventional pitch-control

Conventional pitch-control action involves rotating the blade around its longitudinal axis (L

in the original configuration, and l in the deformed one), which is considered as the pitch-

ing axis. Physically, the pitch control is achieved through hydraulic actuators or electric

motors, and hence the power supplied to these actuators become relevant in the equation

for total generated power of the turbine. In case of pitching, Pctrl will depend on both the

instantaneous aerodynamic loads and the inertia of the entire blade. The sum of instan-

taneous blade root moment for each blade around their respective pitching axes, obtained

from the rotor simulation gives the total moment needed to pitch one blade. In the rapid

control scenarios studied, a cumulative pitching of all three blades is implemented, and the

total control momentMctrl is obtained as the sum of moments involved in these operations.

ThisMctrl value is directly obtained as a result of the aeroelatic analysis that provides the

loads acting at the blade roots at each time-step of the turbine operation. The other sig-

nificant component in the Pctrl calculation is the rapidity of control action, which in this
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case would be the velocity of pitching ωθpctrl
. As the control scenario is pre-designed, the

rapidity of actuation is available for calculations from the beginning. The equation 2.16 is

then used to determine the instantaneous power required for the pitch-control action.

2.3.2 Flap-actuation control

Flap-actuation as an active rapid-control action involves altering the airfoil-flap configu-

ration by energizing the flap from one configuration to another. As in the case of pitch-

control, a coupled effect of aerodynamic and inertial loads acting on the flap impact the

power needs Pctrl of the control action. However, the computation of Pctrl in this case

is slightly different and will be done independently for overcoming the aerodynamic mo-

ments and inertial moments that are involved. As these FCDs are much lighter than the

blade itself the inertial effect on the rotor dynamics are negligible and hence, the control

module of CODEF integrates only the aerodynamic effects of trailing-edge flaps in the

aeroelastic analysis. Computation of Pctrl is effectively based on the moment required to

overcome both the aerodynamic and inertial loads at every instant of operation. However,

the computation of aerodynamic moment,Maer and inertial moment,Miner are done sep-

arately, considering the instantaneous aerodynamic loads and the inertial loads acting on

the flap hinge respectively. The rapidity of control action is defined by the velocity of flap-

actuation ωctrl, which is known from the design of the load-control scenarios. The total

moment required for the control actuation is given asMctrl = Maer +Miner, which is then

53



used in equation 2.16 along with the rapidity of flap actuation to obtain the power required

for flap-actuation control. The factors involved in the computations ofMaer andMiner will

be discussed in the following sub-sections.

2.3.2.1 Aerodynamic moment

Aerodynamic loads acting on a turbine blades primarily depends on the instantaneous flow

characteristics faced by the rotor such as the velocity of wind, rotor orientation, and ro-

tational speed. The forces and moments acting on an attached trailing-edge flap depends

also on the configuration of airfoil-flap assembly (provided by flap-actuation angle β), and

the instantaneous angle of attack α observed at the respective blade sections. To enable

a flap actuation in the direction desired by the control action, the actuation mechanisms

should supply enough torque to overcome the aerodynamic loads acting at that instant.

The most important information necessary to compute this aerodynamic torque (and hence

the power required) is the coefficient of aerodynamic moment around the flap actuation

hinge, denoted by Cmhng
. This coefficient value depends on various factors such as the

airfoil-flap configuration, instantaneous angle of attack α, and the airfoil profile itself. Fig-

ure 2.12 presents coefficients of hinge moments computed for both NACA 643-618, and

DU 93-W-210 airfoil sections with an attached 20%-chord Clark Y profile trailing-edge

flap, for a range of configurations relevant to the current study. These results were obtained

from an extension of the two-dimensional computational fluid dynamic study on airfoil-flap

54



−10 −5 0 5 10 15 20 25 30
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

C
m

α [°]

β = −5°
β = 0°
β = 5°

−10 −5 0 5 10 15 20
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

C
m

α [°]

β = −5°
β = 0°
β = 5°

Figure 2.12: Coefficient of aerodynamic moment at the flap hinge, Cmhng , plotted
against angle of attack at the main airfoil section, α. Left panel: NACA 643-618, and
right panel: DU 93-W-210, when attached with a 20%-chord flap of Clark Y profile.

assembly (see section 2.2). The converged turbulent flow solutions were used to compute

the normalized coefficients of moment around the flap hinge, at specific flap actuation an-

gles and for the range of α relevant to wind power applications. These coefficients of hinge

moment, Cmhng
form a repository of normalized 2-dimensional characteristic of an active

trailing-edge flap that can be configured across the span of the turbine blade. As discussed

in section 2.2, these two airfoil sections together cover a range of about 45% span of the

NREL 5MW RWT blade, providing a strong platform to assess wide-ranging scenarios

for flap actuation. Characteristics of the modular trailing-edge flap and the instantaneous

configurations are available during design of the load-control scenarios. The instantaneous

Cmhng
value is obtained from the corresponding configuration, and the aerodynamic mo-

ment is computed as
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Maer =

(
1

2
ρc2Wrel

2Cmhng

)
S. (2.17)

where ρ is the density of air, c is the design chord length of the trailing-edge flap at the

blade section,Wrel is the magnitude of instantaneous relative velocity of wind observed at

the blade section, Cmhng
is the instantaneous coefficient of aerodynamic moment around

the flap-actuation hinge, and S is the total span of the trailing-edge flap.

2.3.2.2 Inertial moment

The moment around the flap-actuation hinge due to inertia consist of two components -

translational, Itz and polar moment, Ipz . The translational part is computed as Itz = mr2,

where m is the total mass of the flap and r is the distance from the point of load con-

centration to the actuation hinge. This study pertains to Clark Y profile trailing-edge flap

that has a reference line defined along the span at 37.5% of the chord, measured from the

leading-edge. The position of the flap-actuation hinge is adopted from an extensive exper-

imental study for optimization of Clark Y profile flap positioning on high-lift airfoils such

as NACA 23012 [61]. Figure 2.13 shows a schematic of the airfoil-flap assembly that

presents the relative location of flap-actuation hinge with distances marked in proportion

of the chord lengths. The total sectional aerodynamic loads are considered to be concen-

trated along the reference line, which for the current study is defined at 12.5% behind the
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Figure 2.13: Schematic representation of airfoil-flap assembly adopted for Clark Y flaps
attached on NREL 5MW RWT blades.

quarter-chord length i.e. at 37.5% of the flap chord. Hence the distance r is calculated from

this reference line to the flap-actuation hinge (as defined in figure 2.13).

The internal structure of the trailing-edge flap is designed in one of the most common ap-

proaches found on turbine blade designs, using the box-beam-spar ideology. A schematic

representation of the internal structure developed for Clark Y is presented in figure 2.14.

This internal structure is necessary to withstand the continued aerodynamic loads during

turbine operation, and the total mass of the flap is determined primarily from these man-

ufacturing considerations. The intended use of flaps as fractional-chord devices and to be

attached on shorter spans of the blade, allows the design of strong internal structures with-

out significantly adding weight. As these flaps are attached as modular devices (see fig-

ure 1.4 in section 1.3) on the blade, the desired aerodynamic alterations are effective only

span-wise deflections are minimal. For NREL 5MW RWT turbine blades with Clark Y
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Figure 2.14: Schematic representation of the box-beam internal structure of Clark Y flap.

flaps, the span-wise (or chord-normal) deflection was designed to be 5% of the distance be-

tween the trailing-edge of airfoil and nose of the flap in a configuration of β = 5◦. Higher

span-wise deflections stand the risk of altering the design gap beyond their original config-

uration, causing a misrepresentation of the modified aerodynamic properties being used for

the respective configurations. Considering uniform aerodynamic loading along the span of

an attached flap, the chord-normal stiffness was computed using the equation 2.18 for uni-

formly loaded beams. Due to their higher significance in aerodynamic span-wise bending,

forces in the chord-normal direction were used to determine the chord-normal stiffness for

a permissible bending deflection.

kN =
5

384

(
wS4

δflp

)
. (2.18)

where kN is the chord-normal stiffness of the flap considered as a uniformly-loaded one-

dimensional beam,w is the uniform aerodynamic load acting on the flap, S is flap span, and

δflp is the design deflection permissible on the flap such that the aerodynamic effects of the

airfoil-flap assembly is not lost. A series of internal structures are numerically designed for
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the flaps to obtain a matching value of the design chord-normal stiffness kN . A box-beam-

spar internal structure designed for Clark Y profile (shown in figure 2.14) provided the

sectional inertial properties including the mass per unit span length, chord-wise stiffness,

span-wise stiffness, and polar moment of inertia. The flap span from load-control design

is used in determining the total mass of the flap, which in turn provides the translational

inertia, Itz . The inertia of the flap around itself defined as the polar moment of inertia, Ipz

is relevant to the final computations and is also obtained from the internal structure design.

Finally, the total inertial moment acting on the flap is computed as

Miner = (Itz + Ipz) Γctrl (2.19)

where Γctrl is the acceleration of flap-actuation during the control action. Having started the

computation from the sectional properties of the flap profile, the value ofMiner represents

the total torque/moment required to overcome the inertial loads acting on the entire span

of the re-dimensionalized trailing-edge flap. As described earlier in this section, this will

contribute to the computations of instantaneous power required for control-actuation.
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Chapter 3

Numerical Study

This chapter presents the results of numerical experiments conducted on a benchmark tur-

bine to study the dynamic aeroelastic effects on the rotor due to rapid control actions. The

methodologies studied are collective full-scale pitching of all blades and dynamic actuation

of fractional trailing-edge flap, which are implemented independently leading to compara-

ble global changes on the rotor. The first section covers the significance of control actions

designed for counteracting rapid load fluctuations and introduces the benchmark turbine

used in assessing such scenarios. In the second section, we shall look at the dynamic ef-

fects on the rotor when subjected to pre-determined pitch-control scenarios designed for

rapid action. The response of the rotor in nominal operating conditions will provide insight

into rapid-action of cumulative pitching and their limitations, and assessment of the rotor

in above rated wind speeds furthers these observations. The third section discusses the
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effects of rapid flap-actuation control on a modified rotor with trailing-edge flaps attached

along 10% span of the blade, in comparable loading scenarios. In addition to understand-

ing the dynamic response of such a rotor in limited actuation range, this will give a deeper

insight into the structural limitations of rapid control actions turbines with flexible blades.

In addition, this section also establishes the advantages of flow-control devices over pitch-

ing in rapid action scenarios through a comparative study of the power needed for control

actuation when implemented in short time-scales.

3.1 Need for rapid control action

Load control is an integral part of any operational wind turbine, and the purpose varies

depending on the situation to be handled. More often than not, dynamic controls alter

the instantaneous state or operational regime to counter-act wind load variations that are

sustained for a long period. For example, turbines based on the variable-speed concept

have rotor speeds assigned for specific velocities of wind above and below the nominal. As

wind speed changes, the control system alters the rotational speed from one assigned value

to another based on the pre-determined set of values. The machine then continues to operate

in the new rotational speed until another significant variation in wind is observed. Such

control actions are necessary and critical for continued operation of wind turbine. However,

there are other situations when load variations span for a shorter time and even repeat itself

in every cycle of rotation. Such situations could cause sharp peaks in loading, especially
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the cyclic loads result in fatigue loading adversely affecting the lifespan of the turbine.

Peaks of aerodynamic loads arising from passing gusts and variations due to interference

of tower are valid examples of such situations. Counter acting such short-term variations

would require swift alterations to aerodynamics of the rotor that can act within one cycle

of rotation.

3.1.1 Aeroelastic effects of short-term load fluctuations

Short term variations in wind such as a sudden gust, or rapid aerodynamic changes can

result in short-term load fluctuations. The sporadic power fluctuations resulting from such

scenarios affect the safe operation of the electro-mechanical devices connected to the tur-

bine, and the electric grid in general. Designing control approaches to counter such swift

and short fluctuations in loads is important for reliability in continued power production

of turbines. Such approaches would need to target control actions implemented within the

period of cyclic rotation, which in nominal operating conditions are in the order of a few

seconds. Aerodynamic loads on the rotor are consistent with the wind when the air is free

to flow past the rotor. However, presence of the tower creates an obstruction to this flow,

which causes a deficit in the available wind potential at the rotor plane when a blade is pass-

ing through that region (i.e. in front of the tower on an upwind rotor or behind the tower in

a downwind one). This phenomena is observed for every blade and recurs in every cycle of

rotation, resulting in cyclic variations in aerodynamic loads on the rotor. The influence of
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Figure 3.1: Instantaneous power generated P indicative of turbine rotor behavior due
to tower interference, plotted against time span of operation that includes one cycle of
rotation.

tower on the rotor dynamics has always been of key interest to researchers in wind turbine

related studies [91, 92, 93].

In presence of the tower, certain measurable properties show variations that could impact

the performance of the rotors. For example, oscillations in rotor thrust and torque, and

power deficits occurring from such cyclical loading conditions have long lasting impact on

turbine rotors. The NREL 5MWRWT rotor was subjected to tower interference in nominal

operating conditions to understand the dynamic response. Figure 3.1 shows the instanta-

neous power P during a period of 5 s, which is close to the period of rotation at its nominal
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operational conditions of 12.1 rpm. As observed from the figure, the period shows three

pulsations in instantaneous power generated that correspond to instances when each blade

crosses in front of the tower. Besides adverse effects on the electrical machinery caused by

rapid pulsations, there is also a consequential deficit in the averaged power generation that

can be noted from the two horizontal lines in figure 3.1. While the solid black line indicates

instantaneous power of the same rotor when tower interference effects are neglected, the

dotted blue line is an averaged value of instantaneous power in the presence of a tower. This

observation of the overall outcome can be primarily attributed to the aerodynamic changes

in the rotor, which can be better understood through a closer study of the blade dynamics

during these operational regimes.

Wind turbine blades are designed with emphasis to structural stability near the root (use

of thicker airfoils) and with increasing aerodynamic efficiency moving away from the root

(use of thinner airfoils). This is because the sections of the blade farther from the root

(span > 50%) contribute more to the aerodynamic propulsion of the rotor. Lift gener-

ated by airfoil sections is highly dependent on the angle of attack (α), and is hence con-

sidered the single most important aerodynamic property of turbine blades. The angle of

attack (α) at 90% span section of the rotor blades are studied to determine the cause for

variations in power that was observed. Figure 3.2 depicts the angles of attack (α) observed

on NREL 5MW RWT rotor blades covering a time period for one cycle of rotation in nom-

inal operating conditions. The sharp fluctuations observed in α corresponds to the time

when a blade passes in front of the tower, and reflects the deficit in axial wind due to the
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Figure 3.2: Angle of attack α indicative of rotor blade behavior due to tower interference,
plotted against time span of operation that includes one cycle of rotation.

interference. The α behavior observed in a 5 s time span shown in figure 3.2 is indicative

of the entire blade behavior that will repeat in every cycle of rotation. Another interesting

aspect noticeable from the figure is that the interference of tower causing highest variations

in α occurs in a time span of about 1 s, and is consistent for every blade. The wide range of

fluctuation in α also suggest contrasting aerodynamic loads on the turbine blades occurring

in a short span of time.
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3.1.2 NREL 5MW RWT as a numerical test bed

The benchmark turbine used in this study is known as the NREL-5MW Reference Wind

Turbine (RWT), and their characteristic properties are presented in Table 3.1. Designed

with the support from U.S Department of Energy’s National Renewable Energy Labora-

tory (NREL), the intention was to provide a baseline for researchers in the field of wind

power. Design features of this machine are based on various state-of-the-art rotors and

conceptual designs available at the time of conceptualization in 2009. While various multi-

megawatt turbines are operational today, the NREL-5MW RWT is still widely used as the

baseline in a number of research projects across the globe. An upwind 3-bladed horizon-

tal axis wind turbine with a rated power of 5 MW , the RWT was designed for use as an

offshore turbine. Most relevant to the current study are the flexible blades used on the

NREL 5MW RWT rotors, which are 61.5m long and weigh up to 18 tons. The blade also

function under flexo-torsional modes of operation, which essentially means that they are

designed to twist under bending loads to dynamically control the loads during operation.

Jonkman et al. [74] provides a comprehensive description of the turbine’s design features.

The aeroelastic effects on the rotor due to short-term fluctuations such as tower interfer-

ence (as discussed earlier) are significant to completely understand the ideology adopted

for rapid-load control. The two control methodologies covered in this study are pitch-

ing and trailing-edge flap actuation, and will be introduced in the context of rapid control
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Table 3.1
NREL-5MW RWT operational parameters

Description Value

Rating 5 MW
Rotor Orientation Upwind
Configuration 3 blades
Rotor, hub diameter 126 m, 3 m
Hub Height 90 m
Rated wind speed 11.4 m/s
Rated rotor speed 12.1 rpm
Overhang 5 m
Rotor pre-cone 2.5◦

scenarios. The aeroelastic analysis of various load-control techniques applied under rapid

scenarios are performed on the NREL 5MWRWT under operational conditions defined for

the turbine.

3.2 Rapid pitch control

Wind turbine blades are complex beam-like structures with airfoil-profile cross sections

that vary in their twist angle, sectional shape, and chord length all through the blade span.

As a result at every instant of operation, the aerodynamic and structural loads acting across

the span are different. On the other hand, mitigating the effects of rapid load variations need

predictive counter actions that are fast enough to achieve the desired alterations within a

few seconds. Full-span pitching mechanism involves rotation of the entire blade around

its longitudinal axis using electric motors or hydraulic actuators located in the rotor hub.
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Though studies on conventional pitching are successful in understanding their ability to

mitigate long-term load variations, there is very little knowledge about short-term pitch

action. Consequently, the boundaries of full-span pitching as an effective technique for

rapid action control are not established.

In context of rapid action, pitching should be swift in countering cyclical variations like

the ones caused by tower interference effects and/or the presence of gusts and turbulence.

Pitching of blades that cumulatively weigh about 50 − 55 tons, while operating under

aerodynamic loading and in such short time spans demands immense energy. There is also

the potential for aero-elasto-inertial instabilities in the rotor that may compromise the struc-

tural integrity or drastically shorten turbine lifespan. This emphasizes the need to study the

aeroelastic response of wind turbine rotors for a comprehension of the scope and limits of

such rapid pitch-control actions. Pitching as a control action alters the alignment of the

blade with the wind at the root, imposing the same angular change along the entire blade.

Due to the changes in shape and inflow conditions, the aerodynamic loads acting on the

various sections along the span are quantitatively different. However, the changes across

the blade span have a similar qualitative pattern, which when integrated along the entire

span results in a global response consistent to the control action. Thus, studying the aeroe-

lastic behavior at significant sections could be considered representative of the qualitative

dynamics of the entire blade and provides insight into the key physical mechanisms re-

sponsible for these dynamics. In any wind-turbine blade, the sections closer to the tip are

designed to be more aerodynamically efficient and contribute more to the driving torque,
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which is crucial for power production. These span sections are hence potential regions that

provide information on the aeroelastic rotor response to control-pitch action. Selecting the

90% span section for this analysis promises to show intense vibrational and deformational

effects as close as possible to the blade tip without being influenced by the tip effects. This

effectively takes into account the combined dynamics of the structural and aerodynamic

effects on the blade. The aerodynamic forces acting at each section of the blade directly

depend on the angle of attack, α, which makes it a key observable for assessing the blade

loads. It also reflects the geometrical modifications of the rotor due to dynamic structural

deformations and flow characteristics that alter based on the machine kinematics. Hence,

in a complex dynamic system like this with coupled aeroelastic modes of operation, an

aerodynamic observable such as α serves as a nexus between the geometrical/kinematic

aspect of the problem and the dynamic one.

Figure 3.3 shows a schematic of a two-dimensional airfoil blade section, showing the angles

relevant to pitch control action, viz. the angle of attack α, and its relationship with the

angle of pitch θp, the angle of incidence of the flow φ, and the twist angle of the section

θtw. The twist angle depends on structural properties of the blade such as the design twist

angle of sections in the original, un-deformed configuration θLbz , and the instantaneous

deformational twist θlLz . These properties vary dynamically when pitch control actions are

exerted, based on its complex non-linear aeroelastic dynamics. This results in a change

in the angle of attack α, which does not exactly resemble the change in pitching from the

control action, θpctrl. As it was mentioned above, α is an essential parameter that defines
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Figure 3.3: Schematic of a 2-D airfoil section of the blade, showing angles relevant to
pitch control action.

the aerodynamic forces acting on the section, and thus is the target of the control action

itself. Assessing the actual relationship between the control action represented by θpctrl and

the corresponding change in α is the first aspect that we shall analyze.

This section of the numerical study explores the extent of rapid pitching and the related

aeroelastic rotor response for a benchmark wind turbine for load-control scenarios that

are similar to tower interference. A pre-determined control action is used to pitch the blade

from one state to the other in a short time-scales and resulting changes in relevant properties

of the rotor are studied. The basic test control action is a positive step change in pitch angle,

θpctrl, applied as a collective pitching of all the blades simultaneously. The simulation of the

turbine operation continues for a few more cycles of rotation, as needed for the aeroelastic
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transient modes of the rotor to be captured.

3.2.1 Aeroelastic blade response to pitching control

Pitching action as a load-control mechanism during turbine operation works by adjusting

the angle of attack (α) on blade sections. Based on the aerodynamic interference of the

rotor on the incoming wind, α at each blade section is dependent on the instantaneous ori-

entation the incident flow. The blade designed for use on NREL-5MW RWT is a flexible

one [74] and will be referred to as the standard blade. This essentially means that the blade

is capable of deforming under operation without causing permanent structural damage. The

standard blade also has flexo-torsional modes of operation which allows it to twist under

bending loads to optimize blade performance. These factors makes it difficult to attribute

the precise cause for changes in α that result from a control action. The blade flexibility ob-

scures the specific contributions towards variation in α from elastic deformations, torsional

movement, variation in incident flow, and aerodynamic effects. In order to isolate the direct

effect of incident flow alterations due to aerodynamic interference, a hypothetical hyper-

stiff blade was designed with a structural stiffness 103 times that of the standard blade.

Without altering the aerodynamic shape of the standard blade or its inertial properties, the

higher stiffness ensures negligible deformation. By ruling out deflection and torsion, the

hyper-stiff blade allows isolation of aerodynamic interference as the cause for change in α

that occurs as a result of certain fixed change in pitching angle θp.
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At its nominal operation conditions, the NREL-5MW has an initial pitch angle, θp0 of 0◦.

The control-action is imposed starting at 20 s of stable operation, which is approximately

equivalent to 4 cycles of rotation. Figure 3.4 shows the evolution of α for a 90% span sec-

tion of the hyper-stiff blade, resulting from a series of prescribed pitch-control actions. A

positive pitching (feathering) action results in a drop in the angle of attack from the original

value for that section in its nominal operating conditions. It can be observed that this change

in angle of attackΔα is not equivalent to the control pitch angle θpctrl imposed, but there is

a definitive behavior. And as mentioned earlier, this variation in theΔα/θpctrl response for

the hyper-stiff blade is exclusively related with the changes in aerodynamic interference.

Though this observation is significant, a more important study would be on the actual rotor

designed for NREL 5MW RWT that uses flexible blades. This rotor is designed to have a

pre-cone of 2.5◦ and operates with a positive tilt of 5◦. A tilted rotor is asymmetric within

each cycle of operation, which makes it difficult to isolate oscillations induced by blade

movement during pitching. Hence, the test scenarios created for the standard blade also

turned tilt off for the rotor. This would be comparable to an actual full-size rotor placed in

a virtual wind tunnel with all other dynamics intact. These numerical experiments indicate

a consistent dynamic response to rapid pitching similar to that observed for a hyper-stiff

blade. Figure ?? shows the evolution of α for a 90% span section of the standard blade, for

the same pitch-control actions. The rates of pitching applied in each case of control pitch

angle θpctrl are same for both the blades. Use of the standard blade however, will now result

in a different α at the 90% span section of the blade before the pitching is applied. And the
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Figure 3.4: Time evolution of α at the 90% span section of hyper-stiff blade, for a series
of pitch-control actions of a determined angle θpctrl

.

variation in α resulting from the rapid pitching also has a consistent behavior. Even though

the general behavior is similar to the hyper-stiff blade, the deformational effects introduce

new aspects to the dynamic response in the transition period after the control action is com-

plete. These effects and their cause will be discussed in later sections. Nonetheless, it is

noticeable that distinct control pitch actions result in a specific alteration to α, and these

Δα/θpctrl response are the result of an aero-elastic response of the blades.

The first aspect to note is the systematic consistency in variation of α achieved when the

aeroelastic response stabilizes after a transient period (i.e. the value of the final plateau in
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Figure 3.5: Change in angle of attack, Δα for a control pitch action of θpctrl
= 5◦

with different accelerations of pitching, Γθpctrl
; (a) 0.1 ◦/s2, (b) 1 ◦/s2, (c) 10 ◦/s2, (d)

100 ◦/s2.

the different plots), and that this variation depends only on the angle of pitch control im-

posed, θpctrl. This indicates that the end result of the control action is independent of the

speed at which pitching takes place, similar to the hyper-stiff blade. However, the tran-

sient behavior now depends strongly on the acceleration of pitching. The value of the final

plateau in the α signal is different than the one observed in the hyper-stiff blade for a simi-

lar θpctrl, which is due to the contribution to twist by the torsional deformation. In order to
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verify the behavior observed in the section at 90% of the blade span, the same analysis was

repeated for other sections located along the external (i.e. the aerodynamically active) por-

tion of the blade. As these regions are the major contributors to the aerodynamic function-

ality, the information presented here is representative of the entire blade. Figure 3.6 shows

the Δα/θpctrl relation in function of the pitch-control action θpctrl at three different loca-

tions along the blade span: 90%, 70%, and 50%. The Δα/θpctrl relation is shown for both

the hyper-stiff blade (dotted-lines) and standard blade (solid lines), and suggests consistent

behavior throughout the entire blade. This also serves as a comparison between a purely

aerodynamic vs. a fully aeroelastic response. This establishes a non-linearity in aeroelastic

response for the entire blade, but indicates a consistent rotor behavior. The Δα/θpctrl rela-

tion indicates a consistent increase with control pitch angle until about θpctrl = 15◦, after

which there is a drop. This variation in the aeroelastic response will be discussed later.

The next step in the process is to better understand the dynamic aeroelastic response of the

NREL-5MW rotor using the standard blade. The deformational effects and the aeroelastic

interaction introduces new aspects in the dynamic response that depend not only on the

amount of pitch-control action, but also on how fast this action is applied. An example

of this could be seen in figure 3.5, where the change in α is shown for the case of a fixed

control action of 5◦ of pitch applied during different time-spans, i.e. involving different

angular acceleration of the pitching action Γθpctrl
.

The second characteristic aspect that could be observed in the dynamic response of the
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Figure 3.7: Frequency content in the aeroelastic response of the rotor for a pitch actuation
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figure 3.5.
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rotor with standard blades, shown in Figure 3.5, is the presence of oscillations in the tran-

sient period before a constant value of α is achieved, whose nature depends on the value

of pitching acceleration. The four panels in figure 3.5 illustrate four distinctive types of

behavior observed at different values of Γθpctrl
. To illustrate the effect of actuation rate on

rapid pitching, a nominal pitch control angle of θpctrl = 5◦ is presented. A wide range of

acceleration cases were assessed, and the cases shown here covering four orders of magni-

tude is an overall representation. First, at low values of acceleration such as Γθpctrl
= 0.1◦

(figure 3.5(a)), the transient evolution of α is completed without oscillations, and is com-

parable to the behavior observed for hyper-stiff blade. When the level of acceleration is

slightly increased to Γθpctrl
= 1◦ (figure 3.5(b)), a second type of behavior where small

noticeable oscillations appear in the aeroelastic response after pitching. This is followed

by a range of acceleration values where a consistent behavior of periodic oscillations of

a single fundamental frequency, which is depicted by an acceleration value Γθpctrl
= 10◦

(figure 3.5(c)). Finally, at higher values of acceleration Γθpctrl
= 100◦ (figure 3.5(d)), the

evolution of α has a more complex oscillatory behavior, indicating the presence of richer

spectrum of frequencies.

3.2.2 Oscillatory blade response induced by rapid pitching action

As shown in the previous section (see figure 3.5), for a given value of the pitch action

θpctrl, the evolution in the transient period before the blade reaches a stable configuration
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exhibits four distinctive states in terms of its qualitative behavior, whose nature depends

on the value of pitching acceleration. In this section, we focus on the main aspects of the

oscillatory response observed at higher pitch-acceleration values, e.g. the states depicted

in figures 3.5(c) and 3.5(d). First, we identified the threshold in pitch acceleration that

leads to the appearance of single-frequency oscillations and the threshold at which a multi-

frequency content is observed, i.e. the states whose spectra are depicted in figures 3.7(a)

and 3.7(b) respectively. The values of these transitional thresholds depend on the amount

of the pitch action θpctrl, and are plotted in figure 3.8 for a pitching range from θpctrl = 1◦

to θpctrl = 15◦. The light-gray shaded region below lower threshold indicates pitching

conditions at accelerations low enough to result in an aeroelastic response with minor or

negligible oscillations. The shaded region above the upper threshold indicates pitching

accelerations at which a multi-frequency content is present. As a way of example, figure 3.8

also includes two markers (�) showing the locus of the cases for Γθpctrl
= 10◦/s2 and

Γθpctrl
= 100◦/s2, which correspond to the spectra shown in figure 3.7, and the evolutions

shown in figures 3.5(c) and 3.5(d).

The region in between the two thresholds, shown in white in figure 3.8, is characterized by a

consistent oscillatory behavior with a single fundamental frequency which has a consistent

value slightly above 1 Hz, with a slight dependence on the pitch actuation angle, ranging

from a minimum of 0.993 Hz for θpctrl = 1◦, to a maximum of 1.071 Hz for θpctrl = 20◦.

The oscillations also exhibit a consistent damping that depends only on the value of θpctrl,

examples of which can be observed in the time evolutions of α shown in figure 3.9 for four
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shown in figure 3.7.

different pitching angles from θpctrl = 1◦ to θpctrl = 20◦. This exclusive dependency on an

aerodynamic variable such as θpctrl indicates that the damping is predominantly aeroelastic

in nature, more than purely due to material properties of the blade structure. The four dif-

ferent cases plotted in figure 3.9 illustrate the change in damping as θpctrl increases, going

progressively from rapid attenuation to actual amplification of the aeroelastic vibrations,

with a zero damping situation (where the amplitude remains practically constant) occur-

ring at about θpctrl = 16.25◦. Figure 3.10 shows the value of the logarithmic decrement

δ, characterizing the damping at the nominal wind speed of 11.4 m/s for different values

of θpctrl , and the solid line connecting the markers represents the best-fit cubic curve to
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Figure 3.9: Examples of time evolution of the angle of attack α for five different pitching
angles, θpctrl

.

the data. This qualitative behavior of the oscillations, in terms of frequency and damp-

ing observed at nominal wind speed is also consistently exhibited at higher values of the

operational wind speed, which will be the focus of sub-section 3.2.3.

Verification studies conducted on global rotor parameters during the rapid pitch actuation

shows consistency with previous observations about blade-section parameters. The output

power P, rotor thrust T, and blade-tip displacement, Uhxtip
, were assessed in similar test

conditions for rapid pitching. A positive pitching (feathering) produced drop in output

power, and the final value showed dependency only on the amount of pitch actuation, θpctrl.

This behavior is qualitatively identical to the one observed in the time evolution of α for the

airfoil section at 90% of the blade span (see figure 3.5), which support our initial selection
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of α at this location as a significant parameter to study. Accordingly, blade-tip displacement

and rotor thrust also show similar behavior on their time evolution.

3.2.3 Rotor response to rapid pitching for wind speeds above the nom-

inal

Figure 3.10 also shows the results for δ at three different wind speeds above the nominal:

15 m/s, 20 m/s, and 25 m/s, which covers the entire upper range of operation for the

NREL-5MW RWT until its cut-off wind speed. The objective of this part of our study was
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to assess the consistency in rotor response to rapid control actions for operational conditions

at which the initial pitch θp0 is no longer zero as it was in the case of the nominal speed.

That is, the rapid control action adds to an initial existing pitch which is required tomaintain

the output power at its rated level for wind speeds above nominal. For the examples shown

in figure 3.10, the rotor blades operate at a pitch angle of θp0 = 9.27◦ for wind speed of

15m/s, θp0 = 16.2◦ for 20m/s, and θp0 = 21.8◦ for 25m/s (see Table 2 from Ponta et al.

[70]).

The behavior observed at these higher wind conditions is qualitatively equivalent to the

nominal case. That is, final values of α only depend on the corresponding angles of pitch

actuation, and the characteristics of the oscillatory motion during the transient period until

a stable value of α is achieved depends on the pitching acceleration. The damping behavior

is also consistent, with a dependence only on the pitch actuation angle. In figure 3.10 we

could see that the value of δ for the same θpctrl decreases as wind speed increases. This is

a consequence of the change in geometrical configuration of the rotor, which is subjected

to a higher deformation when operating at higher wind speeds. Angle of the rapid pitching

action at which a zero-damping situation occurs (θpctrl(δ=0)
) also reduces as the wind speed

increases. This is expected due to the fact that the pitching action, θpctrl, starts not from

zero as in the nominal case, but from a required initial pitch (θp0) that increases with wind

speeds beyond the nominal value. However, the total value of pitching angle at which zero-

damping occurs (θp(δ=0)
= θp0 + θpctrl(δ=0)

) increases. Figure 3.11 shows the curves for both

θpctrl(δ=0)
and θp(δ=0)

vs wind speed, markers correspond to the same four wind speeds cases
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shown in figure 3.10, and solid lines show their respective best-fit curves based on a cubic

polynomial fitting.

The fundamental frequencies for these oscillations in cases of wind speeds above nom-

inal also show a consistent behavior with the value slightly above 1 Hz, with a slight

dependence on the pitch actuation angle, θpctrl. For wind speed of 15 m/s, the value of

frequency ranges from a minimum of 1.012 Hz for θpctrl = 1◦ to a maximum of 1.06 Hz

for θpctrl = 12◦. For wind speed of 20m/s, the value of frequency ranges from a minimum

of 1.031 Hz for θpctrl = 1◦ to a maximum of 1.063 Hz for θpctrl = 7◦. For wind speed of

25 m/s, the value of frequency ranges from a minimum of 1.045 Hz for θpctrl = 1◦ to a
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maximum of 1.063 Hz for θpctrl = 4◦.

3.3 Rapid actuation of trailing-edge flaps

Trailing-edge flaps as active flow-control devices can be used in dynamically controlling

the aerodynamic loads on wind turbine rotors through alteration of aerodynamic charac-

teristics of the blades during operation. These devices can manipulate the airflow dynam-

ics near the region of attachment resulting in an increase or decrease in the lift behavior.

As fractional chord devices used on short span lengths of the blade, they are lighter and

hence easier to be actuated rapidly. Such devices have a great potential in mitigating loads

variations that occur in short time spans, such as that caused by tower interference. The

assessment of trailing-edge flaps as rapid load-control devices discussed in this section is

a represents the wider usage of flow-control devices in active control of dynamic loads for

short time-scale fluctuations.

The current study focuses on understanding the rotor response with the use of a 20%-chord

Clark Y profile flap as an active trailing-edge device attached on the NREL 5MW RWT

rotor blades. The flap as depicted in figure 1.4 spans for 6.15m (i.e. 10% span of the blade)

and is attached on all three blades. This covers about 75% of the aerodynamically active

region of the blade. Two dimensional behavior of two key airfoils, NACA 643-618 and

DU 93-W-210, when attached with a Clark Y flap are available for the study, as mentioned
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in section 2.2 in chapter 2. In the current study, span regions of the RWT rotor blades that

are attached with the Clark Y flaps contain NACA 643-618 airfoils. The aerodynamic data

characterizing Clark Y flap behavior are available for a range of actuation angles that makes

pragmatic sense to their use as dynamic control devices. This is defined by the relative angle

between the airfoil and flap denoted by β, and ranges from −5◦ to 5◦. The assessment of

trailing-edge flaps control devices for rapid action for short-term load variations are based

on pre-determined time spans based on the observations about tower interference, made in

section 3.1.1. The control approach actuates the flaps on all three blades from one static

relative position to another, and the rotor response during this period is evaluated. The

change in relative angle β from one configuration to the other is considered as the control

action and is known as the control flap-actuation angle, βctrl. The primary test scenario

is a negative step change in flap control angle, βctrl, which changes the relative position

of the flap from one static angle to another. The control actuation is applied on all blades

simultaneously, and is designed to be completed within one rotation cycle. The simulation

of the turbine operation continues for a few more cycles of rotation, as needed for the

aeroelastic transient modes of the rotor to develop into a stable state of operation.

The primary interest in most dynamic load control approaches are to curtail the power

production and decrease the deformation causing aerodynamic loads on the rotor. Using

trailing-edge flaps in rapid control situations proves to be an effective approach in this

respect. As discussed earlier, the airfoil-flap configuration had an upper limit of β =

86



−5◦ and a lower limit of β = 5◦. This allowed the assessment of a wide range of flap-

actuation control scenarios by actuating the flap from a configuration of β = 0◦ to distinct

configurations defined by the flap-actuation control angles, βctrl = −5◦,−2◦,−1◦, 1◦, 2◦,

and 5◦.

3.3.1 Rapid actuation of flap as dynamic load control

Analysis of the aeroelastic response of turbine rotors in trailing-edge flap configurations

indicates that blade-spans with the flap have slightly different behavior compared to re-

gions (without a flap) that are in their original configuration. This variation in response

primarily inferred through the angle of attack (α) showed a dependency on the angle of

flap-actuation (β) as well. Since the aerodynamics of the rotor is now dependent on the

flap configurations, the aeroelastic response to control actions cannot be entirely under-

stood by the observation of α alone. They are now the result of combined effects from the

instantaneous β and the resulting α observed at the blade section. Hence, the effects of

such rapid control action are evaluated from a global perspective by evaluating four key

aspects of the rotor response. The most key among these are the structural impact due to

axial loading and effects on power production. At the turbine, these effects are assessed

based on the axial rotor thrust, T , and the instantaneous rotor power, P . The structural

deformations on the blades are also studied from the changes in tip displacement, which is
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observed at the hub in the axial direction and denoted as Uhxtip
. And the aerodynamic re-

sponse at the rotor level is assessed from the changes in α observed at the 90% span section

of the blade, which typically represents the entire blade behavior. Figure 3.12 presents the

representative behavior of these four properties for two rapid-control cases where the flap

is actuated for βctrl = −5◦ (depicted by the blue curves) and for βctrl = 5◦ (depicted by the

green curves). They are an overall representation of the dynamic rotor response to rapid

flap-actuation when the respective control actions are implemented in a 1 s time period.

The scenarios presented in figure 3.12 show the outer limits for the range of flap actuation

covered in this rapid-control study. And these properties illustrate the outer boundaries of

effective alterations possible in the airfoil-flap configurations under consideration. In the

case of βctrl = −5◦, figure 3.12(a) shows a reduction in axial thrust on the rotor easing the

aerodynamic loads acting on the rotor as the result of the control action. This reduction of

about 17 kN is relevant for sudden fluctuations in wind, improving the reliability and life-

span of turbines through better management of fatigue loads. One of the most important

effect is an overall power reduction as seen in figure 3.12(b), which is attained through a

drop in lift created by the dissipation of flow energy. It shows a reduction of about 76 kW in

generated power by actuating the flap in a nose-down direction of βctrl = −5◦. The ability

to effect such power reduction, demonstrated by a light-weight fractional-chord device

through a small angle of control actuation is significant in developing innovative control

strategies. The rotor response illustrated by tip deflection Uhxtip
in figure 3.12(c) shows a

reduction in the bending deformation of the blade. This is consistent with the reduced axial
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Figure 3.12: Aeroelastic response of the turbine rotor to rapid control action for flap
actuation βctrl = −5◦, and 5◦ implemented in time-span of 1 s; panels are presented to
show the aerodynamic observable, deformational response, and global effects in terms of
force and power. Panels (a) rotor thrust T , (b) instantaneous power P , (c) tip deflection
Uhxtip

, and (d) angle of attack α at 90% span section. The case for β ctrl = 0◦ is shown as
reference when a flap is attached but not actuated.

loading observed on the rotor as the result of the control action. It is also noticeable from

figure 3.12(d) that actuating the flap in the nose-down direction effects a slight increase in

the angle of attack (α) observed at the 90% span section of the blade. Though the change in

α observed across the span could vary, the response depicted here at the 90% represents the

overall aerodynamic behavior of the blade and hence the rotor. In understanding the overall
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rotor response, figure 3.12(d) suggests that the amplitude of oscillations in instantaneous

power is relatively higher compared to other properties presented. This is expected in a

rotor that operates under various modes of vibrations, but the more important observation

here is that these oscillations are quickly damped and it attains a stable value of power

in the new configuration. The final values attain by these properties have a consistent

characteristic that it is purely dependent on the flap-actuation control angle βctrl and does

not vary with the rate of flap actuation.

This observation is consistent with all the flap-actuation control angles studied here, i.e.

βctrl = −5◦,−2◦,−1◦, 0◦, 1◦, 2◦, and 5◦. Figure 3.13 shows the final values observed for

the same four properties at the end (or as a result) of the control action, plotted for each flap-

actuation control angle evaluated. The final values are indicated by the respective markers

in each panel of the figure, and the solid lines are the best fit curve illustrating the trend.

Beginning at the neutral zero-actuation scenario, there is a steady drop in rotor thrust T

with increasing negative angles of control actuation (βctrl < 0), and a similar increase with

positive actuation (βctrl > 0). This presents a linear pattern in rotor thrust T as a direct

response to the control action, as depicted in figure 3.13(a). An interesting observation is

made about the effect on instantaneous power P , which shows a cubical dependence on

the flap-actuation control angle βctrl, as presented in figure 3.13(b). The proportional in-

crease in power at higher angles of actuation is consistent with more driving torque from

the higher lift generation associated with positive increase in β. Correspondingly, there is a

linear increase in the tip deflection Uhxtip
observed and the computed rotor thrust T , which
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Figure 3.13: Consistent variation in rotor behavior for angles of flap actuation ranging
between βctrl = −5◦ and +5◦, showing an aerodynamic observable, deformational re-
sponse, and global effects in terms of force and power. Panels show the final value of (a)
rotor thrust T , (b) instantaneous power P , (c) tip deflection Uhxtip

, and (d) angle of attack
α at 90% span section, plotted against angle of rapid flap-actuation control β ctrl.

can be seen in figure 3.13(b) and (c). It can be observed from figure 3.13(d) the aerody-

namic response of the blade decreases linearly with and increasing angle of flap-actuation

control. Observations about these trends in tangible properties shown in figure 3.13 are also

consistent with the limits of flap-actuation presented in respective panels of figure 3.12.
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Figure 3.14: Oscillatory behavior in rotor response observed for a case of β ctrl = −5◦

that effects a reduction in rotor thrust T , at increasing rate of flap actuation - (a) Δt ctrl =
2 s, (b)Δtctrl = 1 s (c)Δtctrl = 0.2 s, and (d)Δtctrl = 0.1 s.

The oscillatory behavior of the turbine blades and their effect on the rotor was also evalu-

ated by studying the dynamic response at four different time spans of control action,Δtctrl.

KeepingΔtctrl = 1 s as the reference for rapid variations in dynamic loads observed, three

other time spans were adopted. Figure 3.14 shows the rotor thrust T behavior during the

rapid flap-actuation control when the control is implemented at four different time spans of

control actuation. The corresponding rates of flap-actuation are also indicated as an inset
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in the respective panels. The reference case of Δtctrl = 1 s resulted in a variation in T as

shown in figure 3.14(b), which shows the presence of minor oscillations, noticeable as the

effect of the control action that swiftly disappear. A slightly slower scenario was assessed

with Δtctrl = 2 s, which is still within one cycle of rotation of the rotor. The effect of the

control action on T is shown in figure 3.14(a), where the resulting T value is immediately

obtained and any oscillations present in this scenario are negligible. On the other hand,

with increasing rates of flap actuation the oscillatory behavior becomes more noticeable

with secondary and possibly tertiary frequencies that contribute significantly to the rotor

response. These effect are reflected through increasing amplitudes of oscillations shown

in figures 3.14(c) and (d). The final value of T is attained after noticeable oscillations

showing rich spectral behavior of the various modes of vibrations resulting from the rapid

control action. The most interesting aspect here are the higher rates of damping (relative to

those observed in rapid-pitching) involved, which ensures the system stabilizes in its new

configuration within a short period of time.

3.3.2 Power consumption in rapid control

Considering the short time spans in which these control actions are implemented, a more

important aspect is an assessment of power required for actuation, and placing it in relation

to the effective alteration in generated power. This section evaluates instantaneous power

generated P and the instantaneous power required for control action Pctrl as a baseline
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reference for the comparative analysis of rapid-pitch control and rapid flap-actuation con-

trol. First, we will study the instantaneous power P , which is the total power output from

the turbine computed at each instant of time during operation. As the primary interest in

load control is curtailment of power generation, the scenarios of control actuation primar-

ily assessed will be for power reduction. Qualitatively, a positive pitching (feathering) and

negative flap-actuation (nose-down) effect a reduction in power. While in both the case the

control device (blade or flap) is actuated in a nose-down orientation, due the conventions

the pitching action is considered positive and flap-actuation as negative. Quantitatively

however as trailing-edge flaps are spread across smaller span sections of the blade, they are

intended to produce lesser overall power reduction in comparison to conventional pitch-

ing. On the other side, being lighter devices compared to the entire blade (in pitching),

flap-actuation is expected to employ lesser power for the control action itself.

As the total alterations in instantaneous power through flap-actuation are lesser, the extreme

case for power reduction was chosen and a corresponding effect through rapid-pitching was

matched. Based on this idea it was determined that a power reduction effected by a nose-

down βctrl = −5◦ can be matched by a feathering action of pitching with θpctrl = 0.35◦.

In both cases, a reduction of about 76 kW is obtained irrespective of the rate of control

action. Figure 3.15 shows the evolution of generated power P during the rapid control

actions, plotted against the time of turbine operation covering a span where the control ac-

tion is completed. They are plotted top-down in increasing rapidity of control action, and

comparing the effects from rapid-pitching presented on the left side to corresponding rapid
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Figure 3.15: Evolution of instantaneous power P during nominal operating conditions
due to rapid control action resulting in power reduction, presented for θ pctrl

= 0.35◦ on
the left compared to βctrl = −5◦ cases on the right. Panels (a) and (b) show cases with
Δtctrl = 1 s, (c) and (d)Δtctrl = 0.2 s, and (e) and (f)Δtctrl = 0.1 s.
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flap-actuation depicted on the right side. That is, control action time span,Δtctrl is the same

for panels (a) & (b), (c) & (d), and (e) & (f). Observing the plots top-down, it can be ob-

served that with growing rapidity of control action, the increase in amplitude of oscillations

are significantly huge for rapid pitch-control in comparison to rapid flap-actuation control.

Both approaches introduce secondary modes of oscillation at higher rates of actuation, and

this is attributed to the structural response of the rotor in this context. These oscillations

are damped through the course of turbine operation after the control action is completed,

but their presence is significant in understanding the effects on mechanical and electrical

components associated with the turbine operation. These oscillations are inevitable in any

rapid control action, and in this context the flap-actuation control is more favorable as at

higher rapidity of actuation, the growth in oscillation amplitudes is minimal.

In a similar comparative assessment of rapid-pitch and rapid flap-actuation controls, scenar-

ios were evaluated for an effective increase in generated power as the result of the control

action. This increase will occur from a negative pitching (pitching to stall) or a positive flap

actuation (nose-up). The limit in the opposite direction for flap-actuation would be given

by a control action of βctrl = 5◦ that will result in a proportional increase in instantaneous

power generated P . However, due to the non-linear behavior in generated power against

rapid flap-actuation angle, the increase in power from βctrl = 5◦ is about 39 kW . This

variation in power is matched by a pitching action of θpctrl = −0.2◦. Figure 3.16 shows

the evolution of instantaneous power generated P during the rapid control actions, plotted

against the time of turbine operation covering a span where the control action is completed.
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Figure 3.16: Evolution of instantaneous power P during nominal operating conditions
due to rapid control resulting in power augmentation, presented for θ pctrl

= −0.2◦ on
the left compared to βctrl = 5◦ cases on the right. Panels (a) and (b) show cases with
Δtctrl = 1 s, (c) and (d)Δtctrl = 0.2 s, and (e) and (f)Δtctrl = 0.1 s.
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They are plotted top-down in increasing rapidity of control action, and comparing the ef-

fects from rapid-pitching presented on the left side directly to rapid flap-actuation depicted

on the right side. That is, control action time span, Δtctrl is the same for panels (a) &

(b), (c) & (d), and (e) & (f). In spite of the fact that a relatively small amount of pitching

(θpctrl = −0.2◦) is compared to the limit of nose-up flap-actuation (βctrl = 5◦), the dif-

ferences in amplitude of oscillations are noticeable. The observations about the dynamic

effects on the rotor as a result of the rapid control action in this configuration are similar to

the previous discussion for power reduction (based on figure 3.15), and re-establishes the

effectiveness of flap actuation as a rapid control methodology.

A more interesting aspect of these rapid control actions is the power involved in actua-

tion of the control itself, which is designated as Pctrl. As discussed in section 2.3, en-

abling the control action involves overcoming both the inertial loads of the actuation de-

vice and the dynamic loads acting on the device. The latter are primarily determined from

the instantaneous aerodynamic loads, which depends on various factors such as wind con-

ditions, rotor orientation, and structural deformations. In nominal operating conditions,

the NREL 5MW RWT blades are designed to operate with the axis for center of pressure

slightly behind the pitching axis (i.e. reference-line of the blade). Consequently, the blades

sections operate in a configuration with the tendency to naturally pitch nose-down (i.e.

pitching to feather). What this means to pitching as a control action is that energy needs to

be dissipated during the process of pitching the blades to feather (positive pitch action), and

energy should be supplied in attempting pitching to stall (negative pitch action). Based on

98



the configuration for Clark Y trailing-edge flap attached on the NREL 5MW RWT blades,

they also have a natural nose-down orientation. This is attributed to the location of flap-

actuation hinge ahead of the aerodynamic center of the flap section, and hence ensuring

the center of pressure will always lie aft of the actuation hinge. Due to the convention

differences in pitching and flap-actuation, a natural nose-down tendency for flaps natu-

rally augments a negative flap-actuation control, requiring the system to dissipate energy

to effect the actuation in a controlled manner. And in contrast, a positive actuation would

require to overcome the natural nose-down alignment and hence would extract energy from

the system.

The power needed for control actuation were computed for pitching and flap-actuation for

rapid load-control scenarios defined by the control time-span,Δtctrl = 1 s, 0.2 s, and 0.1 s.

Figure 3.17 shows the instantaneous power required for the control actions, where rapid-

pitching is juxtaposed with rapid flap-actuation under comparable control scenarios. Each

panel depicts the dynamic response for a specific time-span that defines the rapid control

scenario, and is shown top-down with an increasing rapidity of control action. The cases

shown here are for pitching to feather and nose-down flap-actuation, and correspond to

scenarios presented in figure 3.15 effecting the same amount of reduction in power gener-

ated by the turbine. From the figure 3.17, it can be observed that with increasing rapidity

of control action (or decreasing Δtctrl), the power required Pctrl increases for both ap-

proaches. This increase is more pronounced for pitching action than for flap-actuation,

and is associated with the higher inertia of the entire blade as compared to the short-span
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Figure 3.17: Power required to perform rapid control Pctrl, plotted in decreasing time-
scale of the control application. Top panel: Δtctrl = 1 s, middle panel: Δtctrl = 0.2 s,
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fractional-chord flap. Each of the NREL-5MW RWT blades weigh 17, 740 kg [74], com-

pared to a meager 28.1 kg of the flap used along 10%-span of the blade, in the current

design. These inertial differences become significant due to a dependence on the time-span

of control action Δtctrl. The power required to overcome the aerodynamic momentMaer,

and inertial momentMiner have different dependencies on Δtctrl. While the aerodynamic

moment remains quasi-constant for the consistent wind scenario that is being studied, the

inertial moment depends on the rotational acceleration of the control device. This imposes

a dependence for Pctrl only on the rotational velocity of the control actuation to overcome

Maer, and an additional dependence on the acceleration of control actuation to overcome

Miner. With increasing rapidity of control actuation the inertial aspect overshadows the

aerodynamic one, skewing the power requirement in favor of flap-actuation control that has

significantly lesser inertial loads to overcome. This also exposes the limitations of pitching

as a rapid load control approach with increasing rapidity, and suggests that trailing-edge

flaps are more favorable in such situations.

These observations are further established through visualization of differences between

pitching and flap-actuation, presented using peaks of the power required in respective con-

trol actions. Figure 3.18 shows the peaks of power involved in rapid-pitching and rapid

flap-actuation controls, plotted against increasing time-spans of control actuation for spe-

cific cases of Δtctrl = 1 s, 0.2 s, and 0.1 s. The solid markers indicate the actual peak

powers, irrespective of their application for braking or acceleration, and the solid lines

present the respective best-fit curves. The direct comparison cases for power reduction
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Figure 3.18: Peaks powers of control actions, Pctrl for comparable scenarios in rapid-
pitch and rapid flap-actuation controls, plotted against the control action time span,Δt ctrl.

would be between βctrl = −5◦ and θpctrl = 0.35◦; and for power augmentation would be

between βctrl = 5◦ and θpctrl = −0.2◦. It is noticeable that with decreasing Δtctrl values,

the curves for βctrl show a gradual increase presenting a manageable power requirement

for rapid flap-actuation control, whereas the curves for θpctrl depict a drastic increase in the

power required for rapid-pitching.
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Chapter 4

Conclusion

The study conducted towards this thesis comprised of two main aspects. First, the extension

of Common ODE Framework (CODEF) capabilities to evaluate flow-control devices as an

active dynamic load control methodology. Second, establishing the limits and effectiveness

of contemporary and innovative load control methods through an aeroelastic evaluation of

a benchmark turbine under rapid load-control scenarios. This chapter first discusses the

fundamental observations and conclusions arrived from the study and later presents a brief

outlook of the scope for further research on similar lines.

The control module of the CODEF was added with a functionality to enable the use of flow-

control devices (FCD) as an active load control technique. The aeroelastic code accepts any
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fractional FCD with the ability to alter the aerodynamics of the rotor without adding sig-

nificant inertial loads, such as trailing-edge flaps, vortex generators, and retractable micro-

tabs. The code is currently equipped with aerodynamic characteristics for a 20%-chord

Clark Y trailing-edge flap attached to either a NACA 643-618 or a DU 93-W-210. This

allows configurations for flap attachments along almost 50% span of an NREL 5MWRWT

blade, which makes up for nearly 75% of the aerodynamically active part of these blades.

This provides a strong foundation to conduct wide range of numerical experiments for the

analysis of trailing-edge flaps as flow-control devices on a benchmark turbines such as the

RWT.

The oscillating transient behavior observed in the study of pitching as a short-term oper-

ational control method suggests several limitations inherent to the aeroelastic response of

the rotor. This may preclude the use of conventional pitching as a means to mitigate effects

of rapid aerodynamic changes on the rotor such as the ones induced by tower interference,

quick gusts, and other similar conditions that occur within a cycle of rotation. There is also

the fact that rapid-pitching action may require substantially higher powers of actuation due

to the need of imposing a rapid angular accelerations to quickly turn the blade around its

own axis. This aspect would become more critical as the size of the state-of-the art turbine

increases. This upscaling in rotor size is a definitive trend for reduced cost-of-energy in

the envisioned wind-power industry of the future. An increase in blade length results in

a higher swept area, squaring the power generation but, there is also a cubical increase in

the rotor weight as per the square-cube law (see [94]). This accounts to a bottleneck in
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expansion of load-control techniques that become more energy intensive with increasing

inertial loads.

These massive blades associated with larger rotors to be used on future wind super turbines

need control systems that are less energy intensive than the pitch actuators. In this respect,

innovative control methods such as active flow-control devices (FCDs) are a better alterna-

tive. An extensive aeroelastic study conducted with trailing-edge flaps on the benchmark

turbine blades indicate capability of such devices to effect global changes in the aeroelastic

response of the rotors. Of the scenarios covered, the ability of flaps to reduce instantaneous

power generated by actuating in the negative (nose-down) direction is of key interest. These

active control devices require low-energy inputs to the actuating mechanisms, and can re-

spond rapidly to dynamic variations in turbine operating conditions. This is significant

to effectuating rapid alteration in rotor configuration to mitigate load variations that oc-

cur in fraction of a second, and could also be relevant to turbine operation above rated

wind speeds. Predominantly, trailing-edge flaps used as active flow-control devices seem

like a great alternative to contemporary methodologies in dynamic load control, especially

with respect to rapid load variations. Further, they could also be used along with the con-

ventional pitching mechanisms, or with alternative control methods such as variable-speed

stall control, and flexo-torsional adaptive blades, to create a hybrid low actuation energy

blade that could eventually react fast enough to mitigate the effects of rapidly changing

aerodynamic conditions.
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4.1 Outlook for further work

To expand the scope of current research, CODEF provides a great platform in furthering

the study on active flow-control devices with the benchmark turbine. Some of the avenues

identified as needing further exploration are discussed here. Though using trailing-edge

flaps on the NREL 5MW RWT standard blade was an effective preliminary study, pres-

ence of minor oscillations as the effect of rapid flap-actuation could cause concerns. These

fluctuations are attributed to the structural modes of operation of the flexible blades. Future

research on these lines should focus on altering the internal structure of the blades en-

abling swift mitigation of these vibrations or in designing advanced control strategies that

consider the presence of these oscillations. The robustness of the control system module

and the ability to actuate trailing-edge flaps at very high rates of actuation permit further

explorations on this front.
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Appendix A

Copyright Agreements

This appendix contains the copyright statements that allow the re-use of the following fig-

ures: 1.1, 1.2, and 2.3

A.1 Siemens press pictures

Copyright statement for figures 1.1 and 1.2, from Siemens press pictures:

• Siemens press photos may only be used for editorial purposes. All copyrights belong

to Siemens AG, Munich/Berlin, unless another copyright is expressly given. Com-

mercial use or sale of the pictures and data, even in electronically manipulated form,
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is prohibited. The photos may be printed free of charge, but in the case of print media

we would appreciate a copy for our records. If pictures are used in films or electronic

media, brief notification would suffice.

Attribution:

� Figure 1.1 was reproduced from a press release from Siemens global website,

© Siemens AG.

� Figure 1.2 was reproduced from a press release from Siemens global website,

© Siemens AG.

A.2 Sandia report graphics

Copyright statement for figure 2.3, from Sandia National Laboratories technical report

SAND2002-1879:

• Approved for public release; further dissemination unlimited.

Attribution:

� Figure 2.3 was reproduced from report SAND2002-1879, prepared by Sandia Na-

tional Laboratories and made available for public use.

122


	The Role of Active Flow-Control Devices in the Dynamic Aeroelastic Response of Wind Turbine Rotors
	Recommended Citation

	MuraleekrishnanMenon_PhD.pdf

