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Figure 1.5: Road damaged by lateral spread, near Pajaro River, 1989 Loma Prieta 
earthquake. [34] 

Another important criterion for liquefaction susceptibility is the compositional 
criterion related to volume change behavior of a soil. The volume change behavior 
of a particular soil depends on soil particles size, shape and gradation. Fine grained 
soil that satisfies each of the following Chinese criteria [3] can be considered to 
liquefaction susceptible: 1. 15 percent or less soil should be finer than 5 micron 
size; 2. The liquid limit of soil should be less than or equal to 35%; 3. Moisture 
content should be greater than or equal to 90 percent of liquid limit; 4. Liquidity 
index should be less than 0.75. There have been some changes in these criteria to 
apply it in United States.  

Even if these all preceding criteria are met, the state criteria must be met to start 
liquefaction. The initial stress from earthquake loading and density of soil is 
important to generate excess pore pressure which eventually produces liquefaction. 
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Figure 1.6: Sand boils along a fissure near the Pajaro River, 1989 Loma Prieta 
earthquake. [35] 

1.4.2 Evaluation of Initiation of liquefaction 

There are mainly two approaches developed to evaluate the initiation of 
liquefaction:      1) cyclic stress approach; 2) cyclic strain approach.  The cyclic 
stress approach is widely used and most popular over the last few years. In the 
cyclic stress approach, the earthquake induced loading is compared with 
liquefaction resistance. If loading exceeds resistance then liquefaction occurs, and 
if loading does not exceed resistance then liquefaction does not occur. 

1.4.2.1 Earthquake Loading 

The excess pore pressure is the main cause of the liquefaction, and generation of 
excess pore pressure is related to amplitude and duration of earthquake induced  
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loading. In cyclic stress approach, it is assumed that the excess pore pressure is 
related to cyclic shear stresses, and cyclic shear stress can be expressed in terms of 
seismic loading. The loading can be indicated in two ways: 1) full ground response 
analysis; 2) simplified approach. 

 

Figure 1.7:  Relationship between limiting epicentral distances of sites where 
liquefaction has been observed and moment magnitude. (Kramer [11]) 

Ground response analysis is typically used to predict shear stress at various depths 
for a soil deposit. These analyses give time histories with the transient and irregular 
characteristics of actual earthquake motions as shown in Figure 1.8. In contrast to 
that, the liquefaction resistance of soil estimated in the laboratory is usually done 
with uniform cyclic shear stress time histories (uniform amplitude). So for 
comparison of earthquake induced loading to laboratory determined resistance, a 
conversion of irregular time histories of seismic loading to uniform time histories is 
required. Seed et al. [2] added a weighting procedure to find the number of uniform 
stress cycles from recorded strong ground motions. They used a 65% of peak cyclic 
shear stress to determine the equivalent number of cycles that would produce an 
equivalent pore pressure for irregular time histories (τcyc = 0.65 τmax).  
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Figure 1.9 shows that as the magnitude of an earthquake increases, the number of 
equivalent cycles also increases which is intuitive. In many cases, direct response 
analysis cannot be performed because of the constrain on time and budget, because 
of unavailability of all information for performing ground response analysis, and 
because of  the compatibility of simplified procedure  with procedure developed to 
estimate in-situ liquefaction resistance [19]. 

 

Figure 1.8 Typical irregular time history for shear stress. (Kramer [11]) 

The cyclic shear stresses acting on a horizontal plane are largely dominated by the 
cyclic shear stresses induced by the vertically or near vertically propagating shear 
waves. Using this as a base, the simplified procedure was developed to determine 
the induced cyclic shear stresses at particular depth as given in Seed & Idriss [1].  
The Figure 1.10 shows an illustration of this scheme in which if a soil column 
above an element of soil above h would impose shear stress at depth h, then the 
maximum shear stresses on a horizontal plane at depth h would be as given in Cetin 
et al. [19]. 

τ(max)rigidbody=  ϒ ∗ ℎ ∗ 𝑎𝑚𝑎𝑥
𝑔                 (1) 

where ϒ = total unit weight of the soil; h=height of soil column;                                            
amax= maximum horizontal acceleration.  

However, the soil does not respond as a rigid body; so the actual peak shear stress 
induced at h  is less than the estimated by equation (1). In other words the 
deformable soil mass can induce less shear stress at depth  h  in comparison to 
shear stresses induced by a rigid body.  In next step, the τ(max)rigidbody  is adjusted 
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using rd  a nonlinear shear mass participation factor or stress reduction coefficient 
to get a practical or real τ(max)deformablesoil shear stresses induced by deformable soil 
at depth h.  

rd=
τ(𝑚𝑎𝑥)𝑑𝑒𝑓𝑜𝑟𝑚𝑎𝑏𝑙𝑒 𝑠𝑜𝑖𝑙

τ(max)𝑟𝑖𝑔𝑖𝑑 𝑏𝑜𝑑𝑦
                                                                                                                          (2) 

So using equation (1) and (2) 

τ(max)deformablesoil=ϒ ∗ ℎ ∗
𝑎𝑚𝑎𝑥
𝑔

∗  𝑟𝑑                                                                          (3) 

 

 

Figure 1.9: Number of equivalent uniform stress cycles for different earthquake 
magnitude. (Kramer [11]) 
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Figure 1.10: Schematic diagram of “Simplified Procedure”.(After Seed and Idriss 
[1])  

A factor of 0.65 is applied to reduce the peak cyclic stress to equivalent uniform 
cyclic shear stress so that it is compatible with procedure used to evaluate 
liquefaction resistance in laboratory. 

τ(equ.)=0.65 ∗ ϒ ∗ ℎ ∗ 𝑎𝑚𝑎𝑥
𝑔

∗  𝑟𝑑                                                                               (4)       

when this equivalent uniform cyclic shear stress is normalized by effective 
overburden stresses, then it becomes the equivalent cyclic stress ratio (CSReq). 

CSReq=0.65 ∗ 𝜎𝑣
𝜎𝑣′
∗ 𝑎𝑚𝑎𝑥

𝑔
∗  𝑟𝑑                                                                                  (5) 

Equation (5) is further normalized for different magnitude by using MSF 
(magnitude scaling factor), and for initial static stresses by using Kσ. 

CSR7.5,1=0.65 ∗ 𝜎𝑣
𝜎𝑣′
∗ 𝑎𝑚𝑎𝑥

𝑔
∗  𝑟𝑑 ∗

1
𝑀𝑆𝐹

∗ 1
𝐾𝜎

                                                                (6) 

For efficacy of this simplified procedure to evaluate CSR at any given depth, the 
proper estimation of rd is required. The stress reduction coefficient (rd) is 
dependent on site stratigraphy, soil properties, and characteristics of input ground 
motions. There have been many studies (Idriss and Boulanger [24]; Cetin et al. 
[19]; Kishida et al. [23]) which give different relationships to calculate rd. (Figure 
1.11) 
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1.4.2.2 Liquefaction resistance 

Laboratory test:  The cyclic stress approach initially emphasized to use laboratory 
testing to evaluate liquefaction resistance. Most laboratory tests were performed on 
an isotropically consolidated triaxial specimen or Ko consolidated simple shear 
specimen (Kramer [11]). In these tests, liquefaction failure was indicated as point 
where initial liquefaction was reached or some limiting cyclic strain amplitude was 
reached. 

In-situ test: 

Standard Penetration Test:  SPT is the oldest in-situ test being used to evaluate 
liquefaction resistance based on some in-situ properties of soil deposits.   

 

 

Figure 1.11: Variation of stress reduction coefficient with depth in a soil.                             
(Idriss and Boulanger [24]) 



16 
 

As shown in Figure 1.12, a hammer is dropped from a distance on 30 inch until it 
penetrated a distance of 18 inch in soil. The number of blows required to penetrate 
last 12 inch of soil deposit is referred as the N-value. The first six inches are not 
used because the bottom of exploratory boring is likely to be disturbed by the 
drilling process and may be covered with loose soil which may give erroneous N-
value. Typically, the separation between two tests should be at least 1.5m [26]. 

Due to poor repeatability of SPT test, there have been some corrections proposed to 
N-value (Skempton [6]).  

N60= 𝐸𝑚𝐶𝐵𝐶𝑆𝐶𝑅𝑁
0.60

                                                                                                     (7) 

Where:  

N60 = SPT N-value corrected for field procedure  

Em = hammer efficiency 

CB= borehole diameter correction 

CS= sampler correction 

CR= rod length correction 

 N = SPT N-value measured in field 

The N60 obtained from equation (7) can be adjusted for overburden correction, this 
compensate the effect of test performed near the bottom of uniform soil result in 
higher N-value than those performed near the top.  

The corrected N-value for overburden is  

N1,60=N60�
100 𝐾𝑃𝑎

𝜎𝑧′
�
𝑛

                                                                                                 (8)  

The exponent n in equation (7) is typically taken as half as proposed by Liao and 
Whitman [7] , however as it is dependent on the soil type so it can be regressed 
using the procedure given in Cetin et al. [19] or Idriss and Boulanger [24].  

Where: 

N60 = SPT N-value corrected for field procedure  
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Figure 1.12:  SPT equipment showing sampler in place. (Coduto et al. [26]) 

N1,60 = SPT N-value corrected for field procedure and overburden stress 

  𝜎𝑧′   = vertical effective stress at the testing depth 

In recent years, researchers have corrected this N1,60 for fines content to evaluate 
liquefaction potential, which is more convenient for professional and researcher to 
understand the liquefaction potential of a particular soil type. One of such 
correction proposed by Idriss and Boulanger [24] is given as 

N1,60,cs=N1,60+∆𝑁1,60                                                                                                (9) 

∆𝑁1,60=exp �1.63 + 9.7
𝐹𝐶+0.001

− ( 15.7
𝐹𝐶+0.01

)2�                                                         (10) 

Where 

FC= Fines content  
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N1,60,cs  = SPT N-value corrected for field procedure, overburden stress, and fines 
content. 

In spite of so much variability and concern of poor repeatability, SPT has some 
advantages over the other methods. The soil sample can be obtained, by which 
direct soil classification and fine contents can be determined. In case of 
probabilistic evaluation of liquefaction, SPT based case histories are numerous 
because this method has been in use for decades than any other in-situ method. 

In evaluating the liquefaction potential, a critical stratum is selected based on 
minimum N value obtained from SPT test at a particular site. The representative N 
values for that site can be collected from available single SPT boring or multiple 
SPT boring. Subsequently, the N-values are corrected for all the corrections stated 
in above paragraph, and a mean N1,60,cs is selected for that particular site. The 
variability in N1,60,cs  can be represented by the standard deviation or coefficient of 
variation (COV) of all measured values from single or multiple SPT borings. If 
there is only single N value in critical stratum available then the COV for N1,60,cs   is 
considered to be 20% for that case (Cetin et al.[19]). 

Cone Penetration Test: 

The cone penetration test (CPT) is another common in-situ test. There are two 
major types of cone used for this: original mechanical cone and the electric cone.  
The mechanical cone is obsolete, and the electric cone is being widely used now. 
The electric cone has two parts; a 35.7 diameter cone shaped tip with apex angle of 
60o, and a 35.7 mm diameter & 133.7mm long cylindrical sleeve. This cone is 
pushed by hydraulic ram into the ground and the instrument attached to it measures 
the resistance to penetration. The cone resistance qc is the total force acting on the 
cone divided by its projected area, and the cone side friction or sleeve friction fsc is 
the total frictional force acting on the friction sleeve divided by its surface area 
(Coduto et al. [26]). Cone resistance is related to sleeve friction as 

𝑅𝑓 = 𝑓𝑠𝑐
𝑞𝑐
∗ 100                                                                                                        (11) 

where Rf  = friction ratio 

A typical soil profile generated from CPT test can be seen in Figure 1.13.  CPT 
gives continuous soil profile and good repeatability in comparison to SPT; 
however, physically a soil sample cannot be obtained from CPT.  
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The thin layer correction is also applied when CPT test is performed in interbedded 
layers. The cone tip resistance is influenced by the soil ahead and behind the cone. 

 

Figure 1.13:  A Typical Modern Peizo CPT results with log for sleeve resistance, 
tip resistance, friction ratio, and pore pressure. (Coduto et al. [26]) 

The cone starts to sense a change in soil type before it reaches the new soil, and 
also cone continues to sense the original soil even it has entered in new soil 
(Robertson and Wride [13]). The distance over which the cone continues the 
interface depends on the stiffness of the soil. The soft soil has influence up to 
distance of 2-3 cone diameter whereas the stiff soils can have influence up to 20 
cone diameter distance. This variability can affect the cone tip resistance when it 
penetrates in stiff thin layers situated in between soft layers. Researchers 
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Vreugdenhil et al. [10], Robertson and Wride [13], and  Moss et al. [18] considered 
this variability and proposed some correction for raw tip resistance if a stiff thin 
layer is encountered while testing. 

This raw cone resistance or corrected raw tip resistance on presence of stiff thin 
layer is required to be corrected for overburden stresses, and correction is same as 
applied for SPT.  

qc1=qc �
100 𝐾𝑃𝑎

𝜎𝑧′
�
𝑛

                                                                                                    (12) 

The exponent n in equation (11) is typically taken as half, however as it is 
dependent on the soil type so it can be regressed using the procedure given in Moss 
et al. [18] or Idriss and Boulanger [32]. 

where 

qc = raw cone tip resistance 

qc1 = cone tip resistance corrected for overburden stresses 

qc1n = 𝑞𝑐1
𝑝𝑎

                                                                                                               (13) 

where  Pa = Atmospheric pressure in unit same as qc1  

This normalized correction factor for overburden stresses is then normalized to 
make it dimensionless, and subsequently it is corrected for fines content based on 
the procedure recommended in NCEER workshop  documented in Youd et al. [31]. 

The normalized tip resistance for clean sand is given as 

qc,1ncs = kc * qc1n                                                                                            (14) 

kc can be calculated based on procedure given in Youd et al. [31]. 

In evaluating the liquefaction potential, a critical stratum is selected based on 
lowest stretch of tip resistance with low friction ratio in a CPT log, and it can be 
also confirmed by nearby SPT log. The representative tip resistance and friction 
ratio values for that site can be collected from available single CPT boring or 
multiple CPT borings. Then these all raw tip resistance and friction ratio are 
corrected for all the corrections stated in above paragraph, and a mean qc,1ncs is 
calculated using above equation for that particular site.  
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1.5 Probabilistic modeling to evaluate liquefaction  

The basic purpose of measuring qc,1ncs, N1,60,cs, and estimating CSR7.5,1  from all 
around the world is to develop a relationship between these parameter using a 
regression analysis or a statistical model which can eventually be used for 
determining liquefaction potential  

for a site. There have been many statistical models developed to evaluate 
liquefaction potential such as Bayesian mapping, reliability methods, and logistic 
regression method (Liao et al. [9]; Lai et al. [21]; Youd and Nobel [12]; Toprak et 
al. [14]; Juang et al. [15]; Moss et al. [18]; Juang et al. [20]; Cetin et al. [19]; Juang 
et al. [22]; Idriss and Boulanger [24]; Juang et al. [29]; Ku et al. [28]). Of these 
different methods, the logistic regression method is the oldest and most widely used 
to evaluate probability of liquefaction.  

1.5.1 Logistic regression 

A logistic regression model is used to develop a regression between categorical 
response variable with categorical or continuous explanatory (predictor) variables. 
Categorical variables are of two type; nominal and ordinal type. Ordinal categorical 
variable has order like for income (low, medium, high) whereas nominal 
categorical variable has no order like for primary transportation (bus, subway, and 
bicycle). If a categorical variable has two categories then that variable is a binary 
variable; for example liquefaction is a binary variable because it shows only two 
effects either it happens or does not happen. 

Logistic regression model is the most popular method to regress binary data. 
Logistic regression binary response can be visualized as “Success” and “Failure”. 
In addition, the logistic regression models used in geosciences or in geotechniques 
are mostly comprised of binary response variable with continuous explanatory 
variables such assoil properties, temperature, etc. 

The probability of liquefaction (PL) in logistic regression framework can be given 
in terms of explanatory variables like qc,1ncs , N1,60,cs and CSR7.5,1 etc. which affects 
the occurrence of liquefaction for a site. 

PL can be defined as (Liao et al., [9]) 

𝑙𝑜𝑔 � 𝑃𝐿
1−𝑃𝐿

� =  𝛽𝑜 + 𝛽1𝑥1 + 𝛽2𝑥2 +∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 𝛽𝑛𝑥𝑛                    (15) 
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𝑙𝑜𝑔𝑖𝑡(𝑃𝐿) = 𝑙𝑜𝑔 � 𝑃𝐿
1−𝑃𝐿

�                                                                                         (16) 

𝑃𝐿 =  1
1+𝑒𝑥𝑝[−(𝛽𝑜 +𝛽1𝑥1+𝛽2𝑥2+∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙𝛽𝑛𝑥𝑛)]                                                           (17) 

Where  

PL = Probability of liquefaction which varies between zero to one. 

x1, x2, ………… xn = explanatory variables  

 

βo, β1, β2 ……… βn = regression coefficient determined from binary regression 

There are some conditions to be satisfied for a variable to quantify as an 
explanatory variable. Johnson and Wichern [16] described that firstly, all the 
explanatory variables used in logistic regression must be independent if more than 
one explanatory variable is used for model. Secondly, all explanatory variables 
must be normally distributed. Thirdly, the expected value (PL) should be linearly 
dependent with explanatory variables. The third condition was modified by Menard 
[17] in which the logit (PL) instead of PL should be linearly dependent with 
explanatory variables. 
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2.1 Abstract 

Any statistical model usually possesses model uncertainties, and these vary from 
one statistical model to other. Most of the model uncertainties are epistemic, and 
can be addressed through appropriate knowledge of the statistical model. One such 
epistemic model uncertainty in evaluating liquefaction potential using a 
probabilistic model such as logistic regression is sampling bias.  Sampling bias is 
the difference between the class distribution of liquefaction and non-liquefaction 
instances in the sample used for developing the statistical model and the true 
population distribution.  Recent studies have shown that sampling bias can 
significantly affect the predicted probability using a statistical model. To address 
this epistemic uncertainty, a new approach was developed for evaluating the 
probability of seismically-induced soil liquefaction, in which logistic regression 
model in combination with Hosmer-Lemeshow statistic was used. This approach 
estimates the true distribution for liquefaction and non-liquefaction events for 
standard penetration test (SPT) and cone penetration test (CPT) based case 
histories. Moreover, based on estimated true distribution, logistic regression 
equations were proposed to calculate the probability of liquefaction for both SPT 
and CPT based analysis. Additionally, the proposed probability curves were 
compared with existing probability curves based on SPT and CPT case histories. 

                                                            
1 The material contained in this chapter is formatted for submission to the Journal of Soil Dynamics 
and Earthquake Engineering. 
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database with more instances of liquefaction than the true population distribution. 
To address the problem of sampling bias Cetin et al. [13] proposed using a 
weighting ratio which weighs the non-liquefied instances more than the liquefied 
instances to represent the population distribution or the actual field occurrence. The 
weighting ratio (Wnon-liquefied/Wliquefied) suggested by Cetin et al. [13] based on 
experts’ advice and minimum variance achieved in the Bayesian modeling is 1.5 or 
any value between 1 and 3. Later, Cetin et al. [17], Juang et al. [24], and Idriss and 
Boulanger [26] used this weighting ratio of 1.5 recommended by Cetin et al. [13]. 
This resulted in population distributions of 45:55, 45:55, and 40:60 (the reference 
for the given distribution is liquefaction: non-liquefaction, and it will remain same 
for the rest of the text.) for the work by Cetin et al. [17], Juang et al. [24], and Idriss 
and Boulanger [26] respectively. Both Idriss and Boulanger [26] and Juang et al. 
[31] mentioned the influence of weighting factor on the resultant probability curve 
using the same SPT case histories. Interestingly, Idriss& Boulanger [26] showed 
that their probability curve changed based on the weighting factor that they used, 
whereas, Juang et al. [31] found no effect on their probability curve from changing 
the weighting factor.  

For CPT based model to evaluate the probability of liquefaction, Moss et al. [16]   
used the same weighting ratio recommended for SPT based case histories by Cetin 
et al. [13], and the corresponding population distribution was 64:36. Ku et al. [30] 
used a population distribution of 45:55 (calculated weighting ratio of 3.73) 
recommended by Juang et al. [24]. However, assigning the same weighting factor 
used by Cetin et al. [17], which best fits to their database might not be appropriate 
or competent with other database. In addition, the use of weighting factor 
developed using SPT based case histories for CPT based case histories might be a 
cause of significant uncertainty in a statistical model, if the CPT and SPT case 
histories are not same. For example, Idriss and Boulanger [26] used the same 
weighting factor as Cetin et al. [17] even after removing 21 instances due to 
misclassification of liquefaction or non-liquefaction instances in the database. 
Idriss and Boulanger [32] acknowledge that the estimation of weighting ratiois 
unclear and subjective. Ku et al. [30] used a weighting ratio of 3.73 which resulted 
in a population distribution of 45:55. This weighting factor is outside the 
recommended range of 1 to 3 by Cetin et al. [17]. It is evident from these studies 
that the choice of weighting ratio and the determination of the population 
distribution for probabilistic modeling of liquefaction lacks objective guidelines. 
Oommen et al. [28] demonstrated using synthetic binary data that only when the 
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sample distribution is same as the population/true distribution does the predicted 
probability match the true probability. The conclusion of that work was based on 
the comparison of the predicted probability values estimated by logistic regression 
model with the true probability values available for synthetic data. However, in 
reality, the true probabilities are not known. This work has been the motivation for 
this paper to extend this information to real case histories of liquefaction/non-
liquefaction and verify how the true population distributions can be determined 
from a sample. 

 

2.3 Research Objectives 

The main objective of this study was to estimate population distribution for SPT 
based and CPT based case histories by addressing model uncertainty due to 
sampling bias. These case histories consist of biased class distribution of 
liquefaction and non-liquefaction cases. To address sampling bias, a logistic 
regression model in combination with Hosmer-Lemeshow statistic was to be used. 
Hosmer-Lemeshow statistic is used to test the fitness of a logistic regression model 
when the explanatory variables are continuous.  

Apart from this, other model uncertainties like distribution of explanatory variables 
(these are the variables regressed with the response variable), and the importance of 
explanatory variables in model were to be addressed using KS test and Wald 
statistic respectively. Further, logistic regression probability curves developed 
based on population distribution of most updated SPT (Idriss and Boulager [26]) 
and of CPT (Ku et al. [30] )were to be proposed to evaluate liquefaction potential 
for a site. Furthermore, probabilistic curves developed using this population 
distribution with logistic regression model were to be compared with existing 
probabilistic and deterministic model for CPT based case histories ([16]; [20]; [9]; 
[30]) and SPT based case histories ([26]; [31]; [17]). 

 

2.4 Method 

To achieve the research objectives, a hypothesis was given and subsequently 
verified using binary data. The hypothesis was that when the sample distribution is 
similar to population distribution, the Hosmer-Lemeshow statistic for logistic 
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regression model for that sample distribution gives highest P-value (where the P 
value represents the probability obtained from a Chi-square distribution for the 
corresponding Hosmer-Lemeshow statistic, with P values < 0.05 call for the 
rejection of the hypothesis), and thus that sample distribution will give the true 
probability values. This hypothesis was proved using binary synthetic data 
(discussed in detail later). 

2.4.1 Hosmer-Lemeshow Statistic 

The Hosmer-Lemeshow statistic is used to test the fitness of a logistic regression 
model when the explanatory variables are continuous. This statistic was developed 
by Hosmer-Lemeshow [11]. Agresti [23] explained that when instances are 
ungrouped or highly sparse, the pearson chi-square statistic (X2) and likelihood 
ratio chi square statistic (G2) does not have approximate chisquare distribution, 
whereas the Hosmer-lemeshow statistic does follow the chi-square distribution 
even in these situations. 

In Hosmer-Lemeshow statistic, the fitted probabilities of total number of n binary 
instances (0 or 1), estimated by logistic regression model is divided into 10 groups 
of equal size. The first group consists of n/10 size with highest estimated 
probabilities. The next group refers to n/10 size having the second decile of 
estimated probabilities, and so forth (Agresti [23]). Each group has some instances 
of zeros and some instances of ones and their respective estimated probabilities. 
The fitted or estimated probability for an outcome (0 or 1) is sum of the estimated 
probabilities for that outcome for all observation in that group. The observed values 
for an outcome (0 or 1) are sum of the instances of zeros or ones for all observation 
in that group. Eventually, for each group two observed values (one for each 
outcome) and two estimated values (one for each outcome) are available. The 
Hosmer-Lemeshow test uses a pearson test statistic to compare the observed and 
fitted counts for these 10 groups. So for 10 groups, there are 20 estimated and 
observed probabilities used to calculate pearson chi square statistic (X2). 

This test statistic can be approximated by chi-squared with degree of freedom = 
number of groups -2. 

where   X2 = ∑ (𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑−𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑)2

𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑
20
𝑖=1  

of freedom 8 for calculated X2 statistcs.  
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2.4.2 Verifying the Hypothesis 

To prove this hypothesis, 50,000 binary data were generated with the conditions 
fulfilling the discussion on explanatory variable in logistic regression by Lai et al. 
[21]. These 50,000 instances of binary (0 or 1) data were generated for population 
distribution of 50:50 and 70:30. These synthetic instances have true probability 
values which can be compared to the fitted probabilities. Further, these 
distributions of 50:50 and 70:30 were sampled to obtain seven samples of 
distributions 20:80, 30:70, 40:60, 50:50, 60:40, 70:30, and 80:20 for each 
population distribution. 

Table 2.1:  P-value for Hosmer-Lemeshow test for different sample  
distribution for population distribution of 50:50 and 70:30 

Sample Distribution P-Value for (50:50) 
Hosmer-Lemeshow 

P-Value for (70:30) 
Hosmer-Lemeshow 

20:80 0.34 0.29 

30:70 0.10 0.92 

40:60 0.38 0.91 
50:50 0.98 0.31 
60:40 0.16 0.81 

70:30 0.80 0.99 

80:20 0.35 0.73 

 

Then the logistic regression model was developed for each of these samples and 
their corresponding Hosmer-Lemeshow P-values were computed. The computed P 
value of the Hosmer-Lemeshow test for each sample is presented in Table 2.1. It is 
evident from this table that the highest P-value for the Hosmer-Lemeshow test is 
for the sample that has same distribution as the population. For the population 
distribution of 50:50, the sample distribution of 50:50 has the highest P-value 
(0.98). Similarly, for population distribution of 70:30, the highest P-value of 0.99 is 
for sample distribution of 70:30. This verifies our hypothesis that the Hosmer-
Lemeshow P-value statistic is highest for the sample that has the same distribution 
as the population. In other words, the Hosmer-Lemeshow P-value statistic can be 
an indication of how close a sample distribution is to its population distribution. 
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A scatter plot between the actual and predicted probability for the samples of 
population distribution of 50:50 and 70:30 are presented in Figure 2.1 and Figure 
2.2 respectively. It is evident from these figures that the difference in actual and 
predicted probabilities is minimal when the sample has the same distribution as the 
population. 

There is one caveat while using Hosmer-Lemeshow test: (Oliver [15])  if two 
different combinations of liquefaction/ non-liquefaction instances are used to 
develop logistic regression model for a particular sample distribution, it gives 
slightly different P-values. This is important in the present study because the P-
values are very high for all sample distributions, and a small change can affect the 
true distribution. To address this problem, a total number of instances for all seven 
distributions were made same for synthetic data as well as for SPT and CPT based 
case histories. 

 

2.5 Liquefaction Data Catalogue 

2.5.1 SPT Database 

The SPT based liquefaction and non-liquefaction instances were obtained from 
Idriss& Boulanger [26]. This database contains 227 instances of which 115 
instances are liquefied and 112 instances are non-liquefied. Idriss& Boulanger [26] 
compiled this dataset by removing 21 instances from Cetin et al. [17] due to 
misclassification and added some additional instances from the 1995 Kobe 
Earthquake and few others. As shown in Table 2.2, the 227 instances of 
liquefaction/non-liquefaction are from 25 earthquakes since 1944 Tohankai to 1995 
Hyogenken –Nambu earthquake. The variables required for the liquefaction 
analysis using SPT data are Mw, Amax, CSR, depth of  

critical layer, ground water depth, fines content, normalized blow count for 
overburden stress (N1,60,cs), and fines content (FC), and these have range of values 
5.9-8.3, 0.05-0.84, 0.04-0.49, 1.75-14.34m, 0-7.2m,  4.7-63.7, and 0-92% 
respectively. More detailed information about case histories can be found in Idriss 
and Boulanger [26]. 
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Figure 2.1: Scatter plot of predicted probabilities to actual probabilities for different    
sample distributions obtained from the population distribution of 50:50. 
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Figure 2.2:   Scatter plot of predicted probabilities to actual probabilities for 
different sample distributions obtained from the population distribution of 70:30. 
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Table 2.2: SPT case histories information 

Earthquake No. of liquefaction 
instances 

No.of non-liquefaction 
instances 

1944 Tohankai 3 0 
1948 Fukai 2 0 
1964 Niigata 7 4 
1968 Hososhima 0 1 
1968 Tokachi-Oki 3 2 
1971 San Fernendo 2 0 
1975 Haicheng 3 1 
1976 Guatemala 1 1 
1976 Tangshan 5 2 
1977 Argentina 3 2 
1978 Miyagiken-oki 1 13 
1978 Miyagiken-oki 14 6 
1979 Imperial Valley 4 5 
1980 Mid-Chiba 0 2 
1981 Westmorland 3 4 
1982 Urakwa-Oki 0 1 
1983 Nihonkai-Chubu 1 2 
1983 Nihonaki-Chubu 16 13 
1984 Hososhima 0 1 
1987 Superstition Hills 1 11 
1989 Loma Prieta 15 9 
1990 Luzon 1 1 
1993 Kushiro-Oki 2 1 
1994 Northridge 3 1 
1995 Hyogoken-Nambu 25 29 

 

2.5.2 CPT Database 

The CPT based liquefaction and non-liquefaction instances were obtained from the 
dataset compiled by Ku et al. [30]. This dataset has a total of 165 instances of 
which 125 are from instances of liquefaction and 40 are non-liquefaction instances. 
Ku et al. [30] compiled this dataset using152 (116 liquefied and 36 non-liquefied) 
instances from Robertson [25] and 13 (9 liquefied and 4 non-liquefied) instances 
from Moss et al. [29]. Robertson [25] dataset was obtained by modifying the Moss 
et al. [16] dataset to exclude 30 (23 liquefaction and 7 non-liquefaction) instances 
that were classified as C. Robertson  [25] described the class C data as unreliable 
because they were obtained using a mechanical cone. Previous studies by 
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Robertson & Chambella [3] have shown that mechanical cone friction sleeve value 
can be significantly different from electric cone value in same soil and hence not 
comparable. 

As shown in Table 2.3, the database compiled by Ku et al. [30] contains 
information from 16 earthquakes starting from the 1964 Nigata earthquake to 1999 
Kocali earthquake. In this 165 instances of liquefaction and non-liquefaction, the 
variables magnitude of earthquake (Mw), Amax, CSR, depth of critical layer, friction 
ratio(Rf), soil behavior index(Ic), and normalized tip resistance for overburden 
stress and fines content(qc,1ncs) ranges from 5.8-7.8, 0.08-0.70, 0.08-0.60, 1-12m, 
0.04-3.65 %, 1.31-2.58, and 39.66-187.62 respectively. More detailed information 
about each case can be found in Ku et al. [30]. 

Table 2.3: CPT case histories information 

Earthquake No. of liquefaction 
instances 

No.of non-liquefaction 
instances 

1999 Kocali 15 0 
1999 Chi Chi 14 0 
1995 Kobe 17 6 
1994 Northridge 5 0 
1989 Loma Prieta 37 16 
1987 Edgecumbe 10 5 
1987 Elmore Ranch 0 1 
1987 Superstition 1 0 
1983 Nihonkai 1 1 
1983 Borah Peak 4 0 
1981 Westmorland 3 2 
1980 Mexicali 4 1 
1979 Imperial Valley 2 3 
1976 Tangshan 9 4 
1968 Inaguaha 1 0 
1964 Niigata 2 1 
 

 

2.6 Evaluation of SPT based case histories 

In order to identify the population distribution of the SPT data, the verified 
hypothesis was applied on, the 227 instances of liquefaction/ non-liquefaction from 
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Idriss and Boulanger [26]. This dataset was sampled to obtain seven different 
samples of distribution 20:80, 30:70, 40:60, 50:50, 60:40, 70:30, and 80:20. One of 
the uncertainties that can affect the logistic regression model is to select appropriate 
explanatory variables. These explanatory variables must follow the normal 
distribution. Kolmogorov-Smirnov (KS) test (Adapted from Ang et al., [23]) was 
performed on N1,60,cs, �N1,60,cs, CSR7.5.1, and log(CSR7.5.1) variables for each of 
the seven sampled distributions. KS test is used to compare the experimental 
cumulative distribution with the cumulative distribution  

function of an assumed theoretical distribution. The best combination of 
explanatory variables based on P-value for each variable was log (CSR7.5.1) 
and �N1,60,cs as shown in Table 2.4. A P-value of more than 0.05 was desired for 
an explanatory variable to have normal distribution. The variable CSR7.5.1 has a P-
value less than 0.05 for 20:80 sample distribution, and the variable N1,60,cs has P-
value less than 0.05 for 60:40 and 70:30 sample distribution. Therefore, the 
variables log(CSR7.5) and �N1,60,cs  are more appropriate than the variable CSR7.5 
and N1,60,cs, and they were selected as explanatory variables in logistic regression. 

.Table 2.4: P-value for KS test for explanatory variables for SPT based analysis 

Sample 
Distribution 

P-value for  
KS-Test 
for �𝐍𝟏,𝟔𝟎,𝐜𝐬 

P-value for  
KS-Test 
for log(CSR 
7.5,1) 

P-value for  
KS-Test 
For N,160,cs 

P-value for  
KS-Test 
For CSR 7.5,1 

20:80 0.67 0.34 0.15 0.04 

30:70 0.62 0.22 0.10 0.16 

40:60 0.45 0.10 0.08 0.20 

50:50 0.35 0.10 0.05 0.26 

60:40 0.34 0.08 0.04 0.22 

70:30 0.47 0.14 0.04 0.19 

80:20 0.52 0.20 0.06 0.17 

 

After selecting the most appropriate explanatory variables, logistic regression 
model was developed for seven sample distributions to estimate population 
distribution. Further P-value for Hosmer-Lemeshow statistic was estimated for all 
seven sample distributions. The highest P-value (0.99) as shown in Table 2.5 was 


