
Michigan Technological University Michigan Technological University 

Digital Commons @ Michigan Tech Digital Commons @ Michigan Tech 

Dissertations, Master's Theses and Master's Reports 

2017 

Effects of Wildfire Severity on Early Successional Dynamics in Effects of Wildfire Severity on Early Successional Dynamics in 

Boreal Peatland Complexes Boreal Peatland Complexes 

Elizabeth Ernst 
Michigan Technological University, ejernst@mtu.edu 

Copyright 2017 Elizabeth Ernst 

Recommended Citation Recommended Citation 
Ernst, Elizabeth, "Effects of Wildfire Severity on Early Successional Dynamics in Boreal Peatland 
Complexes", Open Access Master's Thesis, Michigan Technological University, 2017. 
https://doi.org/10.37099/mtu.dc.etdr/330 

Follow this and additional works at: https://digitalcommons.mtu.edu/etdr 

http://www.mtu.edu/
http://www.mtu.edu/
https://digitalcommons.mtu.edu/
https://digitalcommons.mtu.edu/etdr
https://doi.org/10.37099/mtu.dc.etdr/330
https://digitalcommons.mtu.edu/etdr?utm_source=digitalcommons.mtu.edu%2Fetdr%2F330&utm_medium=PDF&utm_campaign=PDFCoverPages


 
 
 
 

EFFECTS OF WILDFIRE SEVERITY ON EARLY SUCCESSIONAL 
DYNAMICS IN BOREAL PEATLAND COMPLEXES 

 
 
 
 

By  
 

Elizabeth J. Ernst 
 
 
 
 

A THESIS 
 

Submitted in partial fulfillment of the requirements for the degree of  
 

MASTER OF SCIENCE 
 

In Forestry 
 
 
 
 
 

MICHIGAN TECHNOLOGICAL UNIVERSITY 
 

2017 
 
 
 

© 2017 Elizabeth J. Ernst 
 



This thesis has been approved in partial fulfillment of the requirements for the Degree of 

MASTER OF SCIENCE in Forestry.  

 
School of Forest Resources and Environmental Science 

 
 
 
 

 
 Thesis Co-Advisor: Dr. Evan S. Kane 

 Thesis Co-Advisor: Dr. Joseph W. Wagenbrenner 

 Committee Member: Dr. Laura L. Bourgeau-Chavez 

 

 School Dean: Dr. Terry L. Sharik 

  
 

 
 
 

  



3 

Table of Contents 
 
Preface..................................................................................................................................4 

Acknowledgements..............................................................................................................5 

Abstract................................................................................................................................6 

1 Introduction....................................................................................................................7 

1.1 Background........................................................................................................7 

1.2 Objectives........................................................................................................11 

2 Methods........................................................................................................................11 

2.1 Sampling Methods...........................................................................................11 

2.1.1 Study Area & Climate Information................................................11 

2.1.2 Experimental Design......................................................................15 

2.1.3 Burn Severity Measurements.........................................................16 

2.1.4 Vegetation Recruitment and Tree Inventory..................................17 

2.2 Statistical Analysis...........................................................................................19 

2.2.1 Mixed Effects Modeling................................................................19 

2.2.2 Multivariate Analysis.....................................................................19 

2.2.3 Simple Linear Regression..............................................................21 

3 Results..........................................................................................................................21 

3.1 Fire Severity Effects on Regeneration Patterns...............................................21 

3.2 Timing Effects on Regeneration......................................................................24 

4 Discussion....................................................................................................................25 

5 Conclusion...................................................................................................................28 

6 References....................................................................................................................29 

7 Tables...........................................................................................................................34 

8 Figures..........................................................................................................................41 

9 Appendices...................................................................................................................52 

 

  



4 
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Abstract¹  
 

The Arctic-boreal region is experiencing changes in climate, trending toward 

warmer summers, resulting in a greater occurrence of wildfires with longer burning 

periods and higher intensities. Drought-like conditions dry surface fuels, leading to a 

higher probability of ignition, even in lowland peatlands. Previous work has been done to 

characterize post-fire succession rates in boreal upland sites, but much less is known of 

fire effects and early successional dynamics in lowland peatlands. Areas surrounding the 

Great Slave Lake in Canada’s Northwest Territories experienced exceptional wildfire 

activity in 2014 and 2015. These fires burned a variety of ecotypes, including bogs, fens, 

other lowlands, and uplands. To relate fire severity to early succession following 

wildfires, we collected seedling regeneration data in 2015 and 2016; we used mixed 

modeling and multivariate analyses to relate patterns in post-fire succession to burn 

severity metrics. Our study quantified burn severity at the surface, shrub, and canopy 

layers at several burned sites across ecotypes. We found that the most significant 

indicator of early regeneration of coniferous trees were severe ground fires, with canopy 

severity having little influence on successional patterns. Patterns of early succession of 

deciduous trees, however, related more to canopy severity. This work adds much needed 

context for post-fire succession in boreal peatland ecosystems, as the susceptibility of 

these systems to burning will continue to increase with a warming climate.  

 

¹The written work in this thesis is in preparation for submission to The International 
Journal of Wildland Fire, by E. J. Ernst, E.S. Kane, L.L. Bourgeau-Chavez, J. W. 
Wagenbrenner, and S. Endres.  
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1. Introduction 

1.1 Background 

Changes in climate in the Arctic-boreal region (ABR) are trending toward 

warmer, longer summers. In the past, wildfire frequency in the ABR was roughly every 

100-150 years; however, climate models show that the length of fire seasons and 

frequency of fires are likely to increase in response to warmer and drier conditions 

(Wotton & Flannigan 1993; Stocks et al. 1998; Flannigan et al. 2000; Wotton et al. 2010; 

Schiks et al. 2016). The projected long-term effects of increased evapotranspiration rates 

will dry fuels, giving them a higher probability of ignition and more foliage consumption 

in higher intensity fires (Flannigan 2009). We know that increased fire frequency has 

direct impacts on vegetation cover, shifting toward younger forests (Kurz & Apps 1999; 

Kasischke & Turetsky 2006), however, little is known about the patterns of early 

secondary succession in this region, particularly as it adapts to climate change. 

The number one disturbance factor in Canada’s Northwest Territories (NWT) is 

wildfire, which plays an important role in the health and productivity of ecosystems. The 

second largest disturbance factor is permafrost thaw, which is also mostly climate-driven 

(Heilbig 2016), and can accelerate when wildfires remove insulating organic layers 

(Yoshikawa et al. 2003). There are immediate and long-term impacts on surface energy, 

water balance, and underlying permafrost after a wildfire takes place. As both the size 

and number of fires have increased over the last four decades (Kasiscke & Turetsky 

2006), fire regimes have extended and directly affected ground layer combustion and 

severity (Turetsky et al. 2011), even in lowland wetlands. For these reasons, it is 
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important to identify and assess fire’s many alterations to surface water extent, soil 

moisture, and vegetation function. 

Peatlands are wetlands with low evapotranspiration rates and slow decomposition 

rates that accumulate thick layers of decomposed or decomposing organics over time. 

Though peatlands populate roughly 25-30% of boreal forest floors (Gorham 1991; 

Wieder et al. 2006), they are currently poorly represented in fire behavior prediction 

models (Schiks et al. 2016), despite recent studies showing that these systems are 

vulnerable to burn under warmer and drier conditions (Bourgeau-Chavez et al. 2015). 

There has been little research on fire effects in boreal peatlands, with most of the focus 

on upland forests in the boreal region (Schiks et al. 2016). A study by Schiks et al. in 

2016 showed that there is similar fuel loading at the ground level across fen types (Schiks 

et al. 2016), but treed peatlands are more susceptible to severe burning than those that 

lack drier woody fuels, such as open or shrubby fens (Turetsky et al. 2002; Schiks et al. 

2016).  

A study in Alberta, Canada from 2009-2014 showed that boggy lowlands burned 

more severely than the uplands during three out of four wildfires (Bourgeau-Chavez et al. 

2015). In the earliest of these fires (May 2011), 67% of bog sites burned, while only 30% 

of the uplands burned, opposing previous assumptions that wetter peatlands with high 

water tables are less likely to burn than upland sites (Bourgeau-Chavez et al. 2015). This 

study gave us an idea of how susceptible bogs are to severe burning, but our 

understanding of the vulnerability of other lowland and peatland systems, such as fens, is 

still incomplete.  
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Relative to bogs, fens are more common, making up roughly 60% of Canada’s 

peatlands (Vitt et al. 2000; Schiks et al. 2016). Fens have water tables that fluctuate from 

just below, to just above the ground surface (Rydin & Jeglum 2015). As compared to 

bogs, fens are less acidic, and chemical properties within fens vary, with poor fens 

relating closely in acidity to bogs (pH~4), and rich fens having lower acidity (pH~7).  

Peatland fires characteristically smolder in the ground layers (Zoltai et al. 1998; 

Benscoter and Wieder 2003; Rein et al. 2008; Schiks et al. 2016), but can also consume 

some fuels above the surface layer, such as shrubs and trees. Downed woody debris on 

the surface or buried beneath mosses can add to smoldering time (Brown et al. 2003; 

Schiks et al. 2016). Mosses, litter, and other ground fuels available for burning may vary 

greatly by season, depending on thaw depth and surface conditions (Turetsky et al. 2011). 

Combustion of ground layer fuels is heavily influenced by organic soil moisture at the 

time of burning, which can fluctuate considerably throughout a fire season as the water 

table rises and falls (Benscoter et al. 2011; Huang et al. 2015; Schiks et al. 2016), 

however, the depth of burns typically increase later into the fire season (Turetsky et al. 

2011). The depth of organic layer burns influence tree recruitment and recovery in boreal 

uplands (Landhaeusser & Wein 1993; Kasischke & Turetsky 2006), and ground moisture 

may also play a role in the survival of new seedlings, especially black spruce (Picea 

mariana), which were found to be more successful in wetter sites as opposed to dry ones 

(Brown et al. 2015). There is a gap in knowledge on the effects of ground layer severity 

as it relates to revegetation in peatlands, which could help improve future land 

management in these lowland systems as they adapt to more frequent and severe 

wildfires.  
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Today’s fire ecologists face the challenge of predicting post-fire successional 

trajectories in a changing climate, with increasing fire extent and severity. In the past, 

evidence of historical disturbance was used to help determine succession based on an 

ecosystem’s previous response; however, increased burn severity adds new conditions 

and nonlinear responses (Johnstone et al. 2010). Furthermore, plant community 

composition after major disturbance is variable and often hard to predict by influences of 

the surrounding environment alone. For example, P. mariana and tamarack (Larix 

laricina) are dominant tree species in peatlands, but more frequent wildfires and 

permafrost thaw may increase the saturation of soils, creating unfavorable conditions for 

one or both species. Shifts to more severe and frequent fires can interrupt stable cycles of 

P. mariana regeneration after wildfires (Johnstone et al. 2010), giving deciduous species 

new potential to dominate these boreal systems. Due to the difficulty of predicting 

ecological response to more frequent and severe wildfires, it is necessary to implement 

observational studies as a way to map early succession, because patterns of seedling 

composition a few years after wildfires are good indicators of successional trajectories of 

these systems (Johnstone et al. 2010).  

The NWT experienced particularly active wildfire seasons during the summers of 

2014 and 2015, burning throughout a variety of ecozones, including the Taiga Plains, 

Taiga Shield, and Boreal Plains. Fire regimes have shifted in these ecozones (Kasiscke & 

Turetsky 2006), revealing gaps in our understanding of the effects of more frequent 

wildfires. In 2014, a record 3.4 million ha burned in the NWT (Gabbert 2014), as 

compared to all of Canada’s yearly average of 2.1 million ha. The yearly average burned 

in NWT alone is nearly 500,000 ha, which was exceeded again in 2015, when 654,302 ha 
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burned (Matt Coyle, Government of NWT, affiliation, personal communication, March 

13, 2017). These fire seasons started earlier and ended later than average, burning 

throughout a variety of boreal ecosystems, or ecotypes, including bogs, fens, lowlands, 

and uplands.  

1.2 Objectives 

Our study relates burn severity to early recruitment of seedlings and sprouting 

plants after several NWT wildfires. Burn severity can be defined as ecological changes as 

the result of a wildfire (French et al. 2008). We rated burn severity by the amount of 

consumption of biomass at the ground, surface, and canopy level, and related severities to 

early successional patterns. We sampled in burned areas from wildfires that started in 

various ecotypes and ecozones at different months in two above average wildfire years. 

We aimed to answer the questions: 

1. Does burn severity vary by ecozone? 

2. How do fire effects differ in early or late season fires?  

3. How does the early succession vegetation compare among peatlands, 

lowlands, and uplands in boreal systems?  

4. Does the ground, shrub, or canopy burn severity relate to early successional 

patterns of coniferous and deciduous species?  

 

2. Methods 

2.1 Sampling Methods 

2.1.1 Study Area & Climate Information 
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All study sites were selected using satellite imagery of burned areas surrounding 

the Great Slave Lake in the NWT (Figure 1). Field sites represent a variety of burned 

ecozone types in the ABR, including the Boreal Plains, Taiga Plains, and Taiga Shield. 

The Boreal Plains make up the northern boundary of the American Great Plains and the 

southern boundary of the area used in this study. Extending 6.5 million ha, the boreal 

plains act as a transition zone between farmland and northern boreal forests (Smith et al. 

1998). Soils in the ecozone vary from loamy to clayey glacial till, with limestone bedrock 

outcroppings throughout the region. Forests in this ecozone are made up of mixed stands 

of P. mariana, trembling aspen (Populus tremuloides), and balsam poplar (Populus 

balsamifera). We sampled at one site on the Boreal Plains (fire name: SS-28, Figure 2), 

which was a fen site.  

The Taiga plains cover a 222,500 ha expanse of black spruce lowlands, and 

mixed-wood forests (Heilbig et al. 2016). Most of the sites used in this study were 

located on the Taiga plains, the majority of which were bog and fen sites. All sites on the 

Boreal and Taiga Plains were located along the road system, and we accessed them on 

foot (Figure 2). A number of our fen sites had standing water, and were shrubby or open, 

lacking a tree canopy layer. Areas sampled south of 62° were located on either the Taiga 

Plains or Boreal Plains.  

The Taiga Shield covers ~130 million ha and is dominated by mixed conifer and 

conifer-deciduous forests, with sporadic floating fens and peat plateaus (Houben et al. 

2016). Lowlands, which make up the majority of our Taiga Shield sites, are characterized 

by the presence of permafrost, which may limit the interaction between surface water and 

deeper organic soils. Bedrock and discontinuous till/lacustrine deposits, overlain by P. 
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mariana and jack pine (Pinus banksiana) forests, are representative of upland sites in the 

Taiga Shield. Bedrock in these systems may be volcanic, sedimentary, or granodiorite. 

Our sites in this ecozone were located north of the Great Slave Lake and east of 

Yellowknife; we accessed them by boat via Hearne Lake (Figure 2). Their location on the 

Taiga Shield made them generally rockier with shallower peat. All plots sampled north of 

62° latitude were located in the Taiga Shield ecozone. 

The landscape in the NWT varies in permafrost continuity, spanning areas of 

either continuous, discontinuous, or sporadic conditions (Figure 1), which can vary 

depending on the degree of latitude and drainage patterns in the area. The majority of our 

sites were located within the discontinuous permafrost boundary, with some sporadic 

sites and none characterized by a continuous permafrost condition. The NWT experiences 

low solar elevation (~28°) above the horizon at midday, and short growing seasons in 

cold soils, with thick organic layers (French et al. 2008). Yellowknife, the capital of the 

NWT, is located at the northernmost point of the Great Slave Lake. Yellowknife 

experiences short, dry summers with an average high of 21 degrees Celsius. The average 

low temperature in the winter is -29 degrees Celsius. Median cloud cover in the area 

ranges from 68 to 96%, with the cloudier months beginning on July 28th and moving into 

clearer months on January 9th. Winds in the region typically prevail from the east, with 

the exception of the summer months, where the winds are predominately southern 

(Houben et al. 2016). The mean daylight time is 17:51 in May, 19:42 in June, 18:50 in 

July, and 16:05 in August (Cedar Lake Ventures, Inc. 2017). Fire season here is relatively 

short, beginning after spring melt and ending when the snow returns in late fall. 
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We took in situ measurements at several burned sites surrounding the Great Slave 

Lake, NWT (Figure 2). Our sites were selected from 10 wildfires, 5 large fires in 2014, 

and 5 smaller fires in 2015 (Figure 2). The 2014 fires burned between June and 

September, and the 2015 fires burned between May and August (Figure 1). Ground 

sampling took place in early June and mid-July in 2015 and mid-July and early August in 

2016. The sites varied spatially from north (62.56579) to south (60.74811) and east (-

113.07375) to west (-119.09621).  

To estimate climatic conditions at the times the fires burned, we obtained daily 

data from a weather station in Yellowknife (62.450000, -114.38333) (Government of 

Canada 2017). We estimated the monthly average snow pack during the winters leading 

up to the 2014 and 2015 fire seasons. Though the maximum snow pack was comparable 

in both years, the 2014 season had the maximum snow pack (~45cm) later in March 

while the maximum 2015 snowpack (~44cm) occurred February (Table 1). The 

snowpack in April 2014 (~33cm) was roughly 2 times the amount of the April 2015 value 

(~16cm), suggesting that there was earlier melt in 2015 (Table 1).  

The 2014 fire season experienced warmer conditions later into the summer (end 

of July) than 2015 (Table 1). The two years had the same maximum temperature (28 

degrees Celsius), but the maximum occurred on July 25 and July 29 in 2014 and nearly 

one month earlier in 2015 (June 28) (Table 1). The 2014 fire season experienced low total 

precipitation in June (5mm), and the 2015 fire season received the lowest precipitation 

one month earlier in May (2.2mm) (Table 1) (Government of Canada 2017).  

The NWT uses the Canadian Wildland Fire Information System (Natural 

Resources Canada 2017), which calculates a fire danger rating called the Fire Weather 
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Index (FWI), based on wind, temperature, relative humidity, and rain. In Table 1, we 

included the maximum FWI rating for each month, which were all >30. The description 

for FWI ratings >30 is “extreme,” indicating that fire behavior has potential to reach 

high-intensity, with fast-spreading crown fires (Natural Resources Canada 2017). The 

FWI trend for 2014 fires started with the lowest rating in April (33), and increased 

throughout the season, reaching the peak FWI rating (69) for the year in September. The 

2015 season began with a high FWI rating (67) in April, peaking in June (78), and 

decreasing from then until the end of the season, ending with a rating of 51 in September.  

2.1.2 Experimental Design 

Several burned sites were selected for ground sampling in this study. Study sites 

were selected to represent a variety of boreal-peatland types. Criteria for selected sites 

include 100 x 100 m of a flat, homogeneous ecosystem type, though there were some 

slight variations in ecosystem type within sites. Within each site, we measured 4-6 10 m 

x 10 m plots with field measuring tapes, and marked the plots with pin flags, taking a 

GPS point at the first corner of the first plot in each site (Figure 3). The result was two 

parallel lines (traverse lines) with 40 m between them, which marked the edges of up to 

three plots, spaced 15 m apart. The site selection at this scale was designed for the 

purpose of validating remotely sensed maps, however, in order to study fire effects, we 

used the most discrete unit, 10 m x 10 m plots, to run our analyses. In the field, we 

recorded the “ecosystem class” at each plot. Ecosystem classes of “true peatlands” (≥ 

40cm of peat) included: bog, fen, open fen, shrubby fen, or treed fen.  

For our analysis, we combined ecosystem classes into four “ecotypes,” defined as 

bog, fen, lowland, or upland. Recent work by Schiks, et al. (2016) showed that despite 
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differences in structure, surface fuel load is mostly constant across fen types, so for the 

purpose of this study, we combined all fens, open (18%), shrubby (28%), and treed (54%) 

into one ecotype.  

We validated true peatlands by inserting 3-4 m length rods into the duff until 

mineral soil or ice was reached. If mineral soil was reached, the measurement was 

recorded as peat depth. If ice was reached, then the measurement was recorded as the 

“depth to thaw,” or the depth of the soil organic layer above frozen ground. We 

categorized the remaining plots (≤ 40 cm of peat) as either lowland conifer or upland 

conifer sites. In addition, we used am Ag/AgCl pH electrode (Thermo Scientific) to 

measure soil pH at each wetland site (Table 2). We also calculated the mean trees per ha 

for each ecotype (Table 2), by averaging the trees inventoried at each plot (described in 

section 2.1.4). 

2.1.3 Burn Severity Measurements 

To assess ground condition, we recorded the dominant ground cover (moss, 

lichen, grass) at each plot and noted the presence of ash, or burned moss, noting the depth 

of the burn. Organic layer profiles in peatlands typically include live moss (LM), dead 

moss (DM), upper duff (UD), and lower duff (LD), with mineral soil beneath (Figure 4). 

We dug pits with a shovel at each site and noted the thickness of every organic layer 

horizon up to 40cm, noting mineral soil type if present at that depth. 

We used two methods to quantify burn severity: 1) the adventitious root method, 

which measures amount of organic matter consumed and is an indicator of ground burn 

severity (Veverica et al. 2012) and 2) ocular assessments of severity at the ground, shrub, 

and canopy levels. The adventitious root method was carried out by measuring the height 
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of adventitious roots of black spruce trees above the ground surface in order to estimate 

the pre-fire moss level (Figure 4) and the amount of organic matter lost to burning 

(Veverica et al. 2012). We sampled up to five adventitious roots at each plot and took the 

mean of all adventitious root measurements to find the “absolute consumption (cm)” at 

each plot. Some plots (such as open fens) did not have trees, so those sites did not have 

values in our dataset, which we adjusted by taking ocular ground severity measurements. 

The ocular method of burn severity was used at each plot at three forest levels, 

with each level containing its own severity index (Figure 4), a method modified after 

Dyrness and Norum in 1983. We recorded ground severity (moss and litter) condition by 

estimating the percentage of each level of severity on a scale of 1-5, where 1=moss 

unburned (least severe), 2=moss singed, 3=lightly burned moss, 4=moderately burned 

moss, and 5=severely burned moss (most severe) for a total of 100% at each plot. 

Similarly, the litter severity was estimated as either 1=unburned, 2=singed, 3=charred, or 

4=ashed (most severe). To find shrub layer severity, we estimated the percentages of 

shrubs that were 1=unburned, 2=scorched, 3=burned with limbs left, and 4=limbs totally 

consumed (most severe). Tree canopy severity was rated by estimating severity on a scale 

of 1-5, where 1=live trees (least severe), 2=dead foliage intact, 3=dead foliage burned, 

4=minor primary branches present, 5=major primary branches present, and 6=charred 

poles (most severe).  

2.1.4 Vegetation Recruitment and Tree Inventory 

We estimated the percent live canopy cover, the percent medium shrub cover, the 

dominant cover and the wetness of the ground at the time of sampling. In addition, we 

collected biophysical information at each plot to quantify early succession and assess 
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vegetation recovery patterns. The number of seeding and sprouting species were counted 

in a 1 m x 1 m section of each plot, marked by “Flag Locations” in Figure 3. We 

classified seedbed types in each 1 m x 1 m subplot as either unburned, burned thin 

(singed moss), burned thick (deeply burned moss), or burned to mineral soil (all moss 

consumed). We combined the total number of seedlings and sprouting of each species to 

get a regrowth estimate at each plot.  

Since diameter at breast height (DBH) and basal diameter of trees are strong 

indicators of total biomass at a site (Schiks et al. 2016), we inventoried dead and live 

trees that survived the fire in each plot. P. mariana and L. laricina made up the majority 

of the canopy layer in treed sites. We created a pre-fire tree inventory by measuring the 

diameter of every tree >2 m in height. We used calipers to measure the basal diameter of 

P. mariana trees, and the DBH of all other species, noting the mortality and species of 

each tree. At particularly dense/uniform plots, we used 5 m x 5 m or 2.5 m x 2.5 m 

subplots instead of the full 10 m x 10 m plots. We converted our estimates from m² to 

trees per hectare (Table 2). In addition, the heights of five representative canopy trees 

were measured, as well as an ocular estimate of percentage of post-burn canopy closure.  

We added seedling and sprouting regrowth to the number of trees that survived 

the fire and converted these values to get total “live” trees per hectare. Live tree estimates 

included any trees that survived the fire, plus any regrowth. A study by Veverica et al. 

(2012) showed similarities in vegetation structure of two common North American 

conifers, P. mariana and L. laricina, in mixed boreal stands; therefore, we combined 

these species with jack pine (P. banksiana) to represent “live conifers.” We then 

calculated a live to dead ratio for coniferous species. For our analysis, we combined live, 
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seedling, and sprouting paper birch (Betula papyrifera), bog birch (Betula pumila), alder 

(Alnus), and willow (Salix spp.), P. balsamifera, and P. tremuloides seedling/sprouting 

data to create an estimate of “live deciduous.”  

2.2 Statistical Analysis 

2.2.1 Mixed Effects Model 

Effects of wildfire severity on coniferous and deciduous tree regrowth were 

investigated using a general linear mixed model approach in SAS version 9.4 (SAS 

Institute, 2012). The model was used to investigate indicators of fire severity in three 

strata of fuel structure: 1) ground layer (moss severity), 2) shrub layer (percentage of 

shrubs consumed, percentage of shrubs scorched), and 3) the canopy (percentage of 

minor and major branches consumed, number of completely charred boles remaining), 

and their interactions with ecotype in explaining variation in regrowth. The distributions 

of the response variables were evaluated in Kolmogorov-Smirnov tests using the 

UNIVARIATE procedure. The appropriate data distributions satisfying assumptions of 

normality were assigned in the mixed effects models (PROC GLIMMIX) with either the 

normal or lognormal distribution and no link or a log link function, respectively. Type-3 

tests of fixed effects and post-hoc comparisons of least-squared means tests across 

landscape positions were considered significant at alpha = 0.05. Least-squared means 

comparisons employed the Tukey–Kramer adjustment. 

2.2.2 Multivariate Analysis 

To analyze post-fire ecological communities, we used a Nonmetric 

Multidimensional Scaling (NMS) method with the software, PC-ORD version 6 

(McCune & Mefford 2011). We chose this ordination method based on its ability to 
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comply with a wide range of nonnormal or discontinuous data (McCune et al. 2002). We 

listed community data by entering the number of new plants (seedling/sprouting) in each 

plot (n=218), which became our “main matrix.” To improve efficiency of our 

multivariate analysis, we removed columns from the main matrix with fewer than 2 

nonzero numbers, which reduced clutter in our dataset and gave us a total of n=195 plots 

and 54 species (McCune et al. 2002). Our “second matrix” included several 

environmental conditions and burn severity classes, including the latitude, fire year, 

ecotype, month of ignition, permafrost condition, ecozone, depth of consumption (cm), 

percent consumption, ratio of live/dead trees, live deciduous, and percentage of severity 

at all levels (moss, litter, shrub, and canopy).  

We ran ecological community analyses using the Sorensen (Bray-Curtis) 

ordination in PC-ORD. This is a type of NMS ordination method, which selects polar 

endpoints and populates other points relative to the endpoints using a distance matrix 

(McCune et al. 2002). This method is shows ecological gradients that are independent of 

linear relationships with other species (McCune et al. 2002). It can be used to analyze 

large datasets with hundreds of plots to describe community variation relative to specific 

groups.  

We ran the NMS ordination in “autopilot” (input parameters are set 

automatically) at medium power, and graphed the results in 2D (Peck 2010). The 

grouping variables that we chose for our simple scatterplots were ecotype and month of 

fire start, and we selected “joint plot” to show environmental factors which were strongly 

associated with our ordination axes (r²>0.20). The percentage of variation within the 

distance matrix explained by each axis was noted by selecting the correlations within the 
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main matrix (∑1) and the correlations within the second matrix (∑2) (Peck 2010). We 

again used the Sorensen (Bray-Curtis) distance measure test (r²) to find the percent of 

variation in the distance matrix. This calculated the coefficients of determination in our 

scatterplot, giving us the relative contribution of each axis based on ordination scores 

(Peck 2010).  

Descriptive statistics were generated using the graphing function in PC-ORD to 

make simple boxplots showing the distribution of data among ecotype and the month of 

ignition to help supplement the ordination results. We were interested in how different 

levels of severity (ground, shrub and canopy) varied by ecotype and the month that the 

fire started, June (n=22), July (n=145), or August (n=28). We also looked at the absolute 

consumption (cm) from the adventitious root method to see how the depth of the burn 

differed among ecotypes and fire start months, validated by least squares estimates.  

2.2.3 Simple Linear Regression 

To analyze differences in ground severity across ecozones, we made a simple 

linear regression model using R software (R Core Team 2016) and created a plot with 

ggplot2 (Wickham 2009) showing the absolute consumption from the adventitious root 

method by latitude.  

 

3. Results 
 

3.1 Fire Severity Effects on Regeneration Patterns 

Overall, we found that the fen sites sampled burned less severely in the litter layer 

than any other ecotype (Figure 5). The boxplot in Figure 5 was generated as “litter 
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charred by ecotype,” which shows that the bog, lowland, and upland sites had about the 

same median of litter charred, while fen sites had a much lower median of litter charred 

(Figure 5). The least squares estimate of litter charred was much lower for fen ecotypes 

(36.3%, σ²=3.2%), compared to least squares estimates of the other ecotypes (67.1-

73.9%, σ²=3.2-8.8%), where σ² is the standard error (Appendix A).  

A test of burn severity effects on the ratio of live (survived plus regrowth) to 

standing dead coniferous species and the interaction of burn severity in the ground layer 

(moss and litter), shrub layer, canopy layer showed moss severity to be significant across 

all ecotypes, with a significance level of α=0.05 (Table 3). Moss severity showed a 

positive correlation with the ratio of live to dead conifers (p=0.003, F=9.16, DF=126), 

while severity within the shrub and canopy layers did not show significance. The 

interaction between moss severity and ecotype was also significant (p=0.0209, F=3.36) 

(Table 3) for all ecotypes. The least squares estimates showed a large separation between 

the bogs, fens, and lowlands in contrast with uplands, with the live to dead ratio of bog, 

fen, and lowland sites ranging from 1.05-5.87 (σ²=13.33-14.83), and the least squares 

estimate of uplands yielding a ratio of 192.60 (σ²=32.04) (Appendix A).   

Another model analyzed burn severity as it relates to live deciduous tree species 

after fire (Table 4). In this case, ecotype was the most significant predictor (p=<0.0001, 

F=12.61, DF=172) and none of the burn severity interactions with ecotype were 

significant (Table 4). The variation in deciduous regrowth across ecotypes is shown in 

Figure 6, where fens had the highest deciduous regrowth and bog sites had very little 

deciduous regrowth (Figure 6). Live deciduous was also significantly related to the most 

severe canopy class, charred poles (p=0.0158, F=5.94) (Table 4).  
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The output of our multivariate analysis using the NMS method was an ordination 

diagram (scatterplot), which we grouped by ecotype. We interpreted the ordination 

diagram to find patterns in how the main matrix (regrowth) and the second matrix 

(environmental factors/burn severity classes) separated by the four ecotype classes 

between ordination axes (Figure 7). The coefficients of determination between the two 

axes together explained 41% of the variability in the scatterplot; Axis 1 explained 26% 

and Axis 2 explained 15% of the variability (18,915 entity pairs used in correlation) 

(Appendix B).  

The species from the main matrix that showed a strong positive correlation with 

Axis 1 were bog labrador tea (Rhododendron groenlandicum) (r²=0.28), cloudberry 

(Rubus chamaemorus) (r²=0.21), and cranberry (Vaccinium oxycoccos) (r²=0.15) (Table 

6). A negative correlation with Axis 1 was shown by willow (Salix spp.) (r²=0.14) and 

bog birch (B. pumila) (r²=0.13). Axis 2 was positively correlated with B. pumila 

(r²=0.16), fireweed (Chamaenerion angustifolium) (r²=0.10), and R. groenlandicum 

(r²=0.09) (Table 5).  

Litter charred, ecozone, and deciduous regrowth showed a high relative 

association (r²>0.20) in the second matrix ordination diagram (Figure 7). Axis 1 had a 

high positive relative association with a ground severity class, litter charred (r²=0.25), and 

a strong negative association with deciduous regrowth (r²=0.22). Ecozone showed a 

positive correlation with this axis (r²=0.20), and severity classes, including shrub 

consumed (r²=0.15) and moss moderate (r²=0.15) were also positively correlated. Axis 2 

was most influenced by a positive correlation with depth to thaw (r²=0.10), and was 
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negatively associated with two ground severity classes, moss moderate (r²=0.09) and 

litter charred (r²=0.08) (Table 6).  

3.2 Timing and Ecozone Effects on Severity  

We were interested in how seasonal timing of fires related to severity across 

ecotypes, which is shown by the boxplot in Figure 8. This graph shows that there were 

very few early fires in bog and fen (peatland) ecotypes, while the lowland and uplands 

burned earlier in the season and did not have any fire starts in August.  

We generated a second ordination diagram to study patterns between regrowth 

and environmental factors by the grouping variable, month of ignition (Figure 9). In this 

scatterplot, there were some differences in fire effects associated with fires started early 

in the season (June) vs later in the season (August). These differences were distributed 

along Axis 2, with August showing positive association and June showing a negative 

association to Axis 2, and July fires scattered randomly between both axes. The boxplot 

in Figure 10 shows a difference between absolute consumption by month, where the 

median consumption was less in June than in July or August. The least squares estimates 

of consumption by shows a similar trend, with the estimate for June (4.0cm, σ²=1.2cm) 

showing lower absolute consumption than July or August (5.7-7.8cm, σ²=0.4-0.8cm) 

(Appendix A) for all ecotypes. 

A linear regression model of absolute consumption (cm) by latitude showed more 

consumption in higher latitudes (at 62° latitude or higher) (Figure 11). The regression 

line had an r² value of 0.2997, and a p value < 0.0001. All plots sampled in higher 

latitudes were located on the Taiga Shield ecozone. There were no early (June) fires in 

the Taiga Shield, where fires started in either July or August in both years.  
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4. Discussion 
 
Our results indicated that ground level burn severity is a significant indicator of 

coniferous regrowth in boreal peatland systems. Severe burning within surface moss fuels 

in particular was an important control on P. mariana, L. laricina and P. banksiana 

regeneration in the first two years following wildfires, with canopy severity showing no 

significance. It is surprising that canopy severity did not have a significant influence on 

the live/dead ratio of coniferous trees, because P. mariana and P. banksiana trees store 

seeds in semiserotinous cones, and rely on fire to open their cones and release seeds 

(Greene & Johnson 1999; Brown & Johnstone 2012). Therefore, we expected severity in 

the canopy level to be more influential on seed dispersal and early success of seedlings. 

Instead, the importance of a moderate ground layer burn was showcased in our results. 

Our findings emphasize that these conifer species require specific seedbeds and surface 

conditions for regeneration, typically germinating on mineral soil or burned humus, with 

little success on burned duff (Greene et al. 1999). 

There was variation across ecotypes as they related to coniferous regeneration, 

with uplands showing a considerably large ratio of live (survived plus regrowth) to dead 

conifers as compared to all three of the lowland systems. This could be attributed to 

differences in ground surface and seedbeds between ecotypes, with uplands 

characteristically having more mineral soil exposed as opposed to the thick mosses and 

organic layers found in peatlands. Only 6 out of 195 of our plots were classified as 

having a “mineral soil” seedbed, and all 6 of these plots were upland ecotypes. Fens and 
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bogs generally have smaller fuel loads than upland sites (Schiks et al. 2016), which may 

have also contributed distinctions among ecotypes found in our study.  

It is important to note that 1-2 years after fire is potentially too soon to get a fair 

estimate of coniferous regeneration, because these species typically recruit 3-6 years after 

fire (Peters et al. 2005; Johnstone et al. 2010). In our future work, we will continue to 

survey for these species at established plots to note if there is a significant increase in 

seedling regeneration as the 3-6 year window after fire approaches. 

The presence of deciduous tree species after fire was less dependent on ground 

layer severity and more heavily influenced by canopy layer severity. Deciduous species 

rely heavily on resprouting asexually after fire (Greene & Johnson 1999; Johnstone et al. 

2010), and do not require such specific ground layer conditions as conifers; our finding 

that the ground layer severity had little influence over deciduous regeneration helped 

support this. Ecotype played a significant role in regeneration of deciduous trees, 

emphasizing the variation between bogs, fens, lowlands and uplands. Our results showed 

fens had a high success in deciduous regeneration after fire, and bog sites had little to no 

deciduous regrowth.  

Severity of burning within the ground (litter) layer had the highest relative 

association with regrowth in our multivariate analysis. Litter charred, which we classified 

as an indicator of moderate severity ground fire, was the most significant environmental 

factor in our ordination diagrams (Figures 7 and 9), showing a strong positive correlation 

with ground layer severity (Axis 1) and a slightly negative association with Axis 2. Other 

fire effects that had a strong correlation with this Axis 1 were moderate to severe burns in 

the ground and shrub layers (shrub consumed and moss moderate). Bog sites had a strong 
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positive correlation with Axis 1, suggesting that regrowth in boggy peatlands are more 

associated with ground layer severity and coniferous regrowth than deciduous regrowth.  

Patterns of coniferous regrowth in response to ground layer severity were 

different in uplands, as shown in our mixed effects model. This separation between 

ecotypes was also observed by the polarization of uplands along Axis 2 in the ordination 

plots (Figure 7). The upland ecotype was accompanied by P. mariana, representative of 

coniferous species, which also had a strong negative association with Axis 2. The 

deciduous regrowth condition had a strong negative correlation with Axis 1 and a slight 

positive correlation with Axis 2, responding exactly opposite of the litter charred 

condition (Figures 7 and 9). In addition, individual deciduous species, such as B. pumila 

and P. tremuloides were positively correlated with Axis 2, supporting our model that 

shows little significance in ground severity for succession of these broad-leaf species.  

The month that the fire started showed variation between early season and late 

season fires. This variability is partially driven by conditions being most suitable for fires 

in boreal forests during the late season, when fuels are cured and there is lower moisture 

on the surface (Schiks et al. 2016), which is represented by the general trend of 

increasing FWI ratings later in the season. Our multivariate analysis showed a visible 

separation between fires started in June (negatively correlated with Axis 2) and those that 

started in August (positively correlated with Axis 2). The environmental condition, depth 

to thaw (cm), had a strong association with Axis 2, which corresponds with previous 

knowledge that the depth of burns into organic layers increase with seasonal ice thaw 

toward the end of summer (Turetsky et al. 2011). In addition, we found that the depth of 

absolute consumption at the ground layer was much lower for fires started in June as 
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compared to those started in the middle and end of the fire seasons. We recognize that 

snowpack during the winter leading up to the fire season may have an influence on the 

frequency of early season fires. The snowpack in April leading up to the 2014 fire season 

was about 2 times the snowpack in April, 2015, which could be a contributing factor to 

the 2015 fire season starting one month earlier, in May. 

Regrowth in these systems was influenced by ecozone (20% of the variance), as 

shown by our ordination plots. Ground severity also varied by ecozone, with the Taiga 

Shield plots having a higher ground severity with deeper absolute consumption than plots 

sampled in the Taiga Plains and Boreal Plains ecozones (Figure 11). We recognize that 

plots in the Boreal Plains are not well-represented (covering only 6 plots), however, the 

contrast between consumption on the Taiga Shield and Taiga Plains was significant in 

our linear regression model. Taiga Shield plots had no early fires, with 60% of the fires 

starting in July, and the other 40% starting in August, which is likely the reason we see 

such severe fires in this ecozone. In order to explore the relevance of ecozone, more plots 

in the Boreal Plains should be added in the future.  

 

5. Conclusion 
 

We assessed severity indicators at the ground, shrub, and canopy level at several 

burned sites in Canada’s Northwest Territories to determine whether one of these 

indicators could be used to predict early succession after wildfires in boreal forests. The 

ground (moss and litter) burn severity was a significant predictor of the presence of live 

conifers, and the two were positively correlated. In contrast, canopy burn severity was the 
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strongest predictor of the presence of live deciduous trees. We found that there was a 

difference in ground burn severity among boreal bog, fen, lowland, and upland sites, with 

fen sites exhibiting the lowest ground layer severity. There was also variation in the 

succession of coniferous species across ecotypes, with upland sites having more live 

coniferous trees than any of the lowland or peatland types, and deciduous regrowth 

showing more success in the fen ecotypes.  

In addition, we found that there was less absolute consumption at the ground layer 

in fires started early in the season, as compared to those started in the middle or near the 

end of fire season. Peatland systems did not experience any early season fire starts, as 

shown by bog and fen plots either starting in June or August. Upland and lowland 

ecotypes, however, burned earlier in the season, and did not have any fires that started in 

August. Finally, we found that burned areas at higher latitudes had higher ground 

severity. These higher latitude plots were in the Taiga Shield ecozone, which generally 

had more absolute consumption than the Taiga Plains or Boreal Plains plots.  
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7. Tables 
 
Table 1: Weather data in Yellowknife, NWT from October 2013 to September 2015. 
(Government of Canada 2017).  

          

  

Mean 
Temperature 

(°C) 

Total 
Precipitation 

(mm) 

Mean 
Snow Pack 

(cm) 

Maximum 
Fire Weather 

Index 
2013    

 

October 1.73 32.6 1.3 - 
November -13.06 31.4 8 - 
December -29.13 9.5 19.3 - 

2014    
 

January -24.7 47.5 34.1 - 
February -25.5 7.0 42.0 - 
March -20.4 8.0 45.1 - 
April -8.1 3.5 33.1 33 
May 4.5 21.0 0 44 
June 14.3 5.0 0 49 
July 17.8 9.2 0 51 
August 13.6 56.4 0 64 
September 6.5 13.6 0 69 
October 0.1 21.8 0.3 - 
November -15.9 18.6 8.1 - 
December -21.1 32.0 23.3 - 

2015    
 

January -24.6 39.3 35.9 - 
February -26.1 9.0 43.9 - 
March -15.7 15.2 35.6 - 
April -4.3 8.9 16.3 67 
May 7.0 2.2 0 67 
June 14.5 7.2 0 78 
July 16.1 25.8 0 74 
August 15.0 46.8 0 70 
September 8.1 18.0 0 51 
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Table 2: The number of plots and mean pH, peat depth, thaw depth, and trees per unit 
area per ecotype. NA indicates not represented within the study sites.   
        

Ecotype 
Number 
of Plots 

Mean 
pH 

Mean Peat 
Depth (cm) 

Mean Thaw 
Depth (cm) 

Mean Trees 
Per Hectare 

      
Bog 52 4.9 87.6 92.8 4070 
Fen 68 6.2 81.4 89.8 3598 
Lowland 66 5.3 21.5 57.3 7016 
Upland 9 NA 7.3 NA 4411 
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Table 3: Mixed model results of the ratio of live to dead conifer trees, where F Statistic is 
the critical value and the Pr > F is the significance probability. 
       
Type III Test of Fixed Effects           

Effect 
Vegetation 

Layer 
Degrees of 
Freedom Den DF 

F 
Statistic Pr > F       

Ecotype - 3 126 2.02 0.1147 
Seedbed Ground 3 126 0.54 0.6555 
Moss Severe Ground 1 126 9.16 0.003 
Shrub Consumed Shrub 1 126 0.16 0.6883 
Shrub Scorched Shrub 1 126 1.5 0.2232 
Minor Primary Burned Canopy 1 126 0.08 0.7804 
Major Primary Burned Canopy 1 126 2.61 0.1088 
Charred Poles Canopy 1 126 0.02 0.8815 
Moss Severe*Ecotype Ground 3 126 3.36 0.0209 
Major Primary*Ecotype Canopy 3 126 1.16 0.3296 

Moss Severe*Major Primary 
Ground/ 
Canopy 1 126 2.83 0.0951 

Moss Severe*Major 
Primary*Ecotype 

Ground/ 
Canopy 3 126 0.71 0.5498 
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Table 4: Mixed model results of live deciduous species, where F Statistic is the critical 
value and the Pr > F is the significance probability.  
       
Type III Test of Fixed Effects           

Effect 
Vegetation 

Layer 
Degrees of 
Freedom Den DF 

F 
Statistic Pr > F       

Ecotype - 3 172 12.61 <.0001 
Seedbed Ground 3 172 2.37 0.0724 
Moss Severe Ground 1 172 0.29 0.5907 
Shrub Consumed Shrub 1 172 2.53 0.1136 
Shrub Scorched Shrub 1 172 0.22 0.6368 
Minor Primary Burned Canopy 1 172 1.06 0.305 
Major Primary Burned Canopy 1 172 0.11 0.743 
Charred Poles Canopy 1 172 5.94 0.0158 
Moss Severe*Ecotype Canopy 3 172 0.32 0.809 
Major Primary*Ecotype Canopy 3 172 1.13 0.3382 

Moss Severe*Major Primary 
Ground/ 
Canopy 1 172 0.23 0.6308 

Moss Severe*Major 
Primary*Ecotype 

Ground/ 
Canopy 3 172 0.26 0.854 
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Table 5: Correlations in the main matrix (species) of the NMS ordination. This table 
shows positive and negative associations with Axis 1 and Axis 2 (Figures 7 and 9), where 
R is the correlation coefficient, R² is the coefficient of determination, and tau is Kendall’s 
rank coefficient, measuring ordinal association (McCune et al. 2002) (continued on next 
page). 

 
      

N=195   Axis 1     Axis 2   
Species R R² tau R R² tau 
Rhododendron 
groenlandicum 0.533 0.284 0.594 0.304 0.092 0.272 

Rubus chamaemorus 0.459 0.211 0.567 0.161 0.026 0.217 
Vaccinium oxycoccos 0.389 0.151 0.46 0.131 0.017 0.028 
Salix spp. -0.373 0.139 -0.468 -0.025 0.001 -0.098 
Betula pumila -0.356 0.127 -0.392 0.398 0.158 0.357 
Chamaedaphne calyculata 0.325 0.106 0.374 0.137 0.019 0.237 
Andromeda polifolia 0.269 0.072 0.306 0.08 0.006 0.153 
Myrica gale -0.246 0.061 -0.262 0.018 0 0.051 
Vaccinium vitis-ideas 0.227 0.052 0.321 0.124 0.015 0.122 
Purple herb 0.159 0.025 0.17 0.119 0.014 0.157 
Mosses 0.155 0.024 0.118 -0.229 0.053 -0.17 
Galium spp. -0.153 0.023 -0.137 -0.021 0 0.002 
Comarum palustre -0.144 0.021 -0.114 -0.013 0 -0.066 
Arum -0.136 0.019 -0.113 -0.006 0 -0.008 
Pinus banksiana 0.137 0.019 0.149 0.007 0 0.065 
Polygonum -0.139 0.019 -0.128 -0.063 0.004 -0.071 
Rosa acicularis 0.131 0.017 0.044 0.052 0.003 -0.029 
Arctostaphylos rubra 0.123 0.015 0.058 0.041 0.002 -0.006 
Coptis trifolia -0.118 0.014 -0.148 -0.039 0.002 -0.11 
Liverwort 0.115 0.013 0.076 -0.287 0.082 -0.202 
Grasses 0.11 0.012 0.022 -0.118 0.014 -0.175 
Juncus balticus 0.103 0.011 0.115 0.079 0.006 0.084 
Sedge 0.106 0.011 -0.011 0.013 0 0.032 
Chamaenerion 
angustifolium 0.098 0.01 0.096 -0.319 0.102 -0.312 

Dasiphora fruticosa -0.099 0.01 -0.173 0.114 0.013 0.211 
Scutellaria galericulata -0.099 0.01 -0.094 -0.055 0.003 -0.066 
Vaccinium angustifolium 0.095 0.009 0.117 0.088 0.008 0.175 
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Table 5 (continued).
 

      
N=195   Axis 1     Axis 2   
Species R R² tau R R² tau 
Equisetum -0.085 0.007 0.05 -0.098 0.01 -0.374 
Kalmia polifolia 0.081 0.007 0.063 0.039 0.002 0.019 
Betula papyrifera 0.074 0.006 0.083 -0.046 0.002 -0.082 
Aster -0.069 0.005 -0.12 -0.068 0.005 -0.119 
Myosotis -0.07 0.005 -0.044 0.092 0.009 0.085 
Thistle -0.071 0.005 0.005 -0.117 0.014 -0.131 
Viburnum -0.073 0.005 -0.046 -0.113 0.013 -0.086 
Linnaea borealis -0.066 0.004 -0.032 -0.087 0.008 -0.154 
Phacelia franklinii 0.064 0.004 0.051 -0.135 0.018 -0.09 
Unknown -0.066 0.004 -0.032 -0.087 0.008 -0.154 
Orchidacea -0.059 0.003 -0.041 -0.023 0.001 -0.028 
Larix laricina 0.043 0.002 0.056 0.021 0 0.014 
Picea mariana 0.039 0.002 0.132 -0.22 0.048 -0.153 
Populus tremuloides -0.049 0.002 -0.029 0.046 0.002 0.045 
Aquilegia brevistyla 0.027 0.001 0.032 -0.084 0.007 -0.098 
Campanula 
rotundifolia -0.024 0.001 -0.026 -0.084 0.007 -0.09 

Cornus sericea 0.026 0.001 0.006 -0.042 0.002 -0.051 
Dacus carota -0.028 0.001 -0.026 -0.011 0 -0.054 
Geranium maculatum 0.037 0.001 0.034 -0.036 0.001 -0.04 
Maianthemum 
trifolium -0.03 0.001 0.102 -0.044 0.002 -0.17 

Alnus 0.021 0 -0.009 0.012 0 -0.026 
Astraglus alpinus 0.021 0 0.01 -0.166 0.028 -0.096 
Empetrum nigrum 0.013 0 0.003 0.02 0 0.011 
Lactuca 0.018 0 -0.001 -0.14 0.02 -0.096 
Lichen 0.018 0 -0.001 -0.14 0.02 -0.096 
Populus balsamifera -0.001 0 0.005 0.161 0.026 0.127 
Solidago canadensis -0.02 0 -0.015 -0.187 0.035 -0.127 
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Table 6: Correlations in the second matrix (environmental condition and burn severity 
class) of the NMS ordination. This table shows positive and negative associations with 
Axis 1 and Axis 2 (Figures 7 and 9), where R is the correlation coefficient, R² is the 
coefficient of determination, and tau is Kendall’s rank coefficient, measuring ordinal 
association (McCune & Grace 2002).  
 
N=195   Axis 1     Axis 2   
Environmental 
Condition R R² tau R R² tau 
Litter Charred 0.504 0.254 0.29 -0.287 0.082 -0.196 
Deciduous Regrowth -0.472 0.223 -0.487 0.272 0.074 0.12 
Ecozone 0.446 0.199 0.333 -0.233 0.054 -0.183 
Shrub Consumed 0.393 0.154 0.197 -0.202 0.041 -0.142 
Moss Moderate 0.38 0.145 0.245 -0.295 0.087 -0.179 
Latitude 0.299 0.089 0.14 -0.229 0.052 -0.191 
Shrub Limbs Left -0.295 0.087 -0.105 0.065 0.004 0.022 
Moss Singed -0.287 0.083 -0.077 0.164 0.027 0.165 
Shrub Scorched -0.278 0.077 -0.122 0.165 0.027 0.122 
Litter Ashed -0.267 0.071 -0.222 -0.008 0 -0.084 
Litter Singed -0.25 0.062 -0.034 0.21 0.044 0.164 
Shrub Unburned 0.217 0.047 0.171 0.125 0.016 0.119 
Min. Primary Branches 0.209 0.044 0.164 -0.034 0.001 -0.061 
Permafrost Condition 0.189 0.036 0.137 -0.136 0.019 -0.114 
Abs. Consumption 0.181 0.033 0.139 -0.233 0.054 -0.162 
Coniferous Regrowth -0.136 0.018 -0.089 0.026 0.001 -0.047 
Secondary Branches 0.131 0.017 0.178 -0.007 0 0.002 
Percent Consumed 0.088 0.008 0.055 -0.203 0.041 -0.064 
Litter Unburned -0.083 0.007 0.001 0.175 0.031 0.144 
Moss Lightly Burned -0.08 0.006 -0.01 0.253 0.064 0.147 
Charred Poles -0.077 0.006 -0.027 -0.046 0.002 -0.043 
Live Trees -0.068 0.005 -0.058 -0.006 0 0.024 
Depth to Thaw 0.064 0.004 0.072 0.311 0.097 0.254 
Foliage Burned 0.064 0.004 0.098 -0.092 0.008 -0.005 
Maj. Primary Branches 0.044 0.002 0.079 -0.139 0.019 -0.114 
Foliage Intact -0.025 0.001 -0.006 0.198 0.039 0.075 
Live/Dead Ratio 0.021 0 0.059 -0.221 0.049 -0.107 
Moss Unburned 0.019 0 0.09 0.176 0.031 0.165 
Moss Severe -0.01 0 0.145 -0.213 0.046 -0.201 
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8. Figures 
 

 
 
Figure 1: Study area spanning four ecozones, only three of which (the Boreal Plain, Taiga 
Plain, and Taiga Shield) burned. Permafrost condition (sporadic or discontinuous) is 
separated by dashed lines, and major cities (including the capital, Yellowknife) are 
marked with yellow stars. This map includes all 2014 and 2015 fires, and the months they 
started (credit: Sarah Endres, Appendix C). 
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Figure 2: The burn extents of all 2014 (red) and 2015 (gold) fires, with the points 
sampled for burn severity shown by red dots. Cities are marked with yellow stars, and 
fire names are included (credit: Sarah Endres, Appendix C). 
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Figure 3: General layout of sample sites, including 4-6 10 m X 10 m plots per field site. 
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Figure 4: Typical boreal soil horizons and adventitious root measurements used to 
estimate absolute consumption during wildfires. The three layers (ground, shrub, and 
canopy) are also displayed to show how fire severity was classified at different levels. 
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Figure 5: Boxplot displaying percent litter charred by ecotype, coded by color. The 
horizontal line in each box represents the median; the lower box boundary indicates the 
25th percentile, the upper box boundary indicates 75th percentile, and the whiskers show 
the highest and lowest values.  
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Figure 6: Boxplot showing deciduous regrowth by ecotype, coded by color. The 
horizontal line in each box represents the median; the lower box boundary indicates the 
25th percentile, the upper box boundary indicates 75th percentile, and the whiskers show 
the highest and lowest values. There were few plots with deciduous regrowth in the bog 
ecotype.  
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Figure 7: Ordination diagram of species separated by ecotype (bog, fen, lowland, and 
upland). Environmental factors/burn severity classes with a high relative association 
(r²>0.20) to Axis 1 are shown with red lines. Decid is deciduous regrowth, Ecozo is 
ecozone, and Lchar is litter charred.  
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Figure 8: Boxplot showing the absolute consumption in each ecotype by fire start month, 
coded by color. The horizontal line in each box represents the median; the lower box 
boundary indicates the 25th percentile, the upper box boundary indicates 75th percentile, 
and the whiskers show the highest and lowest values.   
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Figure 9: Ordination diagram of species separated by fire ignition month (June, July, 
August). Environmental factors/burn severity classes with a high relative association 
(r²>0.20) to Axis 1 are shown with red lines. Decid is deciduous regrowth, Ecozo is 
ecozone, and Lchar is litter charred. 
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Figure 10: Boxplot showing the absolute consumption (using the adventitious root 
method) as it varies by fire start date. The horizontal line in each box represents the 
median; the lower box boundary indicates the 25th percentile, the upper box boundary 
indicates 75th percentile, and the whiskers show the highest and lowest values. 
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Figure 11: Regression plot of absolute consumption (cm) by degree of latitude. All sites 
north of 62 degrees in latitude are located in the Taiga Shield ecozone.  
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Appendix A 

 
Table 7: Least squares estimate tables (coniferous ratio by ecotype, litter charred by 
ecotype, and absolute consumption by month).  

            

Least Squares Means: Coniferous Ratio by Ecotype   

Ecotype Estimate Standard 
Error (σ²) 

Degrees of 
Freedom 

t Value  
(t-test) Pr > |t| 

      
Bog 2.4697 14.1716 145 0.17 0.8619 
Fen 5.8726 14.8311 145 0.4 0.6927 
Lowland 1.0453 13.329 145 0.08 0.9376 
Upland 192.6 32.0388 145 6.01 <.0001 
            

      
            
Least Squares Means: Litter Charred by Ecotype   

Ecotype Estimate 
Standard 
Error (σ²) 

Degrees of 
Freedom 

t Value  
(t-test) Pr > |t| 

      
Bog 70.6731 3.6464 191 19.38 <.0001 
Fen 36.25 3.1887 191 11.37 <.0001 
Lowland 67.1212 3.2366 191 20.74 <.0001 
Upland 73.8889 8.7649 191 8.43 <.0001 
            

      
            
Least Squares Means: Absolute Consumption by Month 

Month Estimate 
Standard 
Error (σ²) 

Degrees of 
Freedom 

t Value  
(t-test) Pr > |t| 

      
June 3.9729 1.1852 160 3.35 0.001 
July 7.7787 0.3672 160 21.18 <.0001 
August 5.7365 0.8052 160 7.12 <.0001 
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Appendix B 
  
Table 8: Bray-Curtis (r²) Distance Measure Output from PC-ORD.  
  
Coefficients of determination for the correlations between ordination 
distances and distances in the original n-dimensional space: 
  
            R Squared 
Axis   Increment   Cumulative 
 1       .261        .261 
 2       .150        .410 
 3       .110        .520 
 
Increment and cumulative R-squared were adjusted for any lack 
of orthogonality of axes. 
 
Axis pair     r     Orthogonality,% = 100(1-r^2) 
  1 vs 2     0.000    100.0 
  1 vs 3     0.000    100.0 
  2 vs 3     0.000    100.0 
 
Number of entities = 195 
Number of entity pairs used in correlation = 18915 
Distance measure for ORIGINAL distance: Sorensen (Bray-Curtis) 
 
 
****************** Operation completed ********************* 
26 Mar 2017, 12:50:30 
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Appendix C 
 

 
Figure 12: Permission from Sarah Endres and Laura Bourgeau-Chavez (collaborators) to 
use Figures 1 and 2.  
 
 
  



55 

Appendix D 
 
Table 9: Raw data used for statistical analyses (pages 55-81).  

Plot Latitude 
Fire 

History Ecotype Seedbed Month 
Permafrost 
Condition Ecozone 

SS2821 60.8242 2015 2 1 1 1 1 
SS2822 60.82421 2015 2 1 1 1 1 
SS2823 60.82415 2015 2 1 1 1 1 
SS2824 60.82461 2015 2 1 1 1 1 
SS2825 60.8246 2015 2 1 1 1 1 
SS2826 60.82457 2015 2 1 1 1 1 
SS31041 60.93871 2014 2 1 2 1 2 
SS31042 60.93853 2014 1 3 2 1 2 
SS31043 60.93836 2014 1 3 2 1 2 
SS31045 60.93859 2014 1 3 2 1 2 
SS31046 60.93839 2014 1 3 2 1 2 
SS31091 60.90604 2014 1 1 2 1 2 
SS31092 60.90599 2014 1 3 2 1 2 
SS31093 60.90595 2014 1 3 2 1 2 
SS31094 60.90557 2014 1 3 2 1 2 
SS31095 60.90554 2014 1 3 2 1 2 
SS3641 60.92128 2014 2 3 2 1 2 
SS3642 60.92112 2014 2 3 2 1 2 
SS3643 60.92098 2014 2 3 2 1 2 
SS3644 60.92083 2014 2 3 2 1 2 
SS3645 60.92069 2014 2 3 2 1 2 
SS3646 60.92057 2014 2 3 2 1 2 
SS3651 60.92358 2014 2 3 2 1 2 
SS3652 60.92348 2014 2 3 2 1 2 
SS3653 60.92342 2014 2 3 2 1 2 
SS3654 60.92305 2014 2 3 2 1 2 
SS3655 60.92295 2014 2 3 2 1 2 
SS3656 60.92292 2014 2 3 2 1 2 
SS501201 60.96872 2015 4 4 1 1 2 
SS501202 60.96883 2015 4 4 1 1 2 
SS501203 60.96898 2015 4 4 1 1 2 
SS501205 60.96851 2015 4 4 1 1 2 
SS501206 60.96864 2015 4 4 1 1 2 
SS5031 60.97414 2015 1 2 1 1 2 
SS5032 60.97431 2015 3 2 1 1 2 
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Plot Latitude 
Fire 

History Ecotype Seedbed Month 
Permafrost 
Condition Ecozone 

SS5033 60.97437 2015 3 2 1 1 2 
SS5034 60.97417 2015 3 2 1 1 2 
SS5035 60.97401 2015 3 2 1 1 2 
SS5071 60.95345 2015 2 1 1 1 2 
SS5072 60.95362 2015 2 1 1 1 2 
SS5073 60.95381 2015 2 2 1 1 2 
SS5074 60.95349 2015 2 1 1 1 2 
SS5075 60.95367 2015 2 3 1 1 2 
SS5076 60.95386 2015 2 3 1 1 2 
SS8121 60.74876 2015 1 3 3 1 2 
SS8122 60.74863 2015 1 1 3 1 2 
SS8123 60.74844 2015 1 3 3 1 2 
SS8124 60.74829 2015 1 3 3 1 2 
SS8125 60.74811 2015 1 1 3 1 2 
SS8171 60.78909 2015 1 3 3 1 2 
SS8172 60.78897 2015 1 1 3 1 2 
SS8173 60.78886 2015 1 1 3 1 2 
SS8174 60.7887 2015 1 1 3 1 2 
SS8175 60.78862 2015 1 3 3 1 2 
SS8176 60.78853 2015 1 3 3 1 2 
ZF14101 62.44361 2015 3 3 2 2 3 
ZF14102 62.44368 2015 3 3 2 2 3 
ZF14103 62.44374 2015 3 4 2 2 3 
ZF14104 62.44418 2015 3 3 2 2 3 
ZF14105 62.44423 2015 3 3 2 2 3 
ZF14106 62.44429 2015 3 3 2 2 3 
ZF14171 62.33949 2015 4 2 2 2 3 
ZF14172 62.33935 2015 4 2 2 2 3 
ZF14174 62.33911 2015 4 3 2 2 3 
ZF14191 62.33079 2015 1 3 2 2 3 
ZF14192 62.33077 2015 1 3 2 2 3 
ZF14193 62.33064 2015 1 3 2 2 3 
ZF14194 62.33097 2015 1 3 2 2 3 
ZF14195 62.33109 2015 1 3 2 2 3 
ZF14196 62.3314 2015 1 3 2 2 3 
ZF1421 62.49755 2015 2 3 3 2 3 
ZF1422 62.49737 2015 2 3 3 2 3 
ZF1423 62.49722 2015 2 3 3 2 3 
ZF1424 62.497 2015 2 3 3 2 3 
ZF1425 62.49682 2015 2 3 3 2 3 
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Plot Latitude 
Fire 

History Ecotype Seedbed Month 
Permafrost 
Condition Ecozone 

ZF1431 62.50097 2015 2 3 3 2 3 
ZF1432 62.50082 2015 2 3 3 2 3 
ZF1433 62.50067 2015 2 3 3 2 3 
ZF1434 62.5007 2015 2 3 3 2 3 
ZF1435 62.50085 2015 2 3 3 2 3 
ZF14401 62.44481 2015 3 3 2 2 3 
ZF14402 62.44465 2015 3 3 2 2 3 
ZF14403 62.44447 2015 3 3 2 2 3 
ZF14411 62.44421 2015 3 3 2 2 3 
ZF14412 62.44434 2015 3 3 2 2 3 
ZF14413 62.4456 2015 3 3 2 2 3 
ZF171001 62.43362 2014 3 3 2 2 3 
ZF171002 62.43379 2014 3 3 2 2 3 
ZF171003 62.43398 2014 3 3 2 2 3 
ZF171004 62.43397 2014 3 3 2 2 3 
ZF171005 62.43383 2014 3 3 2 2 3 
ZF171011 62.37524 2014 1 3 2 2 3 
ZF171013 62.375 2014 2 3 2 2 3 
ZF171014 62.37532 2014 2 3 2 2 3 
ZF171015 62.37545 2014 2 3 2 2 3 
ZF171301 62.36904 2014 3 3 2 2 3 
ZF171302 62.36886 2014 3 3 2 2 3 
ZF171303 62.36863 2014 3 3 2 2 3 
ZF171304 62.36869 2014 3 3 2 2 3 
ZF171305 62.36883 2014 2 3 2 2 3 
ZF171306 62.36902 2014 3 3 2 2 3 
ZF1761 62.3646 2014 1 3 2 2 3 
ZF1762 62.36484 2014 1 3 2 2 3 
ZF1763 62.36507 2014 1 3 2 2 3 
ZF1764 62.36533 2014 1 3 2 2 3 
ZF1765 62.36534 2014 1 3 2 2 3 
ZF1766 62.36536 2014 1 3 2 2 3 
ZF1771 62.35011 2014 2 3 2 2 3 
ZF1772 62.35032 2014 2 3 2 2 3 
ZF1773 62.35046 2014 2 3 2 2 3 
ZF1774 62.35072 2014 2 3 2 2 3 
ZF1775 62.35057 2014 2 3 2 2 3 
ZF1776 62.35037 2014 2 3 2 2 3 
ZF1791 62.35486 2014 1 3 2 2 3 
ZF1792 62.35464 2014 1 3 2 2 3 
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Plot Latitude 
Fire 

History Ecotype Seedbed Month 
Permafrost 
Condition Ecozone 

ZF1794 62.35428 2014 1 3 2 2 3 
ZF20101 61.71507 2014 1 2 2 2 2 
ZF20102 61.71521 2014 1 2 2 2 2 
ZF20103 61.71535 2014 1 2 2 2 2 
ZF20104 61.71549 2014 1 2 2 2 2 
ZF20105 61.71565 2014 1 2 2 2 2 
ZF201051 61.69424 2014 2 1 2 2 2 
ZF201052 61.69436 2014 2 3 2 2 2 
ZF201053 61.69452 2014 2 3 2 2 2 
ZF201054 61.69397 2014 2 3 2 2 2 
ZF201055 61.69407 2014 2 2 2 2 2 
ZF201056 61.69422 2014 2 2 2 2 2 
ZF2121 62.20004 2015 1 3 2 2 2 
ZF2122 62.2001 2015 1 3 2 2 2 
ZF2123 62.20017 2015 1 3 2 2 2 
ZF2124 62.19968 2015 1 3 2 2 2 
ZF2125 62.19974 2015 1 3 2 2 2 
ZF2126 62.19982 2015 1 3 2 2 2 
ZF221 62.29814 2015 4 2 2 2 2 
ZF222 62.29831 2015 3 2 2 2 2 
ZF223 62.29837 2015 3 2 2 2 2 
ZF224 62.29775 2015 3 2 2 2 2 
ZF225 62.29789 2015 3 2 2 2 2 
ZF226 62.29803 2015 3 2 2 2 2 
SS3101 60.87818 2014 1 3 2 1 2 
SS3102 60.87811 2014 3 3 2 1 2 
SS3103 60.87797 2014 3 3 2 1 2 
SS3104 60.87753 2014 3 3 2 1 2 
SS3105 60.87761 2014 3 3 2 1 2 
SS3106 60.8777 2014 3 3 2 1 2 
SS3401 60.95485 2014 2 3 2 1 2 
SS3403 60.9543 2014 2 3 2 1 2 
SS3404 60.95439 2014 2 3 2 1 2 
SS3405 60.95445 2014 2 3 2 1 2 
SS3406 60.95491 2014 2 3 2 1 2 
SS3421 60.95918 2014 2 1 2 1 2 
SS3422 60.95921 2014 2 1 2 1 2 
SS3423 60.95928 2014 2 3 2 1 2 
SS3424 60.95874 2014 2 3 2 1 2 
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Plot Latitude 
Fire 

History Ecotype Seedbed Month 
Permafrost 
Condition Ecozone 

SS3425 60.95879 2014 2 3 2 1 2 
SS3426 60.95884 2014 2 3 2 1 2 
SS8211 61.1538 2014 3 3 3 1 2 
SS8212 61.15382 2014 2 3 3 1 2 
SS8221 61.15207 2014 2 3 3 1 2 
SS8223 61.15203 2014 2 3 3 1 2 
SS8224 61.15256 2014 2 3 3 1 2 
SS8225 61.15261 2014 2 3 3 1 2 
SS8226 61.15201 2014 2 3 3 1 2 
ZF1711 62.35648 2014 1 3 2 2 3 
ZF1712 62.35659 2014 1 3 2 2 3 
ZF17151 62.38293 2014 3 1 2 2 3 
ZF17152 62.38269 2014 3 2 2 2 3 
ZF17153 62.38251 2014 3 3 2 2 3 
ZF17155 62.38236 2014 3 3 2 2 3 
ZF17156 62.38258 2014 3 3 2 2 3 
ZF17221 62.40242 2014 3 3 2 2 3 
ZF17222 62.40219 2014 3 3 2 2 3 
ZF17223 62.40198 2014 3 3 2 2 3 
ZF17224 62.40189 2014 3 3 2 2 3 
ZF17225 62.40205 2014 3 3 2 2 3 
ZF17401 62.39437 2014 3 3 2 2 3 
ZF17402 62.39429 2014 3 3 2 2 3 
ZF17403 62.39424 2014 3 2 2 2 3 
ZF17404 62.39417 2014 3 2 2 2 3 
ZF20271 61.77214 2014 3 3 2 2 2 
ZF20272 61.77197 2014 3 3 2 2 2 
ZF20273 61.77181 2014 3 3 2 2 2 
ZF20274 61.77251 2014 3 3 2 2 2 
ZF20275 61.77234 2014 3 3 2 2 2 
ZF20404 61.62341 2014 3 3 2 2 2 
ZF2041 61.81021 2014 3 3 2 2 2 
ZF2042 61.81035 2014 3 3 2 2 2 
ZF2043 61.81048 2014 3 3 2 2 2 
ZF2044 61.81032 2014 3 3 2 2 2 
ZF2045 61.81075 2014 3 3 2 2 2 
ZF2046 61.8108 2014 3 3 2 2 2 
ZF20472 62.02958 2014 3 3 2 2 2 
ZF20473 62.02947 2014 3 3 2 2 2 
ZF20476 62.02911 2014 3 3 2 2 2 
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Plot 

Depth 
to Thaw 

(cm) 

Absolute 
Consumption 

(cm) 
Percent 

Consumed 
Live/Dead 

Conifer 
Decididous 
Regrowth 

Moss 
Unburned 

SS2821 60 4 0.11 0.00 11 40 
SS2822 53 9 0.19 0.00 17 40 
SS2823 105 0 0.07 0.00 18 40 
SS2824 50 0 0.00 0.00 17 20 
SS2825 72 0 0.00 2.08 38 40 
SS2826 70 0 0.00 0.00 22 25 
SS31041 170 0 0.00 0.00 17 20 
SS31042 84 0 0.00 7.50 21 5 
SS31043 140 0 0.00 0.00 0 5 
SS31045 81 0 0.00 0.00 8 0 
SS31046 82 0 0.00 0.00 0 0 
SS31091 73 0 0.12 10.26 0 0 
SS31092 108 2.5 0.15 0.00 0 0 
SS31093 126 4 0.14 0.00 0 0 
SS31094 90 3.3 0.17 2.94 0 20 
SS31095 107 5 0.15 0.00 0 60 
SS3641 188 23 0.90 0.00 15 10 
SS3642 177 8.25 0.53 0.00 102 25 
SS3643 163 0 0.00 0.00 96 10 
SS3644 74 10 0.25 0.00 80 10 
SS3645 120 11.5 0.27 0.00 35 5 
SS3646 137 22.5 0.39 0.00 96 15 
SS3651 165 0 0.00 0.00 65 60 
SS3652 230 0 0.00 0.00 41 10 
SS3653 200 0 0.00 0.00 49 10 
SS3654 127 0 0.00 0.00 21 5 
SS3655 140 0 0.00 0.00 22 5 
SS3656 161 0 0.00 0.00 56 5 
SS501201 2 1.5 0.70 17.97 0 0 
SS501202 0 2.375 0.92 141.67 0 0 
SS501203 13 1.8 0.28 12.50 5 0 
SS501205 0 5.8 0.95 325.00 0 0 
SS501206 0 9.4 0.94 1233.33 0 0 
SS5031 40 2.1 0.12 0.00 2 0 
SS5032 17 2 0.26 20.73 1 0 
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Plot 

Depth 
to Thaw 

(cm) 

Absolute 
Consumption 

(cm) 
Percent 

Consumed 
Live/Dead 

Conifer 
Decididous 
Regrowth 

Moss 
Unburned 

SS5033 8 1.4 0.37 2.05 0 0 
SS5034 23 7.1 0.31 14.58 15 0 
SS5035 11 1.2 0.29 2.78 2 0 
SS5071 160 0 0.00 25.00 46 0 
SS5072 135 0 0.00 2.78 43 0 
SS5073 165 0 0.00 0.00 36 0 
SS5074 130 0 0.00 0.00 21 20 
SS5075 145 0 0.00 0.00 8 0 
SS5076 150 0 0.00 0.00 13 0 
SS8121 140 4.8 0.00 0.00 0 0 
SS8122 163 3.1 0.17 0.00 0 0 
SS8123 193 3.9 0.14 0.00 0 1 
SS8124 183 1.9 0.15 0.00 0 0 
SS8125 206 4.4 0.11 0.00 0 0 
SS8171 196 5 0.16 0.00 0 15 
SS8172 190 3.2 0.17 0.00 0 25 
SS8173 195 6.6 0.14 0.00 0 20 
SS8174 176 3.5 0.20 0.00 0 5 
SS8175 194 3.7 0.14 0.00 0 0 
SS8176 172 3.2 0.15 0.00 0 5 
ZF14101 5.1 18.75 0.00 0.00 0 0 
ZF14102 67 11.25 0.53 0.00 0 0 
ZF14103 5 11 0.75 0.00 0 0 
ZF14104 18 8.25 0.71 0.00 14 0 
ZF14105 5.5 9 0.83 0.00 8 0 
ZF14106 7.5 0 0.67 0.00 0 0 
ZF14171 0 15.4 0.00 0.00 22 0 
ZF14172 0 11.3 0.78 0.00 57 0 
ZF14174 1 12.8 0.63 2.94 16 0 
ZF14191 53 12.2 0.47 0.00 0 0 
ZF14192 57 10.4 0.67 0.00 0 2 
ZF14193 40 9.7 0.56 0.00 0 18 
ZF14194 22 6.1 0.93 0.00 0 1 
ZF14195 48 7.7 0.90 0.00 0 0 
ZF14196 43 9.2 0.88 0.00 0 0 
ZF1421 55 5.9 0.86 0.00 29 0 
ZF1422 52 7 0.19 0.00 25 0 
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Plot 

Depth 
to Thaw 

(cm) 

Absolute 
Consumption 

(cm) 
Percent 

Consumed 
Live/Dead 

Conifer 
Decididous 
Regrowth 

Moss 
Unburned 

ZF1423 64 3.1 0.20 3.13 35 0 
ZF1424 51 10 0.14 2.00 13 0 
ZF1425 52 7.3 0.38 26.92 47 0 
ZF1431 52 8.6 0.20 0.00 17 0 
ZF1432 31 6.8 0.23 0.00 2 0 
ZF1433 40 8.5 0.20 0.00 31 0 
ZF1434 32 10.6 0.23 0.00 0 0 
ZF1435 40 7.8 0.26 0.00 5 0 
ZF14401 8 7.6 0.54 2.17 3 0 
ZF14402 82 9.3 0.26 0.00 5 0 
ZF14403 9 10.9 0.24 0.00 7 0 
ZF14411 2 7.6 0.26 6.25 162 0 
ZF14412 21 12 0.21 1.06 6 0 
ZF14413 24 10.8 0.32 0.00 21 0 
ZF171001 25 8.3 0.00 0.00 0 0 
ZF171002 61 4.5 0.00 0.00 47 0 
ZF171003 20 9.2 0.00 0.00 7 0 
ZF171004 37 5.5 0.00 0.00 0 0 
ZF171005 18 9.2 0.00 0.00 0 0 
ZF171011 52 5.9 0.00 0.00 0 0 
ZF171013 48 7 0.00 0.00 0 40 
ZF171014 43.2 8 0.00 0.00 0 0 
ZF171015 49 3.5 0.00 0.00 4 20 
ZF171301 23.5 7.8 0.00 0.00 0 0 
ZF171302 17.5 7.8 0.00 0.00 1 0 
ZF171303 20 8.2 0.00 0.00 6 0 
ZF171304 39 6.6 0.00 0.00 0 0 
ZF171305 45 5.5 0.00 0.00 0 0 
ZF171306 20 7.6 0.00 0.00 5 0 
ZF1761 63 14.75 0.47 46.15 0 7 
ZF1762 57 11.25 0.33 5.88 0 10 
ZF1763 42 12.625 0.46 0.00 5 10 
ZF1764 78 12.25 0.28 7.69 0 5 
ZF1765 65 11.75 0.27 0.00 0 5 
ZF1766 65 8.625 0.21 0.00 0 10 
ZF1771 0 6 0.19 0.00 2 2 
ZF1772 0 6.375 0.29 3.13 4 10 
ZF1773 0 3.625 0.63 2.94 10 10 
ZF1774 0 5.125 0.39 8.70 44 5 



63 

       

Plot 

Depth 
to Thaw 

(cm) 

Absolute 
Consumption 

(cm) 
Percent 

Consumed 
Live/Dead 

Conifer 
Decididous 
Regrowth 

Moss 
Unburned 

ZF1776 0 6.75 0.35 1.39 12 15 
ZF1791 0 6.6 0.59 15.79 0 10 
ZF1792 0 9.375 0.47 0.00 0 10 
ZF1793 0 8.75 0.35 17.39 0 20 
ZF1794 0 5.125 0.51 0.00 0 10 
ZF20101 14 3.5 0.17 0.00 1 0 
ZF20102 14 6.625 0.24 0.00 41 0 
ZF20103 12.5 9.375 0.00 0.00 2 0 
ZF20104 32 7 0.64 0.00 49 0 
ZF20105 17.5 4.625 0.50 0.00 32 0 
ZF201051 77 2.7 0.78 0.00 88 40 
ZF201052 26 2.4 0.08 0.00 20 30 
ZF201053 78 2.8 0.08 0.00 30 20 
ZF201054 0 4.5 0.09 0.00 55 0 
ZF201055 73 1.9 0.15 0.00 51 5 
ZF201056 30 4.2 0.22 0.00 29 30 
ZF2121 68 0 0.15 0.00 0 10 
ZF2122 64 10.75 0.00 0.00 2 50 
ZF2123 50 6 0.26 0.00 2 20 
ZF2124 43 11 0.27 0.00 0 10 
ZF2125 78 11.5 0.34 0.00 0 25 
ZF2126 57 9.333333 0.00 0.00 0 40 
ZF221 13 13.5 0.42 0.00 17 0 
ZF222 19 8 0.18 0.00 13 5 
ZF223 20 13 0.70 3.64 16 0 
ZF224 5 27 0.43 0.00 0 0 
ZF225 16 2 0.47 0.00 10 0 
ZF226 2 12.66667 0.43 0.00 2 0 
SS3101 40 0 0.13 0.00 1 0 
SS3102 3 2.75 0.13 0.00 2 0 
SS3103 3 3 0.00 0.00 9 0 
SS3104 2 0 0.08 0.00 5 0 
SS3105 6 0.5 0.15 0.00 2 20 
SS3106 3 4.5 0.00 0.00 1 10 
SS3401 40 7.3 0.21 0.00 8 2 
SS3403 40 6.6 0.20 0.00 34 10 
SS3404 40 2.26 0.12 1.92 17 40 
SS3405 40 0 0.00 0.00 22 20 
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Plot 

Depth 
to Thaw 

(cm) 

Absolute 
Consumption 

(cm) 
Percent 

Consumed 
Live/Dead 

Conifer 
Decididous 
Regrowth 

Moss 
Unburned 

SS3421 40 0 0.00 0.00 15 0 
SS3422 40 0 0.00 0.00 64 0 
SS3423 40 0 0.00 0.00 56 1 
SS3424 40 2.25 0.73 0.00 38 0 
SS3425 40 3.25 0.52 16.67 67 0 
SS3426 40 2 0.63 0.00 71 10 
SS8211 38 4.25 0.14 0.00 6 0 
SS8212 40 11.33333 0.16 150.00 2 0 
SS8221 40 3.666667 0.00 0.00 1 0 
SS8223 40 5.75 0.23 0.00 0 10 
SS8224 40 0 0.18 0.00 0 10 
SS8225 40 5.25 0.00 0.00 0 0 
SS8226 40 0 0.17 0.00 11 0 
ZF1711 43 7.6 0.25 0.00 0 10 
ZF1712 48 7 0.57 0.00 0 5 
ZF17151 23.5 9.4 0.58 0.00 5 20 
ZF17152 4 3.7 0.87 0.00 0 5 
ZF17153 13 7.8 0.29 0.00 0 5 
ZF17155 17.5 4.5 0.15 0.00 0 3 
ZF17156 7.6 5.5 0.15 0.00 0 0 
ZF17221 14 10.125 0.24 0.00 3 0 
ZF17222 22 13.25 0.19 0.00 2 0 
ZF17223 8 6.25 0.16 0.00 28 0 
ZF17224 33 8.25 0.20 0.00 10 0 
ZF17225 31 9.375 0.25 0.00 3 0 
ZF17401 7 14.5 0.28 0.00 0 20 
ZF17402 10 10.75 0.35 0.00 0 5 
ZF17403 0 10.5 0.46 0.00 0 5 
ZF17404 3 13 0.57 0.00 18 10 
ZF20271 35 2.6 0.31 0.00 56 2 
ZF20272 35 2.5 0.23 0.00 27 5 
ZF20273 35 4.2 0.27 0.00 22 0 
ZF20274 35 3.6 0.58 0.00 1 0 
ZF20275 30 3.4 0.06 0.00 4 0 
ZF20404 1 8.6 0.21 0.00 3 0 
ZF2041 40 6.2 0.29 0.00 13 0 
ZF2042 25 7 0.72 0.00 4 0 
ZF2043 30 4.4 0.39 0.00 27 0 
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Plot 

Depth 
to Thaw 

(cm) 

Absolute 
Consumption 

(cm) 
Percent 

Consumed 
Live/Dead 

Conifer 
Decididous 
Regrowth 

Moss 
Unburned 

ZF2044 40 6.4 0.42 0.00 17 0 
ZF2045 40 7.2 0.38 0.00 30 0 
ZF2046 40 6.1 0.23 0.00 19 0 
ZF20472 35 11.5 0.16 0.00 3 0 
ZF20473 35 4 0.24 0.00 8 0 
ZF20476 35 2.5 0.23 1.09 1 0 
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Plot 
Moss 

Singed 
Moss 
Light 

Moss 
Moderate 

Moss 
Severe 

Litter 
Unburned 

Litter 
Singed 

Litter 
Charred 

SS2821 30 30 0 0 20 70 10 
SS2822 10 50 0 0 10 40 50 
SS2823 10 50 0 0 10 70 20 
SS2824 10 50 20 0 10 30 60 
SS2825 20 20 20 0 20 50 30 
SS2826 15 40 20 0 10 30 60 
SS31041 20 30 20 10 20 30 50 
SS31042 10 65 20 0 10 30 60 
SS31043 25 30 30 10 5 45 50 
SS31045 30 10 50 10 0 30 70 
SS31046 5 20 55 20 0 20 80 
SS31091 30 5 35 30 0 30 70 
SS31092 20 10 30 40 0 20 80 
SS31093 15 5 30 50 0 20 80 
SS31094 20 45 10 5 5 30 65 
SS31095 20 10 5 5 0 60 40 
SS3641 80 0 10 0 0 0 0 
SS3642 75 0 0 0 10 0 0 
SS3643 90 0 0 0 15 0 0 
SS3644 50 20 20 0 10 70 20 
SS3645 20 65 10 0 5 70 25 
SS3646 75 15 0 0 0 70 30 
SS3651 40 0 0 0 80 0 0 
SS3652 90 0 0 0 20 0 0 
SS3653 90 0 0 0 20 0 0 
SS3654 75 20 0 0 20 80 0 
SS3655 65 30 0 0 20 80 0 
SS3656 75 20 0 0 5 95 0 
SS501201 0 10 20 70 0 20 80 
SS501202 0 0 0 100 0 0 80 
SS501203 0 20 50 30 0 20 80 
SS501205 0 0 50 50 0 0 70 
SS501206 0 0 0 100 0 0 20 
SS5031 0 5 65 30 0 10 90 
SS5032 0 20 70 10 0 10 90 
SS5033 0 0 70 30 0 10 85 
SS5034 0 15 25 60 0 10 60 
SS5035 20 10 60 10 0 20 70 
SS5071 40 50 10 0 0 80 20 
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Plot 
Moss 

Singed 
Moss 
Light 

Moss 
Moderate 

Moss 
Severe 

Litter 
Unburned 

Litter 
Singed 

Litter 
Charred 

SS5072 60 40 0 0 0 60 40 
SS5073 20 70 10 0 0 70 30 
SS5074 60 20 0 0 20 50 30 
SS5075 30 60 10 0 0 40 60 
SS5076 20 60 20 0 0 60 40 
SS8121 10 10 60 20 0 20 80 
SS8122 20 15 60 5 0 30 70 
SS8123 34 5 55 5 5 30 65 
SS8124 30 10 50 10 0 30 70 
SS8125 30 20 40 10 0 30 70 
SS8171 15 10 40 20 15 15 70 
SS8172 15 30 10 20 25 20 55 
SS8173 20 10 10 40 20 20 60 
SS8174 15 20 50 10 5 25 70 
SS8175 15 15 35 35 0 15 85 
SS8176 20 5 55 15 10 10 80 
ZF14101 10 40 50 0 0 10 90 
ZF14102 0 20 60 20 0 0 100 
ZF14103 0 33 33 34 0 0 100 
ZF14104 0 20 50 30 0 0 70 
ZF14105 0 20 60 20 0 0 70 
ZF14106 0 5 50 45 0 0 40 
ZF14171 0 0 60 40 0 5 75 
ZF14172 0 0 50 50 0 5 90 
ZF14174 0 0 50 50 0 0 90 
ZF14191 10 75 15 0 0 10 90 
ZF14192 20 70 8 0 2 20 78 
ZF14193 7 35 40 0 0 0 100 
ZF14194 9 65 20 5 1 10 89 
ZF14195 10 50 30 10 0 10 90 
ZF14196 10 40 40 10 0 10 90 
ZF1421 0 70 25 5 0 30 70 
ZF1422 0 50 30 10 0 40 60 
ZF1423 0 30 50 20 0 40 60 
ZF1424 0 30 60 10 0 20 80 
ZF1425 5 25 40 40 0 30 70 
ZF1431 0 10 60 30 0 10 60 
ZF1432 0 50 30 20 0 15 70 
ZF1433 10 40 30 20 0 30 70 
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Plot 
Moss 

Singed 
Moss 
Light 

Moss 
Moderate 

Moss 
Severe 

Litter 
Unburned 

Litter 
Singed 

Litter 
Charred 

ZF1434 10 30 40 20 0 10 60 
ZF1435 0 30 50 20 0 0 80 
ZF14401 0 10 60 30 0 0 100 
ZF14402 10 20 50 20 0 10 90 
ZF14403 0 10 40 50 0 0 50 
ZF14411 0 30 60 10 0 30 50 
ZF14412 0 15 40 45 0 0 100 
ZF14413 0 0 40 60 0 0 95 
ZF171001 10 50 30 10 0 10 90 
ZF171002 5 70 20 5 0 10 90 
ZF171003 5 45 50 0 0 0 100 
ZF171004 10 30 50 10 0 5 95 
ZF171005 30 50 20 0 0 30 70 
ZF171011 50 10 30 10 0 50 50 
ZF171013 20 35 5 0 40 40 20 
ZF171014 30 50 20 0 0 30 70 
ZF171015 30 25 25 0 20 20 60 
ZF171301 0 25 60 15 0 0 50 
ZF171302 15 25 45 15 0 0 90 
ZF171303 25 10 55 10 0 0 90 
ZF171304 0 50 40 10 0 10 90 
ZF171305 10 60 20 10 0 20 80 
ZF171306 5 70 20 5 0 20 80 
ZF1761 10 50 33 0 7 10 83 
ZF1762 20 50 20 0 10 20 70 
ZF1763 20 60 10 0 10 20 70 
ZF1764 20 55 20 0 5 20 75 
ZF1765 35 50 10 0 5 35 60 
ZF1766 25 55 10 0 10 25 65 
ZF1771 18 30 50 0 0 10 85 
ZF1772 10 20 50 10 0 5 90 
ZF1773 10 20 55 5 5 10 75 
ZF1774 25 50 20 0 5 15 80 
ZF1775 35 50 5 0 10 50 40 
ZF1776 15 60 5 5 10 30 60 
ZF1791 30 5 45 10 0 20 80 
ZF1792 30 0 50 10 0 30 70 
ZF1793 40 30 10 0 20 20 60 
ZF1794 20 30 30 10 0 10 90 
ZF20101 20 0 60 20 0 20 55 
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Plot 
Moss 

Singed 
Moss 
Light 

Moss 
Moderate 

Moss 
Severe 

Litter 
Unburned 

Litter 
Singed 

Litter 
Charred 

ZF20102 25 25 25 25 0 0 100 
ZF20103 40 25 25 10 0 5 90 
ZF20104 20 55 20 5 0 30 70 
ZF20105 25 15 50 10 0 15 70 
ZF201051 60 0 0 0 50 50 0 
ZF201052 30 40 0 0 40 40 20 
ZF201053 30 50 0 0 20 60 20 
ZF201054 10 80 10 0 10 20 70 
ZF201055 20 75 0 0 10 20 70 
ZF201056 20 30 20 0 20 50 30 
ZF2121 10 10 60 10 10 30 60 
ZF2122 10 10 25 5 50 20 30 
ZF2123 25 10 40 5 20 25 55 
ZF2124 10 10 55 15 10 15 75 
ZF2125 10 15 45 5 25 25 50 
ZF2126 10 15 20 15 40 20 40 
ZF221 0 30 60 10 0 20 80 
ZF222 20 35 35 5 0 20 80 
ZF223 0 50 35 15 0 70 30 
ZF224 5 25 40 30 0 5 95 
ZF225 0 5 10 85 0 10 90 
ZF226 0 10 30 60 0 0 100 
SS3101 0 0 0 100 0 0 50 
SS3102 0 0 0 100 0 0 40 
SS3103 0 0 0 100 0 0 40 
SS3104 0 0 0 100 0 0 70 
SS3105 30 30 20 0 25 25 25 
SS3106 10 10 20 50 5 10 55 
SS3401 18 60 20 0 0 80 10 
SS3403 40 40 10 0 10 75 10 
SS3404 5 50 5 0 0 0 95 
SS3405 30 40 10 0 5 75 20 
SS3406 15 45 35 0 0 20 60 
SS3421 0 0 0 0 0 0 0 
SS3422 20 80 0 0 0 0 0 
SS3423 5 94 0 0 0 0 0 
SS3424 2 58 40 0 0 0 0 
SS3425 20 70 10 0 0 0 0 
SS3426 0 60 30 0 0 80 20 
SS8211 40 45 10 5 0 30 60 
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Plot 
Moss 

Singed 
Moss 
Light 

Moss 
Moderate 

Moss 
Severe 

Litter 
Unburned 

Litter 
Singed 

Litter 
Charred 

SS8221 15 40 35 10 0 90 10 
SS8223 30 20 40 0 10 80 10 
SS8224 20 0 70 0 10 0 80 
SS8225 50 0 50 0 25 25 0 
SS8226 10 0 90 0 0 25 25 
ZF1711 15 50 25 0 10 15 75 
ZF1712 10 45 40 0 5 10 85 
ZF17151 5 10 40 25 20 30 50 
ZF17152 5 10 80 0 5 5 89 
ZF17153 4 5 86 0 5 4 91 
ZF17155 2 0 90 5 3 2 95 
ZF17156 5 5 60 30 0 5 75 
ZF17221 5 10 40 45 0 5 95 
ZF17222 10 10 40 40 0 5 75 
ZF17223 30 10 30 30 0 0 90 
ZF17224 10 20 30 40 0 10 70 
ZF17225 10 10 60 20 0 10 80 
ZF17401 40 20 20 0 20 20 60 
ZF17402 15 40 30 10 0 10 90 
ZF17403 15 20 40 20 0 10 90 
ZF17404 20 30 25 15 10 20 70 
ZF20271 10 88 0 0 0 80 10 
ZF20272 10 80 5 0 0 90 10 
ZF20273 15 70 15 0 0 0 85 
ZF20274 30 50 20 0 30 40 30 
ZF20275 30 60 10 0 10 50 40 
ZF20404 0 0 0 100 0 0 0 
ZF2041 50 45 5 0 10 80 10 
ZF2042 60 30 10 0 5 75 20 
ZF2043 70 20 10 0 10 80 10 
ZF2044 10 60 25 5 0 10 90 
ZF2045 20 60 20 0 0 50 50 
ZF2046 30 50 20 0 0 60 40 
ZF20472 20 45 30 5 0 20 75 
ZF20473 50 30 20 0 0 40 50 
ZF20476 10 40 0 50 5 20 0 
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Plot 
Litter 
Ashed 

Shrub 
Unburned 

Shrub 
Scortched 

Shrub 
Limbs Left 

Shrub 
Consumed Live Trees 

SS2821 0 0 50 50 0 0 
SS2822 0 0 10 90 0 0 
SS2823 0 0 10 85 5 0 
SS2824 0 0 20 60 20 0 
SS2825 0 0 0 80 20 0 
SS2826 0 0 10 70 20 0 
SS31041 0 20 30 30 20 0 
SS31042 0 5 0 10 85 0 
SS31043 0 5 0 35 60 0 
SS31045 0 0 0 10 90 0 
SS31046 0 0 0 10 90 0 
SS31091 0 0 10 30 60 0 
SS31092 0 0 0 20 80 0 
SS31093 0 0 0 10 90 0 
SS31094 0 0 20 30 50 0 
SS31095 0 10 60 20 10 0 
SS3641 100 0 0 80 20 0 
SS3642 90 0 80 20 0 0 
SS3643 85 0 10 50 40 0 
SS3644 0 0 5 90 5 0 
SS3645 0 0 10 60 30 0 
SS3646 0 0 40 30 30 0 
SS3651 40 0 90 10 0 0 
SS3652 80 0 75 10 15 0 
SS3653 80 0 85 10 5 0 
SS3654 0 0 10 30 60 0 
SS3655 0 0 10 60 30 0 
SS3656 0 0 10 60 30 0 
SS501201 0 0 0 0 100 0 
SS501202 20 0 0 0 100 0 
SS501203 0 0 0 30 70 0 
SS501205 30 0 0 80 20 0 
SS501206 80 0 0 0 100 0 
SS5031 0 0 0 20 80 0 
SS5032 0 0 0 10 90 0 
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Plot 
Litter 
Ashed 

Shrub 
Unburned 

Shrub 
Scortched 

Shrub 
Limbs Left 

Shrub 
Consumed Live Trees 

SS5033 5 0 0 0 100 0 
SS5034 30 0 0 0 100 0 
SS5035 10 0 0 50 50 0 
SS5071 0 0 80 10 10 0 
SS5072 0 0 80 20 0 0 
SS5073 0 0 80 20 0 0 
SS5074 0 5 30 55 10 100 
SS5075 0 0 90 10 0 0 
SS5076 0 0 50 50 0 0 
SS8121 0 0 0 30 70 0 
SS8122 0 0 0 20 80 0 
SS8123 0 0 15 20 65 0 
SS8124 0 0 0 40 60 0 
SS8125 0 0 0 20 80 0 
SS8171 0 20 5 10 65 0 
SS8172 0 10 25 15 50 0 
SS8173 0 20 20 10 50 0 
SS8174 0 0 0 15 85 0 
SS8175 0 0 0 15 85 0 
SS8176 0 20 10 20 50 0 
ZF14101 0 0 0 5 95 0 
ZF14102 0 0 0 0 100 0 
ZF14103 0 0 0 10 90 0 
ZF14104 30 0 0 10 90 0 
ZF14105 30 0 0 10 90 0 
ZF14106 60 0 0 0 100 0 
ZF14171 20 0 0 5 95 0 
ZF14172 5 0 0 50 50 0 
ZF14174 10 0 0 50 50 0 
ZF14191 0 0 0 10 90 0 
ZF14192 0 0 5 35 60 0 
ZF14193 0 5 0 15 80 0 
ZF14194 0 0 2 28 70 0 
ZF14195 0 0 5 15 80 0 
ZF14196 0 0 5 20 75 0 
ZF1421 0 0 0 50 50 0 
ZF1422 0 0 0 20 80 0 
ZF1423 0 0 0 20 80 0 
ZF1424 0 0 0 30 70 0 
ZF1425 0 0 0 10 90 0 
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Plot 
Litter 
Ashed 

Shrub 
Unburned 

Shrub 
Scortched 

Shrub 
Limbs Left 

Shrub 
Consumed Live Trees 

ZF1431 30 0 0 5 95 0 
ZF1432 15 0 0 5 95 0 
ZF1433 0 0 0 50 50 0 
ZF1434 30 0 0 10 90 0 
ZF1435 20 0 0 20 80 0 
ZF14401 0 0 0 10 90 0 
ZF14402 0 0 0 10 90 0 
ZF14403 50 0 0 20 80 0 
ZF14411 20 0 40 30 30 30 
ZF14412 0 0 10 70 20 0 
ZF14413 5 0 0 25 75 0 
ZF171001 0 0 0 30 70 0 
ZF171002 0 0 0 30 70 0 
ZF171003 0 0 2 20 78 0 
ZF171004 0 0 10 10 80 0 
ZF171005 0 0 0 20 80 0 
ZF171011 0 0 0 20 80 5 
ZF171013 0 40 50 10 0 50 
ZF171014 0 0 30 50 20 0 
ZF171015 0 20 20 20 40 5 
ZF171301 50 0 0 10 90 0 
ZF171302 10 0 0 30 70 0 
ZF171303 10 0 0 10 90 0 
ZF171304 0 0 0 60 40 0 
ZF171305 0 0 0 40 60 0 
ZF171306 0 0 0 20 80 0 
ZF1761 0 0 50 0 50 0 
ZF1762 0 0 40 0 60 0 
ZF1763 0 0 10 30 60 0 
ZF1764 0 0 10 25 65 0 
ZF1765 0 0 10 10 80 0 
ZF1766 0 0 10 20 70 0 
ZF1771 5 0 0 10 90 0 
ZF1772 5 0 20 30 50 0 
ZF1773 10 0 0 20 80 0 
ZF1774 0 0 5 25 70 5 
ZF1775 0 0 10 30 60 0 
ZF1776 0 0 10 30 60 0 
ZF1791 0 0 0 30 70 0 
ZF1792 0 0 0 10 90 0 
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Plot 
Litter 
Ashed 

Shrub 
Unburned 

Shrub 
Scortched 

Shrub 
Limbs Left 

Shrub 
Consumed Live Trees 

ZF1793 0 10 40 20 30 10 
ZF1794 0 0 0 10 90 0 
ZF20101 25 0 0 5 95 0 
ZF20102 0 0 0 0 100 0 
ZF20103 5 0 0 0 100 0 
ZF20104 0 0 0 10 90 0 
ZF20105 15 0 0 0 100 0 
ZF201051 0 0 0 60 40 0 
ZF201052 0 0 0 80 20 0 
ZF201053 0 0 0 60 40 0 
ZF201054 0 0 0 40 60 0 
ZF201055 0 0 5 85 10 0 
ZF201056 0 0 0 80 20 0 
ZF2121 0 10 10 30 50 0 
ZF2122 0 30 30 30 10 0 
ZF2123 0 25 5 10 60 0 
ZF2124 0 15 0 20 65 0 
ZF2125 0 20 10 30 40 0 
ZF2126 0 20 25 10 45 0 
ZF221 0 0 0 20 80 0 
ZF222 0 0 0 70 30 0 
ZF223 0 0 5 60 35 0 
ZF224 0 0 0 10 90 0 
ZF225 0 0 0 20 80 0 
ZF226 0 0 0 30 70 0 
SS3101 50 0 0 0 100 0 
SS3102 60 0 0 0 100 0 
SS3103 60 0 0 5 95 0 
SS3104 30 0 0 0 100 0 
SS3105 25 10 10 0 80 10 
SS3106 30 5 0 0 95 2 
SS3401 10 0 85 15 0 10 
SS3403 5 0 60 40 0 5 
SS3404 5 0 45 40 15 10 
SS3405 0 0 50 40 10 5 
SS3406 20 0 40 10 50 0 
SS3421 0 0 100 0 0 0 
SS3422 0 0 100 0 0 0 
SS3423 0 0 95 5 0 0 
SS3424 0 10 60 20 10 0 



75 

Plot 
Litter 
Ashed 

Shrub 
Unburned 

Shrub 
Scortched 

Shrub 
Limbs Left 

Shrub 
Consumed Live Trees 

SS3425 0 0 100 0 0 5 
SS3426 0 10 70 0 20 0 
SS8211 10 0 25 40 35 0 
SS8212 0 0 50 50 0 25 
SS8221 0 20 25 25 30 0 
SS8223 0 10 50 20 20 0 
SS8224 10 0 25 25 50 10 
SS8225 50 0 15 75 10 0 
SS8226 50 0 80 10 10 25 
ZF1711 0 0 0 20 80 0 
ZF1712 0 0 0 20 80 0 
ZF17151 0 30 10 10 50 0 
ZF17152 1 0 30 10 60 0 
ZF17153 0 0 10 0 90 0 
ZF17155 0 0 50 0 50 0 
ZF17156 20 0 60 0 40 0 
ZF17221 0 0 0 5 95 0 
ZF17222 20 0 0 5 95 0 
ZF17223 10 0 0 10 90 0 
ZF17224 20 0 0 0 100 0 
ZF17225 10 0 0 10 90 0 
ZF17401 0 0 20 40 40 0 
ZF17402 0 0 10 20 70 0 
ZF17403 0 0 0 30 70 0 
ZF17404 0 10 10 10 70 0 
ZF20271 10 0 0 90 10 0 
ZF20272 0 0 10 85 5 0 
ZF20273 15 0 0 90 10 0 
ZF20274 0 0 5 65 30 0 
ZF20275 0 0 10 70 20 0 
ZF20404 100 0 0 0 100 0 
ZF2041 0 0 25 50 25 0 
ZF2042 0 0 10 60 30 0 
ZF2043 0 0 0 60 40 0 
ZF2044 0 0 0 20 80 0 
ZF2045 0 0 0 20 80 0 
ZF2046 0 0 20 40 40 0 
ZF20472 5 0 10 60 30 0 
ZF20473 10 0 30 60 10 0 
ZF20476 75 0 90 0 10 20 



76 

       

Plot 
Foliage 
Intact 

Foliage 
Burned 

Second 
Branches 
Remain 

Minor 
Primary 

Branches 
Remain 

Major 
Primary 

Branches 
Remain 

Charred 
Poles 

SS2821 5 50 45 0 0 0 
SS2822 0 10 90 0 0 0 
SS2823 0 0 0 0 0 0 
SS2824 10 20 70 0 0 0 
SS2825 0 0 100 0 0 0 
SS2826 0 10 90 0 0 0 
SS31041 0 70 20 10 0 0 
SS31042 0 0 90 10 0 0 
SS31043 0 5 40 45 10 0 
SS31045 0 0 10 50 30 10 
SS31046 0 0 70 20 0 10 
SS31091 0 0 80 0 0 20 
SS31092 0 0 20 25 25 30 
SS31093 0 0 50 50 0 0 
SS31094 5 5 20 30 30 10 
SS31095 0 60 20 10 10 0 
SS3641 70 20 10 0 0 0 
SS3642 80 20 0 0 0 0 
SS3643 80 15 5 0 0 0 
SS3644 0 0 100 0 0 0 
SS3645 30 60 10 0 0 0 
SS3646 0 60 40 0 0 0 
SS3651 0 0 0 0 0 0 
SS3652 0 0 0 0 0 0 
SS3653 0 100 0 0 0 0 
SS3654 0 0 0 0 0 0 
SS3655 0 0 0 0 0 0 
SS3656 0 0 0 0 0 0 
SS501201 0 0 30 25 25 20 
SS501202 0 0 0 0 100 0 
SS501203 0 0 5 15 50 30 
SS501205 20 5 15 10 30 20 
SS501206 0 20 50 10 10 10 
SS5031 0 0 50 30 10 10 
SS5032 0 5 10 35 40 10 



77 

Plot 
Foliage 
Intact 

Foliage 
Burned 

Second 
Branches 
Remain 

Minor 
Primary 

Branches 
Remain 

Major 
Primary 

Branches 
Remain 

Charred 
Poles 

SS5033 0 0 10 50 20 20 
SS5034 0 0 0 60 20 20 
SS5035 0 0 20 60 20 0 
SS5071 0 0 0 0 0 0 
SS5072 0 0 100 0 0 0 
SS5073 0 20 70 10 0 0 
SS5074 0 0 0 0 0 0 
SS5075 0 30 70 0 0 0 
SS5076 0 0 100 0 0 0 
SS8121 10 30 50 10 0 0 
SS8122 0 0 40 20 10 30 
SS8123 15 20 65 0 0 0 
SS8124 0 10 30 25 15 20 
SS8125 0 5 25 40 20 10 
SS8171 0 5 60 35 0 0 
SS8172 5 25 50 10 10 0 
SS8173 0 10 50 35 5 0 
SS8174 0 5 40 30 15 10 
SS8175 0 0 75 10 10 5 
SS8176 0 40 15 15 20 10 
ZF14101 0 0 70 20 10 0 
ZF14102 0 40 15 20 25 0 
ZF14103 0 25 35 30 10 0 
ZF14104 20 40 10 10 10 10 
ZF14105 0 20 35 20 5 20 
ZF14106 0 10 30 50 5 5 
ZF14171 0 0 60 25 10 5 
ZF14172 0 100 0 0 0 0 
ZF14174 0 100 0 0 0 0 
ZF14191 0 85 15 0 0 0 
ZF14192 25 50 25 0 0 0 
ZF14193 3 97 0 0 0 0 
ZF14194 25 55 20 0 0 0 
ZF14195 10 50 25 15 0 0 
ZF14196 20 60 15 5 0 0 
ZF1421 0 0 10 50 25 15 
ZF1422 0 10 20 50 15 5 
ZF1423 0 20 40 25 10 5 
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Plot 
Foliage 
Intact 

Foliage 
Burned 

Second 
Branches 
Remain 

Minor 
Primary 

Branches 
Remain 

Major 
Primary 

Branches 
Remain 

Charred 
Poles 

ZF1425 0 40 30 20 5 5 
ZF1431 0 0 10 20 50 20 
ZF1432 0 0 20 50 25 5 
ZF1433 0 10 40 30 15 5 
ZF1434 0 0 20 40 30 10 
ZF1435 0 0 25 50 20 5 
ZF14401 0 0 5 25 30 40 
ZF14402 0 0 0 20 40 40 
ZF14403 0 0 5 20 25 50 
ZF14411 50 15 5 0 0 0 
ZF14412 0 70 30 0 0 0 
ZF14413 0 50 25 25 0 0 
ZF171001 0 20 60 15 5 0 
ZF171002 0 20 40 30 10 0 
ZF171003 0 30 50 10 10 0 
ZF171004 0 0 30 30 40 0 
ZF171005 0 0 40 30 20 10 
ZF171011 10 30 35 10 10 0 
ZF171013 30 15 5 0 0 0 
ZF171014 20 60 15 5 0 0 
ZF171015 5 40 20 30 0 0 
ZF171301 0 0 0 0 90 10 
ZF171302 0 0 0 0 90 10 
ZF171303 0 0 10 35 35 20 
ZF171304 10 40 30 10 5 5 
ZF171305 0 30 40 20 10 0 
ZF171306 0 5 15 30 30 20 
ZF1761 85 15 0 0 0 0 
ZF1762 90 10 0 0 0 0 
ZF1763 90 10 0 0 0 0 
ZF1764 70 20 10 0 0 0 
ZF1765 80 20 0 0 0 0 
ZF1766 70 20 10 0 0 0 
ZF1771 0 20 53 20 5 2 
ZF1772 0 60 20 10 10 0 
ZF1773 0 50 30 15 5 0 
ZF1774 20 25 40 10 0 0 
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Plot 
Foliage 
Intact 

Foliage 
Burned 

Second 
Branches 
Remain 

Minor 
Primary 

Branches 
Remain 

Major 
Primary 

Branches 
Remain 

Charred 
Poles 

ZF1775 0 75 10 10 5 0 
ZF1776 0 40 50 10 0 0 
ZF1791 0 40 30 20 10 0 
ZF1792 0 10 40 20 10 20 
ZF1793 20 25 25 10 10 0 
ZF1794 0 20 40 15 20 5 
ZF20101 10 75 0 0 10 5 
ZF20102 0 0 40 0 50 10 
ZF20103 0 0 0 80 10 10 
ZF20104 0 0 20 10 40 30 
ZF20105 0 0 20 30 10 40 
ZF201051 0 0 100 0 0 0 
ZF201052 0 0 0 30 40 30 
ZF201053 0 0 20 0 60 20 
ZF201054 0 0 20 40 20 20 
ZF201055 0 0 30 50 10 10 
ZF201056 0 10 30 15 15 30 
ZF2121 0 30 60 10 0 0 
ZF2122 0 40 60 0 0 0 
ZF2123 0 10 50 30 5 5 
ZF2124 0 0 70 15 15 0 
ZF2125 0 10 60 10 10 10 
ZF2126 0 30 25 25 10 10 
ZF221 0 0 30 30 30 10 
ZF222 0 10 40 30 10 10 
ZF223 0 0 60 30 5 5 
ZF224 0 0 20 20 40 20 
ZF225 0 0 20 35 35 10 
ZF226 0 0 20 40 20 20 
SS3101 0 10 30 20 20 20 
SS3102 0 30 30 10 20 10 
SS3103 0 10 20 30 25 15 
SS3104 0 10 10 40 20 20 
SS3105 10 10 20 10 10 30 
SS3106 3 10 30 30 20 5 
SS3401 40 40 10 0 0 0 
SS3403 25 60 10 0 0 0 



80 

       

Plot 
Foliage 
Intact 

Foliage 
Burned 

Second 
Branches 
Remain 

Minor 
Primary 

Branches 
Remain 

Major 
Primary 

Branches 
Remain 

Charred 
Poles 

SS3405 60 30 5 0 0 0 
SS3406 75 0 20 0 0 5 
SS3421 0 0 0 0 0 0 
SS3422 0 0 0 0 0 0 
SS3423 0 0 0 0 0 0 
SS3424 0 0 0 0 0 0 
SS3425 35 60 0 0 0 0 
SS3426 0 0 0 0 0 0 
SS8211 30 40 20 10 0 0 
SS8212 50 25 0 0 0 0 
SS8221 50 20 30 0 0 0 
SS8223 50 10 10 30 0 0 
SS8224 35 55 0 0 0 0 
SS8225 75 25 0 0 0 0 
SS8226 60 15 0 0 0 0 
ZF1711 0 0 30 30 30 10 
ZF1712 0 30 30 30 10 0 
ZF17151 0 90 10 0 0 0 
ZF17152 5 40 5 0 0 50 
ZF17153 0 98 0 0 0 2 
ZF17155 0 85 15 0 0 0 
ZF17156 0 100 0 0 0 0 
ZF17221 0 0 10 20 40 30 
ZF17222 0 0 20 40 30 10 
ZF17223 0 0 30 10 30 30 
ZF17224 0 0 10 15 60 15 
ZF17225 0 0 0 20 20 60 
ZF17401 40 20 20 20 0 0 
ZF17402 10 30 10 30 20 0 
ZF17403 20 10 30 20 20 0 
ZF17404 10 25 25 10 20 10 
ZF20271 50 50 0 0 0 0 
ZF20272 5 80 15 0 0 0 
ZF20273 50 40 10 0 0 0 
ZF20274 40 40 20 0 0 0 
ZF20275 20 70 10 0 0 0 
ZF20404 5 0 0 40 45 10 
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Plot 
Foliage 
Intact 

Foliage 
Burned 

Second 
Branches 
Remain 

Minor 
Primary 

Branches 
Remain 

Major 
Primary 

Branches 
Remain 

Charred 
Poles 

ZF2042 0 0 100 0 0 0 
ZF2043 0 0 60 10 20 10 
ZF2044 0 20 40 25 10 5 
ZF2045 0 0 0 0 0 100 
ZF2046 0 0 0 50 0 50 
ZF20472 0 0 0 25 25 50 
ZF20473 10 10 45 20 10 5 
ZF20476 40 10 10 20 0 20 

 70 10 0 0 0 0 
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