
Michigan Technological University Michigan Technological University 

Digital Commons @ Michigan Tech Digital Commons @ Michigan Tech 

Dissertations, Master's Theses and Master's Reports 

2017 

Fluorescent Probe Development for Fructose Specific Fluorescent Probe Development for Fructose Specific 

Transporters in Cancer Transporters in Cancer 

Joseph Fedie 
Michigan Technological University, jrfedie@mtu.edu 

Copyright 2017 Joseph Fedie 

Recommended Citation Recommended Citation 
Fedie, Joseph, "Fluorescent Probe Development for Fructose Specific Transporters in Cancer", Open 
Access Master's Thesis, Michigan Technological University, 2017. 
https://doi.org/10.37099/mtu.dc.etdr/332 

Follow this and additional works at: https://digitalcommons.mtu.edu/etdr 

 Part of the Therapeutics Commons 

http://www.mtu.edu/
http://www.mtu.edu/
https://digitalcommons.mtu.edu/
https://digitalcommons.mtu.edu/etdr
https://doi.org/10.37099/mtu.dc.etdr/332
https://digitalcommons.mtu.edu/etdr?utm_source=digitalcommons.mtu.edu%2Fetdr%2F332&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/993?utm_source=digitalcommons.mtu.edu%2Fetdr%2F332&utm_medium=PDF&utm_campaign=PDFCoverPages


FLUORESCENT PROBE DEVELOPMENT FOR 

FRUCTOSE SPECIFIC TRANSPORTERS IN CANCER 

 

By 

Joseph R. Fedie 

 

A THESIS 

Submitted in partial fulfillment of the requirements for the degree of  

 

MASTER OF SCIENCE 

In Chemistry 

 

MICHIGAN TECHNOLOGICAL UNIVERSITY  

2017 

© 2017 Joseph R. Fedie 



This thesis has been approved in partial fulfillment of the requirements for the 

Degree of MASTER OF SCIENCE in Chemistry. 

 

Department of Chemistry 

 

 

 Thesis Advisor: Dr. Marina Tanasova 

 Committee Member: Dr. Tarun Dam  

 Committee Member: Dr. Shiyue Fang  

  

 

 Department Chair: Dr. Cary Chabalowski   

  



 

iii 

Table of Contents 
List of Figures and Schemes .................................................................................... iii 
Preface  .................................................................................................................... vi 
Acknowledgements ................................................................................................. viii 
List of Abbreviations  ................................................................................................ ix 
Abstract .................................................................................................................... xi 
Chapter 1 (Introduction) ............................................................................................. 1 

1.1 GLUTs: Classification and expression .......................................................... 1 
1.2 GLUTs: Structure and Mechanism of Function ............................................. 3 

1.2.1 Class I: GLUTs 1-4 ................................................................................ 3 
 1.2.2 GLUT5 .................................................................................................. 7 
     1.3 GLUTs in Therapy ..................................................................................... 10 

1.3.1 Carbohydrates as diagnostic probes ................................................... 10 
1.3.2 Carbohydrates in chemotherapy ......................................................... 13 

 1.3.3 Fluorescent GLUT Probes ................................................................... 17 
      References..................................................................................................... 19 

Chapter 2 (Blue Fluorescent Probes GLUT-mediated Uptake in Breast Cancer) ..... 28 
2.1 Introduction ................................................................................................ 28 
2.2 Materials and Methods ............................................................................... 29 
2.3 Synthesis and Computational Analysis of Mannitolamine-Coumarin 

Conjugates ........................................................................................................... 33 
2.4 Analysis of ManCou1-3 uptake ................................................................... 37 
2.5 ManCous as GLUT5 expression and fructose metabolism probes .............. 43 
2.6 Conclusions ................................................................................................ 45 
References ....................................................................................................... 46 

Chapter 3 (Synthesis of Locked Fructose Analogs)  ................................................ 50 
3.1 Introduction ................................................................................................ 50 
3.2 Results and Discussion  ...................................................................... 50 
3.3 Conclusions ................................................................................................ 51 
3.4 Experimental .............................................................................................. 53 
3.5 Additional Information ................................................................................. 57 
References ....................................................................................................... 65 

Chapter 4 (Future Work) .......................................................................................... 66 



 

iv 

4.1 Finish Synthesis of Furanose/Pyranose Probes ......................................... 66 
4.2 Develop more ManCou Probes .................................................................. 66 
4.3 Multicolor Assay to Measure GLUT Activity ................................................ 67 

 

 

List of Figures and Schemes 

Chapter 1 
Table 1: Table of GLUTs ........................................................................................ 3 
Table 2: Effect of Hydroxyls on GLUT affinity ......................................................... 5 
Figure 1.1 C2-derivatives and Ki Effects ................................................................ 8 
Figure 1.2 Inhibitory Constants for Fructose, Psicose and Tagalose ...................... 9 
Figure 1.3 Furanose analogs ............................................................................... 10 
Figure 1.4 PET Imaging Probes ........................................................................... 12 
Figure 1.5 Cancer-directing Carbohydrates .......................................................... 14 
Figure 1.6 Glucose-Pt conjugates ........................................................................ 15 
Figure 1.7 Green fluorescent probes .................................................................... 17 

Chapter 2 
Figure 2.1 ManCou1-3 Probes ............................................................................. 34 
Scheme 2.1 ManCou Synthesis ........................................................................... 35 
Figure 2.2 UV-vis and Fluorescence of ManCou1-3 ............................................. 35 
Figure 2.3 Docking Analysis for ManCou1-3 ........................................................ 36 
Figure 2.4 ManCou1-3 uptake .............................................................................. 38 
Figure 2.5 Kinetic Analysis ................................................................................... 39 
Figure 2.6 Confocal Z-stack ................................................................................. 40 
Figure 2.7 Inhibition of ManCou with MNBD, GNBD and Cytochalasin B ............. 41 
Figure 2.8 Effect of Fructose Exposure on ManCou Uptake ................................. 42 
Figure 2.9 ManCou3 in Several Cell Lines ........................................................... 44 

Chapter 3 
Scheme 3.1 Synthesis of alpha-NBD pyranose probe .......................................... 51 
Scheme 3.2 Synthesis of alpha-NBD furanose probe........................................... 53 
Figure 3.1 H NMR ................................................................................................ 57 



 

v 

Figure 3.2 C13 NMR  ............................................................................................  58 
Figure 3.3 H NMR ................................................................................................ 59 
Figure 3.4 C13 NMR  ............................................................................................. 60 
Figure 3.5 H NMR ................................................................................................ 61 
Figure 3.6 C13 NMR  ............................................................................................. 62 
Figure 3.7 H NMR ................................................................................................ 63 
Figure 3.8 C13 NMR  ............................................................................................. 64 

 

Chapter 4 
4.1 Potential Future ManCou Probes ................................................................... 67 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

vi 

Preface 

 All contents of Chapter 1, 3 and 4 were written by Mr. Joseph R. Fedie and 

revised by Dr. Marina Tanasova. The contained material in Chapter 2 is currently in 

preparation for submission to a journal.  

 All of research done in Chapter 3 was conducted by Joseph R. Fedie with 

exceptions of (i) ManCou synthesis and purification which was performed by Mr. 

Shuai Xia; (ii) multicellular line comparison studies which were performed by Mr. 

Srinivas Kannan and Dr. Smitha Malalur Nagaraja Rao.  

 

 

 

 

 

 

 

 

 

 

 

 



 

vii 

Acknowledgements 

 The amount of people to thank in helping me reach this point is innumerable 

and to properly thank each of them is fairly impossible but I am going to try. First of 

all I would like to thank my advisor and mentor Dr. Marina Tanasova for taking a 

chance on a rural farm boy from the middle of nowhere. Her continued support, trust 

and encouragement throughout the past three years. I have never met anyone with 

as much passion and love for science and her willingness to pass down that 

knowledge and training to me is something I never dreamed of. The skills and 

knowledge I have learned from her are boundless both as a scientist and as a 

person, I cannot overstate my appreciation and gratitude for her mentorship. 

 I would like to thank the members of my committee: Dr. Shiyue Fang and 

Tarun Dam both of whom have taught me much over the years at Michigan Tech 

both as a graduate and undergraduate student. 

 I would like to thank the current and former lab members: Andrew Perla, Erin 

Matthews, Dr. Lukasz Weselinski, Vagarshak Begoyan, Shuai Xia, and Morgan 

Charbonneau. All of whom I am very appreciated of their help over my time there 

and wish them all the best in their future careers. 

 I am incredibly grateful for all the help from the staff in the Department of 

Chemistry including Celine Grace, Denise Laux, Charlene Page, Kimberly McMullan, 

Dean Seppala, Don Wareham, Jerry Lutz, Joel Smith and Lois Blau. They all allowed 

me to focus more on my teaching and research without having to worry about orders 

or forms. I wish them all well in the future. 



 

viii 

 I am tremendously grateful to Lorri Reilly and Aparna Pandey whom both 

gave me the opportunity to learn and grow as an instructor and leader in the teaching 

labs. The knowledge and support from both of them is extraordinary and I wish them 

all the best.  

  I would like to thank my collaborators Srinivas Kannan and Dr. Smitha Rao 

for allowing use to their instruments and methods as well as sharing their advanced 

knowledge with me.  

As for interdepartmental help I would like to thank Rashmi Adhikari for 

teaching me several biochemical techniques and overall patience. I would also like to 

thank Shahien Shahsavari and Ashok Khanal for their willingness to lend reagents 

and expertise.  

I would like to thank Dr. Patricia Heiden for first introducing me into the realm 

of research as an undergrad and instilling the first spark of professional curiosity into 

me. For that I will always be grateful. 

Thank you to my Michigan Tech colleges: Chelsea Nikula, Dr. Sasha 

Teymorian, Dr. Melanie Talaga, Dr. Ni Fan, Christian Welch and Soha Albukhari. 

They helped make graduate school more than just another job and I will always be 

thankful for that.  

Finally, I would like to thank my parents and grandparents for the years of 

unconditional support from them. None of this would be possible without them, I will 

always love them and this dissertation is partially devoted to them.  

 



 

ix 

List of Abbreviations 

 

Å Angstrom 

Ac Acetyl 

Arg Arginine  

Asn Asparagine 

Asp Aspartic Acid 

Bn Benzyl 

C Carboxy helix domain 

DMSO Dimethylsulfoxide 

EDT 4,6-O-ethylidene-alpha-D-glucose 

ESI Electrospray Ionization 

g Gram 

Gln Glutamine 

Glu Glutamic Acid 

Gly Glycine 

HPLC High Performance Liquid 

Chromatography 

ICH Intercellular Helix 

Ile Isoleucine 

MCF-7 Michigan Cancer Foundation-7 

MFS Major Facilitator Superfamily 

mg Milligram 



 

x 

mL Milliliter 

mM Millimolar 

MNBD Mannitol Nitrobenzofurazan 

N Amino helix domain 

NBD Nitrobenzofurazan 

NHI N-hydroxy indole 

NMR Nuclear Magnetic Resonance 

Pd Palladium 

PET Positron Emission Topography 

Phe Phenylalanine 

Pt Platinum 

SAR Structural Activity Relationship 

TLC Thin Layer Chromotography 

TM Transmembrane Helix 

Trp Tryptophan 

Tyr Tyrosine 

uL Microliter 

uM Micromolar 

UV-Vis Ultraviolet-visible spectroscopay 

Val Valine 

  

 

 



Abstract 

 

 Carbohydrate transporters or GLUTs of the major facilitator superfamily 

(MFS) are responsible for transporting sugars into the cell and have been of 

research interest for decades. Disruptions, mutations, and over-activations of GLUTs 

have been linked to a number of major diseases including cancer, obesity, and 

diabetes. Differentiating between transporters is incredibly difficult due to highly 

conserved structures, and so specific targeting between transporters has proven a 

complex challenge. GLUTs are highly flexible in their conformations however exactly 

what will and will not pass through the transporter is ambiguous at best, and many 

attempt to target these transporters have failed.  

 In an attempt to further understand GLUT5’s transport capacity and specificity 

several probes were created by conjugating 1-amino-2,5-anhydro-D-mannitol with a 

number of fluorescent coumarins. These probes were then tested in cancer and 

normal breast cell lines to determine uptake mechanisms and transport specificity. 

To determine transport specificity probes were tested in the presence of competitive 

and non-competitive inhibitors. Probe analysis was carried out by evaluating the 

gained fluorescence of treated cells in a microplate setting and through confocal 

microscopy. Confocal imaging and Z-stack was utilized to understand the ability of 

the probe to pass into the cytosol or to remain in the cellular membrane. As a result, 

probes reflecting uptake capacity vs. membrane expression of the transporter were 

developed. The cumulative analysis of structure-uptake relationship for the 

developed probes gives insight into the capability of GLUT5 cargo transport and as 

well as a method for imaging GLUT5 in the cellular membrane.  

xi



Chapter 1 

Introduction 

1.1  GLUTs: classification and expression 

GLUTs (facilitative glucose transporters) are expressed throughout the body and 

are vital for survival of cells. Gluts mediate a gradient dependent transport of 

carbohydrates into and out of the cell but cannot export their substrate’s 

phosphorylated counterparts [1, 2]. There are fourteen known GLUTs and based on 

sequence, structural and substrate similarities are split into three major classes: 

Class I, II and III. Class I GLUTs (1-4 and 14) primarily facilitate uptake of glucose, 

but some are responsible for various other hexoses (Table 1). Class II GLUTs (5, 7, 

9 and 11) are primarily fructose transporters, and Class III GLUTs (6, 8, 10, 12, and 

13 (HMIT1)) are structurally atypical members of the GLUT family.  

GLUT2-4 are relatively localized in specific areas. GLUT2 is mainly located in the 

liver and gastrointestinal tract. GLUT3 is primarily located in neuron cells and mainly 

transports glucose. GLUT4 is the unique of the class I transporters as it mainly 

reside inside the cell and is only brought to the surface in the presence of insulin. In 

low insulin concentrations, it resides in intracellular vesicles inside the cell membrane 

and is predominately present in skeletal and cardiac muscles [25]. GLUT4 has been 

found to have links with insulin resistance and diabetes and has been a potential 

therapeutic target [26]. 

1



 Table 1. Glut Transporters 

Class Transporter Expression in Normal Cells Substrate 

Class I 

Glut1 erythrocytes glucose, 
galactose 

Glut2 
renal tubular, intestinal 

epithelial, liver and 
pancreatic β cells 

glucose, 
galactose, 
fructose, 
glucosamine 

Glut3 neurons and placenta 
glucose, 
galactose, 
mannose 

Glut4 adipose tissue and striated 
muscle 

glucose, 
galactose, 
mannose, xylose 

Glut14 testis glucose, 
galactose 

Class II 

Glut5 intestinal epithelial, 
erythrocytes, sperm fructose 

Glut7 apical membrane in small 
and large intestine glucose, fructose 

Glut9 liver, kidney and intestine glucose, fructose 

Glut11 muscle, heart, fat, placenta, 
kidney, and pancreas glucose, fructose 

Class III 

Glut 6 
renal tubular, intestinal 

epithelial, liver and 
pancreatic β cells 

glucose 

Glut 8 testis, brain, fat, liver, and 
spleen glucose, fructose 

Glut 10 heart and lung glucose, 
galactose 

Glut 12 insulin-sensitive tissues 
glucose, 
galactose, 
fructose 

Glut 13 Brain myoinositol 

 

 2



1.2  GLUTs: Structure and Mechanism of Function 

GLUT structures are highly conserved and are typically two bundles of six 

transmembrane helixes (TM) with four to five intercellular helixes (IC) for stabilization 

[16, 17]. GLUTs rely on a concentration gradient to transport substrates; it is based on 

substrates moving from an area of high concentration (typically outside the cell) into 

an area of low concentration (typically inside the cell). Transportation begins with 

outward-open conformation of GLUTs, and a substrate binds substrate active site. 

Once key residues have been bound, interactions between TMs trigger a 

conformational change within the transporter that orients the substrate to the 

endofacial binding site. Once deposited into the cell, the substrate can be effectively 

excreted via the same pathway. However, in the conditions of sufficient carbohydrate 

phosphorylation, carbohydrate excretion is believed to play an insignificant role in 

evaluating the kinetics of the uptake [18-20], because GLUT transporters being 

antiporter take up and excrete carbohydrates, but not their phosphorylated analogs 

[21]. As a result, sugar transport is loosely coupled to phosphorylation, so that a high 

rate of sugar accumulation is maintained without requiring a reduction in the 

intracellular sugar concentration.  

1.2.1 Class I: GLUTs 1-4 

GLUT1 is the most widely studied and targeted of the GLUT transporters and is 

currently the key target in Positron Emission Topography (PET) imaging using a F18-

labelled glucose and is widely used throughout the world as a potent cancer imaging 

agent. GLUT1 has twelve transmembrane (TM) segments split into two six-helix 

bundles carboxy- and amino- domains (C and N respectfully). The transporter 
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preferentially sits in an exofacial conformation stabilized by inter-TM salt bridges on 

the endofacial side of the transporter that are not present in the endofacial-open 

conformation of the transporter. When glucose enters the binding site increased 

interactions between C and N domains and with a protonation of Asp126 leads to 

cation-π interaction with the aromatic Tyr292 residue causes the transporter to adopt 

the intercellular conformation. With the release of the substrate via concentration 

gradient interactions between C and N residues equilibrate and with a deprotonation 

returns to the original extracellular state [16].  

Central cavity of GLUT1 encompasses a multitude of residues including 

Phe26, Gln166, Ile169, Ile173, Gln287, Gln288, Asn324, Phe379, Gly384, Trp388, 

Asn411, and Trp419, with most of these residues residing on the C-terminal of the 

protein leading to asymmetrical binding site [17]. Understanding what is necessary for 

binding and what can be tolerated to initiate transport is vital for designing anything 

from probes to cytotoxic therapies for GLUT1. To determine the vital interactions, a 

large series of structural activity relationship (SAR) studies have been conducted. 

Early studies have shown that GLUT1 has a highly effective in transporting D-glucose 

while struggles to transport L-glucose, suggesting the transport to be sensitive towards 

stereochemistry of the glucose hydroxyls [22]. In agreement with these observations, 

glucose anomers have shown a loss in the uptake efficiency. Poor uptake was also 

documented for glucose analogs bearing alkoxy groups. Contrary to effects observed 

by removal of the C2 and C9 hydroxyls which did not impact the uptake of glucose, 

with resulting 2-deoxy and 6-deoxy-D-glucose competing for uptake with D-glucose 

[23]. Building upon these findings 2-chloro and 2,2’-dichlor-2-deoxy-D-glucose were 
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found to have similar binding affinity to D-glucose, suggesting C2 position may serve 

as an accommodating position for payload conjugation.  

Table 2. Structure-Uptake relationship of GLUT uptake 

Substrate 
Transport Rate, (%) 

Glut1a Glut2b Glut3b Glut4b 
Controls     
D-glucose 1 20±6 10±2 12±3 
L-glucose 95 100 100 100 
     
C1 Analogs     
1-Deoxy-D-glucose 82 109±10 104±12 79±12 
     
C2 Analogs     
2-Deoxy-D-glucose 1 20±2 12±2 14±9 
D-Mannose 33 29±3 14±2 13±7 
2-Chloro-D-glucose n.d. 76±5 42±3 40±7 
     
C3 Analogs     
3-O-Methyl-D-glucose 30 73±6 17±3 41±7 
3-O-Propyl-D-glucose n.d. 100±12 80±7 72±8 
3-Deoxy-D-glucose 67 103±12 85±7 106±12 
3-Bromo-D-glucose n.d. 95±10 75±4 79±12 
3-Fluoro-D-glucose  85±5 14±2 40±6 
D-Allose 75 59±6 96±7 96±7 
     
C4 Analogs     
D-Galactose 48 110±12 57±5 96±12 
     
C5/C6 Analogs     
6-Deoxy-D-glucose 8 33±9 46±7 44±7 
D-Xylose n.d. 106±9 78±6 75±6 
L-Arabinose n.d. 138±22 63±7 90±8 
6-O-Methyl-D-galactose 95 57±10 109±11 59±6 
6-Fluoro-D-galactose n.d. 50±12 30±9 48±12 
Transport rate determined relative to the uptake of aD-[3H]-glucose; b[2,6-3H]-2-deoxyglucose;n.d., 

not determined. 
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Continues testing has revealed that glucose recognition is highly dependent on 

the C1-OH as an H-bonding acceptor and the binding has been suggested to work in 

tandem with hydrophobic interactions on the C6 position. C1 methylation, removal or 

substitution (with exception of 1-fluoro-D-glucose) all demonstrated exceptional loss 

of uptake [9, 23, 24]. Although removing C6 hydroxyl still permitted glucose transport, 

any significant bulk on the position reduced transporter affinity.  Overall SAR studies 

have identified C1, C3 and C4 hydroxyls and C6 hydrophobic interactions are critical 

points for glucose binding to the active site in GLUT1. 

GLUT2, 3 and 4 share many key H-bonding interactions when transporting 

glucose as GLUT2 and 3 require the presence of C1, C3 and C4 hydroxyls for effective 

glucose transport [11]. Like with GLUT1 C2 substitution was tolerated but did 

negatively impact uptake with GLUT2 being the most sensitive to this alteration. 

GLUTs 2-4, unlike GLUT1, are not glucose specific and have been found to transport 

D-mannose as efficiently as D-glucose. GLUT1 and 3 can effectively transport 3-

fluoro-D-glucose but GLUT2 being unable, pointing towards a C3-OH H-donating 

effect not required in GLUT3 or 4 [10]. Both GLUT2 and 4 can transport O-6-methyl-

D-galactose, but GLUT3 shows little to no affinity. All three can transport the 6-fluoro 

analog hinting towards extended hydrophobic interactions required in GLUT2 and 

GLUT4 while GLUT3 has a low tolerance for any steric interactions. Although no 

crystal structures of GLUT2-4 it is likely that they share similar structures however it is 

difficult to know if they have more or less TM or ICH.   
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1.2.2 GLUT5 

Class II transporter GLUT5 is the only known transporter that specifically transports 

fructose and nothing else. In conjunction with GLUT2, they are responsible for most of 

the fructose transport in the human body [27]. GLUT5 has been a topic of increasing 

interest in recent years as it has been found to be overly active in breast cancer, while 

at relatively inactive levels in normal breast cells [28]. Unlike most GLUTs, GLUT5 has 

had a crystal structure released (Figure 2) and has shown large conservation between 

GLUT1 but with some key differences. Like GLUT1 it is two bundles of six 

transmembrane helixes however it has five intercellular helixes that are key for 

stabilization. Inter-TM salt bridges are a common stabilizing force in major facilitator 

superfamily transporters and are present only while GLUT5 is in the outward-facing 

conformation. The observed salt bridges are formed between C-terminal helixes TM3, 

4 and 5 and form between N-terminal helixes TM9, 10 and 11. Glu151 (TM4) forms 

two salt bridges between two arginine residues: Arg97 (TM3) and Arg407 (TM11) 

whereas Glu400 (TM10) also binds to Arg158 (TM5) and Arg340 (TM9) to complete a 

stable network between the two terminals.  

When GLUT5 transitions to the inward-open conformation, no C-N terminal salt 

bridges are observed, and the conformational change in the transporter facilitates the 

entering and exiting of the substrate. Further indicating a preference to outward-open 

is the linking of Glu252 (ICH3) forming salt bridges with Arg407 (TM11), which is 

broken upon the inward-open conformation. The most important transitions that take 

place in GLUT5 occur in TM7 and TM10 as both undergo dramatic shifts to facilitate a 

conformational change. TM7 shifts down towards the binding site as substrate enters 

the central cavity whereas TM10 moves away from the binding site breaking the strong 
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interactions of Tyr382 (TM10) and Ile295 and Val292 (TM7) and allowing fructose 

transport. These observations suggest TM7-TM10 interactions play an integral role in 

transport kinetics [17]. 

OHO OH
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HO OR

O
OH

OH
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OH
HO

R-β−D-fructopyranose
R = methyl, Ki

 = 15.0 mM
           

allyl, Ki = 28.5 mM

R-β-D-fructofuranose
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allyl, Ki = 79.6 mM

OHO

OH
OH
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methyl-α-D-fructofuranose
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OHO OH

OH
HO OH

D-fructofuranose
α = 4%, β = 21 %

O
OH

OH

OH
OH

HO

β−D-fructopyranose

75%
25%

Ki = 16 mM

12

4

6

OHO OH

OH
HO

2,5-anhydromannitol
Ki = 12 mM

 

Figure 1.1: Comparison of interaction of C2-derivatives of furanose and pyranose ring forms of fructose 
with GLUT5. Inhibitory constants were derived by monitoring inhibitory effect of analogs on the uptake 

of [14C]-D-fructose into CHO cells expressing Glut5. 

The binding site for fructose has been extensively studied by Holman et al. [13, 

29-31], and determined that stereochemistry and presence of hydroxyls be vital to 

substrate uptake (Figure 1.1). GLUT5 mediated fructose uptake was found to prefer 

beta-anomers over alpha-anomers determined by testing C2-methylated 

fructopyranose and fructofuranose analogs [13]. Alterations of stereochemistry of ring 

hydroxyls or alkylation was found to dramatically limit affinity to GLUT5 with the notable 

exception of the C2 position. When 2,5-anhydro-D-mannitol was tested it revealed that 

the anomeric hydroxyl plays little to no role in GLUT5 fructose transport and that 

GLUT5 effectively takes up fructose in its furanose form as opposed to its pyranose 

form [29]. Cyclic oxygen has been found to be vital for uptake via GLUT5 as thio-
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substitution led to six-fold loss of uptake was observed [32]. C2 and C5 stereocenters 

were found to increase uptake during an anti-relationship when comparing 2,5-

anhydro-D-mannitol uptake vs. L-sorbose (Figure 1.2).  

OHO OH

OH
HO OH

D-tagalofuranose
α = 1%, β = 4%

O
OH

OH

OH
OH

HO

D-tagalopyranose
α = 79%, β = 16%

81%

4%

OHO OH

OH
HO OH

D-psicofuranose
α = 39%, β = 15%

O
OH

OH

OH
OH

HO

D-psicopyranose
α = 22%, β = 24%

46%

54%

Ki = 59 mM

Ki = 134 mM

OHO OH

OH
HO OH

L-sorbose
Ki

 = 143 mM

SHO OH

OH
HO OH

5-thio-D-fructose
Ki

 = 96 mM
 

Figure 1.2: Conformer ratios and inhibitory constants for fructose uptake via GLUT5 for D-fructose, D-
psicose, and D-tagatose. 

The Holman team envisioned a locked series of analogs may provide key 

insight in GLUT5 binding and potentially series of GLUT5 specific probes (Figure 1.3). 

These probes were split into type I and type II and differed in existence of the C1 

hydroxyl with type I maintaining while type II removed. Type I scaffolds were tested to 

inhibit D-fructose uptake in the presence of both C1 hydroxyl and ether and was found 

to inhibit uptake in both cases [31]. In the presence of a carbonyl, oxazolidine uptake 

was nearly 4-fold higher than its thio counterpart pointing towards key oxygen 

interaction with the transporter. Type II analogs failed to inhibit D-fructose uptake 

regardless of stereochemistry, indicating that C1 and C6 oxygens are vital for transport 

in GLUT5, but C1 acts primarily as an H-bond acceptor or a similar coordination with 

the transporter. These studies in conjunction with crystal structure have given a good 

image on what GLUT5 will tolerate to induce binding, but severe limitations persist in 
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understanding size and functionalization of payloads that transporter permits to pass 

through.  

O
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HO O
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Figure 1.3: Bicyclic furanose analogs testing GLUT5 uptake conditions 

1.3  GLUTS in Therapy  

As discussed previously, PET imaging is one of the most successful utilization 

of overactive GLUT transport in diseased cells (mainly cancer), but it is not the only 

one currently in use and development. Quantifying transporters in the membrane has 

several limitations and involve time-consuming experiments such as western blots or 

extensive mutagenesis. Monitoring carbohydrate mimics uptake gives a quick and 

telling analysis of relative expression and activity of transporters that are being 

specifically targeted.  

1.3.1 Carbohydrates as diagnostic probes 

The apparent relationship between deregulated carbohydrate 

uptake/metabolism and disease has triggered interest in GLUT-targeting diagnostic 

probes. SAR and kinetic analysis of various substrates (described above) have led to 

the development of radiolabeled probes as well as fluorescent analytical probes. The 

understanding that C2 and C6 hydroxyls do not play a role in the uptake provided 

handles for halogenated analogs to act as radiotracers to measure glucose uptake in 
10



diseases. 2-Deoxy-D-glucose (FGD) was first reported by Pacak and co-workers in 

1968 [33], and the first 18F-labeled analog (18F-FGD, 1, Figure 6) was reported by 

Brookhaven National Laboratory in 1978 [34]. 18F-FDG is rapidly transported into a 

cancerous cell due to its increased metabolism and undergoes phosphorylation to 

prevent excretion. Increased intracellular accumulation of 18F-FDG in cancerous cells 

provides key insight into important cancer characteristics namely enhanced glucose 

transport as well as enhanced phosphorylation. 18F-FDG has seen wide use as a 

predictor of tumorigenesis [35-39]. However, it is ineffective with a large number of 

cancers (including breast cancers) that have reduced glucose uptake capacity [2, 40], 

and produces false-positive hits due to accumulation at the of inflammation [41, 42]. 

Due to limitations of FDG needing to be phosphorylated to remain in the cell to 

accurately measure glucose transport independent of cellular phosphorylation. [123I]-

6-deoxy-6-iodo-D-glucose (6DIG, 2, Figure 1.4) was first synthesized by Wassenaar 

to act as a tracer unaffected by phosphorylation [43]. Biological studies of 6DIG 

performed by Henry and co-workers [44] confirmed that 6DIG underwent cellular 

transport via GLUTs without phosphorylation making it a valuable tool in tracing 

glucose transport. In vitro studies involving adipocytes of diabetic rats and obese mice 

indicated 6DIG as a potential tool for determining glucose transport derivations in 

diseases [45]. 6DIG was found to undergo preferential uptake in adiposities, and 

cardiac cells, both with have high concentrations of insulin-regulated GLUT4 and was 

proposed as a potential in vivo tool to measure insulin resistance. Using diabetic mice 

and insulin-resistant fructose-fed rats, Perret, and coworkers [46-48] determined 

glucose transport defects in vivo using 6DIG.  
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Class II fructose specific transporter GLUT5 has gained considerable attention 

as a potential cancer target due to its alleged role in cancer development [7]. Designed 

by Maeda and co-workers [49], 1-[18F]-Fluoro-1-deoxy-D-fructose (3, Figure 1.4) acted 

as a tracer in to specifically target GLUT5. Synthesized in two steps from 2,3,4,5-di-

O-iso-propilidene-1-O-(trifluoromethane sulfonyl)-D-fructose, 1-[18F]-Fluoro-1-deoxy-

D-fructose rapidly passed through kidney and liver when tested in rat and mouse tumor 

grafts. Development of 6-fluoro-6-deoxy-D-fructose (4, Figure 1.4) [38, 50], found a 

tracer capable of entering murine EMT-6 and the human breast cancer MCF cells. 6-

[18F]-FDF acted as hexokinase substrates and was rapidly metabolised in vivo.  
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Figure 1.4: Glucose and fructose-based PET imaging probes 

The next generation of radiotracer probes was derived from 2,5-anhydro-D-

mannitol based on its high affinity towards GLUT5. Niu tested PET imaging agent [39]  

1-[18F-fluoro]-1-deoxy-2,5-anhydro-D-mannitol [51] (5, Figure 1.4) in breast cancer 

solid tumours. Results displayed rapid excretion after internalization by cancerous 

cells requiring optimization to increase retention. 3-(18F)fluoro-3-deoxy-D-fructose (6, 

Figure 1.4) developed by Cheeseman et al. [52] showed fructose specific transport by 
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a series of competitive uptake inhibition studies and was shown to enter multiple 

cancer cells lines including EMT-6, CHO, and MCF. Although not as successful as 

glucose PET imaging tracer, preliminary results have warranted development of more 

stable and easily retained fructose analogs for PET imaging in the future.  

1.3.2 Carbohydrates in chemotherapy 

Glycoconjugation provides a potentially elegant way of preferentially targeting 

cancerous cells in the presence of normal, healthy cells by targeting the overactive 

metabolism of cancer [14]. Glufosfamide (8, Figure 1.5) acted as a prodrug, remaining 

inactive until cleavage of the glucose after endocytosis into the cell and was one of the 

first glycoconjugated drugs used [14]. Glufosfamide failed to pass phase II clinical trials 

for unknown reasons, however, did specifically target glucose transport and provided 

a potential starting point. Glycoconjugation has been used in an attempt to increase 

specificity for existing drugs such as chlorambucil which was conjugated to several 

sugars in an attempt to improve specificity and cytotoxicity [53]. Chlorambucil was 

conjugated with 63 compounds including glucose (7, Figure 1.5), mannose, galactose, 

and xylose, and conjugation were shown to improve cytotoxicity up to 8-fold [54]. It is 

unknown if chlorambucil’s increased cytotoxicity was caused due to a GLUT-transport 

or increased accumulation in the cell due to sugar conjugation but it is a likely 

hypothesis. Conjugates were not limited to chlorambucil and have been developed for 

the following (not limited to) anticancer agents: azinomycin, clioquinol, adriamycin, 

warfarin, cyclopamine, 8-[O6-(4-bromothenyl)-guanine, quinolinyl and methane 

sulfonate, and paclitaxel (Taxol), with varying success [14].  
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Lactate dehydrogenase (LDH) inhibitors [55] were developed with the intention 

of selectively target tumors and act as a photosensitizer [56]. LDH inhibitor N-hydroxy 

indole (NHI) (9, Figure 1.5) [55] conjugated of glucose or mannose lead to a noticeable 

increase (4.5-fold) in antiproliferative effect as well as a similar increase in inhibiting 

LDH. Likewise, glucose conjugates of 5,10,15,20-tetrakis-2,3,5,6-tetrafluorophenyl-

2,3-(methanol(N-methyl) iminomethano) chlorin (10, Figure 1.5) were developed with 

the intention of being a selective and more potent cytotoxic drug (H2TFC-S-Glc). 

H2TFC-S-Glc did show more potency than other photosensitizers but remained non-

specific, this is likely due to the substitution of the anomeric hydroxyl (shown previously 

to be vital for binding) and points to non-GLUT mediated uptake behind the loss of 

specificity.  
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Figure 1.5. Carbohydrates as cancer-directing encore in drug delivery 
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Platinum (Pt) and palladium (Pd) complexes have seen incredible success in 

cytotoxicity, but due to lack of specificity lead to horrific side effects, glycoconjugation 

was attempted to increase specificity in a number of complexes. Tanaka et al. [57] 

have tested C2-Pt and C2-Pd glucose conjugates in vivo on gastric cancer cells that 

have been shown to be cisplatin-sensitive and cisplatin-resistant. Like typical cisplatin, 

apoptosis was induced by coordination between grooves of the DNA and preventing 

DNA replication. However, both compounds were found to be less effective and no 

more specific than typical cisplatin. It is unknown whether the compounds were 

transported via GLUTs or through some other process and the glucose may have 

caused steric issues with coordination in DNA to decrease activity.  
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Figure 1.6. Glucose as a delivery platform for platinum compounds. 

Lippard, and coworkers [58] were able to identify GLUT preference of C1 and 

C2 conjugation of Pt and Pd derivatives after screening several isomers. These results 

agree with previous observations studies [9, 24]. In a separate studies, Lippard and 

coworkers have designed and evaluated C6-Pt conjugates (11-14,  Figure 1.6) that 

differed in the linker length between Pt and the carbohydrate.[59] Using bacterial 

xylose transporter XylE, which is very similar to GLUT1, molecular docking studies 
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showed conjugates undergoing H-bonding interactions with key residues Gln288, 

Gln168, Gln175 and Tyr298 pointing towards GLUT-mediated uptake.  

4,6-O-ethylidene-α-D-glucose (EDT) in the presence of conjugates 11-14 was 

found to inhibit uptake indicating GLUT1 as the route for intercellular uptake and was 

found to decrease as linker length was increased [60]. Aglycone 13 was found not 

undergo GLUT-mediated uptake and likely go through passive diffusion [59]. Pt-

glucose conjugates were found to have similar cytotoxicity of aglycone 13 and higher 

than cisplatin in a number of human cancer cells. Cytotoxicity was experienced after 

shorter incubation periods indicating the difference in kinetics between facilitative 

GLUT transport vs. that of passive diffusion that aglycone and cisplatin rely on. The 

compounds 11 and 12 were found to platinate DNA leading to cell apoptosis, with the 

number of platinated residues relatively similar to oxaliplatin. The uptake of 11-14 was 

also found to different extend to depend on the organic transporter 2 (OCT2, involved 

in the uptake of 14), with 11 showing more GLUT-specific uptake that other analogs. 

Further evaluation showed 11 to be more cytotoxic in cancer vs. normal cells, giving a 

good platform for further development of cancer-specific therapeutic agents.  

Glycoconjugation has also been used in an attempt to increase selectivity for 

a variety of other nonspecific methods of drug delivery. Nanoparticles have been 

widely studied as potent delivery systems for highly cytotoxic payloads but suffer from 

lack of specificity [61]. In an attempt to increase specificity glycoconjugation with 

nanoparticles has been attempted with varying success [62]. Li and co-workers [62] 

developed glucose-conjugated chitosan nanoparticles in an attempt to encapsulate 

doxorubicin with limited success. Doxorubicin-loaded nanoparticles entered 4T1 
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cancer cells up via GLUTs and were four times more cytotoxic than non-glucose-

conjugated nanoparticles [63]. 

Glycoconjugation has not been limited to just cancer and has found success in 

delivering payloads through the blood brain barrier due to high amounts of GLUT1 [64, 

65] as well as other barrier structures in the brain [66]. A successful example was 

ibuprofen-glucose conjugation resulting a dramatic increase in drug delivery to the 

brain with a three-fold increase in concentration [15]. The massive challenges BBB 

penetration and water solubility represent for most small molecule drugs prodrug 

development with glucose provides an elegant solution to both of these issues and 

represents potentially effective drug delivery system for future drugs [67]. 

1.3.3 Fluorescent GLUT Probes 

Targeting GLUTs has been attempted a variety of fluorescent conjugates. 

However, the only fluorophore found to pass through GLUTs was green-fluorescent 7-

nitrobenzofurazan (NBD). Conjugation of amino sugars – 2-Amino-2-deoxy-D-glucose 

(G) [68], 1-deoxy-1-amino-D-fructose (F) [69], and 1-amino-2,5-anhydro-D-mannitol 

(M) [70]  with NBD has produced a probes specific for certain GLUTs (Figure 1.7).  
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Figure 1.7: Green fluorescent GLUT-targeting probes 

NBDG is glucose dependent [68, 71], and is likely passes through most class 

I transporters. NBDF uptake is facilitated by glucose- and fructose-transport and is 

17



likely to rely on GLUT2 and GLUT5 [69].  MNBD uptake depends only on fructose and 

likely passes specifically through GLUT5, suggesting some preference of the 

transporter towards the locked furanose ring. Altogether, NBDG, NBDF, and NBDM 

allow assessing the efficiency of glucose-specific transport, non-specific transport and 

fructose-specific transport, respectively, providing convenient tools for quick analysis 

of carbohydrate transport efficiency in various cells. All three probes were found to be 

phosphorylated inside the cell, ensuring their cellular accumulation and retention [72]. 

Limited attempts to produce red fluorescent probes by conjugating carbohydrate to 

cianine5 (Cy5) dye resulted in a loss of GLUT-mediate uptake [69], leaving room for 

further evaluation of transporter preferences in substrate selection. Fluorescent 

probes have wide room for improvement as NBD competes with auto-fluorescence of 

cells in the green region and various colors provide an opportunity of tracking various 

transporters activity simultaneously.  

This thesis work focuses on our attempts to develop fructose uptake 

dependent fluorescent probes. Synthesis and probe design will be discussed in 

Chapter 2 while cellular studies will be discussed in Chapter 3. Future research plans 

for additional probes and cancer types will be summarized in Chapter 4. 
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 The following material is in preparation for submission to a journal for publication.  
 

Chapter 2 

Blue Fluorescent Probes GLUT-Mediated Uptake in Breast Cancer 

 

2.1 Introduction 

Carbohydrate uptake in mammalian cells is facilitated by membrane proteins 

called GLUTs which perform gradient-dependent carbohydrate transport [1, 2]. 

Expression of GLUTs varies throughout the body and can be viewed as a physiological 

characteristic of the tissue. Mutations of GLUTs have been linked with several medical 

conditions [3] while alterations to GLUT activity and regulation are characteristic for 

the metabolically-compromised cell, including cancer cells [4]. GLUT research has 

been mainly focused on widespread glucose transporter GLUT1 due to its high activity 

in various cancers. Recent findings have increased interest in the fructose-specific 

GLUT5 that appears to be expressed in various cancers, while absent in the 

corresponding non-cancer tissues [5].  

 The kinetic analysis of carbohydrate transport via GLUTs led to the 

development of the transport model that included the binding of the substrate to the 

extracellular site of the transporter, followed by the conformational change in the 

enzyme and the translocation of the substrate to the intracellular or endofacial side of 

the membrane [6]. Initial binding of the substrate to the transporters was found to vary 

with the structure of a carbohydrate, i.e. to depend on sugar conformation and the 

presence and stereochemistry of hydroxyls [7-11]. The understanding molecular basis 

for sugar-transporter interaction facilitated the development of biochemical probes to 

analyze transport efficiency, and dissect the membrane portion from the total GLUT 

expression. The latter provides the possibility for cell differentiation based on profiling 
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the membrane GLUTs. GLUT-targeting imaging agents and drugs conjugates are of 

interest to distinguish and kill metabolically-compromised cells [12], or to penetrate the 

blood-brain barrier [13]. Therapeutic approaches also include inducing a nutrient 

deficit in cancers, thus stimulating the development of carbohydrate uptake 

modulators.  

Current knowledge of GLUT-substrate interactions and the transport capacity 

of GLUTs is currently limited and requires significant study to determine. Conjugation 

of amino sugars – 2-Amino-2-deoxy-D-glucose [14], 1-deoxy-1-amino-D-fructose [15], 

and 1-amino-2,5-anhydro-D-mannitol [16] to the fluorescent 7-nitro-2,1,3-

benzoxadiazole (NBD) has led to effective GLUT uptake probes. However, the efforts 

to produce fluorescent conjugates of other colors (Cy5-fluorophore) failed, and GLUT-

Cy5 conjugate showed to lose GLUT-mediated uptake [15]. Coumarins are aromatic, 

blue fluorescent molecules with a similar size to NBD with an easily substituted C4 

position to make a multitude of probes. GLUT2 and GLUT5 have been shown to be 

the two primary transporters responsible for fructose transport but whether they both 

transport fructose in its pyranose or furanose form remains unclear [17]. In this chapter 

the synthesis of ManCou1, 2 and 3 as well as their effectiveness as imaging probes in 

various cancerous and normal cell lines.  

2.2 Materials and Methods 

Materials and methods: Ethanol (ACS/USP Grade, 190 Proof) was purchased from 

Pharmaco-Aaper, USA. Sterile DMSO (25-950-CQC, 250mL) was from Cellgro, USA. 

RPMI-1640, DMEM/, Penicillin/Streptomycin, FBS (Fetal Bovine Serum), Sodium 

Pyruvate (100 mM), 0/25% Trypsin-EDTA (1X), Hank’s buffer, PBS (phosphate 
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buffered saline solution), and RPMI-1640 were was from Life Technologies, USA. 

Cholera Toxin, Vibrio cholerae, Type Inaba 569B, Azide Free was from Calbiochem, 

EMD Millipore, USA. Life Technologies, USA. PBS 1X solution was from Janssen 

Pharmaceutica, Belgium. LIVE/DEAD® Viability/Cytotoxicity Kit, for mammalian cells 

was from Invitrogen, USA. 

Chemical reagents used for the synthesis were purchased from Aldrich. 

Column chromatography was performed using SiliCycle silica gel (230-400 mesh). 

Purification of NBD conjugates for cell studies was performed on Agilent HPLC 1200 

Series equipped with fraction collector from Agilent Technologies, using Phenomenex 

C18 column (Luna 5u C18(2) 100A, 250x4.60 mm, 5 micron) using MeOH:H2O as a 

mobile phase. Structural analysis of compounds was carried out with 400 MHz Varian 

NMR instrument. Spectra are reported in parts per million (ppm) relative to the solvent 

resonances (δ), with coupling constants (J) in Hertz (Hz). UV-vis spectra were 

recorded on a Cary 100 Bio spectrophotometer from Agilent Technologies. High-

resolution molecular mass was obtained with Orbitrap Elite mass spectrometer. UV 

spectra were obtained with Cary-Bio-100 UV-vis spectrometer. Fluorescence spectra 

were obtained with a FluoroMax-4 spectrophotometer. 96-well plate analysis of cell 

fluorescence was carried out with Victor3 fluorescence plate reader (excitation at 385 

nm). Confocal images were taken with Olympus FluoViewTM FV1000 using the 

FluoView software.  

Chemical synthesis of ManCou probes: (2S,3S,4S,5R)-3,4-dihydroxy-5-

(hydroxymethyl)tetrahydrofuran-2-carbaldehyde (1) (1 mmol) and the corresponding 

C4-substituted 7-aminocoumarin (1 mmol) were dissolved in 10 ml of methanol. 0.5 M 
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HCl was used to adjust the pH to 5.8 followed by addition of NaCH3CN (1.2 mmol) to 

the reaction mixture. The solution was stirred at room temperature while the pH was 

maintained at 5.8 by periodic addition of 0.5 M HCl until the starting material was no 

longer detectable by TLC.  The mixture was then concentrated to a small volume under 

reduced pressure, and the concentrated residue was separated by the semi-

preparative HPLC (Kinet 2.6 u HILIC 100A) using a various proportion of water-MeCN 

as an eluent. The composition of the final product was confirmed ESI, HRMS, 1H NMR 

and 13C NMR.[18]  

Cell Culture: MCF-7 and MCF-10A cells were seeded from frozen standards 

purchased from ATCC in 10 cm dishes under standard conditions (37 Co, 5% CO2 / 

90% air). MCF-7 cells grown in RPMI-1640 growth medium supplemented with 10% 

heat-inactivated fetal bovine serum (FBS) and 1% penicillin/streptomycin both 

purchased from Thermo-Fisher. MCF10A was grown in DMEM growth media 

supplemented with 10% heat-inactivated fetal bovine serum (FBS), 1% 

penicillin/streptomycin, and cholera toxin (100 ng/ml). MCF7 was passaged with 

trypsin every five days, MCF-10A every ten days with media being changed 24 hours 

after seeding.  

Preparing ManCou solutions: ManCou1 and 2 were dissolved in a solution of 10% 

DMSO/90% Millipore water for stock solution. ManCou3 was dissolved in 70% 

DMSO/30% Millipore water for stock solution. All solutions for testing were diluted from 

stock using Hank’s buffer solution purchased from Thermo Fisher.  
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96-well plate fluorescence studies: At >85% confluence cells were collected and 

plated in 96-well flat bottom plates (20,000 cells/well) purchased from and allowed to 

grow for 24 hours. Cells were then washed with warmed (37 Co) Hank’s balanced 

buffer solution and treated with ManCou fluorescent probes (concentration varies) in 

Hank’s and incubated at 37 Co
 and 5% CO2 for 10 min. After incubation, the probe-

containing solution was removed, and cells were washed with warmed Hank’s (3 x 100 

µL) buffer. Fluorescent data was immediately collected using Victor3 plate reader and 

using WallacTM umbelliferone (excitation 355 nm, emission 460 nm, 1.0 s) protocol. All 

tests were done in duplicate on each plate.  

Inhibition studies: Using 96-well plate method fluorescence of ManCou probes in 

cells war measure in the presence of varying concentrations of glucose, fructose, 

glucosamine, MNBD, GNBD, and cytochalasin B. Separately, complete culture media 

was used to establish the impact of nutrients on ManCou uptake. Cell incubation, 

washing, and data collection was conducted as stated above. 

Confocal fluorescence studies: At >85% confluence cells were collected and plated 

(20,000) in 35 mm glass-bottom confocal dishes (MatTek) and allowed to grow in their 

respective growth media for 24 hours. Cells were then washed with warmed (37 C°) 

Hank’s (2 x 1 mL) before being incubated with ManCou solution in Hanks (1 mL, 37 

C°, 5% CO2) for 10 min. After incubation cells were again washed with warmed Hank’s 

(3 x 1 mL) and leaving 1 mL of Hank’s for images. Images were taken using Olympus 

FluoViewTM FV1000 using the FluoView software. 60X oil suspended lens cells were 

used to observe fluorescent activity with the following conditions; filter: DAPI, laser: 
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405 (45% intensity), excitation: 10 µs/pixel. Z-stacking was done using FluoView 

software and depth command.  

Fructose preconditioning: MCF7 cells, grown in the standard growth medium, were 

passaged and maintained for ten days in i) the standard medium supplemented with 

fructose (11 mm) to produce fructose-fed MCF7’ cell culture, and ii) in RPMI-1640 

medium supplemented with dialyzed FBS (10%) to produce fructose-deprived MCF” 

cells culture. The MCF” cells were then maintained for ten days in the standard 

medium to produce fructose-refed MCF7* culture. The medium was changed 24 h 

after passaging of cells and every two days. 

2.3 Synthesis and Computational Analysis of Mannitolamin-Coumarin 

Conjugates (ManCou Probes) 

Several coumarins differing in the functional groups at the C4 position (Figure 

2.1) were chosen to assess the possibility to transport extended aromatic system 

through GLUTs and test the impact of steric, H-bonding and electronic interactions. 

ManCou1 (H) represents a plain aromatic system with weakly H-bonding carbonyl 

group that is not expected to exhibit any interactions with the transporter. ManCou2 

(CH3) acts as a weak electron donating group that appears to increase electron density 

of coumarin aromatic system and possibly contributes to the enhanced H-bonding 

capability of the carbonyl group.  ManCou3 (CF3) acts as a strong electron withdrawing 

group deactivating the aromatic system of coumarin and thus increasing its potential 

capability of π-acceptor. Additionally, the presence of halogens is known to induce 

halogen-π interactions within proteins, and CF3 group, in particular, is capable of 
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stabilizing interactions with aromatic systems [19, 20]. Thus, H-bonding and aromatic 

interactions would be expected for ManCou3 within the transporter.  

ManCou1: R = H
ManCou2: R = CH3
ManCou3: R = CF3

O

OHHO

HO

O

O

H
N

R

ManCou1 ManCou2 ManCou3

 

Figure 2.1. ManCou1-3 probes and their electrostatic properties 

The synthesis of conjugates was based on the reductive amination of 

(2S,3S,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl) tetrahydrofuran-2-carbaldehyde (1) 

with the corresponding 7-aminocoumarin, resulting in ManCou 1-3 conjugates 

(Scheme 1). To access aldehyde 1, D-(+)-glucosamine was carried through a 

Tiffeneau-Demjanov rearrangement with an acidic resin in the presence of NaNO2 [21]. 

The aldehyde 1 was isolated in acceptable yield (84%) and was used in the 

subsequent reactions without purification. The ManCou conjugates were purified by 

high-pressure liquid chromatography (HPLC) using a gradient of ACN:water and 

analytical (4.5 Å) C18 reverse phase column (Phenomenex). Structures of ManCou1-

3 probes were confirmed with NMR spectroscopy and Mass Spectrometry.  
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Scheme 2.1. Synthesis of ManCou probes 

Optical properties of ManCou1-3 were analyzed through UV-vis (Cary-Bio-100) 

and fluorescence (FluoroMax-4). The UV and fluorescence (Figure 2.2) spectra for 

ManCous 1-3 reflected the impact of a methyl- and trifluoromethyl- substituents on the 

π-system of the fluorophore, with blue- and red-shift observed for ManCou2 and 

ManCou3, respectively. The relative quantum efficiencies of ManCous 1:2:3 were 

established as 0.9:1.0:0.30 (determined for 385 nm excitation wavelength). The 

absolute quantum yields were determined based on the optically matching solution of 

anthracene [22] (20 μM in ethanol, ϕ = 0.27) as 0.26, 0.30, and 0.10 for ManCou1, 

ManCou2 and Mancou3 (20 μM in DMSO/H2O 9:1, v/v), respectively. 
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Figure 2.2. UV-vis and fluorescence spectra of ManCou1-3 

To gain insight into the ManCou interaction with GLUT5, molecular docking of 

DFT-optimized structures of coumarin conjugates into the exofacial cavity of a 

mammalian fructose transporter GLUT5 (PDB code: 4YB9) using Autodock4 [23] was 

carried out. For each ManCou probe, the resulting complexes were ranked, and the 

complexes were analyzed to identify the position/binding of conformers.  

ManCou1 ManCou2 ManCou3

A B C

 

Figure 2.3. Docking analysis of ManCou1-3. Docking analysis performed with Autodock4. Models 

visualized with PyMol. 

Overall, the analysis of complexes showed the ManCous to bind with the 

uptake relevant residues through the 1-AM moiety but accommodate different 

orientations of the fluorophore (Figure 2.3). All three probes were found to H-bond with 

Tyr32, Gln167, Gln289, and the Glut5-specific Asn294 – residues also found to be 

involved in fructose uptake through GLUT5 [23]. While the binding of 1-AM between 

three complexes involved the same residues, the H-bonding sites at 1-AM were altered 

to accommodate the change in the position of the fluorophore. For ManCou1, the large 

population of conformers was found to orient the coumarin moiety towards His419 and 

Trp420 – residues found to be critical for fructose uptake (Figure 2.3A) [23]. For 
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ManCou3, nine out of ten conformational isomers had the coumarin moiety oriented 

away from these residues into the more open space (Figure 2.3C). Interestingly, for 

ManCou2 (Figure 2.3B), conformations similar to those of ManCou1 and ManCou3 

were detected, suggesting the probe to have duality, as sensed by malignant cells. 

However, a higher level modeling would be required to assess a true binding site(s) 

for these probes and further identifying key interactions contributing to the differences 

in their uptake behavior and cellular impact.  

2.4 Analysis of ManCou1-3 uptake 

The uptake analysis of ManCou1-3 was carried out in breast cancer 

(adenocarcinoma) MCF7 cells. MCF7 cells have been previously studies for GLUT5-

mediated uptake [15, 24-26] thus providing a good platform for initial probe evaluation. 

MCF7 cells were cultured according to standard protocol, seeded in the 96-well plate 

(20000 cells/well) and maintained to adhere for 12 h. Cells were then treated with 

varied concentrations of ManCous 1-3 (in Hank’s solution and media) for 10 min at 37 

°C, and fluorescence was measured after removal of the probe and cell wash. As a 

result, efficient concentration-dependent uptake was observed for all probes with 

ManCou1 having the highest uptake and ManCou3 having the lowest uptake (Figure 

2.4A). The transported probe remains in the cells even after post-incubation in a probe-

free media and repeated washing. This is in agreement with previous observations, 

where 2,5-anhydro-D-mannitol was found to be a suitable substrate for 

phosphofructokinase-1 [27-29]. Accordingly, the lack of back transport is a significant 

point because GLUT transporters, being antiporters,  take up and excrete 
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carbohydrates, but not the phosphorylated products [30]. The comparative analysis of 

non-conjugates coumarins with ManCou (Figure 2.4B) shows that the presence of 1-

AM drastically enhances the uptake, putatively contributing to facilitative internalization 

of probes rather than passive diffusion (as for non-conjugated coumarins).  

A B

 

Figure 2.4. Uptake analysis of ManCou probes in MCF7 cells. A) ManCou probes exhibit concentration-

dependent uptake. B) 1-AM facilitates coumarin uptake (measured for 20 μM ManCou1-3 vs. non-

conjugates coumarins). Data represents the Gained Fluorescence (excitation at 385 nm) measured in a 

96-well plate settings after 10 min incubation of cells with probes in Hank’s buffer. Fluorescence values 

corrected for the quantum yield of ManCou probes. 

24 hours after the uptake no ManCou-induced fluorescence activity was 

observed, suggesting cellular metabolism of the fluorophore. This observation, as well 

as no saturated fluorescence point being found, points toward ManCou sugar base 

undergoing phosphorylation as it enters the cell to and eventually being excreted as a 

metabolite. If the sugar base was not phosphorylated, the probe could easily be 

excreted once the media containing the fluorophore was removed, which was not 
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observed even after 30min post incubation. Further testing is needed to determine 

whether the fluorophore itself is metabolized or passively diffuses out of the cell.  

The uptake efficiency of ManCou probes appears to change with the change 

in electronic properties of coumarins. Thus, from three probes, ManCou1 is taken up 

most avidly, ManCou2 is taken up with ~25%, and ManCou3 with 4-fold lesser 

efficiency (Figure 2.4A). The analysis of the uptake kinetics through Michaelis-Menten 

method [18] showed all three probes to have concentration-dependent saturable 

uptake (Figure 2.5), exceeding that of fructose by nearly 1000-fold (15-17 µM for 

ManCou1 and 2, and 35-37 µM for ManCou3). 
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Figure 2.5. Kinetic analysis of ManCou1-3 uptake using Michaelis-Menten Kinetics. Plots depict 

1/fluorescence vs. 1/concentration using data obtained upon treating cells with 1-100 µM ManCou 

concentrations Plots obtained with SigmaPlot13. 

The Z-stack images obtained for MCF7 cells treated with ManCous 1-3 show 

that while ManCou1 and 2 are localized within the membrane and in the cytosol, 

ManCou3 is only present within the cell membrane. The drastic difference in probe 

properties could be rising due to the extended binding of ManCou3 with GLUT5, and 

particularly with Trp419. From all residues identified to bind ManCou3, the Trp419 is a 

key residue located on the transmembrane helix 11 (TM11) of GLUT5 which may inhibit 

the conformation shift between TM10 and TM7 required for the change from the 
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occluded state into the inward open state. In such case, the protein is expected to be 

locked in the outward-open conformation and prevent internalization of the substrate. 

However, it would require a crystal structure with probe bound to confirm this notion.  

ManCou 2ManCou 1 ManCou 3

 

Figure 2.6. Confocal Z-stack images of MCF7 cells treated with 20 uM ManCou1-3 (10 min at 37 °C, 405 

nm excitation, 461 nm (DAPI) emission, 60X objective). 

To assess whether ManCou1-3 exhibit GLUT5 specificity, the impact of 

nutrient carbohydrates, MNBD, GNBD, and cytochalasin B on the probe uptake was 

evaluated. Glucose, fructose, and glucosamine were used as competitive inhibitors of 

ManCou uptake. The impact of glucose and fructose on the uptake was used to 

establish the involvement of glucose transport and fructose transport, respectively, in 

the ManCou uptake. Upon addition of glucose up to concentrations exceeding 

physiological (1-50 mM) no inhibition of ManCou uptake was detected (Figure 2.7A). 

Likewise, no significant change in the uptake efficiency of ManCou probes was 

observed upon crying out uptake analysis in culture media, as opposed to Hank’s 

buffer (Figure 2.7B). These results could rise from the significantly higher affinity of 

ManCou probes to their biological target(s), resulting in a lack of interference of 

nutrients in their uptake. ManCou uptake is however inhibited by MNBD, previously 

shown to target GLUT5, while not impacted by GNBD (targeting glucose transport). 

40



 
 

The observation is suggestive of ManCou probes exhibiting the same mechanism of 

uptake as MNBD, i.e. via GLUT5.  

A B

C D

 

Figure 2.7. Inhibition of ManCou (20 µM) uptake with carbohydrates (A), culture media (B), MNDB (C), 

GNDB (D), and cytochalasin B (E) in MCF7 cells. Data normalized by quantum yield. 

To further assess the role other fructose transporters in ManCou uptake - 

particularly the role of GLUT2 contributing ~12% to total fructose uptake in MCF7 cells 

- cytochalasin B was used a non-competitive inhibitor of glucose uptake through 

GLUTs 1-4. Addition of cytochalasin B in concentrations far exceeding the established 

for GLUTs 1-4 (Ki  = 2-10 µM) did not have impact on the uptake of ManCou probes, 

showing the uptake to be independent of GLUT1-4. The use of glucosamine (up to 50 

mM) as GLUT2-specific substrate also did not induce any effect on ManCou uptake, 

further supporting the lack of GLUT2 participation in the uptake of ManCou probes. 
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Overall, uptake inhibition studies strongly suggest that ManCou probes are 

transported through fructose-specific transporter GLUT5.  

 
Figure 2.8: Uptake of ManCous in MCF7 cells pre-conditioned with or without fructose. Comparative 

analysis of ManCou uptake in fructose-fed (MCF7’), fructose-deprived (MCF7”) and fructose re-fed 

(MCF7*) cells (normalized by MCF7). MCF7, cells grown in standard media; MCF7’, cells fed with 

fructose; MCF7”, cells deprived of fructose; MCF7*, MCF7” cells re-fed with fructose. Data represents the 

Gained Fluorescence. Fluorescence values corrected for the quantum yield of ManCou probes. 

Prolonged exposure of cells to fructose has been shown to primarily increase 

expression of GLUT5 [31]. Hence, preconditioning of MCF7 cells with fructose has 

been carried out to gather further evidence of GLUT5-mediated uptake of ManCou1-

3. To produce fructose-fed cells, MCF7 cells were maintained in the standard growth 

media supplemented with 11mM fructose for ten days. The uptake analysis of 

ManCu1-3 probes in fructose-fed MCF7’ cells showed up to 3-fold increase in uptake 

of ManCou probes (Figure 6A). These results are consistent with previously reported 

MNBD uptake with fructose preconditioned MCF7 cells [16]point towards GLUT5 

driven uptake of ManCou as a result of increased activity of fructose transport or 

metabolism. Starving MCF7 cells of fructose by maintaining them in the dialyzed media 

for ten days decreased ManCou uptake by 2-fold while re-feeding the starved cells by 
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maintaining them in regular media (non-dialyzed) regenerated the levels of the uptake.  

Whether the observed changes result from the alterations in GLUT5 expression or are 

driven by the changes in metabolic activity of preconditioned cells has not yet been 

determined.  

Overall, the inhibition and cell preconditioning studies indicate that Manzcou1-

3 probes are preferentially transported through GLUT5. Within this set of probes, 

ManCou1 behaves as a transport probe, showing clean gradient-driven uptake 

kinetics of first-order in the ManCou. ManCou3 appears to be an effective transport-

labeling probe showing clean receptor-ligand kinetics. ManCou2, overall, shows 

behavior is similar to ManCou1 (i.e. is transported through the membrane). However, 

some interactions with the protein appear to deviate the uptake from pure gradient 

driven first order kinetics.  

 

2.5  ManCous as GLUT5 expression and fructose metabolism probes 

To further determine ManCou’s method of transport, several different human 

cancerous and noncancerous cell lines known to have different expression of GLUT5 

were treated with ManCou 1-3 probes. In normal breast MCF10A cells, known to have 

minimal levels of GLUT5 expression, ManCous have shown significantly lesser uptake 

compared to the cancerous counterparts. This is expected due to documented 

increase in carbohydrate uptake in cancerous cells when compared to their 

noncancerous equivalents. Interestingly H9C2 a cardiac cell line showed minimal to 

no uptake of ManCou1 or 2. However, labeling of the membrane with ManCou3 

showed results similar to that of MCF7 cells. While the expression levels of GLUT5 in 
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H9C2 are not established, it appears that the differences in fluorescence induction by 

ManCou1 vs. Mancou3 may be indicative of a sufficient membrane expression of 

GLUT5 but the lack of metabolizing enzymes to drive gradient-dependent transport of 

ManCou1. This observation provides grounds for further analysis of protein (GLUT5 

vs. metabolizing kinases) expression in cardiac cells. Subsequently, ManCou probes 

could be effectively used to identify GLUT5 expression and fructose metabolism in 

cells.   

 
Figure 2.9. ManCous1 and ManCou3 in the MCF10A model (confocal images): A) cells with no probe; 

B) cells with the probe; C) cells with the probe (fluorescence). MCF10A, non-cancer; MCF10DCIS.com, 

undifferentiated lesions, MCF7, adenocarcinoma; MCF10-neoT, premalignant; and MCF10Ca1a, highly 

malignant. Images taken at 405 nm laser at 461 nm (DAPI) emission (20X objective). 

 

 Considering that there is currently a significant lack in understanding what 

impact fructose uptake inhibition may have on cells, we have evaluated ManCou3 in 

a MCF10 model that systemically demonstrate breast cancer initiation, development, 

and progression [32]. As a result, blocking Glut5 with ManCou3 exerted cytotoxic 

response in malignant cells but not in normal or undifferentiated cells (Figure 2.9).  

MCF10neoTMCF10DCIS.com MCF7MCF10A MCF10Ca1a
A

B

C
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2.6 Conclusions 

 Here three novel carbohydrate-mediated probes have been developed and 

tested, each with their unique kinetics of intercellular uptake. ManCou1 and 2 both 

appear to pass through GLUT5, ManCou3 appears to remain inside the cellular 

membrane. Considering the link between GLUT5 activity and carcinogenesis [33] 

targeting GLUT5 appears to give a new way to achieve cancer-specificity of 

therapeutics or imaging agents. In fact, ManCou probes appears to exhibit desired 

cancer specificity. Moreover, blocking Glut5 with ManCou3 exerted cytotoxic response 

in malignant cells but not in normal or undifferentiated cells. These results may 

potentially lead to a procedure for relatively quick analysis on cancer aggressiveness 

based on fluorescent intensity and accumulation. Also, ManCous provide a proof of 

concept that using carbohydrate mimics, such as 1-AM, may be beneficial for targeted 

drug delivery.  
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Chapter 3 
 

Synthesis of Locked Fructose Analogs 
 

3.1 Introduction 

 

MNBD (1-amino-2,5-deoxy-D-mannitol conjugated to NBD) has been shown to 

preferentially transported through GLUT5 with significantly higher affinity for fructose. 

However, it is unclear what exactly leads to the observed increased affinity. One of the 

possibilities is that GLUT5 may have a preference for the five-member ring 

conformation in addition to hydrophobic interactions induced by the fluorophore. 

Fructose equilibrates between two different ring conformations; furanose (five-

membered ring) and pyranose (six-membered ring) with 25% and 75% populations 

respectfully. GLUT5 affinity towards these ring conformations are unclear due to all 

probes used to determine it exist as anomeric mixtures [1, 2]. To alleviate these 

ambiguous results, probes need to be developed with locked ring conformations to 

understand if GLUT5 is specific for pyranose or furanose forms of the sugar.  

Fructose has four stereocenters. However, the importance of their absolute 

stereochemistry is unclear. Altering these stereocenters may lead to increased 

binding affinity towards the transporter which may lead to potentially potent inhibitors. 

Using organic synthetic techniques to install each stereocenter will allow the 

construction of several unique probes to determine importance of stereochemistry on 

GLUT5 uptake.  This chapter outlines the goals and current progress of probe 

synthesis.  
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3.2 Results and Discussion 

While synthetic development proceeded smoothly for initial reactions in 

relatively high yields, the first significant challenge in the synthesis was the 

apparently simple oxidation of the epoxy system. Common oxidation techniques 

such as PCC and Swern yielded little to no results, however when 1 was subjugated 

to Parikh-Doering conditions the resulting aldehyde was obtained in relatively high 

yield. Wittig olefination proceeded smoothly followed by syn-selective opening using 

Pd tetrakis in the presence of benzyl alcohol. Followed by DIBAL reduction which 

lead to relatively high yield of 83%. After the isolation of 3 the initial goal was to 

oxidize the epoxy alcohol, extend and repeat the Pd-catalyzed opening. However, 

TEMPO oxidation techniques to selectively oxidize the primary alcohol did not 

proceed. Parekh-Doering was then conducted to attempt to get the aldehyde but 

ultimately proved unsuccessful.  
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Scheme 3.1: Overall synthesis of alpha-NBD pyranose probe  
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Moving forward the synthesis will be altered on opening the second epoxide 

using a more traditional anti-opening using a Lewis acid and nucleophile. Following 

reactions are expected to yield similar results to previous attempts before arriving at 

4. Ozonolysis should proceed smoothly to cleave double bond and sequential 

carbonyl reduction using NaBH4 to generate a primary alcohol. Primary alcohol will 

be tosylated using Tosyl chloride (TsCl) before undergoing intercellular cyclization. 

After generation of locked pyranose, the synthetic steps can be easily modified to 

generate altering stereochemistry through Sharpless asymmetric epoxidation to test 

the effect of altering stereocenters.  

This synthesis can be easily altered to generate furanose locked analogs by 

simply stopping after secondary SAE and cyclizing. This will be explored in the future 

as both furanose and pyranose probes are developed to further understand the 

importance of sugar ring size in fructose transport.  
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Scheme 3.2: Synthesis of locked furanose probe 

 

3.3 Conclusions 

Initial groundwork has been developed for a series of probes designed to 

effectively determine stereocenter and ring size importance in fructose transport. 

With synthetic optimizations, these probes should be able to be made on milligram 

scale and carried over for cellular studies.   

3.4 Experimental 

All reactions (unless otherwise stated) were done with flame dried glassware 

and using commercially available reagents without further purification from Sigma-

Aldrich. Silica gel was purchased from Siliflash and has a size of 43-63 µm. Solvents 
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used were taken from dried source. Column chromatography was performed using 

SiliCycle silica gel (230-400 mesh). Thin layer chromatography (TLC) was performed 

using Sigma-Aldrich TLC plates over aluminum support 200um thickness with 25 µm 

particle size. Structural analysis of compounds was carried out with 400 MHz Varian 

NMR instrument. Spectra are reported in parts per million (ppm) relative to the 

solvent resonances (δ), with coupling constants (J) in Hertz (Hz). 

Benzyl Protection of alkyne 

BnBr (1 eq)

rt, H2O, KOH (4eq)

84%
HO

OH

BnO

OH

1  

1,4-butynediol (20 g, 232 mmol, 4 eq) was dissolved in 200 mL of deionized 

water at room temperature and allowed to stir until dissolved. After starting material 

was dissolved potassium hydroxide (13 g, 232 mmol, 4 eq) was added and allowed 

to stand for 30 min. After 30min benzyl bromide was added dropwise and allowed to 

stir overnight. Solution was then extracted with 3 treatments of 75 mL of diethyl ether 

and dried over sodium sulfate. Solvent was removed under reduced pressure to 

leave the yellow crude oil (9.2g) and was then purified over silica gel using ethyl 

acetate/hexane (10/90)solvent system to yield 1 in 84% yield[3]. 1H-NMR CDCl3: δ 

7.2 (m, 5H),  4.80 (s, 2H), 3.80 (d, 2H), 3.90 (d, 2H), 2.8 (s, b, 1H).  

Reduction of alkyne to trans-alkene.  

BnO

OH
BnO OH

Red-Al

0 C to rt, THF  
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Alkyne 1 (9 g, 50.3 mmol) dissolved in 100 mL of dry THF and cooled to 0 Co 

under Ar atmosphere. Red-Al (60% toluene, 30 g, 87 mmol) was then added 

dropwise over a course of 10 min via syringe. Reaction allowed to stand for 1 hour at 

room temperature. Reaction was cooled to 0 Co and 100 mL of 10% sulfuric acid was 

added to quench reaction. The resulting biphasic system was extracted with three 

times with 75 mL of dichloromethane. Solvent was removed under reduced pressure 

to give very light yellow oil (7.8 g) and then purified over silica gel using ethyl 

acetate/hexane (10/90) solvent system to yield 2 in 72% yield [4]. 1H-NMR CDCl3: δ 

7.1 (m, 5H), 5.9 (m, 2H), 4.7 (s, 2H), 4.1 (d, 2H), 4.0 (d, 2H), 2.8 (b, 1H) 

Sharpless asymmetric epoxidation (SAE)  

BnO OH
T-BuOOH (4eq)

-23 C 24h, DCM
BnO OH

O

 

Dried molecular sieves 4Å (4.0 g) were added to dry dichloromethane in a 

flame dried flask at -23 Co before both titanium tetra(isopropoxide) (0.25 eq) and (-) 

diethyl tartrate (0.36 eq) are added to solvent under Ar atmosphere. Dried tert-butyl 

hydroperoxide 3.5M solution in toluene (4eq) was added dropwise over 20min before 

allowing solution to stand with stirring for 30 min. After allotted time allylic alcohol (1 

eq) was dissolved in of dried dichloromethane and added to solution dropwise over 

1hr. Reaction was kept at -20 C° overnight before being warmed to room 

temperature and quenched with 30% NaOH solution in water and stirred for 20 min. 

The molecular sieves were, and salts were then filtered off using vacuum filtration 

before the two phases were separated. Aqueous phase was extracted with three 

washes of 75 mL of dichloromethane. Resulting organic phase was dried over 
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sodium sulfate and concentrated under reduced pressure, followed by purification 

using column chromatograph (silica gel, 10/90 EtOAc-hexane). Resulting in epoxide 

in 78% yield [5]. 1H-NMR CDCl3: δ 7.2 (m, 5H), 4.6 (dd, 2H), 3.9 (m, 1H), 3.7 (dd, 

1H), 3.5 (m, 1H), 3.4 (dd, 1H), 3.2 (m, 1H), 2.9 (b, 1H) 

Parikh-Doering oxidation of 3 

BnO OH
O SO3*py, DMSO

TEA, 0 C to rt, 1h, DCM
BnO O

O

 

To a dried flask dichloromethane (4.3 mL/mmol) and dimethylsulfoxide (0.73 

mL/mmol) were cooled to 0 C° before epoxy alcohol was added to solution with 

stirring under Ar atmosphere. To this solution, TEA (3 eq) was added via syringe, 

and sulfur trioxide pyridine complex (4 eq) purchased from TCI was added rapidly. 

Solution turns from clear to a light brown/red and is allowed to come to room 

temperature. After 2 h, reaction was monitored by TLC before being cooled back 

down to 0 C°. Reaction is quenched by a saturated solution of copper sulfate 

pentahydrate and extracted with dichloromethane. Organic phase was dried over 

sodium sulfate and concentrated under reduced pressure before being purified by 

column chromatography (silica gel, 30/70 EtOAc-hexane). Aldehyde was purified to 

give 53% yield [6]. 1H-NMR CDCl3: δ 10.4 (d, 1H), 7.2 (m, 5H), 4.6 (dd, 2H), 3.9 (m, 

1H), 3.7 (dd, 1H), 3.5 (m, 1H), 3.4 (dd, 1H), 3.2 (m, 1H) 
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3.5 Additional Information 

 

Figure 3.1 H1 NMR at 400Hz for BnO

OH
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Figure 3.2 C13 NMR at 400Hz for BnO

OH
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Figure 3.3 H1 NMR at 400 Hz for  BnO OH
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Figure 3.4: C13 at 400Hz for  BnO OH
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Figure 3.5: H1 NMR at 400Hz for BnO
OH

O
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Figure 3.6 C13 at 400Hz for BnO
OH

O
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Figure 3.7: H1 at 400Hz for BnO
OO
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Figure 3.8: C13 at 400Hz for BnO
OO
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Chapter 4 

Future Work 

 

Although current probes have given insight into transporter-substrate tolerance, gaps 

remain. ManCou probe’s C4 position has the ability for many more functional groups to be 

added to give further insight into importance of the electron density of the aromatic system as 

well as how bulky hydrophobic/hydrophilic substitutions may affect uptake. Coumarin 

functionalization can also affect the color of emission and, if used to target different GLUTs, 

may allows for simultaneously tracking of the activity of different GLUTs. 

 

4.1 Finish Synthesis of Furanose/Pyranose Probes 

 With the completion of the ManCou1,2 and 3, strides have been made in 

understanding substrate and payload tolerance. However how exactly GLUT2 or GLUT5 

differentiate between sugar substrates, if they do at all, remains unclear. In Chapter 2 initial 

work has been done in an attempt to construct a multitude of probes in an attempt to 

determine this mechanism. Once probe synthesis is completed using a multitude of cellular 

lines shown to express GLUT5, GLUT2 and neither will need to be exposed to the probes. 

From their fluorescent uptake or lack thereof, should help determine the substrates specific 

toward each transporter.  

4.2 Develop more ManCou Probes 

 Current ManCou probes have given interesting insight on transport and 

transporter/substrate tolerance. However there is significant room for expansion. There are 

several other amino or hydroxyl coumarins commercially available with differing functional 

groups that can give insight in hydrophobic tolerance, sterics, sugar-fluorophore linker role, 
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etc. Manipulating the C4 functional group can also influence the color of the probe as well 

from violet all the way to red. These probes can shed even more light on the confusing topic 

of substrate tolerance. 
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Figure 4.1: Potential future probes 

4.3 Multicolor Assay to Measure GLUT Activity 

 With the construction of ManCou probes and the already tested NBD probes, it is 

now possible to develop a multicolor assay to measure various GLUT activity simultaneously. 

Using multiple colors, it will be possible to track the activity of various transporters in real time 

and potentially diagnose cancer types very quickly and being able to avoid long gene 

sequencing experiments.  
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