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the Figure above shows the respective empirically corrected values ṁInc|OM1(t) = 𝛼 ∙
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Preface 
 This thesis titled “Assessments and Computational Simulations in Support of a 

Time-Varying Mass Flow Rate Measurement Technique for Pulsatile Gas Flow” is to 

contribute to further development of an orifice meter for use in obtaining time-varying 

mass flow measurements. 

This thesis accomplishes the following: It takes preliminary incompressible 

Computational Fluid Dynamics (CFD) modeling plus experimental synthesis approach 

and refines it to have significant confidence in the measurement approach. Preliminary 

incompressible CFD (with errors) were conducted by an earlier MS student on the 

project, N. Ajotikar. Preliminary experiments were done by M. Kivisalu. My work is to: (i) 

repeat and carry forward an accurate incompressible CFD simulation for the current 

geometry (referred to as OM1 and OM2), as well as to contribute to the better 

understanding of the measured approach. (ii) To propose a verification approach 

involving new experimental geometry (OM1 and nozzle) and corrective simulations. (iii) 

To assist in the implementation of compressible correction application of our team (an 

analytical approach by Dr. Narain and implemented by M. Zhao) as well as a 

compressible CFD approach from M. Zhao [1]. Therefore, Sections 3.4.1, 3.4.2 of this 

thesis draw heavily on material from [1-2] and are included here for continuity, while 

Sections 3.1, 3.2, 3.3, 3.4.3, 3.4.4 and Appendix A-1 presented here were primarily 

completed by myself and are further expanded on from previously published material. 

As a result of the above, I have made a significant contribution (as a co-author) 

of the relevant JFE paper, Narain et al. [2]. Therefore, parts of this thesis report will 

overlap with content of this paper [2]. 
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Nomenclature 
  
Accent Notations 

X�: Time-averaged value of variable ‘X(t)’  

X′ Fluctuations in variable ‘X(t)’ with X(t) ≡ X� + X′(t) 

aX(f): Amplitude at frequency f in the FFT of variable ‘X(t)’  

X�L: Time-averaged value of variable ‘XL(t)’ at cross-section ‘L’ 

XL
′ : Fluctuations in variable ‘XL(t)’ at cross-section ‘L’ with XL(t) ≡ X�L+XL

′ (t) 

aX’-L(f): Amplitude at frequency f in the FFT of variable XL
′ (t) 

Labels 

FC1: Coriolis mass flow meter 1 

FC2: Coriolis mass flow meter 2 

om: Generic orifice-plate flow meter. Also used as a variable subscript. 

OM1: Orifice-plate meter 1. Also used as a device specific subscript. 

OM2: Orifice-plate meter 2. Also used as a device specific subscript. 
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Variables 

c0: Acoustic velocity of vapor flowing through orifice meter [m/s] 

f: Frequency [Hz] 

fP: Primary driving frequency for pulsatile flow [Hz] 

fF: Highest frequency of interest for pulsatile flow [Hz] 

g: Gravitational field vector within an orifice meter [m/s2] 

k: Empirical orifice meter constant defined in section 2 [kg/m7] 

k: Symbol used for kinetic energy fluctuations in the k-ε turbulence model 

kt: Eddy thermal conductivity in Eq. (30) and in the Appendix 

L: Empirical orifice meter constant defined in section 2 [kg/m4] 

ṁ(t): Time-varying mass flow rate [g/s] 

ṁL(t): Time-varying mass flow rate at cross-section L [g/s] 

∆ṁL(t): Compressibility correction for mass flow rate at cross-section L [g/s] 

p0: Reference pressure [kPa] 

p: Absolute physical pressure in Eq. (5) [kPa] 

pCFD:  Pressure field in the computational model [kPa] 

poff
′ : Offset pressure (poff

′ ≡ p − p0) [kPa] 

nd-poff
′ : Non-dimensional offset pressure poff

′  

∆pom: Pressure-difference across orifice meter device ‘om’ [Pa] 

∆pMN: Pressure-difference between locations ‘M’ and ‘N’ [Pa] 

Q: Volume flow rate [m3/s] 

r: Radius within the orifice meter duct [m] 

t: Time [s] 

T: Time period of averaging for mean flow variable values (T >> ∆tc) [s] 
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∆tc: Time scale of pulsations (∆tc ≡ 1/fP) [s] 

v: Flow velocity vector within an orifice meter [m/s] 

x: Distance from the upstream pressure tap of an orifice meter [m] 

x: Position vector within an orifice meter [m] 

Greek Symbols 

α: Empirical correction factor proposed for unsteady turbulent CFD solutions of 

pulsatile flows [-] 

µ0: Reference viscosity [kg/m∙s] 

ρ i: Density at location ‘i’ [kg/m3] 

ρ0: Reference density [kg/m3] 

φX(f): Phase at frequency f in the FFT of variable ‘X(t)’ [radians] 

φX’-L(f): Phase at frequency f in the FFT of variable XL
′ (t) [radians] 

Subscripts 

Locations / Devices 

D: Downstream pressure tap location for a generic orifice-plate meter 

FC: Generic Coriolis mass flow meter 

L: Upstream pressure tap location for orifice meter OM1 

M: Downstream pressure tap location for orifice meter OM1 

N: Upstream pressure tap location for orifice meter OM2 

O: Downstream pressure tap location for orifice meter OM2 

U: Upstream pressure tap location for a generic orifice-plate meter 

Conditions 

CFD-I|om: Associated with the raw output from an incompressible unsteady turbulent 

CFD model for orifice-meter “om” 
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Inc|om:     Associated with the empirically corrected output from an incompressible 

unsteady turbulent CFD model for orifice-meter “om” 

stored:     Associated with mass stored in the orifice meter control volume within the time 
period ∆tc 
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Abstract 

 This thesis covers the correction, and verification, development, and 

implementation of a computational fluid dynamics (CFD) model for an orifice plate meter. 

Past results were corrected and further expanded on with compressibility effects of 

acoustic waves being taken into account. One dynamic pressure difference transducer 

measures the time-varying differential pressure across the orifice meter. A dynamic 

absolute pressure measurement is also taken at the inlet of the orifice meter, along with 

a suitable temperature measurement of the mean flow gas. Together these three 

measurements allow for an incompressible CFD simulation (using a well-tested and 

robust model) for the cross-section independent time-varying mass flow rate through the 

orifice meter. The mean value of this incompressible mass flow rate is then corrected to 

match the mean of the measured flow rate( obtained from a Coriolis meter located up 

stream of the orifice meter). Even with the mean and compressibility corrections, 

significant differences in the measured mass flow rates at two orifice meters in a 

common flow stream were observed. This means that the compressibility effects 

associated with pulsatile gas flows is significant in the measurement of the time-varying 

mass flow rate. Future work (with the approach and initial runs covered here) will provide 

an indirect verification of the reported mass flow rate measurements.  
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1. Introduction 

 The orifice-plate meter is a device in which a differential pressure (∆pOM) is 

measured across two ports in a flow stream. Between these two points is an orifice-plate 

which causes a flow restriction and significant pressure drop. The method described 

here requires that this differential pressure be a dynamic (time-varying) reading, along 

with at least one dynamic absolute pressure measurement (suitably located within the 

orifice meter geometry). In addition, a steady state, time-averaged mass flow rate 

measurement is needed from a separate device (e.g. a Coriolis meter) and a mean 

representative temperature measurement is needed to characterize the gas/vapor flow. 

While this arrangement (of both orifice meter and Coriolis meter) has been thoroughly 

verified for a steady flow, the findings in [2] (and expanded on here) show that with 

suitable CFD and additional measurements, this device may also provide the time-

varying mass flow rate.  

 

1.1 Inadequacy of Existing Approaches in Measuring the Pulsatile Mass Flow Rate 

Earlier efforts [3-7] have focused primarily on measuring the mean value of the 

time-varying mass flow rate ṁ�  associated with pulsatile flows. These approaches limited 

themselves to computing the various time-averaged mean values of the dynamic 

pressure-difference data ∆pom(t) (∆p����om, �∆p2�������
om, etc. in [3]) (mean values denoted by 

over bars) for the orifice-plate meter and proposed methods for relating the computed 

mean values to the determination of the mean volume flow rate Q� or mass flow rate 

ṁ� ≡ 𝜌0 ∙ Q� (where ρ0 is the constant mean value of gas density). All these works 

recognized that, because of inertia effects, the mean flow rate Q� is not the same as the 

one associated with steady incompressible flows under steady imposition of the same 
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mean pressure-difference ∆p����om. This value is different for pulsatile flows (high-amplitude 

fluctuations) than for steady flows or quasi-steady flows (with negligible or low-amplitude 

content in ∆pom
′ (t) fluctuations). Further proof of this inadequacy is shown in [2].  
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2.  Experimental Procedures and Equipment 
 (Common between this thesis and [1]) 

2.1 Experimental System and Procedures 

The flow-loop used in these experiments is shown in Fig. 1. For these experiments, heat 

was supplied to the pool boiler at a constant load causing a steady vapor flow of FC-72 

to travel through the Coriolis mass flow meter FC1. A pulsator directly downstream of the 

Coriolis meter then imposes pressure fluctuations on the vapor flow. The pulsator used 

in the experiments here is a diaphragm displacement compressor whose suction and 

pressure sides have been joined together by removing the values in the manifolds. This 

causes the diaphragm in the compressor to retain its primary oscillations, all while 

ensuring that there is not an effect on the mean mass flow rate within the flow loop. The 

frequency of the imposed pulsations is controlled by varying the motor’s speed, while the 

amplitude of the pulsations is controlled by the valve V0. 

 

 

After the imposed pulsations, the vapor flows through orifice meter OM1 and 

orifice meter OM2 before entering the test channel. While this surface could be heated 

Figure 1: Full flow loop schematic with OM1 and OM2 
shown 
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or cooled to study both condensing and boiling flows [8], for these experiments, it was 

only kept slightly (approx. 5 - 10 OC) above saturation temperature. The vapor then 

flowed out of the test channel and into the vertical tube condenser before being pumped 

back into the pool boiler. The working fluid for these experiments was selected to be FC-

72, an electronic cooling refrigerant provided by 3M. This fluid was chosen for its low 

saturation pressure and that it can be safely handled within the lab. It should be noted 

that FC-72 vapor cannot be modeled as an ideal gas under the conditions here; 

however, this proposed methodology will still work under common flow conditions. 

2.2 Instrumentation and Data Acquisition 

A National Instruments (NI) data acquisition system is used to gather data and 

control feedback loops on the flow controls. The primary program runs at a data 

collection rate of approximately 1Hz while the dynamic data sub program collects at a 

rate of 2000Hz in 5 second increments. During the runs presented in this paper, 20 

minute blocks of steady state data (at 1Hz) were taken for each condition. During this 

time 10 dynamic data blocks were taken. Then a suitable block was selected and used 

in the further computations and calculations presented here. The steady state values 

were averaged across the 20 minute block. 

The absolute pressure readings in the orifice meter and surrounding geometry 

were taken with Omega Engineering absolute pressure transducers. For the runs 

presented here, one transducer was located at the inlet of the orifice meter OM1 (point 

M of Fig.1) and another at the exit (point L of Fig. 1) to capture dynamic readings at each 

location. The accuracy of these transducers is ±0.5kPa after calibration. Validyne Inc. 

differential pressure transducers were used to gather the dynamic pressure difference 

across both of the orifice meters. The accuracy of these transducers after calibration is 

±20Pa. In order to calculate vapor properties (density and viscosity) in the orifice meter 
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and nozzle, T-type thermocouples were used to measure the approximate flow 

temperature. There were two thermocouples located in the test section, the first at the 

inlet of the OM1 and the second at the exit of the OM1. Both are accurate within ±1 °C 

after calibration. Their readings were averaged over the 20 minute runs and then 

averaged between each other to find the average properties for the constant density 

assumption used in the simulation. 

The mean mass flow rate of both the vapor and liquid in the flow loop was 

measured by two Elite model CMF010 Coriolis meters from Micro-Motion Inc. The 

accuracy of the vapor Coriolis meter is ±0.0037g/s and the accuracy of the liquid Coriolis 

meter is ±0.0010g/s. The vapor Coriolis meter was located above the pool boiler and 

directly before the pulsator, while the liquid Coriolis meter is located after the constant 

displacement pump and before the pool boiler. By measuring the mean mass flow rate at 

two locations in the flow loop, it is possible to achieve and ensure that the mean mass 

flow rate is constant throughout each 20 minute run. It should be noted that only one 

Coriolis meter (or any other mean mass flow rate measurement) is needed and for the 

runs reported here the vapor mass flow rate was used. As shown in [9,10,11], a Coriolis 

meter is well capable of measuring the mean mass flow rate 𝑚̇�  of a pulsatile gas flow. 

Both of the orifice meters used are custom designed and assembled in house at 

Michigan Tech. Detailed drawings of their geometries and instrumentation locations of 

shown in Fig. 2 for OM1 and Fig. 3 for OM2.  



20 
 

 

 

 

 

 

  

Figure 2: Detailed drawing of OM1 with lOM1 = 127mm 

Figure 3: Detailed drawing of OM2 
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3. Methods 

3.1 Mesh Construction and Verification 

To improve on past simulations and streamline future work, the previous CFD 

models which used a different collection of software including Gambit (to create the 

geometry and mesh) and Fluent (to set-up and solve the problem) were replaced with 

one model in Ansys Workbench 13.0. This new software allows for the entire process 

from geometry definition to post processing of results to be completed in one software 

package. In addition, once the simulation model is constructed, it may also be solved 

within stand-alone editions of Fluent.  

3.1.1 Spatial Grid Independence 

To validate this new model and associated geometry, various mesh sizes were 

tested for a range of flow conditions and solver conditions to insure a robust model. The 

size of the mesh was varied from 1.0e-4 m to 8.0e-2 m for the orifice meter geometry. 

The full inlet and nozzle models (discussed in Appendix A-1) were tested over a reduced 

range of 1.0e-4 m to 8.0e-4 m as this was the best quality range found in the OM mesh 

tests. Each of the geometries was meshed with quadrilateral mesh elements and the 

size allowed to vary as per the software requirements. The respective maximum cell 

counts for the nine meshes considered are given in Table 1. 

Table 1: Cell sizes and mesh counts for different mesh configurations 

Mesh 
Configuration 

Maximum Cell 
Size (m) Element Count 

Mesh 1 0.00008 168534 
Mesh 2 0.0001 107344 
Mesh 3 0.0002 27104 
Mesh 4 0.0004 9250 
Mesh 5 0.0008 2829 
Mesh 6 0.008 864 
Mesh 7 0.005 569 
Mesh 8 0.01 325 
Mesh 9 0.08 145 
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Spatial grid independent results were obtained for all the runs. For initial grid 

testing, a steady state case was used to determine the steady in the time mass flow rate 

though the orifice meter for various pressures. The pressure difference was tested over 

a range of 25 – 1000Pa (specifically 1000Pa, 600Pa, 200Pa, and 25Pa). The steady 

state solutions of the mass flow rate at the inlet were then plotted against the element 

count as shown in Fig. 4. In order to best select the mesh size, several factors were 

Figure 5: Velocity profiles at x = 0.12m and t = 0.8235 
seconds for three mesh sizes 

Figure 4: Steady state mass flow rates for varying mesh 
sizes 
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considered including, computation time, accuracy and reproducibility. To accurately 

capture the wall conditions and effects in turbulent flow the Fluent User’s Guide [12] 

recommends that a minimal of six elements be used across any opening. 

Further unsteady testing was done on Meshes 3-5 and is shown here for a 

representative unsteady flow associated with run 3 in discussed in Section 3.4. The grid-

independence is shown with the help of computed values of the axial component of 

velocity Vx (x, r, t). Fig. 5 shows the velocity profiles Vx (x, r, t) at the location x = 0.12m 

and t = 0.8235 s (of the measured pressure signal in Fig. 6) for the three meshes (Mesh 

3-5) of Table 1. The results in Fig. 5 show that spatial grid independence was achieved 

within 2 % of each other for Mesh 4 and Mesh 5 in Table 1.  

 

Therefore either of these meshes (Mesh 4 was chosen) can be used. Also, amongst all 

of the meshes tested, Mesh 4 has the balance between minimal cell count (which is 

desirable to avoid unacceptably large computational time for the long unsteady runs) 

and accurate satisfaction of the restrictions imposed by the wall functions. In fact Mesh 4 

worked for CFD analyses of all the pulsatile cases in discussed in Section 3.4.  

 

 

 

Figure 6: Pressure difference signal in the time domain for 
Case 3 of Table 4 
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3.1.2 Time Step Independence 

In addition to grid independence, unsteady CFD solutions must also be tested for 

time step independence. The selections of representative time-steps are made on the 

basis of the need to resolve the predominant frequency present in the differential 

pressure transducer measurement across the geometry of interest. The data acquisition 

rate (i.e. DAQ rate) of 2000 Hz for the differential pressure transducers was such that 

the data was acquired at the interval of 0.0005 sec and the acquired data was made 

continuous by linear interpolation between these discrete time-intervals. It is found that 

this same time-step size (∆t2) of 0.0005 sec for unsteady CFD simulations is adequate 

for all cases (fP ≤ 10 Hz ) considered in this paper. By employing one larger time-step ∆t1 

and two smaller time steps ∆t3 and ∆t4 (that were fractions of the time-step ∆t2), it was 

verified that the unsteady CFD solution is approximately time-independent and accurate. 

Table 2 lists the four time step sizes used for this study.  

Table 2: Chosen time-step sizes 

Configuration Time Step 
Size (sec) 

TS 1 (∆t1) 0.001 
TS 2 (∆t2) 0.0005 
TS 3 (∆t3) 0.00025 
TS 4 (∆t4) 0.0001 

 

For the unfiltered ∆pOM1(t) data in Fig. 6 and Mesh 4 of Table 1, four different transient 

solutions were obtained for the four different time step sizes in Table 2. The solutions’ 

axial component of the velocity profile at the time instant of t = 0.8235 seconds (see Fig. 

6) and at the location xM' =  0.120 m (see Fig. 2) are plotted in Fig. 7. It is clear from Fig. 

7 that for all the four different time step sizes, the velocity profiles are the same (within 

1% of one another). This indicates that the time step ∆t2 of 0.0005 sec is good for 
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accurately predicting the unsteady solutions. Therefore, unless otherwise indicated, all 

the subsequent simulations employ the time step size of 0.0005 sec and quadrilateral 

mesh given by Mesh 4 in Table 1.  

 

3.1.3 Turbulence Model and Solver Settings 

The range of Reynolds number (Re) based on OM1’s outer tube diameter of 

16.97mm (not the orifice diameter of 5.08mm) and the mean flow rate was 7600 < Re 

<15000; this is the turbulent flow regime for a pipe. The large amplitudes at imposed 

frequencies  1 ≤  fP  ≤ 30 Hz keep the unsteady flow turbulent. For a few cases, 

instantaneous Reynolds number may go below the critical number (about 2100) for 

steady flows. However peak instantaneous Reynolds numbers are high enough to keep 

the flows turbulent by preventing any re-laminarization tendency associated with the few 

cases’ very short time durations for which the instantaneous Re < 2100. For the 

standard k-ε turbulence model described in [12], the default values of model constants 

were used and are listed in Table 3. Similarly, for the Reynolds Stress model [12], the 

employed model constants are also listed in Table 3. Both models used standard wall 

Figure 7: Axial Velocity at x=0.12m and t=0.8235 seconds 
for different Time Steps 
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functions for the near wall treatment. The results of turbulence model testing is further 

discussed in Section 3.3.1. 

Table 3: Turbulence Model Constants 

Model Cmu C1-
Epsilon 

C2-
Epsilon 

TKE Prandtl 
Number 

TDR Prandtl 
Number C1-PS 

k-ε (2 
eqns.) 0.09 1.44 1.92 1.0 1.3 -- 

Reynolds 
Stress 0.09 1.44 1.92 -- -- 1.8 

 

3.2 Empirical Corrections for the Mean Mass Flow Rate 

It has been proposed [2] that even small model-dependent quantitative variations 

from the experimental measurements or CFD solver can be removed and model 

independent values of ṁCFD−I|om(t), denoted as ṁInc|om(t), be obtained with the help of 

an empirical correction factor α (which is computed for each flow case) through the 

following defining relationship:                                                          

                                                     ṁInc|om(t) = 𝛼 ∙ ṁCFD−I|om(t)                                      (1) 

Furthermore it is proposed that for each pulsatile flow realization, the unknown α 

in Eq. (1) be obtained from the requirement that the long-term time-averaged values of 

the resulting mean mass flow rate ṁInc|om(t) must equal the experimentally measured 

(by a representative flow meter such as those shown in Fig. 8) value ṁFC.  
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For this, time-average ṁ� CFD−I|om =  1
T ∫ ṁCFD−I|om(t) ∙ dtt0+T

t0
 is obtained from the 

computationally known time-varying mass flow rate ṁCFD−I|om(t) values, by choosing 

averaging durations T >> 1/fP in a way that it makes the averages independent of the 

choice of T and t0. Next it is required that the time-average  

ṁ� Inc|om =  1
T ∫ ṁInc|om(t)  ∙ dtt0+T

t0
 satisfies:                                                                    

                                                                 ṁ� Inc|om =  ṁFC                                                (2) 

When the long time average of Eq. (1) itself is taken and the requirement in Eq. (2) is 

enforced, one obtains the value of α as: 

α =  ṁFC
ṁCFD−I|om

                    (3) 

 

3.3 Incompressible and Isothermal Model Approach 

It is first assumed that acoustic waves and their reflections, caused by 

fluctuations in the absolute and differential pressures (pU(t) and ∆pom(t) in Fig. 8), lead 

to density and time-rate of density variations whose effects within the orifice-meter can 

Figure 8: Representative Orifice Meter with instruments 
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be ignored. Then, assuming ρ ≅ ρ0, the instantaneous inlet pressure at point U (x = 0 in 

Fig. 8) is set to be the measured pressure-difference ∆pom(t), and the exit pressure at 

point D (x = lom in Fig. 8) is set to be zero at all times. In addition, steady no-slip velocity 

boundary conditions are assumed to hold at the walls. Besides constancy of density, it is 

reasonable to assume that temperature variations (if any) are not large enough to 

significantly affect molecular or eddy viscosity from their respective isothermal (mean 

flow temperature) values. Hence the isothermal assumption will work even if there are 

small temperature variations in the flow field. Therefore, a converged CFD solution (on 

FLUENT) is obtained for the unsteady, incompressible, turbulent, and isothermal flow 

problem described below. For the aforementioned geometry and boundary conditions, 

the CFD approach solves for velocity field v and computational pressure field pCFD at any 

time t ≥ 0 and any location 𝐱�⃗  within the specified orifice-meter geometry of Fig. 8. The 

following governing equations [12-15] are solved: 

div(𝜌0𝐯) = 0 

and  

                          𝜌0 �∂𝐯
∂t

+ (𝐯 ∙ ∇𝐯)� = −∇pCFD + 𝜌0𝐠 + div[𝜇t{∇𝐯 + ∇𝐯T}],                 (4) 

where µt is the eddy viscosity (for isothermal turbulent flows) in the standard k − ε model 

[14-17]. For the Reynolds Stress Model, the term “div[𝜇t{∇𝐯 + ∇𝐯T}]” on the right side of 

the momentum balance in Eq. (4) is replaced by appropriate terms [12-15]. The initial 

conditions (at t = -ε for some ε > 0) for solving Eq. (4) come from the solution of the 

steady problem (without pressure boundary condition fluctuations over the mean ∆p����om), 

and unsteady ∆pom(t) values are imposed only for t > -ε . The fluctuations present in the 

experimental ∆pom(t)̅ values are available for a much larger time-interval (say -∞ < t ̅< ∞ 

or -t1 ≤ t ̅ ≤ t2 where t1 > 0 and t2 > 0). To begin with, impositions of superposed 
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fluctuations in the initial conditions of the CFD problem are implemented for several 

values of t1 over times t ≡ t ̅≥ -t1. These computations establish that different solutions 

arising from initial conditions set at several different values of t = -t1 all agree with one 

another at t ≥ 0 provided the largest value of “-t1” (or smallest value of t1) is no larger 

than “-ε.” It is this computational solution’s results (for which initial conditions were set at 

t = -ε ) that are reported here for the initial condition independent zone of t ≥ 0.  This is 

because the interest lies only in the longer term solution behavior which is independent 

of the choice of initial conditions. Time-averaged variables (over time scales T - where 

time-duration T >> 1/fP > 1/fF is larger than characteristic times associated with the 

primary pulsation frequency and its relevant harmonics) and time-varying pulsatile flow 

variables are of interest in the frequency spectrum f < fF. The interaction of frequencies 

present in the differential pressure boundary conditions with turbulent fluctuations (of all 

frequencies) is automatically taken care of by the turbulence model employed in the 

CFD solution. Accordingly if one eliminates frequencies f >> fF by suitably filtering the 

experimentally obtained ∆pom(t) signal employed in the inlet pressure boundary 

condition, no significant impact is expected on the CFD solution in the frequency 

spectrum f < fF. 

 

3.3.1 Turbulence Model Independence Testing for Empirically Corrected Time-Varying 

Mass Flow Rates 

The incompressible mass flow rate values are expected to be quantitatively 

reasonable (with minimal dependence on the choice of turbulence model if the choice is 

within a well-tested class: such as the standard k-ε model, RSM model, etc. described in 

[12-15]) and correct with regard to the qualitative nature of the predicted time variations 

of the flow rate ṁCFD−I|om(t). This paper, however, proposes that even small model-
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dependent quantitative variations be removed and model independent values of 

ṁCFD−I|om(t), denoted as ṁInc|om(t), be obtained with the help of an empirical correction 

factor α, as previously shown in Section 3.2. 

In order to verify the turbulence-model independence feature of the empirical 

correction approach described in Section 3.2, it is noted that the CFD procedure 

(described in Section 3.1) used to obtain the mass flow rate ṁCFD−I|OM1(t) values in Fig. 

9 employ the standard 𝑘 − 𝜀 turbulence model. This choice of turbulence model is 

termed Mod-1 and the associated mass flow rate ṁCFD−I|OM1(t) values and its 

empirically corrected value (through Eq. (1)) are respectively denoted as 

ṁCFD−I|OM1−Mod 1(t) and ṁInc|OM1−Mod 1(t).  

 

 

Similarly, for the same pressure-difference ∆pOM1(t) in Fig. 6, solution of Eq. (4) under 

the second turbulence-model choice, namely Reynolds Stress Model (RSM) of [14] 

termed Mod-2 leads to prediction of associated mass flow rate ṁCFD−I|OM1−Mod 2(t) 

values. These ṁCFD−I|OM1−Mod 1(t) and ṁCFD−I|OM1−Mod 2(t) values are shown in Fig. 10. 

 

 

 

Figure 9: The representative solution associated with the 
pressure difference in Fig. 6 
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The graphical representation of these two mass flow rates in Figure 11 shows the 

empirically corrected values of ṁCFD−I|OM1−Mod 1(t), ṁCFD−I|OM1−Mod 2(t), and 

Figure 10: Plots of mass flow rate for two different 
turbulence models (Mod-1 and Mod-2) of run 3 in 

Table 4 

Figure 11: For the representative values of 𝐦̇𝐂𝐂𝐂−𝐈|𝐎𝐎𝐎(𝐭) and 𝐦̇𝐂𝐅𝐃−𝐈|𝐎𝐎𝐎(𝐭) in Fig. 9, 
the Figure above shows the respective empirically corrected values 𝐦̇𝐈𝐈𝐈|𝐎𝐎𝐎(𝐭) =
𝜶 ∙ 𝐦̇𝐂𝐂𝐂−𝐈|𝐎𝐎𝐎(𝐭) and 𝐦̇𝐈𝐈𝐈|𝐎𝐎𝐎(𝐭) = 𝜶 ∙ 𝐦̇𝐂𝐂𝐂−𝐈|𝐎𝐎𝐎(𝐭) for turbulence model Mod 1. In 

addition, the figure also shows 𝐦̇𝐈𝐈𝐈|𝐎𝐎𝐎(𝐭) for turbulence model Mod 2. 
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ṁCFD−I|OM2(t) values. These are respectively denoted as ṁInc|OM1−Mod1(t), 

ṁInc|OM1−Mod2(t), and ṁInc|OM2−Mod1(t) in Fig. 11 and it is clear that indeed 

ṁInc|OM1−Mod1(t) and ṁInc|OM1−Mod2(t) values are quite close to one another and thus 

independent (within errors that exist in obtaining α) of the choice of turbulence models. 

Unless otherwise stated, it should be assumed that all other incompressible CFD 

solutions employ the standard 𝑘 − 𝜀 turbulence model (i.e. Mod-1). This means that 

ṁCFD−I|OM1(t) is the same as ṁCFD−I|OM1−Mod 1(t). 

 

3.4 Transient Compressibility Effects 

(Common between this thesis and [1]) 

Under low instantaneous or time-averaged Mach number conditions in a duct, it 

is well known (see [14]) that the local gas density ρ as a function of position x (see 𝐱�⃑  in 

Fig. 8) and time t is adequately represented by a reference constant density ρ0 through: 

                                             𝜌(𝐱, t) = 𝜌0 + 𝜌′(𝐱, t) = 𝜌0[1 + 𝜌′(𝐱,t)
𝜌0

] ≅ 𝜌0                     (5) 

because �𝜌′(𝐱,t)
𝜌0

� ≪ 1. Over the unsteady time-scale of interest (∆tc ~ 1/ fP – where fP is 

the predominant externally imposed frequency), the transient compressibility effects may 

still be significant because of the importance of the ∂𝜌/ ∂t term. A full compressible 

model solution approach can account for the transient compressibility effects and is 

briefly discussed in section 3.4.2 while being further expanded on in [1].  

 In Narain et al. [2], it was proposed that an approximate modeling approach that 

is based on the assumption that the incompressible model-based mass flow rate 

obtained in the earlier section can be corrected because the acoustics-induced ∂𝜌/ ∂t 

term is primarily due to the time-varying pressure variations p(x, t) for which a very good 
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estimate is available through p(x, t) ≡ pCFD(x, t) + {pU(t) - ∆pom(t)} which describes the 

physical pressure field and the incompressible pCFD(x, t) values that are part of the 

solution obtained by the approach outlined in [2]. Therefore once this ∂𝜌/ ∂t term effect 

on the overall mass balance (or continuity equation) is assessed, one can correct the 

incompressible model mass flow rate values obtained in the earlier section.  

 To consider the effect of the ∂𝜌/ ∂t term on the overall mass balance (or 

continuity equation), note that the mass balance equation for the orifice meter (written for 

the fixed interior volume V0  enclosed by the orifice meter between cross-sections U and 

D in Fig. 1) is: 

                                     ṁstored(t) ≡ ∫ ∂𝜌
∂t

∙ dvol = ṁU(t) − ṁD(t)V0
                        (6) 

where ṁU(t) ≡ ∫ ρU(𝐯 ∙ 𝐢) ∙ 𝑑𝑎A0
≅ 𝜌0 ∙ QU(t) and ṁD(t) ≡ ∫ ρD(−𝐯 ∙ 𝐢) ∙ 𝑑𝑎A0

≅ 𝜌0 ∙ QD(t) 

are time-varying values of cross-sectional mass flow rates (with QU(t) and QD(t) denoting 

cross-sectional volume flow rates) associated with locations U and D in Fig. 8. The 

simplifying expressions for ṁU(t) ≅ 𝜌0 ∙ QU(t) and ṁD(t) ≅ 𝜌0 ∙ QD(t) in Eq. (6) are not 

needed but they are valid nevertheless because of the valid approximation in Eq. (5). 

Note that, in Fig. 8, the cross-section at D is at a distance x = lom downstream of the 

cross-section at U and that the cross-sectional areas at both these locations are the 

same and denoted as A0. Also, observe that in Fig. 1, the scalar distance x associated 

with a point P is the axial projection of the vector x which locates it. Under low Mach 

number pulsatile flow conditions, flows will exhibit transient compressibility effects if the 

left side of Eq. (6) is significant (over ct* t t * t≤ ≤ +∆ for any t* and ∆tc ~ 1/ fP) with respect 

to one of the cross-sectional mass flow rates on the right side of Eq. (6). Let the 

reference constant density ρ0 be chosen to be one which is thermodynamically related to 

the steady time-averaged (as well as cross-sectionally averaged) values of pressure 
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pU(t), denoted as p�U ≡ p0, and temperature TU(t), denoted as T�U ≡ T0. These mean 

values of pressure and temperature are associated with the cross-section location U in 

Fig. 8. That is (see [14]): 

                                                     𝜌0 = 𝜌�0(p0, T0) = 𝜌�0(p0, s0),                                      (7) 

where 𝜌�0 and 𝜌�0 are equilibrium thermodynamic equations of state and s0 = s0(p0, T0) is 

the specific entropy associated with gas phase pressure p0 and temperature T0. The 

difference between physical pressure p and reference pressure p0 is termed: 

                                                     poff
′ (𝐱, t) ≡ p(𝐱, t) − p0,                                             (8) 

and it is noted that, despite mechanically non-equilibrium flow conditions at the macro-

scale, the flow conditions typically satisfy �𝜌′(𝐱,t)
𝜌0

� ≪ 1 and �poff
′ (𝐱,t)

p0
� ≪ 1 at all times. 

Therefore the principle of local equilibrium thermodynamics continues to hold at the fluid 

element level. That is, at any point x and time t, the local density 𝜌(𝐱, t) = 𝜌0 + 𝜌′(𝐱, t) 

continues to relate to local absolute pressure p(𝐱, t) ≡ p0 + poff
′ (𝐱, t) through the 

thermodynamic relationship in Eq. (7). Also, approximate constancy of the local entropy 

s(x,t) ≡ s0 holds. This is a well-known [14] approximation for the nearly adiabatic 

conditions in the interior gas flow regions arising from low gas-phase thermal 

conductivity and insignificant heat flow rate through the thermally insulated walls of the 

orifice meter. Therefore, the following thermodynamic relation holds: 

                                      𝜌(𝐱, t) = 𝜌0 + 𝜌′(𝐱, t) = 𝜌�0(p0 + poff
′ (𝐱, t), s0).                  (9) 

Because 𝜌′ is small with respect to 𝜌0 and poff
′  is small with respect to p0, one term 

Taylor approximation of Eq. (9) implies: 

                                  𝜌′(𝐱, t) ≅ {∂𝜌�0(p0, s0)/ ∂p0} ∙ poff
′ (𝐱, t) ≡ � 1

c0
2� poff

′ (𝐱, t),                (10) 

where c0 ≡ �∂p0(𝜌0, s0) ∂𝜌0⁄  is the speed of sound [14] at the reference thermodynamic 

condition. For FC-72 vapor and pulsatile flow conditions of interest in Table 4, it is known 
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that c0 is in the range of 92.7 ≤ c0 ≤ 93.2 m/s from a superheated properties table for 

FC-72 (provided by the fluid’s manufacturer 3M Corp.). 

Taking the time derivative of Eq. (10), one obtains: 

                                               ∂𝜌′

∂t
(𝐱, t) = � 1

c0
2� ∙ ∂poff

′

∂t
(𝐱, t),                              (11) 

Substituting the expression in Eq. (11) for the integrand on the left side of Eq. (6), one 

obtains: 

                                     ṁstored(t)≡ ∫ ∂ρ
∂t

∙dvol= 1
c0

2V0
∙ d

dt
{I(t)},                                            (12) 

where 

                                                      I(t)≡ ∫ poff
′ (x,t)∙dvolV0

.                                              (13) 

Introducing the notation pU(t) ≡ p�U + pU
′ (t), and recalling p0 ≡ p�U and p(x,t) = pCFD(x,t) + 

{pU(t) - ∆pom(t)} along with Eq. (6), that poff
′ (𝐱, t) = pCFD(x,t) + {pU

′ (t) - ∆pom(t)}. Thus 

poff
′ (𝐱, t) is known for each experimental run in Tables 4-5. It is also clear that the non-

dimensional values of poff
′ (𝐱, t), defined as “nd-poff

′ (x,t),” through the relation: 

                                        nd-poff
′ (x,t) ≡ pU

′ (t)−poff
′ (𝐱,t)

∆pom(t) = 1 − pCFD(x,t)
∆pom(t)                                  (14) 

will make, for all experimental runs, nd-poff
′ (x,t) = 0 for x on the cross-section U (i.e. x = 

0 in Fig. 8) and nd-poff
' (x,t) = 1 for x on the cross-section D (i.e. x = lom in Fig. 8). This 

makes, as one considers different flows in different experimental runs of Tables 4-5, 

changes in nd-poff
′ (x,t) values less significant than the changes in poff

′ (𝐱, t) values. If 

care is taken to avoid zeroes of ∆pom(t) while evaluating nd-poff
′ (x,t) in Eq. (14), it is 

preferable to replace the use of poff
′ (𝐱, t) by nd-poff

′ (x,t) for evaluation of the integral I(t) 

in Eq. (13). Introducing the non-dimensional integral: 

                                               NI(t)≡ ( 1
V0

) ∙ ∫ nd-poff
′ (x,t)∙dvolV0

                                      (15) 
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and using it to rewrite the integral in Eq. (13), one obtains: 

                                                  I(t)≡�pU
′ (t)-∆pom(t)∙NI(t)�∙V0.                                      (16) 

A sample plot of the computationally obtained NI(t) values for the representative 

run 3 in Tables 4-5 is shown in [1]. It is found that for all cases in Tables 4-5, 

NI(t) ≅ NI ���� ≅ 0.5 - with small case-dependent variations in NI ���� values (typically between 

0.48 to 0.52) among different cases. This is because of a rather universal nature of the 

cross-sectional average values of nd-poff
′ (x,t) profile. Note that 0.5 is the value 

associated with the right hand side of Eq. (15) if the assumption of linear variation, 

between x = 0 and x = lom in Fig. 8, is assumed for the cross-sectional average values of 

nd-poff
′ -av(x,t). 

Using Eq. (16) in Eq. (12), one obtains the following useful expression for 

ṁstored(t) in Eqs. (6) and (12): 

                                           ṁstored(t)≡ṁstored-AP(t)+ṁstored-DP(t),                                 (17) 

where  

                                                   ṁstored-AP(t) ≡ d
dt

{pU
′ (t)}∙ V0

c0
2  ,                                        (18) 

and 

                                            ṁstored-DP(t) ≡ −  d
dt

{∆pom(t)∙NI(t)}∙ V0
c0

2  .                              (19) 

The ṁstored-AP contribution to ṁstored in Eq. (17) represents the acoustic effects 

associated with uniform absolute pressure fluctuations pU
′ (t) ≡ pU(t) − p�U over 0 ≤ x ≤ 

lom in Fig. 8. This contribution is easily computed from the ṁstored-AP expression in Eq. 

(18). Similarly the ṁstored-DP contribution to ṁstored in Eq. (17) is given by the right side of 

Eq. (19). This expression represents the acoustic effects associated with the non-

uniform values of absolute pressure variations represented by the pressure-difference 
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“p(𝐱, t) − pU(t)” for all x within the orifice-meter (i.e. over 0 ≤ x ≤ lom). These effects also 

scale with volume V0 in Eqs. (16-19), and by extension Eq. (12). 

 

 

Table 4: Orifice-meter OM1 and orifice-meter OM2 Input Data 

    OM1 Input Data OM2 Input Data 

 fp 𝑚̇�𝐹𝐶−1 𝑚̇�𝐹𝐶−2 𝑝̅𝐿 𝑎𝑝ʹ−𝐿 ∆𝑝����𝑂𝑀1 𝑎∆𝑝−𝑂𝑀1 𝑝̅𝑀 𝑎𝑝ʹ−𝑀 ∆𝑝����𝑂𝑀2 𝑎∆𝑝−𝑂𝑀2 
Run 

# 
Hz g/s g/s kPa Pa Pa Pa kPa Pa Pa Pa 

1 3.8 1.0519 1.0270 142.0 1806 263 364.1 142.2 1625 78 100.5 

2 3.8 1.0514 1.0271 141.9 2769 364 668.7 142.0 2675 100 159.5 

3 10 1.0501 1.0270 142.3 716 235 430.6 142.4 549 75 211.9 

4 9.8 1.0091 1.0283 143.4 1152 360 749.8 143.4 536 109 329.0 

5 3.8 0.4637 0.4070 147.8 1305 108 167.8 148.1 1333 23 48.9 

6 3.8 0.4849 0.4075 146.1 1287 75 144.0 146.4 1323 20 45.5 

7 10 0.4869 0.4112 147.7 909 159 493.2 148.0 810 56 241.3 

8 10 0.5174 0.4125 145.5 1395 223 897.2 145.7 1113 72 360.0 

 

Table 5: Orifice-meter OM1 and orifice-meter OM2 Output Data 

  OM1 Output Data OM2 Output Data  

 fp 𝑎𝑚̇−𝐼𝑛𝑐 𝑎𝑚̇−𝑀
= 𝑎𝑚−𝐿̇  

Difference from 
Incompressible 𝑎𝑚̇−𝐼𝑛𝑐 𝑎𝑚̇−𝑂 = 𝑎𝑚−𝑁̇  

Difference 
from 

Incompressible 
 

Run 
# Hz g/s g/s % g/s g/s % % 

1 3.8 0.8804 0.9526 8.20 0.6785 0.8427 24.20 -11.54 

2 3.8 1.6152 1.7238 6.72 1.2231 1.3371 9.32 -22.43 

3 10 1.7322 1.8062 4.27 1.1961 1.2856 7.48 -28.82 

4 9.8 3.0877 3.2076 3.88 2.7399 2.8206 2.95 -12.07 

5 3.8 0.6458 0.6948 7.59 0.4997 0.5767 15.41 -17.00 

6 3.8 0.5459 0.5988 9.69 0.4457 0.5283 18.53 -11.77 

7 10 1.7881 1.8853 5.44 1.2325 1.4245 15.58 -24.44 

8 10 3.0745 3.2217 4.79 2.7428 2.8947 5.54 -10.15 

 

3.4.1 Cross-section Specific Mass Flow Rates Obtained from Transient Compressibility 

Corrections on the Incompressible Model Mass Flow Rate 

It should be noted that the compressibility estimate in Eq. (6) is not sufficient to 

yield the specific cross-sectional mass flow rates ṁU(t) and ṁD(t). To obtain cross-
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section specific mass flow rates in a gas line, one needs to obtain the actual mass flow 

for at least one cross-section in a gas line. 

 In general, one cannot obtain either ṁU(t) or ṁD(t) by the measurements in Fig. 

8 and the incompressible mass flow rate simulation approach described earlier. However 

cross-section specific values can be obtained by the compressible solution approach 

described in Section 3.4.2. However, the devices in Fig. 2, Fig. 3, and Fig. 8 are 

symmetric with respect to the central cross-section in the flow direction. For these cases, 

an approach which uses the incompressible model’s simulation results to obtain the 

estimates for the actual time-varying mass flow rates at the cross-sections where orifice-

meter pressure taps are located (e.g. U and D in Fig. 8) was presented in [2]. These 

mass flow rate values at U and D in Fig. 8 should account for acoustic wave effects’ 

contributions to ṁstored and are respectively denoted as ṁU(t) and ṁD(t). To obtain 

them, the value of ṁInc|om(t) obtained in Section 3.2 is used to model the following mass 

flow rate correction terms: 

∆ṁU(t) ≡  ṁU(t) − ṁInc|om(t) 

and        

                                               ∆ṁD(t) ≡  ṁD(t) − ṁInc|om(t).                                        (20) 

This modeling approach consists of considering ṁstored−AP and ṁstored−DP contributions 

in Eq. (17) to be due to a superposition of two separate physical mechanisms by which 

acoustic effects contribute to the ∆ṁU(t) and ∆ṁD(t) terms in Eq. (20).  

 The first physical effect is associated with homogeneous pressure field 

fluctuations pU
′ (t) in the symmetric orifice-meter. This causes a homogeneous density 

change in a way that, when ṁstored−AP > 0 in Eq. (18), the density increases and sets up 

two equal mass flow rates (ṁstored−AP/2) that are drawn in through the two cross-

sections U and D of the orifice-meter in Fig. 8. The associated mass flow rates’ 
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contributions to ∆ṁU(t) and ∆ṁD(t) are respectively termed ∆ṁU−AP(t) and ∆ṁD−AP(t). 

Noting the sign convention for ṁU(t) and ṁD(t) are such that each are considered 

positive when the flow is from U to D, the above description implies the following 

expressions: 

∆ṁU−AP(t) ≡  ṁstored−AP/2 

and    

                                                 ∆ṁD−AP(t) ≡  − ṁstored−AP/2                                       (21) 

 

 The second physical effect is associated with the fact that absolute pressure 

fluctuations vary with distance x (see Fig. 8). Mass flow rate at any interior location x can 

account for these effects by considering the stored mass contributions and a 

modification of Eq. (6) for a mass balance between x = 0 and an arbitrary x ≤ lom in Fig. 

8.  Since absolute pressure fluctuation effects associated with pU(t) are already 

accounted for, these effects are associated with time varying components of pressure-

difference fluctuations {p(𝐱, t) − pU(t)} ≡ −∆pom(t) ∙ nd-poff
′ (x,t). The contributions of 

these pressure-difference fluctuations to stored mass flow rate values between x = 0 and 

an arbitrary x ≤ lom in Fig. 8 is termed ∆ṁx−DP(t). The ∆ṁx−DP(t)  for x = 0 is termed 

∆ṁU−DP(t) and for x = lom is termed ∆ṁD−DP(t). Since the volume between x = 0 and an 

arbitrary x ≤ lom in Fig. 8 tends to zero as x tends to zero, the contribution to ∆ṁU−DP(t) 

associated with these pressure-difference fluctuations is zero. Similarly the contribution 

of these fluctuations to  ∆ṁD−DP(t) between U and D in Fig. 8 is the entire ṁstored-DP(t) 

term in Eq. (23). Therefore the second acoustic effect is modeled through the following 

expressions: 

∆ṁU−DP(t) ≡  0 
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and 

                                              ∆ṁD−DP(t) ≡  −ṁstored−DP(t).                                         (22) 

 

The hypothesis that concurrent superposition of the two above described acoustic 

effects contributes to the ∆ṁU(t) and ∆ṁD(t) terms in Eq. (20) yields the compressibility 

corrected mass flow rates as: 

                                           ṁU(t) ≡  ṁInc|om(t) + ∆ṁU(t),                                            (23) 

where ∆ṁU(t) ≡ {∆ṁU−AP(t) + ∆ṁU−DP(t)} = 1
2

∙ d
dt

{pU
′ (t)}∙ V0

c0
2 and 

                                         ṁD(t) ≡  ṁInc|om(t) + ∆ṁD(t),                                              (24) 

where ∆ṁD(t) ≡ {∆ṁD−AP(t) + ∆ṁD−DP(t)} = − 1
2

∙ d
dt

{pU
′ (t)}∙ V0

c0
2 +  d

dt
{∆pom(t)∙NI(t)}∙ V0

c0
2.         

 The right-hand sides of Eqs. (23)-(24) are easily computed along with ṁInc|om(t) 

values obtained in Section 3.2. With U and D in Fig. 8 corresponding to cross-sections L 

and M for OM1 in Fig. 2, the above procedure yields cross-section specific mass flow 

rates ṁL(t) and ṁM(t). For the representative run 4 in Tables 4-5, the absolute pressure 

fluctuations pL
′ (t) ≡ pL(t) − p�L and pM

′ (t) ≡ pL
′ (t) − ∆pOM1(t) are as in Fig. 12 and their 

FFT are shown in Fig. 13. For representative run 6 in Tables 4-5, the time-varying values 

of  ṁL(t) and ṁM(t) shown in Fig. 14 are found to be reasonably close to one another 

(within 10 %) and to ṁInc|OM1(t). For all the runs in Tables 4-5, ṁL(t) and ṁM(t) are 

close to one another and the reasons are discussed in Section 3.4.3. 
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Figure 12: The time-varying values of pressure 
fluctuation at cross-sections located by point L 

(𝐂𝐋
′ (𝐭) ≡ pL(t) − 𝐂�𝐋) and M (𝐂𝐎

′ (𝐭) ≡ 𝐂𝐋
′ (t) − ∆𝐂𝐎𝐎𝐎(𝐭)). 

These data are for run 4 of Tables 4-5. 

Figure 13: The FFT of 𝐂𝐋
′ (𝐭) and 𝐂𝐎

′ (𝐭) in Fig 12. 
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 For now, it should be observed that though the above procedure for OM1 is also 

applicable to OM2, the absence of experimentally obtained values of pressure-difference 

between points M and N in Fig. 1 (or the absolute pressure measurements at point N) 

makes it difficult to obtain compressibility corrected values of mass flow rate ṁN(t) from 

the known values of ṁInc|OM2(t). The significant differences observed between the 

∆pOM1(t) and ∆pOM2(t) curves in Fig. 6 and in the associated ṁInc|OM1(t) and 

ṁInc|OM2(t) curves in Fig. 11 are discussed in Section 3.4. 

For the properly instrumented orifice-meter OM1, the question remains as to how 

good is the proposed modeling approach for obtaining the cross-section dependent 

predictions for the mass flow rates ṁL(t) and ṁM(t). This can be assessed by at least 

two different indirect approaches described in Sections 3.4.2 and 3.4.3. A direct 

verification method is outlined in Appendix A-2.  

 

3.4.2 Compressible Flow Simulations as an Indirect Modeling Verification Approach 

This result is taken from [1] and is presented here to show significance of my 

incompressible results. Instead of obtaining corrections on the CFD solution of the 

Figure 14: The incompressible mass flow rate values of 
𝐦̇𝐈𝐈𝐈|𝐎𝐎𝐎(𝐭) for run 6 and its compressibility corrected 
values 𝐦̇𝐋(𝐭) and 𝐦̇𝐎(𝐭), respectively associated with 

points L and M in Fig. 2, are shown. 
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incompressible model problem in Eq. (4), one can also directly obtain the acoustic 

effects on the cross-sectional mass flow rate ṁ(x, t) at any location 0≤ x≤ lom in Fig.8 (or 

Fig. 2). For this, one could computationally solve the compressible CFD model problems 

described below for the specific orifice meter in Fig. 2. The new estimates of 

ṁL−Comp(t) ≡  ṁ(x = 0, t) and ṁM−Comp(t) ≡  ṁ(x = lOM1, t) can be compared with ṁL(t) 

and ṁM(t) values obtained by the earlier approach in Section 3.4.1. This verification 

approach briefly described here and its full results are available in [1]. 

 Fig. 15 shows a comparison between ṁstored(t) values obtained from this 

compressible flow CFD model and the ones obtained from the earlier compressibility 

correction theory on the incompressible CFD model (which has ṁstored(t) = 0). The 

excellent agreement between the two independent methods verifies the proposed 

compressibility correction theory for the incompressible CFD model. However, the order 

of magnitude of the ṁstored(t) term for the orifice-meter volumes are found to be typically 

small compared to the order of magnitude of the corresponding  ṁInc|om(t) term. This is 

why, in Fig. 16, principal fluctuations in the mass flow rate ṁM−Comp(t) obtained by the 

above compressible flow simulations closely agrees with both ṁInc|om(t) values and the 

values of ṁM(t) obtained from the compressibility correction approach of Section 3.4.1. 

Such agreements are obtained for other cases as well [1]. These results point to a 

remarkable success and the value of the easier to implement method (for symmetric 

geometry) of Section 3.4.1. 
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3.4.3 Alternative Indirect Modeling Verification Approach 

From the approach of Section 3.4.1 for obtaining time-varying mass flow rate at a 

specific cross-section, say ṁM(t) at cross-section M in Fig. 1, one can use the proposed 

modeling principles to obtain an independent estimate for the time-varying mass flow 

Figure 15: For run 3 in Tables 4-5, the comparison between 
𝐦̇𝐬𝐬𝐬𝐬𝐬𝐬(𝐭) values obtained from the compressible flow CFD 

model and their values obtained from the proposed 
compressibility correction theory (Eq. (17)) for the 

incompressible CFD model (which has 𝐦̇𝐬𝐬𝐬𝐬𝐞𝐞(𝐭) = 𝟎). 

Figure 16: This plot shows, for run 3 in Tables 4-5, the 
comparison between mass flow rate 𝐦̇𝐌−𝐂𝐂𝐂𝐂(𝐭) obtained 

from the compressible flow CFD model and 𝐦̇𝐌(𝐭) obtained 
from a compressibility correction on the 𝐦̇𝐈𝐈𝐈|𝐎𝐎𝐎(𝐭) values – 

which are obtained from an incompressible CFD model. 
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rate at any other cross-section location (say point N in Fig. 3 – the inlet of orifice meter 

OM2 in Fig. 1). If one uses suitable variations of Eqs. (6), (12), and (16), one obtains:  

          ṁN(t)=ṁM(t)- 1
c0

2 ∫ ∂poff
' (x,t)
∂t

∙dvolCVf|MN
=ṁM(t)- 1

c0
2 ∙ d

dt
[pM

' (t)-NIMN(t)∙∆pMN(t)]∙VMN,   (25) 

where V0, ∆pom(t), and I(t) have been respectively replaced by the volume VMN, 

pressure-difference ∆pMN(t), and integral IMN(t) that relate to their values for the region 

between points M and N in Fig. 1. 

In principle, Eq. (25) above yields ṁN(t)  as a second independent estimate of 

ṁN(t) obtained from ṁM(t) – which is obtained by consideration of OM1 and the method 

of Section 3.4.1. Because of the absence of experimentally obtained values of pressure-

difference between points M and N in Fig. 6 and the absolute pressure measurements at 

point N in Fig. 6, the above verification is not implemented here. Instead a new 

suggested verification approach is discussed in the following section. 

 

3.4.4 An Indirect Modeling Verification Approach for the New Inlet Geometry 

The new indirect verification approach makes use of a new inlet geometry. The 

geometry of the orifice meter has been kept the same as OM1 in the previous reported 

results [2], with the only change being in the reduction of tube lengths between the 

pressure tap locations and the instruments diaphragms. This change should allow for a 

more accurate pressure difference reading and the reduction of acoustic effects in these 

lines. In addition, now directly downstream of the orifice meter is the nozzle section. This 

section consists of a small straight section, followed by a reduction section, then another 

straight section. Both of these geometries are shown together in Figures 17.  
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During the experimental runs, the differential pressures, ∆LM(t) and ∆MN(t) in Fig. 

18 are to be measured. But before the first experiments were conducted, the new 

geometry was simulated in Fluent and for a representative pulsatile inlet mass flow rate 

it was found that the pressures remained approximately uniform at the cross-sections 

Figure 17: The geometry for the two devices that are 
merged together, with proper instruments, and placed 

between points L and O of Fig. 1. 

Figure 18: Pressure difference plot for new inlet geometry 
and a primary driving frequency of 3Hz.  
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where the pressure taps were located. This was again verified with experimental 

gathered pressure difference data.  

Both of the pressure transducers shared a common port at the point L in Fig. 17. 

Thus, for the range of mass flow rates and frequencies/amplitudes considered here, it is 

said that PL(t), PM(t)=PN(t), and PO(t) are approximately uniform across the cross-section. 

The below outlines the proposed approach for the indirect verification on the new inlet 

geometry: 

(I) First apply the incompressible approach and compressibility correction as 

described earlier in Section 3.4.1 to get:  

                                    𝑚̇𝐿(𝑡) ≅ 𝑚̇𝐼𝑁𝐶|𝑂𝑀(𝑡) + 𝛥𝑚̇𝐿(𝑡)                                        (26) 

                                    𝑚̇𝑀(𝑡) ≅ 𝑚̇𝐼𝑁𝐶|𝑁𝑜𝑧𝑧𝑙𝑒(𝑡) + 𝛥𝑚̇𝑁(𝑡)                                  (27)    

  (II) Use full geometry and the methodology of Section 3.4 between points L and 

O in Fig. 17 to obtain: 

                                                𝑚̇𝑂(𝑡) = −𝑚̇𝑆𝑡𝑜𝑟𝑒𝑑−𝐿𝑂(𝑡) + 𝑚̇𝐿(𝑡)                                   (28) 

 (III) Use Nozzle geometry between points N and O in Fig. 17 to obtain: 

                                                𝑚̇𝑁(𝑡) ≡ 𝑚̇𝑂(𝑡) + 𝑚̇𝑆𝑡𝑜𝑟𝑒𝑑−𝑁𝑂(𝑡)                                     (29) 

Because the points M and N are common between the exit geometry of the orifice meter 

and the inlet of the nozzle, the two points are effectively merged together as shown in 

Fig. 17. Their predicted mass flow rates should then closely align.   

 Further results and discussions of the initial inlet geometry tests are reported in 

Appendix A-1.  
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4. Results and Discussion 

In the previous sections, the detailed methodology for obtaining the time-varying 

mass flow rate at a specific cross-section in the gas flow of Fig. 1 was defined.  

This thesis shows under incompressible modeling, one gets reasonably accurate 

(with proper grid and time independence) time vary mass flow rates. Despite this when, 

for the same run (as in Fig. 11), incompressible simulations mass flow rates for OM1 and 

OM2 are done, the results show a clear difference. This means that the compressibility 

effects are important between OM1 and OM2.  

Upon review of the contribution from Nikhil Ajotikar [16], errors were found in the 

implementation of the CFD modeling. The work carried out by myself here assessed and 

corrected these errors, along with refining the proposed algorithm of finding the time 

varying mass flow rate. In addition, a model and indirect verification approach was also 

completed for initial runs of a new inlet geometry. This approach requires the solution 

from the incompressible and unsteady gas flow problems modeled by Eq. (4). The 

experimental approach described for the flow-loop in Fig. 1 provided the dynamic 

differential and absolute pressure data, ∆pOM(t) and ∆pNozzle(t), which are concurrently 

obtained for the orifice meter and nozzle (see Fig. 17) and used in the solution of Eq. (4). 

This data was then used to obtain the incompressible mass flow rates whose 

representative behaviors are shown in Appendix A-1. Forthcoming results (discussed in 

Appendix A-1) from this experiment are expected to show closer agreement between the 

mass flow rates across the orifice meter and nozzle.  
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5. Conclusions and Future Work 

5.1 Uses in Future Experimental Research Work and Industry 

 The results and methodology developed here and in [2] will be used in up and 

coming research where the accurate measurement of the mass flow rate at the inlet of 

the test section is extremely important. In addition, this procedure may also be used 

within the nature gas and other process industries where accurate mass flow rate 

measurements are important for process controls and possible enhancements in heat 

exchanger surfaces. By measuring and controlling the time-varying mass flow rate on 

condenser surfaces it is possible to achieve great enhancement as shown in [8]. This 

device can be used for the automotive industry with gas flows in and out of an internal 

combustion engine, where accurate modeling of the reactions occurring (either within the 

engine itself or in the exhaust downstream, i.e. catalytic converter) is needed. 

 

5.2 Future Corrections and Verification 

 Future work includes pinpointing the source of discrepancies show in the results 

of Appendix A-1. Possible causes such as liquid or other blockages in the lines should 

first be examined. If this is not the case for the mass flow rate discrepancies, other 

possibilities (such as: instrumentation errors or acoustic effects from the inlet of the test 

section) should next be investigated. The correction of these errors is expected to bring 

the predicted mean mass flow rates in line with the values measured at the Coriolis 

meter. In addition, if higher accuracy on the predicted mass flow rate from this orifice 

device is desired, a direct experimental verification approach is also available for 

reference in the Appendix. It is possible to conduct this verification simultaneously as the 

above experiment conducted here. A final further investigation should include a full 

thermal modeling of the inlet assembly. During the runs recorded here (and in previous 
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results) it was noted that vapor temperatures downstream of the orifice plate were 

significantly higher (6 - 8 OC) above those at the inlet of the orifice meter. While some 

temperature rise is to be expected due to the electrical heating of the pipes and orifice 

meter structure, this temperature rise was much higher than seen elsewhere in the flow 

loop. 
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Appendix 
 
A-1: Initial results from New Indirect Verification Approach as Proposed in Section 
3.4.4 

A-1.1 Mesh Construction and Grid Independence Testing for the New Inlet Geometry 

A similar methodology as described in Section 3.1 for the orifice meter geometry 

was also conducted for the two new geometries (nozzle and full inlet). Each mesh was 

tested for a range of steady state conditions and their results displayed along with the 

original OM1 in Table A-1 (The MQQ values shown in the table are Fluent’s indication of 

the mesh quality, over a scale of 0 to 1, with 1 being the highest quality). It was found 

that a mesh of the same size as that used for the original OM1 was also suitable for 

modeling the nozzle and thus the full inlet section. The same held for the time-step size 

(∆t = 0.0005 seconds) and turbulence model (k-ε turbulence model). Thus, for all results 

reported here a mesh size of 0.0004m (Mesh 4) and a time step of 0.0005 seconds are 

said to be used. 

Mesh Name Mesh Size Elements P_in=1000Pa P_in=600Pa P_in=200Pa P_in=25Pa MQQ
Mesh 2 1e-4m 79508 0.002926 0.002231 0.001201 0.000362 0.799000
Mesh 3 2e-4m 63022 0.002454 0.001867 0.001027 0.000315 0.716000
Mesh 4 4e-4m 15746 0.002351 0.001790 0.000984 0.000282 0.751220
Mesh 5 8e-4m 4540 0.002360 0.001799 0.000988 0.000292 0.710340

Mesh Name Mesh Size Elements
Mesh 1 8e-5m 168534 0.002812 0.002221 0.001416 0.000921 0.876700
Mesh 2 1e-4m 107344 0.004191 0.003315 0.001962 0.000749 0.802880
Mesh 3 2e-4m 27104 0.011369 0.008004 0.004195 0.000885 0.886200
Mesh 4 4e-4m 9250 0.002718 0.002106 0.001217 0.000424 0.841200
Mesh 5 8e-4m 2829 0.002696 0.002090 0.001204 0.000419 0.789400
Mesh 6 8e-3m 864 0.002715 0.002103 0.001213 0.000422 0.816200
Mesh 7 5e-3m 569 0.002740 0.002121 0.001216 0.000418 0.755600
Mesh 8 1e-2m 325 0.002713 0.002105 0.001210 0.000416 0.816560
Mesh 9 8e-2m 145 0.002448 0.001901 0.001102 0.000392 0.984800

Mesh Name Mesh Size Elements
Mesh 2 1e-4m 108804 0.012955 0.009844 0.005538 0.001709 0.709430
Mesh 3 2e-4m 36106 0.011369 0.008004 0.004195 0.000885 0.777700
Mesh 4 4e-4m 9044 0.005887 0.004314 0.002144 0.000521 0.828600
Mesh 5 8e-4m 2760 0.006131 0.004458 0.002202 0.000511 0.483600
Mesh 7 5e-3m 1889 0.006166 0.004482 0.002206 0.000511 0.479900

Steady State Mass Flow Rate (kg/s) for the following Inlet Total Pressure

Nozzle

Orifice Meter OM1

Full Inlet
Table A-1: Grid independence results for the new inlet geometry 
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 A-1.2 Preliminary Results for the Time Vary Mass Flow Rate of the New Inlet 

Initial runs of the new inlet geometry provided a chance to experience the steep 

learning curve associated with new instrumentation. During the first runs pressure data 

was collected in the same manner as described in Section 2. But, after the first set of 

runs with the new inlet, it was found that the connection lines between the orifice meter 

and the differential pressure transducers were not properly insulated nor heated, 

resulting in vapor condensing and pooling in the transducer connection lines. This was 

immediately corrected with a second run in which the lines were further insulated and 

heated to well above the saturation temperature (5 – 10 °C). 

Following the procedure outlined in Section 3.3 and 3.5, the mass flow rate was 

found for the three computed geometries (full inlet, orifice meter, and nozzle). The 

results are shown in Fig. A-1. It is immediately obvious that there is poor agreement 

between these results. Even with the empirical correction of Section 3.2, the results still 

do not show agreement as seen in Figure A-2. The predicted mass flow rate from the 

Figure A-1: Raw mass flow rate results for the new inlet geometry 
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orifice meter does have good agreement with the measured mean mass flow rate and 

previous results (see Table 4-5), but the nozzle section exhibits significant variations 

from the measured mean mass flow rate. 

 

 

An FFT of the alpha corrected mass flow rate was also completed and shown in 

Fig. A-3. Here the difference in amplitude at the primary driving frequency (3Hz) is 

apparent.  

After this difference in mass flow rates was found, it was first necessary to 

validate these results and eliminate and possible computational errors. This was done by 

using the computed mass flow rate (shown in Fig. A-1) to find the expected pressure 

drop across the geometry from an incompressible model. First, the computed mass flow 

rate (Fig. A-1) was converted into an average velocity at the inlet by the simple form   

𝑉𝑒𝑙����� = 𝑚̇/(ρ*AO). This average velocity was then specified as an inlet boundary condition 

and the exit boundary condition remained as P = 0. The computed area weighted 

average pressure along the inlet was recorded during the simulation. As shown in Fig. A-

4, this pressure is well aligned with the original recorded pressure with the mean of each 

Figure A-2: Alpha corrected mass flow rates for the new inlet 
geometry 
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within 1.3%. This result confirms suspensions that the original experimental differential 

pressure data for the nozzle (and possibly the orifice meter) are not correct. This is 

suspected to be caused by liquid in the differential pressure lines, blockages, or 

transducer calibration issues. Subsequent runs will address this issue and it is expected 

that the difference in the incompressible mass flow rate results will greatly reduce. 

 

  

Figure A-3: FFT magnitude plot of the alpha corrected mass flow 
rate data shown in Fig. A-2 

Figure A-4: Measured and computed pressure difference 
across the orifice meter and nozzle of the new geometry 

for a representative 10Hz LA case 
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A-2: A Recommended Experimental Approach for Direct Validation of the Orifice 
Meter Design 

A direct experimental validation requires a direct experimental approach for measuring 

the time-varying mass flow rate 𝒎̇𝑴(𝒕) at the cross-section location denoted by point M. 

The proposed experiment is neither trivial nor inexpensive. However, by shifting the 

dynamic mass flow rate prediction point M in Fig. 1 (shown downstream of the orifice-

meter OM1) to a new location (see Fig. A-5) far away from the downstream end of OM1 

and continuing to measure ∆𝒑𝑳𝑴(𝒕), one can again predict the time-varying ṁM|Actual(t) 

by the procedure in Section 3. If this new location M allows one to directly measure the 

experimental values of time-varying mass flow rate and denote it as ṁM|Actual-Direct(t), a 

direct validation and error assessments of the proposed inexpensive procedure of 

Section 3 is possible. However a direct experimental verification approach will only be 

necessary if one wants to market this device with definitive understanding of its accuracy 

limits. 

The recommended experiment involves replacing the flow loop in Fig. 1 by the 

recommended flow loop set up in Fig. A-5. Once a quasi-steady pulsatile flow is 

achieved for the closed flow loop (the 3-way valve V* directs the flow to the condenser) 

in Fig. 18 for a certain time duration t* ≤ t ≤ t**, the 3-way valve setting for V* in Fig. 18 is 

changed to direct the flow away from the vertical tube condenser to the direct contact 

pool condenser CDirect (which is properly cooled and well stirred).  Note that the 

downstream end point M of the differential pressure transducer now denotes the end of 

the tube (superheated and insulated) which is feeding the slightly superheated vapor to 

the direct contact pool condenser CDirect. With the geometry between points L and M (of 

Fig. 18) taken into proper consideration, the method of Section 3 will yield 𝑚̇𝑀|𝐴𝑐𝑡𝑢𝑎𝑙(𝑡) 

for a time interval t* ≤ t ≤ t** for which steady-in-the-mean pulsatile behavior is observed 
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in the dynamic pressure-difference data (between points L and M of Fig. A-5) obtained 

from the differential pressure-transducer. 

The well stirred pool condenser CDirect is designed to condense all of the incoming 

pulsatile vapor flow over t* ≤ t ≤ t**. For t ≤ t*, the pool condenser has a known mass of 

FC-72 (M0-FC72) and is mixed with a known amount of a dopant bi-acetyl (M0-biacetyl). This 

dopant has very good light absorption characteristics for λ in the 400 – 420 nm range 

(see [17]). The initial as well as subsequent concentration of bi-acetyl can be 

dynamically measured by a fast response (and well calibrated) dipping probe type 

spectro-photometer (available from Ocean Optics, Inc.). The spectrophotometer is 

shown as SP in Fig. A-5 and is connected to an oscilloscope (not shown in Fig. A-5). 

Since the time-scale associated with bi-acetyl’s diffusion (well stirred CDirect ) and vapor 

condensation time-scales in CDirect  can be made to be much faster than those 

associated with the pulsatile flows, the method is likely to yield real time concentration 

C(t) = M0-biacetyl/ MFC72(t) (where ( )72 0 72
*

( ) M Actual Dir

t
F eC FC ctt

M t M m t dt
−− + ⋅≅ ∫  ) for such flows. 

Note that the concentration C(t*) = M0-biacetyl/ M0-FC72 is known both directly as well as 

through a reading from the spectrophotometer. 

The above direct measurement of concentration C(t) is easily converted, within 

experimental errors, to yield a time-history of 𝑚̇𝑀|𝐴𝑐𝑡𝑢𝑎𝑙−𝐷𝑖𝑟𝑒𝑐𝑡(𝑡). For a suitable sub-

interval of t* ≤ t ≤ t**, the percentage accuracy within which  

( ) ( )M MActual Actual Directtm m t
−

≅                                  (31) 

is actually satisfied will provide for a direct validation and error estimation approach for 

the more practical and inexpensive procedure described in Section 3. 
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Fig. A-5: The proposed direct validation experimental flow-loop. 
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