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Abstract 

We investigate how declines in US emissions of CO and O3 precursors have 

impacted the lower free troposphere over the North Atlantic.  We use seasonal 

observations for O3 and CO from the PICO-NARE project for the period covering 2001 

to 2010.  Observations are used to verify model output generated by the GEOS-Chem    

3-D global chemical transport model.  Additional satellite data for CO from AIRS/Aqua 

and for O3 from TES/Aura were also used to provide additional comparisons; particularly 

for fall, winter, and spring when PICO-NARE coverage is sparse.  We find GEOS-Chem 

captures the seasonal cycle for CO and O3 well compared to PICO-NARE data.  For CO, 

GEOS-Chem is biased low, particularly in spring which is in agreement with findings 

from previous studies.  GEOS-Chem is 24.7 +/- 5.2 ppbv (1-σ) low compared to PICO-

NARE summer CO data while AIRS is 14.2 +/- 6.6 ppbv high.  AIRS does not show 

nearly as much variation as seen with GEOS-Chem or the Pico data, and goes from being 

lower than PICO-NARE data in winter and spring, to higher in summer and fall.  Both 

TES and GEOS-Chem match the seasonal ozone cycle well for all seasons when 

compared with observations.  Model results for O3 show GEOS-Chem is 6.67 +/- 2.63 

ppbv high compared to PICO-NARE summer measurements and TES was 3.91 +/- 4.2 

ppbv higher.  Pico data, model results, and AIRS all show declines in CO and O3 for the 

summer period from 2001 to 2010.  Limited availability of TES data prevents us from 

using it in trend analysis.   For summer CO Pico, GEOS-Chem, and AIRS results show 

declines of 1.32, 0.368, and 0.548 ppbv/year respectively.  For summer O3, Pico and 

GEOS-Chem show declines of -0.726 and -0.583 ppbv/year respectively.  In other 
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seasons, both model and AIRS show declining CO, particularly in the fall.  GEOS-Chem 

results show a fall decline of 0.798 ppbv/year and AIRS shows a decline of 0.8372 

ppbv/year.  Winter and spring CO declines are 0.393 and 0.307 for GEOS-Chem, and 

0.455 and 0.566 for AIRS.  GEOS-Chem shows declining O3 in other seasons as well; 

with fall being the season of greatest decrease and winter being the least.  Model results 

for fall, winter, and spring are 0.856, 0.117, and 0.570 ppbv/year respectively.  Given the 

availability of data we are most confident in summer results and thus find that summer 

CO and O3 have declined in lower free troposphere of the North Atlantic region of the 

Azores.  Sensitivity studies for CO and O3 at Pico were conducted by turning off North 

American fossil fuel emissions in GEOS-Chem.  Model results show that North America 

fossil fuel emissions contribute 8.57 ppbv CO and 4.03 ppbv O3 to Pico.  The magnitude 

of modeled trends declines in all seasons without North American fossil fuel emissions 

except for summer CO.  The increase in summer CO declines may be due to a decline of 

5.24 ppbv/year trend in biomass burning emissions over the study period; this is higher 

than the 2.33 ppbv/year North American anthropogenic CO model decline.  Winter O3 is 

the only season which goes from showing a negative trend to a positive trend. 
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(1) Introduction 

Tracking trends in O3 and CO is important for both policy makers and scientists.  

Ozone is the third most important greenhouse gas (GHG), a respiratory irritant, and 

responsible for ~$500 million dollars per year in crop damage in the US alone [EPA, 

2011; R Honrath et al., 2004].  Ozone is also the primary source of the hydroxyl radical 

(OH), which is the primary oxidant in the atmosphere, and thus impacts the oxidizing 

(„cleansing‟) capacity of the atmosphere [Seinfeld and Pandis, 2006].  In turn, CO is the 

major sink for OH [Jacob, 1999].  Both O3 and CO are criteria pollutants regulated under 

the US National Ambient Air Quality Standards.   

The major sources of ozone in the troposphere include stratospheric injection and 

in-situ chemical production, with chemical production comprising approximately 90% of 

O3 sources in the Northern Hemisphere [Seinfeld and Pandis, 2006].  Chemical 

production involves a series of complex interactions involving the oxidation of CO, 

methane (CH4), and nonmethane volatile organic compounds (NMVOCs) in the presence 

of nitrogen oxides (NOx = NO + NO2)[Seinfeld and Pandis, 2006].  As the chemical 

equations below show, in the absence of NOx, CO oxidation leads to O3 destruction.  The 

major sinks for O3 are photochemical loss (~80%) and dry deposition [Seinfeld and 

Pandis, 2006]. 

CO + OH + O2 → CO2 + HO2   CO + OH + O2 → CO2 + HO2  

HO2 + NO → OH + NO2   HO2 + O3 → OH + 2 O2 

NO2 + hv → NO + O    CO + O3 → CO2 + O2 

O + O2 + M → O3 + M  

CO + 2 O2 → CO2 + O3 
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Carbon monoxide is the product of incomplete combustion and thus has a large 

anthropogenic source, particularly in the Northern Hemisphere [Holloway et al., 2000; 

Khalil and Rasmussen, 1990; Seinfeld and Pandis, 2006].  Thus, O3 production in the 

lower free troposphere of the Northern Hemisphere is largely regulated by anthropogenic 

sources [Hudman et al., 2008; Martin et al., 2006; Pfister et al., 2006].  Other 

predominant sources of CO include biomass burning and in-situ oxidation of CH4 

[Holloway et al., 2000; Jacob, 1999].  The main sink for CO is oxidation by OH, 

ultimately yielding the GHG carbon dioxide(CO2)  [Jacob, 1999].  Table 1 lists the major 

sources and sinks of global CO.  Carbon monoxide‟s relatively simple chemistry, well 

quantified sources and sinks, and atmospheric lifetime of ~2 months make it a good 

tracer for both measuring and modeling anthropogenic emissions [Duncan et al., 2007; 

Kopacz et al., 2010]. 

Table 1:  Sources and sinks of CO, adapted from Seinfeld and Pandis 2006. 

 Range of estimates (TG CO yr
-1

) 

Sources 1800 - 2700 

     Fossil fuel/Industry      300 - 550 

     Biomass Burning      300 - 700 

     Oxidation of Hydrocarbons      600 - 1600 

     Oceans      20 - 200 

     Vegetation      60 - 160 

Sinks 1400 - 2600 

     OH oxidation      1400 - 2600 

     Stratosphere       ~100 

     Soil uptake      250 - 640 

 

Increases in NOx, CH4, and CO concentrations have lead to increases in free 

tropospheric O3 since pre-industrial times [Hudman et al., 2009].  More recently, 

divergent trends of tropospheric O3 have been observed over different regions of the 

Northern Hemisphere [Fusco and Logan, 2003].  Over the past decade, emissions of 
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ozone pre-cursors have declined significantly in the US and Europe, while increasing in 

Asia [Hudman et al., 2009; Vingarzan, 2004]. Figure 1 shows significant decreases in US 

emissions of CO and NO2 since 1980.  US sources account for approximately 80% of 

emissions from North America [Wang et al., 2009].  It is possible that these declines have 

also resulted in declines of CO and O3 in the lower free troposphere over the North 

Atlantic US outflow region.  It is also possible that increases in CO and O3 pre-cursors 

from Southeast Asia have offset declines in the US and Europe; possibly offsetting US 

and European emission declines. 

 

 
Figure 1:  US emission reductions in thousand short tons for CO and NOx from 2000 to 

2008.  Data available at: http://www.epa.gov/ttnchie1/trends/. 

 

It is now widely recognized that outflow from one continent can impact air 

quality and background pollutant levels in other continents [R Honrath et al., 2004; Li et 

al., 2002; L Zhang et al., 2008].  In a study using GEOS-Chem to quantify the North 

American impact on Europe, Li et al. (2002) found that 20% of European summer O3 
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violations would not have occurred in the absence of North American anthropogenic 

emissions.  Thus, reduced or increased outflow concentrations from one region have 

policy implications for a region downwind.   

The sparse availability of consistent long-term data of continental outflow often 

makes it difficult to examine the effects of trends in emissions from a given region.  Pico 

atmospheric monitoring station is a mountain top site located on Pico Island, Azores and 

is one of only a few such stations located in the remote free troposphere.  However, in-

situ monitoring is subject to equipment failures and seasonal operating limitations.  

Avoiding such limitations is one of the main advantages to using models and remote 

sensing instruments.  Also, improved coverage and capability in remote sensing 

instruments will likely increase use of these instruments for long term analysis moving 

forward.  Thus, quantifying the ability of models and satellites to capture in-situ 

measurements is vital if they are to be used for future policy decisions.  Analyzing 

differences between model output, satellite, and in-situ measurements may also lead to 

improved understanding of the physical/chemical processes occurring.  By comparing in-

situ, satellite, and model results over a longer period than is done in typical studies we 

hope to better illustrate each methods advantages and limitations in long term trend 

analysis and the ability of GEOS-Chem to capture both seasonal and long term trends.       

We use a nearly 10 year complete record of summertime (June-August) CO and 

O3 measurements from the PICO-NARE (Pico Inter-Continental Observatory-North 

America Regional Export) atmospheric monitoring station (with limited observations in 

other seasons) and the GEOS-Chem global CTM to analyze how recent emission 

reductions in the US have impacted O3 and CO levels in the lower free troposphere at 
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Pico, Azores from September 2000 to August 2010.  Fall and winter 2000 model runs 

were included to provide 10 years of model data for trend analysis.  Available satellite 

observations from AIRS/Aqua (Atmospheric Infrared Sounder) for CO and TES 

(Tropospheric Emission Spectrometer) for O3 are also used in comparison with model 

and in-situ measurements.  A summary of the available data is shown in Table 2; it 

should be noted that some of the data sets listed were not complete enough for use in 

trend analysis.  This is discussed further in the methods section below.   

Table 2:  Summary of the available data used in this study.  For PICO-NARE data all 

years are for summer only.  For GEOS-Chem, AIRS, and TES yearly coverage is 

available.  A red X indicates only partial records available. 

 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 

PICO - 

CO 

 X X X X X X   X X 

PICO 

– O3 

 X  X X X X  X X X 

GEOS-

Chem 

X X X X X X X X X X X 

AIRS - 

CO 

  X X X X X X X X X 

TES- 

O3 

    X X X X   X 

  

The remainder of this paper is as follows:  section 2 discusses the PICO-NARE 

station, GEOS-Chem model, AIRS, and TES.  Section 3 provides a description of the 

data analysis methods used and general model performance compared to the Pico data 

results and satellite retrievals.  Model trend results are presented in section 4 and sections 

5, 6, and 7 provide a discussion, the conclusions, and recommended future works.   
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(2) DATA DESCRIPTION 

(2.1)PICO-NARE 

(2.1.1) Site Description 

 Seasonal observations for the period of 2001 to 2010 have been collected at the 

PICO-NARE station.  The station is located at an altitude of 2225 m on top of Pico 

Mountain on Pico Island in the Azores, Portugal (38.5 degrees north latitude, 28.4 

degrees west longitude)[R Honrath et al., 2004].  Summertime fully automated 

measurements of CO and O3 have been collected since 2001 with occasional outages due 

to power loss and equipment failure.  The station is frequently impacted by North 

American (NA) export, with transport times from 5 to 7 days [Helmig et al., 2008; R E 

Honrath et al., 2008; Martin et al., 2006; Owen et al., 2006; Pfister et al., 2006].  

Numerous studies have analyzed transport of air arriving at Pico station using Hybrid 

Single-Particle Lagrangian Integrated Trajectories (HYSPLIT) and FLEXPART [R 

Honrath et al., 2004; Lapina et al., 2006; Owen et al., 2006].  Analysis revealed that Pico 

station is frequently impacted by outflow from the eastern U.S. as evidenced by enhanced 

CO and O3 arriving at Pico and backward trajectory analysis.   

One potential problem with mountaintop measurements is uplifting by synoptic 

winds and buoyant upslope flow from radiant heating of the earth‟s surface.  This creates 

the potential for marine boundary layer air to be sampled rather than free troposphere 

(FT) air.  Extensive analysis of orographic flows conducted in 2004 revealed that the 

station is impacted by buoyant upslope flows  and mechanically forced wind driven 
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upslope flows 24% and 15% of the days respectively for the summer period[Kleissl et al., 

2007].  The period from October thru April is more heavily impacted by synoptic winds 

and mechanical uplift, the probability of sampling marine boundary layer ranges from 35 

to 60% per month and < 20% for May thru September[Kleissl et al., 2007].  

Measurements of isoprene (emitted from vegetation more than 700 m below the station) 

and n-butane (a cooking fuel used on Pico) revealed that even on days when the station is 

impacted by uplifting, the air did not originate from the surface[Kleissl et al., 2007] .  

Thus, Pico station is an ideal location for sampling the lower free troposphere. 

(2.1.2) Measurement Methods 

Carbon monoxide measurements and ozone measurements are described by 

Honrath et al. [2004] and summarized here.  For CO, a Thermo Environmental Inc. 

(TEI), 48C-TL trace level gas filter correlation CO analyzer with a palladium catalyst 

was used.  Instrument sensitivity for the period from 2001-2003 was +/- 3% and the 

instrument precision was +/- 8%.  Measurement precision (2-σ) was +/- 8 ppbv or better, 

with +/- 3% variation from 2001 to 2003.  Ozone measurements were via ultraviolet 

absorption (TEI Model 49C) and were found to be 3.9 +/- 0.3% low compared to NIST 

reference standard.  Due to damage the instrument was replaced with an identical one and 

was found to be 3.5 +/- 0.3% lower than the 2001 instrument.  All measurements were 

multiplied by 1.039 and measurements from 2003 on were multiplied by another 1.035.  

One minute averages were found to have a measurement precision that was usually 

within 1 ppbv. 
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(2.2) AIRS/AQUA 

       The Atmospheric Infrared Sounder (AIRS) was launched onboard the AQUA 

satellite May 4, 2002.  AIRS is polar orbiting nadir-viewing thermal IR sounder with 

cloud clearing capability and retrieves CO at 4.7 μm with 70% daily global coverage; 

100% between 45
0
 and 80

0
 LON [McMillan et al., 2005; Yurganov et al., 2008].  We use 

AIRS Level 3 version 5 monthly data obtained from Giovanni, Goddard Earth Sciences 

Data and Information Services Center (GES DISC), data is available at 

http://disc.sci.gsfc.nasa.gov/giovanni#instances [Acker and Leptoukh, 2007].  Level 3 

data includes only data that has undergone rigorous processing and is available with no 

significant requirement for data manipulation.  As was done in prior studies, we include 

only AIRS measurements with >0.5 degrees of freedom [Fisher et al., 2010].  Previous 

comparison of AIRS with in-situ measurements reveals a positive bias of ~ 10% in the 

Northern Hemisphere [Fisher et al., 2010; Kopacz et al., 2010].  Retrievals were obtained 

for the area covering the same horizontal grid as GEOS-Chem (-32.5
0 

to -27.5
0
 W and 36

0
 

to 40
0
 N) centered at 802 hPa (roughly 2.2 km, the same elevation as Pico station).   

Since both the Pico data and GEOS-Chem use both day and night values we use both day 

and night retrievals for AIRS.   

(2.3) TES/Aura 

The Tropospheric Emission Spectrometer (TES) was launched in July of 2004 

aboard the EOS Aura.  Data was obtained from Giovanni online data system, developed 

and maintained by the NASA GES DISC as previously mentioned.   TES is nadir viewing 

in a polar orbiting sun synchronous orbit on the same track as AIRS/Aqua with an local 

http://disc.sci.gsfc.nasa.gov/giovanni#instances
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crossing time of 01:45 and 13:45 [L Zhang et al., 2010].  TES obtains global coverage 

every 16 days, however, near daily coverage is achieved for our area of interest.   The 

average time between the validated measurements used in this study is approximately 

three days.  We use available data for the period covering 2005 to 2010.  The data for 

2008 – 2009 was not available, further limiting our ability to provide useful comparison 

to modeled O3 results.  The level three data comes pre-processed and negative values 

were removed.  Previous comparison with in-situ measurements show that TES has a 

positive bias of 5.3 ppbv for ozone [L Zhang et al., 2010]. 

(2.4) GEOS-Chem 

(2.4.1) Model Description 

 We use the global 3D GEOS-Chem chemical transport model (CTM) version 8-

03-01 (http://acmg.seas.harvard.edu/geos/index.html) driven by assimilated meteorology 

from Goddard Earth Observing System (GEOS) from the NASA Data Assimilation 

Office (DAO).  The original model description is provided by Bey et al. (2001) with 

updates described by Duncan and Fisher [Bey et al., 2001; Duncan et al., 2007; Fisher et 

al., 2010].  GEOS-Chem simulates atmospheric chemistry using 43 tracers with over 80 

chemical species and 300 reactions.  The model is initiated with a “restart” file containing 

concentrations for each species in each grid box.  To allow for model initialization and 

stabilization, a “spin-up” period of typically 6 to 12 months is used.  A “full chemistry” 

NOx-Ox-hydrocarbon simulation with SMVGEAR chemical solver developed by 

Jacobson et al. was used [Jacobson and Turco, 1994].  Photolysis rate constants in 

http://acmg.seas.harvard.edu/geos/index.html
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GEOS-CHEM are calculated with the Fast-J algorithm originally described by Wild et al. 

(2000).  

  Significant changes from previous versions include updated chemistry and 

photolysis rates as mentioned above, linearized stratospheric ozone (Linoz) chemistry 

package, and updated emissions databases.  “Linoz is a first-order Taylor expansion of 

stratospheric chemical rates in which the ozone tendency has been linearized about the 

local ozone mixing ratio, temperature, and the overhead column ozone density” 

[McLinden et al., 2000].  Previous versions used the synthetic ozone (SYNOZ) passive 

ozone tracer. The SYNOZ method applies a uniform flux for all areas of the tropopause 

whereas the Linoz method varies spatial distribution of cross-tropopause exchange and is 

thus more realistic.  Emission inventory updates include addition of the 2005 

Environmental Protection Agency (EPA) National Emissions Inventory Database 

(NEI2005), and MEGAN v2.1 biogenic emissions.  The MEGAN inventory includes 

emission rates for isoprene, methylbutenol, and seven monoterpene compounds (α-

pinene, β-pinene, limonene, myrcene, sabinene, 3-carene and ocimene); an original 

description is provided by Guenther with updates by Sakulyanontvittaya [Guenther et al., 

2006; Sakulyanontvittaya et al., 2008]. 

 Model emissions for CO include fossil fuel/industry, biofuel, biogenic, biomass 

burning, and oxidation of CH4.  Global emissions for all anthropogenic emissions are 

provided by the EDGAR emissions inventory with a base year of 1998 [Olivier and 

Berdowski, 2001].  The EDGAR inventory is overwritten by several regional inventories, 

including: EPA NEI 2005 for the U.S.[EPA, 2005], CAC for Canada [Canada, 2005], 

BRAVO for portions of Mexico and the Gulf of Mexico[Kuhns et al., 2005], EMEP for 
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Europe [Vestreng and Klein, 2002], and Streets for Asia [Streets et al., 2003].  Biofuel 

emissions are from Yevich & Logan which is overwritten by EPA NEI 2005 and Streets 

[Yevich and Logan, 2003].  

 Annual scale factors are applied globally to NOx, CO and SOx following the 

approach implemented by van Donkelaar et al. (2008) which builds upon the method 

used by Bey et al. (2001), and Park et al. (2004).  The basic method is to scale emissions 

according to CO2 trends obtained from the Carbon Dioxide Information Analysis Center 

using total solid and liquid CO2[van Donkelaar et al., 2008].  Where available this data is 

overwritten by regional government statistics.  Trend data for major sources is derived 

from: Environment Canada National Pollutant Release Inventory Trends for Canada, 

EPA Acid Rain Program and National Emissions Inventory for the U.S., European 

Monitoring and Evaluation Program for Europe, and the Regional Emission inventory in 

Asia.     

We use GFED v2 monthly inventory for 2001-2008 as described by van der Werf 

[van der Werf et al., 2006].  The GFED inventory uses fire counts derived from the 

Moderate Resolution Imaging Spectrometer to determine the timing and location of fires.  

Emissions are determined based on area burned and vegetation type.  One known 

problem with the GFEDv2 inventory is the misallocation of Alaskan fires as savanna type 

which is not the typical Alaskan fire.  For 2009 and 2010, GFEDv2 2008 was used.  We 

feel this configuration provides the best available model estimate for actual conditions 

over the study period with the available data.   Table 3 provides model anthropogenic and 

biomass burning CO emissions for various regions of the Northern Hemisphere over the 

time period covered in this study.  The model shows significant anthropogenic CO 
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declines for North America and Europe but increases from Asia.  There is also a decline 

in CO from biomass burning over the time period covered. 

Table 3:  GEOS-Chem CO sources for various locations and sources.  Values are Tg CO 

year
-1

.  The years 2000 and 2010 are omitted because the first 8 months of 2000 were in 

the spin-up period and only 8 months of 2010 are available. 

 ANTHROPOGENIC BIOMASS BURNING 

YEAR Northern 

Hemisphere 

North 

America 

Europe Asia Northern 

Hemisphere 

North 

America 

2001 436.48 97.27 45.11 245.87 202.62 8.67 

2002 447.94 99.89 42.81 255.98 230.88 21.30 

2003 460.27 95.50 41.56 272.86 246.49 33.94 

2004 461.08 90.59 41.57 278.12 200.96 23.24 

2005 460.14 86.26 40.00 281.77 215.97 20.76 

2006 460.68 82.98 38.21 286.16 180.87 15.46 

2007 455.88 82.99 35.43 286.16 219.55 15.31 

2008 457.24 83.23 35.56 287.01 180.89 13.84 

2009 455.88 83.00 35.43 286.16 180.00 13.83 

Trend +1.61  -2.33  -1.27  +4.82  -5.24  -0.78  

 

(2.4.2) Model runs  
 

 For the period covering 2001 to 2004 we use meteorology driven by GEOS-4 

(Goddard Earth Observing System) from the NASA GMAO (Global Modeling and 

Assimilation Office).  Original GEOS-4 product is gridded on 0.5
0 

x 0.667
0
 resolution 

and 55 hybrid pressure-sigma levels which we regrid to 4
0
 x

 
5

0
 and 30 vertical levels.  For 

the period covering 2005 to 2010 we use GEOS-5 meteorology with the same horizontal 

resolution but 72 hybrid pressure-sigma levels which are reduced to 47 levels. Both 

vertical levels used in this study are centered at 2.2 km, the same altitude as the Pico 

station.  A one year spin-up was used for both meteorological fields.  Both 24 hour 

average concentrations for global coverage and 4 hour average timeseries data centered 

over Pico were archived.  We use a time step for transport and convection of 30 minutes 

and a 60 minute time step for chemistry.  
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For sensitivity studies regarding the impact that North American fossil fuel 

emissions have on concentrations at Pico, fossil fuel emissions were shut off from 15⁰ to 

88⁰ N LAT and from 50⁰ to 165⁰ W LONG.  This area includes the US, Canada, and 

Mexico.  The model was run again for the same timeframe with all other settings set 

exactly as the initial run.  Spin-up, archiving and processing were also performed the 

same as the original run.         

 (3) Data Analysis Methods 
 

When processing the Pico data into 24 hour averages, only days with more than 

three data points were used, such occurrences were infrequent and most summer time 

data included 24 data points per day.  We use hourly averages from Pico which are then 

averaged into 24 hour averages.  For comparison with the Pico data to model and satellite 

output, 24 hour averages were used.  Satellite data had 2 data points per day, one in the 

morning and one in the evening.  GEOS-Chem output was archived at 4 hour intervals 

and thus had 6 data points per 24 hour average.  The 24 hour averages were then used to 

calculate either monthly or seasonal (winter-Dec. to Feb, spring-Mar. to May, summer-

Jun. to Aug., fall-Sept to Nov.) averages for comparison.  It is important to note that in 

order to directly compare satellite and model observations one would apply the averaging 

kernel used in the satellite retrieval [L Zhang et al., 2006].  The averaging kernel is a 

weighting function which determines concentrations at selective vertical intervals based 

on satellite column measurements.  Applying the averaging kernel to the model column 

concentration allows one to determine what the satellite output would be if the model 

column concentration were the actual atmospheric conditions.  That was not done in this 
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study and values presented here represent the independent value obtained from each 

source.   

For seasonal averages, only periods with adequate measurements from all three 

months were used.  For example, 2001 measurements did not begin until July and thus 

summer 2001 was dropped from the analysis.  The determination for an adequate amount 

of in-situ data for any given month was somewhat arbitrary given the variability in the 

data.  Generally, if a month included fewer than 15 days or was too heavily weighted 

towards one portion of the month it was not used.  For example, March 2005 had 5 days 

all at the end of the month and would not be included in trend analysis.  This did not 

occur for any summer months.  

 (4) General Model Performance 

Two basic methods were used to assess the model performance in comparison 

with Pico data.  Timeseries plots of seasonal and annual periods were used to gain a 

general understanding of model performance.  Various available options in the model 

were assessed for the ability to capture in-situ measurements in both magnitude and 

variability.  Certain previously identified North American pollution transport events 

arriving at Pico which included both biomass burning and anthropogenic events were 

used.  Two horizontal resolutions are available in the model, 2⁰ x 2.5⁰ or 4⁰x5⁰.  It was 

generally thought that the 2⁰ x2.5⁰ resolution would better capture results from the data, 

particularly transport events from North America.  Figure 2 is a timeseries plot for 

August of 2009 CO.  Large spikes in the data are attributed to pollution transport events, 

although none of the events here have been evaluated as yet.  For the summer of 2009 the 
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2⁰ x2.5⁰ was +1.06 ppbv with a range of +23.1 to -27.8 compared to the 4⁰x5⁰ horizontal 

grid resolution.  The main focus is to illustrate that little difference can be seen between 

the two resolutions; and given the addition computational time required for the finer 

resolution (approximately 40 days for ten years of 2⁰ x2.5⁰ vs. 10 days for 4⁰x5⁰); the 

4⁰x5⁰ horizontal resolution was used.  Rastigejev et al. (2010) found similar results when 

looking at the ability of global models to track pollution plumes over long distances 

[Rastigejev et al., 2010].  In general, Eulerian models suffer from numerical dispersion of 

pollution plumes regardless of the grid size chosen.   

 
Figure 2:  Timeseries plot for GEOS-Chem 2⁰x2.5⁰ in blue and GEOS-Chem 4⁰x5⁰ in 

red for summer 2009.  Although the 2⁰x2.5⁰ shows slightly more variability, for our 

purposes it yields little benefit in capturing the magnitude of CO.   

 

As mentioned previously, GEOS-Chem has several biomass burning options 

available.  Several years of summer CO were analyzed to determine what effect the 

choice of various biomass burning inventories have on model results for Pico station.  
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Figure 3 shows that the model is relatively insensitive to biomass burning at Pico and the 

N. Atlantic in general.  For the time period shown in the left panel of Figure 3, using 

GFED results in + 4.16 +/- 3.24 ppbv CO when compared with using no biomass burning 

emissions.  Again, this is due to numerical diffusion of pollution plumes and the coarse 

model resolution.  Rastigejev et al. (2010) estimate that the model resolution would have 

to increase to 3 x 3 km in order to effectively capture the long range transport of such 

plumes. 

 
Figure 3: The top panel shows timeseries at Pico from July 15, 2004 to August 20, 2004 

with three different biomass burning events.   

 

 One must also assess the models ability to capture the seasonal variation and long 

term “trends” in the data.  Figure 4 shows a timeseries plot for the full record of both CO 

and O3.  As can be seen, the model captures the seasonal cycles observed in the data quite 

well.  The model is low for CO as has been found in other studies [Bey et al., 2001; 

Duncan and Logan, 2008; Duncan et al., 2007].  Depending on where one is looking, 

model CO can range from 10 to 50 ppbv low compared to in-situ measurements.  For 
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ozone the model captures the temporal variation and magnitude quite well, although it 

lacks the magnitude of variation seen in the data; this is also consistent with previous 

results which show the model is typically within 10 ppbv of O3 measurements[Bey et al., 

2001; Choi et al., 2008].   Figure 5 shows model results plotted against Pico data along 

with a 1:1 ratio line.  Again, for CO we see that the model is consistently low, 

particularly at higher values of CO; y = 0.56x R
2
 = 0.68.  For ozone the model is higher 

than the data at concentrations below ~50 ppbv and lower than the data for concentrations 

above ~50 ppbv; y = 0.36x R
2
 = 0.29.  Again, this demonstrates that the model does not 

capture the variability seen in the Pico O3 data.  A seasonal breakdown of similar 1:1 

plots as those shown in Figure 5 is provided in the appendix. 

 
Figure 4:  Timeseries plot of all available data points covering the full record of all 

available data.  CO (top), O3 bottom, 1 hour Pico data (red), 4 hour GEOS-Chem data 

(blue). 
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Figure 5:  Corresponding 24 hour averages for GEOS-Chem vs. Pico data for CO 

(n=1160) and ozone (n=1239).  The 1:1 line represents perfect correlation.  

   

  For the satellite, model, data comparison, we used the period September 2004 to 

August 2005 as this provided the best available full year record for all data sets.  This was 

done to analyze their ability to capture the seasonal cycles since we analyze seasonal 

trends, and to better observe differences in the variability of the three data sets.  Figure 6 

shows the results for the seasonal cycle of O3 (left) and CO (right) for 1 year based on 

available daily averages.  March was a particularly sparse month for Pico data, with only 

five days available (27
th

-31
st
).  June 2005 resulted in no retrieval for TES data and 

September and October 2004 had only 3 TES data points each.   

For ozone both GEOS-Chem and TES are consistently high showing the least 

amount of agreement in winter and best agreement in summer and fall.  With respect to 

CO the model is consistently low particularly during the spring.  AIRS shows better 

overall agreement, however, it is low in the spring and high in the summer and fall.  All 

three sets of data display the characteristic cycle of peaking in late spring and reaching a 

minimum in late summer/fall.  Table 4 shows the minimum and maximum values and 

timing of those values for the data used in Figure 6.  For GEOS-Chem there is an 
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apparent discrepancy in the timing of minimum ozone.  This may be an artifact from the 

fact that the period covered overlaps the switch from GEOS-4 to GEOS-5 meteorology.   

 
Figure 6:  Seasonal cycle in ozone (left) and CO (right) based on 24 hour averages, x 

axis numbers correspond to the month of year (i.e. 1 = January).  The mean and median 

are represented with red and green dots respectively.   

 

Table 4: Minimum and maximum values for each respective data set based on monthly 

averages of 24 hour averaged concentrations for SEP 04 to AUG 05. 

DATA/SOURCE CO Ozone 

 MIN MAX MIN MAX 

Pico Data 92.18 AUG 142.05 MAR 38.56 JUL 
 

49.07 MAR 
 

GEOS-Chem 66.33 SEP 121.08 MAR 43.54 OCT  55.51 APR 

Satellite 106.00  SEP 125.47 MAR 43.20 JUL 64.61 APR 

 

There is some potential for discrepancy due to the use of GEOS-4 and GEOS-5 

assimilated meteorology.  In particular, GEOS-4 has a coarser vertical resolution 

compared to GEOS-5 and uses a deep convection scheme described by Zhang et al. 

(1995) where GEOS-5 uses a relaxed Arakawa-Schubert scheme described by Moorthi et 

al. (1992) [Moorthi and Suarez, 1992; G J Zhang and Mcfarlane, 1995].  While it would 

be ideal to use one GEOS version for the entire run, availability of GEOS 4 or GEOS 5 

does not cover the entire period of interest.  A two year period of overlap, 2005 thru 

2006, revealed that GEOS-5 driven results were on average 1.3 ppbv higher for CO with 

a range of +14.1 to -17.5 ppbv.  Figure 7 and Figure 8 show plots for GEOS-4 vs. GEOS-
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5.  The largest difference (GEOS5-GEOS4) is seen during the spring period (+1.50 +/- 

3.77 ppbv average 1-σ) with summer being the period of best agreement (-0.03 +/- 2.44 

ppbv average 1-σ).  For ozone, GEOS- 5 averages -1.68 ppbv lower than GEOS 4 with a 

range of +14.0 to -14.4 ppbv.  No significant difference in the magnitude of O3 

discrepancies was noted between the various seasons.   

It is also noted that there is a difference between the mean weighted OH 

concentrations between the two meteorological databases as shown in Table 5.  GEOS-5 

is consistently higher than GEOS-4; this should result in lower CO due to increased 

oxidation which is inconsistent with our results of higher CO when using GEOS-5.  With 

higher OH one might also expect lower O3, since HOx (OH + HO2) is a minor loss source 

for ozone in the remote troposphere [Jacob, 1999].  This is consistent with our findings 

of lower O3 with GEOS-5.   

Table 5:  Annual mean weighted GEOS-Chem OH concentration [1e5 molec/cm3] 

YEAR GEOS-4 GEOS-5 GEOS-5 – GEOS-4 

2004 11.83 13.26 1.43 

2005 11.87 13.07 1.20 

2006 12.60 12.59 0.46 

 

Plots for GEOS-4 vs. GEOS-5 for 2005 and 2006 are shown in Figure 7.  Results 

mimic GEOS-Chem vs. Pico data, with GEOS-4 being low for CO, particularly at higher 

values and GEOS-4 O3 being high at lower concentrations and low at higher 

concentrations.  Looking at the concentrations in the trend plots reveals that any affect of 

switching from GEOS-4 to GEOS-5 will most likely result in a higher bias for CO, thus 

the model CO trends are more likely to be underestimated.  For O3 any model trend under 

~50 ppbv is likely to be overestimated since GEOS-5 results are lower than GEOS-4 for 
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that concentration range.  Thus, the model trends for every season except spring may be a 

slight overestimate.  However, based on the average difference (GEOS-5 - GEOS-4) of 

1.3 ppbv for CO and -1.7 ppbv for O3 previously reported, any such impact is likely to be 

negligible.  Figure 8 shows timeseries plots for CO and O3 for 2005 through October 

2006, indeed, little difference is noted between the two meteorological fields for both 

chemical species. 

 
Figure 7:  Comparison of GEOS-4 and GEOS-5 assimilated meteorology for CO (left) 

and O3 (right) from2005 to 2006.  GEOS-4 and GEOS-5 match quite well, particularly 

for CO.  

 

 
Figure 8:  Timeseries plots comparing GEOS-4 (blue) to GEOS-5 (red) for both CO 

(left) and ozone (right). 
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(5) Trend Results 

(5.1) With North American Emissions 

The lack of available data prevents us from specifically declaring any formal 

trends; however, based on the analysis of model performance we can gain insight into the 

direction of CO and O3 concentrations in the lower FT over Pico.  Obviously, the most 

rigorous analysis has covered the summer period, thus, it is summer results which 

provide the highest confidence.  We have shown that the model does capture the seasonal 

cycle of CO and O3, however, additional data for seasons other than summer would 

improve our confidence in results for fall, winter and spring.   

Seasonal averages based on 24 hour averages are shown in Figures 9 and 10.  Fall 

is the season which shows the largest declines in both CO and O3 for model results; for 

CO, AIRS also shows the largest indicated decline is in the fall.  In other seasons, both 

GEOS-Chem and AIRS show more moderate declines in CO.   Model results for O3 also 

show declines in all seasons, although winter results are essentially flat.  As was seen 

with CO, fall is the season showing the largest indicated decline in O3, with spring and 

summer showing slightly more moderate declines.  Pico data corroborates model results 

of declining O3 in the summer season. 
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Figure 9:  Seasonal modeled trends for CO at Pico station.  All results indicate declines 

in all seasons. 

 

 
 Figure 10:  Seasonal modeled trends for O3 at Pico station.  GEOS-Chem shows 

declines in all seasons. 
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Based on model results, significant declines in fall CO of ~0.798 ppbv/year have 

occurred over the study period.  This matches closely with AIRS, which shows a decline 

of ~0.837 ppbv/year in the fall.  GEOS-Chem shows CO declines in other seasons of 

~0.35 ppbv/year, while AIRS indicates declines of ~0.5 ppbv/year.  Pico CO data shows 

a large decline in the summer record of ~1.3 ppbv/year; this is most likely due to the 

shorter record and high CO levels in the summer of 2003 which was a particularly high 

biomass burning year.   

Model results for O3 show a fall decline of ~0.85 ppbv/year and declines in 

summer and spring of ~0.58 ppbv/year.  Pico O3 data also shows a declining O3 level in 

the summer period of ~0.73 ppbv/year.   Model results for winter O3 show a decline of 

~0.117 which is essentially a flat trend.  Table 6 shows model trend results for both CO 

and O3. 

Table 6:  Model trend results for CO and O3 (ppbv/year) on a seasonal basis. 

 CO O3 

Fall (2000 – 2009) -0.798 -0.856 

Winter (2000 – 2009) -0.393 -0.117 

Spring (2001 – 2010) -0.307 -0.570 

Summer (2001 – 2010) -0.368 -0.583 

   

(5.2) No North American Fossil Fuel Emissions 

 Model sensitivity to North American (NA) fossil fuel emissions indicate that the  

 

average NA contribution to CO and O3 at Pico is 8.57 and 4.03 ppbv respectively based 

on monthly averages.  Table 7 shows the contribution for seasonal NA contributions.  For 

CO the largest difference is seen in winter and spring.  This is likely due to the higher 

contribution of biogenic and biomass burning during the summer and fall.  Thus, NA 
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fossil fuel emissions are less of the total CO reaching Pico in those seasons.  Ozone 

shows similar decreases in all seasons except for winter.  In winter there is less of an 

impact from NA fossil fuel emissions, this may be due to longer chemical lifetimes in the 

winter and hence an increase in the influence of Asian emissions during winter. 

Table 7:  GEOS-Chem North American fossil fuel emissions contribution to 

concentrations of CO and O3 at Pico station from the fall of 2000 through the summer of 

2010.   

 CO (ppbv) O3 (ppbv) 

Fall 5.71 4.44 

Winter 12.68 2.29 

Spring 11.01 4.45 

Summer 4.90 4.94 

Annual 8.57 4.03 

 

 The impact of no NA fossil fuel emissions on modeled trends are shown in 

Figures 11 and 12.  For CO the greatest difference in trend results is seen in the fall, with 

a decrease of 0.5671 ppbv/year in the magnitude of the declining trend.  Winter shows 

less of an impact from shutting off NA fossil fuel emissions.  This could be due to longer 

chemical lifetimes increasing the influence of Asian emissions in these seasons.  For 

spring there is essentially no change.  This may be due to a combination of longer 

lifetimes in early spring and increased impact of biomass burning and biogenic emissions 

in late spring.  The summer CO modeled trend actually increased slightly, 0.0569 

ppbv/year.  One possible explanation is that there was a larger decline in Northern 

Hemisphere (NH) biomass burning than there was in NA CO emissions.  Based on data 
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in table 3, there was a 5.24 ppbv/year decrease in NH biomass burning compared to a 

2.33 ppbv/year decrease in NA CO emissions.        

 

 

 
Figure 11:  Model trends for CO with (blue) and without (red) North American fossil fuel emissions. 

 

 For O3 there are similar changes in all seasons.  The declining model trend decreases in spring 

through fall by roughly 0.4 ppbv/year.  The impact of no NA fossil fuel emissions is less in winter; there 

was a 0.2 ppbv/year change in the winter trend.  Winter O3 modeled trends without NA fossil fuel 

emissions goes from being slightly negative to slightly positive.   Again this is likely due to longer 

chemical lifetimes of O3 precursors during the winter season increasing the influence of rising Asian 

emissions.  Table 8 lists model trends for CO and O3 with and without NA fossil fuel emissions. 
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Figure 12:  Model trends for O3 with and without NA fossil fuel emissions. 

 

Table 8:  Model trend results for CO and O3 (ppbv/year) with (w/NA) and without (no NA) North 

American fossil fuel emissions. 

                         CO                          O3 

 No NA w/NA No NA w/NA 

Fall -0.231 -0.798 -0.520 -0.856 

Winter -0.244 -0.393 +0.144 -0.117 

Spring -0.306 -0.307 -0.155 -0.570 

Sumer -0.424 -0.368 -0.133 -0.583 

 

(6) Discussion 

(6.1) GEOS-Chem vs. Satellite and Pico Data 

 For the summer period of 2004 used to generate Figure 6, model CO is on average 

27.0 +/- 8.62 (1-σ) ppbv low, while AIRS is 12.7 +/- 4.67 ppbv higher than Pico data; 

these are in agreement with other findings in the literature where model CO is 10 to 25 
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ppbv low [Bey et al., 2001; Kopacz et al., 2010].  Compared to AIRS, GEOS-Chem is 

39.6 +/- 4.50 ppbv CO lower for the summer 2004 period.  Winter shows the least 

discrepancy between model and AIRS data with GEOS-Chem being 14.07      +/-8.61 

ppbv CO lower than AIRS.  Table 9 shows the monthly differences between the various 

data sets used for the full year record in Figure 6.   The average seasonal difference for 

2004 through 2005 and full record differences are provided in Table 10.  For all seasons 

GEOS-Chem is 13.10 +/-24.21 ppbv low compared to Pico and 28.98 +/- 9.91 low 

compared to AIRS.  The full record results show that AIRS is 1.89 +/- 10.58 ppbv high 

compared to the Pico data.  GEOS-Chem CO is likely low compared to Pico and AIRS 

due to high model OH and underestimates in emissions, particularly biogenic emissions 

[Bey et al., 2001]. 

Table 9: Difference between monthly average CO (ppbv) based on 24 hour averages for 

the period from SEP 04 to AUG 05.  Red values indicate maximum differences and blue 

values represent minimum differences.  
 GEOS-Chem – Pico GEOS-Chem – AIRS AIRS - Pico 

JAN -21.1 -9.01 -12.1 

FEB -20.95 -9.18 -11.8 

MAR -21.0 -4.39 -16.9 

APR -36.1 -24.3 -11.9 

MAY -46.2 -45.0 -1.28 

JUN -33.6 -43.8 +7.22 

JUL -24.4 -40.0 +15.6 

AUG -20.0 -34.9 +14.8 

SEP -27.0 -39.7 +12.8 

OCT -20.1 -35.3 +15.2 

NOV -18.9 -30.5 +11.5 

DEC -18.0 -24.0 +6.06 

AVG -25.9 -28.3 +2.46 

SD 8.98 14.2 12.5 
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Table 10: Average seasonal differences and standard deviation (1σ) for the 2004 to 2005 

time period used in Figure 6.  The far right lists the average differences for all available 

data from the fall of 2000 thru August 2010. 

CO  Fall  Winter  Spring  Summer  Full  

Record  

GEOS-Chem - 

Pico  

-22.5  

+/- 4.06  

-20.0 

+/- 1.81  

-34.4 

+/- 12.68  

-27.0 

+/- 8.62  

-13.10 

+/-24.21  

AIRS - Pico  + 12.7  

+/- 4.66  

-5.95 

+/- 10.42  

-9.89 

+/- 7.86  

+ 12.7 

+/- 4.67  

+1.89 

+/-10.58 

GEOS-Chem - 

AIRS  

-35.1  

+/- 4.59  

-14.07 

+/- 8.61  

-24.5 

+/- 20.27  

-39.6 

+/- 4.50  

-28.98 

+/-9.91  

 

 Ozone is somewhat more difficult to analyze given the lack of TES data and only 

six years of complete summer record at Pico.  Over the summer period of 2004, GEOS-

Chem was found to be +5.69 +/- 4.00 ppbv higher than Pico data and +3.13 +/- 3.53 ppbv 

higher than TES (n=3), this is also within the +/- 10 ppbv model O3 range reported by 

Bey et al (2001).  TES was +3.73 +/- 1.27 ppbv compared to summer 2004 Pico 

measurements.  Table 11 shows values for differences of the full year record analyzed in 

this study.  Table 12 provides the average seasonal differences for the 2004 to 2005 

record used to generate Figure 6 as well as the average difference based on all available 

data.  For the full record available GEOS-Chem ozone averaged +3.53 +/-2.27 ppbv 

compared to Pico data; TES averaged +4.02 +/-0.15 ppbv.  GEOS-Chem averaged -4.98 

+/-3.79 ppbv lower than TES.  
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Table 11:  Monthly ozone differences based on hourly averages for the period covering 

SEP 04 to AUG 05 using the same data used in Figure 6.  Values are ppbv.  Red values 

indicate maximum differences and blue values represent minimum differences. 
 GEOS-Chem – Pico GEOS-Chem – TES TES - Pico 

JAN 5.84 -3.98 9.82 

FEB 4.74 -3.97 8.71 

MAR 4.08 -2.72 6.80 

APR 8.13 -9.10 17.2 

MAY 5.23 -2.90 8.13 

JUN 3.25   

JUL 10.3 5.67 4.63 

AUG 3.51 0.675 2.83 

SEP 3.05   

OCT 3.66   

NOV 4.74   

DEC 3.77   

AVG 5.02 -2.33 8.31 

SD 2.18 4.56 4.62 

    

Table 12:  Average seasonal differences and standard deviation (1σ) for the 2004 to 2005 

time period used in Figure 6.  The far right lists the average differences for all available 

data from the fall of 2000 thru August 2010. 

Ozone (ppbv) Fall  Winter  Spring  Summer  Full 

Record  

GEOS-Chem - 

Pico  

+ 3.81  

+/- 

0.855  

+4.78 

+/- 1.03  

+5.81 

+/- 2.09  

+ 5.69  

+/- 4.00  

+3.53 

+/- 2.27  

TES - Pico  +9.14 

+/-6.05 

+8.58 

+/- 1.04  

+10.7 

+/- 5.68  

+ 3.73  

+/- 1.27  

+4.02 

+/- 0.15  

GEOS-Chem - 

TES  

-5.33 

+/-5.36 

-3.79 

+/-0.31  

-4.91 

+/- 3.63  

+ 3.17  

+/- 3.53  

-4.98 

+/- 3.79  

 

 

 Large discrepancies between GEOS-Chem and AIRS have been noted, 

particularly for the summer and fall seasons; with GEOS-Chem being lower than AIRS 

by  -40.1 +/- 2.72 ppbv and -33.2 +/- 2.57 ppbv (1 σ) respectively.  GEOS-Chem was 

closer to TES for O3 with fall showing the largest discrepancy; the model was -9.37 +/- 

1.94 ppbv lower than TES (1 σ).  Spring and winter showed the next largest GEOS-Chem 

vs. TES discrepancies; the model was ~ -5 +/- 1 ppbv low.  For summer ozone, GEOS-
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Chem and TES were within 1.2 +/- 1.47 ppbv with the model again being low.  Based on 

the satellite averaging kernels they are most sensitive in the 300 to 400 hPa levels [Jin, 

2011].  Thus, although any „trends‟ indicated by them will be valid, the absolute values at 

the lower troposphere levels we are looking at will not be nearly as accurate.  This also 

explains why there is such little variation in the AIRS CO data.  It is therefore, not 

accurate to compare the magnitude of differences between model and Pico data results to 

the satellites without first applying the averaging kernel to the model and data.       

(6.2) Trends 
 

 It was intended to compare GEOS-Chem results to Pico data trend results; 

insufficient Pico data prevents us from using it for trend analysis.  The average annual 

model decline for CO and O3 with NA fossil fuel emissions is 0.467 ppbv/year and 

0.531ppbv/year respectively.  We have shown that the model, Pico data, and satellite 

retrievals all display the characteristic seasonal cycles for both CO and O3;  although a 

full year record overlap for Pico data and TES was not available.  We have also shown 

that GEOS-Chem and Pico data appear to agree well in terms of seasonal variation over 

the long term record and within expectations based on previous GEOS-Chem results.  For 

periods of available overlapping data, all datasets show the same direction of declining 

trends, but different magnitudes.  Given the availability of Pico data our highest 

confidence is in the summer months.  With 8 years of CO coverage provided by AIRS we 

can also be relatively confident in CO results for other seasons.  Given the limited 

availability of O3 coverage for periods outside the summer season it is more difficult to 
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definitively declare any trends in O3 for fall thru spring; although available Pico data in 

those seasons matches well with GEOS-Chem output.      

(6.3) North American Emissions 

 Based on the EPA data from Figure 1 there was a 32.1% reduction in U.S. CO 

emissions from 2000 to 2008.  Highway vehicles are the largest source of CO in the U.S.; 

this category also contributed to a majority of the reductions.  Table A3 in the appendix 

shows U.S. emission changes based on source category.  Over our study period the model 

shows an average decline of 14.27% for NA CO.  The discrepancy may be due to either 

GEOS-Chem scale factors being too low or the fact that we analyzed all of North 

America, not just the U.S.    Mexican emissions are not as well quantified as U.S. and 

Canadian emissions thus it is difficult to obtain accurate emission trends from this part of 

NA.   

 Based on model results without NA fossil fuel emissions, CO declined on average 

for all seasons by 0.301 ppbv/year and O3 declined by 0.166.  This represents a 35.5% 

reduction in the magnitude of decline for CO and a 68.7% reduction in the magnitude of 

decline for O3.  Ozone may have declined by larger amounts due to U.S. emission 

decreases in NOx and VOCs.   

     

(7) Conclusion 

  Ten years of GEOS-Chem simulated CO and O3 reveal that GEOS-Chem captures 

the annual and long term trends reasonably well and within the expected range of 

accuracy (+10 to +50 ppbv CO, +/- 10 ppbv O3) based on other studies.  For CO the 
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model is consistently low, particularly during the spring.  Simulated ozone matches in-

situ measurements very well throughout the year.  Using GEOS-4 and GEOS-5 does not 

appear to greatly impact model results for the study location.   

 Given the availability of Pico data and satellite retrievals our highest confidence is 

in summer CO and O3.  The 10 year simulation shows declining CO and O3 over the 

period from 2001 to 2010.  All three data sets show a downward trend in CO during 

summer.  The more limited coverage of Pico and TES O3 data limits our ability to 

corroborate the downward summer O3 trend; however, both model and in-situ 

measurements indicate a decline.   

 Eight years of AIRS CO data shows agreement with the modeled decline in all 

seasons.  Large discrepancies between GEOS-Chem and AIRS are likely the result of 

AIRS lower sensitivity at such low altitudes and our lack of applying the AIRS averaging 

kernel to model results.  This does not limit AIRS usefulness in corroborating the 

direction of declining CO levels. 

 Model results for ozone show declines in all seasons with winter being essentially 

flat.  The Pico data agrees with model results of declining O3 in summer but has a much 

shorter record.  The limited TES data does not allow for adequate comparison.  This 

highlights the value of models for analyzing trends. 

 Model results for both CO and O3 show the largest declines in fall.  Carbon 

monoxide shows similar declines in other seasons; however the magnitude is 

considerably less.  Ozone for spring and summer show similar declines while winter 

shows essentially no change over the ten year period.  Thus we tentatively conclude that 

declines in North American emissions of O3 precursors have resulted in declining O3 over 
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the North Atlantic lower free troposphere.  The winter O3 results may be due to longer 

photochemical lifetimes of O3 and its precursors increasing the influence of rising Asian 

emissions.   

 Sensitivity studies with GEOS-Chem show that North American (NA) fossil fuel 

emissions contribute 8.57 ppbv CO/year and 4.03 ppbv O3/year to Pico station.  The 

magnitude of the change in CO trends of 35.5% compares well to the EPA reported 

32.1% U.S. emission reduction.  Turning off NA fossil fuel emissions decreases model 

trends in all seasons for all species except summer CO.  We postulate that the increasing 

decline in summer CO at Pico without NA fossil fuel emissions is the result of a larger 

decreasing trend in Northern Hemisphere biomass burning compared to the NA 

anthropogenic CO decline over the period studied.  Only the model winter O3 trend went 

from being negative to positive.  The change in winter O3 with and without NA emissions 

was approximately half of that seen in other seasons.  The lower influence of NA 

anthropogenic emissions in winter is likely due to longer chemical lifetimes; thus, Asian 

emissions of O3 precursors have more of an influence in winter compared to other 

seasons, and less of a change between the two emission scenarios is observed with 

GEOS-Chem.     

(8)  Future Works 

Data Processing 
 

 A more accurate method of comparing GEOS-Chem to the data would be to select 

only Pico days with 24 hour coverage and compare only the corresponding days to the 



 42 

model and satellite output.  By our inclusion of days with less than complete coverage we 

may be exacerbating the differences between model output and Pico data.  For example, 

if only 10 data points are available and those points occur during a fire event, the data 

would be considerably higher than the model for that time period.  The Pico data could 

also be processed to exclude fire events. As we have shown, the model does not handle 

transport of fire plumes well over long distances.  By including these events in the Pico 

data, we may be adding to the discrepancy between the model and the data.  Also, 

including biomass burning in the model will influence model background concentrations 

of CO and O3 over Pico thus possibly influencing the modeled trends.  Excluding 

biomass burning in the model and the data would allow one to better isolate the impact of 

changing anthropogenic emissions on CO and O3 trends at Pico.  

Another method to compare GEOS-Chem with the satellite data would be to 

apply the averaging kernel to GEOS-Chem.  At the same time, it may be useful to only 

compare data points at times corresponding to the satellite crossing time of 01:45 and 

13:45.  The MOPIT (Measurements of Pollution in the Troposphere) satellite would also 

be a useful tool for evaluating CO trends.  MOPIT has the advantage of having coverage 

over the entire study period and has well documented comparisons to GEOS-Chem.   

Modeling 
 

 One feature of GEOS-Chem which could be particularly useful in better 

quantifying the impact of specific emission regions on the North Atlantic lower free 

troposphere is a tagged CO simulation.  The tagged CO simulation only calculates CO 

concentration using archived OH concentrations from a previous run.  This type of 
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simulation places a source tag on CO which identifies the tracer‟s source region. Sources 

are divided amongst North American, European, Asian, and other.  In addition, CO is 

tagged from biomass burning per region, global CH4, global biofuel, global monterpene, 

global isoprene, and global acetone   Thus, one can easily quantify the relative source 

attribution for any particular region of interest. 
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Appendix:   
 
Table A1: Significant reactions and rates for the chemical species in this study.  Adapted from 

http://acmg.seas.harvard.edu/geos/wiki_docs/chemistry/geoschem_mech.pdf 

Reaction Rate Source 

O3+NO = NO2+O2 3.00E-12 exp(-1500/T) JPL00 

O3+OH = HO2+O2 1.70E-12 exp(-940/T) JPL02 

O3+HO2 = OH+2O2 1.00E-14 exp(-490/T) JPL02 

O3+NO2 = O2+NO3 1.20E-13 exp(-2450/T) JPL97 

O3+MO2 = 

CH2O+HO2+2O2 

2.90E-16 exp(-1000/T) JPL02 

CO+OH = HO2 + CO2 K0=1.50E-13 
K = K0(1+0.6 Patm) 

JPL97 

CH2O+OH = 

CO+HO2+H2O 

9.00A212 JPL 02 

 

Table 2A:  Global model CO concentrations, Tg CO year
-1

. 

Year Global Anthropogenic 

Emissions 

Global Biomass Burning 

2001 469.8764 381.2404 

2002 481.0323 435.5395 

2003 493.982 415.3158 

2004 496.483 423.2468 

2005 496.951 421.7772 

2006 498.416 410.1676 

2007 493.611 426.953 

2008 495.075 329.027 

2009 493.618 328.0904 

 

 



 

 

 
Figure A1:  O3 (n=568) and CO (n=528) plots for GEOS-Chem and Pico data covering only the 

summer record. 

 

 
Figure A2:  O3 (n= 272) and CO (n=301) plots for GEOS-Chem and Pico data covering only the 

fall record. 

 

 
Figure A3: O3 (n=116) and CO (n=172) plots for GEOS-Chem and Pico data covering only the 

winter record. 

 

 



 

 

 
Figure A4:  O3 (n=292) and CO (n=245) plots for GEOS-Chem and Pico data covering only the 

spring record.  

 

Table A3:  U.S. CO emissions listed by source category in thousand short tons for 2000 to 2008.  

Data available at: http://www.epa.gov/ttnchie1/trends/. 

Source 

Category 

2000 2001 2002 2003 2004 2005 2006 2007 2008 

FUEL COMB. 

ELEC. UTIL. 
484 485 657 652 647 643 661 680 699 

FUEL COMB. 

INDUSTRIAL 
1219 1253 1267 1229 1190 1152 1173 1195 1216 

FUEL COMB. 

OTHER 
3081 3088 3550 3477 3404 3331 3343 3356 3369 

CHEMICAL & 

ALLIED 

PRODUCT MFG 

361 372 284 259 233 208 227 246 265 

METALS 

PROCESSING 
1295 1380 987 934 882 829 869 908 947 

PETROLEUM & 

RELATED 

INDUSTRIES 

161 162 357 355 353 351 352 353 355 

OTHER 

INDUSTRIAL 

PROCESSES 

592 615 490 504 519 534 522 511 500 

SOLVENT 

UTILIZATION 
51 50 2 2 2 2 2 2 2 

STORAGE & 

TRANSPORT 
169 178 118 114 111 107 110 113 115 

WASTE 

DISPOSAL & 

RECYCLING 

1849 1851 1594 1580 1567 1554 1564 1574 1584 

HIGHWAY 

VEHICLES 
68061 63476 60596 56579 52562 48544 45318 42092 38866 

OFF-HIGHWAY 24178 24677 22662 21999 21336 20672 19793 18915 18036 
MISCELLANEOUS 12964 8676 18493 17364 16235 15106 13981 12856 11731 

Total 114465 106263 111057 105078 99041 93034 87915 82801 77685 

 

Guide to model directory and data storage 

 The following is a brief description of the model runs and location of data, figures, and 

programs used in this report.  For more detail please see the READ_ME directory located at 



 

 

/local/ctm_homes/mfweise/v8-3-1/READ_ME/.  The main model directory path is 

/local/ctm_homes/mfweise/v8-3-1.  All model bpch files are in the bpch directory.  The model 

was initially run with GEOS-5 from 2004 through 2005; the path to these files is /bpch/GEOS5/.  

GEOS-4 was then run for 2000 through 2006; the path to these file is /bpch/GEOS4/.  These runs 

were both started using the Harvard restart file „/restarts/geos.4x5.2008010100‟.  These files 

should not be used for data analysis.  Various runs were created for analyzing which model to 

use.  These include /bpch/2x2.5/, /bpch/biomass/, /bpch/seasonalbio/.  The bpch files containing 

data used for data analysis are in /bpch/gfedmonthly/ and /bpch/ffemissions/.  The corresponding 

„input.geos‟ files are named according to the bpch files and are stored in /v8-3-1/inputlogs/.  

Output log files are also named according to bpch files and are stored in  

/v8-3-1/logs/ with corresponding directories for each type of run (i.e. „gfedmonthly‟, 

„ffemissions‟). 

 Timeseries output for Pico station is in the /v8-3-1/timeseries/ directory.  The naming 

convention follows those of the bpch files.  Thus the final analysis was performed with 

/timeseries/gfedmonthly/ and /timeseries/ffemissions/.  Directories labeled 

/timeseries/current_works/, /timeseries/current_works2/, /timeseries/current_works3/, and 

/timeseries/fire_events/ were used to temporarily store selected amounts of timeseries data for 

plotting. 

 All idlsav files used for plotting, including the idlsav file for Pico (all_pico_data.idlsav) 

are in /v8-3-1/idlsav.  GEOS-Chem idlsav files were created for each species and were used to 

generate figures.  If it was for trend analysis, the idlsav file has the word trend, if it was for the 

box and whiskers plot it is named „box‟, and if it was for timeseries plotting the name contains 

„ts‟.   



 

 

 All excel files used for data analysis and averaging are in /v8-3-1/excelfiles/.  There are 2 

each for CO and ozone as well as 1 for emissions and EPA data.  The /v8-3-1/textfiles/ directory 

contains .csv files used to convert bpch timeseries data to idlsav files. 

 The /v8-3-1/IDL/ directory contains all IDL programs used.  All timeseries plots have 

„plot...ts.pro‟ in the name.  One_box.pro, desc.pro, and test_box_plot_mark_2.pro were used to 

generate the box and whiskers plot.  Makecsvfile.pro converts .bpch files to .csv files for use in 

excel or conversion to .idlsav file format.  To calculate GEOS-Chem emission emissionssum.pro 

was used.      

 All figures used in this paper are located in /v8-3-1/finalfigs/.  Additional figures are 

located in /v8-3-1/output/ directory.   
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