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Abstract 

Active ankle prostheses controllers are gaining smart features to improve the safety and 

comfort of users. The perception of user intention to modulate the ankle dynamics is a well-

known example of such feature. But not much work focused on the perception of the 

environment, nor how the environment should be included in the mechanical design and 

control of the prostheses. The proposed work aims to integrate environment perception to 

prostheses controllers and to define the desired ankle dynamics of the human walk on 

different environmental settings. As a preliminary work on environment perception, a 

vision system was developed that can estimate the ground slope and height. The desired 

prosthesis dynamics was defined as the mechanical impedance of a healthy ankle, which 

required the system identification of the human ankle. Simulations showed the inertia 

parameters of a mockup foot can be estimated. Further experiments will show the accuracy 

of environment perception and of the impedance estimation. 
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1 Introduction 

Intelligent methods to control active prostheses devices are a key factor to achieve safe and 

transparent operation for amputee’s users. To do so, many prostheses controllers rely on 

user intention and the environment perception to control the prosthesis actuators [1]. The 

perception and execution features of prosthesis controllers are commonly divided into 

layers due to their different roles.  

On the perception layer, the user intention perception is often implemented using standard 

prosthesis sensors (inertial measurements of the prostheses and interaction forces [2-4]) to 

estimate an ambulation state (walking, standing, sitting, stair climb, etc). But not as much 

attention has been given to environment perception. 

The importance of environment perception is highlighted considering how walking 

kinematics and kinetics change depending on the ground slope [5] and flatness [6]. This 

problem of modulating a prosthesis for different ground slopes was addressed by Sup [7], 

who developed a ground slope estimator and modulated their impedance controller 

accordingly. Their slope estimator used inertial readings during the stance phase, thus, the 

slope estimated was always delayed by 1 step. 

The delay in the environment perception via proprioceptive sensors is well-known. Krausz, 

Lenzi [8] used a Microsoft Kinect sensor to identify the proximity to and geometry of a 

staircase for use in a lower limb prosthesis. Liu, Wang [9] used inertial and laser range 

measurements to classify walking modes as up/down ramp/stair, and leveled walk. Overall, 

recent developments in ranging sensors are enabling prostheses to perceive the 

environment in a timelier manner. 

On the execution layer, control engineers often opt for a controller with ankle compliance 

during the stance phase, such as emulating a stiffness [10] or an impedance [7] of a healthy 

walk. Additionally, the ankle has been reported to change its impedance across the cycle 

of the straight walk [11-13]. But prosthesis controllers cannot address these problems 

because there is no reported work quantifying the impedance as a function of ground slopes 

or gait maneuver. 

Therefore, there are 2 problem fronts: the perception layer must identify more accurately 

and timely the environment, while the execution layer must know how to operate the 

robotic ankle given the perception output. These issues are addressed in this report with a 

preliminary work on 1) estimating the ankle impedance in different walking conditions, in 

Chapter 2; and 2) developing a vision system to improve environment perception of 

prostheses, in Chapter 3.  

 



 

2 

2 Inertia Estimation using the Instrumented Vibrating 
Platform 

An instrumented vibrating platform was developed in a previous study to estimate the 

mechanical impedance of the human ankle [14]. It is composed of a motion capture system 

to record the ankle’s kinematics, and a force plate (FP) mounted on top of a vibrating 

platform to both record the ankle’s kinetics and apply perturbations to the system. The 

ground perturbations, occurring in the sagittal and frontal planes of the ankle, frees the 

subject from carrying a heavy test equipment, which allows the subject to perform a more 

natural walk. 

The next step of this work is to estimate the impedance of a human during walk, which was 

reported to have time-varying characteristics through the gait cycle [11-13]. Another step 

is to separate the intrinsic impedance from the nonlinear reflexive component. The intrinsic 

component can be estimated by observing the ankle dynamics only during the initial 

moments of the perturbation, before the reflexive component starts acting [15].  

Therefore, to estimate a time-varying impedance that works with short-time perturbations, 

a new impedance estimation method was developed. This method fits the system 

parameters, such as inertia, stiffness, and damping to the translational and rotational 

equations of motion of the system. An initial validation step is to estimate the inertia of the 

vibrating platform and a mockup foot, without the effect of the ankle stiffness and damping, 

and the person’s active balance control [16].  

In this work, the equations of motion of the vibrating platform were derived, validated 

against a numerical simulation, and used to estimate the inertia parameters of the vibrating 

platform and of a mockup human’s foot on experimental and simulation data. Most of the 

inertia parameters were estimated accurately with simulation data, but results from 

experimental analysis indicate the need for modifying the testing protocol. 

2.1 Theoretical Framework 

The proposed procedure aims to estimate the 10 inertia parameters of the force plate (FP) 

first in one experiment, then use the results to estimate the foot mockup inertia in a second 

experiment. The experimental protocol is the same in both cases: the platform is perturbed 

by a pseudo-random input, the motion capture system records the kinematics data, the force 

plate records kinetics data, and the inertial parameters are fit according to the equations of 

motion. 

Similar methods to estimate all the 10 inertia parameter of a rigid body (mass, center of 

gravity vector, 3 moments of inertia, and 3 products of inertia) have been presented in [17]. 

The proposed method can be classified as direct parameter estimation via base excitation, 

which has been used by other investigators [18, 19], who also reported good accuracy. Like 



 

3 

these methods, the analytical description of the system is developed and then the numerical 

method is presented. 

For the mathematical modeling of the ankle impedance system, 3 coordinates systems were 

defined: the inertial frame ℐ, the plate frame 𝒫, and the foot frame ℱ (Figure 1). The X-

axis and Z axis are normal to frontal and sagittal frames, respectively. 

 

 

The force plate (FP) motion is constrained by a universal joint, allowing a rotation on the 

inertial Z axis and on the plate X axis. 𝑅𝒫ℐ ∈ ℝ3×ℝ3 and 𝑝𝒫ℐ ∈ ℝ3 is the rotation matrix 

and translation vector from the ℐ to 𝒫 frame, respectively. 

The frame ℱ attached to the mockup foot allows the estimation of the foot properties, 

independent of its position and orientation in respect to the 𝒫 frame. 𝑅ℱ𝒫 ∈ ℝ3×ℝ3 and 

𝑝ℱ𝒫 ∈ ℝ3 is the rotation matrix and translation vector from the 𝒫 to ℱ frame, respectively. 

The position of the FP’s center of gravity (CG) in the 𝒫 frame, 𝑝𝑝𝒫 = (𝑥𝑝0, 𝑦𝑝0, 𝑧𝑝0)
𝑇

∈

ℝ3 is defined in respect to the origin of the 𝒫 frame. From that and disregarding the foot, 

the Newton’s Second Law applied on the FP yields 

𝑚𝑝 �̈�𝑝 = ∑ 𝐹 = 𝑚𝑝 𝑔 + �̂�0 + 𝐹𝑠 

where 

1. 𝑚𝑝 ∈ ℝ  is the FP mass. 

2. 𝑔 ∈ ℝ3 is the gravity vector pointing downwards. 

3. �̂�0 ∈  ℝ3 is the scale tare weight subtracted from the FP measurement. 

4. 𝐹𝑠 ∈  ℝ3 is the FP force measurement.  

The tare subtracts the load cell bias and the static weight of the FP. Therefore, �̂�0𝒫 =
−𝑅𝑃𝐼 𝑚𝑝 𝑔  can be modeled as a constant force on the 𝒫 frame, which expands the 

translational equation of motion to 

𝑚𝑝 �̈�𝑝 − 𝑚𝑝 𝑔 + 𝑅𝒫ℐ  𝑚𝑝 𝑔 = 𝐹𝑠 (1.a) 

ℐ 

ℱ 

𝒫 

Figure 1. Coordinate frame definition of the ankle impedance 

system. 
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Similarly, the Euler’s Equations calculated at the surface of the FP, in the 𝒫 frame is 

𝐽𝑝 �̇�𝒫
𝑝 + 𝜔𝑝 × (𝐽𝑝 𝜔𝑝) = ∑ 𝑇 = 𝑇𝑠 + 𝑑𝑝 × (𝑚𝑝�̈�𝑝 + 𝑚𝑝𝑔) 

where  

1. 𝐽𝑝 ∈ ℝ3×ℝ3 is the FP inertia tensor measured at the CG. 

2. 𝜔𝑝 ∈ ℝ3 is the angular velocity of the 𝒫 frame. 

3. 𝑇𝑠 ∈ ℝ3 is the FP torque measurement. 

4. 𝑑𝑝 ∈ ℝ3 is the distance from the FP origin to the FP CG in the 𝒫 frame. 

5. The left superscript 𝒫 denote a derivative on the non-inertial frame 𝒫. 

Therefore, the rotational equation of motion is 

𝐽𝑝 �̇�𝒫
𝑝 + 𝜔𝑝 × (𝐽𝑝 𝜔𝑝) − 𝑑𝑝 × (𝑚𝑝�̈�𝑝 + 𝑚𝑝𝑔) = 𝑇𝑠 (1.b) 

Because the kinematic variables (�̈�𝑝, 𝜔𝑝, �̇�𝑝) are constrained by the universal joint, they 

are dependent of the FP angles θ, φ, their first and second derivatives. But for simplicity, 

equations (1.a-b), and further equations are not expanded. 

Similarly, if the foot is added on top of the FP, the inertial and weight components of the 

Equations (1.a-b) increase, augmenting the equations of motion as 

𝑚𝑝 �̈�𝑝 + 𝑚𝑏 �̈�𝑓 − 𝑚𝑝 𝑔 − 𝑚𝑓 𝑔 + 𝑅𝒫ℐ 𝑚𝑝 𝑔 = 𝐹𝑠 (2.a) 

𝐽𝑝 �̇�𝒫
𝑝 + 𝜔𝑝 × (𝐽𝑝 𝜔𝑝) − 𝑑𝑝 × (𝑚𝑝�̈�𝑝 + 𝑚𝑝𝑔) … 

+ 𝐽𝑓 �̇�ℱ
𝑓 + 𝜔𝑓 × (𝐽𝑓 𝜔𝑓) − 𝑑𝑓 × (𝑚𝑓�̈�𝑓 + 𝑚𝑓𝑔) = 𝑇𝑠 

(2.b) 

where 

1. 𝐽𝑓 ∈ ℝ3×ℝ3 is the foot inertia tensor measured at its CG. 

2. 𝜔𝑓 ∈ ℝ3 is the angular velocity of the ℱ frame. 

3. 𝑑𝑓 ∈ ℝ3 is the distance from the ℱ origin to the foot CG in the ℱ frame. 

4. the left superscript ℱ denotes a derivative on the non-inertial frame ℱ. 

2.2 Methodology 

2.2.1 Experimental Setup 

The experiment setup was the same used in [14], except that 1) the motion capture sampling 

rate was set to 350 Hz, 2) the data acquisition (DAQ) measuring the FP measurements was 
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replaced by an NI USB-6251, National Instruments, USA; and 3) the DAQ and the motion 

captures were hardware-synchronized via the Optitrack eSync device. 

FP Inertia Experiment. Both the linear actuators of the vibrating platform were actuated 

for 60 seconds with a uniformly distributed random signal, ranging the full actuation span. 

The update frequency of the actuators was set to 29, 40, and 67 Hz for a total of 3 runs. 

Body Inertia Experiment. The same protocol for the FP Inertia Experiment was used. The 

mockup foot was represented by a calibrated weight (Error! Reference source not 

found..a) whose inertia parameters were derived from its CAD model: 22.68 kg mass, 

(81.1, 127.0, 137.2)T 10-3 kg m2 moment of inertia, and (Jyz, Jxz, Jxy) = (81.1, 127.0, 137.2)T 

10-3 kg m2 product of inertia. The foot was fixed to the center of the FP by a mounting tape. 

 

 

 

 

(a) (b) 

Figure 2. (a) Mockup foot represented by a calibrated weight. (b) Animation of the 

dynamic simulation. The axes convention matches the experimental setup. 

2.2.2 Dynamic Simulation 

A numerical simulation (Figure 2.b) was developed with Simscape Multibody software, 

MathWorks, USA, to validate the analytical description of the instrumented vibrating 

platform and to test whether the inertia parameters are theoretically observable. Since the 

source of error of parameter estimation can be either bad modeling or bad experimental 

measurements, this simulation is used to generate ideal measurements. Nevertheless, non-

ideal measurements and other limitations present in the real setup were also modeled to 

assess how they affect the performance of the estimation. 

The simulation generates data in the same format as the experimental setup so that the same 

post-processing calculations are applied to both datasets. All measurements were added a 

normally distributed random noise of standard deviation of 0.1 mm, 10×10-6 rad, 0.1 N, 

0.05 Nm, for all translations, Euler angle rotations (YZX), forces, and torques, respectively. 

To assess the sensibility of the inertia estimation method due to noise, the system was 

simulated 20 times to calculate the average and standard deviation of the parameter 

estimates. 
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Other sources of error were added to the simulation to assess how they affect the 

performance of the parameter estimation. The simulated FP force measurement was 

subtracted a tare weight on the normal axis and an unobservable inertia was added under 

the FP representing the upper frame of the vibrating platform (9 kg mass, (10, 50, 5)T mm 

CG from the universal joint, (0.9, 0.9, 0.3)T kg m2 moment of inertia, (0.2, 0.1, 0.1)T kg m2 

product of inertia). Rotational springs (270 Nm/deg in the Z axis, 150 Nm/deg in X axis) 

were added to the universal joint [14]. 

The analytical model of the system, equations of motion (1.a-b) and (2.a-b), was compared 

to the numerical model. The output kinematic data of the numerical model was inserted on 

the analytical model and the output torques have shown to be equal. Therefore, validating 

the analytical description of the vibrating platform. 

2.2.3 Parameter Estimation Algorithm 

Signal Processing. Both the kinematics and dynamics measurements were low-pass 

filtered (40 Hz cutoff, 100th order, Hanning window-based). The derivatives were 

numerically calculated via a Savitzky-Golay filter [20] (12th order polynomial, 13-point 

window) to account for high-frequency signal components. 

Residual of FP Inertia Estimation. To estimate 𝐽𝑝 and 𝑑𝑝, a residual variable is defined 

subtracting the right-hand side from the left-hand side of equations of motion (1.a) and 

(1.b), obtaining 

𝜀(𝐽𝑝, 𝑑𝑝) = (
𝑚𝑝 �̈̃�𝑝 − 𝑚𝑝 𝑔 + �̃�𝑃𝐼 𝑚𝑝 𝑔 − �̃�𝑠

𝐽𝑝 �̃̇�𝑃
𝑝 + �̃�𝑝 × (𝐽𝑝 �̃�𝑝) − 𝑑𝑝 × (𝑚𝑝�̃̈�𝑝 + 𝑚𝑝𝑔) − �̃�𝑠

) (3) 

where the tilde accent refers to the uncertain measurements. The mass is not estimated 

because it can be measured directly by the FP after it is tared with the FP on the vertical 

orientation. That is, while the weight is not acting in the normal direction of the FP.   

Residual of Body Inertia Estimation. Similarly, to estimate 𝑚𝑏, 𝐽𝑏, and 𝑑𝑝, another residual 

variable is defined subtracting the right-hand side from the left-hand side of equations of 

motion (2.a) and (2.b), obtaining 

𝜂(𝑚𝑓 , 𝐽𝑓 , 𝑑𝑓) = (

𝑚𝑝 �̈̃�𝑝 + 𝑚𝑓 �̃̈�𝑓 − 𝑚𝑝 𝑔 − 𝑚𝑓 𝑔 + �̃�𝒫ℐ 𝑚𝑝 𝑔 − �̃�𝑠

𝐽𝑝 �̃̇�𝒫
𝑝 + �̃�𝑝 × (𝐽𝑝 �̃�𝑝) − 𝑑𝑝 × (𝑚𝑝�̈̃�𝑝 + 𝑚𝑝𝑔) − �̃�𝑠 + ⋯

+ 𝐽𝑓 �̃̇�ℱ
𝑓 + �̃�𝑓 × (𝐽𝑓 �̃�𝑓) − 𝑑𝑓 × (𝑚𝑓 �̃̈�𝑓 + 𝑚𝑓𝑔) − �̃�𝑠

) (4) 

Different from 𝜀, the mass property was included as an unknown variable on the residual 

𝜂 to verify that the system can estimate all 10 inertia components simultaneously. That will 

be necessary when estimating the real foot mass, which cannot be directly measured. 
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Nonlinear Optimization. The unknown parameters were estimated such that the residuals 

are minimized according to a cost function. The cost function takes into consideration all 

the N samples of the dataset and the uncertainty of each residual vector element to form 

(𝐽𝑝, 𝑑𝑝) = min
(𝐽𝑝,𝑑𝑝)

1

𝑁
∑ 𝜆𝑇|𝜀𝑘(𝐽𝑝, 𝑑𝑝)|

𝑁

𝑘=1

 (5) 

(𝑚𝑓 , 𝐽𝑓 , 𝑑𝑓) = min
(𝑚𝑓,𝐽𝑓,𝑑𝑓)

1

𝑁
∑ 𝜆𝑇|𝜂𝑘(𝑚𝑓 , 𝐽𝑓 , 𝑑𝑓)|

𝑁

𝑘=1

 

(6) 

where 𝜀𝑘 ∈ ℝ6 and 𝜂𝑘 ∈ ℝ6 are residuals at sample 𝑘, and 𝜆 = (1, 1, 1, 2, 2, 2)𝑇 is a weight 

vector. This weight vector should be inversely proportional to the uncertainty of the 

equations of motion, considering the noisy measurements. Finally, the unknown 

parameters are estimated minimizing the cost functions (5) and (6) via a trust region 

method based on interior point [21]. The FP inertia parameters are estimated first, so that 

𝐽𝑝 and 𝑑𝑝 estimates are fed into equation (4), to compute the 𝑚𝑓, 𝐽𝑓, and 𝑑𝑓 parameters. 

2.3 Results and Discussion 

FP Inertia Estimates. The FP inertia estimates showed a small deviation between 

experiments (Table 1) and they agree with a homogeneous cuboid with the same mass and 

dimensions. However, the inertia parameters should not necessarily match the 

homogeneous cuboid because the FP might have heterogeneous mass distribution. 

Altogether, the estimates indicate the algorithm has high accuracy and consistency. 

Table 1. Inertial parameters estimates of the FP. 

Parameter 
Ideal 

Cuboid 

Experimental Simulation 

Input Bandwidth 
Reference 

Absolute Error 

29 40 67 w/ noise no noise 

m 𝑘𝑔 4.64 4.64 4.64 4.64 4.64 0.00 ± 0.00 0.00 

𝒙𝟎 𝑚𝑚 0.0 5.5 7.2 2.4 5.03 0.06 ± 0.01 -0.00 

𝒚𝟎 𝑚𝑚 -14.4 -29.9 -27.3 -21.4 -26.20 -0.31 ± 0.20 0.00 

𝒛𝟎 𝑚𝑚 0 -0.9 -0.9 -1.1 -0.97 0.03 ± 0.01 0.00 

𝑱𝒙 𝑔 𝑚2 34.8 41.0 40.4 39.8 40.40 -0.43 ± 0.07 -0.00 

𝑱𝒚 𝑔 𝑚2 131.1 113.4 102.6 138.2 118.07 -0.60 ± 6.72 0.01 

𝑱𝒛 𝑔 𝑚2 97.0 105.5 106.7 103.6 105.27 1.03 ± 0.23 0.00 

𝑱𝒚𝒛 𝑔 𝑚2 0.0 -0.6 2.5 2.2 1.37 0.04 ± 0.01 0.00 

𝑱𝒙𝒛 𝑔 𝑚2 0.0 -2.4 2.1 -1.1 -0.47 -0.23 ± 0.06 0.00 

𝑱𝒙𝒚 𝑔 𝑚2 0.0 13.0 9.1 2.3 8.13 -0.08 ± 0.03 0.00 
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The system was simulated using the average of the experimental inertial estimates. When 

the measurements were not added noise and not filtered (Table 1, no noise), the estimation 

errors were virtually zero. Otherwise, when the measurements were added noise (Table 1, 

w/ noise), all the parameters were estimated with fair accuracy and the moment of inertia 

on the Y-axis had large deviation, but average close to the reference value. To assess the 

sensibility of the estimation given the sensor noise, 

Foot Inertia Estimates. Using the experimental data, the estimation was fairly accurate for 

all parameters, except 𝐽𝑦 and 𝐽𝑥 (Table 2). The source of the 𝐽𝑦 error is possibly because 

the platform does not rotate on the Y axis much, thus, not exciting the foot inertia on the Y 

axis. Further analysis should be done to explain the source of the 𝐽𝑥 error. 

Table 2. Inertial parameters estimates of the mockup foot. 

Parameter Reference 

Experimental Simulation 

Input Bandwidth Absolute Error 

29 40 67 w/ noise no noise 

m 𝑘𝑔 22.68 22.98 23.04 23.10 -3.58 ± 0.5 -0.00 

𝒙𝟎 𝑚𝑚 0.0 -0.3 -0.3 -0.1 -0.0 ± 0.0 -0.0 

𝒚𝟎 𝑚𝑚 -90.7 -73.1 -72.5 -73.9 2.5 ± 0.1 0.2 

𝒛𝟎 𝑚𝑚 0.0 -0.73 -0.9 -1.0 -0.0 ± 0.0 0.0 

𝑱𝒙 𝑔 𝑚2 81.1 0.0 0.0 0.0 -11.7 ± 0.4 -0.5 

𝑱𝒚 𝑔 𝑚2 127.0 13.6 169.8 200.5 121.7 ± 57.2 -133.9 

𝑱𝒛 𝑔 𝑚2 137.2 146.4 145.8 159.7 -6.4 ± 0.6 -0.9 

𝑱𝒚𝒛 𝑔 𝑚2 0.0 -1.1 -1.5 -0.6 -0.2 ± 1.1 -0.2 

𝑱𝒙𝒛 𝑔 𝑚2 0.0 2.0 -1.4 -0.0 -0.6 ± 0.3 -0.1 

𝑱𝒙𝒚 𝑔 𝑚2 0.0 4.4 2.9 2.8 0.0 ± 1.1 0.6 

On the other hand, the results from the simulation showed small errors, except for 𝐽𝑦. This 

large and small estimation errors on the experimental and simulated analysis, respectively, 

suggests the source of error is in the sensor measurements, on the physical model, or noise 

model. 

Further work is necessary to improve the inertia estimation accuracy of the FP and the foot, 

and to extend the method to the full ankle impedance estimation. The inaccurate 

experimental estimation of the foot inertia also suggests both the FP inertia and mockup 

foot experiments might be revised.  
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3 Wearable Vision System for Ground Mapping 

Conventional sensors have been used to classify the walking modes executed by prosthetics 

users, such as level walk, standing, stair ascent and descent, and ramp ascent and descent. 

Li and Hsiao-Wecksler [22] classified the walking mode from pose thresholds of a foot 

orthosis, but their approach could not predict future footsteps in time. Other machine 

learning algorithms were used to predict the walking mode, using a dynamic Bayesian 

Network [3] and Gaussian Mixture Models [2], but both have shown limitations identifying 

correctly and timely the transitions between walking modes. 

The accuracy of the walking mode transitions can be improved introducing knowledge of 

the environment by a vision system. Du et al. [23] showed that a correct prior knowledge 

of the terrain in front of the user not only decrease their classification error but also allowed 

earlier prediction. Many techniques have been used to identify the terrain in front of the 

user, such as using a laser sensor [24], or a Microsoft Kinect sensor [8]. These results show 

great promise of the vision systems to increase the mobility of prosthesis and orthosis users.  

This chapter presents an overview of depth sensing devices, listing some that can be used 

to assist prosthesis control. It also describes a prototype called GaitEyes, a wearable device 

attached to the prosthesis user’s hip that map the ground and localize it on an inertial frame. 

The description of its components and the algorithms for localization and plane fitting are 

described next. 

3.1 Background 

The recent technological maturation of depth sensing devices, the advancement in 

computing power, and algorithms efficiency has empowered machines with depth 

perception. This section describes technologies of depth sensing devices proper for 

wearable device application and later presents the state-of-the-art algorithms for depth 

perception. 

3.1.1 Depth Sensing Devices 

Structured Light. Structured light devices contain a camera and a light pattern projector, 

which in most cases work on the infrared spectrum. This type of device senses depth based 

on the warping of the projected pattern onto the environment. Devices that could be used 

as a wearable ground mapping system are the Occipital Structure, Intel RealSense R200 

and SR300. 

Because it depends on infra-red light, structured light cameras are sensitive to interference 

from sunlight, limiting outdoor applications. On the other hand, they show good 

performance on any type of surface, including homogeneous ones, like a blank floor. 

Finally, it is computationally efficient because it works on binary rather than intensity or 

color images. 
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Stereo Vision. Stereoscopy uses the instantaneous views from two cameras to triangulate 

the position of a point. A common setup uses two cameras of the same model mounted on 

a rigid base, in parallel, and facing the same direction. For additional depth accuracy, these 

two cameras might include a circuit to synchronize their image frames (frames of each 

camera are created simultaneously) and global shutters (all pixels within a frame are 

created simultaneously). Devices that could be used as a wearable ground mapping system 

are the Minoru 3D Webcam, StereoLabs ZED, and the Leap Motion. 

One benefit of the stereo cameras is that it works well in environments the human eye can 

see, including sunlit environments, because it depends on the light source from the 

environment. Also, because stereo systems use popular cameras in an advanced 

technological state, the components are low-cost and lightweight. The downside of stereo 

cameras is that it can only perceive a semi-dense depth map because it fails on 

homogeneous surfaces. Furthermore, it requires high computation effort because stereo 

algorithms process intensity images and rely on image search. 

Time of Flight. Time of flight (TOF) devices emit an unstructured light source onto a 

surface and measures the travel time of the light ray. The depth is computed from the 

known speed of light and time delay from emission to detection. Devices that could be used 

as a wearable ground mapping system are the SoftKinetic DepthSense 525 and the 

CamBoard Pico Flexx. 

TOF devices are further classified by its light sensitive sensor. Light Detection and 

Ranging (LiDAR) are TOF devices with a single light sensitive sensor but can scan a line 

or area by reflecting the emitted and received light by a rotating mirror. Using matrix 

shaped sensors like in regular cameras, Flash LiDAR devices achieve higher scanning 

rates. 

In conclusion, the TOF hardware is superior to the other depth sensing technologies except 

for its low performance in outdoor environments and overall depth accuracy. But newer 

generations of sensors are expected to solve these challenges [25]. Also, because wearables 

must be carried around and are susceptible to impacts, it should be lightweight and easily 

replaceable, making stereo system also a good option for this application. 

3.1.2 Simultaneous Localization and Mapping 

Simultaneous Localization and Mapping (SLAM) solves a common problem in mobile 

robotics, of navigating in an unknown environment, which requires the construction of the 

environment map and use this model to localize itself as the robot moves [26]. SLAM 

minimizes map inconsistencies correcting measurements from ranging sensors and the 

robot pose. 

The SLAM algorithms are further divided into Visual SLAM [27, 28] when using only 

exteroceptive sensors (measures external data, like depth sensors), or Visual-Inertial 
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SLAM [29-32] when using both exteroceptive and proprioceptive sensors (measures 

robot’s kinetic states, like heading, velocity, acceleration).  

Furthermore, the depth and inertial sensor might be tightly or loosely coupled, depending 

if their error minimizations are performed jointly or sequentially, respectively. Since the 

first approach has the flexibility to balance inertial sensor biases and depth noise, it has 

shown to be more accurate [29]. But due to the higher dimensionality, the computation cost 

is higher [32]. 

Finally, SLAM can be classified as direct or indirect depending if images are reduced to a 

set of key-points. Direct SLAM compares images, either over time from the same camera 

or over different camera frames, using the intensity images directly. The use of the entire 

image for mapping estimates a more dense depth map, comparing to indirect approaches 

[31]. On the other hand, indirect methods identify and convert salient points to be tracked 

over time.  

Image processing has the problem of large dimensionality, so image tracking solutions 

generally use local salient features as a reduced subset of information. These features are 

parts of the image that differs from its neighborhood, such as corners, edges, and region 

blobs. The features are represented in another space using Feature Descriptors for ease of 

comparison to one another and allow insensibility against change in scale, rotation, warp, 

and translation [33]. 

SLAM can be a valuable tool for prosthesis control perception, both for the reconstructed 

map and the pose estimates. The reconstructed map is more accurate than the depth map 

generated by the depth sensing devices alone, which enables a better ground reconstruction. 

Also, the pose estimate improves the conversion of the camera measurements to the inertial 

frame, also reducing reconstruction errors. 

3.2 Ground Fitting Algorithm 

The GaitEyes device (Figure 3.a) is composed of a stereo camera (StereoLabs ZED), an 

IMU (InvenSense MPU-6050), and a mobile computer (NVIDIA Jetson TX1). The mobile 

computer samples the camera measurements at 20 fps (720p resolution) and the IMU at 

100 Hz.  

The camera is attached to the user’s hip and pitched 45 degrees down to record the foothold 

region of the next step (Figure 3.b). To account for the hip motion as the user moves, the 

IMU, rigidly connected to the center of the stereo camera, records the camera orientation. 

The position and orientation of the IMU in respect to the camera are obtained through an 

extrinsic calibration [34]. 
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(a) (b) 

Figure 3. (a) GaitEyes components: stereo camera (I), IMU (II), and mobile computer 

(III). (b) GaitEyes on subject, pointing to the ground. 

To estimate the user’s pose and the ground slope and height, the mobile computer 1) 

estimates the pose of the camera, 2) creates a depth map of the environment, 3) identifies 

a plane model for the foothold region, and 4) update the plane model estimate over time. 

All these steps are repeated continuously (20 Hz) so that past iterations can improve the 

accuracy of the foothold region.  

The pose estimation of the camera uses a Simultaneous Localization and Mapping (SLAM) 

algorithm provided with the ZED camera. This SLAM algorithm balances the uncertainty 

of the image captures to estimate the most likely camera displacement while keeping the 

depth map consistent over continuous samples. Although the SLAM algorithm also results 

in a consistent depth map of the environment, the map cannot be directly used for the 

ground reconstruction because it is not dense.  

Instead, the depth map of the environment is computed with a semi-global matching stereo 

algorithm [30]. Like other stereo vision algorithms, it uses synchronized captures of two 

cameras to triangulate the position of each point in the field of view. The output of the 

stereo matching is an image, with each pixel representing the distance from the camera to 

the captured surface (Figure 4.a). 

  

(a) (b) 

Figure 4. (a) Depth map from the image capture. (b) Selected region of interest for the 

ground plane estimation. 

(I) 

(III) 

(II) 
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The set of points representing the foothold region of the next step (Figure 4.b) is modeled 

as a plane (Eq. 7), parameterized by a normal vector and z-intercept. These parameters are 

estimated using the Least Square Method (Eq. 8) according to the plane equation. 

[(
𝑥
𝑦
𝑧

) − (
0
0
𝑧0

)]

𝑇

(
𝑎
𝑏
1

) = 0   (7) 

(

𝑥1 𝑦1 −1
𝑥2 𝑦2 −1
⋮ ⋮ ⋮

𝑥𝑁 𝑦𝑁 −1

) (

𝑎
𝑏
𝑧0

)= (

−𝑧1

−𝑧2

⋮
−𝑧𝑁

)   (8) 

where 

1. (𝑥, 𝑦, 𝑧)𝑇 ∈  ℝ3 is the point on the plane. 

2. (𝑎, 𝑏, 1)𝑇 ∈  ℝ3 is a normal vector to the plane. 

3. 𝑧0 ∈  ℝ is the z-intercept of the plane. 

To convert these parameters from the camera to the inertial frame, the camera pose 

estimated by the SLAM or by the IMU is used. This reference conversion allows the update 

of the ground estimate as new data arrives, considering the motion of the camera. 

3.3 Discussion 

Qualitative tests indicate GaitEyes can estimate the ground slope in an indoor environment. 

The camera and the IMU were interfaced and each intrinsically calibrated. The system 

estimated the normal vector and height of the ground while a healthy person walked in a 

flat walkway.  

The performance of ground identification must be evaluated quantitatively. A first 

experiment should identify different ground slopes while the camera is static or moving 

very slowly. This initial test will verify 1) biases on the IMU orientation, 2) depth accuracy 

of the range imager, and 3) the extrinsic calibration between camera and IMU, that is, the 

frame conversion from camera to inertial frame. A second test will verify if the system is 

accurate for fast camera motions common during walk. This test might reveal 1) degraded 

image quality due to motion blur, 2) effect of fast motion on the IMU orientation estimates, 

and 3) synchronization errors between IMU and camera. 
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4 Future Work 

At the completion of the Ph.D. work, GaitEyes must be able to estimate ground properties, 

such as slope and step height, and the ankle impedance must be known for each of these 

properties. The estimation accuracy and processing time should be sufficient for 

implementation in a powered ankle-foot prosthesis. 

For the environment perception, other depth sensing and localization solutions should be 

explored. The stock SLAM algorithm provided by the ZED camera might be replaced by 

a visual-inertial alternative. To decrease the size of the system, the range imager might be 

replaced by a TOF camera. 

For the ankle impedance estimation, the analytical model and the simulation will be added 

a stiffness and damping torques to represent the ankle impedance. The simulation will 

validate the equations of motion, provide a reference value when estimating parameters, 

and indicate how observable the parameters are with the presence of noise. Parallelly, 

human trials will be recorded for a set of gait maneuvers and ground slopes. 
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5 Conclusion 

Intelligent active prosthesis makes use of environment and user intention perception to 

control the actuators. Although much work have been directed to understand the user 

intention, the estimation of the environment for prosthesis control is rather limited. And 

worse yet, the knowledge of the environment will not play a significant role to prosthesis 

performance until there are studies relating the impedance of the ankle to the environment 

properties. This report describes a preliminary work addressing these issues with 1) a vision 

system that estimates the ground slope and 2) a system identification algorithm for the 

vibrating platform to estimate the time-varying ankle impedance during gait maneuvers.  

To develop the vision system, a detailed research on range sensing technologies and map 

reconstruction algorithms was made. The main technologies are the structured light, stereo 

vision, and time of flight. The stereo vision was selected for this project because it works 

well on outside environment, is low-cost, and easily replaceable. The vision system could 

estimate the ground as a plane model and convert the normal vector of the plane to the 

inertial frame using IMU orientation measurements. 

The impedance estimation algorithm was first validated as a simple inertia identification 

problem and limitations of the FP hardware was discovered in initial tests. The inertial 

properties of the FP were accurately estimated using simulation data (moments of inertia 

on the vertical axis were not observable), and different experimental runs resulted in 

consistent estimations. But accurate inertial estimation of the a mockup foot was only 

possible in the simulation and for a few parameters, for the experimental case. Further work 

will revise the experimental protocol to reduce the estimation errors. 

The future steps of this project will quantitively evaluate the performance of the vision 

system for different ground settings. And, for each of these grounds settings, the ankle 

impedance will be evaluated with the vibrating platform.  
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