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Thesis Abstract 
 

Atmospheric nitrogen deposition has the potential to impact forest productivity, 

microbial associations, nutrient cycling, decomposition and stand dynamics. However, 

among the least studied aspects of these processes are the production and decomposition 

of dead woody biomass, or coarse woody debris (CWD). Coarse woody debris is made 

up of dead woody material on the ground called down dead wood (DDW) and dead 

standing trees which are often referred to as snags. Observed reductions in decomposition 

of CWD have been linked to substrate quality and microbial communities. If the 

decomposition effect is ubiquitous among litter types, CWD density, C:N, and biomass 

are likely to be impacted by elevated N deposition. Previous research found a slight 

increase in mortality in the N-amended plots. By assessing CWD volume and biomass, 

we can conjecture the potential impacts of N-deposition on stand dynamics. This study 

analyzes the influence of chronic simulated N-deposition on the decomposition of CWD 

along a latitudinal gradient in Michigan. Methodology included assessing DDW volume 

and biomass from ambient and elevated N deposition treatments, classifying downed 

dead wood and snags by their respective visual qualitative decay classes, and calculating 

wood density and C:N ratios.  

Since N deposition treatments began in 1994, DDW biomass has accrued by 16% 

in N amended plots. Wood density and C:N ratios were significantly and negatively 

correlated with years since tree death in ambient (control) treatment plots (P = 0.003 and 

0.005 respectively). N amended wood density and C:N ratios did not significantly decline 

over times since tree death. Analysis of covariance, with years since tree death as a 

covariate, indicated that N deposition treatment caused an increase in average DDW 

density and C:N ratio (P = 0.063 and 0.060 respectively). Our analysis indicates that N 

deposition has the potential to slow rates of wood decomposition and therefore the 

accumulation of dead woody biomass over time.   

Key words: N deposition, decomposition, coarse woody debris, downed dead wood, lignin 
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Chapter 1: Thesis Introduction 

 

Nitrogen deposition 

Atmospheric nitrogen (N) deposition is a natural process that continuously 

delivers atmospheric N compounds to terrestrial and aquatic ecosystems via precipitation 

and dry particle deposition. During the process of fossil fuel combustion, nitrogen oxides 

(NOx) are produced that are deposited on surrounding regions in the form of aerosol 

nitrate (NO3
-) and ammonium (NH4

+) (Barnes et al. 1998). To support the demand for 

food, N-containing fertilizers must be applied to agricultural soils to maximize 

productivity. Excess N can occur from over-fertilization; this N is then cycled through 

aquatic and terrestrial ecosystems and can have significant effects on ecosystem 

functioning and biological processes. As the human population continues to grow, the 

rate of N addition is expected to increase as well. Scientists expect a 25% increase in N 

deposition for developed countries in the coming decades (Galloway et al. 1994). Asia 

alone contributes roughly 27% of global NOx emissions and 43% of ammonia emissions 

(Galloway et al. 2008).  

North America is expected to receive an extra 3 g NO3 m-2 yr-1 for northern 

temperate forests (Galloway 2004). Nitrogen is thought to be the most important and 

often the most limiting nutrient for terrestrial ecosystems (Brady and Weil, 2008). 

Increases in available nitrogen can have broad implications for a number of forest 

processes, including productivity (Aber et al. 1995), decomposition (Johannes et al. 

2007), and subsequent carbon storage (Barford et al. 2001). In N limited terrestrial 

ecosystems, experimental N additions can rapidly create N saturated conditions, where 

leaching nearly equals additions (Aber et al. 1989; Fenn et al. 1998; Zak et al. 2004). 

High N treatments have also been found to cause soil acidification; up to 70% reduction 

of base exchangeable cations (Högberg et al. 2006). Both increases in N mineralization 

and N mobilization have been observed under simulated N deposition (Magill et al. 1997; 

Garten 1999). 
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Forest response to N deposition 

Globally there is an unidentified carbon sink that sequesters 15-30% of the 

world’s carbon (C) emissions (Myneni et al. 2001). Several recent articles have 

speculated that northern temperate forests could represent a percentage of this 

unaccounted C sink (White et al. 2000; Myneni et al. 2001; Burton et al. 2004;Zak et al. 

2008; Pregitzer et al. 2008) although other studies have debated this (Currie et al. 2004; 

Hogberg, 2007;). Magnani et al. (2007) speculates that “mankind is ultimately controlling 

the carbon balance in temperate and boreal forests directly through forest management 

and indirectly through N deposition.” Because of the potential of a significant C sink 

within temperate forests, it is important to understand the mechanisms behind C storage 

in forests. A meta-analysis of forest inventory data along a natural N deposition gradient 

in the United States reported that aboveground woody biomass increased by 61 kg of C 

per kg of N deposited, accompanied by increased tree growth in species with mycorrhizal 

associations (Thomas et al. 2009). In a long-term simulated N deposition experiment, 

Pregitzer (2008) noted an increase in woody biomass production (live + dead woody 

biomass pools) over a decade of N additions. However, other studies have correlated N 

additions to decreased tree growth and vigor (Thomas et al. 2009), increased mortality 

(Shen et al. 2000), as well as reduced seedling survival (Patterson et al. 2012; Catovsky 

et al. 2010). Thus it appears that future levels of N deposition may accelerate stand 

dynamics by influencing competitive interactions at the individual and species level.  

Several studies have described a positive correlation between N deposition and 

productivity (Nave et al. 2009; Pregitzer et al. 2008). Nave et al. (2009) reported that up 

to 15% of net primary productivity (NPP) in northern hardwoods is a result of 

atmospheric N inputs. Increased NPP due to N deposition can result from reduced C 

allocation to mycorrhizae (van Diepen et al. 2007) and elevated foliar N. When N 

becomes more available under elevated N deposition conditions, plants and trees may 

shift C allocation away from N seeking mycorrhizal associations. Although N deposition 

can increase productivity, captured NPP must remain sequestered on site (not lost 

through mortality and decomposition) in order to have an impact on the degree of C 



10 
 
 

stored. The primary process that returns soil carbon from a “storage” state to the 

atmosphere is through heterotrophic respiration- the central process within 

decomposition. 

 

Decomposition 

Decomposition is the process by which organic matter is broken down into 

successively smaller components and metabolized by heterotrophs to produce energy and 

biomass. The process of decomposition releases CO2 through heterotrophic respiration. 

Recent long term N deposition studies have found a significant “slowing” in the process 

of litter decomposition. Some studies have observed this result indirectly through reduced 

soil respiration (Burton et al., 2004; Cusack et al., 2010;) and heterotrophic respiration 

(Janssens et al., 2010), while others have found correlations with litter quality (Berg and 

Meetemeyer, 2002; Mansson and Falkengren-Grerup, 2003) enzyme activity (Carreiro et 

al., 2000; DeForest et al., 2004; Waldrop et al., 2004; Sinsabaugh, 2010; Wang et al., 

2010), microbial genetic analyses (Blackwood et al., 2007; Hofmockel et al., 2007; 

Hassett et al., 2009;), and microbial biomass (Zeglin 2007; Treseder, 2008;). The 

explanation for reduced decomposition due to elevated N additions has been linked to (I) 

the substrate being decomposed and (II) the community of decomposers.  

 

Substrate 

It has long been known that litter quality is an important factor in determining 

rates of decomposition (Meetenmeyer 1978). Most decomposition studies are done in leaf 

litter and soil organic matter mediums. Litter substrates include sugars and starches 

(simple carbohydrates), hemicellulose and cellulose, and lignin-like (recalcitrant) 

molecules (Brady and Weil 2008). Within the succession of decomposition, simple 

carbohydrates are easily attainable and often utilized quickly by microbial decomposers. 

Cellulose is a polysaccharide chain made up of repeating glucose molecules held by 
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covalent (glycosidic) bonds. Hemicellose (a matrix of cellulose chains) is harder to break 

down compared to simple carbohydrates but is still considered relatively labile (Horwath 

2007). Lignin is made up of repeated phenyl-propane units with several types of bonding. 

It is the primary structural macromolecule within plant cell walls (Horwath 2007). The 

term “lignin” can be misleading as it was (and often still is) used to define a “waste 

group” of highly recalcitrant molecules, that were either formed because of harsh 

chemical washes or were the bulky macromolecules left over after several chemical 

extractions (Schmidt et al. 2011). True lignin has been renamed “acid unhydrolyzable 

residue,” or “Klason lignin.” For the purposes of this thesis we will use ‘lignin’ for 

simplicity. Excessive soil N has been found to modify the structure of the lignin 

molecule, accentuating its recalcitrance (Berg and Matzner 1997). Low molecular weight 

N containing compounds are adsorbed into lignin’s covalent bonds essentially enhancing 

lignin’s resistance to decomposition (Stevenson 1982). Many researchers have observed 

that under elevated N deposition the decomposition of cellulose and hemicellulose 

components was accelerated, while the decomposition of lignin-like (recalcitrant) 

components was reduced (Berg and Matzner 1997; Li et al. 1994; Johannes et al. 2007; 

Carreiro et al. 2000; Waldrop and Zak 2006; Wang et al. 2010; Sinsabaugh 2010, 

DeForest et al. 2004; Cusack et al. 2010). Researchers have attributed an elevated N 

effect on microbial decomposer communities and function to this broadening gap 

between the decomposition of labile and recalcitrant molecules.  

 

Decomposer community 

Within forests, bacteria and fungi mediate the process of decomposition (Barnes 

et al. 1998). Certain fungal groups occupy specific niche spaces determined by their 

preferred substrate. The range of tolerance of a substrate also varies by species. For 

example, lignin decomposition often occurs during the final stages of litter decay and is 

mediated by a specialized group of lignin degraders called white-rot fungi 

(basidiomycetes) (Campell, 1930; Hammel, 1997; Osono, 2007). Several articles have 

speculated that microbial community shifts could at least partially explain the stimulation 
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and inhibition of enzyme activities under elevated soil N (Hofmockel et al. 2007; 

Treseder 2008; Weand et al. 2010; van Diepen et al. 2007; Lucas and Casper 2008; 

Waldrop et al. 2004; Zak et al. 2011). Much of this research has yielded varying results 

that cannot be compared across sites based on differing methodologies (time, forest type, 

specific microbial community, and analysis). Methodological issues include whether the 

authors used microbial biomass, phospholipid fatty-acid analysis, or genetic testing as a 

means of estimating changes in microbial community composition. When it appeared that 

lignin-degrading basidiomycete activity was low due to N inputs, Zak et al. (2011) 

hypothesized that basidiomycete competitors like lignin-degrading Actinobacteria, would 

fill in an apparently open niche space and decomposition activity (production of 

enzymes) would resume. Their results showed otherwise; elevated N inputs did not 

significantly alter competitive interactions among soil bacteria and fungi. Determining 

microbial community shifts poses a problem because several different microbial species 

carry out similar functions with similar enzymes (Osono 2007). With more research using 

transcriptomic analyses, researchers will not only be able to identify microbial species 

abundance but they will also be able to separate microbial abundance/biomass from 

genetic activity (i.e. function). 

 

Microbial function 

Microbial decomposers produce enzymes that can oxidize specific 

macromolecular substrates to obtain C and other nutrients for growth and respiration 

(Thorn and Lynch 2007). Excess N (NO3
- and NH4

+) is thought to interfere with the 

fungal metabolism of lignin, thus inhibiting decomposition (Sinsabaugh et al., 2002; Frey 

et al., 2004). On the other hand, other microbial decomposers specialized on cellulose-

based compounds seem to receive a beneficial boost in activity (Berg and Matzner, 

1997). Under elevated N deposition, cellulase activity increased, illustrating the 

accelerated decomposition associated with more labile C macromolecules. Laccase 

(phenol oxidase) activity decreased with high levels of soil N. Some research has 

considered that excess N has a direct effect on fungal metabolism (Hofmockel 2007), 
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however, the effect of N deposition on laccase was found at the genetic level as well 

(Blackwood et al. 2007; Lauber et al. 2009). Nearly all literature published on N 

deposition and decomposition focuses on leaf litter, soil organic matter, or culture 

experiments, which can have varying concentrations of labile and recalcitrant substances.  

 

Michigan Gradient Study 

This study follows research from a Long Term Research in Environmental 

Biology (LTREB) project that has been simulating chronic elevated N deposition along a 

latitudinal gradient in Michigan. An additional 3 g NO3
- m-2 y-1 has been broadcasted 

every growing season on treatment plots since 1994. Researchers noted that leaf biomass, 

root biomass, and root turnover remained constant (Burton et al. 2004), but surface soil 

organic matter (0-10 cm) increased (690 g C m-2) (Pregitzer et al. 2008) under elevated N 

deposition.  This indicates that N deposition did not increase soil organic matter by 

producing more leaf or root biomass but by slowing the decomposition of organic matter. 

Zak et al. (2008) reported that after a decade of experimental N deposition, organic 

matter increased (12%) in the forest floor and surface mineral soil layers. Soil respiration 

has decreased (Burton et al. 2004) as has sugar maple (Acer saccharum Marsh.) seedling 

survival (Patterson et al. 2012). These findings indicate that elevated N deposition has 

altered the process of decomposition and potentially influenced stand dynamics at the 

Michigan Gradient sites. 

To our knowledge, there is little known about the effect of N deposition on CWD 

decomposition. Large pieces of CWD have long residence times and play an important 

role in carbon and nitrogen storage and cycling (Creed et al. 2004; Ganjegunte et al. 

2004). To determine if the N deposition treatment has altered decomposition rates, I 

analyzed CWD wood densities and C:N ratios for CWD produced by tree death during 

the project (see Chapter 2). I also assessed the effects of chronic N addition on CWD 

biomass and volume, as well as the differences due to site, decay class, and time. Chapter 

3 contains biomass and volume analysis and a discussion on stand dynamics.  



14 
 
 

The objectives of this study were to determine if CWD decomposition was altered 

under elevated N deposition, to discuss the possible accumulation of DDW volume and 

biomass under elevated N deposition, and to promote the inclusion of CWD in carbon 

storage predictions under future levels of N deposition. I hypothesized that N additions 

would reduce CWD decomposition due to an inhibition of white-rot fungi and that 

enhanced tree growth due to N addition would accelerate stand dynamics, increasing tree 

mortality through stem exclusion (i.e. increasing the production of CWD). I also 

hypothesized that reduced decomposition and accelerated stand dynamics would foster 

greater C storage in CWD under elevated N deposition. 
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Chapter 2: Chronic Simulated Nitrogen Deposition and the Decomposition 
of Coarse Woody Debris 
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Introduction 

 

Due to anthropogenic activities, ecosystems around the world are currently 

experiencing increasing levels of inorganic atmospheric nitrogen (N) deposition (Detener 

et al. 2006). To meet the world’s demand for energy and food, the combustion of fossil 

fuels and the excessive use of fertilizer have significantly influenced the global cycling of 

nitrogen. Research suggests a 25% increase in total N deposition by the year 2020 for 

developed countries like North America (Galloway et al. 1994). Within North America, 

this increase translates to an extra 3 g NO3
- and NH3 m-2 yr-1 for northern hardwood 

forests (Galloway et al. 2004).  

In temperate forest ecosystems, N is considered one of the most limiting factors 

for forest productivity (Brady and Weil 2008). Not only is it needed by plants to build 

amino acids (proteins, enzymes, and genetic material) and is an integral element of 

chlorophyll, soil bacteria and fungi also actively seek N-containing compounds for their 

own growth and metabolism (Thorn and Lynch 2007). Because of this dependence on N, 

forest communities and the processes that maintain them can be significantly altered by 

rising levels of N deposition (Magill et al. 1997; Myneni et al. 2001; Magnani et al. 

2007). 

Increased experimental N deposition has been found to influence a suite of forest 

processes including net primary productivity (NPP) (Nave et al. 2009; Pregitzer et al. 

2008), soil respiration (Burton et al., 2004; Cusack et al., 2010; Janssens et al., 2010), 

microbial enzyme activities (Waldrop et al., 2004; Carreiro et al., 2000; Wang et al., 

2010; Sinsabaugh, 2010; DeForest et al., 2004), and leaf litter decomposition (Johannes 

et al. 2007; Prescott 1995). Research on the effects of elevated N on microbial and fungal 

decomposers has had varying results (Knorr 2005). Excess N availability has been found 

to increase the activity of some microbial and fungal decomposers; in contrast, other 

research has documented a marked decline in decomposition under elevated soil N. 

Based on a review of the literature it appears these conflicting accounts are a result of two 
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factors: the substrates being decomposed, and the makeup of the microbial “decomposer” 

community. 

Nitrogen mediated declines in the decomposition of lignin have been attributed to 

an elevated N response in specialized soil fungi that degrade lignin: basidiomycetes 

(Boominathan et al. 1990). These specialized fungi produce enzymes including phenol 

oxidase, manganese peroxidase, and lignin peroxidase (only found in wood-degraders) 

that can breakdown the bulky lignin molecule and obtain the cellulose hidden within the 

lignin shell (Osono 2007). A group of bleaching fungi known as “white rot” 

basidiomycetes are, “the most abundant degraders of wood in nature” and the primary 

wood degraders in hardwood systems (Hammel 1997).   

A culture study done on a nutrient deregulated lignin-degrader found that the 

nitrogen deregulated mutant Phanerochaete chrysosporium, a white rot basidiomycete, 

produced four-fold the amount of lignin peroxidase compared to that produced by wild 

types in a low N medium. In contrast, wild types produced no detectable amount of lignin 

peroxidase in high N media while the N deregulated mutants continued to produce excess 

peroxidase enzymes (Boominathan et al. 1990). Carreiro et al. (2000) demonstrated that 

elevated N deposition increased the activity of microbial and fungal cellulases but 

decreased the activity of laccaces (phenol oxidase). Other research has documented the 

same decrease in phenol oxidase activity due to N additions (Berg and Matzner 1996; Li 

et al. 1994; Johannes et al. 2007; Carreiro et al. 2000; Waldrop and Zak 2006; Wang et 

al. 2010; Sinsabaugh 2010, DeForest et al. 2004; Cusack et al. 2010). The inhibition of 

enzymatic activity at high-N concentrations is present across several forest types (Gallo 

et al. 2004). These findings and several other publications confirm that elevated N 

specifically reduces the decomposition of the macromolecule lignin through the 

inhibition of specialized lignin-degrading enzymes. 

The unique lignin-specific response to elevated N inputs has been explained in a 

number of ways. The most comprehensive mechansim states that elevated N conditions 

uncouple the decomposition of polysaccharides (i.e. cellulose) and polyphenols (i.e. 

lignin). At the genetic level, N regulates the transcription of lignin degrading enzymes, 
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where low N stimulates the production of lignin-degrading enzymes. There also is 

evidence that excess N affects decomposition through shifts in the decomposer 

community (Frey et al. 2005; DeForest et al. 2004; Waldrop et al. 2003; Zak et al. 2011). 

DeForest et al. (2004) observed a 35% decrease in phenol oxidase activity and an 18% 

reduction in microbial biomass with N addition in northern hardwood forests, relative to a 

control treatment. Waldrop et al. (2003) demonstrated the widening gap in substrate 

decomposition by finding a greater microbial response to maple litter and a reduced 

response to oak litter, where oak litter had relatively larger concentrations of recalcitrant, 

lignin-like molecules. These findings illustrate that reductions in enzymatic activity may 

not be entirely responsible for the reduction in decomposition. Elevated N deposition 

appears to affect each component of decomposition: substrate, microbial community, and 

microbial function (Sinsabaugh et al. 2002; Knorr et al. 2005). 

Interestingly, nearly all decomposition studies, either short term N fertilization 

studies or chronic elevated N deposition studies, utilized leaf litter as the substrate. Leaf 

litter is composed of several types of macromolecules which vary in concentration based 

on tree species and environmental conditions (Weedon et al. 2009). These 

macromolecules include water-soluble substances like simple carbohydrates, 

holocellulose, glycoproteins, hydrophobic lipids and waxes, and acid unhydrolyzable 

residues (lignin) (Brady and Weil 2008). Lignin concentration in leaf litter varies widely 

among species (Melillo 1982; Meetenmeyer 1978), but wood litter or coarse woody 

debris (CWD) is more consistent, containing approximately 25% lignin (this can vary 

somewhat between gymnosperms and angiosperms) (Sjostrom 1993). Weedon et al. 

(2009) states the necessity for more research on wood traits that affect CWD 

decomposition patterns including N and P content as well as C:N ratios. Based on a 

review of the literature there have not been any elevated N deposition studies that 

assessed wood decomposition.  
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Objective and hypotheses 

The objective of this study was to determine whether the inhibitory effect of 

elevated N availability on the decomposition of plant litter is ubiquitous in coarse woody 

debris. We determined the degree of decomposition by assessing wood density (g cm-3) 

and C:N ratios in CWD produced over a seventeen year period in northern temperate 

forests receiving ambient and experimentally elevated (+ 3 g N m-2 y-1) N deposition. We 

hypothesized (1)  that chronic elevated N deposition inhibits the decomposition of CWD, 

and (2) that this inhibition is  reflected in higher wood density and higher wood carbon to 

nitrogen (C:N) ratios. 
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Methods 

 

Site description 

The four study sites used in this research are located across a 500 km latitudinal 

gradient in Michigan (Figure 1). All four sites contain three 30 m x 30 m treatment plots 

and three 30 m x 30 m control plots. Since 1994, elevated N-deposition has been 

simulated by broadcasting 0.5 g N m-2 month-1 of solid NaNO3 pellets in 6 equal 

applications during the growing season (3 g N m-2 annually). The sites receive total 

ambient N deposition ranging from 0.7 to 1.2 g N m-2 yr-1 (Table 1). All sites contain 

similar flora, being primarily composed of Acer saccharum (80% of basal area) with Acer 

rubrum, Quercus rubra, Fagas grandifolia, and Prunus serotina components (Table 1). 

The four sites are representative of northern hardwood forests (see Burton et al. 1991 for 

further information on site characteristics) with Kalkaska sand (Typic haploorthod) soils, 

similar age, and similar stand structure.  

 

Coarse Woody Debris Density and C:N  

All trees within each plot have been numbered, with diameter at breast height 

(dbh) measured annually at permanent marks since 1987 for ambient plots and since 1994 

for N amended plots. Tree death has been recorded during annual measurements. Every 

tree within the study plots has known coordinates which allows them to be easily located. 

Wood from every third downed dead tree dying between 1994 and 2011 on all plots was 

sampled during the summer of 2011. Decay classes 1 through 5 were used to classify 

down dead wood (DDW), or trees that died and are now lying on the forest floor, while 

decay classes 11, 22, and 33 were used to classify dead standing trees (snags). Decay 

class 1 indicated the tree was freshly fallen and often still had fine branches and possibly 

leaves. Decay class 2 was separated from decay class 3 by the presence of bark and 

secondary branches. Decay class 4 appeared slightly ellipsoidal with some fragmentation 

as well as evidence of insect and fungal attack. Decay class 5 was highly fragmented, 
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often sunken in soil and moss covered. Decay classes 11, 22, and 33 are the same as 

decay classes 1, 2, and 3 except that they were applied to dead trees that were still 

standing (snags). The use of different codes for snags aided in identifying and tracking 

samples in the laboratory. Each decay class is a relative measurement of decomposition 

for debris pieces (methods adapted from Duvall and Grigal 1999). 

Wood sampling was done using either a chainsaw for decay classes 1-3 

(sometimes 4), or steel core (5 cm diameter) for decay classes 4 and 5. A hole-saw or 

chisel was used to collect wood samples from every third dead standing tree. Sample 

volume was calculated manually with dimension measurements from steel core samples 

and by water displacement on a balance (for unbroken wood) for all other samples. 

Samples were then placed in a drying oven at 65 oC until a constant mass was achieved. 

Wood density (g cm-3) was obtained from volume and dry mass measurements. The 

samples then were prepped for C and N analysis by grinding in a Spex CertiPrep ball mill 

to a fine powder. All samples were analyzed for C and N using a Fisons NA 1500 

elemental analyzer.  

 

Statistical analysis 

Analysis of Variance (ANOVA), with site and treatment as factors was used to 

assess treatment effects on wood density. Decay class was not used as a factor due to the 

limited number of wood samples from each decay class, especially decay class 5. 

Analysis of covariance (ANCOVA), with years since death as a covariate, was also used. 

Linear regression models were used to compare changes over time in wood density for 

the ambient and N amended plots, with years since death as a predictor. Wood C:N ratios 

were tested for effects of N deposition treatment with analysis of covariance (ANCOVA) 

with site and treatment as factors and years since death as a covariate. The relationship 

between C:N ratios and time was tested with a linear regression model, with years since 

death being the predictor variable for the C:N ratio response. 
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Results 

 

Wood density 

 In ambient plots, wood density decreased with higher decay classes. In N 

amended plots, wood density remained higher relative to ambient plots, throughout all 

decay classes (Figure 2). There was no detectable trend in snag wood density. Dead 

standing wood density fluctuated with visual decay classes (Figure 2). Because of the 

variability in snag wood density for snag decay classes, we assessed wood density in 

relation to years since tree death.  

A two-way ANOVA revealed that site and N addition treatment affected wood 

density (Table 2). However, with years since death added as a covariate in an ANCOVA 

the effect of N addition treatment on wood density was reduced (Table 3). Years since 

death made a difference in ANCOVA results, i.e. higher density in more recently dead 

woody material. In other words, older CWD in N-amended plots had lost less mass than 

the older CWD in ambient plots. With a linear regression model, wood density in ambient 

plots significantly decreased with years since death (Figure 4): density = 0.610 - 0.0256 x 

years since death (r = -.530, P = 0.003). However, wood density in the N amended 

treatment did not exhibit a similar relationship. In fact, the relationship between wood 

density and years since death in N amended plots was non-significant (r = - 0.010, P = 

0.562; Figure 4).  

  

Wood C:N ratios 

 Results for the C:N ratios were analogous to those for wood density. ANCOVA 

results indicated that wood C:N ratio was significantly affected by site and N addition 

treatment with years since death as a covariate (Table 4). Like wood density, linear 

regression analysis indicated the decrease with time since death in wood C:N ratios was 

significantly greater for ambient than for N-amended plots (Figure 5). For ambient plots 
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wood C:N ratio = 368.232 – 11.866 x years since death (r = 0.34, P = 0.005). N-amended 

plots did not have a significant linear relationship between C:N ratio and years since 

death (r = 0.153, P = 0.226).  
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Discussion 
 

Our findings support the hypothesis that chronic elevated N deposition suppressed 

the decomposition of CWD and this effect was seen reduced rates of mass loss over time 

and higher wood C:N ratios for the experimental N deposition treatment along a 

latitudinal gradient in Michigan’s northern hardwood forests. 

 

Wood density 

 Site had a significant effect on wood density because of a much higher average 

wood density at site A (0.50 g cm-3) versus sites B, C, and D (from 0.29 - 0.31 g cm-3). 

The site difference could be attributed to species or environmental factors at site A which 

causes higher wood density and higher subsequent C:N ratios. Site A has the lowest mean 

annual temperature (Table 1). Cooler conditions at site A could contribute to lower 

overall decomposition rates as well as reduced live tree growth. Site A also has the 

highest percentage of sugar maple, which has higher wood density than the other major 

species on the study sites. Across decay class 2, site A had the highest average wood 

density therefore, CWD decomposition at site A starts with a higher wood density. 

 Within the plots that received ambient N deposition, wood density decreased with 

time (Figure 2). As decomposition proceeds, soil microbes and fungi break covalent 

bonds between polymers and wood becomes aerated, light, and highly fragmented. Plots 

receiving chronic experimental additions of NO3
- did not exhibit this trend. In the later 

stages of decay (classes 3 and 4 in Figure 1 and years 8-17 in Figure 2), wood from the N 

deposition plots exhibited higher densities than ambient plots. This indicates that overall, 

older pieces of coarse woody debris are less dense in ambient plots; in other words older 

CWD in N amended plots is less decomposed than in ambient plots. 
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Wood C:N ratios 

 Differences in wood C:N ratios were similarly explained by the effects of site, 

treatment, and years since death (Table 2). Wood C:N ratios exhibited practically the 

same response as wood density. Wood C:N ratios in ambient plots displayed a significant 

negative linear response to years since death (Figure 3). In contrast, the relationship 

between wood C:N ratios and years since death from N amended plots was non-

significant (Figure 3). As wood C:N decreases in ambient plots, either N is being 

imported via the life cycles of microbial decomposers, e.g. dead fungal hyphae releasing 

N  into the decaying wood, or C is being lost via respiration. In N amended plots, excess 

soil N did not influence C:N ratios as they remained relatively high in new CWD (Figure 

3). The wood density and wood C:N data sets are independent Errors in wood volume 

measurements could have affected wood density estimates. However wood volume errors 

would not have altered C:N results. 

 

Decomposition effect: substrate, enzymes, and carbon storage 

The effects of elevated N deposition on decomposition are two-fold: it increases 

the production of cellulases i.e. it accelerates the decomposition of more labile substrates 

and it reduces the production of phenol oxidases and peroxidases, i.e, it slows the 

decomposition of lignin (Waldrop et al. 2004; Carreiro et al. 2000; Wang et al. 2010; 

Sinsabaugh, 2010; DeForest et al. 2004). The decomposition of lignin is a naturally slow 

process (Osono 2007; Horwath 2007). This “widening” of the gap between 

decomposition of labile and recalcitrant macromolecules has led researchers to question 

the ability of forest ecosystems under elevated N deposition to sequester soil carbon 

(Myneni et al. 2000; White et al. 2000). The addition of N to leaf litter has been found to 

“lead to greater accumulations of humified organic matter” (Prescott 2010). Several 

studies have observed decreases in soil respiration (Burton et al., 2004; Cusack et al., 

2010), some even specifically heterotrophic respiration (Janssens et al. 2010). Taken 

together, N deposition increases carbon fixation (increased NPP); decreases C lost 
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(decreased soil/heterotrophic respiration, and increases the amount of C retained (reduced 

decomposition/humification of organic matter) (Saiya-cork et al. 2002; Pregitzer et al. 

2008; Berg and Matzner 1997). In sum, we can surmise that future levels of N deposition 

will have the potential to increase carbon storage in northern hardwood forests and that 

future forest C storage models must consider the role of accumulating C in CWD, due in 

part to reduced decomposition. 

In a recent finding from the same Michigan Gradient study, Thomas et al. (2012) 

concluded that although organic matter has accumulated under chronic simulated N 

deposition and extracellular enzyme activity is correlated with treatment, the relative 

oxidation state of lignin was not related to the activity of lignin-degrading enzymes. 

Instead, “microbial transformations of root detritus may underlie the accumulation of 

organic matter.” Therefore the authors concluded that within the N amended forest floor 

and mineral soil layers, lignin-like molecules were not accumulating and that the 

biochemical composition of soil organic matter was not correlated with extracellular 

enzyme activity. 

Because we found direct evidence of reduced decomposition of CWD (density 

and C:N), the effect of N deposition on decomposition appears to be ubiquitous among 

litter types (leaf litter, soil organic matter, and CWD). In contrast with the conclusions of 

Thomas et al. (2012), accumulations of CWD are clearly not root-derived. Because C:N 

is correlated with the concentration of lignin-like molecules (Weedon et al. 2009), C does 

in fact appear to be accumulating, at least within CWD. Therefore the relationship 

between fungal communities, extracellular enzyme activity, relative oxidation of lignin, 

and substrate composition, all under the effect of elevated N deposition, requires further 

understanding and refinement. It may be the case that several different mechanisms 

underlie the response of decomposition to N deposition, which might include substrate 

variability and changes in microbial community composition. If several mechanisms do 

underlie this response, then the most striking finding is that all mechanisms seem to lead 

to an accumulation of organic matter and therefore an accumulation of C. 
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Figure 1. Four replicate sites along a north-south climatic gradient in Michigan 
have been receiving chronic elevated N additions since 1994. N amendments are 
in the form of solid NaNO3 pellets, applied in 6 equal increments during the 
growing season (3 g N m-2 annually). 
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Figure 2. CWD density for visual decay classes in ambient and N amended 
treatments 
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Figure 3. Wood density for the ambient and N amended treatments by years 
since death classes. Error bars indicate ±1 standard error of the mean within 
each treatment for years since death classes. 
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Figure 4. Scatter plot of CWD density by years since tree death for ambient and 
N amended treatments. Data is from wood sampling in 2011 field season. 



31 
 
 

 

Figure 5. Comparison of carbon to nitrogen (C:N) ratios in wood samples from N 
amended and ambient treatments for each years since death class. Error bars 
indicate standard error within each treatment for years since death classes. 
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Table 1. Climatic, floristic, and edaphic characteristics of four northern hardwood 
sites in Michigan  
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Table 2. Two-way ANOVA results for site and N addition treatment as factors 
affecting wood density (g cm-3) 

Source df Sum-of-
Squares 

Mean-
Square F-ratio P 

Site 3 0.327 0.109 3.9 0.012 

Treatment 1 0.125 0.125 4.485 0.038 

Site*Treatment 3 0.028 0.009 0.333 0.801 

error 71 1.986 0.028   
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Table 3. Two-way analysis of covariance (ANCOVA) results for the effects of site 
and treatment on wood density with years since death as a covariate 

Source df Sum-of-
Squares 

Mean-
Square F-ratio P 

Site 3 0.402 0.134 5.848 0.001 

Treatment 1 0.082 0.082 3.569 0.063 

Site*Treatment 3 0.057 0.019 0.822 0.486 

Years since death 1 0.382 0.382 16.662 0.000 

error 70 1.604 0.023     
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Table 4 Two-way analysis of covariance (ANCOVA) results for the effects of site 
and treatment on the carbon to nitrogen (C:N) ratio with years since death as a 
covariate 

Source df Sum-of-
Squares 

Mean-
Square F-ratio P 

Site 3 249520.698 83173.566 4.66 0.004 

Treatment 1 64282.303 64282.303 3.602 0.060 

Site*Treatment 3 109050.48 36350.16 2.037 0.112 
Years since 

death 1 203350.687 203350.687 11.394 0.001 

error 122 2177274.102 17846.509   
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Chapter 3: An Assessment of Forest Stand Dynamics and Coarse Woody 
Debris Biomass Accumulation under Chronic Simulated Nitrogen 

Deposition 
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Introduction 
 

  

North American forests are expected to receive a 25% increase in atmospheric 

nitrogen (N) deposition in the coming decades (Galloway et al. 1994). Due to the 

combustion of fossil fuels and the use of N containing fertilizer, humans have 

significantly influenced the global N cycle. Both experimental additions of N in short-

term studies and chronic additions in long-term studies have found similar patterns in 

forest response to N amendments. In an analysis of 23 atmospheric chemistry transport 

models, Detener et al. (2006) states, “Currently 11% of the world’s natural vegetation 

receives N deposition in excess of the ‘critical load’ threshold of 1000 mg (N) m-2 yr-1;” 

the United States is considered one of the most affected regions.  

 

A study from the University of Michigan’s Biological Station (UMBS) in 

northern lower Michigan calculated atmospheric N deposition from canopy N retention 

and soil N mineralization and found that atmospheric N inputs contribute up to 15% of 

NPP (Nave et al. 2009). Elevated N deposition has been found to increase aboveground 

net primary productivity (ANPP) (Nave et al. 2009; Pregitzer et al. 2008; Aber et al. 

1995) in forests. This increase in productivity has resulted in an increase in aboveground 

live plus dead woody biomass (Pregitzer et al. 2008). Several studies have found that N 

amendments lead to an accumulation in forest floor organic matter (Berg and Matzner 

1996; Franklin et al. 2003; Mansson and Falkengren-Grerup 2003). Pregitzer et al. 

(2008) recorded a 50% increase in forest floor (Oi and Oe horizons) mass over a decade 

of N amendments. The increased mass of organic matter was concluded to be a physical 

barrier for sugar maple seedlings, effectively reducing sugar maple regeneration 

(Patterson et al. 2012).  In N limited ecosystems, elevated N inputs have led to soil N 

saturation, an occurrence when soil solution N leaching nearly equals ecosystem N inputs 

(Pregitzer et al. 2004; Wallace et al. 2007; Aber et al. 1998; Garten 1999). Prolonged N 

saturation has been related to increases in tree mortality (Shen et al. 2001; Thomas et al. 

2010; Wallace et al. 2007). Nissenan et al. (1999) speculated that initially tree growth 

would increase with N additions, but eventually it would decrease as other nutrients 
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become limiting. Another pathway to increased mortality is that initial enhanced growth 

rates due to elevated N deposition could lead to increased competitive interactions within 

individuals. Those interactions would eventually result in some tree mortality through 

stem-exclusion, which can be accounted for via an assessment of CWD volume and 

biomass. The consequence of accelerated stand dynamics and associated self-thinning is a 

potential increase in the production of CWD.  

 

 Elevated N deposition has been correlated with reduced decomposition in leaf 

litter. Several studies have observed this result indirectly through reduced soil respiration 

(Burton et al., 2004; Cusack et al., 2010) and reduced heterotrophic microbial respiration 

(Janssens et al., 2010). Pregitzer et al. (2008) documented an accumulation of soil 

organic matter under experimental N deposition. Other research has found correlations 

with litter quality (Berg and Meetemeyer, 2002; Mansson and Falkengren-Grerup, 2003) 

enzyme activity (Waldrop et al., 2004; Carreiro et al., 2000; Wang et al., 2010; 

Sinsabaugh, 2010; DeForest et al., 2004), microbial genetic analyses (Blackwood et al., 

2007; Hassett et al., 2009; Hofmockel et al., 2007), microbial biomass (Treseder, 2008; 

Zeglin et al. 2007), and reduced decomposition of coarse woody debris CWD (See 

Chapter 2). 

 

Objectives and hypotheses 

 Few studies have directly assessed changes in the amount of dead woody biomass 

produced under conditions of chronic experimental elevated N deposition. We assessed 

tree mortality in a 17-year experimental N deposition study in northern hardwood forests. 

The objectives of this study were to determine if rates of biomass mortality were altered 

by the N deposition treatment and assess whether N deposition treatment led to an 

accumulation of CWD volume and biomass. We also evaluated changes over time in the 

average diameter of trees dying. Results were used to assess the influence of elevated N 

deposition on forest stand dynamics and carbon storage in CWD. We hypothesized that 

long term N amendments had significantly increased the amount of CWD production 

through enhanced tree mortality and had increased CWD biomass due to enhanced CWD 
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inputs and reduced decomposition rates. We expect N amendments to accelerate stand 

dynamics largely by increasing mortality in the larger diameter at breast height (dbh) 

classes in recent years. 

  



40 
 
 

Methods  
 

Site description 

The four study sites used in this research are located across a 500 km latitudinal 

gradient in Michigan (Figure 6). All four sites contain three 30 m x 30 m treatment plots 

and three 30 m x 30 m control plots. Since 1994, elevated N-deposition has been 

simulated by broadcasting 0.5 g N m-2 month-1 of solid NaNO3 pellets in 6 equal 

applications during the growing season (3 g N m-2 annually). The sites receive total 

ambient N deposition ranging from 0.7 to 1.2 g N m-2 yr-1 All sites contain similar flora, 

with the overstory dominated by Acer saccharum (80% of basal area). Acer rubrum, 

Quercus rubra, Fagas grandifolia,and Prunus serotina are also common (Table 5). The 

four sites are northern hardwood forests (see Burton et al. 1991 for further information on 

site characteristics) with Kalkaska sand (Typic haploorthod) soils, similar age, and 

similar stand structure.  

 

Coarse Woody Debris Density  

All trees within each plot have been numbered, with diameter at breast height 

(dbh) measured annually at permanent marks since 1987 for ambient plots and since 1994 

for N amended plots. Tree death has been recorded during annual measurements. Every 

tree within the study plots has known coordinates, which allowed them to be easily 

located. Wood from every third down dead tree dying between 1994 and 2011 was 

sampled during the summer of 2011. Decay classes 1 through 5 were used to classify 

down dead wood (DDW), or trees that died and are now lying on the forest floor. Decay 

class 1 indicated the tree was freshly fallen with bark and fine branches intact and often 

still having leaves. Decay class 2 was differentiated from decay class 3 by the presence of 

bark and secondary branches in decay class 2. Decay class 4 appeared slightly ellipsoidal 

with some fragmentation as well as evidence of insect and fungal attack. Decay class 5 

was highly fragmented, often sunken in soil and moss covered. An extra class was used 

in addition to the decay classes 1 through 5. Decay class 9 was used to identify CWD 
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which had been removed from a site by the public, presumably for use as firewood. 

Evidence of decay class 9 included cut CWD, wood chips from a chainsaw, and cut snag 

stumps.  

Wood sampling for density analysis was done using either a chainsaw for decay 

classes 1 through 3 (sometimes 4), or steel core (5 cm diameter) for decay classes 4 and 

5. A hole-saw or chisel was used to collect from every third dead standing tree (snag). 

Each visual decay class is intended to represent a relative level of decomposition for 

debris pieces (methods adapted from Duvall and Grigal 1999). Volume for density 

samples was calculated using dimension measurements from steel core samples and by 

water displacement on a balance for solid wood samples collected by the other methods. 

Samples were then placed in a drying oven at 65oC until a constant mass was achieved. 

Wood density (g cm-3) was obtained from volume and dry mass measurements.  

 

Coarse woody debris volume and biomass 

The “triangular transect” method described in Delisle et al. (1988) was employed 

to estimate DDW biomass at all sites during the 2012 field season. Each transect was an 

equilateral triangle with 30 m sides. Every piece of DDW ≥ 5 cm dbh was measured for 

diameter at the line intersection point and decay class. All six plots at each of the four 

sites were sampled (a total of 24 triangle transects). DDW volume was calculated as: 

V = (1.234) × d2/ L 

Where V is volume (m3/ha), d is the diameter (cm) of the piece of DDW measured 

perpendicular to the length of the log, and L is the length of transect (90 m total in this 

case). Volume measurements as well as the previously noted density values calculated in 

the lab were used to estimate average biomass per treatment for each decay class. DDW 

volume and biomass data were analyzed with a three-way analysis of variance (ANOVA) 

with site, treatment, and decay class as factors. A two-way ANOVA (site by treatment) 

was done on total DDW biomass for each plot (sum of the five decay classes). 
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Mortality basal area 

For the 17 years of elevated N additions, tree mortality was recorded annually. 

That mortality is captured in our CWD analysis. To further examine the structure of 

forest mortality, we classified the diameters of all trees dying and used regression 

analysis to determine if the diameters of trees dying were changing over time and, if so, if 

there were differences among treatments in the rates of such changes. 
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Results 
 

DDW biomass and volume  

Nitrogen additions did not have a significant effect on DDW volume (Table 7) or 

biomass (Table 8). DDW Volume decreased from site A to D; the relationship was 

marginally significant (P = 0.075, Table 7). Down dead wood biomass declined from site 

A to site D; although non-significant (P = 0.155), this trend is important to note. DDW 

biomass differed significantly among decay classes (Figure 8). A significant decay class 

by site interaction also occurred (P = 0.012).  All treatment effects and interactions were 

non-significant (Table 6). The largest increase in DDW biomass from ambient to N-

amended plots occurred in decay classes 3 and 4 (987 kg ha-1 and 714 kg ha-1 

respectively, Figure 8). Assuming 50% of biomass is carbon content of DDW, total 

carbon increased by 16% from ambient to N-amended plots.  

Mortality and stand dynamics  

Across all sites, 52 more trees died in the N deposition treatment between 1994 

and 2011 than in the ambient treatment, mostly occurring in sites C and D (Figure 7).  

The majority of mortality which occurred on both and ambient and N-amended plots was 

found in the 6, 10, and 14 cm dbh classes (Figure 10). There was not a significant 

relationship between the year of tree death and their diameter. Both ambient and N 

amended mortality occurred evenly throughout the period of the Michigan Gradient study 

with a slight, non-significant increase in mortality in larger trees in more recent years 

(Figure 11). 
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Discussion 
 

Biomass and volume 

Down dead wood biomass declined from site A to site D. The explanation for this 

is due in part to human removal at primarily the two southernmost sites (C and D). 

Although signs are displayed with statements that are meant to deter unnecessary human 

disturbance, several snags and DDW pieces were removed by the public (for firewood) 

during the study. Removed CWD accounts for 25% of all dead trees surveyed, with 86% 

of removed trees taken from the two southern sites (C and D).  

Research at the Michigan Gradient sites has indicated that dead wood density 

significantly differed in ambient and N amended treatments, with higher wood densities 

found in N amended plots (unpublished data). During 17 years of chronic experimental N 

deposition, DDW volume and biomass have accumulated in greater amounts in N 

amended plots (Figure 8). However, even though biomass and volume treatment effects 

were non-significant, we believe that DDW biomass is consistent with our hypothesis 

that DDW biomass will increase due to slower decomposition and resultant higher wood 

density. There was a 7% decrease in DDW volume in N amended plots (Figure 9). When 

the significant differences in density (See Chapter 2) are taken into account when 

converting wood volume to biomass, there is a 16% increase in DDW biomass in N 

amended plots (Figure 8).  

DDW volume is a highly variable forest characteristic; therefore we were unable 

to detect small differences between treatments. With this low power but a significant 

trend in wood density (see Chapter 2), it remains a possibility that DDW biomass may 

significantly increase under elevated N deposition. I conclude that as CWD density 

responds to N additions, biomass increases to a greater degree than volume and therefore 

may accumulate under N deposition.  Due to reduced decomposition rates of DDW, I 

suspect that the N treatment effect on DDW biomass may become significant in the 

future. 
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Stand dynamics and mortality 

I hypothesized that chronic elevated N deposition would accelerate stand 

dynamics. If N limited individuals are exposed to ample amounts of readily available N, 

they may grow faster. As trees grow faster, self-thinning may proceed more rapidly due 

to competition. This may result in enhanced mortality of intermediates and co-dominants. 

Eventually larger trees would begin to die, as they compete with each other. This trend 

likely wouldn’t appear until several years of enhanced aboveground NPP had occurred, 

as there is likely a lag time in stand structure response to competitive interactions. In our 

study plots, mortality generally occurred in the smaller dbh classes (Figure 10) as 

opposed to larger diameter classes. This is most likely a remnant of an earlier stem 

exclusion stage in stand development. Both N amended and ambient plots exhibited only 

minor differences in mortality in recent years (Figure 11). Although non-significant, the 

more recent mortality in both treated and ambient plots has included more individuals 

from larger dbh classes. This is most likely a result of natural shifts in stand dynamics 

and perhaps a “lag time” in accelerated stand dynamics for the N deposition treatment 

will take several more years, or even decades to become distinguishable. 

 

Carbon storage 

Several studies have concluded that N deposition increases C storage in forests. 

Although statistically non- significant, CWD in our N amended plots stored 16% more C 

than in ambient plots. Elevated N deposition increased in C storage by 26% in northern 

hardwood forests due to enhanced tree growth in combination with reductions in 

decomposition and associated increases in forest floor and surface soil organic matter 

(Pregitzer et al. 2008). Thomas et al. (2009) used forest inventory data to estimate the 

degree of carbon storage in trees along an N deposition gradient in the United States. The 

analysis found that “above-ground biomass increment increased by 61 kg of C per kg of 

N deposited.” When this number is expanded to the global level, N deposition could 

potentially increase C storage in trees by an extra 0.31 Pg carbon yr-1. Because N 
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additions have led to increased relative recalcitrance of lignin (Berg and Matzner 1997; 

Stevenson 1982), increased tree mortality (Shen et al. 2001; Thomas et al. 2010; Wallace 

et al. 2007), and reduced decomposition of DDW (see Chapter 2), DDW could play a 

significant role in forest C storage under future levels of N deposition. With this in mind, 

forest C models should be amended to consider the portion of C retained in CWD. 

 

Implications for management 

 Forest managers examine coarse woody debris for a variety of reasons. The U.S. 

Forest Service uses CWD as part of their estimates of forest carbon storage (Smith et al. 

2002). Others are concerned with climate change and carbon sequestration. N deposition 

has the potential to increase carbon stored as CWD by reducing CWD decomposition 

(unpublished data). Downed dead wood and snags provide habitat and nesting sites for a 

variety of birds (Rosenberg et al. 1988; Swallow et al.1988), small mammals (Zollner and 

Crane 2003; Smith and Maguire 2004), amphibians (Dupuis et al. 1995; Butts and 

McComb 2000; Moseley et al. 2004), and invertebrates (Jonsell and Weslien 2003; Jabin 

et al. 2004). N amendments disrupt the decomposition of CWD (see Chapter 2), which 

may or may not influence an organism’s ability to utilize it for resources. N amendments 

have in some cases led to greater tree mortality (Shen et al. 2001; Thomas et al. 2010; 

Wallace et al. 2007). Although research is needed in order to quantify this, perhaps N 

deposition will increase available wildlife habitat over time. Accumulations of CWD are 

common in old growth forests. The Michigan gradient plots are unmanaged second-

growth forests (Burton et al. 1991) currently undergoing understory reinitiation. Over 

time, N deposition may lead to greater structural complexity in unmanaged second-

growth and essentially push the stand closer to old-growth-like characteristics (purely 

structural), which may be of interest to those managing for the creation of old-growth-

like conditions. More research is needed in order to understand if, and to what extent, N 

deposition increases wildlife habitat, increase carbon storage, and structural complexity 

in forests. 
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Figure 6. Four replicate sites along a north-south climatic gradient in Michigan have been 
receiving chronic elevated N additions since 1994. N amendments are in the form of solid 
NaNO3 pellets, applied in 6 equal increments during the growing season (3 g N m-2 
annually). 

 
 

 

 

 

 

 

 



48 
 
 

 

Figure 7. Mortality basal area per hectare at sites A through D. Values are based 
on the dbhs of all trees dying from 1994 through 2011.  
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Figure 8. Average DDW  biomass per hectare by decay class for N amended and 
ambient treatments. Error bars indicate ± 1 standard error of the mean. 
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Figure 9. Average DDW volume (m3 ha-1) in N amended and ambient treatments 
by decay classes surveyed in 2012. Error bars indicate ± 1 standard error of the 
mean.  
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Figure 10. Diameter distribution for cumulative tree mortality from 1994 through 
2011 for the control and N deposition treatments 
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Figure 11. Diameter of trees dying plotted against the year of tree mortality for 
ambient and N amended treatments.  
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Table 5. Climatic, floristic, edaphic characteristics of four northern hardwood 
forests in Michigan 
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Table 6. Three-way ANOVA results for the effects of site, treatment, and decay 
class on DDW biomass 

Source df 
Sum-of- 
Squares 

Mean- 
Square F-ratio P 

Site 3 3.656 ∙107 1.219 ∙ 107 1.793 0.155 

Treatment 1 2.383 ∙ 106 2.383 ∙ 106 0.351 0.555 

Decayclass 4 1.117 ∙ 108 2.792 ∙ 107 4.109 0.004 

Site*Treatment 3 2.506 ∙ 107 8.353 ∙ 106 1.229 0.305 

Site*Decay class 12 1.912 ∙ 108 4.594 ∙ 107 2.345 0.012 

Treatment*Decay class 4 7.778 ∙ 106 1.994 ∙ 106 0.286 0.886 
Site*Treatment*Decay 

class 12 7.167 ∙ 107 5.972 ∙ 106 0.879 0.571 

Error 80 5.437 ∙ 108 6.796 ∙ 106     
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Table 7. Three-way ANOVA results for DDW volume (m-3 ha-1) with site, 
treatment, and decay class as factors 

Source df SS MS F-ratio P 

Site 3 316.327 105.442 2.385 0.075 

Treatment 1 4.525 4.525 0.102 0.750 

Decay class 4 596.286 149.072 3.372 0.013 

Site*Treatment 3 69.728 23.243 0.526 0.666 

Site*Decay class 12 977.322 81.444 1.842 0.055 

Treatment*Decay class 4 37.211 9.303 0.21 0.932 

Site*Treatment*Decay class 12 456.685 38.057 0.861 0.589 

error 80 353.164 44.215     
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Table 8. Two-way ANOVA results for total DDW biomass (summed across decay 
classes) with site and treatment as factors 

Source Df Sum-of 
Squares 

Mean-
Square F-ratio P 

Site 3 1.828 ∙ 108 6.093  ∙ 107 1.216 0.336 

Treatment 1 1.191  ∙ 107 1.191  ∙ 107 0.238 0.632 

Site*Treatment 3 1.252  ∙ 108 4.176  ∙ 107 0.834 0.495 

error 16 8.016  ∙ 108 5.010  ∙ 107     
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Table 9. Two-way ANOVA for total DDW volume (summed across decay 
classes) with site and treatment as factors 

Source Df Sum-of-
Squares 

Mean-
Square F-ratio P 

Site 3 1581.635 527.212 1.737 0.200 

Treatment 1 22.624 22.624 0.075 0.788 

Site*Treatment 3 348.642 116.214 0.383 0.767 

error 16 4857.285 303.580     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 



58 
 
 

Thesis Conclusions 
 

 Experimental N deposition affected DDW wood density and wood C:N ratios and 

subsequently reduced the decomposition of DDW in northern temperate forests (Chapter 

2). The reduction in decomposition was likely due to an inhibition of white-rot fungi by 

elevated N additions. Wood density and wood C:N ratio data sets are independent of each 

other. Any bias or error in wood density resulting from errors in volume estimates would 

not affect wood C:N ratios, yet both data sets yielded similar results. Long term N 

deposition studies on wood degrading fungi within DDW are needed to confirm if 

elevated N inputs inhibited white-rot fungal enzyme activity, shifted community 

composition, or modified the structure of lignin in DDW. Elevated N deposition has the 

potential to increase DDW biomass in part by accelerating stand dynamics, ultimately 

enhancing DDW inputs from mortality, especially that of larger diameter trees. Further 

research on forest stand dynamics under long-term elevated N deposition is needed to 

confirm this. Reduced decomposition of DDW and accumulating dead woody biomass 

could increase C sequestration in northern temperate forests. N deposition effects on 

DDW dynamics should be included in forest C models, using realistic scenarios for future 

levels of N deposition.  
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