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Abstract 
 

Direct bioalcohol fuel cells and green electro-chemical production processes are two key 

researches that can contribute to humanity’s sustainable development. To achieve 

efficient electro-chemical conversion, highly active nanostructured electro-catalysts are 

an essential requirement. However, it remains a challenging task to construct 

nanostructured metallic materials serving as efficient electro-catalysts for electricity 

generation and biorenewable alcohol conversion, because of the technical difficulty in 

precisely controlling their size, shape, and composition.  

 

In my Ph.D research, a wet chemistry-based organic solution phase reduction method was 

developed, and was successfully applied in the preparation of a series of advanced 

electro-catalysts, including 0-dimensional (0-D) Pt, Pd, Au, and Pd-Ni nanoparticles 

(NPs), 1-D Pt-Fe nanowires (NWs) and 2-D Pd-Fe nanoleaves (NLs), with controlled size, 

shape, and morphology. These nanostructured catalysts have demonstrated unique 

electro-catalytic functions towards electricity production and biorenewable alcohol 

conversion.  

 

The molecular oxygen reduction reaction (ORR) is a long-standing scientific issue for 

fuel cells due to its sluggish kinetics and the poor catalyst durability. The activity and 

durability of an electro-catalyst is strongly related with its composition and structure. 

Based on this point, Pt-Fe NWs with a diameter of 2 – 3 nm were accurately prepared. 

They have demonstrated a high durability in sulfuric acid due to its 1-D structure, as well 

as a high ORR activity attributed to its tuned electronic structure. By substituting Pt with 

Pd using a similar synthesis route, Pd-Fe NLs were prepared and demonstrated a higher 

ORR activity than Pt and Pd NPs catalysts in the alkaline electrolyte. 

 

Recently, biomass-derived alcohols have attracted enormous attention as promising fuels 

(to replace H2) for low-temperature fuel cells. From this point of view, Pd-Ni NPs were 

prepared and demonstrated a high electro-catalytic activity towards ethanol oxidation. 
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Comparing to ethanol, the biodiesel waste glycerol is more promising due to its low price 

and high reactivity. Glycerol (and crude glycerol) was successfully applied as the fuel in 

an Au-anode anion-exchange membrane fuel cell (AEMFC). By replacing Au with a 

more active Pt catalyst, simultaneous generation of both high power-density electricity 

and value-added chemicals (glycerate, tartronate, and mesoxalate) from glycerol was 

achieved in an AEMFC.  

 

To investigate the production of valuable chemicals from glycerol electro-oxidation, two 

anion-exchange membrane electro-catalytic reactors were designed. The research shows 

that the electro-oxidation product distribution is strongly dependent on the anode applied 

potential. Reaction pathways for the electro-oxidation of glycerol on Au/C catalyst have 

been elucidated: continuous oxidation of OH groups (to produce tartronate and 

mesoxalate) is predominant at lower potentials, while C-C cleavage (to produce glycolate) 

is the dominant reaction path at higher potentials. 

 

Equation Section (Next) 
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Chapter 1 Introduction 

1.1 Energy: A grand challenge in 21st century 
 

Sustainably meeting humanity’s energy needs has been identified as a top challenge for 

the next fifty years.1 The ease and comfort of modern life are heavily reliant on non-

renewable fossil fuels (i.e. petroleum, coal, and natural gas). As shown in the U.S. energy 

flow in 2010 (Fig. 1.1), fossil fuels supplied 83% of the total energy consumption 

(petroleum: 37%; coal: 21%; and natural gas: 25%), and supported all the sectors 

(transportation, industrial, commercial, and residential). However, the overall energy 

efficiency is only 43% (41.88/98). The fossil fuels reserves are not infinite. For example, 

based on the data from CIA World Factbook,2 the current proved world reserves of the 

most important fuel, crude oil, are 1,473,878,490,000 barrels. At the present world oil 

consumption rate (99,091,752 barrels day-1), the glory of these ‘Modern Times’ will be 

gone in 40 years! Even though we can use coal and natural gas to cover the gap left 

behind oil, it is still only a matter of time to exhaust all the fossil resources. Driven by the 

depletion of traditional fossil resources, developing green energy conversion approaches 

that use renewable and sustainable energy sources have been of unique significance.3 

 

1.2 Fuel cells: A clean electrical energy technology 

Fuel cells have been widely considered as a promising alternative power generation 

technique, due to their high energy conversion efficiency and zero pollutant emissions. 

As a chemical – electrical energy conversion device, a fuel cell can directly convert the 

Gibbs free energy of a reaction into electrical energy without the Carnot cycle’s 

limitation. Therefore, ideally, the efficiency of a H2/O2-fed fuel cell, which is calculated 

by the ratio between the Gibbs free energy and the enthalpy change, can reach 83%. A 

typical proton-exchange membrane fuel cell (PEMFC) stack can stably work at low 

temperatures (usually < 100°C) while maintaining a power generation capability up to 
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250 kW.4 Therefore, it is considered a promising device for portable energy suppliers, 

small passenger vehicles, and even small plants. However, the widespread application of 

fuel cells has to address two issues: The first is the sluggish kinetics of oxygen reduction 

reaction (at the cathode) and the unsatisfied durability of the cathode catalyst. The second 

is the replacement of H2 with renewable, easily stored and transported liquid fuels. 

 

 
Fig. 1.1 U.S. energy flow (2010), unit is given in quad, which is 1015 BTU or 1,055×1018 
J5. 

 

1.3 Bioalcohols (ethanol and glycerol): Promising liquid fules 

for fuel cells 
 

Biomass resources are annually renewable, cheap, and abundant. Therefore, they are 

expected to take a big portion in our future energy landscape. The development of 

renewable biomass-derived fuels (such as bioethanol and biodiesel) is an important 

research topic for the sustainability. Spurred by the political and social concerns 
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associated with the sustainable human development, in 2011, the biomass-derived ethanol 

has increased to 13.4 billion gallons per year in the United States. Its production will be 

further pushed by the U.S. Energy Independence and Security Act (passed by Congress in 

2007) to 38 billion gallons by 2022. Alternative vehicle fuel E85 (containing 85% of 

denatured ethanol) is also commercially supplied at gas stations, mainly in the Midwest 

area. However, the efficiencies of all internal combustion engines are confined by 

Carnot’s theorem. The efficiency of current transportation sector (mainly is internal 

combustion engine based) is only 25% (as shown in Fig. 1.1, 6.85/27.45). In addition, the 

volumetric energy density of ethanol (6.3 kW h L-1) is only 65% of that of gasoline (9.7 

kW h L-1). Simply replacing petroleum based gasoline with bioethanol will lead to 

unavoidable fuel efficiency drop (lower miles per gallon, MPG). 

 

In the meantime, production of biodiesel has been greatly stimulated by political 

decisions. In 2011, biodiesel production in the United State rose to 1.1 billion gallons per 

year. The biodiesel production is based on a chemical process of transesterification of 

vegetable oils, or of animal or waste fats, and the process inevitably yields ~ 10 wt% of 

byproduct glycerol. As a result, the blooming biodiesel industry quickly leads to the 

saturation of the glycerol market. The price of crude glycerol subsequently drops to the 

bottom (0.75 – 0.9 US$ gal-1 for 88% crude glycerol), making it a biodiesel waste. 

 

Exploration of more efficient approach to utilization of these bioalcohols is in high 

demand. The large amounts of low-cost bioethanol and biodiesel waste glycerol can serve 

as promising fuels in direct alcohol fuel cells (DAFCs). In principle, the energy 

conversion efficiency is not confined by the Carnot cycle limitation through direct 

electro-oxidation of alcohols to produce electricity. The thermodynamic (maximum) 

efficiency of a bioalcohol-fed fuel cell (based on the full utilized of the fuel) is higher 

than that of a H2-fed one (97% for ethanol-fed and 98% for glycerol-fed fuel cells; vs. 83% 

for H2-fed fuel cell). In addition, the volumetric energy densities of ethanol and glycerol 

are also higher than that of H2 (6.3 kW h L-1 for ethanol and glycerol vs. 2.6 kW h L-1 for 

H2). From these aspects, DAFC fed with biomass derived alcohols will be a promising 

high-efficient, cost-effective power generation technology.  
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1.4 Chemical production: Urgent need to develop green and 

sustainable electro-catalytic routes from biomass resources 
 

Development of green and sustainable routes to the production of chemicals from 

biomass resources is also in urgent need in order to lower the heavy dependence on the 

vanishing world petroleum reserves.7-11 Recently, biomass derived glycerol is obtained at 

very low prices. With a highly active triol structure, it has a potential serving as a main 

building block for a series of valuable chemicals.12-16 Great progresses have been made in 

heterogeneous catalysis in selective oxidation to glycerol with molecular O2 to glyceric 

acid17,18 and dihydroxyacetone,19,20 and with H2O2 to glycolic acid.21 As the 

thermodynamics and kinetics of a reaction can be greatly enhanced under an applied 

potential, the electro-catalytic conversion of glycerol will be of exclusive significance, 

which may serve as a more efficient, eco-benign, and renewable process for chemical 

productions. 

 

1.5 Nanostructured electro-catalysts: Great opportunities to 

improve fuel cell performance 
 

Efficient electro-catalytic reactions are essential for a fuel cell. In the electro-catalytic 

reaction, the surface of the electro-catalyst plays a crucial role, as it is the place where all 

the chemistry steps are taking place, and determines the adsorption, dissociation, electron 

and atom transportation, and chemical bond cleavage and formation. All of these steps 

are directly related with the efficiency and power generation ability of the fuel cell. In 

early years, the investigation of electro-catalytic reaction was mainly focused on model 

surfaces, usually atomically clean single crystals.22-30 However, due to the low specific 

surface area of single crystals, large gap between ultra-vacuum and ambient pressure, and 

huge differences between single crystals and real-world polycrystals, these studies are 

mostly theoretical with little practical meanings to the application of fuel cells.  
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Recently, the emergence of nanosciences and nanotechnologies, especially the precise 

morphology-controlled nano-material preparations, brought the electro-catalysis into a 

new world at the “bottom” of substances. The specific surface area greatly increases as 

the catalyst size shrinks into the nanoscale. For example, for a round shaped catalyst, the 

specific surface area will increase 100 times when its diameter reduces from 1 μm to 10 

nm. Taking into account of the high prices of precious metals (1,588 US$ oz-1 for Au, 

1,430 US$ oz-1 for Pt, and 583 US$ oz-1 for Pd), the nanoscaled catalyst can greatly 

reduce the cost of precious metal catalysts.  

 

Nano-catalysts are more attractive due to their unique electronic and physical properties, 

which are totally different from the bulk-scaled materials. Electro-catalysis is a catalytic 

process combining with the charge (electrons) transfer through the catalyst surface. In 

this process, the dangling bonds on catalyst surface are more active and are of unique 

importance in the activation of the electro-chemical reactions. When the size of catalysts 

shrinks to be nanoscale, the abundance of surface defects and large surface curvature will 

result in an increased number of dangling bonds on the surface, leading to a higher 

catalytic activity. 

 

The shape-controlled nanostructures can further benefit the electro-catalytic activities. 

Model surface investigations based on single crystals have demonstrated that the electro-

catalytic process is usually structure sensitive, which is the so-called geometrical effect. 

The geometrical effect is especially obvious when there is strong adsorption of species. 

One good example of the geometrical effect is the oxygen reduction reaction. Although 

the same activation energy in both acid (~ 42 kJ mol-1) and alkaline (~ 40 kJ mol-1) 

solution has been found on all three low index Pt facets, the order of ORR activity at Pt 

low index facets in H2SO4 electrolytes decreases in the sequence of (110) > (100) > (111), 

which is inverse to the (bi)sulfate anion adsorption sequence on these three facets.22 

Therefore, the electro-catalytic activities can be further optimized by precisely 

controlling the nanostructure with more active facets,  
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In order to further improve catalytic functions, the nanostructured catalyst can be further 

manipulated by employing a second or even a third element. In nanoscales, the local 

electronic structure can be modified by the addition of some foreign elements, which 

affects the adsorption-desorption energy of certain species on the active sites. Based on 

this so-called electronic effect theory, different bimetallic and trimetallic catalysts have 

been prepared and found broad applications in ORR,29,31-35 alcohols,36-38 or organic acids 

oxidation,39-44 etc. 

 

1.6 Advanced wet-chemistry synthesis methods: Essential to 

accurate control over metallic nano-catalysts 
 

It is an essential task to develop advanced synthesis methods to accurately prepare 

metallic nanocatalysts. The synthesis of metal nanostructures can be generally classified 

into ‘top-down’ physical (from large to smaller micro-/nano- dimensions) and ‘bottom-up’ 

chemical (from molecular/atomic scale to nano-scale) approaches.45 Generally speaking, 

the physical approach usually produces nanomaterials from bulk materials with the help 

of exact and sophisticated high price, energy-consuming equipment. On the contrary, 

chemical approach prepares nanostructures through a simple and economical chemical 

route. Typically, chemical approach could be classified into four types: self-assembly 

approach; hard or soft template approach; physical chemistry approach; and solution-

based wet chemistry approach. Self-assembly46,47 is a facile route to produce fancy 

structures. However, it is only suitable for a limited set of materials. The Template 

method48,49 can have a good control over both the shape and size, but involvement of 

prefabricated template and the template removal greatly increased the complexity. The 

physical chemistry approach involves the use of sophisticated electrochemistry,22,50 

photochemistry,51,52 sonochemistry,53 radiolysis,54 thermolysis55 etc. It is an effective 

route and usually could have a good control over both the size and shape of 

nanostructures; however, the special requirement of equipment will increase the cost.  
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Wet chemistry method is related to reducing dissoluble metal precursors in an aqueous or 

an organic phase under mild conditions in the presence of surfactants. Since the shape of 

a crystal is determined by the relative specific surface energies with the facet of this 

crystal,56 wet chemistry method could easily control the nanostructures by using different 

surfactants to adjust the free energy of different crystallographic surfaces. Therefore, 

comparing to the other three methods, wet chemistry method is more economical, 

repeatable, and easy to carry out. Therefore, it is more suitable for both lab-scale 

researches and industry-scale processes. In the past years, many seminal works based on 

wet chemistry approach have been carried out to synthesize Ag, Au, Pt, Pd and their alloy 

nanostructure, such as nanowire,57,58 nanorod,59 nanocube,60,61 nanotadpole,62 and 

nanodendrites,63,64 etc. These nanostructures have been demonstrated as high 

performance electro-catalysts, and have a broad application as heterogeneous catalysts. 

The wet chemistry method has been reviewed in some literatures.65-69  

 

In this thesis, a wet chemistry-based organic solution phase reduction method was 

developed to prepare the advanced nanostructured metal catalysts. Comparing to the 

aqueous phase syntheses, this method is better in controlling the size, structure, and 

composition of catalysts. In addition, this method is simple, reproducible and easy to 

scale up, at a larger production (grams of catalyst per batch). 

 

1.7 Goal and significance of my Ph.D research 
 

My Ph.D research is devoted to the investigation and application of advanced metallic 

nanostructures for efficient durable ORR catalysts (at the cathode) for fuel cells (Chapter 

3 and 4), and highly active alcohol oxidation catalysts (at the anode, Chapter 5, 6, and 

7). In addition, an electro-catalytic process was also explored based on the nano-catalysts, 

which is more efficient than traditional heterogeneous catalysis in selective oxidation of 

low cost, green technology processed alcohols into valuable oxygenated chemicals 

(Chapter 8). 
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My Ph.D research has successfully developed a series of advanced nanostructured metal 

electro-catalysts for efficient electricity generation and selective the conversion of 

biorenewable glycerol into high value chemicals. This will help to find solutions to 

partially alleviate our energy dependence on the declining fossil resources. My research 

also explored a new electro-catalytic process for valuable chemical production from 

biorenewable compounds. This may become a promising green route in reducing the 

chemical production dependence on traditional fossil resources. 

Equation Section (Next) 

  



 

9 

 

Chapter 2 General Experimental 

2.1 Organic solution phase synthesis method 

2.1.1 Chemicals 
 

Pt(acac)2, Pd(acac)2, PdCl2, Fe(CO)5, Ni(acac)2·2H2O, LiBEt3H (1 M in THF), 

octadecene, and benzyl ether are purchased from Acros Organics. Oleylamine and telfon 

are purchased from Aldrich Chemistry. Oleic acid and NiCl2·2H2O are purchased from 

Fisher Chemical. NaBH4 and AuCl3 are purchased from Alfa Aesar. Acetone and 

Ethylene glycol (EG) are purchased from BDH. Hexane is purchased from Mallinckrodt 

Chemicals. Ethanol is purchased from Pharmco-Aaper. Carbon black (Vulcan XC-72R) 

is purchased from Fuel Cell Store. 

 

2.1.2 Synthesis system and typical catalyst preparation procedures 
 

A typical setup for organic solution phase synthesis of advanced nanostructured electro-

catalysts is shown in Fig. 2.1. The reaction precursors, solvent, and surfactants were first 

introduced into a 250 ml standard four-neck round bottom flask (Chemglass). The 

reaction was allowed by heating the system to a certain temperature through a 

hemispherical mantle heater (Glas-Col) under inert N2 protection. The temperature was 

controlled by temperature controller (J-KEM APOLLO) coupled with a Teflon coated 

thermocouple. During the reaction, the solution was stirred by a Teflon coated magnetic 

stirring bar (Fisherbrand), which is driven by a magnetic stirrer (ATE). 

 

For the preparations of Pd-Ni/C (Chapter 5) and Pt/C (Chapter 7), carbon supports 

(Vulcan XC-72R) was first dispersed into the solvent under sonication to directly prepare 

the corresponding carbon supported catalysts. The as-prepared catalysts were then 

collected by filtration, washed with copious of ethanol, and dried in a vacuum oven 

(Baxter Vacuum Drying Oven DP-32) overnight at 50°C. 
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Fig. 2.1 Experimental setup for the organic solution phase synthesis of nanocatalysts. 
 

For Pt-Fe NWs (Chapter 3), Pd-Fe NLs (Chapter 4), Au/C (Chapter 6 and 8), and 

Au/CNT (Chapter 8), the non-supported nanostructure was first separated from the 

synthesis system, and then deposited on the carbon supports. The procedure is as follows: 

A certain amount of polar solution (ethanol or isopropanol) was first added into the 

organic phase synthesis system. The as-prepared nanostructure was then separated by 

centrifugation (6000 – 10000 revolutions per minute (rpm), Thermo Scientific Legend 

X1). The product was cleaned by re-dispersing into a mixture of hexane and polar 

solution and separating by centrifugation multiple times and stored in hexanes. To 

prepare carbon supported catalysts, an appropriate amount of carbon support (carbon 

black or carbon nanotube (CNT)) was first dispersed into ethanol or isopropanol under 
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sonication to achieve a uniform ink. The hexane dispersed nanostructure was then added 

dropwisely into the ink under vigorous stirring. The final carbon supported electro-

catalyst was obtained after filtration and dried in a vacuum oven overnight at 50°C. 

 

2.2 Material Characterizations 

2.2.1 Transmission electron microscopy (TEM) 
 

TEM images of as-prepared catalysts were usually collected on JEOL 2010 with an 

operating voltage of 200 KV, unless otherwise mentioned. Before tests, the as-prepared 

catalysts were first dispersed in ethanol or isopropanol to form a uniform dilute solution, 

followed by depositing one or two drops of this solution on a carbon film covered copper 

grid (Ted Pella, Inc). The average size (length or diameter) and the histogram of the as-

prepared samples were analyzed from the TEM images, by randomly measuring over 100 

nanostructures. 

 

2.2.2 High-Resolution TEM (HR-TEM) 
 

HR-TEM images of Pd-Fe NLs (Chapter 4) and Pd-Ni (Chapter 5) were collected by 

our collaborators in University of Michigan, on JEOL 2040 with an operating voltage of 

300 KV. The surface crystal facet was investigated in HR-TEM by measuring the atom 

interlayer spacing. 

 

2.2.3 High angle annular dark field (HAADF) scanning transmission 

electron microscopy (S/TEM) 
 

Simultaneous HAADF-STEM, TEM, and SEM imaging of Pd-Fe NLs (Chapter 4) was 

performed by our collaborator in Oak Ridge National Lab, using a Hitachi HF3300 

TEM/STEM operated at 300kV. HAADF-S/TEM was conducted using a probe-corrected 
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(CEOS aberration-corrector) JEOL 2200FS with an operating voltage of 200 kV. High-

spatial-resolution EDS compositional analysis (Bruker X-flash silicon drift detector 

(SDD)) was performed on this microscope using a beam diameter of ~ 2 Å and beam 

current of ~ 1400 pA. 

 

2.2.4 X-ray photoelectron spectroscopy (XPS) 
 

XPS spectra of Pd-Fe NLs (Chapter 4) were collected by our collaborator in Oak Ridge 

National Lab, using a Thermo Scientific K-Alpha instrument. Samples for XPS were 

prepared by depositing a thin layer of the catalyst on a silicon substrate. 

 

2.2.5 X-ray diffraction (XRD) 
 

A Scintag XDS-2000 θ/θ Diffractometer with Cu Kα radiation (λ = 1.5406 Å), with a tube 

current of 35 mA and a tube voltage of 45 KV was employed to collect X-ray diffraction 

data for the as-prepared nanostructures. Samples for XRD test were prepared by 

dispersing a thin layer of the electro-catalysts on a zero background silicon substrate. The 

crystal size of nanostructures will be calculated by Debye-Scherrer formula: 

 
2 max

0.9
cos
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α

θ

λ
θ

=  (2-1) 

where L is the mean crystal size (diameter of nanostructures), λKα is the wavelength of X-

ray (1.5406 Å), B2θ is the full width at half-maximum of the peak (rad), and θmax is the 

Bragg angle (deg). 

 

And the lattice parameter (αfcc) is calculated by the following equation: 
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2.2.6 Inductively coupled plasma atomic emission spectroscopy (ICP-

AES) 
 

ICP-AES was employed to analyze the bulk elements composition of the as-prepared 

catalysts, as well as the metal loading of the carbon deposited catalysts. A certain amount 

of catalyst (1 – 5 mg) was carefully measured and dissolved in 4.0 ml Aqua Regia (A 

strong oxidative acid formed by mixing concentrated nitric acid and hydrochloric acid 

with the volume ratio of 1:3). The solvent was then accurately diluted to 15 ml for the 

composition analysis.  

 

2.2.7 Thermal gravimetric analysis (TGA) 
 

Thermal gravimetric analysis was carried out on TGA Q500 (TA Instruments) in order to 

analyze the weight ratio of surfactants and the metal loading of the as-prepared catalysts. 

6 – 10 mg of the sample was placed in an inert alumina pan and heated from the room 

temperature (RT) to 500°C under a N2 gas flow, at the heating rate of 10°C min-1. The 

temperature was held there for 20 min, before switching the purge gas to regular air. The 

temperature was then increased to 900°C at the same heating rate.  

 

2.3 Electro-chemical investigation 

2.3.1 Electro-chemical tests in half cell 

2.3.1.1 Instrument and working electrode preparation 

 

The half cell tests were performed in a conventional three-compartment cell (AFCELL3, 

Pine Instrument) with a glassy carbon working electrode (GCE) and a Pt wire counter 

electrode. Hg/HgO/1.0 M KOH electrode (Pine instruments) and standard hydrogen 

electrode (SHE, Hyderoflex®) were applied as the reference electrodes in alkaline and 

acid electrolytes, respectively. All the potentials are given vs. the employed reference 
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electrode, unless otherwise mentioned. Data was collected by a multi-channel potentiostat 

(Versastat MC, Princeton applied research). The whole setup is shown in Fig 2.2. Prior to 

preparing the working electrode, the GCE was first carefully polished with 0.5 µm and 

0.05 µm alumina suspensions to form a mirror like surface. After that, 1.0 mg of catalyst 

was dispersed in 1.0 ml of ethanol or isopropanol under sonication, to make a uniform 

ink. The working electrode was prepared by depositing a certain amount of the catalyst 

ink on the polished GCE dropwisely, which was subsequently covered by dilute ionomer 

solution (Nafion®, TPQPOH, or Tokuyama AS-4). The prepared working electrode was 

dried in vacuum oven at 70°C in order to remove all the solution (ethanol or isopropanol).  

 

  
Fig. 2.2 half cell tests setups: (a) a three-compartment-cell with a reversible hydrogen 
reference electrode and a Pt wire counter electrode; (b) electro-chemical workstation 
lined with three-compartment-cell and rotating disk electrode. 
 

2.3.1.2 Cyclic voltammetry (CV) scan  

 

CV scans were carried out in either 0.5 M H2SO4 or in 1.0 M NaOH (or 1.0 M KOH) to 

obtain the electro-chemical surface areas (ECSAs) of the as-prepared electro-catalysts. 

The sweep rate (υ) was set at 50 mV s-1, and the ECSA was calculated from the following 

equation: 

 r
e

QS
m C

=
×

 (2-3) 

(a) (b) 
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where m is the mass of precious metal on the GCE, Qr is the transferred charge for a 

specific electro-chemical reaction, and C is the corresponding charge density for the 

reaction. Qr is calculated by the equation: 

 1 ( )
b

r dla
Q I I dE

υ
= −∫  (2-4) 

where υ is the sweep rate, a and b are the starting and stopping potentials for the reaction, 

and Idl is the current generated from double layer charging, which is assumed as a 

constant.  

 

Typically, the H2 under-potential desorption reaction was chosen in acid electrolyte, 

whereas the reduction of metal oxide was chosen in alkaline electrolyte, to evaluate the 

ECSA of the electro-catalyst. 

 

CV scans were also performed in alcohol alkaline electrolyte in order to study the 

catalytic activity of the as-prepared catalyst towards alcohol oxidation. The sweep rate 

was fixed at 50 mV s-1, while the ratio of alcohol to alkaline concentration was varied to 

investigate their effects. 

2.3.1.3 Linear scan voltammetry (LSV) 

 

A LSV was performed in either O2 saturated 0.5 M H2SO4 (Chapter 3) or 0.1 M NaOH 

(Chapter 4) to investigate the catalytic activity of the as-prepared catalyst towards the 

oxygen reduction reaction (ORR). The sweep rate was set at 10 mV s-1, while the rotation 

rate was controlled at 2500 rpm. The ORR activity can be presented by the kinetic current 

density (ik), which represents the current without any mass transfer effects. The kinetic 

current density is calculated by the Levich-Koutecky equation:70  

 1 2 1 1
2 3 6 2

1 1 1 1 1 1 1 1
0.62k f d k f f k f fO O O

L L
i i i i i nFC D i nFC DBC nFD Cω ν ω−

= + + = + + = + +  (2-5) 

where i is the current density collected from the working electrode, ik is the kinetic 

current density, if is the diffusion limiting current density in the polymer electrolyte 

(Nafion, TPQPOH, or AS-4) film covering the catalyst layer, id is the diffusion limiting 
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current density through the solution boundary layer; Cf is the O2 concentration at the 

outer boundary of film, Df is diffusion coefficient of O2 in the film, L is the film 

thickness; DO is the diffusion coefficient of O2 in the bulk electrolyte, ν is the kinematic 

viscosity of the electrolyte, CO is the O2 concentration in the bulk electrolyte. In 0.5 M 

H2SO4, CO is 1.26×10-3 mol L-1; DO is 1.93×10-5 cm2 s-1; ν is 1.009×10-2 cm2 s-1.23 In 0.1 

M NaOH, CO is 1.13×10-6 mol L-1; DO is 2.22×10-5 cm2 s-1; ν is 1.1×10-2 cm2 s-1.71 

 

The polymer electrolyte film is usually thinner than 0.1 µm in the half cell test. Therefore, 

the second part ( 1
fi ) on the right side can be neglected. Therefore, the Levich-Koutecky 

equation is simplified to: 

 1 1 1

k di i i
= +  (2-6) 

Solving for ik, the equation is arranged as following: 

 d
k

d

i ii
i i
×

=
−

 (2-7) 

 

LSVs were also performed in alcohol alkaline electrolyte to study the alcohol oxidation 

activity of the as-prepared catalyst (Chapter 5 and 6). The sweep rate was chosen as 1 

mV s-1 in order to minimize the mass transfer and diffusion issues, and therefore, allow 

the alcohol oxidation to take place on the catalyst at quasi-steady state. The onset 

potential of alcohols oxidation is defined as the potential where the inflection is observed 

on the quasi-steady state polarization curve.  

 

To study the Tafel slope and exchange current density of an alcohol oxidation, the 

relationship between the current density and over-potential is described as: 

 
0

2.303 logRT j
nF j

η
α

 
=  

 
 (2-8) 

where η is the over-potential (η = E-Etheory), α is the anodic transfer coefficient, n is the 

number of electrons transferred in the reaction, and j0 is the exchange current density. 

The quantity proceeding the logarithm is defined as Tafel slope 2.303 RT
nFb α= . The Tafel 
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plots were achieved by plotting the overpotential (η) against log (j). The exchange current 

density j0 was obtained by extrapolating the linear fitted Tafel line to where the over 

potential equals zero.  

 

2.3.1.4 Staircase linear scan voltammetry (SLV) 

 

SLVs coupled with online sample collection offline HPLC analysis techniques were 

applied to investigate the instantaneous products under different potentials of glycerol 

oxidation in alkaline electrolytes (Chapter 7). The online products collection system is 

illustrated by the scheme in Fig. 2.3, which is enlightened by the publications in Koper’s 

group.72-74 In the course of SLVs with an increment of 100 mV (10 min)-1, the 

instantaneous reaction products under different potentials were collected on-line through 

a self-designed collector whose tip was positioned within 0.5 mm to the center of 

working electrode surface. Before collection, the needle was washed with copious 

amounts of de-ionized water. The collection rate was controlled at 50 µl min-1 by a 

peristaltic pump (Gilson minipuls 3). At each potential, 0.5 ml sample was collected and 

stored in a 2 ml screw cap vial (Agilent). 

 

 
Fig. 2.3 Scheme of online product collection system. 
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2.3.1.4 Chronoamperometry (CA) 

 

CAs were employed to study the electro-oxidation of alcohols at a certain potential 

(Chapter 5 and 8), while the current was recorded as a function of time.  

 

2.4.2 Anion-exchange membrane fuel cell (AEMFC) test 

2.4.2.1 Fabrication of membrane electrodes assembly (MEA) 

 

MEA was mechanically sandwiched with anode, solid electrolyte membrane, and cathode, 

without any hot-press. A catalyst ink containing 90 wt% of as-prepared catalyst and 10 

wt% of Teflon was airbrushed on a carbon cloth anode liquid diffusion layer. On the 

cathode, 70 wt% of a commercial non-Pt group metal (PGM) HYPERMECTM catalyst 

(Fe-Cu-N4/C, Acta) was blended with 30 wt% AS-4 anion conductive ionomer 

(Tokuyama), and sprayed directly onto the A201 anion-exchange membrane (Tokuyama). 

A 25CC carbon paper (SGL Group) was then covered on the cathode catalyst as a 

cathode gas diffusion layer.  

 

2.4.2.2 Electricity generation performance investigation 

 

The electricity performance of AEMFC was evaluated in a fuel cell stack with an active 

cross-sectional area of 5.0 cm2, controlled by a fuel cell test station (Scribner 850e). An 

alcohol KOH solution was applied to the anode through a peristaltic pump (Gilson 

minipuls 3), while high purity O2 (99.999%) was applied to the cathode at a constant flow 

rate of 0.4 L min-1 under 30 psi back pressure. The fuel cell and cathode humidification 

temperature was controlled from 50 to 80°C 
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2.4.2.3 Product analysis 

 

The liquid phase product distribution of an alcohol oxidation was investigated by 

continuously looping 55 ml of alcohol KOH solution from a plastic vessel into the anode, 

while a constant cell operation voltage was applied at 50°C. The products at different cell 

operation voltages were analyzed using a High-performance liquid chromatography 

HPLC (Agilent 1100) with a refractive index detector (RID, G1362A, Agilent) and a 

variable wavelength detector (VWD, 220 nm, Agilent G1314A). The samples were 

separated using an OA-1000 column (Alltech) at 60°C with an eluent of 5 mM aqueous 

sulfuric acid (0.3 ml min-1). The products were identified by comparison with authentic 

samples. The concentration was calculated from the peak area observed in liquid 

chromatograms. 

 

For the products analysis in anion-exchange membrane – direct glycerol fuel cells 

(AEM–DGFC) (Chapter 6 and 7), the selectivity (S) is defined as the moles of product 

divided by the moles of C2 and C3 products observed at the given time: 75,76 

 
2 3

 100%
 

Moles of specific product formsSelectivity
Total moles of C and C products detected

   
= ×

      
 (2-9) 

The carbon balance is calculated by the following equation: 

 3 2 1
3 3 2 3

100%
3

i f

i

G C C C G

G

M M M M M
Carbon balance

M

− − − −
 = ×  (2-10) 

where MGi and MGf are the initial and final moles of glycerol in the electrolyte, MC3, MC2, 

and MC1 are the moles of C3 products (glycerate, tartronate, and mesoxalate), C2 products 

(glycolate and oxalate), and C1 products (formate and carbonate), respectively. Assuming 

that no C2 product was further oxidized to C1 products, MC2 is equal to MC1. Therefore, 

the equation can be simplified as: 

 3 2 100%i f

i

G C C G

G

M M M M
Carbon balance

M

− − −
 = ×  (2-11) 

where a smaller carbon balance indicates less C2 chemicals were further oxidized to C1 

products 
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Based on the product distributions, the Faradic efficiency (ηe), which is defined as the 

ratio of transferred electrons in the partial oxidation to that in the complete oxidation 

(combustion to CO2), was calculated by using the following equation: 

 
e ii eSη η= ∑   (2-12) 

where Si is the selectivity of product i, and ηei is the Faradic efficiency of partial 

oxidation product. 

Equation Section (Next)  
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Chapter 3 Synthesis of Pt-Fe nanowires as highly 

durable catalysts for oxygen reduction reaction* 

 

3.1 Introduction 

3.1.1 Operation mechanism and thermodynamics of H2/O2-fed PEMFC 
 

The operation mechanism of a typical H2-fed PEMFC is illustrated in Fig. 3.1. H2 is 

introduced to the anode and is oxidized to generate protons and electrons. The protons go 

through membrane (usually Nafion membrane), while electrons go through the external 

circuit and react with O2 to produce water at the cathode.  

 

At the anode, the electro-oxidation of H2 is as follows: 

 0
2 2 2        0.000 V vs. SHEaH H e E+ −→ + =  (3-1) 

At the cathode, the electro-reduction of O2 takes place as follows: 

 0
2 24 4 2        1.229 V vs. SHEcO H e H O E+ −+ + → =  (3-2) 

Therefore, the standard cell voltage is 1.229 V. The corresponding overall fuel cell 

reaction is: 

 0
2 2 2

1        1.229 V
2

H O H O E+ → =  (3-3) 

The theoretical efficiency is defined as the ratio between the electrical energy produced 

by fuel cell and the combustion heat at constant pressure: 

 
0 1

0 1

237 kJ mol 100% 83%
286 kJ mol

rev
cell

G
H

ε
−

−

∆
= = × =

∆
 (3-4) 

 

*The material contained in this chapter was previously published in Nanotechnology. 
Reprinted with permission from Nanotechnology 2011; 22(1), 015602 by Zhiyong Zhang, 
Meijun Li, Zili Wu, and Wenzhen Li. “Ultra-thin PtFe-nanowires as durable 
electrocatalysts for fuel cells”, DOI: 10.1088/0957-4484/22/1/015602, Copyrith 2011 
IOP Publishing Ltd.  
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Fig. 3.1 Schematic drawing of a proton-exchange membrane fuel cell. 
 

3.1.2 Oxygen reduction reaction (ORR) and the challenges in the 

durability of cathode catalyst 
 

Compared to the fast, efficient anode H2 oxidation reaction, the ORR at the cathode is 

more complicated and always limits the fuel cell performance. Generally, an ORR in acid 

media can be described by a modified Wroblowa scheme, which as Fig. 3.2.22,29,77 O2 is 

firstly adsorbed on the catalyst surfaces to form O2, ad, then it can either be directly 

electro-chemically reduced by k1 path to form H2O by a 4-e- path, or go through a set of 

pathways through the intermediate of H2O2, ad by k2 path. The adsorbed H2O2, ad can 

further go through k3 path to form H2O (2+2e-), or desorbed into the bulk of the 

electrolyte, or can even be catalytically decomposed back to O2 and water. As shown in 

the reaction pathway in Fig. 3.2, the ORR contains a series of elementary reaction steps, 

intermediates, and multiple electrons transfer. The kinetics is usually very slow due to its 

complexity.78 A highly active cathode catalyst is an essential requirement to allow the 
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ORR kinetics practicable for fuel cell application. Although many attempts were devoted 

to create a non-Pt catalyst for low temperature ORR catalyst,79-82 Pt-based catalysts 

remains the most practical ones.29 83 

 
Fig. 3.2 Proposed schemes for oxygen reduction reaction in acid media22. 
 

However, the harsh working conditions of cathode catalysts in real fuel cells, high acid 

environment (18 M) and working potential (usually > 0.6 V), always lead to gradually 

reduction in the cathode catalytic activity, even for the most stable Pt catalyst.84-86  

 

For Pt nanoparticle cathode catalyst, four mechanisms have been proposed to explain its 

instability in low temperature fuel cells (as shown in Fig 3.3):86,87 a) Modified Ostwald 

ripening (especially at cathode, > 0.8V), which involves the dissolution of small Pt 

particles and its diffusion to large Pt particles driven by the reduction of surface energy. b) 

Pt crystal migration and coalescence (at lower voltage), which involves the motion of Pt 

particles and their coalescence on the surface of the carbon support. c) Detachment 

(remarkable when > 1.1V), which is related to the Pt particles dislocate from the carbon 

support, as the result of carbon corrosion, and agglomerate together. d) Dissolution and 

re-precipitation, which are due to the soluble Pt species precipitate out in the ionomer and 

membrane under chemical reduction. 

 

Among these four degradation mechanisms, both the Ostwald ripening and the 

dissolution – re-precipitation are governed by the intrinsic properties of the metal catalyst, 

therefore it is important to improve the stability of the metal catalyst. From this point of 
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view, different Pt-M (M = Au, Pd, Co, Ni, Cu) bi-metallic catalysts were prepared to 

increase the durability of the cathode catalyst.32,35,88  

 

Zhang et al. developed a high durability Au/Pt/C catalyst through an under potential 

deposition (UPD) method.88 Due to the stabilization effects from the Au clusters, the 

oxidation of Pt active sites on Au/Pt/C catalyst is strongly decreased. As a result, both the 

ECSA and the ORR activity of the Au/Pt/C catalyst almost remains the same after 30,000 

cycles potential cycling from 0.6 – 1.1 V in O2-saturated 0.1 M HClO4. In contrast, the 

Pt/C catalyst suffers an ECSA loss of 45% and an ORR half-wave potential degradation 

of 39 mV. Zhou et al also reported an increased catalyst durability of an ethylene glycol 

reduction method prepared Pt3Pd/C catalyst. Due to the weakening effect of Pd on Pt-O 

bond, the addition of Pd reduced the formation of surface Pt oxides and increased the 

stability of the catalyst. After 500 cycles of potential cycling from 0.6 – 1.2 V in N2-

saturated 0.5 M H2SO4, the ECSA loss of Pt3Pd/C is 55%, which is lower than that of 

commercial Pt/C catalyst (65%). However, the increasing of durability is only achieved at 

the sacrifice of the intrinsic catalytic activity; the absolute ORR activities of both Au/Pt/C 

and Pt3Pd/C are lower than that of Pt/C catalyst, under the same testing conditions. 

 

Recently, one-dimensional (1D) nanostructures have been emerging as a new approach to 

avoid the agglomerations of 0D nanoparticles. Chen et al. prepared a Pt nanotube (NT) 

with an average diameter of 50 nm, a wall thickness of 4 – 7 nm, and a length of 1 – 5 

µm.89 As the Ostwald ripening and aggregation are both eliminated by the micrometer-

sized length of the Pt-NT, > 80% ECSA survived after 1,000 cycles of accelerated 

durability test. In contrast, the ECSA of Pt/C dropped down to < 15%. However, due to 

its large wall thickness and its inaccessible inner tube surface area, its initial ECSA is 

very small (< 15 m2 g-1), which greatly limits the ORR mass activity enhancement.  
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Fig. 3.3 Proposed mechanisms of instability of Pt nanoparticles in low temperature 
fuel cells87. 
 

Tan et al recently developed Au/Pt and Au/Pt3Ni nanowire (NW) catalysts by growing 

the Pt or Pt3Ni nanodendritic structures on a Au nanowire support.90 Owing to the higher 
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stability of the Au nanowire and the stronger interaction between the Au nanowire and 

the Pt or Pt3Ni nanodendrites, the Au/Pt and Au/Pt3Ni nanowire catalysts demonstrated 

higher durability than commercial Pt/C catalyst. After 5,000 potential sweeps in O2-

saturated 0.1 M HClO4 between 0.6 and 1.1 V, the ECSAs of the Au/Pt and Au/Pt3Ni 

nanowire catalysts dropped only by 6.8% and 9.9%, respectively, while that of Pt/C 

catalyst reduced by 37.9%. Meanwhile, due to the small size of the nanodendrite 

structures (< 3 nm), the Au/Pt and Au/Pt3Ni also demonstrated a higher utilization of Pt 

and a better ORR activity. However, use of a large amount of Au as a catalyst 

backbone/support will definitely increase the cost of the catalysts preparation. 

 

Another method to increase the durability of the fuel cell cathode catalyst is to use higher 

corrosion-resistant supports. Publications on CNTs, highly graphitized carbon, and 

graphene, have demonstrated that carbon supports with higher graphitization degree are 

able to effectively anchor Pt-based nanoparticles from agglomeration and improve 

catalyst life time. Wang et al compared the stabilities of multi-wall carbon nanotube 

(MWCNT) and Vulcan carbon black supported Pt catalysts by a CA test in N2-purged 0.5 

M H2SO4 at 0.9 V vs.SHE for over 168 hours, and confirmed that the highly graphitized 

MWCNT supported Pt catalyst suffered a corrosion current lower than three fourths that 

of Pt/C. Corresponding, only 37% of its original ECSA was lost on Pt/MWCNT after 168 

hours of oxidation, while that on Pt/C was up to almost 80%.  

 

Another elegant piece of work has been recently carried out by Watanabe’s group.91 The 

group synthesized Pt/graphitized carbon (Pt/GC) catalysts based on an organic phase 

reduction method, and compared its durability with that of commercial Pt/GC (c-Pt/GC) 

and commercial Pt/C (c-Pt/CB) by a potential step cycles (0.9 and 1.3 V, alternatively, 

each for 30 second) in 0.1M HClO4 at 25°C. The results show that when the ECSA 

dropped to half of its original value, the time elapse of n-Pt/GC was 12 and 22 times that 

of c-Pt/GC and c-Pt/CB. By comparing the STEM images of these three catalysts before 

and after the durability tests, it has been found that all of the three catalysts have a 

remarkable size increase. However, in c-Pt/CB, many Pt particles have been found 

detached from the CB support, some part of Pt particles detached from the support in c-
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Pt/GC, while few of them detached in the case of n-Pt/GC. This result indicates that the 

corrosion resistance ability of support holds significant importance to the durability of 

catalysts. In addition, it is interesting to discover that the dispersion of catalysts on 

support is also of great importance: the small inter-particle distance will also lead to 

coalescence. 

 

 

In this chapter, ultra-thin PtxFey nanowires (NWs) were prepared as robust catalysts for 

ORR. The PtxFey-NWs with a diameter of 2-3 nm were successfully prepared through a 

solution-phase reduction method at Pt-Fe compositions from 1:1 to 2:1. The carbon 

supported PtxFey-NWs (PtxFey-NWs/C) demonstrated higher ORR activity and better 

electro-chemical durability than conventional Pt/C catalyst. After 1000 cycles of 0 – 1.3 

V (vs. SHE), the relative ECSA of Pt2Fe1-NW/C dropped down to 46%, which was 2 

times better than Pt/C catalyst, and the mass activity at 0.85 V (vs. SHE) for Pt1Fe1-

NW/C was 39.9 mA/mgPt, which is twice Pt/C(18.6 mA/mgPt). 

 

3.2 Experimental 

3.2.1 Synthesis of PtxFex-NWs 
 

The synthesis procedure of Pt1Fe1-NWs is described as follows:92-94 197 mg of Pt(acac)2 

(0.5 mmol) was first dissolved in 20 ml of oleylamine at 60°C, under the protection of N2 

gas flow. The temperature was then quickly raised to 120°C, and was kept at that 

temperature for 30 minutes. 120 µl of Fe(CO)5 (1.0 mmol) was then injected into the 

synthesis system. The system was then heated to 160°C and was held at that temperature 

for another 30 minutes before it was cooled down to room temperature (RT) by removing 

the mantle heater. 10 ml of hexanes and 50 ml of ethanol were mixed with the obtained 

suspension and the product was separated by centrifugation (8,000 rpm for 10 minutes). 

The product was further cleaned by being redispersed in 5 ml of hexanes and precipitated 

by adding 25 ml of ethanol, and was separated by centrifugation at the same conditions. 
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The procedure was repeated three times and the final product Pt1Fe1-NW was stored in 10 

ml of hexanes. 

 

Following similar procedures, 60 µl (0.5 mmol) and 24 µl (0.2 mmol) were injected to 

prepare Pt2Fe1-NW and Pt5Fe1-NW, respectively. 

 

3.2.2 Physical characterizations 
 

The morphologies and structures of the PtxFey-NWs were analyzed by Z-contrast 

transmission electron microscopy (Hitachi HD2000 STEM). The compositions of the 

PtxFey-NWs were determined by energy dispersive X-ray spectroscopy (EDX) connected 

to a JEOL JEM-4000JX TEM instrument with an operating voltage of 200 kV. XRD 

patterns of the PtxFey-NWs were collected following the procedure described in Section 

2.2.5. 

 

3.2.3 Electro-chemical studies 
 

The ECSAs, durabilities, and ORR activities of the PtxFey-NWs were investigated in half 

cell setups (see Section 2.3.1). Before testing, 1.0 mg of PtxFey-NWs (dispersed in 

hexanes) was deposited on 4.0 mg carbon black (dispersed in ethanol by sonication for 1 

hour) to make PtxFey-NW/C catalysts. The working electrode with PtxFey-NWs catalyst 

or commercial Pt/C catalyst was prepared by the procedure mentioned in Section 2.3.1.1.  

 

The durabilities of PtxFey-NW/C catalysts and commercial Pt/C catalyst were evaluated 

by a 1000-cycle CV scan from 0 – 1.3 V (vs. SHE) in 0.5 M H2SO4, at the sweep rate of 

50 mV s-1. The ECSA was calculated based on the hydrogen underpotential desorption 

peak:95  

 r
e

QS
m C

=
×

 (2-3) 
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where m is the mass of Pt on the GCE, Qr is the hydrogen underpotential desorption 

charge, and C is the charge density constant (0.21 mC cm-2 for Pt polycrystals). Qr is 

calculated by the equation: 

 1 ( )
b

r dla
Q I I dE

υ
= −∫  (2-4) 

where υ is the sweep rate, a and b are 0 V and 0.4 V (vs. SHE), which are the starting and 

stopping potentials for the hydrogen underpotential desorption on Pt polycrystals, and Idl 

is the current generated from double layer charging, which is assumed to be a constant.  

 

The rotating disk electrode (RDE)-based ORR activities on these catalysts were measured 

by a linear scan voltammetry (LSV), performed in O2-saturated 0.5 M H2SO4 from 0 – 

1.2 V (vs.SHE). The ORR activities on these catalysts were presented by the kinetic 

current density (ik), calculated by equation (2-7), which is derived from the Levich-

Koutecky equation:96 

 d
k

d

i ii
i i
×

=
−

 (2-7) 

The mass activity (MA) is obtaining by normalizing the kinetic current (ik×A) with the Pt 

loading on the GCE: 

 MA= k

Pt

i A
m
×  (3-5) 

 

3.3 Results and discussion 

3.3.1 Physical characterizations 
 

The chemical compositions of Pt:Fe in the PtxFey-NWs were determined by TEM-EDX, 

which are 0.8:1, 2.4:1, and 4.0:1 for Pt1Fe1, Pt2Fe1, and Pt5Fe1-NWs, respectively. It is 

interesting that the Fe(CO)5 that was initially injected was only partially incorporated into 

the PtxFey-NWs, due to the evaporation of a portion of the Fe(CO)5 under the reaction 

temperature (120 – 160°C), which is higher than its boiling point of 104°C.94,97 
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The XRD patterns collected from PtxFey-NWs and commercial Pt/C are shown in Fig. 3.4. 

The diffraction peak at 25.1° is attributed to the (002) graphitic facet of carbon in Pt/C 

catalyst, while the diffraction peaks at 2θ = 39.7°, 46.2°, 67.3°, and 81.2° are assigned to 

the Pt (111), (200), (220), and (311) diffraction peaks, respectively. In all XRD patterns 

of PtxFey-NWs, no diffraction peak of Fe has been observed, indicating that the Fe has 

formed an alloy with Pt or is in amorphous phases.95,98,99 The average metal crystal sizes 

of commercial Pt/C and as-prepared PtxFey-NWs are calculated by the Debye-Scherrer 

formula (equation 2-1):95,100,101 

 
2 max

0.9
cos

KL
B

α

θ

λ
θ

=  (2-1) 

The results yielding from (220) peaks for Pt/C, Pt5Fe1, Pt2Fe1, and Pt1Fe1-nanowires are 

1.8, 4.2, 3.0 and 2.6 nm, respectively. As the Fe amount in the catalysts increases, the 

diffraction peaks shift to the right (marked by the dash lines for (111) and (220) peaks in 

Fig. 3.5). The lattice parameters of Pt/C and PtxFey-NWs were calculated from Pt (220) 

diffract peaks using equation (2-2), which are 3.942, 3.902, 3.882, 3.871 Å for Pt/C, 

Pt5Fe1, Pt2Fe1, Pt1Fe1, respectively. The result shows that a better Pt-Fe alloy structure 

was formed with the Fe amount increasing in the catalysts. It is interesting to point out 

that the lattice parameter of Pt1Fe1-NWs is very close to that of Pt1Fe1 solid solution 

(3.877 Å, PDF 29-717), indicating a formation of ideal solution phase formed in these 

nanowires. 
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Fig. 3.4 (a) XRD patterns of PtxFey-NWs (1:1, 2:1, and 5:1) and commercial Pt/C catalyst; 
(b) detailed Pt (220) diffraction peaks. 
 

Typical TEM images of the PtxFey-NWs are shown in Fig. 3.5. It can be found that 

PtxFey-NWs can be successfully synthesized at a Pt-Fe composition range of 1:1 – 2:1. 

The average diameters are 2.7 nm for the Pt1Fe1-NW and 2.9 nm for the Pt2Fe1-NW, 

which are in good agreement with the XRD results. It is not easy to measure the lengths 

(a) 

(b) 
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of the PtxFey-NWs due to their curved formation. However, when comparing Fig. 3.5 (a) 

and (b), it is quite obvious that with the Fe amount decreasing, the nanowires become 

shorter and thicker. When the atom ratio of Pt to Fe further increases to 5: 1, the majority 

of the nanostructures are particles, and minority short rods (shown in Fig. 3.5 (c)). The 

Pt5Fe1 nanostructures have an average diameter of 4.2 nm with a broad size distribution. 

Comparison of TEM images of the three samples leads to a conclusion that the Fe 

amount in this synthesis plays a critical role on the shape and size of the products. At 

higher Fe concentrations, long and thin nanowires can be predominantly produced, while 

at low Fe concentrations, the major products are nanoparticles with a larger diameter. 

During the synthesis, OAm works as a solvent, surfactant, and reductant, and self-

organizes into an elongated reverse-micelle-like structure,94 with a higher density of 

surfactant on the sides of PtxFey-NWs, and a little on the tips and ends. Therefore, atoms 

are more likely to be attached/added on the tips and ends, leading to the formation of NW 

structure. The Fe atom is likely to couple with the Pt atom through a spin-orbit coupling 

and hybridization between Fe 3d and Pt 5d states,102,103 and incorporated into Pt fcc 

crystalline structure to form a uniform phase.94 This incorporation of Fe into Pt 

crystalline structure is also evidenced by the XRD pattern, by the shift of Pt diffraction 

peak to a higher 2θ angle and the disappearance of Fe diffraction peak. Reducing the 

amount of Fe changes the coupling between Pt and Fe, and therefore will affect the 

morphology of PtxFey-NWs.97 
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Fig. 3.5 TEM images of (a) Pt1Fe1-NW; (b) Pt2Fe1-NW; and (c) Pt5Fe1-NW. 
 

(a) 

(b) 

(c) 
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A typical HR-TEM image of Pt1Fe1-NW is shown in Fig. 3.6. The interfringe distance 

was measured to be 0.198 nm, indicating that the side of the NW is covered by Pt (100) 

planes. This result is in good agreement with other publications that the PtxFey-NW 

grows along Pt (100) direction.94 

 

 
Fig. 3.6 HR-TEM image of Pt1Fe1-NW. 
 

3.3.2 Electro-chemical characterization 
 

The durability of the PtxFey-NWs and the Pt/C catalysts were evaluated by the 

accelerated CV-based tests in 0.5 M H2SO4. The cyclic voltammograms for the PtxFey-

NWs and the Pt/C catalysts before and after 1,000 cycles are summarized in Fig. 3.7. 

Comparing to the cathode catalyst assembled in MEA, in which only the parts of Pt 

contacting with the ionomer are active, the catalysts tested in three-electrode setups are 

completely exposed to the liquid electrolyte.32 In addition, the CV scan range of 0 – 1.3 V 

is a big challenge to the Pt (the redox potential of Pt/Pt2+ is 1.19V), the deterioration of 

the catalysts is accelerated. Therefore, as shown in Fig. 3.7, the hydrogen underpotential 
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desorption peaks on all of these catalysts are remarkably suppressed after the accelerated 

durability tests, due to the aggregation and dissolution of Pt-nanostructures. The original 

ECSA of Pt1Fe1-NW/C, Pt2Fe1-NW/C, Pt5Fe1-NW/C and Pt/C calculated from their 

corresponding hydrogen underpotential desorption peaks are 52.2, 45.6, 38.5, and 61.4 

m2 g-1, respectively. Although the commercial Pt/C demonstrates a better initial ECSA, it 

is noted that the Pt utilization is 76% for Pt1Fe1-NW/C, which is nearly twice as that of 

Pt/C (40%). The relative ECSA losses are plotted in Fig. 3.8. After 1000 cycles, the 

relative ECSA loss of PtxFey-NWs/C is less than Pt/C catalysts. The absolute ECSA of 

Pt2Fe1-NW/C after 1000 cycles remains 21 m2/g (46% of its original ECSA), which is 

nearly twice than that of the Pt/C catalyst (12 m2/g, 20% of its original ECSA). It is 

interesting to find that Pt1Fe1-NW/C has a remarkable increase in ECSA within the first 

150 cycles. This is probably because the leaching out of Fe in the few monolayers of the 

NW structure,104 which will leave a highly active Pt-rich surface. This trend can also be 

observed in the Pt2Fe1-NW/C sample, which also has a small increase at around 50 cycles. 

The better durability of PtxFey-NWs/C may lie in two possible reasons: 1) The nanowire 

samples have a very large aspect ratio comparing to Pt/C catalysts. Therefore, the 

nanowires do not easily aggregate as nanoparticles, which has been identified as a major 

cause for the surface area reduction for nanoparticle (0-D sphere) electro-catalysts.86 2) 

The spin orbit coupling and the hybrization of between Fe 3d and Pt 5d states will lead to 

an enhancement of the chemical stability of PtFe alloy,94,97 and further result in the 

durability improvement of PtxFey-NWs. 
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Fig. 3.7 Cyclic voltammograms of PtxFey-NWs ((a) – (c)) and the Pt/C (d) catalysts, 
before and after the accelerated durability tests 
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Fig. 3.8 Accelerated durability tests on PtxFey-NW(1:1, 2:1, 5:1)/C and Pt/C catalysts in 
0.5 M H2SO4, 0-1.3 V vs. SHE, survived ECSAs after 1,000 cycles are listed on the right 
side. 
 

Meanwhile, PtxFey-NWs/C catalysts also exhibit higher ORR activity when compared 

with that of the commercial Pt/C catalyst in the course of the durability test. The ORR 

polarization curves of Pt1Fe1-NWs/C and Pt/C catalysts are shown in Fig. 3.9. The initial 

onset potential of Pt1Fe1-NWs is 0.95 V (vs. SHE), which is 0.02 V lower than that of the 

commercial Pt/C (0.93 V vs. SHE), while after the durability test, the onset potential of 

the Pt1Fe1-NWs/C (0.93 V vs. SHE) still lower than that of the Pt/C (0.92 V vs. SHE), 

indicating a better catalytic property of Pt1Fe1-NWs/C towards ORR reaction exited 

throughout the durability test. The enhanced ORR activity of Pt1Fe1-NWs/C can also be 

proved by the kinetic currents density (ik) calculated by equation (2-7): 

 d
k

d

i ii
i i
×

=
−

 (2-7) 

The diffusion limiting currents (id) were collected at the region below 0.3 V. After 

normalizing the kinetic currents with the metal loading by equation (3-5), Pt1Fe1-NWs/C 

shows a MA of 77.1 mA mg-1
Pt at 0.85V, while that of the Pt/C was 65.7 mA mg-1

Pt. 

After the durability test, the MA of Pt1Fe1-NWs/C only decreased to 39.9 mA mg-1
Pt, 
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which is twice that of the Pt/C (18.6 mA mg-1
Pt). The calculation of MA shows that 

PtxFey-NWs/C possesses both a higher ORR activity and better electro-chemical 

durability than commercial Pt/C catalysts. While the better durability can be attributed to 

the high aspect ratio 1-D nanowire structure and the spin orbit coupling and the 

hybrization of between Fe and Pt, the reasons for the better ORR activity may rise from 

the electronic effects. It is well known that the ORR activity can be enhanced through the 

modified electronic structure of Pt surface layer by underlying M (Fe, Ni, Co, etc) sub-

layer.104-107 The surface transition metal Fe with a redox potential much lower than 

precious metal Pt, which will leach out under electro-chemical cycling, and could lead to 

formation of Pt-rich shell nanostructures.104 The adsorption energy of oxygen on surface 

Pt will be reduced by the sub-layer Fe atoms, resulting in a better ORR activity than that 

of commercial Pt/C catalyst.  
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Fig. 3.9 ORR polarization curves of Pt1Fe1-NWs and commercial Pt/C catalysts before 
and after the accelerated durability test, test conditions: 0.5 M H2SO4, 2500 rpm, room 
temperature. 
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3.3 Conclusion 
 

In this study, ultra-thin PtxFey-NWs were successfully prepared through a solution-phase 

reduction route. The PtxFey-NWs/C have higher electro-chemical surface areas and Pt 

utilization (i.e. 52 m2/g and 76% for Pt1Fe1-NW/C). They can survive better than Pt/C 

under accelerated electro-chemical cycling tests. It is very interesting to find that PtxFey-

NWs an enhanced intrinsic ORR activity comparing to commercial Pt/C. Therefore, the 

ultra-thin nanowires show great potentials as promising fuel cell electro-catalysts. 

 

Equation Section (Next) 

  



 

41 

 

Chapter 4 Pd-Fe nanoleaves as electro-catalysts 

for ORR in alkaline electrolyte* 

4.1 Introduction 

4.1.1 Background 
 

Alkaline fuel cells or alkaline electrolyte fuel cells were extensively studied between 

1960s – 1980s.108 However, they gradually lost their popularity to the newly emerged 

proton-exchange membrane fuel cells (PEMFCs), which are more flexible and eliminated 

the electrolyte carbonation and leakage problems. However, fuel cells have to meet three 

criteria before commercialization: cost, performance, and durability. From this point of 

view, the widespread application of PEMFC is obstructed by its sluggish ORR kinetics 

and its heavy dependence on high price Pt-based catalysts. Recently, novel solid alkaline 

membranes have been developed and demonstrated a high anion exchange conductivity 

and carbonate tolerance,109-113 thereby leading to the resurgence of the low-temperature 

anion-exchange membrane fuel cells (AEMFCs).114-116 The anion-exchange membrane 

fuel cell (AEMFC) possesses numerous advantages over PEMFC on both cathode 

kinetics and ohmic polarizations.117 Comparing to the PEMFC, the less corrosive nature 

of AEMFC ensures a higher durability of cathode catalyst.115 The relatively lower 

cathode working potentials enables the application of non-Pt oxygen reduction catalysts. 

In addition, the lower adsorption of spectator ions and the improved charge/ion transfer in 

alkaline environment greatly promoted the kinetics of oxygen reduction reaction.24,28,118-

122 These advantages of AEMFC make it more attractive for ORR catalysts in high pH 

media. 

 

*The material contained in this chapter was previously published in Chemistry of 
Materials. Reprinted with permission from Chemistry of Materials 2011; 23(6), Zhiyong 
Zhang, Karren L. More, Kai Sun, Zili Wu, and Wenzhen Li, “Preparation and 
characterization of PdFe nanoleaves as electrocatalysts for oxygen reduction reaction”, 
1570-1577. Copyright 2011American Chemical Society.  
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4.1.2 Thermodynamics in H2/O2 AEMFC 
 

Different from the PEMFC where H+ is the charge carrier, in an AEMFC, the OH- is 

transported from the cathode to the anode. The anode reaction is as follows:109 

 0
2 22 4 4 4     0.828 V vs. SHEaH OH H O e E− −+ → + = −  (4-1) 

while at the cathode: 

 0
2 22 4 4     0.401 V vs. SHEcO H O e OH E− −+ + → =  (4-2) 

The overall reaction is: 

 0
2 2 22 2     1.229 VcellH O H O E+ → =  (4-3) 

 

4.1.3 ORR mechanism in alkaline electrolyte 
 

A brief ORR pathway was proposed by Schmidt, et al. as shown in Fig 4.1. Similar to the 

ORR in acidic media, O2 is first adsorbed on catalysts to form O2, ad, then it could either 

be electro-chemically reduced directly by k1 path to form OH- by a 4-e- path, or go 

through a set of pathway through the intermediate of HO-
2, ad by k2 path. The adsorbed 

HO-
2 could further go through k3 path to form OH- (2+2e-), or desorbed into the bulk of 

the solution, or even be catalytically decomposed back to O2 and water. 

 

 
Fig. 4.1 Proposed schemes for oxygen reduction reaction (ORR) in alkaline media31. 
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4.1.4 Non-Pt ORR catalysts in alkaline media 
 

One of the most attractive advantages of AEMFC is its relatively mild cathode catalyst 

working conditions, which enables the use of a series of non-Pt ORR catalysts, including 

non-Pt metal catalysts: Pd,119,123-125 Rh,119,126 Ir,119 Ru,119,127 PdFe,128,129 PdAg,130-133 

PdNi,120, and Ag,134-137, etc; transition cheap metal – macrocomponds catalysts: Fe-,138 

Co-,139,140 FeCu-,141,142 based nitrogen-containing organic macro-compounds; and non-

metal catalysts: N-doped CNT,143-146 N-doped carbon sphere,147 N-doped mesoporous 

carbon,148, N-doped graphene,149 iodine-doped graphene.150 However, among these 

catalysts, only Pd and Pd-based catalysts possess intrinsic ORR activities competitive to 

Pt, and are most widely studied. Jiang et al. investigated the ORR on Pd/C and Pt/C in 

alkaline solutions, and demonstrated a lower peroxide yields on Pd/C at the mixed 

kinetic-diffusion control region.122 Pt (111) single crystal covered by a monolayer of Pd 

has demonstrated higher intrinsic ORR activity than Pt (111) in 0.1 M KOH, which is due 

to an optimization of the balance between the kinetics of O-O bond breakage and electro-

reduction of the intermediates.28 Pd-Ni alloy nanoparticles are reported to be able to 

facilitate a high number of electron-transfer during oxygen reduction in high pH media, 

and thus exhibit a comparable ORR activity as Pt, which is attributed to Pd lattice 

shrinkage due to the incorporation of Ni.120 There is an imperative need to explore novel 

Pd nanostructures with advantageous facets and/or optimized electronic properties to 

further improve the ORR activity in alkaline electrolyte. 

 

 

In this chapter, Pd-Fe nanoleaves (NLs) have been prepared through an organic solution 

phase reduction synthesis route. The morphology investigations clearly show this newly-

developed structure is assembled from Pd-rich nanowires (NWs) surrounded by Fe-rich 

sheets. The Pd-NWs have a diameter in range of 1.8 – 2.3 nm and a large electro-

chemical surface area of > 50 m2 g-1. By etching away the enveloping Fe-rich sheets 

using an organic acid, the Pd-rich NWs are exposed on the surface of nanoleaves, and 

they demonstrated high reactivity towards electro-catalytic reduction of oxygen in a 0.1 
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M NaOH electrolyte: 3.0× increase in the specific activity and 2.7× increase in the mass 

activity compared with a commercial Pt/C catalyst (at 0 V vs. Hg/HgO/1.0 M NaOH).  

 

4. 2 Experimental 

4.2.1 Synthesis of PdxFey-NLs 
 

PdxFey-NLs (Pd-Fe atomic ratio: 1:1, 2:1, and 5:1) were prepared through a solution 

phase reduction approach.92,93 The synthesis of Pd1Fe1-NL is described as follows: a 

mixture of 153 mg of Pd(acac)2 (0.5 mmol) and 20 ml of oleylamine (OAm) was rapidly 

heated to 105oC under a blanket of nitrogen, at which time 120 µl of Fe(CO)5 (1.0 mmol) 

was immediately injected into the synthesis system. The temperature was held at 105°C 

for 20 minutes, and then raised to 160oC and held for an additional 30 minutes. The 

solution was cooled to room temperature by removing the mantle heater. A mixture of 10 

ml of hexane and 50 ml of ethanol was added, and the product was separated by 

centrifuging at 8,000 rpm for 10 minutes. The product was then cleaned by re-dispersing 

it in a mixture of 5 ml of hexane and 25 ml of ethanol and then separating it by 

centrifuging. This is done for three more times. The final Pd1Fe1-NL (Pd-Fe atomic ratio: 

1:1) sample was stored in 10 ml of hexane. Following a similar procedure, 60 µl (0.5 

mmol) and 24 µl (0.2 mmol) of Fe(CO)5 were injected in the synthesis solutions to 

prepare Pd2Fe1-NL and Pd5Fe1-NL, respectively. To investigate the effect of synthesis 

conditions on the nanoleaves morphology, 120 µl of Fe(CO)5 was injected into the 

system at different temperatures, 60oC (immediately at this temperature) and 105oC (after 

aging at this temperature for 20 minute), the samples were named Pd1Fe1-NL-B, and 

Pd1Fe1-NL-C, respectively.  
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4.2.2 Preparation of carbon supported Pdx-NLs 
 

Appropriate amount of PdxFey-NL was deposited on carbon black through the procedure 

in Section 2.1.2 to obtain carbon supported PdxFey-NL sample (including Pd5Fe1-NL/C, 

Pd2Fe1-NL/C and Pd1Fe1-NL/C ) with a Pd loading of around 20 wt.%. To remove the 

Fe-rich sheets that enveloped the Pd-rich NWs, an organic acid treatment was performed. 

In detail, 100 mg of the as-prepared PdxFey-NL/C sample was dispersed in 20 ml of 

hexane under sonication to form a uniform ink. This was followed by an injection of 20 

ml of acetic acid and heating at 70°C for 10 hours. After the system was cooled to room 

temperature, 50 ml of acetone was added and the product was separated by centrifuging 

the mixture at 5,000 rpm for 5 min. The product was washed in 20 ml of acetone four 

more times to remove all the acetic acid, and then dried at 40°C overnight. After the 

organic acid treatment, the resulting product from the PdxFey-NL/C was designated as 

Pdx-NL/C (since most of Fe has been corroded away).  

 

4.2.3 Preparation of carbon supported Pd 
 

Serving as a control sample, a Pd/C (20 wt%) was synthesized through our well-

established ethylene glycol (EG) reduction method,44,100 which can be briefly described 

as follows: 106 mg of carbon black was dispersed uniformly in 25 mL of EG under 

sonication and a solution of 5 mL EG containing 58 mg Pd(NO3)2 was then added into 

the system dropwisely. A solution of 1.0 M NaOH (in EG) was added to adjust the pH of 

the synthesis solution to above 13, and then the mixture was heated at 135°C for 3 hours 

to reduce the Pd completely. After the system cooled down to room temperature, the pH 

of the synthesis system was adjusted to 1 – 2 by 1.0 M HCl. The Pd/C catalyst was 

obtained after filtration, washing, and drying at 70°C overnight. 
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4.2.4 Physical characterizations 
 

The composition, morphology, and structure of the NLs were analyzed by X-ray 

diffraction (XRD), high-resolution transmission electron microscopy (HR-TEM), high 

angle annular dark field (HAADF) scanning transmission electron microscopy (S/TEM) 

coupled with high-spatial-resolution energy dispersive spectroscopy (EDS), scanning 

electron microscopy (SEM). X-ray photoelectron spectroscopy (XPS), inductively 

coupled plasma atomic emission spectroscopy (ICP-AES), and thermogravimetry 

analysis (TGA). 

 

4.2.5 Electro-chemical tests 
 

Cyclic voltammetry (CVs) tests and rotating disk electrode (RDE)-based ORR activity 

tests of the Pdx-NLs, Pd/C, and commercial Pt/C (20 wt%, E-TEK) catalysts were 

investigated at room temperature, with a Hg/HgO/1.0 M NaOH reference electrode 

(0.140 V vs. NHE). The working electrode was prepared through the procedure 

elucidated in Section 2.3.1.1. The CV tests were performed from -0.87 – 0.50 V (vs. 

Hg/HgO/1.0 M NaOH) for 20 cycles. To exclude the hydrogen penetration/multi-layer 

absorption issues on Pd, the PdO reduction peak was chosen instead of the hydrogen 

desorption peak to evaluate the ECSA, which was calculated by modified equation (2-3): 

  r
e

QS
m C

=
×

 (2-3) 

where m is the mass of Pd on the GCE, Qr is the PdO reduction charge, and C is the 

charge density constant (0.405 mC cm-2 for Pd polycrystals). Qr is calculated by the 

equation: 

 1 ( )
b

r dla
Q I I dE

υ
= −∫  (2-4) 

where υ is the sweep rate of 50 mV s-1, a and b are -0.05 V and -0.50 V (vs. Hg/HgO/1.0 

M NaOH), which are the starting and stopping potentials for the PdO reduction peak, and 

Idl is the current generated from double layer charging.  
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For the ORR activity test, a linear scan from -0.80 – 0.20 V (vs. Hg/HgO/1.0 M NaOH) 

was conducted on the catalyst in 0.1 M NaOH at room temperature and ambient pressure. 

The kinetic current density (ik) was calculated using equation (2-7): 

 d
k

d

i ii
i i
×

=
−

 (2-7) 

where i is the current density collected from the working electrode, and id is the diffusion 

limiting current density collected at the region below -0.3 V (vs. Hg/HgO/1.0 M NaOH). 

 

The mass activity (MA) is calculated by normalizing the ik with the Pd loading on the 

GCE: 

 MA= k

Pd

i A
m
×  (3-5) 

 

4.3 Results and discussion 

4.3.1 Physical characterizations 
 

The bulk chemical compositions of PdxFey-NL/C catalysts were determined by ICP-AES. 

As shown in Table 4. 1, the atomic ratio of Pd:Fe in the PdxFey-NL catalysts is 0.98: 1 

for Pd1Fe1-NL, 1.97:1 for Pd2Fe1-NL, and 4.92:1 for Pd5Fe1-NL. It is interesting to note 

that the initially injected Fe(CO)5 was only partially incorporated into the PdxFey-NL 

catalysts, i.e. only 0.51 mmol Fe was incorporated in Pd1Fe1-NL at an injection of 1.0 

mmol Fe(CO)5. This is due to the evaporation of a portion of the Fe(CO)5 at the aging 

temperature of 160°C, which is higher than its boiling point of 104°C.94,97    
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Table 4.1 
Atomic composition, diameter, and lattice parameter of Pd/C and PdxFey-NLs. 

 

 

Atomic composition 

(by ICP- AES) 

Surface atomic 

composition (by XPS) 

Diameter 

of Pd rich 

NWs 

(nm, by 

TEM) 

Lattice 

parameter 

(Å, by 

XRD) 

Before 

acid 

treatment 

After 

acid 

treatment 

Before 

acid 

treatment 

After acid 

treatment 

Pd/C - - - -  4.2a 3.891 

Pd1Fe1-NL Pd0.98Fe1 Pd16.8Fe1 Pd2Fe1 Pd17.3Fe1 1.8 3.888 

Pd2Fe1-NL Pd1.97Fe1 Pd11.4Fe1 - - 2.0 3.880 

Pd5Fe1-NL Pd4.92Fe1 - - - 2.3 3.885 
a Determined by Pd(220) peak in the XRD patterns using Debye-Scherrer formula. 

 

The XRD patterns of the PdxFey-NL/C and Pd/C catalysts are shown in Fig.4.2 (a). Both 

Pd/C and PdxFey-NL/C catalysts displayed a typical face-centered cubic (fcc) XRD 

pattern. However, it is observed that all of the diffraction peaks for each of the PdxFey-

NL/C catalysts were slightly shifted to a higher 2θ (Fig.4.2 (b).), indicating that some Fe 

atoms may substitute in the Pd lattice, forming an alloy. No obvious diffraction peaks for 

Fe, Fe2O3, or other Fe oxides were observed in the XRD data of the PdxFey-NL/C 

catalysts, which suggests that most of the Fe (primarily associated with the Fe sheets, 

described in detail in the following sections) was amorphous in nature. The average Pd 

particle size obtained from the Pd (220) peak using the Debye-Scherrer formula (equation 

2-1) is 4.2 nm, while the broad Pd diffraction peaks associated with the PdxFey-NLs/C 

(compared to Pd/C) indicate the PdxFey-NWs have smaller diameters.  
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Fig. 4.2 (a) XRD patterns of Pd/C and PdxFey-NL/C samples with different PdFe 
compositions produced by the solution-phase reduction method, and (b) detailed Pt (220) 
diffraction peaks. 
 

Fig. 4.3 shows TEM images of PdxFey-NLs with different Pd-Fe atomic ratios of 1:1, 2:1, 

and 5:1. It is clearly observed that the amount of the sheet-like material in the NLs was 

reduced with smaller amounts of Fe injected into the synthesis system, suggesting that the 

sheets are Fe-based phases and the Fe concentration (in the synthesis system) controls the 

(a) 

(b) 
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morphology of the as-prepared nanowires embedded in the sheets. As shown in Fig. 4.3 

(a) and (b), a higher Fe concentration results in long, thin and straight Pd-NWs with a 

size of ~ 100 nm × 1.8 nm (length × diameter). As the Fe concentration is decreased by 

half, the size of Pd-NWs is ~ 60 nm × 2.0 nm, as shown in Fig. 4.3 (c) and (d). A further 

decrease of the Fe content to one fifths leads to shorter and slightly wider nanorods with a 

size of ~ 30 nm × 2.3 nm, as shown in Fig. 4.3 (e) and (f). Therefore, decreasing the Fe 

content results in the formation of 1-D Pd nanostructures with shorter lengths and larger 

diameters. A typical HR-TEM image of the Pd-NWs in the Pd1Fe1-NL sample is shown 

in Fig. 4.3 (g), which clearly shows that the side surfaces of the Pd-NWs are 

predominantly Pd (111) planes, while (110) and (100) planes are at the ends and tips of 

the NWs.  

 

 

 

(b) (a) 

(c) (d) 
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Fig. 4.3 TEM images of the PdFe-NLs, (a,b) Pd1Fe1-NLs, (c,d) Pd2Fe1-NLs, (e,f) Pd5Fe1-
NLs, and HRTEM image of Pd1Fe1-NLs (g), showing Pd (111) –rich side and Pd (110) 
and (100) on tips and edges. 
 

To avoid nanoleave agglomeration, the PdxFey-NLs were deposited on carbon black 

before acid treatments. The morphology, compositional architecture, and crystalline 

structure of PdxFey-NLs/C were compared to the as-prepared PdxFey-NLs. As shown in 

Fig. 4.4 (a), the Pd1Fe1-NLs were well attached to the carbon black support. The HR-

EDS elemental mappings shown in Fig. 4.4 (b) – (d) differentiate the Pd-rich-NW veins 

(Pd shown in green) and the Fe-rich-sheet blades (Fe shown in red) of the nanoleaves. It 

is noted that there is an overlap between the Pd and Fe, indicating that a small amount of 

Pd is in the Fe-rich sheets and that the Fe-rich sheets encapsulate the Pd-NWs. The 

(e) (f) 

(g) 
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encapsulation of the NWs by the Fe-rich sheets is also evident from the HAADF-STEM 

and TEM images in Fig. 4.4 (e) and (f), where the thin Fe-rich layers encapsulate the Pd-

NWs. In addition, a direct comparison between simultaneously acquired HAADF-STEM 

(Fig. 4.4 (g)) and SEM (Fig. 4.3 (h)) images clearly show this encapsulation effect, 

where the HAADF-STEM image predominantly emphasizes the high atomic number 

NWs within the NL structure and the SEM image shows the topography (sheet-like 

encapsulation) of the NL. 

 

 

 

(a) (b) 

(c) (d) 
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Fig. 4.4 Morphology of Pd1Fe1-NLs/C: (a) TEM image, (b) HAADF-STEM image, (c) 
and (d) elemental mapping (HR-EDS); (e) and (f) HAADF-STEM and TEM images 
showing NWs encapsulated by Fe-rich sheets (designated by yellow arrows), (g) and (h) 
HAADF-STEM and SEM images showing the encapsulation of NWs in Pd1Fe1-NL and 
its topography. 
 

The XPS spectra for the Pd1Fe1-NL/C sample are shown in Fig. 4.5. The large-range XPS 

survey clearly shows Pd, Fe, and C, as well as trace amounts of S and N that originate 

from the carbon black and absorbed OAm, respectively. Due to the fact that the as-

prepared NLs were exposed to air, O was also detected. The atomic ratio of Pd and Fe, 

which was calculated based on narrow scans at 329 – 347 eV and 700 – 740 eV, is close 

to 2:1. It is interesting to observe that the surface atomic ratio of Pd to Fe determined 

from XPS is twice that of the bulk composition obtained from ICP-AES (Pd:Fe = 0.98:1). 

As XPS measures the top-most several nanometers of material, the difference of atomic 

ratios from XPS and ICP are consistent with a higher concentration of Pd on the Fe-

substrates in the NLs. Combining the evidence for encapsulation of Pd-NWs by Fe-rich 

(e) (f) 

(g) 

(h) 
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sheets from the HAADF-STEM and TEM analysis, with the Pd-Fe composition from the 

XPS and ICP-AES results, we can reveal that the PdxFey-NLs has a unique structure with 

Fe-rich sheets as a substrate and Fe-covered Pd-NWs on the surface. Since Pd-NWs are 

only covered by a thin Fe layer, XPS analysis could detect and count both Pd and Fe in 

the analysis area. 
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Fig. 4.5 XPS spectrum of Pd1-NL/C (a) Survey scan, (b) Narrow scan of Fe, (c) Narrow 
scan of Pd 
 

Based on the characterization results presented, a mechanism is proposed for formation 

of the PdFe nanoleaves. Pd(acac)2 is dissolved in OAm with a quick injection of Fe(CO)5 

at 105oC, which facilitates fast Pd nucleation and produces a large density of Pd nuclei. 

This process can be evidenced by an immediate color change from bright yellow to dark 

black. The optimized temperature promotes a balance between the generation of new Pd 

atoms and the growth of Pd atoms on existing Pd nuclei. The OAm in the system works 

as solvent, surfactant, and a reducing agent.94,152 It is demonstrated to facilitate the 

generation of Pd (111) surface plane in previous published work, 152 indicating that OAm 

will selectively bond on Pd (111) facets, leading to a higher surfactant density on these 

surfaces. Therefore, Pd atoms are more easily attached or added on the (100) and (110) 

facets at the NW ends, which have less surfactants, resulting in the elongation of the 

nanowire parallel to the (111) surface facets. Fe(CO)5 injected into the system also 

facilitates the formation of uniformed Pd-NWs. Without Fe(CO)5, the main products in 

pure OAm system are Pd nanoparticles. 152 In the present study, it is also observed that 

short rods and nanoparticles co-exist in the Pd5Fe1-NL sample. Unlike Pt, which can form 

a PtFe alloy NW through a spin-orbit coupling and hybridization between Fe 3d and Pt 

5d, 94,97 Pd seems more likely to form NWs with very small amounts of Fe dissolved in it, 

(c) 



 

56 

 

which is evidenced by slight shifts observed for the Pd (220) peak (less formation of a 

PdFe alloy structure) in Fig. 4.2 and the HR-EDS elemental mapping in Fig. 4.4. 

Considering the fact that OAm is not a strong ligand for Fe,153 Fe atoms prefer to grow as 

Fe-rich sheets, which is supported by the fact that less Fe-rich sheets are observed with 

decreasing Fe concentration, as shown in Fig. 4.3 (a), (c), and (e). For the Pd fcc 

structure, the surface energy of low-index crystallographic facets in vacuum follows a 

sequence of γ (111) < γ (100) < γ (110), Pd atoms are expected to nucleate and grow into 

cuboctohedral or quasi-spherical seeds with a mixture of (111) and (100) facets in order 

to minimize the total surface energy.59,154,155 Under the synthesis conditions describe 

herein, the Pd-NWs in PdFe-NLs were enveloped in Fe-rich sheets, which may 

effectively prohibit the deformation or breakage of the Pd-NWs to convert into Pd 

nanoparticles with a surface energy balance between (111) and (100) facets. This further 

suggests that thin and long Pd nanowires have an ability of maintaining a large portion of 

surface Pd (111) plane, which cannot be achieved by Pd nanoparticles with a 

cuboctohedron shape. When the Fe amount decreased to one half of that of Pd, not 

enough Fe sheets were formed to protect the long and straight Pd-NWs from deformation, 

leading to the formation of curved nanowires, as shown in Fig. 4.3 (c). Further reduction 

in the Fe amount would likely lead to reduced Fe-rich sheet formation, and result in the 

enhanced likelihood of breakage and rearrangement of Pd-NWs, which is evidenced by 

the formation of shorter and thicker Pd nanorods, as shown in Fig. 4.3 (e).  

 

To further clarify the proposed nanoleaves growth mechanism, we investigated the 

effects of injecting Fe(CO)5 on the formation of the Pd1Fe1-NLs. For these experiments, a 

sample of Pd1Fe1-NL-B was prepared by mixing Pd(acac)2 and Fe(CO)5 at 60oC. A 

sample of PdFe-NL-C was produced by the injection of Fe(CO)5 after reducing Pd(acac)2 

at 105oC for 20 minute. The TEM images of Pd1Fe1-NL-B and Pd1Fe1-NL-C are shown 

in Fig. 4.6. Although Pd-NWs with small diameters of 2 – 3 nm are produced for each 

synthesis condition, the homogeneity of these two samples are not well controlled 

compared to Pd1Fe1-NL. Lowering the injection temperature of Fe(CO)5 restricted the 

reduction rate of Pd(acac)2, thus leading to a slow and continuous nucleation process, 

which resulted in a broader length distribution of Pd-NWs (Fig. 4.6 (a) and (b)). On the 
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other hand, immediately increasing the temperature right after the quick injection of 

Fe(CO)5 without further aging will accelerate the decomposition of Fe(CO)5. Therefore, 

serious PdFe-NRs entanglements/aggregations are observed in Pd1Fe1-NL-C sample (Fig. 

4.6 (c) and (d)). 

 
Fig. 4.6 TEM images of the PdFe-NWs prepared with different conditions: (a, b) 
injection of Fe(CO)5 at 60°C, (c, d) injection of Fe(CO)5 after aging at 105°C for 20 min. 
 

Pd-rich NLs can be achieved after the removal of Fe in the PdFe-NLs through an organic 

acid treatment. After the acid treatment, the structure of the Pd1-NL/C (Pd1Fe1-NL/C after 

acetic acid treatment) was characterized using SEM, HAAD-S/TEM, and HR-EDS 

element mapping. The TEM image in Fig. 4.7 (a) clearly shows that after acid leaching, 

the NW structure is maintained in a NL structure without any observable morphology 

changes. HR-EDS elemental mappings were obtained to study the effects of acid 

treatment on the composition of the NL particles, and are shown in Fig. 4.7 (b) – (d). The 

removal of Fe is clearly shown, with most of the Fe confined to the center of the NL 

(a) (b) 

(c) (d) 
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structure, while little change was observed for the Pd-NWs. Quantitative EDS analysis 

showed the overall Pd1-NL has an atomic ratio of Pd: Fe = 16: 1, which is in good 

agreement with the results of ICP-AES analysis (Pd: Fe = 16.8: 1). Since the ratio of Pd: 

Fe in the initial Pd1Fe1-NL is very close to 1: 1, this indicates that a significant amount of 

the Fe phase has been removed and that nearly pure Pd-NWs remain in the NLs.  

 
Fig. 4.7 Morphology of Pd1-NL/C (Pd1Fe1-NL/C after acid treatment): (a) TEM image; 
(b) HAADF-STEM image, (c) and (d) elemental mapping (HR-EDS). 
 

XPS characterization results for the acid-leached Pd1-NL sample are shown in Fig. 4.8 

and confirm the significant removal of Fe from the Pd1Fe1-NL/C. The atomic ratio of 

Pd:Fe measured by XPS is 17.3: 1, which is consistent with the ratio determined by both 

EDS and ICP-AES. The XPS analysis also shows a sharp decrease in N as a result of the 

acid treatment, from 1.6% to 0.4%, which could be attributed to the removal of surfactant 

OAm through the acid-leaching procedure. However, because of the adsorption of N2 

(a) (b) 

(c) (d) 
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from the air, the N concentration determined by XPS cannot be used to determine the 

actual amount of residual surfactants.  

 

The amounts of surfactants removed were determined by comparing the thermal 

gravimetric analysis (TGA) curves on Pd1Fe1-NL/C and Pd1-NL/C, and the results are 

shown in Fig. 4.9. The first two steps were carried out form R. T. to 500oC in inert N2 gas, 

and the third step is from 500 – 700oC in oxidative air (as shown in Fig. 4.9 inserted). 

During the first two steps, the weight loss can be mainly attributed to the thermo-

decomposition of organic surfactants taking into consideration of the good stabilities of 

Pd, Fe metals and carbon black in N2 in the conducted temperature range. Before the 

acetic acid treatment, the weight loss of Pd1Fe1-NL/C initiated at around 125oC and 

underwent a total loss of 24 wt.% at 500oC. However, after the acetic acid treatment, the 

weight loss of Pd1-NL/C was only 13 wt.%. The weight loss observed at around 100oC 

for the Pd1-NL/C was assigned to the evaporation of water absorbed into the sample. 

However, the weight loss (at around 100oC) was not observed on the Pd1Fe1-NL/C, 

which was probably a result of the hydrophobic nature of OAm that covered the untreated 

Pd1Fe1-NL and compelled water absorption. The removal of OAm in organic acid is in 

agreement with prior work from other groups.152,156 The removal of OAm may be caused 

by the reaction between –COOH in acetic acid and NH2– in OAm at an elevated 

temperature, i.e. at 70oC in our study. The huge loss from 500 – 600oC is the rapid 

oxidation of carbon support in air. Due to the formation of metal oxides at higher 

temperature, a gradual weight increasing and a small step afterward exists on Pd1-NL/C 

in step 3, which are attribute to the oxidation of Pd and the decomposition of PdO to Pd0, 

respectively.157 As the encapsulation of Pd-NWs by Fe-rich sheets, this thermo-

decomposition peak of PdO vanished on Pd1Fe1-NL/C. As the carbon black will be 

oxidized to CO2 after TGA, the weight of residues can be used to estimate the PdFe metal 

loading. After the acid treatment, the metal loadings of the Pd1-NL/C and Pd2-NL/C 

determined by TGA were reduced to 16.5 wt% and 18.9 wt%, respectively.  
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Fig. 4.8 XPS spectra of Pd1-NL/C: (a) survey scan, (b) narrow scan of Fe, (c) narrow 
scan of Pd. 
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Fig. 4.9 TGA curves and temperature plots (inserted) of Pd1Fe1-NL/C and Pd1-NL/C 
(Pd1Fe1-NL/C after acid treatment). 
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4.3 Electro-chemical characterizations 
 

The electro-catalytic performances were investigated on the Pd1-NL/C and Pd2-NL/C 

(Pd1Fe1-NL/C and Pd2Fe1-NL/C after the acid treatment, respectively), and the results 

were compared with those on the Pd/C and commercial Pt/C catalysts. Fig. 4.10 shows 

the cyclic voltammograms of the four catalysts recorded in N2-saturated 1.0 M NaOH at a 

sweep rate of 50 mV s-1. Since hydrogen can penetrate into the Pd-based alloy lattices, 

the ECSAs of the Pd-based catalysts were calculated based on the charge of the reduction 

region of PdO/Pd at around -0.28 V (vs. Hg/HgO/1.0 M NaOH) with double-layer 

correction, assuming 0.405 mC cm-2 for the reduction of a monolayer PdO on the catalyst 

surface. 121,122,158 The specific ECSAs were 50.9, 51.4 and 35.5 m2 g-1
Pd for Pd1-NL, Pd2-

NL, and Pd/C, respectively. For comparison, the ECSA of Pt/C was calculated from both 

the hydrogen desorption peak and PtO reduction peak, these values are 71.8 and 56.9 m2 

g-1
Pt, respectively. The Pdx-NLs have larger specific ECSAs, which are attributed to their 

ultra-thin diameters (around 2 nm) of Pd-rich NWs in the Pd-NLs.  
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Fig. 4.10 Cyclic voltammograms of commercial Pt/C, Pd/C (self-prepared by EG 
method), Pd1-NL/C and Pd2-NL/C in 1.0 M NaOH, N2 saturated, 50 mV/s, room 
temperature. 
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The ORR polarization curves for the four catalysts are shown in Fig. 4.11. While the 

Pd/C has a slightly higher ORR activity than the commercial Pt/C, the Pd-NLs show a 

remarkable improvement in ORR activity with the half-wave potential shifting positively 

by ~ 38 mV as compared to Pt/C. At 0 V vs. Hg/HgO/1.0 M NaOH, the mass activity of 

Pd1-NL and Pd2-NL are 0.159 A mg-1
Pd and 0.157 A mg-1

Pd, respectively, which are 2 

times higher than that of Pd/C (0.0735 A mg-1
Pd) and 2.7 times higher than that of Pt/C 

(0.0585 A mg-1
Pt). Although the TGA curves indicate there are still some surfactants 

covering Pd-NLs even after the acid treatment, the specific activities of Pd1-NLs and Pd2-

NLs at 0 V vs. Hg/HgO/1.0 M NaOH were 312 and 305 µA cm-2
Pd, respectively, which 

are higher than that of Pd/C (207 µA/cm-2
Pd) and Pt/C (103 µA/cm-2

Pt). Since the Pd/C 

was prepared by the EG method, its Pd surface is considered clean (very little surfactant 

effects), the results indicate that small amounts of surfactants (OAm) in the Pd-NLs 

catalysts will not affect the intrinsic ORR activities in alkaline electrolyte.  
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Fig. 4.11 ORR polarization curves of commercial Pt/C, Pd/C (self-prepared by EG 
method), Pd1-NL/C and Pd2-NL/C in 0.1 M NaOH, O2 bubbling, 10 mV/s, 2500 rpm, 
room temperature. 
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It has been demonstrated that in acid electrolytes, the intrinsic activity toward ORR on Pd 

is one magnitude lower than that on Pt.22 However, in alkaline electrolytes, Pd is reported 

to have an ORR activity very close to Pt.119 The kinetic current density on Pd(111) 

surface plane has been reported only 0.3 times lower than that of Pt(111) plane at 0.85 V 

in 0.1 M NaOH, while the value on commercial Pd/C catalyst is also only 0.4 times lower 

than that of commercial Pt/C under the same testing condition.119 Jiang, et al121,122 

recently reported the apparent ORR activation energies in 0.1 M KOH for Pt/C and Pd/C 

are 48 kJ/mol and 40 kJ/mol, respectively, at an over-potential of 0.3 V, which indicates 

the ORR kinetics for Pd are similar to Pt. For 0-D nanoparticle catalysts, there typically is 

an optimum particle size with the highest mass activity, which is a trade-off between 

surface area, crystalline facets (with different intrinsic activity), and the surface chemical 

state of Pt and Pd (surface oxidation of Pt and Pd could lead to catalytically inert PtO and 

PdO).121,122 As the Pd particle gets smaller than the optimum size, although its surface 

area increases, the ratio of Pd (111) to (100) decreases and the surface is more prone to 

oxidation, therefore, its mass activity drops. The optimum Pd particle size has been found 

to be ~5.0 nm for the ORR in an alkaline electrolyte.121 In the present research, the Pd/C 

particle size of 4.2 nm (which is close to the reported optimum size) shows slightly 

higher ORR activity than Pt/C at 0 V Hg/HgO/1.0 M NaOH (0.9 V vs. SHE). When the 

overpotential increases, the Pt/C exhibits a higher current density and reaches a higher 

limiting current density than Pd/C. The ORR activity baseline for Pt/C and Pd/C in the 

present work is consistent with previous studies. 

 

The much improved ORR activity of Pd-NLs may rise from their unique high surface 

area, nanoleaves/nanowire structure. Comparing to 0-D nanoparticles, it has already been 

reported that 1-D nanowire catalysts, such as Pt-NW and Pt-nanotube (NT) with have an 

enhanced ORR activity due to the presence of lower surface defects and unique surface 

electronic properties.57,89 However, their large dimensions, i.e. 200 nm diameter for Pt-

NW57 and 4 – 7 nm wall thickness and 40 – 50 nm wall thickness for Pt-NT,89 resulted in 

small electro-chemical surface area, thus, limiting their mass activity enhancement. In 

comparison, the ultra-thin Pd-NWs with a large aspect ratio reported here were uniformly 

covered by advantageous Pd (111) facet and maintained a large electrochemical surface 
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area (i.e. > 50m2/g in this study). In addition, the ultra-thin Pd-NWs were textured in the 

NLs, which may also enhance the surface oxidation resistance. 

 

4.4 Conclusion 
 

In summary, a simple wet chemistry-based solution phase synthesis method has been 

developed to produce PdFe-nanoleaves. Combined characterizations show that this 

fantastic structure is Pd-NWs veins assembled with Fe-sheets blades. The side surfaces of 

the enveloped Pd-NWs are predominantly Pd (111) facet, which was preserved by the Fe 

sheets and could not be easily restructured. After an acetic acid treatment, the 1-D Pd-

NWs with a diameter around 2 nm and large surface are of > 50m2 g-1 can be exposed on 

the surface of NLs. The Pd-rich NLs demonstrated high reactivity towards electro-

catalytic reduction of oxygen in 0.1 M NaOH electrolyte: 3.0 times of specific activity 

and 2.7 times of mass activity higher than a commercial Pt/C catalyst (at 0 V vs. 

Hg/HgO/1.0 M NaOH). The electro-catalytic activity enhancement can be attributed to 

their unique nanoleaves structure, i.e. more Pd (111) facets, large surface area and more 

resistance to Pd oxide formation. The novel PdFe-NLs are a promising new class of 

cathode catalysts for anion-exchange membrane fuel cells. 

 

Equation Section (Next) 
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Chapter 5 Pd-Ni electro-catalysts for efficient 

ethanol oxidation reaction in alkaline electrolyte* 
 

5.1 Introduction 

5.1.1 Background 
 

Low Temperature H2-fed proton-exchange membrane fuel cells (PEMFCs) have been 

widely considered as a promising alternative energy technology with high energy 

conversion efficiency and zero pollutant emissions. However, the production, transport, 

and storage of H2 are still of great technical challenges.108 Comparing to H2 fuel, 

lignocellulosic biomass-derived ethanol is considered one of the most promising fuel 

candidates to substitute H2 for supplying future energy needs.160 In 2008, the world 

bioethanol fuel production stood at more than 17 billion US gallons per year. Blends of 

gasoline containing 85% denatured ethanol (E85) have recently appeared at fueling 

stations in the US, mainly in the Midwest. However, the efficiency of heating engines is 

confined by Carnot cycle limitations (normally < 35%). Direct ethanol fuel cells (DEFCs) 

are an ideal electro-chemical energy device that can directly convert chemical energy of 

ethanol into electricity without Carnot limitation.36-38,108,109,164-168 Table 5.1 displays the 

thermodynamic data of H2- and alcohol-fed fuel cells. Although DEFCs have a lower 

theoretical potential (1.14 vs. 1.23 V) their thermodynamic efficiency of 97% is higher 

than that for H2-fuel cells (83%).169 Ethanol has a volumetric energy density of 6.3 kWh 

L-1, which is higher than hydrogen (2.6 kWh L-1) and methanol (4.8 kWh L-1). Extensive 

research has been carried out to investigate anode catalysts for proton exchange  

 

*The material contained in this chapter was previously published in International Journal 
of Hydrogen Energy. Reprinted with permission from Journal of Hydrogen Energy 2011; 
36, Zhiyong Zhang, Le Xin, Kai Sun, and Wenzhen Li, “Pd–Ni electrocatalysts for 
efficient ethanol oxidation reaction in alkaline electrolyte”, 12686-12697. Copyright 
2011 International Association for Hydrogen Energy.  
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membrane direct ethanol fuel cells (PEM-DEFCs).38,109 It has been demonstrated that 

PtSn-based catalysts are the best among Pt-M (M=Ru, Rh, Sn, W, etc) for ethanol 

oxidation in acid electrolyte.36,37,165 Unfortunately, it was also found that in acid 

electrolyte, the kinetics of EOR remains sluggish (low activity) and the majority product 

of EOR is acetic acid (CH3COOH) not CO2 (low catalyst selectivity) even on very 

expensive PtSn-based catalysts.167,168 In addition, expensive Pt-based catalysts are 

required for a long operation life-time in an acid electrolyte.108 The high over-potential of 

oxygen reduction reaction (ORR) — over 200 mV at the most active Pt surface at the 

cathode is another long-standing scientific issue to overcome to achieve wide application 

of PEM-DEFCs.78,105,106,170  

 

Recently, some novel high performance solid anion-exchange membranes (AEMs) have 

been developed, which make alkaline fuel cells more attractive and realistic.109-113,171-176 

Anion exchange membranes do not contain mobile metal cations, therefore, they address 

the fatal issues facing conventional alkaline fuel cells: precipitations of carbonate 

deteriorating electrolyte.109 Comparing to the PEM-DEFC, the AEM-DEFC possess 

enormous advantages: 1) improved kinetics: Slow kinetics of both alcohol oxidation and 

oxygen reduction reactions can be significantly improved in high pH media, attributed to 

enhanced ion transport and facile charge transfer;115,177 2) enhanced life-time: non-Pt 

catalysts can survive in alkali for a longer time than in acid, due to a less corrosive base 

environment;115 and 3) reduced cost: non-Pt electro-catalysts have demonstrated high 

activity to ethanol oxidation (i.e. Pd, Ni)178-184 and oxygen reduction reaction (i.e. 

Ag),172,173 attributed to enhanced ion transport and mobile charge transfer in alkaline 

electrolyte.115  

  



 

68 

 

Table 5.1  
Thermodynamic data of Electro-oxidation of various alcohols to fully oxidized products 
(H2O and CO2). 
 

Fuel E0 (V) We (kW h L-1) η (%)  
Hydrogen H2 1.23 2.6 (liquid H2) 83 

Methanol CH3OH 1.21 4.8 97 

Ethanol CH3CH2OH 1.14 6.3 97 

Ethylene glycol (CH2OH)2 1.22 5.9 99 

Glycerol HOCH2CHOHCH2OH 1.23 6.3 98 

*E0: theoretical fuel cell voltage; We: volumetric energy density; η: thermodynamic 

efficiency 

 

5.1.2 Pd-based ethanol electro-oxidation catalysts 
 

Although Pd is nearly inert to EOR in an acid electrolyte, it has demonstrated competitive 

EOR activity179,184 and slightly better ability to break the C-C bond of ethanol in high pH 

media, as compared to Pt-based catalysts.182 Comparing to the deficiency of Pt in the 

earth’s crust (0.003 ppb), the abundance of Pd is 200 times higher (0.6 ppb). The 

comparatively low price of Pd (only 30%-40% compared to Pt) makes it attractive as 

high efficiency anode catalyst for AEM-DEFC. 

 

Numerous publications have concentrated on developing high efficient Pd-based EOR 

catalysts. A second transition metal, Sn,186 Ni,187,188 Ru, 189,190 or Ag, 191 was chosen to be 

incorporated with Pd, in order to facilitate the removal of poisonous intermediates. In 

addition, catalyst supports, including Ni,189,190 Ti,192, TiO2/C,193 Ni-Zn/C,183 CeO2/C,194 

WC,195,196, carbon nanotube (CNT),197, activated carbon fiber (ACF),195,197 carbon 

nanofiber (CNF),188,198-200 graphene,191 have also been widely investigated to further 

increase the mass transfer and charge transfer. On the other hand, the DFT examinations 

have also been carried out to help optimize the catalytic activity of Pd-based catalysts, 
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which predict that Pd-Ni may have a high EOR activity due to its tuned electronic 

properites.201 

 

5.1.3 Mechanism of ethanol electro-oxidation on Pd catalyst 

5.1.3.1 EOR in AEM-DEFC 

 

In the case of completely oxidation to CO2, the electro-oxidation of ethanol at the anode 

takes place as follows:169 

 2 5 2 212 2 9 12     0.741 V vs. SHEoC H OH OH CO H O e E− −+ → + + = −  (5-1) 

On the cathode side:83 

 2 23 6 12 12     0.401 V vs. SHEoO H O e OH E− −+ + → =  (5-2) 

Therefore, the overall reaction of an AEM-DGFC is 

 2 5 2 2 23 2 3     1.145 VoC H OH O CO H O E+ → + =  (5-3) 

 

The generated CO2 will further react with OH- to generate carbonate, leading to the 

continuous consumption of OH- in the alkaline electrolyte at the anode: 

 2
2 5 3 216 2 11 12      0.841 V vs. SHEoC H OH OH CO H O e E− − −+ → + + = −  (5-4) 

And the overall reaction will be: 

 2
2 5 2 3 23 4 2 5     1.242 V vs. SHEoC H OH O OH CO H O E− −+ + → + =  (5-5) 

 

Indeed, in the real alkaline electrolyte ethanol oxidation reaction, both the in situ FTIR 

spectroscopic studies182,202,203 and HPLC analyses204 have demonstrated that the main 

product is acetate, while only a little amount of CO2 or carbonate was detected. As a 

result, the anode reaction of ethanol oxidation will be rewritten as: 

 2 5 3 25 4 4     0.926 V vs. SHEoC H OH OH CH COO H O e E− − −+ → + + = −  (5-6) 

Then the overall reaction will be: 

 2 5 2 3 22     1.327 V vs. SHEoC H OH O OH CH COO H O E− −+ + → + =  (5-7) 
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5.1.3.2 Ethanol electro-oxidation pathway on Pd catalyst 

 

The oxidation mechanism of ethanol has been widely studied in alkaline media with 

different techniques, including cyclic voltammetery,30,192,205 in situ Fourier Transform 

Infrared Spectroscopy (FTIRS),202,206,207 Surface Enhanced Raman Spectroscopy, 

Differential Electro-chemical Mass Spectrometry,203 and High Performance Liquid 

Chronometry (HPLC),204 etc. A general accepted ethanol electro-oxidation mechanism on 

Pd is as follows:208 

 3 2 3 2( )adsPd CH CH OH Pd CH CH OH+ ←→ −  (5-8) 

 3 2 3 2( ) 3 ( ) 3 3ads adsPd CH CH OH OH Pd CH CO H O e− −− + → − + +  (5-9) 

 . .
3 3( ) r d s

ads adsPd CH CO Pd OH Pd CH COOH Pd− + − → − +  (5-10) 

 3 3 2Pd CH COOH OH Pd CH COO H O− −− + → + +  (5-11) 

Within these four steps, reaction (5-10) is the rate determine step (r.d.s.). 

 

 

In this chapter, a modified organic phase reduction method93,107,209-212 was applied to 

prepare carbon supported Pd-Ni nanoparticles with different Pd-Ni compositions. The as-

prepared catalysts were characterized by XRD, TEM, HR-TEM, TGA, ICP-AES. The 

characterizations reveal that these Pd-Ni catalysts have small diameters of ~ 3 nm and 

narrow size distributions. The catalytic activities towards EOR were in 1.0 M NaOH + 

1.0 M C2H5OH by cyclic voltammetry, linear scan voltammetry, and 

chonoammeperometry, and higher EOR mass activity and stability on PdxNiy/C catalysts 

have been demonstrated. We found the EOR activity is strongly correlated with Pd-Ni 

composition and structure, especially the Pd-Ni interaction/contact on catalyst surface.  
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5.2 Experimental section 

5.2.1 Preparation of Pd/C, PdxNiy/C, and Pd1Ni1/C-NaBH4 catalysts 
 

The PdxNiy/C catalysts (x:y is the atomic ratio of Pd:Ni) were synthesized through a 

modified organic solution phase-based reduction method.33,211,212 A typical synthesis 

procedure for Pd1Ni1/C (atomic ratio of Pd:Ni = 1:1) with a Pd loading of ~ 20 wt% is 

presented as follows. 75.15 mg of Pd(acac)2 (0.25 mmol), 73 mg of Ni(acac)2·2H2O (0.25 

mmol), and 91 mg of carbon black were mixed in 20 ml of benzyl ether solvent, and 

heated rapidly up to 100°C under a N2 blanket. As the temperature increased to 100oC, 

100 μl of oleic acid and 100 μl of oleylamine were injected into the system, followed by a 

quick injection of 1 ml of LiBet3H. The temperature was held at 100°C for 20 minutes, 

and then slowly raised to 180°C and was held there for an additional 30 minutes. The 

final product Pd1Ni1/C was collected by filtration, washed with copious ethanol (> 800 

mL), dried at 50°C overnight in an oven. Following a similar procedure, Pd/C and other 

PdxNiy/C (including Pd4Ni1/C, Pd2Ni1/C, Pd4Ni5/C and Pd2Ni3/C) catalysts with the same 

Pd loading were prepared by adjusting the ratio of metal precursors and the amount of 

reducing agent (LiBEt3H). 

 

Serving as a control sample, Pd1Ni1/C catalyst with a Pd loading of ~ 20% was also 

synthesized through a widely used NaBH4 reduction method,187,188,213 which can be 

briefly described as follows: 44 mg of carbon black, 28.5 mg of NiCl2·2H2O, and 21.3 

mg of PdCl2 were first dispersed in 100 ml deionized (DI) water under a vigorous stirring. 

After a homogeneous suspension was formed, 30 ml of NaBH4 (0.02 M) aqueous 

solution was added into the system dropwisely. The reaction was taken place under a N2 

blanket at room temperature for 24 hours. The resulted product was collected by filtration, 

washed with hot DI water, and dried at 70°C in an oven, and was named Pd1Ni1/C-

NaBH4. 
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5.2.2 Physical characterizations 
 

The composition, morphology, and structure of Pd/C and PdxNiy/C catalysts were 

analyzed by X-ray diffraction (XRD), transmission election microscopy (TEM), High 

resolution-TEM (HR-TEM), inductively coupled plasma atomic emission spectroscopy 

(ICP-AES), and thermogravimetric analysis (TGA).  

 

5.2.3 Electro-chemical characterizations 
 

Cyclic voltammetry (CV), linear scan voltammetry (LSV), chronoamperometry (CA) 

testings of the as-prepared Pd/C and PdxNiy/C catalysts were performed in half cell setups 

(see Section 2.3.1) at room temperature, with a Hg/HgO/1.0 M NaOH reference electrode 

(0.140 V vs. NHE), while tris(2,4,6-trimethoxyphenyl) polysulfone-methylene quaternary 

phosphonium hydroxide (TPQPOH)112 was applied as the anion-conductive ionomer. The 

electro-chemical surface area (ECSA) of Pd/C and PdxNiy/C catalysts was studied by a 

CV test performed through the procedure detailed in Section 4.2.5. The EOR activity was 

measured by a CV test from -0.87 – 0.20 V in 1.0 M NaOH + 1.0 M EtOH, with the 

sweep rate of 50 mV s-1. A LSV from -0.87 – 0.20 V was conducted on each catalyst with 

a sweep rate of 1 mV/s to obtain the onset potential, Tafel slope and exchange current 

density. The long-term activity of EOR was investigated through a chronoamperometry 

test at an applied voltage of -0.5 V for 10000 seconds.  

 

The Tafel slope and exchange current density were obtained by the procedure in Section 

2.3.1.3. using equation (2-8): 

 
0

2.303 logRT j
nF j

η
α

 
=  

 
 (2-8) 

As the main product from ethanol electro-oxidation in alkaline electrolyte has been 

demonstrated to be acetate, Etheory is set as -0.926 V vs. SHE, which is -1.066 V 
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vs.Hg/HgO/1.0 M NaOH. The Tafel slope 2.303 RT
nFb α=  and exchange current density η 

were derived in the low potential range of -0.55 to -0.35V.  

5.3 Results and discussion 
 

The bulk chemical compositions of Pd/C, PdxNiy/C, and Pd1Ni1/C-NaBH4 catalysts were 

studied by both ICP-AES and TEM-EDS, as summarized in Table 5.2. The atomic ratio 

of Pd to Ni in all the PdxNiy/C catalysts have been determined to be very close to the 

setting ratio, indicating that both Pd and Ni metal precursors have been fully reduced in 

the syntheses. The Pd loading of each catalyst has also been calculated through the Pd 

concentration that was detected by ICP-AES. Due to the existence of a little amount of 

surfactant on the surface of the as-prepared catalysts, and the formation of NiO and 

Ni(OH)2 as the sample is exposed to the air,214 the Pd metal loading of all the catalysts 

has been found lower than the setting loading of ~ 20% for all the samples. 

 

Fig. 5.1 shows the TGA curves on Pd/C and Pd1Ni1/C catalysts. The first two steps were 

carried out from R. T. to 500°C in inert N2 gas, and the third step is from 500 – 700°C in 

oxidative air (as shown in the Fig. 5.1 inserted). The temperature-time plots on the two 

catalysts are identical to each other. Due to the oxidation of metal catalysts at high 

temperature in the air, the metal loadings detected by TGA (22% for Pd/C and 30 % for 

Pd1Ni1/C) have been found higher than that determined by IPC-ACS. The weight loss at 

around 100 – 130°C in the TGA curve of Pd/C belongs to the evaporation/desorption of 

water absorbed in the catalyst. The slow weight decreasing from thereafter to 500°C is 

assigned to the gradual decomposition of surfactants in N2, the surfactants on the Pd/C 

surface are around 5 wt%. The huge loss from 500 – 520°C is the rapid oxidation of 

carbon support in air. The presence of Ni(OH)2 is evidenced by the TGA curve of 

Pd1Ni1/C with the weight loss present from 190 – 260°C, which is attributed to the 

dehydration of Ni(OH)2 according to the following reaction:215 

 2 2( )Ni OH NiO H O→ +  (5-12) 
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Table 5.2  
Summary of physical properties of Pd/C, PdxNiy/C, and, Pd1Ni1/C catalysts. 

 

 

Atomic ratio Pd metal 

loading 

detected 

by ICP-

AES 

Diameter (nm) Lattice 

parameter 

calculated 

from XRD 

(Å) 

Detected 

by ICP-

AES 

Detected 

by TEM-

EDS 

Calculated 

from XRD 

Measured 

by TEM 

Pd/C - - 18% 2.2 2.7 3.9207 

Pd4Ni1/C Pd7.25Ni1 Pd5.7Ni1 17% 2.5 2.6 3.9080 

Pd2Ni1/C Pd1.91Ni1 Pd2.3Ni1 17% 2.6 2.6 3.9078 

Pd1Ni1/C Pd1.03Ni1 Pd0.8Ni1 15% 2.4 2.4 3.9102 

Pd4Ni5/C Pd3.86Ni5 Pd3.8Ni5 16% 2.5 3.0 3.8950 

Pd2Ni3/C Pd1.99Ni3 Pd1.8Ni3 16% 3.0 3.2 3.8900 

Pd1Ni1/C-
NaBH4 

Pd1.25Ni1 Pd1.1Ni1 16% 3.9 3.8 3.8930 
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Fig. 5.1 Thermogravimetric analysis plot and temperature plot (inserted) of Pd/C and 
Pd1Ni1/C catalysts. 
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The XRD patterns of the Pd/C, PdxNiy/C, and Pd1Ni1/C-NaBH4 catalysts are presented in 

Fig. 5.2 (a) and (b). All of them displayed a typical face-centered cubic (fcc) pattern. The 

peaks at 39.9°, 45.9°, 67.9°, and 81.8° are assigned to the Pd (111), (200), (220), and 

(311), respectively, while the peak around 25.2° is referred to the graphite (002) facet of 

the carbon support. The Pd (222) diffraction peak at ~ 86.6° has also been observed in 

Pd1Ni1/C-NaBH4 (Fig. 5.2 (b)). No significant peak shift is observed for the Pd4Ni1/C, 

Pd2Ni1/C, and Pd1Ni1/C, and only small shifts have been detected for the Pd4Ni5/C and 

Pd2Ni3/C (Fig. 5.2 (a)), and Pd1Ni1/C-NaBH4 (Fig. 5.2 (b)) catalysts, which suggests that 

Ni is hard to alloy well with Pd in the present low preparation temperature. The lattice 

parameter of the PdxNiy/C catalyst gets larger (from 3.9080 Å to 3.8900 Å) with Ni 

amount increasing, as shown in Table 5.2. Further, the diffraction peaks of Pd1Ni1/C-

NaBH4 shift more positively than that of Pd1Ni1/C (Fig. 5.2 (b)), the Pd1Ni1/C-NaBH4 

has a lattice parameter of 3.8930 Å, which is smaller than 3.9102 Å for Pd1Ni1/C. This 

indicates that the NaBH4 method can facilitate the formation of Pd-Ni alloy. It is reported 

that a heat treatment at an elevated temperature (> 800°C) will greatly increase the alloy 

degree of PdNi catalysts.120 However, in most cases of synthesis of PdNi catalyst through 

a NaBH4 reduction method at low temperatures, the alloying between Pd and Ni is 

weak.93,107,211,212 Although Ni will be generally oxidized in air, no diffraction peaks of 

metallic Ni, Ni oxides and Ni hydroxides were observed for all catalysts prepared by the 

organic solution phase reduction method. This indicates that most of the Ni was 

amorphous in nature or crystalline only in very small region.214,216 The XRD pattern of 

Pd1Ni1/C-NaBH4 shows two additional peaks at 33.4° and 59.2°, which are attributed to 

Ni(OH)2 (100) and (110) facets, respectively.187,217,218 This suggests that the presence of 

H2O in the NaBH4 reduction process will facilitate the formation of Ni(OH)2 phase. The 

average particle sizes are calculated based on Pd (220) peak using Debye-Scherrer 

formula, and are summarized in Table 5.2. All the Pd/C and PdxNiy/C prepared by the 

organic solution phase reduction method have a small particle size in the range of 2.2 – 

3.0 nm, while that of Pd1Ni1/C-NaBH4 is 3.9 nm. This strongly suggests the organic 

solution phase reduction method has more advantages over traditional NaBH4 method in 

controlling the particle size. 
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Typical TEM images of the Pd/C, PdxNiy/C, and Pd1Ni1/C-NaBH4 catalysts are shown in 

Fig. 5.3. The average diameters of all the catalysts are summarized in Table 5.2. The 

particle sizes measured from TEM images are in good agreement with those calculated 

by XRD. All the catalysts prepared by the organic solution phase reduction method are 

spherical and homogeneously dispersed on Vulcan XC-72R with no remarkable 

observation of agglomeration. The particle size histograms evaluated from 100 random 

particles in an arbitrarily chosen area present a narrow distribution of 1 – 6 nm for all 

catalysts prepared by the organic solution phase reduction method. In contrast, the 

particle size distribution of Pd1Ni1/C-NaBH4 is broader (1 – 10 nm), with some very large 

particles in TEM image (as shown in Fig. 5.3 (g)). The HR-TEM images of Pd1Ni1/C and 

Pd1Ni1/C-NaBH4 are shown in Fig. 5.4. It is clearly observed that Pd1Ni1/C has a smaller 

particle size than Pd1Ni1/C-NaBH4. In addition, the HR-TEM images show that both two 

catalysts have the same type of lattice fringe with an interplanar spacing of ~ 0.24 nm, 

indicating that they are covered by Pd (111) plane. 
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Fig. 5.2 XRD patterns of (a) Pd/C and PdxNiy/C samples with different Pd:Ni 
compositions prepared by the organic solution phase reduction method; and (b) Pd1Ni1/C 
samples prepared by the organic solution phase reduction and NaBH4 reduction methods. 
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Fig. 5.3 TEM images of (a) Pd/C, (b) Pd4Ni1/C, (c) Pd2Ni1/C, (d) Pd1Ni1/C, (e) Pd4Ni5/C, 
(f) Pd2Ni3/C, and (g) Pd1Ni1/C-NaBH4 catalysts. 
 

  
 

 

Fig. 5.4 HR-TEM images of (a) Pd1Ni1/C and (b) Pd1Ni1/C-NaBH4, both showing Pd 
(111)-rich surface. 
 

The cyclic voltammetries of Pd/C, PdxNiy/C, and Pd1Ni1/C-NaBH4 catalysts were 

investigated in 1.0 M NaOH solution and are shown in Fig. 5.5 (a) and (b). The 

polarization curves clearly show that both Pd and Ni are present on all PdxNiy/C and 

Pd1Ni1/C-NaBH4 catalysts. On the pure Pd/C polarization curve, a small peak at ~ -0.3 V 

is ascribed to the water activation on Pd.216 However, when combined with Ni, this peak 

was suppressed and a broad peak at ~ -0.53 V appeared instead, which can be assigned to 

the OH- adsorption on the surface of the PdxNiy/C catalysts. The presence of both Pd and 

Ni in the PdxNiy/C and Pd2Ni3/C-NaBH4 catalysts can also be confirmed by the oxidation 

(g) 

(a) (b) 
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peak of Ni(OH)2 to NiOOH in the anodic sweep, and the reduction of NiOOH to Ni(OH)2 

in the cathodic sweep at the region > 0.3 V,189,190,216 and the reduction of PdO to Pd at  -

0.3 V.219,220 The ECSAs of the Pd, PdxNiy/C, and Pd1Ni1/C-NaBH4 catalysts were 

calculated by the charge of the reduction region of PdO to Pd, and are summarized in 

Table 5.3. It is clear that Pd4Ni1/C, Pd2Ni1/C, and Pd1Ni1/C catalysts possess high 

ECSAs, which is probably due to their small particle sizes. Meanwhile, a trend of 

decreasing in ECSA has been found on the PdxNiy/C with a high Ni concentration. As 

discussed above, Pd and Ni could not alloy well using the organic solution phase 

reduction method, the trend of decreasing in ECSA indicated that a portion of the surface 

Pd active sites were covered by excessive Ni or Ni derivatives. The Ni-rich surface on the 

organic solution phase reduction synthesized PdxNiy/C catalysts was more obvious when 

comparing the CV curves of Pd1Ni1/C and Pd1Ni1/C-NaBH4. Although the HR-TEM 

images clearly show that the two catalysts have the same Pd (111) surface plane, the CV 

curve of Pd1Ni1/C presents a pair of Ni(OH)2-NiOOH oxidation-reduction peak, which is 

much larger than that of Pd1Ni1/C-NaBH4 (as shown in Fig. 5.5(b)). This implies that 

even with the same overall atomic ratio, more Ni is located on the surface of the organic 

solution phase reduction synthesized Pd1Ni1/C catalyst. This is consistent with the XRD 

results. With a better alloy structure, Pd1Ni1/C-NaBH4 has more Ni inserted into Pd 

lattice, leading to a relatively less amount of Ni remaining on the surface. As a benefit of 

having a small diameter, the organic solution phase reduction method synthesized 

Pd1Ni1/C catalyst has a larger electro-chemical surface area (ECSA) than Pd1Ni1/C-

NaBH4, therefore, it has more Pd active sites.  
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Fig. 5.5 Cyclic voltammograms of (a) Pd/C and PdxNiy/C prepared by the organic 
solution phase reduction method and (b) Pd/C, Pd1Ni1/C, and Pd1Ni1/C-NaBH4 in 1.0 M 
NaOH, at 50 mV/s, room temperature. 
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Fig. 5.6 Cyclic voltammograms of ethanol oxidation reaction on (a) Pd/C and PdxNiy/C 
prepared by the organic solution phase reduction method and (b) Pd/C, Pd1Ni1/C, and 
Pd1Ni1/C-NaBH4 in 1.0 M NaOH + 1.0 M ethanol, 50 mV s-1, room temperature. 
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Table 5.3  
Electro-chemical surface area (ECSA), mass activity, and specific activity on Pd/C, 
PdxNiy/C, and, Pd1Ni1/C catalysts. 
 

 
ECSA 

(m2 g-1) 

MA at Peak I  

(mA mg-1
Pd) 

SA at Peak I  

(A m-2) 

at 50 mV s-1 at 1 mV s-1 at 50 mV s-1 at 1 mV s-1 

Pd/C 58.0 2831.74 729.62 48.80 12.57 

Pd4Ni1/C 63.8 2779.80 906.59 43.59 14.22 

Pd2Ni1/C 68.0 2956.62 1197.24 43.50 17.61 

Pd1Ni1/C 67.3 2368.22 1247.51 35.18 18.53 

Pd4Ni5/C 48.3 856.79 444.88 17.76 9.22 

Pd2Ni3/C 32.9 544.22 315.62 16.56 9.60 

Pd1Ni1/C-
NaBH4 

58.1 1938.43 960.37 33.34 16.52 

 

The EOR polarization curves on the Pd/C, PdxNiy/C, and Pd1Ni1/C-NaBH4 catalysts are 

presented in Fig. 5.6 (a) and (b), and are all characterized by two well-defined peaks. The 

first, designated as Peak I, is centered at ~ -0.08 V in the anodic sweep curve, and the 

second, Peak II, is centered at ~ -0.17 V in the cathodic sweep curve. The mass activity 

(MA) of Pd/C, PdxNiy/C, and Pd1Ni1/C-NaBH4 catalysts at peak I and its corresponding 

specific activity (SA) after being normalized by ECSA are summarized in Table 5.3.  

 

As is shown in Section 5.1.3.2, the ethanol electro-oxidation on Pd taken place as follows:  

 3 2 3 2( )adsPd CH CH OH Pd CH CH OH+ ←→ −  (5-8) 

 3 2 3 2( ) 3 ( ) 3 3ads adsPd CH CH OH OH Pd CH CO H O e− −− + → − + +  (5-9) 

 . .
3 3( ) r d s

ads adsPd CH CO Pd OH Pd CH COOH Pd− + − → − +  (5-10) 

 3 3 2Pd CH COOH OH Pd CH COO H O− −− + → + +  (5-11) 

 

In the course of the anodic sweep, reactions (5-8) and (5-9) are generally accepted to 

happen at a potential region of < -0.7 V. The CH3COads or other carbonaceous reaction 
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intermediates will strongly absorb on the surface of Pd and block the active site. 

Reactions (5-10) and (5-11) take place in the region starting from -0.7 V, where Pd 

begins to adsorb OH-. With the adsorption of hydroxyl on Pd, the strongly absorbed 

carbonaceous species will be quickly stripped away, and result in an increasing current. 

However, at a higher potential, the formation of PdO will block the further adsorption of 

reactive species and lead to a remarkable decrease in current.182,205,221 In the cathodic 

sweep, the previously formed PdO will be reduced to catalytic active Pd, thus, leading to 

the recovery of EOR current. Peak II is assigned by some authors to the removal of 

carbonaceous species that are not completely oxidized in the anodic scan.199,222 However, 

no solid evidence has ever been reported to support their proposed mechanism that the 

intermediates generated in the forward scan will strongly bond on the surface of PdO in 

alkaline solution in high-potential range. Therefore, it is reasonable to believe these 

intermediates should diffuse into the bulk electrolyte. When PdO was reduced to Pd, the 

newly-produced catalytic surface should be directly exposed to fresh ethanol. The high 

potential and the quick adsorption of OH- will benefit the generation of high current 

density and lead to a sharp anodic peak. 

 

As can be seen in equation (5-10), ethanol oxidation is determined by the degree of 

coverage of both CH3COads and OHads. Therefore, when Ni is involved, the formed 

Ni(OH)2 on the surface of Pd-based catalysts will facilitate the ethanol oxidation by 

increasing OH at lower potential range species, and result in the decrease of onset 

potential, as shown in Fig 5.6 (a). However, as the Ni amount increases, the specific 

activity (SA) at Peak I reduces monotonically from 48.80 A m-2 for Pd/C to 16.56 A m-2 

for Pd2Ni3/C. This degradation may rise for two possible reasons. First, Ni(OH)2 formed 

during the test will increase the concentration of OH- and/or OHads. If the concentration is 

too high, it will reduce/block the transportation of ethanol to Pd active sites, leading to 

the reduction of Pd-CH3COads. Second, more Ni was covered on the surface of the 

organic solution phase reduction synthesized PdxNiy/C catalysts, if Ni is in excess, it will 

block the Pd active sites, and thus, reduce the overall EOR catalytic activity. 
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When compared to the traditional NaBH4 reduction method, the present organic solution 

phase reduction method shows a great advantage in improving the EOR activity, which 

can be seen in Fig 5.6 (b) and Table 5.3. The organic solution phase reduction 

synthesized Pd1Ni1/C possesses both a lower onset potential and higher SA. As examined 

by the HR-TEM images in Fig. 5.4, both Pd1Ni1/C and Pd1Ni1/C-NaBH4 have the same 

Pd (111) surface. Therefore, the geometric effects can be neglected. The main reason for 

the EOR enhancement on Pd1Ni1/C lies in a special Pd-Ni synthetic effect, which is 

originated from the better contact or more efficient co-operation between Pd and Ni on 

the catalysts. Moreover, due to the small particle size and narrow size distribution, the 

MA of Pd1Ni1/C can reach 2368.22 mA mg-1
Pd, which is 429.79 mA mg-1

Pd higher than 

the corresponding NaBH4 reduced catalyst (1938.43 mA mg-1
Pd). It needs to be 

mentioned that the MAs of both the Pd1Ni1/C and Pd1Ni1/C-NaBH4 reported in this study 

are higher than that of previously reported PdNi/C (1136.13 mA mg-1
Pd) under identical 

test conditions.187 The MAs of the organic solution phase reduction synthesized Pd4Ni1/C, 

Pd2Ni1/C and Pd1Ni1/C catalysts are also higher than other reported results on Pd-based 

catalysts.179,193,197,198,223 Since the Pd1Ni1/C-NaBH4 was prepared by a surfactant-free 

method, the surface of catalysts is clean. Thus, this catalyst has very little surfactant 

effects. These results indicate that a small amount of surfactants (OAc and OAm, around 

5 wt% determined by TGA) on PdxNiy/C will not apparently affect the EOR activities. 

 

To further study the EOR mechanism, a conventional linear sweep voltammogram of 

EOR has been carried out on Pd/C, PdxNiy/C, Pd1Ni1/C-NaBH4 catalysts at a scan rate of 

1 mV s-1 in 1.0 M NaOH + 1.0 M C2H5OH, and the results are shown in Fig. 5.7. It is 

reasonable to consider the ethanol oxidation reaction taking place on catalysts in such 

slow sweep rate to be at quasi-steady state, therefore, this method minimizes the mass 

transfer/diffusion issues. The MA and SA at the peak current of EOR at quasi-steady 

state are summarized in Table 5.3. The data shows that the addition of Ni at a certain 

content can significantly increase the EOR activity on Pd, while too much of Ni will 

cause the drop of EOR activity. The surface concentration of Ni also significantly affects 

the onset potentials. As shown in Table 5.4, the lowest onset potential of -801 mV has 

been achieved on Pd4Ni5/C, which is 180 mV more negative than that of Pd/C. In light of 
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XRD and TEM analysis, the discrepancies of Pd and PdxNiy metal particle size and 

distributions on carbon black support were rather small and contributed little to the 

enhanced EOR activity. The changes in catalytic activity and onset potential mainly rely 

on the synergistic effect between Pd and Ni. The major existing Ni species during the test 

is Ni(OH)2, which has a point of zero charge (PZC) varying from pH = 8.8 ~ 11.224-226 

Therefore, Ni(OH)2 in 1.0 M NaOH solution would absorb OH- and increase the OH- 

local concentration around the catalysts nanoparticles. The rise of local OH- 

concentration will further lead to the enhancement of OHads, which is evidenced by the 

broad peak on PdxNiy/C catalysts in Fig. 5.5 (a), centered at ~ -0.53 V. As the ethanol 

oxidation is related with both CH3COads and OHads, the addition of Ni on surface will 

increase the coverage of OHads and accelerate the reaction rate to some extent. Since the 

adsorption of OH- on pure Pd in alkaline electrolyte is generally accepted to from -0.7 V 

vs. Hg/HgO/1.0 M NaOH electrode, the EOR onset potential of -0.621 V on the Pd/C 

catalyst is a little above -0.7 V, indicating that a certain amount of OHads coverage is 

essential to generate detectable current density. The addition of Ni will enhance the 

generation of OHads at relatively negative potential, and therefore lower the onset 

potential of EOR. On the other hand, equation (5-10) indicates that the ‘poisonous’ 

CH3COads or other intermediates can be removed by increasing the concentration of 

OHads. Thus, Ni will also serve to promote refreshing active Pd reactive sites, thus 

improving the overall reaction rate. Based on the above discussion, equation (5-10) on 

PdxNiy/C catalysts can be rewritten as: 

 ( ) ( )3 32 2
( )adsPd CH CO Ni OH OH Pd CH COOH Ni OH e− −− + + → − + +  (5-13) 

 

As discussed in the CV performance in 1.0 M NaOH solution, Ni species are more likely 

to be rich at the surface of organic solution phase reduction synthesized PdxNiy/C 

catalysts. Too much Ni will block part of the Pd active sites. Previous work by other 

groups has already demonstrated that Ni itself has no activity towards ethanol oxidation 

in alkaline solution in the potential range we investigated in this study.214 Too much Ni 

will reduce both the onset potential and MA due to the lack of Pd active sites. At the 

same time, excessive amount of Ni will increase the coverage of OHads so much that the 
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whole reaction is retarded by the insufficient supply of CH3COads. In this research, the 

lowest onset potential and the largest MA have been found on Pd4Ni5/C and Pd1Ni1/C, 

respectively, indicating more efficient contacts or interactions between Pd and Ni species 

can be created through the organic solution phase reduction method.  
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Fig. 5.7 Quasi-steady state linear scan voltammograms of ethanol oxidation reaction on 
Pd/C and PdxNiy/C and Pd1Ni1/C-NaBH4 catalysts 1.0 M NaOH + 1.0 M C2H5OH, at 1.0 
mV/s, room temperature. 

 
Table 5.4  

Onset potential, Tafel slope and exchange current density of EOR on the Pd/C, PdxNiy/C, 
and, Pd1Ni1/C catalysts (at room temperature). 
 

 
Onset potential 

(mV) 

Tafel slope 

(V dec-1) 

Exchange current 

density (×10-9 A cm-2) 

Pd/C -621 0.13585 6.62 

Pd4Ni1/C -718 0.15871 35.7 

Pd2Ni1/C -758 0.17439 186 

Pd1Ni1/C -769 0.17672 211 

Pd4Ni5/C -801 0.21098 570 

Pd2Ni3/C -750 0.21791 596 

Pd1Ni1/C-NaBH4 -669 0.14532 15.7 
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For the purpose of comparing the kinetic activities of Pd/C, PdxNiy/C, and Pd1Ni1/C-

NaBH4 catalysts toward EOR, the Tafel plots were given in Fig. 5.8; the Tafel slopes and 

the exchange current densities are shown in Table 5.4. The Tafel plots investigation 

region is chosen from -0.55 to -0.35 V, which is because in this low potential range, the 

adsorption of CH3COad is independent of the potential and the kinetics of EOR is 

determined by the adsorption of OH- on the surface of electrode.205
 The results 

summarized in Table 5.4 show the exchange current densities towards EOR on Pd/C and 

PdxNiy/C catalysts follows the same trend of onset potential, with the highest exchange 

current density achieved on Pd2Ni3/C of 596 × 10-9 A cm-2, which is 90 times higher than 

that of Pd/C (6.62 × 10-9 A cm-2). The exchange current density on Pd1Ni1/C (221 × 10-9 

A cm-2) is 33 times and 14 times higher than that of Pd/C and Pd1Ni1/C-NaBH4, 

respectively, indicating that a more efficient catalyst can be prepared through the present 

organic solution phase reduction method. 
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Fig. 5.8 Tafel plots for ethanol electro-oxidation on Pd/C, PdxNiy/C, and Pd1Ni1/C-
NaBH4 catalysts. 
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The long-term reactivity of EOR on Pd/C, PdxNiy/C, and Pd1Ni1/C-NaBH4 catalysts have 

been investigated by chronoamperometry (CA) in a 1.0 M NaOH + 1.0 M C2H5OH 

solution, with an applied potential of -0.5 V (vs. Hg/HgO/1.0 M NaOH), which is set in 

the low potential range of the Tafel study. Different from other groups which mainly 

studied the stability in a short period of 1800 – 3600 seconds,188,198 the stability 

investigation in this work is focused on a longer term of 10000 s. The mass activity – 

time plots are shown in Fig. 5.9. The MA of all Pd-based catalysts at the end of CA and 

their corresponding mass activities at -0.5 V in the quasi-steady-state linear sweep 

voltammetry curves are summarized in Table 5.5. To setup an evaluation criterion, we 

defined survival ratio as normalizing the MA after 10000 s CA test to their corresponding 

MA (at -0.5 V) in the quasi-steady-state linear sweep (at 1 mV s-1), and the results are 

also summarized in Table 5.5. The survival ratio indicates the ratio of active sites that 

remain the catalytic ability towards ethanol oxidation without being poisoned after the 

long-term reactivity test. The results clearly show a strong correlation between Pd-Ni 

contacts and long-term EOR reactivity. As shown in Fig. 5.9, Pd/C, which has no Ni, and 

Pd4Ni1/C which has little Ni, were poisoned so heavily that their MAs dropped to ~ 0 mA 

mg-1 at the end of CA test. On the other hand, the MA of Pd1Ni1/C-NaBH4 also dropped 

to ~ 0 mA because its less effective contact between Pd and Ni could not efficiently 

remove the 'poisonous intermediates' at such low applied potential. Therefore, after a 

long-term test, all the surface Pd active sites are poisoned. As shown in Table 5.5, the 

survival ratio on all the organic solution phase reduction method synthesized PdxNiy/C 

catalysts clearly shows a monotonically increasing relationship between the long-term 

EOR reactivity and Ni concentration. Meanwhile, it is worth noting that the current 

density will drop quickly in the first 500 seconds if the ratio of Pd to Ni is less than 1:1, 

which is probably caused by the lack of Pd active sites. As mentioned above, Ni will 

block the surface Pd active sites if there is an excessive Ni concentration using the 

present organic solution phase reduction method. Therefore, although it could increase its 

reaction stability, a higher concentration of Ni will reduce the total active sites and lower 

the overall EOR activity. 
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Table 5.5  
EOR mass activity (MA) at the end of 10000-second chronoamperometry, MA at-0.5 V 
in quasi-steady-state linear sweep voltammetry (1 mV s-1) and survival ratio of Pd/C, 
PdxNiy/C, and Pd1Ni1/C catalysts. 
 

 

MA at the end of 

10000-second CA 

(mA mg-1) 

MA at -0.5 V in 

quasi-steady state 

polarization curve 

(mA mg-1) 

Survival 

ratio 

(%) 

Pd/C ~ 0 5.17 - 

Pd4Ni1/C ~ 0 7.46 - 

Pd2Ni1/C 0.37 19.27 2 

Pd1Ni1/C 1.33 21.89 6 

Pd4Ni5/C 1.29 15.15 9 

Pd2Ni3/C 1.71 14.49 12 

Pd1Ni1/C-NaBH4 ~ 0 8.08 - 
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Fig. 5.9 Chronoamperometry curves on Pd/C and PdxNiy/C and Pd1Ni1/C-NaBH4 
catalysts in 1.0 M NaOH + 1M C2H5OH, at electrode potential of -0.5V vs. Hg/HgO/1.0 
M NaOH 
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5.5 Conclusion 
 

In summary, an organic solution phase reduction method has been developed to prepare 

PdxNiy/C catalysts with small diameters of 2.4 – 3.2nm, narrow size distributions of 1 – 6 

nm, and large electro-chemical surface areas (i.e. 68.0 m2 g-1 for Pd4Ni1/C). The PdxNiy/C 

catalysts have demonstrated high reactivity towards ethanol oxidation reaction in alkaline 

electrolyte: i.e. the EOR onset potential on Pd4Ni5/C is 180 mV more negative than that 

of Pd/C; the exchange current density of Pd2Ni3/C is 90 times higher than that of Pd/C. 

After a 10000-second chronoamperometry test at -0.5 V (vs. Hg/HgO/1.0 M KOH), the 

mass activity of Pd2Ni3/C survived at 1.71 mA mg-1, while that of Pd/C had dropped to 0 

mA mg-1, which implies a better 'detoxification' ability of PdxNiy/C catalysts for a long-

term ethanol oxidation reaction activity. We propose that surface Ni could serve to 

promote refreshing active Pd reactive sites, thus enhancing the overall ethanol oxidation 

kinetics. The organic solution phase reduction method has a better control over diameter 

and size distribution of Pd-Ni particles. This method is able to facilitate the formation of 

more efficient contacts between Pd and Ni at the surface, which is the key to improving 

the EOR activity. The small amount of surfactants was observed to have no apparent 

negative effects on ethanol oxidation reaction in alkaline electrolyte. 

Equation Section (Next) 
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Chapter 6 Au/C as anode catalyst for anion-

exchange membrane-direct glycerol fuel cell 

(AEM-DGFC)* 
 

6.1 Introduction 

6.1.1 Background 
 

The development of sustainable society needs wide-spread applications of renewable, 

reliable, and cost-effective energy technologies.3,227,228 Fuel cells (FCs) are considered a 

promising alternative electric power device to meet humanity’s energy demands.  

Compared to H2-fed fuel cells, direct alcohol fuel cells (DAFCs) have attracted enormous 

attention due to the simple production, purification, and storage of the liquid 

fuels.36,117,168,169,184,229 Among all the alcohols, the electro-oxidation of methanol and 

ethanol have been widely investigated,61,169,184,192,194,195,229 due to their simple reaction 

mechanisms and relatively high volumetric energy density. (4.8 and 6.3 kW h L-1, 

respectively, for complete oxidation to CO2) However, the toxicity of methanol and high 

volatility of ethanol, along with their low flash points remain critical issues under 

practical operation conditions.172 Glycerol is a non-toxic, non-volatile, and non-

flammable highly functionalized molecule with a theoretical energy density of 6.3 kW h 

L-1. As a main byproduct of biodiesel production, glycerol is supplied in large quantities 

at low price.14 Therefore, glycerol is highly expected to be used in DAFCs as an 

inexpensive, renewable, and environmental-friendly fuel.230 

 

*The material contained in this chapter was previously published in International Journal 
of Hydrogen Energy. Reprinted with permission from Journal of Hydrogen Energy 2012; 
37(11), Zhiyong Zhang, Le Xin, and Wenzhen Li, “Supported gold nanoparticles as 
anode catalyst for anion-exchange membrane-direct glycerol fuel cell (AEM-DGFC)”, 
9393-9401. Copyright 2011 International Association for Hydrogen Energy. 
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6.1.2 Recent development of anion-exchange membrane direct glycerol 

fuel cells (AEM-DGFC) 
 

The investigations of glycerol oxidation in alkaline electrolytes in half cell studies started 

in 1980s.231,232 However, glycerol is treated seriously as a fuel only in recent years, 

thanks to the development of solid anion-exchange membrane and the blooming of 

biodiesel production. In half cells, the oxidation of glycerol in alkaline electrolyte was 

compared with that of methanol, ethanol, ethylene glycol, and 1,2-propanediol on 

different catalysts. It is found that on Pd-based catalysts, including Pd-NiO/C,194 

Pd/MWCNT,233 and Pd/TiO2,234 the glycerol oxidation suffers a higher onset potential 

than other small alcohols, although it can generate a higher peak current density. 

Different from Pd, on polycrystalline Au electrode, glycerol has a better oxidation 

activity in terms of both onset potential and peak current density over other alcohols.235 

Simoes et al compared the glycerol oxidation on Pt, Pd, Au, PdNi, and PdAu catalyst. It 

is reported that Pt possesses the lowest onset potential of 0.4 V vs. SHE, which is 0.15 V 

lower than that of Pd and Au. In the meantime, it is also found that when alloyed together, 

the onset potential of PdAu catalyst negatively shifts about 0.1 V comparing to that of Pd 

and Au catalysts, while PdNi has little promotions. In anion-exchange membrane fuel cell 

(AEMFC) studies, Matsuoka et al. first used glycerol as fuel in a PtRu/C anode catalyst-

based AEMFC, and obtained a peak power density of ~7 mW/cm2 at 50°C.236 Bianchini 

and co-workers achieved an AEM-DGFC performance of ~118 mW/cm2 on a Pd-(Ni-Zn-

P)/C anode catalyst at 80°C.184 Ilie et al optimized the membrane electrode assembly 

(MEA) fabrication method and reaction conditions (i.e. fuel composition, fuel flow rate, 

etc), and demonstrated an AEM-DGFC peak power density of ~ 24 mW cm-2 with Pt and 

Pt-based bimetallic anode catalysts at 60°C.237 However, most of the previous AEM-

DGFC studies were focused on Pt- or Pd- based catalysts. Due to the high onset potential 

(0.55-0.65 V vs. SHE) of glycerol electro-oxidation observed on Au in half cell 

studies,72,216 it was assumed that a very high overpotential would be inevitably observed 

on Au anode catalyst, and thus the fuel cell performance is largely lowered. Therefore, 

little single cell performance has been reported on Au anode catalyst-based AEM-DGFCs. 
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6.1.3 Glycerol electro-oxidation mechanism in alkaline electrolyte 
 

From thermodynamic calculations, the fully oxidation of glycerol to CO2 will give a 

reversible potential of 1.230 V.238 

 2 2 2 2 2( ) ( ) ( ) 3.5 4 3  

=1.230 V vs. SHEo

CH OH CH OH CH OH O H O CO
E

+ → +
 (6-1) 

With the facilitation of OH-, the fully oxidation of glycerol to CO3
2- will lead to a 

reversible potential of 1.369 V: 

 
2

2 2 2 3 2
7( ) ( ) ( ) 6 3 7  
2

1.369V vs. SHEo

CH OH CH OH CH OH OH O CO H O

E

− −+ + → +

=
 (6-2) 

 

However, the real electro-oxidation of glycerol is a very complicated reaction that 

contains many possible reaction pathways and usually only partially oxidizes glycerol to 

more than ten kinds of C3 and C2 products. The complex reaction mechanism of glycerol 

oxidation makes it hard to maximize the fuel cell efficiency of AEM-DGFC. To obtain a 

better understanding of the glycerol electro-oxidation pathway, investigations have been 

performed using both in-situ Fourier transform infrared (FTIR) characterizations 216,239,240 

and HPLC analyses,72-74 based on the half cell tests.  

 

In situ FTIR is an important technique that can simultaneously monitor the reactive 

intermediates adsorbed on the surface of catalysts during electro-catalytic reactions. 

Therefore, it is widely used for reaction mechanism investigations. Based on the in situ 

FTIR study, Simoes proposed a simple reaction pathway of glycerol oxidation in alkaline 

electrolyte on carbon supported Pt, Pd, and Au catalysts, as shown in Fig. 6.1. Gomes, et 

al. also unambiguously identified tartronic acid and glyoxylic acid on both polycrystalline 

Pt and Au electrodes.240 In addition, mesoxalic aicd240 and CO2
239 were also identified by 

in situ FTIR on polycrystalline Au electrode. Although the in situ FTIR is sensitive in 

monitoring the changes in organic functional groups, it is not accurate at quantitatively 
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analyzing the concentration of each product. In addition, the information given by in situ 

FTIR is mainly related with the molecular structures on the surface of catalyst. Thus, it is 

weak in distinguishing stable products from reactive intermediates. 

 

 
Fig. 6.1 Reaction mechanisms identified for Pt/C, Pd/C, and Au/C for glycerol oxidation 
reaction. Dashed arrows correspond to a possible progress of the reaction216. 
 

Comparing to FTIR, HPLC is a powerful technique for quantitative analysis of products 

concentration in bulk electrolyte. However, the HPLC analysis of each sample usually 

will take more than 15 minutes. The large gap in timescales between HPLC analysis and 

half cell voltammetries make it difficult to obtain the instant information of products 

concentrations in the course of voltammetry scans. By employing an elegant design of 

on-line collection off-line HPLC analysis instrument, Kwon et al. successfully collected 

the oxidation products at different potentials on Pt and Au polycrystalline electrodes, 

during a linear sweep voltammetry. Based on the changes of concentration of glycerol 

and its electro-oxidation products, a mechanism of glycerol oxidation on Pt and Au was 

proposed as shown in Fig. 6.2. Comparing to the in situ FTIR results, the HPLC analysis 

confirmed that glyceric acid, glycolic acid, and formic acid are bulkily formed on both Pt 

and Au, while tartronic acid and oxalic acid are only largely produced on Pt. 
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Fig. 6.2 The glycerol oxidation mechanism on Au and Pt electrodes in alkaline media74. 
 

 

In this chapter, a carbon supported Au-NPs catalyst was prepared through the modified 

organic solution phase reduction method. 208 The as-prepared Au/C catalyst demonstrated 

a narrow particle size distribution of 2 – 6 nm. The Au/C catalyst was tested in a half cell, 

and further applied in an AEM-DGFC, demonstrating a high peak power density of 57.9 

mW cm-2 at 80oC. The AEM-DGFC with crude glycerol fuel under the same test 

conditions also achieved an OCV of 0.66 V and a peak power density of 30.7 mW cm-2. 

The product analysis reveals that in AEM-DGFC the Au/C anode catalyst favors the 

production of deeper oxidized products, such as tartronate, mesoxalate, and oxalate. 

Based on the product distributions, the Faradic efficiency (ηe) of the AEM-DGFCs with 

the Au/C anode catalyst was investigated. 

 

6.2 Experimental section 

6.2.1 Preparation of Au/C catalyst 
 

Au nanoparticles were synthesized through a modified organic solution phase reduction 

method.92,93,95,107,208,211,212 0.5 mmol of AuCl3 (151.7 mg) was dissolved in a mixture of 
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16 ml of octadecene and 4 ml of oleylamine under a nitrogen flow. The system was then 

rapidly heated to 80°C, subsequently followed by a quick injection of 1.5 ml of LiBEt3H. 

After holding the temperature at 80°C for 10 minutes, the system was cooled down to 

room temperature and mixed with 100 ml of carbon black-hexane ink (containing 229.8 

mg of Vulcan XC-72R carbon black). 500 ml of ethanol was then added in dropwisely to 

precipitate the Au particles out onto the carbon supports. The as-prepared 30 wt% Au/C 

catalyst was achieved after filtration, washed with copies of ethanol, and dried in vacuum 

oven at 50°C overnight. 

6.2.2 Physical characterizations 
 

The morphology, structure, and metal loading of Au/C catalyst were analyzed by X-ray 

diffraction (XRD), transmission election microscopy (TEM), and inductively coupled 

plasma atomic emission spectroscopy (ICP-AES).  

 

6.2.3 Half cell test 
 

The half cell tests were performed by the procedure described in Section 2.3.1. 10 µl of 

0.05 wt% AS4 (Tokuyama) ionomer solution was applied as the ionomer to fix the 

catalyst. The ECSA was evaluated based on the reduction peak of a monolayer of gold 

oxide in the polarization curve of a CV scan in 1.0 M KOH, using equation (2-3): 

 r
e

QS
m C

=
×

 (2-3) 

while the charge density C is chosen as 0.386 mC cm-2 based on reference241. 

 

The activity of glycerol electro-oxidation was investigated by a CV scan in 2.0 M KOH + 

0.05 M glycerol, and was compared with that of methanol and EG under the same test 

condition. In order to further optimize the effects of alkaline and glycerol concentrations, 

linear scan voltammetry (LSV) was carried out in different concentrations of KOH and 
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glycerol from -0.9 – 0.8 V, with a sweep rate of 1 mV s-1 and a rotation speed of 2,500 

rpm. 

 

6.2.4 AEM-DGFC test 
 

A MEA with a Au anode (1.0 mgAu cm-2), an AS-4 anion-exchange ionomer, non-Pt 

group metal (PGM) HYPERMECTM cathode (1 mgcatalyst. cm-2) was prepared by the 

procedure in Section 2.4.2.1. The performance of AEM-DGFC was evaluated with a 2.0 

M KOH + 1.0 M glycerol solution and high purity O2 (99.999%) at the fuel cell working 

temperature from 50 to 80°C. Serving as control experiments, a proton-exchange 

membrane – direct glycerol fuel cell (PEM-DGFC) performance was collected at 90°C, 

fed with 1.0 M glycerol solution. The MEA employed in the PEM-DGFC was assembled 

with a PtRu/C-based anode (4.0 mgPtRu cm-2), Nafion 115 membrane, and a Pt/C-based 

cathode (4.0 mgPt cm-2). The performances of AEMFCs fed with 2.0 M KOH + 1.0 M 

methanol (or EG) were also investigated at 80°C for comparison. In order to examine the 

performance of biomass-derived crude glycerol in Au/C anode catalyst-based AEM-

DGFC, 2.0 M KOH + 1.0 M crude glycerol was applied as fuel at 80°C. The durability of 

Au/C anode AEM-DGFC fed with crude glycerol was studied by 100 continuous runs of 

polarization scans under the same test conditions, while the cathode catalyst loading was 

increased to 2.0 mg cm-2 to minimize the effect of cathode catalyst activity loss. 

 

6.2.5 Faradic efficiency analysis and product analysis 
 

The glycerol electro-oxidation products on Au/C anode catalyst in AEM-DGFC and the 

fuel cell's Faradic efficiency were with a 2.0 M KOH + 1.0 M glycerol solution, 

following the procedure in Section 2.4.2.3, with a constant cell voltage of 0.5, 0.3, or 0.1 

V applied for 2 hours at 50°C. The selectivity (S) to each product was calculated by 

equation (2-9):  



 

100 

 

 
2 3

 100%
 

Moles of specific product formsSelectivity
Total moles of C and C products detected

   
= ×

      
 (2-9) 

 

Based on the product distributions, the Faradic efficiency (ηe) was calculated by using the 

equation (2-10): 

 
e ii eSη η= ∑   (2-10) 

 

6.3 Results and discussion 

6.3.1 Physical characterizations 
 

The XRD pattern of Au/C catalyst is shown in Fig. 6.3, which presents a typical Au face 

centered cubic (FCC) structure (JCPDS card 4-784). The average Au crystal size 

calculated based on the Au (220) diffraction peak is 3.4 nm, using the Debye-Scherer 

formula (equation (2-1)): 

 
2 max

0.9
cos

KL
B

α

θ

λ
θ

=  (2-1) 

 

A typical TEM image of Au/C is shown in Fig. 6.4 (a). It is evidenced that most Au-NPs 

are round and uniformly dispersed on the carbon support with only a few agglomerations. 

The Au average particle size measured from the TEM image is 3.5 nm, showing a good 

agreement with the XRD result. The histogram of particle sizes evaluated from over 100 

particles in an arbitrarily chosen area is shown in Fig. 6.4 (b) which suggests a narrow 

size distribution of 2 – 6 nm. The metal loading determined by ICP-AES is 30.8 wt%, 

indicating all the Au precursor was fully reduced and deposited on the carbon support. 

Compared to previous studies,46,242,243 the self-prepared Au/C catalyst exhibits a smaller 

diameter and a more narrow size distribution, indicating that the organic solution phase 

reduction method has a better morphology control capability on Au, even with a high 

metal loading of 30 wt%. 
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Fig. 6.3 The XRD pattern of Au/C catalyst. 
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Fig. 6.4 TEM image (a), and particle size histogram (b) of Au/C. 
 

6.3.2 Electro-chemical studies in half cell 
 

In order to obtain the ECSA of the as-prepared Au/C catalyst, a 10-cycle CV scan was 

performed in 1.0 M KOH from -0.9 – 0.7 V at 50 mV s-1, and the last cycle is shown in 

Fig. 6.5 (a). The anodic peak on the forward scan and the cathodic peak on the backward 

scan are assigned to the formation and reduction of a monolayer of Au oxide. 241 The 

(a) (b) 
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ECSA of Au/C catalyst is 26.8 m2 g-1, which was evaluated from the reduction peak at ~ 

0.13 V with a double layer correction and a charge density of 0.386 mC cm-2.241 

 

The electro-catalytic oxidation of glycerol in alkaline media on Au/C was investigated in 

1.0 M KOH + 0.05 M glycerol, and was compared with that of methanol and ethylene 

glycol (EG) under the same condition. As shown in Fig. 6.5 (b), the shape of CV curves 

of both EG and glycerol oxidation represents the typical electro-oxidation reaction of 

alcohols, with two well-defined anodic peaks in forward and backward scans. However, 

the electro-oxidation of methanol is weak on Au/C. It is noted that the glycerol oxidation 

current is less stable than EG oxidation current in range of 0.16 – 0.3 V. Some authors 

have attributed this instability to the complex electro-oxidation kinetics.216 However, 

taking into consideration the accelerated reaction rate at this area, it is possible that the 

fluctuation in current is due to the diffusion issues rising from the fast consumption of 

glycerol and KOH. Compared to EG and methanol, glycerol possesses a higher activity 

on Au/C catalyst, with both a lower onset potential and higher electro-oxidation currents 

in the whole investigated potential range. Based on the base catalysis theory, the first 

deprotonation of Hα in alcohol on Au catalyst is base catalyzed:73 

 2H R OH OH H R O H Oβ α β
− −− + − +  (6-3) 

 

The reaction produces highly reactive alkoxide and follows a Hammett type correlation 

with the pKa of alcohol. Therefore, a lower pKa of alcohol will lead to a higher reactivity. 

As the pKa of glycerol is 14.15, which is lower than that of EG (14.77) and methanol 

(15.50), it is easier for glycerol to deprotonate into highly reactive glycerolate in high pH 

media, resulting in a high overall electro-oxidation activity. Therefore, glycerol is 

expected to be a promising fuel for Au anode catalyst-based AEM-DGFC. 

 

The effect of alkaline concentration on glycerol electro-oxidation was further investigated 

through linear voltammetry scans with 0.05 M glycerol, and the results are shown in Fig. 

6.5 (c). It is reasonable to consider that the glycerol oxidation on the Au/C undergoes a 

quasi-steady state with negligible mass transfer issue, due to the adopted slow scan rate 
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of 1 mVs-1 and high electrode rotation speed of 2,500 rpm. With the KOH concentration 

increasing, the onset potential of glycerol oxidation shifts negatively, with the value of -

0.271, -0.274, and -0.374 V in 0.1, 1.0, and 2.0 M KOH, respectively. It was reported that 

high pH will benefit the initial deprotonation of glycerol.75,244 Therefore, high OH- 

concentration will promote the generation of highly reactive glycerolate through a simple 

base catalyzed pathway in the electrolyte.73 Meanwhile, the recent investigation in DFT 

calculations also suggests that in an alkaline environment, the adsorbed OHad will 

enhance the elimination of both Hα and Hβ of adsorbed alcohols on the Au surface 

through a metal surface catalyzed process by lowing the activation energy barriers ,76, as 

shown in equation (6-4) and (6-5), respectively: 

 , 2ad ad adH R OH OH H R O H Oβ α β− + → − +  (6-4) 

 2ad ad adH R O OH R O H Oβ − + → = +  (6-5) 

 

The higher pH will increase the OHad coverage rate on the Au surface and facilitate 

glycerol electro-oxidation. Also, according to the bi-functional theory, oxidation of 

primary alcohol requires adsorbed OH on the catalyst surface to decrease the onset 

potential,216 which will take advantage of high pH electrolytes.27 When the concentration 

of KOH further increases to 3.0 M, the onset potential shifts positively to -0.354 V. This 

is probably because too much OHad on the Au catalyst surface blocks the glycerol 

adsorption, resulting in a lower reactivity. The OH- concentration also affects the peak 

current and peak potential. In the case of KOH > 1.0 M, it has been found that the high 

OHad coverage ratio leads to an insufficient glycerol and/or alkoxy adsorption, which 

further results in a lower current density. In the meantime, it is noted that the peak 

potential shifts to the negative direction with OH- concentration increasing. Although this 

peak shift was assigned by some authors to be an enhancement of glycerol oxidation 

reactivity,216 previous studies of surface Au oxidation in alkaline electrolyte revealed that 

the sharp decrease in the oxidation currents was due to the formation of a well-developed 

gold oxide layer.239,245 Therefore, the peak shifting indicates that a high OHad coverage 

rate will enhance the generation of a fully developed Au oxide layer at the catalyst 

surface.  
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Fig. 6.5 (d) shows the electrooxidation curves of different concentration of glycerol in 

2.0 M KOH. With the glycerol concentration increasing, the onset potential gradually 

shifts to the negative direction, with the value of -0.374, -0410, -0.460 and -0.480 V for 

0.05, 0.1, 0.5 and 1.0 M glycerol, respectively. As glycerol is a weak acid with a pKa = 

14.15, higher glycerol concentration will generate more highly reactive glycerolate, that 

will further improve the onset potential. With the glycerol concentration increasing, the 

peak position moves monotonically to the positive direction, leading to higher peak 

currents. Higher initial glycerol concentration can lead to higher alkoxy or other 

intermediates adsorbed on the Au surface, which will reduce the OHad coverage ratio, 

therefore, delay the formation of gold oxide layer on the catalyst surface. On the other 

hand, some intermediates, ie, alkoxy and aldehyde, with high reducing activity, could 

‘protect’ the surface Au from being oxidized and losing reactivity. 1.0 M glycerol is such 

a high concentration that no peak current could be found in the whole investigated 

potential range. 
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Fig. 6.5 Cyclic voltammograms of Au/C in 1.0 M KOH, 50 mV s-1 (a), 1.0 M KOH + 
0.05 M alcohols, 1 mV s-1 (b), 0.05 M glycerol + 0.1–3.0 M  KOH, 1 mV s-1 (c), and 2.0 
M KOH + 0.05M ~ 1.0 M glycerol, 1 mV s-1, the inserted zooming out current in y-axis 
(d), at room temperature. 
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6.3.3 AEM-DGFC studies 
 

The as-prepared Au/C was applied as the anode catalyst for an AEM-DGFC, and 

demonstrated high electricity generation performance. As shown in Fig. 6.6 (a), when fed 

with 2.0 M KOH + 1.0 M glycerol, the AEM-DGFC with a loading of 1.0 mgAu cm-2 

produced an open circuit voltage (OCV) of 0.59 V and a peak power density of 17.5 mW 

cm-2 at 110 mA cm-2 at 50°C. The performance was significantly improved with the 

temperature increasing. At higher temperatures of 60 and 70°C, the OCV and peak power 

density reached 0.63 V and 26.3 mW cm-2 (at 130 mA cm-2), and 0.65 V and 37.1 mW 

cm-2 (at 190 mA cm-2), respectively. When the temperature further increased to 80°C, the 

OCV achieved at 0.67 V, while the peak power density reached 57.9 mW cm-2. In 

addition, as the operation temperature was increased, the slope of I-V curve became less 

negative at the electro-chemical kinetics-controlled low current density region (i.e. 0–50 

mA cm-2), indicating the glycerol oxidation kinetics were greatly enhanced at higher 

temperatures. It is also demonstrated in Fig. 6.6 (a) that the mass transport limiting 

currents increased from 210 mA cm-2 (50°C) to 389 mA cm-2 (80°C), indicating that 

better reactant diffusion may be achieved at higher temperatures. The output power 

density observed in the Au/C anode catalyst-based AEM-DGFC is 1 – 2 orders higher 

than the state-of-art biofuel cells with glycerol fuel (normally < 1.0 mW cm-2). 246,247 It is 

also much higher than the performance of PtRu/C anode catalyst-based (2.6 mWcm-2 on 

5.0 mgPtRu cm-2) proton-exchange membrane–direct glycerol fuel cell (PEM-DGFC). The 

promising performance of this AEM-DGFC may be attributed to the small Au 

nanoparticles (2 – 6 nm), which offers a high active surface area, and increased number 

of Au atoms with higher intrinsic activity at the edge.18,244,248 

 

The behavior of AEM-DGFC is also compared with that of AEMFCs fed with methanol 

and EG under the same test conditions at 80°C, as shown in Fig. 6.6 (b). When fed with 

2.0 M KOH + 1.0 M methanol, the AEMFC only yielded an OCV of 0.29 V and a peak 

power density of 0.8 mW cm-2(at 8 mA cm-2). With the number of hydroxymethyl groups 

in the fuel molecules increasing, the OCV and peak power density increased significantly: 
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0.58 V and 20.3 mW cm-2 for 1.0 M EG, and 0.67 V and 57.9 mW cm-2 for 1.0 M 

glycerol. At the same time, the better oxidation kinetics of alcohols with more 

hydroxymethyl groups are also evidenced by the increase of limiting current, as well as 

the less steep slope of I-V curve at low current density region. The AEMFC 

performances with different alcohols are in good agreement with the half cell test results, 

with the reactivity sequence of glycerol > EG > methanol. 

 

A commercial crude glycerol was directly employed as fuel for the Au/C anode catalyst-

based AEM-DGFC, which demonstrated reasonably high performance at 80°C. The 

crude glycerol contains 88.05 wt.% of glycerol, 5.42 wt.% of matter organic non glycerol 

(MONG), 4.16 wt.% of moisture, 2.37 wt.% of ash, and 628 ppm of methanol, and was 

used as purchased without any further treatment. As shown in Fig. 6.6 (c), when fed with 

2.0 M KOH + 1.0 M crude glycerol, the OCV and peak power density of the AEM-

DGFC reached 0.66 V and 30.7 mW cm-2 (at 140 mA cm-2) at 80°C. The fuel cell 

performance with crude glycerol is comparable to that with high-purity glycerol (0.67 V 

and 57.9 mW cm-2) and higher than that with high-purity EG (0.58 V and 20.3 mW cm-2). 

This indicates that Au/C is able to serve as a highly active anode catalyst for electro-

oxidation of biomass-derived crude glycerol in AEM-DGFC, without being significantly 

poisoned by the impurities.  
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Fig. 6.6 Polarization curves of an AEM-DGFC at operation temperature of 50, 60, 70, 
and 80°C, and a proton-exchange membrane direct glycerol fuel cell (PEM-DGFC) at 
90°C (a), AEMFCs fed with methanol, EG and glycerol at 80°C (b), and AEM-DGFC fed 
with crude glycerol at 80°C (c). Test conditions for AEM-DGFC: Anode: Au/C (1.0 
mgAu cm-2), 2.0 M KOH + 1.0 M alcohol, 4.0 mL min-1, cathode: Fe-Cu-N4/C (Acta 4020, 
1.0 mg cm-2), O2, 0.4 Lmin-1, 30 psi, AEM: A201 (28 μm, Tokuyama). Test conditions 
for PEM-DGFC: Anode: PtRu/C (4.0mgPtRucm-2), 1.0 M glycerol, 4.0 mL min-1, cathode: 
Pt/C (4.0mgPt cm-2), O2, 0.4 Lmin-1, 30 psi, PEM: Nafion 115 (150 μm, Dupont). 
 

(b) 
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The Au/C anode AEM-DGFC with crude glycerol also displayed high durability and 

stability. Fed with 2.0 M KOH + 1.0 M crude glycerol, the durability of Au/C anode 

AEM-DGFC was tested through 100 continuous runs of polarization scans at 80°C. The 

cathode loading was increased to 2.0 mg cm-2 to minimize the effect of cathode catalyst 

activity loss within the long-term test at elevated temperature. The initial polarization 

curve before the durability test in Fig. 6.7 (a) shows a peak power density of 40.1 mW 

cm-2, which is ~ 10 mW cm-2 higher than the performance in Fig. 6.6 (c) due to the 

increase of cathode catalyst loading. The relative peak power densities during the 

durability test are plotted in Fig. 6.7 (b), which gradually dropped to 53% of its original 

value (21.2 mW cm-2) after 100 continuous runs. The decrease of peak power density is 

probably due to the intermediates/poisons generated during the long term reaction which 

blocked Au surface active sites. After the durability test, the anode was cleaned by 

flushing with de-ionized water, and the performance was tested again under the same 

conditions. As shown in Fig. 6.7 (a), the polarization curve demonstrates no drop in 

electricity generation performance even after 100 continuous runs of durability test, 

indicating an extremely high stability of the Au/C anode catalyst. It is noted that after the 

durability test, the limiting current increased from 310 mA cm-2 to 330 mA cm-2, which 

implies better reactant diffusion was achieved.  
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Fig. 6.7 Polarization curves before and after the durability test (a), and the relative peak 
power density losses within the durability test (b), fed with 2.0 M KOH + 1.0 M crude 
glycerol. Test conditions: Anode: Au/C (1.0 mgAu cm-2), 4.0 mLmin-1, cathode: Fe-Cu-
N4/C (Acta 4020, 2.0 mg cm-2), O2, 0.4 Lmin-1, 30 psi, AEM: A201 (28 μm, Tokuyama), 
80°C. 
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6.3.3 Products analysis and Faradic efficiency investigation 
 

Table 6. 1 presents the products selectivities analyzed by HPLC under different fuel cell 

operation voltages. Although the previous studies of glycerol electro-oxidation in 

traditional three-electrode system by other groups indicate that Au only produces lightly 

oxidized products, such as glycerate and glycolate 72,74, our investigation found that the 

Au/C anode catalyst in AEM-DGFC more favors the generation of deeper-oxidized 

products, tartronate (37 – 49%) and oxalate (22 – 25%), in the whole fuel cell operation 

voltage range. At lower cell voltages, the fully oxidized C3 product — mesoxalate was 

also detected with the selectivity of 19% and 12%, at 0.3 and 0.1 V, respectively. This is 

in sharp contrast to heterogeneous catalytic partial oxidation of glycerol over Au/C 

catalysts, through which the main product is glycerate. i.e. Hutchings’ group reported a 

100% glycerate selectivity under an optimized condition. 17 The high selectivity of 

deeper-oxidized products on Au/C in the AEM-DGFC may be attributed to the high 

catalyst loading and the unique carbon cloth-based liquid diffusion layer, which will 

elongate the fuel residence time inside the catalyst layer and allow glycerol to undergo 

deeper oxidations. 

 

Table 6.1  
Product selectivity and Faradic efficiency (ηe) of an AEM-DGFC with Au/C anode 
catalyst under different fuel cell working voltages 
 

Cell 

voltage 

(V) 

Selectivity (%) 

ηe (%) 
Glycerate Tartronate Mesoxalate Glycolate Oxalate 

0.5 26 49 0 0 25 53.3 

0.3 17 39 19 0 25 58.6 

0.1 26 37 12 3 22 54.1 
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Based on the product distributions, the Faradic efficiency (ηe) was calculated by equation 

(2-12): 

 
e ii eSη η= ∑   (2-12) 

The higher Faradic efficiency means more electrons are exploited from the fuel, and thus 

represents a greater utilized fuel energy density. Since full oxidization of glycerol to CO2 

yields 14 electrons, the Faradic efficiencies of partial oxidizing glycerol to glycerate (4e-), 

tartronate (8e-), mesoxalate (10e-), glycolate (6e-), and oxalate (10e-) are 28.6%, 57.1%, 

71.4%, 42.9%, and 71.4%, respectively. The calculation is based on that all the C1 

product is formic acid. As shown in Table 6.1, the Faradic efficiencies at fuel cell 

operation voltages of 0.5, 0.3, and 0.1 V are calculated to be 53.3%, 58.6%, and 54.1%, 

respectively. By comparison, the main oxidation product for direct ethanol fuel cells 

(DEFCs, ethanol is another important biorenewable alcohol) is acetic acid or 

acetaldehyde even on the Pt/C or PtSn/C anode catalyst, due to the difficulty of C-C bond 

cleavage. 169,184 Therefore, the Faradic efficiency of a DEFC drops down to only 33.3% 

(acetic acid), and 16.7% (acetaldehyde). The AEM-DGFC with Au/C anode catalyst has 

a great advantage in exploiting more electrons from glycerol during its electro-oxidation, 

and thus improves the fuel efficiency. In order to further study the reaction pathway of 

glycerol electro-oxidation, a detailed work in Au based electro-catalytic reactors was 

carried out and described in Chapter 8. 

 

6.4 Conclusion 
 

In this chapter, carbon supported Au-NPs (Au/C) catalyst with a small average size of 3.5 

nm was successfully prepared by a modified organic solution phase reduction method. 

The reactivity of glycerol oxidation on Au/C is much higher than that of methanol and 

EG oxidation in alkaline electrolyte. A subtle balance of glycerol and OH- concentration 

is required to obtain a high electro-oxidation reactivity. The Au/C catalyst has 

demonstrated a high performance in AEM-DGFC: at 80°C, the OCV and peak power 

density can reach 0.67V and 57.9 mWcm-2, respectively. Even directly fed with crude 
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glycerol, the OCV and peak power density of the AEM-DGFC can still achieve 0.66 V 

and 30.7 mW cm-2, respectively. The Au/C anode also demonstrated high durability: after 

100 runs of polarization scans at 80°C, the Au/C anode AEM-DGFC shows no obvious 

performance loss when fed with 2.0 M KOH + 1.0 M crude glycerol. The product 

analysis shows electro-oxidation of glycerol on the Au/C anode catalyst in AEM-DGFCs 

favors the formation of deeper-oxidized products: tartronate, mesoxalate, and oxalate, 

which leads to higher fuel cell’s Faradic efficiency.  

Equation Section (Next)  
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Chapter 7 Electro-catalytic oxidation of glycerol 

on Pt/C in anion-exchange membrane fuel cell: 

Cogeneration of electricity and valuable 

chemicals* 

7.1 Introduction 

7.1.1 Biomass derived glycerol 
 

The depletion of traditional fossil resources has spurred both the academic and industrial 

researchers to find non-fossil transportation fuels. Driven by political rather than the 

economic decisions, the production of biomass derived alternative energy carriers, 

bioethanol and biodiesel, has increased dramatically in recent years. While bioethanol is 

mainly obtained from the microorganism fermentation process of biomass, the production 

of biodiesel is based on a chemical process of transesterification of vegetable oils, or of 

animal or waste fats. As shown in Fig. 7.1, catalyzed by an acid or base catalyst, the 

reaction simultaneously cleaves the fatty acids from the glycerol backbone and 

transforms them into methyl esters, which leaves the glycerol as an inevitable byproduct 

(10 wt%). As a result, the market for glycerol has quickly become saturated, leading to a 

low price of glycerol (0.3 US$ kg-1 for crude glycerol; 0.6 US$ kg-1 for purified 

glycerol).14 

 

 

 

*The material contained in this chapter was previously published in Applied Catalysis B: 
Environmental. Reprinted with permission from Applied Catalysis B: Environmental, 
2012, 119-120, Zhiyong Zhang, Le Xin, and Wenzhen Li, “Electrocatalytic oxidation of 
glycerol on Pt/C in anion-exchange membrane fuel cell: Cogeneration of electricity and 
valuable chemicals”, 40-48. Copyright 2011 Elsevier. 
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Fig. 7.1 Transesterification of vegetable oils or fats to biodiesel and byproduct glycerol. 
 

7.1.2 Selective heterogeneous catalytic oxidation of glycerol 
 

With a highly active triol structure and a low marketing price, glycerol has a great 

potential to serve as a main building block for the future production of higher-valued 

oxygenated chemicals, including glyceric acid, tartronic acid, mesoxalic acid, and 

glycolic acid, et al.13,15 However, currently these value-added oxygenates are mostly 

produced through either costly and non-environmental-friendly stoichiometric oxidation 

processes,249 or slow fermentation processes with low product yields.250  

 

To replace these out-of-date processes, extensive researches have been carried out on 

selective oxidation of glycerol through “green” and fast heterogeneous catalysis using 

molecular oxygen with mono-metallic catalysts, such as Pt,19,242,249,251-253 

Pd,19,21,242,249,251,254 and Au,17,18,21,76,242,244,249,254-260 and multi-metallic catalysts, such as 

PtPd,261 PtAu,262-264 AuPd,254,263,265-268 PtBi,20,269 PtCu,270 and PtPdBi.271 It has been 

found that the activity and product distribution of glycerol oxidation depend on both the 

catalyst, such as particle size, loading, support, etc, and the reaction conditions, such as 

pH, glycerol:catalyst ratio, O2 pressure, etc. Gallezot and his co-workers studied glycerol 

oxidation on Pt and Pd at different pHs and observed that the initial glycerol oxidation 

rate increased significantly with increased pH of reaction media on both catalysts.19,251,272 

They also found that the oxidation of primary -OH is more favorable than that of 
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secondary -OH in alkaline solutions. Groups of Hutchings and Prati separately studied 

glycerol oxidation on Au and achieved very high selectivity to glycerate (the salt form of 

glyceric acid) under their optimized conditions.17,18 Hutchings et al also investigated the 

effects of O2 pressure and catalyst loading on glycerol oxidation on Pt/C in basic 

environments, and found that lower O2 pressure and higher catalyst loading favor the 

oxidative cleavage of C-C bonds in glycerol and reaction intermediates to yield C1 

products.249 Despite great progress in the oxidation of glycerol, previous research was 

heavily focused on selective oxidation of one hydroxyl group to glyceric acid (glycerate 

in alkaline solution) or dihydroacetone, and C-C bond breaking to glycolic acid 

(glycolate in alkaline solution). Glycerate is the only C3 product that has shown high 

selectivity through heterogeneous catalysis in alkaline media. It is hard to obtain further 

oxidized C3 products (tartronate and mesoxalate). Tartronate is usually a low selectivity 

byproduct when oxidizing glycerol to glycerate.249 Mesoxalate has rarely been reported 

as a product from catalytic oxidation of glycerol on the metallic catalysts in batch 

reactors in high pH media.  

 

7.1.3 Relationship between heterogeneous catalysis and fuel cell 

reactions 
 

Recently, Davis and co-workers’ elegant work revealed the roles of OH- and O2 on 

metallic catalyst (Au or Pt) surfaces based on HPLC-MS analysis, 18O isotope tracing, 

and DFT calculation.76 They found that OH- in the reaction media can greatly facilitate 

glycerol oxidation, and the role of O2 is simply to facilitate the OH- regeneration loop via 

a 2-electron-transfer process on Au (or a 4-electron-transfer process on Pt). The function 

of O2 in heterogeneous catalytic oxidation of glycerol is similar to the O2 reduction 

reaction (ORR) at the fuel cell cathode. However, due to restrictions in the design and 

nature of traditional batch reactors, the chemical energy stored in glycerol (6.3 kWh L-1) 

has been wasted in the catalytic oxidation process (it is just converted to thermal energy 

in the oxidation). From energy conservation, economic, and environmental aspects, it is 
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desirable to develop new catalytic processes to cogenerate both energy and value-added 

chemicals from these biorenewable compounds. 

 

 

In this chapter, cogeneration of electricity and higher-valued chemicals from glycerol 

electro-catalytic oxidation was successfully achieved in a single AEMFC by separating 

the O2 reduction reaction (cathode) from the glycerol catalytic oxidation (anode). Carbon 

supported Pt nanoparticles (1 – 4 nm) served as the catalyst for glycerol electro-

oxidation,92,93,107,208,211,212 which not only demonstrated decent electricity generation 

performance (124.5 mW cm-2 at 80°C), but also showed unique catalytic selectivity 

towards higher-valued chemicals, such as glycerate, glycolate, and tartronate. It is 

interesting to find that the fuel cell operation voltage (anode overpotential) could regulate 

the product distributions. In addition, the fully oxidized C3 acid, mesoxalate, was directly 

produced in this alkaline cogeneration system. 

 

7.2 Experimental 

7.2.1 Preparation of Pt/C catalysts 
 

Pt/C catalyst was synthesized through an organic solution phase reduction 

method.92,208,209,212 In detail, 196.7 mg of Pt(acac)2 (0.5 mmol), 200 µl of oleylamine, and 

200 µl of oleic acid were dissolved in a mixture of 146.3 mg of carbon black and 40 ml 

of benzyl ether (Acros Organics, 99%) at 60°C in an inert N2 atmosphere. As the 

temperature increased to 120°C, 1.0 ml of LiBEt3H (1 M in THF, Acros Organics) was 

quickly injected into the system. The temperature was held constant for 30 minutes, 

slowly increased to 180°C, and held there for another 30 minutes. The final Pt/C catalyst 

(40 wt%) was obtained by filtration, washed with copious ethanol, and dried in a vacuum 

oven at 50°C overnight. Following a similar procedure, a 4.6 wt% Pt/C catalyst was also 

prepared. 
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7.2.2 Physical characterizations 
 

X-ray diffraction (XRD), transmission electron microscopy (TEM) were employed to 

analyze the structure and morphology of Pt/C.  

 

7.2.3 MEA fabrication and electro-oxidation of glycerol in AEM-DGFC 
 

The MEA was fabricated and tested by the procedure detailed in Section 2.4.2.1 and 

2.4.2.2. The cathode catalyst loading was maintained at 1.0 mgcatalyst cm-2, while the 

anode catalyst loading was controlled at 1.0 or 0.1 mgPt cm-2. The electricity generation 

performances were evaluated with a 2.0 M KOH + 1.0 M glycerol solution and high-

purity O2 (99.999%) at 50 and 80°C. The glycerol electro-oxidation and product analysis 

were performed by the procedure in Section 2.4.2.3. During the glycerol oxidation test, 

the anode overpotential was monitored with a Hg/HgO/1.0 M KOH electrode, and 

reported vs. SHE for convenience. All the products investigated are in their deprotonated 

(salt) forms in alkaline media. 

 

7.2.4 Electro-oxidation of glycerol in half cell with online sample 

collection system 
 

The online sample collection was performed by the procedure in Section 2.3.1.4, in both 

0.1 M KOH + 0.1 M glycerol and 1.0 M KOH + 1.0 M glycerol solutions. A Hg/HgO/1.0 

M KOH was employed as the reference electrode. However, the potential is reported vs. 

SHE to keep consistent with the AEMFC investigations. Prior to the tests, 2.0 mg of Pt/C 

catalyst were dispersed in 1.0 ml isopropanol by sonication to form a uniform ink. The 

working electrode was prepared by dropping 40 µl of the ink onto the glassy carbon 

electrode. 20 µl of 0.05 wt% AS-4 anion conductive ionomer solution was then added on 

the top to affix the catalyst.  
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7.2.5 Products analysis 
 

The product distribution was analyzed by the procedure described in Section 2.4.2.3. The 

selectivity (S) is calculated by equation (2-9): 

 
2 3

 100%
 

Moles of specific product formsSelectivity
Total moles of C and C products detected

   
= ×

      
 (2-9) 

 

The carbon balance is calculated by equation (2-11): 

 3 2 100%i f

i

G C C G

G

M M M M
Carbon balance

M

− − −
 = ×  (2-11) 

where MGi and MGf are the initial and final moles of glycerol in the electrolyte, MC3 and 

MC2 are the moles of C3 products (glycerate, tartronate, and mesoxalate) and C2 products 

(glycolate and oxalate), respectively. A smaller carbon balance indicates less C2 

chemicals were further oxidized to C1 products 

 

7.3 Results and discussion 

7.3.1 Physical characterization 
 

The XRD pattern of Pt/C catalyst is shown in Fig. 7.2 (a), which displayed a typical face-

centered cubic (FCC) pattern. The average metal crystal size of Pt/C catalyst calculated 

based on the Pt (220) diffraction peak is 1.9 nm, using the Debye-Scherrer formula 

(equation (2-1): 

 
2 max

0.9
cos

KL
B

α

θ

λ
θ

=  (2-1) 

 

A typical TEM image of Pt/C and its corresponding histogram are shown in Fig. 7.2 (b). 

It is observed that most of the nanoparticles are round in shape and are uniformly 

dispersed on carbon support with only few agglomerations. The average particle size 

evaluated from the TEM image is 2.4 nm for Pt/C catalyst, which is in good agreement 
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with the XRD result. The histogram of particle sizes (Fig. 7.2 (c)) counted from 100 

randomly chosen particles in an arbitrary area shows a narrow size distribution of 1 – 4 

nm. 

 

7.3.2 Electricity generation performance of anion exchange membrane 

direct glycerol fuel cells (AEM-DGFCs) 
 

Pt/C has demonstrated high activity towards electro-catalytic oxidation of glycerol in 

AEM-DGFC. As shown in Fig. 7.3, fed with an anode fuel of 2.0 M KOH + 1.0 M 

glycerol, the AEM-DGFC with an anode catalyst loading of 1.0 mgPt cm-2 yields an open 

circuit voltage (OCV) of 0.796 V and a peak power density of 58.6 mW cm-2 at 50°C. At 

a higher temperature of 80°C, the OCV and peak power density can reach to 0.850 V, 

124.5 mW cm-2, respectively, due to the benefits of better reaction kinetics and fuel 

diffusion. When the anode catalyst loading is reduced to 0.1 mgPt cm-2 with Pt/C (4.6 

wt%) the peak power density of AEM-DGFC remains 69.1 mW cm-2 at 80°C. The 

demonstrated power density represents 2 – 3 orders of magnitude higher than that of the 

current biofuel cells,246,247 and is also higher than the published results with Pd-based 

anode catalysts,184,233 which indicate Pt/C catalyst with small particles size (1 – 4 nm) 

possesses a high electro-catalytic activity toward glycerol oxidation in real fuel cell 

operations. In addition, the performance observed in AEMFC is over an order of 

magnitude higher than that of the proton exchange membrane – direct glycerol fuel cell 

(PEM-DGFC) with the PtRu/C anode and Pt/C cathode catalysts with heavy loadings (8 

mgPGM cm-2
MEA). The comparison of electrical performances of AEM- and PEM- DGFCs 

is consistent with the results found in heterogeneous catalysis: the glycerol oxidation will 

be facilitated in high OH- concentrations.76,251 
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Fig. 7.2 Morphology characterizations: (a) XRD pattern, (b) TEM image, and (c) particle 
size distribution of Pt/C catalyst. 
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Fig. 7.3 Polarization curves of AEM-DGFC at operation temperature of 50°C and 80°C. 
Anode: Pt/C (40 wt%), 1.0 mgPt cm-2, or Pt/C (5 wt%), 0.1 mgPt cm-2; cathode: Fe-Cu-
N4/C (Acta 4020) 1.0 mg cm-2, Membrane: Tokuyama A201, 28 μm. 2.0 M KOH + 1.0 
M glycerol. O2: 0.4 L min-1, 30 psi. PEM-DGFC: Anode: PtRu/C (4.0 mgPtRu cm-2), 
cathode: PtRu/C (4.0 mgPt cm-2), membrane: Nafion 115. 
 

7.3.3 Electro-catalytic oxidation of glycerol in AEM-DGFCs 

7.3.3.1 Cogeneration of electricity and higher-valued chemicals 

 

To investigate the cogeneration of electricity and valuable products on Pt/C in AEM-

DGFC, 55 ml 2.0 M KOH + 1.0 M glycerol was continuously looped from an anode fuel 

vessel into the anode for 2 hours. The fuel cell operation voltage was controlled at 0.7, 

0.5, 0.3, and 0.1 V, to represent the operation in the close OCV, high working voltage, 

high power density and high current density conditions. As summarized in Fig. 7.4 (a), 

the average power density and current density (within 2 hours) are 6.6 mA cm-2 and 4.5 

mW cm-2, 50.0 mA cm-2 and 25.0 mW cm-2, 158.9 mA cm-2 and 47.6 mW cm-2, and 

136.3 mA cm-2 and 32.5 mW cm-2, for fuel cell operation voltage at 0.7, 0.5, 0.3, and 0.1 

V, respectively. The average power density and current density are slightly lower than the 

values shown in Fig. 7.3 (regular I-V scan with open fuel-feeding), because the glycerol 
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concentration gradually decreased during the long reaction time (2 hours), due to cycled 

fuel-feeding. The high and stable AEMFC performance further suggests that fast kinetics 

of glycerol oxidation is not necessarily associated with complete oxidation of glycerol to 

CO2 (as what has been achieved in biofuel cells).  

 
Table 7.1  

Electro-oxidation of glycerol over Pt/C in AEM-DGFC with different base / glycerol 
concentrations at different fuel cell operation voltages. 
 

 

Cell 

voltage 

(V) 

Selectivitya (%) 
Glycerol 

conversion 

(%) 

Power 

density 

(mW 

cm-2) 

C3  GLY TAR MES GLC OXA 

2.0M 
KOH 

+ 
1.0M 

glycerol 

0.7 84 47 37 0 16 0 4.4 4.5 

0.5 81 41 40 0 4 15 10.5 25.0 

0.3 79 44 33 2 5 16 21.5 47.6 

0.1 70 34 33 3 8 22 37.1 32.5 

          

4.0M 
KOH 

+ 
1.0M 

glycerol 

0.7 83 46 37 0 17 0 3.1 4.5 

0.5 87 41 45 1 5 8 10.7 26.8 

0.3 85 40 42 3 5 10 23.7 58.4 

          

0.5M 
KOH 

+ 
1.0 M 

glycerol 

0.7 78 44 34 0 22 0 0.6 1.3 

0.5 71 38 33 0 15 14 3.1 8.9 

0.3 70 49 21 0 13 17 9.9 20.8 

          

2.0M 
KOH 

+ 
0.1M 

glycerol 

0.7 91 41 50 0 9 0 4.7 0.7 

0.5 76 40 36 0 8 16 14.8 7.7 

0.3 62 21 34 7 10 28 63.7 17.0 

          
a GLY=glycerate; TAR=tartronate; MES=mesoxalate; GLC=glycolate; OXA=oxalate 
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Fig. 7.4 (a) Electricity generation and products distribution from electro-catalytic 
oxidation of glycerol in AEMFC with 2.0 M KOH + 1.0 M glycerol at 50°C, at cell 
operation voltage of 0.7, 0.5, 0.3 and 0.1 V with an operation duration of 2 hours, anode 
overpotential (vs. SHE) marked in parenthesis; (b) Products distribution with different 
operation duration at 50°C and the cell operation voltage of 0.5 V. 
 

The products were collected after 2 hours of reaction and analyzed by HPLC. The 

selectivity to each product was calculated by equation (2-9). The oxidation products 

distributions under different operation voltages are summarized in Fig. 7.4 (a) and Table 

(a) 

(b) 
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7.1. Traditional heterogeneous catalysis of glycerol oxidation in basic environment has 

been inefficient in the generation of deeper oxidized C3 products (tartronate and 

mesoxalate). Tartronate selectivity is normally < 7% on Pt/C catalyst in traditional batch 

reactors with a OH- to glycerol ratio of 2:1.76,249 Even at an extremely high glycerol: 

catalyst ratio of 100:1 (mol mol-1), the tartronate selectivity in batch reactor is usually 

lower than 30%.249 Although a high selectivity of mesoxalic acid of 70% is reported by 

oxidizing tartronic acid in acid (pH = 1.5),273 to the best of our knowledge, no mesoxalate 

has ever been reported on metallic catalysts in basic environment batch reactor operations, 

due to low reactivity of the secondary hydroxyl. However, different from the traditional 

catalytic oxidation of glycerol in batch reactor, the fuel cell reactor uniquely facilitates 

deeper oxidized C3 acids. The selectivity of tartronate can reach around 33 – 40% in the 

whole fuel cell operation voltage range. In addition, it is interesting to find that at the fuel 

cell operation voltage of < 0.3 V, 2 – 3% of mesoxalate was collected in the AEMFC 

anode. The high selectivity of tartronate, together with the existence of fully oxidized C3 

products, mesoxalate, strongly suggests that AEM-DGFC has unique ability to facilitate 

deeply oxidizing glycerol without breaking C-C bonds, as compared with glycerol 

oxidation in traditional heterogeneous catalytic batch reactors. In addition, more electrons 

transferred in producing deeper-oxidized products leads to a higher Faradic efficiency of 

fuel cell operation.  

 

On the other hand, the results clearly show the fuel cell operation voltage has an ability to 

control the product distribution: as the fuel cell voltage reduces, a clear trend of the C3 

product selectivity drop has been observed from 84% to 70%. Moreover, the fuel cell 

voltage also affected the C2 product selectivity. At the cell voltage of 0.7 V, the only C2 

product was glycolate (16%). With the operation voltage decreasing to 0.5 V, the main C2 

product was oxalate (15%). As the fuel cell voltage operated at 0.1 V, the selectivity of 

oxalate further increased to 22%. To investigate the effects of fuel cell operation voltage 

on the product selectivity, a Hg/HgO/1.0 M KOH electrode was used to monitor the 

anode overpotentials, which are 0.281, 0.350, 0.444, and 0.495 V vs. SHE at the fuel cell 

operation voltages of 0.7, 0.5, 0.3 and 0.1 V, respectively. The higher potential (electrical 

energy) applied on the anode obviously leads to deeper oxidations of glycerol, resulting 
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in the formation of more oxalate and mesoxalate. Thus, it provides a feasible way to tune 

the product distributions through controlling the cell operation voltage (anode 

overpotential).  

 

To further study the voltage effect on catalyst selectivity, 55 ml 2.0 M KOH + 1.0 M 

glycerol solution was cycled into the anode for a longer reaction time (6 hours) at the cell 

voltage of 0.5 V. It can be seen from Table 7.2 that while glycerol conversion increased 

linearly during the entire test duration, power density decreased linearly due to the 

decreasing glycerol concentration. However, as shown in Fig. 7.4 (b), the anode 

overpotential was stable in the range of 0.350 - 0.356 V, indicating that the anode 

overpotential could be controlled by regulating the fuel cell operation voltage. During the 

test, a 0.5 ml sample was taken from the system every 2 hours for product analysis. The 

results as a function of time are shown in Fig. 7.4 (b). All product selectivities kept 

almost constant with time, and no mesoxalate or other products were found in the system 

at the fuel cell voltage of 0.5 V during the whole operation. This strongly indicated that 

the product selectivity can be well controlled by the cell operation voltage (anode 

overpotential).  

 
Table 7.2  

Electro-oxidation of glycerol over Pt/C in AEM-DGFC with 2.0M KOH + 1.0M glycerol 
at the fuel cell voltage of 0.5 V for different time. 
 

Reactio

n 

duration  

(hour) 

Selectivitya (%) 
Glycerol 

conversion 

(%) 

Power density 

(mW cm-2) C3  GLY TAR MES GLC OXA 

2 81 41 40 0 4 15 10.5 25.0 

4 83 44 39 0 4 13 16.2 21.9 

6 83 45 38 0 5 12 20.4 19.3 
a GLY=glycerate; TAR=tartronate; MES=mesoxalate; GLC=glycolate; OXA=oxalate 
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After the 6 hour test, the volume of the electrolyte slightly increased to ~56 ml, which is 

higher than the original volume of 55 ml, due to the continuous generation of H2O at the 

anode during the test. The glycerol and oxidation products trapped in the reaction system 

(mainly in catalyst layer and diffusion layer) were collected by flushing with de-ionized 

water until the OCV dropped to 0.01 V. The overall carbon balance is calculated by the 

equation (2-11): 

 3 2 100%i f

i

G C C G

G

M M M M
Carbon balance

M

− − −
 = ×  (2-11) 

where MC3, MC2 and MGf also include the amount of trapped chemicals. By this method, 

the carbon balance for the AEM-DGFC operated at a voltage of 0.5V, 6 hours is 6.5%. 

The carbon balances for the AEM-DGFC operation voltage at 0.7, 0.3, and 0.1 V are 

4.3%, 14.0%, and 26.1%, respectively. The carbon balance is high at low fuel cell voltage, 

indicating some C2 products (glycolate and oxalate) may be further oxidized to C1 

products (formic acid or carbonic acid) on the highly active Pt/C catalyst. 

 

7.3.3.2 Effects of base concentration 

 

To evaluate the KOH effects, 1.0 M glycerol mixed with 4.0 M or 0.5 M KOH as fuel 

was cycled into the anode for 2 hours, and the results are shown in Fig. 7.5. Comparison 

between Fig. 7.4 (a) and Fig. 7.5 reveals that higher KOH concentration will lead to 

higher electricity generation performance. The average power density at 0.3 V with 4.0 M 

KOH + 1.0 M glycerol is 58.4 mW cm-2, which is almost three times of that with 0.5 M 

KOH + 1.0 M glycerol (20.8 mW cm-2). This can be attributed to the following reasons. 

First, the higher OH- concentration will improve OH- diffusion at the anode, thus, 

increasing the fuel cell electricity performance.274 Second, according to the bi-functional 

theory, the oxidation of alcohol is governed by the coverage degree of both -ROads and 

OHads. High OH- concentration in bulk electrolyte will increase OHads on Pt catalyst 

surface. Third, it was reported that high pH would benefit the initial dehydrogenation of 

alcohol.75 Therefore, high OH- concentration will promote the generation of alkoxy 

intermediate adsorbed on Pt catalyst surface by lowing the activation energy barrier.76 As 
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a result, faster reaction kinetics will be achieved in a higher pH electrolyte. This is 

evidenced by the lower anode overpotential observed in a higher KOH concentration 

electrolyte. 
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Fig. 7.5 Electricity generation and product distribution from electro-catalytic oxidation of 
glycerol in AEMFC with 1.0 M glycerol + (a) 4.0 M KOH and (b) 0.5 M KOH fuel for 
an operation duration of 2 hours, anode overpotential (vs. SHE) was marked in 
parenthesis. The cell operation temperature was 50°C. 

(a) 

(b) 
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As the O-H bond activation barrier is greatly reduced in high pH media,76 it is more 

favorable to oxidize hydroxyl group to carboxyl other than break C-C bond. Therefore, 

higher concentrations of KOH have been found to slightly benefit the C3 products 

formation. When 0.5 M KOH was used (Fig. 7.5 (b)), the C3 products selectivity varies 

from 70 - 78% with the fuel cell voltage from 0.7 to 0.3V. As KOH concentration 

increased to 2.0 M (Fig. 7.4 (a)), the C3 products selectivity is 79 – 84%. When the KOH 

increased to 4.0 M (Fig. 7.5 (a)), the C3 products selectivity is 83 – 87%. As the O-H 

bond activation barrier drops in higher pH media, mesoxalate production, which requires 

the oxidation of the secondary hydroxyl, was observed even at the operation voltage of 

0.5 V in the 4.0 M KOH + 1.0 M glycerol test. On the contrary, when 0.5 M KOH + 1.0 

M glycerol was used, no mesoxalate was collected even at the fuel cell operation voltage 

of 0.3 V, indicating a strong KOH concentration effect on the product selectivity. 

 

7.3.3.3 Effects of glycerol concentration 

 

Since glycerol oxidation is related to both -ROads and OHads coverage degree on the Pt 

catalyst surface, when glycerol concentration decreased from 2.0 M to 0.1 M, both the 

current density and power density remarkably decreased, and the anode overpotential 

shifted positively. As shown in Fig. 7.6 and Table 7.1, glycerol concentration strongly 

affects the glycerol conversion rate. Due to the reduced amount (concentration) of 

glycerol, glycerol conversion in 2.0 M KOH + 0.1 M glycerol is higher than that obtained 

in 2.0 M KOH + 1.0 M glycerol. This is especially apparent at a fuel cell operation 

voltage of 0.3 V, where the glycerol conversion could reach 63.7%, which is 3 times of 

that observed in 1.0 M glycerol (21.5%). The limitation of fuel feeding also affects the 

product selectivity. At the cell voltage of 0.7 V, a high tartronate selectivity of 50% and a 

total C3 products selectivity of 91% were achieved. As the cell voltage decreased to 0.3 V, 

the total C3 products selectivity decreased to 62%, while the glycerate dropped to 21%. 

However in the meantime, very high mesoxalate and oxalate selectivities reached 7% and 

28%, respectively. This indicates that with a low glycerol concentration, the high output 
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power density at 0.3 V requires deeper oxidation of glycerol, resulting in high mesoxalate 

(fully oxidized C3 product) and oxalate (fully oxidized C2 product) selectivities. 
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Fig. 7.6 Electricity generation and product distribution from electro-catalytic oxidation of 
glycerol in AEMFC with 2.0 M KOH + 0.1 M glycerol as the fuel for an operation 
duration of 2 hours, anode overpotential (vs. SHE) marked in parenthesis. The cell 
operation temperature was 50°C. 
 

7.3.3.4 Stability of Pt/C anode catalyst 

 

The stability of Pt/C catalyst was determined through ten 2-hour runs of glycerol 

oxidation with 2.0 M KOH + 1.0 M glycerol under the same test conditions. The fuel cell 

operation voltage was kept at 0.1 V, at which the anode catalyst suffers the highest 

overpotential and the fuel cell generate the greatest current density. The cathode catalyst 

loading was increased to 1.3 mg cm-2 to minimize the effect of cathode catalyst activity 

decreasing. After each run, the anode was cleaned by flushing with de-ionized water until 

the OCV drops down to 0.01 V. As is shown in Fig. 7.7, the selectivity to each product 

also almost kept constant during the ten runs of stability tests, which demonstrates a 

stable selective catalytic activity of Pt/C during repetitively operations. In the meantime, 
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the Pt/C also presents a high stability against deactivation. The glycerol conversion 

dropped slightly from 39.4% to 37.6% after the first run, and stabilized at 32–33% after 

four consecutive runs. The Pt/C catalyst maintained 81.2% of its initial catalytic activity 

after 10 runs (a total 20 hours of operation), indicating an excellent stability and 

reusability of the Pt/C for anode catalyst of the AEM-DGFC. 
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Fig. 7.7 Reusability results of Pt/C catalyst in AEM-DGFC with 2.0 M KOH + 1.0 M 
glycerol at the cell operation voltage of 0.1 V, cathode: Fe-Cu-N4/C (Acta 4020) 1.3 mg 
cm-2, reaction time: 2 hours, cell operation temperature: 50°C. 
 

7.3.4 Reaction sequence of electro-oxidation of glycerol on Pt/C in half 

cell 
 

The combination of half cell voltammetry techniques with HPLC analysis to study the 

kinetics and mechanism of glycerol electro-oxidation was reported by Lamy's group in 

the 1990s. However, due to the large gap in timescales of these two analysis methods, 

Lamy's early research is limited to studying reaction products in long-time electrolysis.232 

Recently, Koper's group developed an online collection offline HPLC analysis system, 
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through which the glycerol electro-oxidation products on polycrystalline Pt and Au 

electrode surface were continuously collected under different potentials during a linear 

voltammetry scan in dilute glycerol solution (e.g. 0.1 M NaOH + 0.1 M glycerol), and 

analyzed thereafter by HPLC.72,74 In light of Koper's work, a similar sample collection 

set-up was designed and employed in linear staircase scans on supported Pt nanoparticle 

catalyst in both 0.1 M KOH + 0.1 M glycerol and 1.0 M KOH + 1.0 M glycerol, with a 

potential increment of 100 mV 10 min-1. The goal was to investigate the reaction 

sequence of glycerol oxidation on supported Pt catalysts with high concentration fuel 

solution.  

 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
0

5

10

15

20

25

30

35

 

 

Cu
rre

nt
 d

en
sit

y 
(m

A 
cm

-2
)

Potential (V vs. SHE)

 1.0 M KOH + 1.0 M glycerol
 0.1 M KOH +0.1 M glycerol

 

(a) 



 

134 

 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
50

60

70

80

90

100

 

Co
nc

en
tra

tio
n 

(m
M

)

Potential (V vs. SHE)

 Glycerol
 Glycerate
 Tartronate
 Glycolate
 Oxalate

0.0

0.2

0.4

0.6

0.8

1.0

1.2

 C
on

ce
nt

ra
tio

n 
(m

M
)

 

0

200

400

600

800

 

Co
nc

en
tra

tio
n 

(m
M

)  Glycerol
 Glycerate
 Tartronate
 Glycolate
 Oxalate

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
0.0

0.4

0.8

1.2

1.6

2.0

2.4

2.8

 C
on

ce
nt

ra
tio

n 
(m

M
)

Potential (V vs. SHE)  
Fig. 7.8 Electro-catalytic oxidation of glycerol on Pt/C catalyst: (a) polarization curves in 
0.1 M KOH + 0.1 M glycerol and 1.0 M KOH + 1.0 M glycerol, and oxidation products 
concentration profiles in (b) 0.1 M KOH + 0.1M glycerol and (c) 1.0 M KOH + 1.0 M 
glycerol. 
 

The polarization curves are shown in Fig. 7.8 (a). The current generation started at 0.4V, 

with a peak current at 1.1 V in 0.1 M KOH + 0.1 M glycerol. A steep drop in current 

density was observed at potential > 1.1 V, which is due to the deactivation caused by the 

(b) 

(c) 
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oxidation of surface Pt. When the concentration of KOH and glycerol increased to 1.0 M, 

the onset potential negatively shifted to 0.2 V, while the peak current density increased to 

33.4 mA cm-2, which is 6 times higher than that evidenced in 0.1 M KOH + 0.1 M 

glycerol (5.8 mA cm-2). This indicated higher kinetics could be achieved in higher KOH 

and glycerol concentrations, which is in good agreement with the single AEMFC results.  

 

The oxidation products under each applied potential were collected by a needle 

positioned within 0.5 mm to the center of the working electrode with a collection rate of 

50 μl min-1. The concentration profiles for 0.1 M KOH + 0.1 M glycerol and 1.0 M KOH 

+ 1.0 M glycerol are summarized in Fig. 7.8 (b) and (c), respectively. As only small 

amount of catalyst was deposited on the glassy carbon electrode, the diffusion issue is 

negligible as compared with that in single cell. Therefore, the samples collected from the 

half cell could be used to present the instantaneous products concentration around the 

catalyst surface. As shown in Fig. 7.8 (b), the oxidation products were detected in the 

sequence of glycerate, glycolate, tartronate, and oxalate. This observation agrees with the 

results on polycrystalline platinum disk recently studied by Koper’s group,72 indicating 

that glycerol oxidation sequence on supported Pt nanoparticle catalyst is similar to that on 

the bulk polycrystalline platinum electrode. The products sequence in the half cell is also 

in agreement with the products distribution examined from the fuel cell reactor, where 

oxalate is the product that was not found at relatively low anode overpotential. The 

product concentration profile in Fig. 7.8 (b) shows a volcano shape on each product, with 

glyceric acid having the highest concentration in low potentials. However, different from 

what Kwon has reported, at potentials > 1.3 V, the concentration of glycolate in the 

collected samples exceeded that of glycerate, suggesting that the C-C bond cleavage 

dominates on the PtO surface.  

 

As both KOH and glycerol concentrations increased to 1.0 M, the product concentration 

profile is shown in Fig. 7.8 (c). While the oxidation products were detected in the same 

sequence as that in 0.1 M KOH + 0.1 M glycerol, the initial detected potential for each 

product moved negatively, and the product concentration collected at each potential 

increased significantly. This indicates that a higher catalyst reactivity is achieved in a 
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concentrated electrolyte. The effect of fuel concentration has also been observed in 

AEM-DGFC tests: at high concentrations of glycerol or KOH, the anode overpotential 

decreased and the power density increased.  

 

However, there are still some inconsistences between these two electro-catalytic reaction 

systems. In the AEM-DGFC test with 2.0 M KOH + 1.0 M glycerol, tartronate and 

oxalate were observed at anode overpotential of 0.281 and 0.350 V vs. SHE, respectively. 

These anode overpotentials are much lower than the ‘initial’ detected potentials in half 

cell (tartronate at 0.5 V, oxalate at 0.6 V, vs. SHE, in 1.0 M KOH + 1.0 M glycerol). At 

the same time, the concentration of tartronate in the AEM-DGFC is much higher than 

that in the half cell. No mesoxalate was detected in our half cell tests, nor in previous 

published work by FTIR,240 or by HPLC.72,74 Three possible reasons may explain these 

discrepancies. First, the molar ratio of glycerol to catalyst in the AEM-DGFC (2.0 M 

NaOH + 1.0 M glycerol) is 2146:1 (mol:mol), which is 57 times smaller than the ratio in 

the half cell test in 1.0 M KOH + 1.0 M glycerol (121928:1). The higher catalyst loading 

in AEM-DGFC leads to a thicker catalyst layer and causes some diffusion difficulty. 

Therefore, some glycerol and glycerol oxidation intermediates could be trapped in the 

diffusion and catalyst layers, which may lead to formation of deeper oxidized products, 

i.e. tartronate and mesoxalate. The deeper oxidized product, tartronate, has also been 

reported in previous publication of electrolysis of glycerol, in which a glycerol to catalyst 

ratio similar to ours was employed.275 Secondly, the product concentration profile 

obtained from the half cell tests represents the instantaneous local products concentration 

around the Pt catalyst, which is not an equilibrated product distribution. However, the 

products distribution in the AEM-DGFC is the stable bulk concentration after a long 

reaction time. Thirdly, the tartronate was produced much greater in the AEM-DGFC than 

in the half cell. As shown in Fig. 5, increasing the base concentration will lead to the 

products generated at a lower potential. Therefore, when the KOH concentration further 

increases to 2.0 M, it is possible that these deeper-oxidized products are generated on 

dense catalyst nanoparticles at even lower potentials. Higher concentration of tartronate 

will lead to its further oxidation to mesoxalate in the AEM-DGFC reaction environment. 

The inconsistencies between these two systems imply that glycerol oxidation reactors and 
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processes may strongly influence the products distribution. The unique catalytic 

environment in AEM-DGFC may offer unique opportunities to selectively generate 

deeper- oxidized products, which have not been detected in previous half cell tests, and 

are difficult to be produced through heterogeneous catalytic oxidation processes.  

 

7.4 Conclusion 
 

In summary, an organic solution phase reduction method was used to prepare Pt/C 

catalysts with a small diameter of 2.4 nm and a narrow size distribution of 1 - 4 nm. The 

Pt/C catalyst has demonstrated unique electro-catalytic function towards cogeneration of 

both electricity (124.5 mW cm-2 at 80°C) and valuable chemicals (91% C3 acids 

selectivity at 0.7 V, 2.0 M KOH + 1.0 M glycerol), as well as excellent stability in AEM-

DGFC. Compared to heterogeneous catalytic oxidation of glycerol in traditional batch 

reactors, our study showed unique fuel cell operation voltage (anode overpotential) 

regulated product distributions: high tartronate selectivity (50% at 0.7 V, 2.0 M KOH + 

0.1 M glycerol). In addition, the fully oxidized C3 acid- mesoxalate with the highest 

selectivity of 7% (0.3 V, 2.0 M KOH + 0.1 M glycerol) was first reported on metallic 

catalyst in high pH media. The reaction mechanism study based on glycerol oxidation in 

half-cell using an online collection, offline HPLC analysis technique indicates a similar 

glycerol oxidation sequence as revealed in AEM-DGFC. However, the inconsistencies 

between the two systems still exist, possibly due to the quite different reaction 

environments, such as electrode structure, glycerol: catalyst ratio, and residence time of 

reactants. 

Equation Section (Next) 
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Chapter 8 Potential regulated electro-oxidation of 

glycerol to value-added products on supported Au 

catalysts* 

8.1 Introduction 

8.1.1 Background 
 

Recently, glycerol attracts immense research interests as a biorenewable feedstock with a 

low price.14 As a highly functionalized polyol, glycerol plays a crucial role in the future 

biorefineries. Its oxygenated derivatives, dihydroxyacetone, glyceric acid, tartronic acid, 

mesoxalic acid, and glycolic acid, et al, all have practical value. Among these value-

added products, tartronic acid is used in pharmaceuticals for osteoporosis and obesity. It 

is also used as an anti-corrosive agent in high temperature applications and as an oxygen 

scavenger in the food industry.276 Mesoxalic acid is found to be used in the treatment of 

diabetes, and also has potential applications as a complexing agent and as a precursor to 

synthesize 4-chlorophenylhydrazoned mesoxalic acid, which is demonstrated as an anti-

HIV agent.277 Glycolic acid has a broad range of cleanser applications due to its high 

acidity (pKa 3.83) and chelation properties with metal ions.21,278,279 It is also widely used 

in textile dyeing, leather tanning, personal care products, and the preparation of 

polyglycolic acid (PGA), which is a macromolecule for dissolvable sutures,280 drug 

delivery materials,281,282 and gas barrier packaging materials.283 

 

 

*The material contained in this chapter was previously published in Green Chemistry, 
2012, 14, Zhiyong Zhang, Le Xin, Ji Qi, Zhichao Wang, and Wenzhen Li, “Selective 
electro-conversion of glycerol to glycolate on carbon nanotube supported gold catalyst”, 
2150-2152. Reproduced by permission of The Royal Society of Chemistry. Copyright 
2012 The Royal Society of Chemistry. 
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However, up until now, tartronic acid is mainly produced by a non-environment-benign 

stoichiometric oxidation of maleic acid with permanganate as the oxidizing agent. 

Mesoxalic acid is mainly synthesized through the hydrolysis of alloxan with baryta water, 

hydrolysis of caffuric acid with lead acetate, and stoichiometric oxidation of glycerol 

diacetate with concentrated nitric acid. The out-of-date production methods lead to the 

extremely high prices of these chemicals, which strongly restricts the potential 

application of tartronic and mesoxalic acids. Meanwhile, glycolic acid has mainly been 

produced by the acid-catalyzed reaction of formaldehyde and carbon monoxide,284-288 or 

by hydrolysis of glycolonitrile (a production from formaldehyde and hydrogen 

cyanide),279,289-291 both of which involve highly toxic chemicals in the processes. It is 

urgent to develop more efficient, eco-benign, and renewable processes to selectively 

convert cheap biomass waste glycerol into these valuable chemicals. 

 

8.1.2 Glycerol oxidation on Au-based catalyst 
 

Although bulk Au is one of the most inert/stable metallic materials in the world, the 

development of nano-technologies has found that the nanoscaled Au is exceptionally 

active as a catalyst. As a result, the Au catalysis has emerged as one of the most exciting 

research areas in chemistry.292,293 The aqueous-phase oxidation of glycerol by using 

molecular oxygen has been extensively studied over Au17,18,75,242,244,248,249,264 and its 

bimetallic alloys, such as AuPt262 and AuPd.254,265,267,268,294 While Au shows no catalytic 

activity towards glycerol oxidation in acidic environments, it has demonstrated a unique 

ability to enhance the selectivity to glycerate in alkaline media. Hutchings and his co-

workers reported a 100% selectivity to glycerate at 54 – 56% glycerol conversions under 

optimized conditions.17 Parti’s group reported that on Au/TiO2 catalyst, the second 

primary hydroxyl group will be oxidized, resulting in a tartronate selectivity of 28%. In 

addition, H2O2 was also employed as the oxidant instead of molecular O2, which 

improved the selectivity to glycolate.21,75 The influence of the Au particle size has been 

investigated separately by several groups.248,294 Small Au particles are found to have a 

higher initial activity, but suffer from poor durability. Conversely, larger Au particles are 
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less active but have a more-stable reactivity. Until now, the predominant products from 

direct glycerol oxidation on Au catalysts in the aqueous alkaline phase have been 

glycerate and glycolate, whereas the selectivity to tartronate has typically been < 30% 

and no mesoxalate has been reported. 

 

8.1.3 Cogeneration of value-added chemicals and electricity in Au-anode 

AEM-DGFC 
 

Although some in-situ FTIR investigations have demonstrated the formation of tartronate 

and mesoxalate on the surface of the Au catalyst in the course of the glycerol electro-

oxidation process,216,240 it is hard to detect them in the bulk electrolyte.72,74 Recently, in a 

Au-anode (5.0 mgAu cm-2) AEM-DGFC, our group successfully demonstrated that 

tartronate and mesoxalate can be cogenerated with electrical energies.238 At the fuel cell 

operation voltage of 0.3 V, a 19% selectivity to tartronate and a 46% selectivity to 

mesoxalate were obtained together with a power density of 22.7 mW cm-2. Similar to the 

case of Pt-anode AEM-DGFC, the product distributions in a Au-anode AEM-DGFC are 

also strongly related with the cell operation voltage and the anode overpotentials. 

However, restricted by the design and nature of fuel cell, the anode overpotential is not 

directly controlled, and will increase at higher glycerol consumptions. In addition, the 

anode overpotential is narrowed by the theoretical AEM-DGFC voltage and the huge 

cathode overpotential. The highest anode overpotential obtained in this research is only 

0.633 V vs. SHE.  

 

To more accurately study the effects of potential on the selective electro-oxidation of 

glycerol and over a wider potential range, in this chapter, two kinds of electro-catalytic 

conversion reactors were designed. Based on a flow plate design with an active area of 5 

cm2, which is similar to the fuel cell reactor, the potential regulated oxidation of glycerol 

to tartronate and mesoxalate was accurately studied in the low potential range. The 

investigation clearly demonstrated a switch potential of 0.45 V from tartronate to 

mesoxalate. In order to study the glycerol electro-oxidation at higher potentials, an 
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electro-catalytic reactor with a smaller active area of 1 cm-2 was designed. The result 

shows that while the lower applied potentials favor the generation of continuous 

oxidation of –OH products (either tartronate or mesoxalate), the higher potentials lead to 

a high selectivity to C-C bond cleavage product (glycolate). 

 

8.2 Experimental 

8.2.1 Preparation of Au/C and Au/CNT catalysts 
 

151.7 mg of AuCl3 (0.5 mmol) was first dissolved in a mixture of 16 ml of octadecene 

and 4 ml of oleylamine under a nitrogen flow. The system was then rapidly heated to 

80°C, followed by a quick injection of 1.5 ml of LiBEt3H. After holding the temperature 

for 10 minutes, the Au nanoparticles (NPs) were achieved after quickly cooling down the 

solution to room temperature and separated by centrifugation.  

 

The as-prepared Au-NPs were then dispersed into 50 ml of Hexanes and slowly dropped 

into an ethanol solution of carbon black (148.0 mg). The final product Au/C catalyst (40 

wt%) was obtained after the filtration and washed with copious amounts of ethanol.  

 

The surface of CNT was functionalized in a 4.0 N H2SO4-HNO3 mixture for 4 hours at 

80°C.100 A 40 wt% Au/CNT catalyst was then prepared following a similar procedure. 

 

8.2.2 Physical characterizations 
 

The morphology and structure of Au/C and Au/CNT catalyst were analyzed by X-ray 

diffraction (XRD) and transmission election microscopy (TEM).  
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8.2.3 Electro-catalytic oxidation of glycerol 
 

Two electro-catalytic reactors were designed and fabricated for the investigation of 

glycerol oxidation at lower and higher potentials, respectively. For the glycerol electro-

oxidation taking place at lower applied potentials, the reactor was assembled as the 

scheme shown in Fig. 8.1 (a), with an active cross-sectional area of 5 cm2. At the anode 

side, a Au/C isopropanol ink was directly sprayed on a untreated carbon cloth (Fuel Cell 

store) liquid diffusion layer to obtain a catalyst loading of 5.0 mgAu cm-2, while at the 

cathode side, an untreated carbon cloth with 1.0 mgPt cm-2 of Pt/C catalyst was prepared 

through the same procedure. A solid anion-exchange membrane (FAA, 110 μm) was 

employed to separate the anode fuel and cathode electrolyte. The temperature was 

controlled at 50°C, which is consistent with that applied in the Au-anode fuel cells in our 

previous work.238 During each run, 8.0 ml of glycerol KOH electrolyte was introduced 

into a plastic fuel vessel and pumped into the anode through a closed loop by a peristaltic 

pump. At the same time, a KOH solution was cycled through the cathode. A Hg/HgO/1.0 

M KOH reference electrode was dipped into the anode chamber, through which the anode 

applied potential was accurately controlled by a potentiostats (Versastat MC, Princeton 

Applied Research) for a certain reaction time. 
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Fig. 8.1 Schematic illustration of the anion exchange membrane-based electro-catalytic 
reactors. 
 

The glycerol electro-oxidation at higher applied potentials was carried out in the reactor 

assembled as the scheme in Fig. 8.1 (b). The active area was reduced to 1.0 cm2 in order 

to avoid the current overload in the potentiostats at the high applied potentials. The anode 

(a) 

(b) 
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liquid diffusion electrode was prepared by spraying a Au/CNT isopropanol ink 

(containing 10 wt% of Teflon) onto a treated carbon cloth (Fuel Cell store, containing 10 

wt% of Teflon), while the cathode and the membrane are kept the same. The reaction was 

carried out through the same procedure, while room temperature was applied instead of 

50°C. To elucidate the reaction pathway, the oxidation of glycolate and oxalate were also 

investigated under the same conditions. 

 

8.2.4 Products analysis 
 

For glycerol oxidation, the product selectivity is calculated by equation (2-9): 

 
2 3

 100%
 

Moles of specific product formsSelectivity
Total moles of C and C products detected

   
= ×

      
 (2-9) 

 

The carbon balance is calculated by the equation (2-11): 

 3 2 100%i f

i

G C C G

G

M M M M
Carbon balance

M

− − −
 = ×  (2-11) 

where MGi and MGf are the initial and final moles of glycerol in the electrolyte, MC3 and 

MC2 are the moles of C3 products (glycerate, tartronate, and mesoxalate), and C2 products 

(glycolate, glyoxylate, and oxalate), respectively. A smaller carbon balance indicates less 

C2 chemicals were further oxidized to C1 products (formate and carbonate). 

 

For glycolate oxidation, the selectivity was calculated as follows: 

 
1 2

    100%
       
Moles of specific product formsSelectivity

Total moles of C and C products detected
= ×  (8-1) 

The carbon balance was based on:  

 2 1
2 2 2

100%
2

i f

i

C C C C

C

M M M M
Carbon balance

M

− − −
 = ×  (8-2) 

If assuming that no formate was further oxidized to carbonate (CO2 combined with OH- 

in high pH media) then,  
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1 FMC CM M=  (8-3) 

Therefore: 

 2
1/ 2

100%i FM f

i

C C C C

C

M M M M
Carbon balance

M

− − −
  = ×  (8-4) 

where MCi and MCf are the initial and final moles of glycolate in the electrolyte. MC2, MC1, 
and MCFM are the moles of C2 products (glyoxylate and oxalate), C1 products (formate 

and carbonate), and formate respectively. A smaller carbon balance indicates less formate 

was further oxidized to carbonate.  

 

8.3 Results and discussion 

8.3.1 Physical characterizations 
 

The XRD patterns of Au/C and Au/CNT catalysts are shown in Fig. 8.2. The peak at 25.2° 

is assigned to the graphite (002) facet, which is stronger in the XRD pattern of Au/CNT 

due to the high graphite degree of CNT. The average metal crystal sizes of these two 

catalysts are calculated based on Au (220) diffraction peaks, using the Debye-Scherrer 

formula (equation (2-1)): 

 
2 max

0.9
cos

KL
B

α

θ

λ
θ

=  (2-1) 

which yields the results of 2.7 nm for Au/C and 2.6 nm for Au/CNT catalysts. 

 

The TEM images of Au/C and Au/CNT and their corresponding histograms are shown in 

Fig. 8.3. It is observed that most of the nanoparticles are round in shape and uniformly 

dispersed on the supports. The average particle sizes evaluated from the TEM image are 

3.5 and 2.5 nm for Au/C and Au/CNT, respectively, which are in good agreement with 

the XRD results. The histogram of particle sizes counted from 100 randomly chosen 

particles show a narrow size distribution for both Au/C and Au/CNT catalysts, indicating 

the organic solution phase reduction method has a good control over the Au nanoparticle 

morphology. 
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Fig. 8.2 XRD patterns of Au/C and Au/CNT catalysts. 
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Fig. 8.3 The TEM images of Au/C and Au/CNT ((a) and (c)), and their corresponding 
particle-size histograms ((b) and (d)). 
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8.3.2 Potential controlled selective electro-oxidation of glycerol to 

tartronate and mesoxalate 
 

The potential controlled oxidation of glycerol at the lower applied potential was 

investigated in the electro-catalytic reactor illustrated in Fig. 8.1 (a). The product 

distributions under different applied potentials after 1 hour at 50°C were summarized in 

Fig. 8.4 and clearly demonstrated the selectivity of each product was strongly regulated 

on the applied potentials. At applied potentials lower than 0.4 V, the main product is 

tartronate, with a selectivity of 79%, while no mesoxalate was observed. Mesoxalate was 

obtained from the applied potential of 0.45 V. Its selectivity gradually increased with the 

increasing of applied potentials, and reached the highest selectivity of 57% at 0.65 V. In 

the meantime, the selectivity to tartronate gradually decreased to 26% (at 0.65V). The 

trend strongly suggests a potential controlled conversion from tartronate to mesoxalate, 

which takes place at 0.45 V, and can be further enhanced at higher potentials. When 

further increasing the anode applied potential to 0.7 V, the selectivity to mesoxaliate 

decreased to 55%, while the selectivity to oxalate increased from 5% (at 0.65 V) to 8%, 

indicating some mesoxalate was over-oxidized to oxalate. 
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Fig. 8.4 Electro-oxidation of glycerol (2.0 M KOH + 1.0 M glycerol) on Au/C under 
different applied potentials for 1 hour at 50°C. 
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The potential-regulation effect was further confirmed at both the lower anode applied 

potential of 0.4 V and the higher one of 0.65 V by elongating the reaction time. As shown 

in Fig. 8.5 (a), applied with an anode potential of 0.4 V, the glycerol conversion 

continuously increased with the elongation of reaction time and reached 35% after 18 

hours. However, the selectivity to tartronate still stabilized at ~ 78%, which implies that 

the selectivity to tartronate is mainly controlled by the applied potential, and has a limited 

relationship with the reaction time. It also needs to mention that the selectivity to oxalate 

slightly increased for a longer reaction time. This is possibly due to the slow oxidation of 

tartronate to glyoxylate, which is then quickly oxidized to oxalate. No mesoxalate was 

observed even after 18 hours’ reaction, indicating that the oxidation from tartronate to 

mesoxalate was firmly regulated by the applied potential, and can only take place at 

potentials higher than 0.45 V at this specific condition. It is noted that a trace amount of 

glycolate was observed (< 1%) after the 18 hours’ reaction. Although glycolic acid can be 

formed from tartronic acid through a non-Faradic decarboxylation process in a non-

oxidizing, low pH environment,21 it is not favored on polarized Au catalysts in an 

alkaline electrolyte.238 Therefore, the observation of a small amount of glycolate after 18 

hours of reaction indicates that an oxidation of glycerate to glycolate takes place very 

slowly at this low applied potential through a C-C bond cleavage.  

 

The potential-regulating effect was also confirmed at a higher applied potential of 0.65 V. 

Fed with 2.0 M KOH + 1.0 M glycerol, the selectivities to tartronate and mesoxalate were 

26% and 57%, respectively, while the conversion of glycerol was 32%. When the 

reaction time increased to 6 hours, the selectivities to tartronate and mesoxalate only 

slightly decreased to 24% and 55%, respectively, even at the high glycerol conversion of 

78%. This strongly indicates that the selectivity to the main products, tartronate and 

mesoxalate, is controlled by the applied anode potential, and is only weakly affected by 

the reaction time or glycerol conversion. The slight decrease in tartronate and mesoxalate 

selectivities is probably due to the over-oxidation to oxalate, which can be demonstrated 

by the increase in the selectivity to the byproduct oxalate from 5% (after 1 hour) to 9% 

(after 6 hours). 
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Fig. 8.5 Electro-oxidation of glycerol (2.0 M KOH + 1.0 M glycerol) on Au/C under (a) 
0.4 V and (b) 0.65 V at 50°C for different reaction times. 
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Fig. 8.6 Initial glycerol concentration effects, at the applied potential of (a) 0.4V and (b) 
0.65V, in 2.0 M KOH for 1 hour at 50°C. 
 

The electro-oxidation of glycerol was investigated with different glycerol initial 

concentrations, by fixing the KOH concentration at 2.0 M. The results are summarized in 

Fig. 8.6, which indicate that a lower glycerol initial concentration will increase the 

(b) 

(a) 
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selectivity to C2 products (glycolate or oxalate). As shown in Fig. 8.6 (a), at the applied 

anode potential of 0.4V, in 2.0 M KOH + 0.1 M glycerol, a selectivity of 7% to glycolate 

was observed after 1 hour’s reaction. However, when 2.0 M KOH + 1.0 M glycerol was 

used, only < 1% of glycolate was detected even after 18 hours’ reaction (Fig. 8.5 (a)). 

This indicates that a lower glycerol initial concentration will facilitate the oxidation of 

glycerate to glycolate. The initial glycerol concentration effect was also investigated at 

the anode applied potential of 0.65 V, at which there was the highest selectivity to 

mesoxalate after 1 hour’s reaction. As shown in Fig. 8.6 (b), when the initial glycerol 

concentration reduced 1.0 to 0.1 M, the selectivity to oxalate increased from 5% to 17%, 

while that to mesoxalate decreased from 57% to 46%, indicating the oxidation of 

mesoxalate to oxalate was enhanced at a lower initial glycerol concentration. In addition, 

a trace amount of glycolate was also observed, due to the enhanced oxidation rate of 

glycerate to glycolate at the lower initial glycerol concentration. 

 

8.3.3 Selective electro-oxidation of glycerol to glycolate 
 

Due to the current limitation of the potentiostats, the electro-catalytic reactor was 

redesigned with an active area of 1.0 cm2 to investigate the electro-oxidation of glycerol 

at higher applied potentials. CNT is used as the catalyst support instead of carbon black 

due to its better durability under high potentials.44,98,100,101,165,295-298 In addition, 10 wt% of 

Teflon was also employed in the catalyst layer to prevent the catalyst loss under high 

potentials. The product distributions after 3 hours of reaction at room temperature at 

different applied potentials were summarized in Fig. 8.7. In general, while the lower 

applied potentials favor the generation of tartronate and mesoxalate, the higher applied 

potentials have been found to facilitate the C2 products, especially glycolate. At the 

applied potential of 1.0 V, the selectivity to glycolate was only 41%. However, when the 

applied potential increased to 1.6 V, the glycolate selectivity increased up to 85%. On the 

contrary, the selectivity to tartronate gradually decreased from 17% (at 1.0 V) to 4% (at 

1.6 V). This suggests that the higher applied potentials will promote the C-C bond 

cleavage of glycerate to generate glycolate, other than the oxidation of the second 
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primary hydroxyl group to tartronate. Meanwhile, at the applied potential of 1.0 V, a 

glyoxylate selectivity of 2% was observed, which increased to 4% at 1.2 V. The 

observation of glyoxylate indicates the slow conversion from tartronate to glyoxylate at 

the lower applied potentials has been accelerated at the higher potentials. However, the 

selectivity to glyoxylate decreased at potentials higher than 1.2 V, which is probably due 

to the reduction of tartronate selectivity and the enhanced oxidation of glyoxylate to 

oxalate. No mesoxalate was detected at the higher applied potentials, indicating the fully 

oxidized C3 product is not a stable product under these conditions. Meanwhile, while the 

carbon balance of all the tests at lower applied potentials are within 10%, the carbon 

balance calculated by equation (2-11) slightly increased from 10% (at 1.0 V) to 13% (at 

1.6 V), indicating more C2 products (glycolate, glyoxylate, and oxalate) were oxidized to 

C1 products (formate and carbonate) at the higher applied potentials. To elucidate this 

mechanism, 1.0 M glycolate was oxidized at 1.6 V for 3 hours. The results summarized 

in Fig. 8.8 clearly show the formation of formate, with selectivities of 62% and 73% in 

2.0 and 1.0 M KOH electrolytes, respectively. In addition, the corresponding carbon 

balances were 15% and 16%, indicating formate may be further oxidized to carbonate. 

We also considered the oxidation of oxalate in the electro-catalytic reactor. When 2.0 M 

KOH + 1.0 M oxalate was employed, a stable anodic current and a carbon balance of 12% 

were observed after 6 hours reaction at 1.6 V, indicating that the C-C bond cleavage of 

oxalate also accounts for the formation of carbonate. The glycerol conversions after 3 

hours’ reaction at each applied potential were within 35%. This is lower than the glycerol 

conversion at 0.7 V after 1 hour’s reaction (Section 8.2.2), which is probably due to the 

reduction in the active area and the reaction temperature. 
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Fig. 8.7 Electro-oxidation of glycerol (2.0 M KOH + 1.0 M glycerol) on Au/CNT under 
different applied potentials for 3 hours 
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Fig. 8.8 Electro-oxidation of glycolate (1.0 M) on Au/CNT catalyst under different KOH 
concentrations at room temperature for 3 hours. The applied potential is 1.6 V vs. SHE. 
 

The concentration effects of KOH and glycerol were evaluated at 1.6 V for 3 hours, and 

the results are summarized in Table 8.1. It is obvious that higher concentrations of KOH 
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would enhance the reaction rate. As the KOH concentration increased from 0.5 M to 4.0 

M, the glycerol conversion jumped from 16% to 43%, due to the promoted deprotonation 

of glycerol in higher pH environments.73,299 Higher KOH concentrations also facilitate 

the oxidation of hydroxyl groups in glycerol, leading to higher selectivities of tartronate 

and oxalate in the experiment with 4.0 M KOH. Meanwhile, the initial glycerol 

concentration also affects the product distribution. With a lower initial glycerol 

concentration of 0.5 M, a larger amount of deeper-oxidized products (glycolate: 87% and 

oxalate: 5%) were obtained. When the initial glycerol concentration was increased to 2.0 

M, more glycerate was observed instead. This is consistent with the observations at lower 

applied potentials: a lower initial glycerol concentration will favor the generation of 

glycolate. 

 

Table 8.1  
Electro-oxidation of glycerol on Au/CNT at 1.6 V for 3 hours 

 

 

KOH to 

glycerol ratio 

Selectivity (%) Glycerol 

conversion 

(%) 

Carbon 

balance 

(%) 
Glycerate Tartronate  Glyoxylate Glycolate Oxalate 

4.0 M KOH + 

1.0 M Glycerol 
4 8 0 80 8 43 9 

2.0 M KOH + 

1.0 M Glycerol 
10 2 1 85 2 34 13 

1.0 M KOH + 

1.0 M Glycerol 
14 2 1 81 2 26 19 

0.5 M KOH + 

1.0 M Glycerol 
14 3 2 79 2 16 12 

2.0 M KOH + 

2.0 M Glycerol 
16 2 2 78 2 19 10 

2.0 M KOH + 

0.5 M Glycerol 
5 3 0 87 5 29 14 
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Fig. 8.9 shows the results of 2.0 M KOH + 1.0 M glycerol oxidation carried out at 1.6 V 

for up to 12 hours. It is apparent that the selectivity to each product was kept almost 

constant during the whole reaction period, demonstrating that the reaction time has 

limited influences on the product distribution. This observation also indicates that the 

glycerol electro-oxidation product selectivity is strongly dependent on the applied 

potentials. The conversion of glycerol stabilized at 50% after 6 hours reaction. However, 

small anodic currents were still recorded with the reaction time increasing, which may be 

attributed to the continuous generation of C1 products. With the reaction time increasing 

from 6 to 12 hours, the carbon balance gradually increased from 25% to 31%. At the 

same time, the concentration of each observed C3 (glycerate and tartronate) and C2 

products gradually decreased with the reaction time increasing, which also demonstrated 

the decomposition of C3 and C2 products to C1 products. 
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Fig. 8.9 Electro-oxidation of glycerol (2.0 M KOH + 1.0 M glycerol) on Au/CNT 
catalysts at 1.6 V for different reaction times. 
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8.3.4 Reaction mechanism of the electro-catalytic oxidation of glycerol 
 

Based on the production distributions under each applied potential, a reaction pathway 

was proposed for the Au-catalyzed electro-oxidation of glycerol in alkaline solution (Fig. 

8.10). Glycerol is first oxidized to glycerate, which is observed from 0.35 V (Fig. 8.4) at 

50°C. It is noted that the selectivity to glycerate is always stable at 10 – 20%, which is 

almost not affected by the applied potential, KOH to glycerol ratio, or reaction time. This 

indicates that the selectivity to glycerate in the electro-catalytic reactor is probably 

diffusion controlled: Glycerol first diffuses from the bulk electrolyte into the catalyst 

layer and is adsorbed on the surface of the Au catalyst, where one of its primary alcohol 

groups is oxidized to form glycerate. While some part of glycerate dissolves from the 

catalyst layer into the bulk electrolyte, most of it is still “trapped” in the thick catalyst 

layer due to the high Au loading (5.0 mg cm-2). The trapped glycerate is further quickly 

oxidized either to tartronate through the oxidation of the second primary alcohol group 

(favored at lower applied potential), or to glycolate through the C-C bond cleavage 

(favored at higher applied potential). The percentage of glycerate dissolved into the bulk 

electrolyte is mainly controlled by the diffusion in the system. As a result, the observed 

glycerate selectivity in the bulk electrolyte is always stable and not affected by the 

applied potential, KOH to glycerol ratio, or the reaction time. As shown in Table 6.1, in 

the Au anode AEM-DGFC with a lower Au loading of 1.0 mgAu cm-2 (the catalyst layer 

is thinner), the glycerate selectivity is 17 – 26%.  

 

At the lower applied potentials, the trapped glycerate is then quickly oxidized to 

tartronate (the green arrow pathway). Due to the similar structure of the first primary 

alcohol group and second primary alcohol group (the one in glycerate), it is reasonable to 

believe the activation energies for their oxidation are close and require a similar 

overpotential to take place in the electro-catalytic process. Therefore, tartronate is also 

observed from 0.35 V. The trapped glycerate is also oxidized to glycolate through a C-C 

bond breakage reaction. This step is very slow at lower applied potentials (Fig. 8.5 (a)). 

However, it becomes overwhelming at higher applied potentials, even at room 



 

157 

 

temperature (Fig. 8.7). The obtained glycolate is also slowly oxidized to oxalate and 

formate (not listed in the reaction pathway), which is proved by Fig. 8.8. Comparing to 

the oxidation of glycerate to tartronate, the oxidation of the alcohol group in tartronate is 

more potentially sensitive, which requires a higher anode applied potential of > 0.45 V at 

50°C. The oxidation rate of tartronate to mesoxalate is improved when the anode applied 

potential is further increased, which is evidenced by the continuous increasing of the 

mesoxalate selectivity and the corresponding decrease in tartronate selectivity (Fig. 8.4). 

Mesoxalate is also slowly over-oxidized to oxalate, leading to a slight increase in the 

selectivity to oxalate at a longer reaction time (Fig. 8.5 (b)). At lower applied potentials, 

tartronate is also slowly oxidized to glyoxylate, which is then quickly oxidized to oxalate. 

As a result of this step, oxalate was observed before 0.4 V without any detection of 

glyoxylate. It is also important to mention that the oxidation of tartronate to glyoxylate is 

also enhanced at higher potentials, which is evidenced by the selectivity of 4% to 

glyoxylate at 1.2 V at room temperature. 
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Fig. 8.10 Proposed reaction pathway for electro-oxidation of glycerol on Au catalyst in 
alkaline electrolyte. 
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8.4 Conclusion 
 

In this chapter, Au/C and Au/CNT catalysts were prepared through a solution phase 

synthesis method, and were successfully assembled into two electro-catalytic reactors for 

the accurate investigation of glycerol electro-oxidation at lower and higher applied 

potentials, respectively. The work clearly clarified that the product distribution is strongly 

controlled by the anode applied potential. At potentials < 0.4 V, the main product is 

tartronate (78% at up to 35% glycerol conversion), with no mesoxalate detected; while at 

0.65 V, the main product was potentially switched to mesoxalate (57% at up to 78% 

glycerol conversion). When the anode applied potential increased to 1.6 V, the main 

product further switched to glycolate (85% at up to 50% glycerol conversion). Based on 

the results, a reaction pathway for glycerol electro-oxidation on Au catalysts was 

proposed, which can guide the selective production of a series of high value chemicals 

from the oxidation of biorenewable glycerol. As the electro-catalytic process takes place 

under mild reaction conditions (< 50°C, atmosphere pressure, water as the solvent), it 

implies a more efficient alternative green approach to the current syntheses of tartronate, 

mesoxalate, and glycolate. 
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Chapter 9 Recommendations and future work 
 

My Ph.D work has successfully developed a wet chemistry-based organic phase 

reduction route. Through the method, a series of advanced nanostructured catalysts were 

prepared and demonstrated high electro-catalytic activity for electricity generation and 

biorenewable alcohol conversion. However, there still are many improvement need to be 

done in the future.  

 

In Chapter 3, 4 and 5, I prepared the Pt-Fe NWs, Pd-Fe NLs, and Pd-Ni NPs catalyst. 

The Pt-Fe NWs have shown high durability in acidic electrolytes towards oxygen 

reduction reaction; the Pd-Fe have been found as a highly active catalyst towards oxygen 

reduction reaction in alkaline electrolytes; Pd-Ni NPs have demonstrated as an efficient 

catalyst toward ethanol electro-oxidation in alkaline electrolyte. However, all of the tests 

were done in half cells. In the future work, the performances of these catalysts in single 

fuel cells are still under investigations.  

 

In Chapter 7, I demonstrated the idea of cogenerating both electricity and valuable 

chemicals based on a Pt-anode AEM-DGFC. The work is just the beginning of the 

cogeneration project. The future work is still needed in different fuels, catalysts, and 

scale-up. First, other fuels besides glycerol should be considered, for example, 1,2-

propandiol, ethylene glycol, sorbitol, glucose, etc. to obtain different products. Second, 

multi-metallic catalysts should be prepared and applied as the anode, to investigate the 

composition effects on the product selectivity. Third, the cogeneration concept can be 

applied as a self-powered chemical production pilot-plant. However, in my Ph.D work, 

the reaction was restricted in the lab-scale. In order to scale it up, the design and 

fabrication of larger reactors are required. Works are also needed to address to the mass 

and heat transfer issues in the large scale applications.  

 

In Chapter 8, I demonstrated the concept of electro-catalytic reactor, and demonstrated 

the potential regulated electro-oxidation of glycerol. This project can be extended to the 
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electro-catalytic conversion of other biomass derived feedstock. The investigations of 

different monometallic and bimetallic catalysts are also needed. Since my finished work 

is focused on the oxidation reaction in the alkaline electrolytes, in the future work, the 

investigation of lower pHs and the reduction reaction are also of research interests. The 

scale-up is also a research project before the wide application of this green alternative 

chemical production route.  
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