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2.4.2.3 Product analysis 

 

The liquid phase product distribution of an alcohol oxidation was investigated by 

continuously looping 55 ml of alcohol KOH solution from a plastic vessel into the anode, 

while a constant cell operation voltage was applied at 50°C. The products at different cell 

operation voltages were analyzed using a High-performance liquid chromatography 

HPLC (Agilent 1100) with a refractive index detector (RID, G1362A, Agilent) and a 

variable wavelength detector (VWD, 220 nm, Agilent G1314A). The samples were 

separated using an OA-1000 column (Alltech) at 60°C with an eluent of 5 mM aqueous 

sulfuric acid (0.3 ml min-1). The products were identified by comparison with authentic 

samples. The concentration was calculated from the peak area observed in liquid 

chromatograms. 

 

For the products analysis in anion-exchange membrane – direct glycerol fuel cells 

(AEM–DGFC) (Chapter 6 and 7), the selectivity (S) is defined as the moles of product 

divided by the moles of C2 and C3 products observed at the given time: 75,76 

 
2 3

 100%
 

Moles of specific product formsSelectivity
Total moles of C and C products detected

   
= ×

      
 (2-9) 

The carbon balance is calculated by the following equation: 

 3 2 1
3 3 2 3

100%
3

i f

i

G C C C G

G

M M M M M
Carbon balance

M

− − − −
 = ×  (2-10) 

where MGi and MGf are the initial and final moles of glycerol in the electrolyte, MC3, MC2, 

and MC1 are the moles of C3 products (glycerate, tartronate, and mesoxalate), C2 products 

(glycolate and oxalate), and C1 products (formate and carbonate), respectively. Assuming 

that no C2 product was further oxidized to C1 products, MC2 is equal to MC1. Therefore, 

the equation can be simplified as: 

 3 2 100%i f

i

G C C G

G

M M M M
Carbon balance

M

− − −
 = ×  (2-11) 

where a smaller carbon balance indicates less C2 chemicals were further oxidized to C1 

products 
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Based on the product distributions, the Faradic efficiency (ηe), which is defined as the 

ratio of transferred electrons in the partial oxidation to that in the complete oxidation 

(combustion to CO2), was calculated by using the following equation: 

 
e ii eSη η= ∑   (2-12) 

where Si is the selectivity of product i, and ηei is the Faradic efficiency of partial 

oxidation product. 

Equation Section (Next)  
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would enhance the reaction rate. As the KOH concentration increased from 0.5 M to 4.0 

M, the glycerol conversion jumped from 16% to 43%, due to the promoted deprotonation 

of glycerol in higher pH environments.73,299 Higher KOH concentrations also facilitate 

the oxidation of hydroxyl groups in glycerol, leading to higher selectivities of tartronate 

and oxalate in the experiment with 4.0 M KOH. Meanwhile, the initial glycerol 

concentration also affects the product distribution. With a lower initial glycerol 

concentration of 0.5 M, a larger amount of deeper-oxidized products (glycolate: 87% and 

oxalate: 5%) were obtained. When the initial glycerol concentration was increased to 2.0 

M, more glycerate was observed instead. This is consistent with the observations at lower 

applied potentials: a lower initial glycerol concentration will favor the generation of 

glycolate. 

 

Table 8.1  
Electro-oxidation of glycerol on Au/CNT at 1.6 V for 3 hours 

 

 

KOH to 

glycerol ratio 

Selectivity (%) Glycerol 

conversion 

(%) 

Carbon 

balance 

(%) 
Glycerate Tartronate  Glyoxylate Glycolate Oxalate 

4.0 M KOH + 

1.0 M Glycerol 
4 8 0 80 8 43 9 

2.0 M KOH + 

1.0 M Glycerol 
10 2 1 85 2 34 13 

1.0 M KOH + 

1.0 M Glycerol 
14 2 1 81 2 26 19 

0.5 M KOH + 

1.0 M Glycerol 
14 3 2 79 2 16 12 

2.0 M KOH + 

2.0 M Glycerol 
16 2 2 78 2 19 10 

2.0 M KOH + 

0.5 M Glycerol 
5 3 0 87 5 29 14 
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Fig. 8.9 shows the results of 2.0 M KOH + 1.0 M glycerol oxidation carried out at 1.6 V 

for up to 12 hours. It is apparent that the selectivity to each product was kept almost 

constant during the whole reaction period, demonstrating that the reaction time has 

limited influences on the product distribution. This observation also indicates that the 

glycerol electro-oxidation product selectivity is strongly dependent on the applied 

potentials. The conversion of glycerol stabilized at 50% after 6 hours reaction. However, 

small anodic currents were still recorded with the reaction time increasing, which may be 

attributed to the continuous generation of C1 products. With the reaction time increasing 

from 6 to 12 hours, the carbon balance gradually increased from 25% to 31%. At the 

same time, the concentration of each observed C3 (glycerate and tartronate) and C2 

products gradually decreased with the reaction time increasing, which also demonstrated 

the decomposition of C3 and C2 products to C1 products. 
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Fig. 8.9 Electro-oxidation of glycerol (2.0 M KOH + 1.0 M glycerol) on Au/CNT 
catalysts at 1.6 V for different reaction times. 
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8.3.4 Reaction mechanism of the electro-catalytic oxidation of glycerol 
 

Based on the production distributions under each applied potential, a reaction pathway 

was proposed for the Au-catalyzed electro-oxidation of glycerol in alkaline solution (Fig. 

8.10). Glycerol is first oxidized to glycerate, which is observed from 0.35 V (Fig. 8.4) at 

50°C. It is noted that the selectivity to glycerate is always stable at 10 – 20%, which is 

almost not affected by the applied potential, KOH to glycerol ratio, or reaction time. This 

indicates that the selectivity to glycerate in the electro-catalytic reactor is probably 

diffusion controlled: Glycerol first diffuses from the bulk electrolyte into the catalyst 

layer and is adsorbed on the surface of the Au catalyst, where one of its primary alcohol 

groups is oxidized to form glycerate. While some part of glycerate dissolves from the 

catalyst layer into the bulk electrolyte, most of it is still “trapped” in the thick catalyst 

layer due to the high Au loading (5.0 mg cm-2). The trapped glycerate is further quickly 

oxidized either to tartronate through the oxidation of the second primary alcohol group 

(favored at lower applied potential), or to glycolate through the C-C bond cleavage 

(favored at higher applied potential). The percentage of glycerate dissolved into the bulk 

electrolyte is mainly controlled by the diffusion in the system. As a result, the observed 

glycerate selectivity in the bulk electrolyte is always stable and not affected by the 

applied potential, KOH to glycerol ratio, or the reaction time. As shown in Table 6.1, in 

the Au anode AEM-DGFC with a lower Au loading of 1.0 mgAu cm-2 (the catalyst layer 

is thinner), the glycerate selectivity is 17 – 26%.  

 

At the lower applied potentials, the trapped glycerate is then quickly oxidized to 

tartronate (the green arrow pathway). Due to the similar structure of the first primary 

alcohol group and second primary alcohol group (the one in glycerate), it is reasonable to 

believe the activation energies for their oxidation are close and require a similar 

overpotential to take place in the electro-catalytic process. Therefore, tartronate is also 

observed from 0.35 V. The trapped glycerate is also oxidized to glycolate through a C-C 

bond breakage reaction. This step is very slow at lower applied potentials (Fig. 8.5 (a)). 

However, it becomes overwhelming at higher applied potentials, even at room 
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temperature (Fig. 8.7). The obtained glycolate is also slowly oxidized to oxalate and 

formate (not listed in the reaction pathway), which is proved by Fig. 8.8. Comparing to 

the oxidation of glycerate to tartronate, the oxidation of the alcohol group in tartronate is 

more potentially sensitive, which requires a higher anode applied potential of > 0.45 V at 

50°C. The oxidation rate of tartronate to mesoxalate is improved when the anode applied 

potential is further increased, which is evidenced by the continuous increasing of the 

mesoxalate selectivity and the corresponding decrease in tartronate selectivity (Fig. 8.4). 

Mesoxalate is also slowly over-oxidized to oxalate, leading to a slight increase in the 

selectivity to oxalate at a longer reaction time (Fig. 8.5 (b)). At lower applied potentials, 

tartronate is also slowly oxidized to glyoxylate, which is then quickly oxidized to oxalate. 

As a result of this step, oxalate was observed before 0.4 V without any detection of 

glyoxylate. It is also important to mention that the oxidation of tartronate to glyoxylate is 

also enhanced at higher potentials, which is evidenced by the selectivity of 4% to 

glyoxylate at 1.2 V at room temperature. 
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Fig. 8.10 Proposed reaction pathway for electro-oxidation of glycerol on Au catalyst in 
alkaline electrolyte. 
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8.4 Conclusion 
 

In this chapter, Au/C and Au/CNT catalysts were prepared through a solution phase 

synthesis method, and were successfully assembled into two electro-catalytic reactors for 

the accurate investigation of glycerol electro-oxidation at lower and higher applied 

potentials, respectively. The work clearly clarified that the product distribution is strongly 

controlled by the anode applied potential. At potentials < 0.4 V, the main product is 

tartronate (78% at up to 35% glycerol conversion), with no mesoxalate detected; while at 

0.65 V, the main product was potentially switched to mesoxalate (57% at up to 78% 

glycerol conversion). When the anode applied potential increased to 1.6 V, the main 

product further switched to glycolate (85% at up to 50% glycerol conversion). Based on 

the results, a reaction pathway for glycerol electro-oxidation on Au catalysts was 

proposed, which can guide the selective production of a series of high value chemicals 

from the oxidation of biorenewable glycerol. As the electro-catalytic process takes place 

under mild reaction conditions (< 50°C, atmosphere pressure, water as the solvent), it 

implies a more efficient alternative green approach to the current syntheses of tartronate, 

mesoxalate, and glycolate. 
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Chapter 9 Recommendations and future work 
 

My Ph.D work has successfully developed a wet chemistry-based organic phase 

reduction route. Through the method, a series of advanced nanostructured catalysts were 

prepared and demonstrated high electro-catalytic activity for electricity generation and 

biorenewable alcohol conversion. However, there still are many improvement need to be 

done in the future.  

 

In Chapter 3, 4 and 5, I prepared the Pt-Fe NWs, Pd-Fe NLs, and Pd-Ni NPs catalyst. 

The Pt-Fe NWs have shown high durability in acidic electrolytes towards oxygen 

reduction reaction; the Pd-Fe have been found as a highly active catalyst towards oxygen 

reduction reaction in alkaline electrolytes; Pd-Ni NPs have demonstrated as an efficient 

catalyst toward ethanol electro-oxidation in alkaline electrolyte. However, all of the tests 

were done in half cells. In the future work, the performances of these catalysts in single 

fuel cells are still under investigations.  

 

In Chapter 7, I demonstrated the idea of cogenerating both electricity and valuable 

chemicals based on a Pt-anode AEM-DGFC. The work is just the beginning of the 

cogeneration project. The future work is still needed in different fuels, catalysts, and 

scale-up. First, other fuels besides glycerol should be considered, for example, 1,2-

propandiol, ethylene glycol, sorbitol, glucose, etc. to obtain different products. Second, 

multi-metallic catalysts should be prepared and applied as the anode, to investigate the 

composition effects on the product selectivity. Third, the cogeneration concept can be 

applied as a self-powered chemical production pilot-plant. However, in my Ph.D work, 

the reaction was restricted in the lab-scale. In order to scale it up, the design and 

fabrication of larger reactors are required. Works are also needed to address to the mass 

and heat transfer issues in the large scale applications.  

 

In Chapter 8, I demonstrated the concept of electro-catalytic reactor, and demonstrated 

the potential regulated electro-oxidation of glycerol. This project can be extended to the 
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electro-catalytic conversion of other biomass derived feedstock. The investigations of 

different monometallic and bimetallic catalysts are also needed. Since my finished work 

is focused on the oxidation reaction in the alkaline electrolytes, in the future work, the 

investigation of lower pHs and the reduction reaction are also of research interests. The 

scale-up is also a research project before the wide application of this green alternative 

chemical production route.  
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