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Abstract

Football helmets have been used for many years to prevent head injuries to players. Over
the years, the helmet design has evolved from a crude leather head covering to the more
recent form fitting helmets that are seen today. The one design feature that has been
common in the majority of all helmets is a hard polycarbonate shell with a foam cushion
padding. The main goal of the padding layer was to reduce the amount of linear
acceleration during an impact event. The one feature that has been overlooked is how

stiff the padding is in rotation.

The purpose of this work is to evaluate how well the Enhanced Bio-Morphic (EBM)
football helmet performs as compared to a commercially available football helmet. The
EBM helmet is designed to capture the existing features of the current football helmet,
but to also include a shear layer between the polycarbonate shell and foam padding. The
shear layer is included to help reduce the severity of angular acceleration that is imposed

on the human head that is responsible for concussions.

This dissertation presents the makeup of the EBM helmet, the rational for selecting the
components of the EBM IEA system, and a comparison of the predicted performance of
the EBM as compared to a commercially available VSR4 helmet by Riddell. The results
will show the EBM helmet has the ability to reduce the angular acceleration for an
oblique impact, thereby reducing the amount of stress in the human brain. This stress

reduction has the ability to help reduce the possibility of concussion more commonly

xXxii



seen in sports related injuries. This finding is an important discovery in helmet
technology. Although the technology studied here is focuses on football helmets, it is not
by any means limited to football helmets. This can be used throughout different sports as

well as throughout other applications where helmets are used.
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1 Introduction

1.1 Introduction

Over the past decade, from 2001 to 2010, the amount of Traumatic Brain Injury (TBI)
related emergency department visits have increased by 70%. It is estimated that
approximately 2.8 million Americans sustained a Traumatic Brain Injury in 2013.
Traumatic Brain Injury (TBI) can range from a mild injury that involves a brief change in
consciousness or mental status, to a severe injury that can result in an extended period of

unconsciousness or possibly memory loss [1].

As a result of these injuries, approximately 282,000 people are hospitalized and survive,
80,000 people experience the onset of long-term disability, and 50,000 people die.
Studies indicate that males are about three times as likely to incur TBI as compared to
females, and persons 15 to 24 years of age are at highest risk of TBI. In 2012 alone,
approximately 329,290 children (ages 19 and younger) were diagnosed with a concussion
or TBI for sports and recreation-related related injuries [2]. Consequences of TBI are
problems with memory, judgment, mood, strength, coordination, balance, and vision.
TBI can also cause seizures such as epilepsy. Repeated mild brain impacts occurring

within hours, days, or even weeks, can be fatal [1].



1.2 Problem Statement

For closed head trauma there are two theories that are used to describe the cause of brain
injuries: injuries caused by the translational motion of the head and injuries caused by
rotational motion of the head. A head injury caused by translational motion of the head
has been postulated to be the sole cause of injuries at the site of impact, or coup injuries,
and opposite the site of impact, or countercoup injuries. Head injuries caused by
rotational motion of the head, on the other hand, have been postulated to be the sole cause
of injuries on a global scale, or diffuse axonal injuries. Although there has been a great
deal of research done in the area of brain injuries and the mechanisms that cause brain

injuries, these two theories have been studied most often exclusively.

Concussion is a type of traumatic brain injury (TBI) [1]. It is a brain injury due to linear
and angular acceleration/deceleration of the head due to impacts forcing interactions
between the inner surface of the skull and the floating brain. Most impacts on the helmet
cause both linear and angular accelerations. Linear acceleration causes pressure gradient
while angular acceleration causes shear strain gradient. Frontal and posterior impacts
cause both pressure and shear stress distributions in the brain. While comparable
compressive pressures developed in the countercoup regions, shear stress distributions
remained identical regardless of the impact direction, correlating with clinically observed
patterns for contusion. Therefore, shear strain theory appears to account better for the
clinical findings in cerebral contusion [7]. Angular acceleration is therefore the primary

causation factor for concussion.



A football helmet, is a safety headgear to protect players from head injuries due to
impacts on the field. Head injuries include skull fractures and brain concussion. Current
football helmets are designed with a stiff plastic outer shell to distribute impact forces
combined with an elastic foam inner layer to absorb the impact shock and to reduce the
impact forces in order to minimize the risk of skull fractures. Current helmet technology
does provide adequate design provisions to attenuate normal impact forces, but it lacks

design provisions to attenuate tangential impact forces.

The goal of this research is to propose a new football helmet, the Enhance Bio-Morphic
Helmet (EBM), that provides adequate attenuation for normal impact forces and adds
provisions to attenuate angular acceleration. The purpose of the EBM helmet is not only
to minimize linear acceleration of the head to prevent catastrophic brain injury like
hemorrhages, but also to minimize angular accelerations of the head to prevent

concussion.



1.3 Objective
In order to present the EBM helmet as a viable helmet for football players, a full
assessment of the design features against the current football helmet technology is
required. The methods and materials used evaluate the EBM helmet are as follows:
e Study of head impacts on the football field.
e Brain injury dynamics due to head impacts on the football field.
e Development of Impact Energy Attenuators (IEAs).
e Impact study of the helmet fitted on the human head model by FEM.
e Impact study of the EBM helmet fitted onto human head model by FEM.

e Comparative study of the overall effectiveness of the EBM helmet.



2 Head Impacts on the Football Field

2.1 Introduction

Traumatic Brain Injury (TBI) is defined by the Centers for Disease Control (CDC) as “a
disruption in the normal function of the brain that can be caused by a bump, blow, or jolt
to the head, or penetrating head injury." "The severity of a TBI may range from mild (i.e.,
a brief change in mental status or consciousness) to severe (i.e., an extended period of
unconsciousness or memory loss after the injury)." In the United States alone, it is

estimated that 2.8 million Americans sustain a TBI each year [1].

Of the estimated 2.8 million TBI's each year, over 300,000 of these injuries are related to
sports or other physical activities. From 2001 to 2012, studies show that the rate of
emergency room Vvisits have more than doubled for sports and recreation related injuries
for children 19 years of age and younger. The main diagnosis for these injuries was
concussion or TBI. Although the amount of deaths have decreased by approximately 7%
between the years of 2007 and 2013, the hospitalization rates have increased by
approximately 11% [2]. With the increase in TBI related injuries that is seen in a clinical

setting, the need for better sports equipment is very important.



2.2 Objective
The main objective of this study is to investigate the effect an oblique impact has on the
pressure and shear stress distribution in the human brain. Specifically, this study will
address the following questions:
e s there a critical angle of oblique impact at the given site on the head which will
cause the shear stress in the brain to reach a concussion tolerance?
e Is there any relationship between the peak pressure and peak shear stress
distribution at each site of oblique impact on the head to identify a critical angle

for a given site?

2.3 Relevance of Research

For closed head trauma there are two theories that are used to describe the cause of brain
injuries: injuries caused by the translational motion of the head and injuries caused by
rotational motion of the head. A head injury caused by translational motion of the head
has been postulated to be the sole cause of injuries at the site of impact, or coup injuries,
and opposite the site of impact, or countercoup injuries. Head injuries caused by
rotational motion of the head, on the other hand, have been postulated to be the sole cause
of injuries on a global scale, or diffuse axonal injuries. Although there has been a great
deal of research done in the area of brain injuries and the mechanisms that cause brain

injuries, these two theories have been studied most often exclusively.



2.4 Methods and Materials Used to Achieve Results
To address these questions, the following goals are established:
e Develop and validate a biomechanical 3-D finite element model of the human
head.
e Subject the validated FE human head model to oblique impacts on the frontal,
lateral, posterior, and superior aspects of the head.
e Identify the peak pressure, the peak shear stress, and the corresponding regions in
the brain with respect to angle of oblique impact.

o Correlate the stress criteria to the type of injury.

2.5 Development of 3D FE model

The development of the 3D FE model of the human head was achieved through the use of
CT image files of the 50" percentile male human from the National Library of Medicine
(NLM) Visible Human Project [3]. The Visible Human Project (VHP) provides complete
anatomically detailed 3-D representation of the male and female human body. CT scans
and image files of the head and neck were used to construct a head surface model. The
CT scans and image files consist of axial scans taken at 1 mm intervals of the head and
neck. With permission from NLM, the CT scans and image files were downloaded from

the VHP web site to generate the transverse surfaces of the geometric model.



The model was developed by taking axial scans of the head and neck and then convert
them to points, lines, and surfaces. The first step in this process was to extract point data
from CT scans and image files. A solid model of the skull was then generated by from
the surface data that was ultimately imported and meshed using HyperMesh, by Altair
Engineering Inc. The skull, dura, brain, and scalp were all generated in HyperMesh [4].
The model consists of 40,018 first order tetrahedral elements and 7,819 first order penta

elements. Figure 2-1 shows the finite element mesh of the skull.

Figure 2-1 Finite Element Mesh of the Skull (isometric view)



2.6 Validation of the 3D FE Model

The 3-D FE model, was then validated using Nahum et al’s [5] frontal head impact
experiments for impact force, intracranial pressures, and linear head acceleration. The
linear frontal head impact experiment # 37 by Nahum et al [5] was chosen to validate the
FE model. Towards this goal, the same general setup, as in the experiment had to be
employed when modeling the 3-D FE model. The impactor in this FE model is a steel,
cylindrical impactor with padding, traveling at an initial constant velocity. Impactor
mass was fixed at 5.6 kg. The impactor travels in an anterior-posterior motion in the
mid-sagittal plane directed at the frontal bone. The head, shown in Figure 2-2 is rotated
such that the transverse plane of the skull is inclined 45° relative to horizontal. The
impact is essentially normal to the surface of the skull and directly in line with the head’s

center of mass.

Padding

Steel Bar

A

Impact Direction

Figure 2-2 Head Impact - Validation Setup



Validation of the model was done by comparing impact force, coup pressure, contrecoup
pressure, left parietal pressure, occipital #1 pressure, and occipital #2 pressure. The
impact force is measured at the site of impact, for the contact pairs: scalp and padding.
Coup pressure is measured below the site of impact, on the surface of the brain.
Contrecoup pressure is measured on the surface of the brain at the posterior fossa.
Parietal pressure is measured on the surface of the brain immediately posterior and
superior to the coronal and squamosal sutures respectively in the parietal bone. Finally,
occipital pressures #1 and #2 are both measured on the surface of the brain inferior to the
lambdoidal suture in the occipital bone; one on the left and one on the right. Although
the finite element model lacks the exact anatomical features of a real human head, a great
deal of effort was spent making sure the locations of measurements closely matched the

anatomical location described by Nahum et al [5].
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Figure 2-3 Impact Force Time History — Validation Model
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The coup pressure time history curve, Figure 2-4, of the validation model also validate
with the coup pressure histories by Nahum’s experiments [5] and 3-D FE models by
Kang [6] and Raun [7]. Coup pressure is measured below the site of impact, on the
surface of the brain. The pressure time histories for six adjacent elements on the surface
of the brain were used to obtain an average pressure for the impact event. The positive
value of pressure indicates compression. Error bars are included to show the pressure
variation for the six elements due to the profile of the brain surface. The pressure results

from the finite element model qualitatively agree with the published results.
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Figure 2-4 Coup Pressure Time History

Contrecoup pressure results shown in Figure 2-5, also validate with the contrecoup
pressure histories by Nahum’s experiments [5] and 3-D FE models by Kang [6] and Raun

[7]. Contrecoup pressures are measured opposite the site of impact.
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Figure 2-5 Contrecoup Time History

The left parietal pressure time history curve, seen in Figure 2-6, of the validation model
also validate with the contrecoup pressure histories by Nahum’s experiments [5] and 3-
D FE models by Kang [6] and Raun [7]. Left parietal pressure is measured on the surface
of the brain immediately posterior and superior to the coronal and squamosal sutures
respectively in the parietal bone. The pressure time histories for five adjacent elements
on the surface of the brain were used to obtain an average pressure for the impact event.
The positive value of pressure indicates compression. Error bars are included to show the
pressure variation for the five elements due to the surface profile of the lateral side of the
brain. The pressure results from the finite element model qualitatively agree with the

published results.
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The linear head acceleration history curve, shown in Figure 2-9 of the validation model
also validate with the linear head acceleration histories by Nahum’s experiments [5] and
3D FE model by Kang [6]. Linear head acceleration is measured on the outer surface of
the skull on the occipital bone. Although the acceleration curve in Figure 2-9 is averaged

and not filtered beyond the sampling frequency, additional filtering would eliminate the

unwanted noise.
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Figure 2-9 Linear Head Acceleration Time History

Final material properties for the FE model was determined from validating the model to
the pressures and accelerations in the reviewed literature. Table 2-1 lists the final

material properties used in the validated FE model.

Table 2-1 Material Propertiecs — FEM Head Model

Bulk Young's Shear
3"} Modulus Modulus Modulus Ratio
(kg/m (GPa) (MPa) (MPa)

Density Poisson's

Skull 2700 3.87E+H03 6.50E+03 2.66E+H03 0.22
Scalp 1412 17 8.05 2.83 042
Dura-matter 1040 2 0.148 0.05 049
Brain tissue 1040 &9 0.533 0.18 0.499
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2.7 Head Impact Simulations

Since it is postulated that some combination of translation and rotational motion of the
head is involved with the majority of head impacts, this objective is to investigate the
effect an oblique impact has on the pressure and shear stress distribution in the human
brain. The 3D FE model developed earlier was used to simulate four different types of
impact: frontal, lateral, posterior, and superior. At each impact location, oblique impacts
are simulated by an increasing angle of impact incidence. Impact angles start at a direct
inline impact of 0° and increase to 15°, 30°, and 45°. The angles simulate the increasing
tangential component of an oblique impact relative to the impact site. These impact
simulations are used as a tool in determining the critical impact angle at which the shear
stress in the brain becomes more critical than pressure. For frontal, lateral, and posterior
impact locations the angles are increased relative to the transverse plane. The superior
impacts, on the other hand, are increased in the coronal plane. Figure 2-10 is an
illustration of the impact locations and angles. The output results of the finite element
analysis are impact force, pressure stress (or octahedral normal stress), and shear stress
(or von-Mises stress). Impact pressure and shear stress distributions are displayed in

different shades in the color distribution plots.
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2.7.1 Injury Severity Scale
The individual results of FE simulations were coded using an injury severity scale for
pressure and shear stress. The injury severity scale code relative to intracranial pressure
results (absolute pressure, or [pressure|), are described as follows:
0 — No injury, or no hemorrhage (pressure less than 0.18 MPa)
1 — Minor injury, or petechial hemorrhaging in high-pressure regions
(pressure range 0.08 MPa to 0.24 MPa)
2 — Moderate injury, or possible contusion or subdural hemorrhage in high-
pressure regions (pressure range 0.18 MPa to 0.32 MPa)
3 — Severe or fatal injury, or contusion in high-pressure regions
(pressure greater than 0.24 MPa)

Note: The pressure range described above is used according to Ward et al [8].

For shear stress, a risk factor is used to describe the potential of injuries related to shear
stress. The ratio is calculated using Kang et al’s [6] finding for an upper tolerance of the
human brain in shear of 16.5 kPa, causing a contusion or subdural hematoma. The ratio
is defined in the present equation:

Shear Stress from FE Simulation
16.5 kPa

Shear Stress Risk Factor =

2.1)

Risk Factor <1 — injury related to shear stress is not likely to occur.

Risk Factor > 1 — injury related to shear stress is likely to occur.
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2.8 Interpretation of Results from Head Impact Simulations

The FE results of the head impact simulations were used to relate a specific brain injury
to the brain’s pressure and shear stress response when the head is subjected to a defined
impact. By identifying the areas of the brain that have a greater pressure severity index
and a shear stress risk factor, it is possible to indicate areas of the brain that are
particularly at risk to injury. The key factor in assigning a specific brain injury is being
able to identify the angle of impact at which pressure and shear stress are or are not

critical.

2.9 Frontal Impact

From the FE results of a 0° frontal impact, it is shown that the severity index for pressure
is severe at the site of impact (severity index of 3) and moderate on the opposite site of
impact (severity index of 2). Another inherent feature is the shear stress risk factor
around the cerebral hemispheres is < 1, indicating no injury from shear, but is > 1 in the
brain stem region indicating an injury from shear. Since the head mainly experiences
linear acceleration, there is no surprise with these initial results. As the impact takes
place, the cerebral hemispheres deform little from compression, while the brain stem has
the tendency to be pulled into the cranial cavity. In other words, linear acceleration does

not cause distortion of the brain.
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Figure 2-12 Frontal Impact 0° - Pressure Distribution

For all of the pressure distribution images, peak positive pressure, or compression, is

indicated in (red). Negative pressure, or tension, is indicated in (blue).
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Figure 2-13 Frontal Impact 0° - von Mises Stress Distribution

As the impact angle increases to 15°, the severity index for coup and contrecoup pressure
remains unchanged at 3 and 2 respectively. Also unchanged from the 0° impact, the shear

stress risk factors. In the cerebral hemispheres the shear stress risk factor is <1,
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indicating no injury from shear, and is > 1 in the brain stem region indicating an injury

caused by shear. See Figure 2-14 and Figure 2-15.
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Figure 2-14 Frontal Impact 15° - Pressure Distribution

Therefore, for an impact angle of 0° and 15°, an injury to the frontal lobe, in the form of a
contusion, is most likely to occur due to the severity of pressure in the frontal lobe and a
subdural injury in the brain stem due to the high shear stress. The contusion in the frontal
lobe would more than likely be fatal. The subdural injury to the brain stem, if not fatal,

could cause problems with heart rate, blood pressure, breathing, reflexes to hearing, and

vision just to name a few.
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Figure 2-16 Frontal Impact 30° - Pressure Distribution
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Figure 2-17 Frontal Impact 30° - von Mises Stress Distribution

At a 30° impact angle, the severity index for pressure remains at 3 on the coup side and 2
on the contrecoup side. The severity index almost reduces one level for coup and
contrecoup pressure, however, the pressures do not change significantly enough to rate
them as lower indices. The shear stress risk factor for 30°, is still > 1 in the brain stem

region and now at 1.4 in the posterior temporal lobe indicating a temporal lobe injury due

to shear. See Figure 2-16 and Figure 2-17.

Once the impact angle reaches 45°, the pressure severity index on the coup side reduces
to a moderate injury index of 2, and a minor injury index of 1 on the contrecoup side.
See Figure 2-18. Although pressure is no longer severe at 45°, the shear stress continues
to increase around the entire surface of the brain, as seen in Figure 2-19. Along the

posterior border of the right temporal lobe, the shear stress risk factor increases to 1.65.

23



Viewport: 1 ODB: fcaliresearchvvision/Da...odelFrontalfront_45.odb Viewport: 1 ODB: flocaliresearchivislon/Da...odelF rontalifront_45.0db

{ave. Crit.: 100%) {ave, Crit.s 100%) #}"‘rg
L] -
+3.500=-01 +3.500=-01 ) el P YA e SN T,
R B Vi e S SN SR
ol by R by A ANV AN ENATAN SN
Rt R AN AN A AVAYANAVAVAVAN N .

2 2 Wit 22 VAV Sy
R = Tehiee ol L VAVAVAVAAVATAVAVAS SN N
T e : il B A S ruVAAVAVAVA A
Tilaiie-or £ S eon II317e-01 ¥
el Vi == oo \ ey : %%

AR KT SEOREY S A
s in LTSS, AR
e U A STANIVEACK 55 R ]
RO O T R IS SR TSl v
RS A S SRR
REOARNRIL o A A AT A R
R O L A AR R ravava
R RGO AT v N
O 0y IVAVAVANRNAVATA et R
R PR A A A P DA SRR SR
S Y AT s ke 7
e = e
N AN, S P e g == ‘\\% VLl
& e i
) =iy
G08: fromeoas edh | RERQUS/Explicit 6.2-1  Thu Oct 03 08:16:24 EDT 2002 2 Oh8: frome a5-edh | CREAQUS/Explicit 6.2-1  Thu Oct 03 09116124 EDT 2002
,
Té STt 4sy step Time = 4.50008-0% '> Stem Bl 4a: Step Time = 4.50005-03
VBTN T uion fesle fastert 20000000 s BT T ) TR e Seale Facters +L.000e00

Figure 2-18 Frontal Impact 45° - Pressure Distribution
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Figure 2-19 Frontal Impact 45° - von Mises Stress Distribution

What is very interesting about this area of peak shear is it is located approximately
opposite the site of impact. Since brain movement with respect to the skull has been
postulated as an injury mechanism for surface contusions in the frontal and temporal
lobes [45], this may be the development of a contrecoup injury. In other words, the peak

pressure at the site of impact being responsible for causing a cerebral contusion and the
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shearing action in the posterior location of the temporal lobe causing a surface contusion
or subdural hematoma. Figure 2-20 is a cross-sectional slice through the peak area of
shear stress for a frontal impact at 45° to give an indication of the depth of high risk
factor shear stress. A contusion in the frontal lobe is likely to affect memory, emotions
(irritability), and expressive language (word association). A surface contusion or

subdural injury in the temporal lobe, given the high risk factor, could be fatal.

As seen in Figure 2-20, there is very little shear stress in the central portion of the brain,
with the increased shear stress on the outer surface of the brain. This also indicates that

the injury location would be near the surface of the brain or in the subdural space.
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Figure 2-20 Frontal Impact 45°, Cross-Section View
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2.10 Lateral Impact

From the lateral impact FE results, as similarly seen with frontal, posterior, and superior
impacts, a 0° impact in Figure 2-21 produces peak positive pressure at the site of impact
with a reduced pressure distribution to the area opposite the site of impact. The pressure
distribution is not as uniform as with frontal impacts, but a severity index of 3 on the
coup side and of 2 on the contrecoup side coincide with frontal, posterior, and superior
impact locations. Once the impact angle reaches 45°, the coup pressure on the right
lateral side changes to a moderate severity index of 2 and a minor severity index of 1 on

the contrecoup, or left lateral, side.

How lateral impacts differ from frontal, posterior, and superior impacts is the high shear
stress risk factor at an impact angle of 0°. See Figure 2-22. At 0°, the shear stress risk
factor throughout the temporal lobe, occipital lobe, and the inferior side of the parietal
lobe is already at a risk factor of 1.05, which predicts an injury related to shear. When
the angle of impact increases to 45°, the risk factor increases in the frontal lobe and
posterior fossa to 1.65, which was previously < 1, and peaks in localized areas on the

coup and contrecoup locations to > 2.
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Figure 2-21 Lateral Impact 0° - Pressure Distribution
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Figure 2-22 Lateral Impact 0° - von Mises Stress Distribution

The severe shear stress risk factor in localized areas on the coup and contrecoup sides can
be attributed to the direction of impact relative to the head’s center of mass. A unique
phenomenon with this type of impact is that at 0°, the impact force vector is eccentric
with respect to the center of mass of the head. With 0° frontal, posterior, and superior

impact arrangements, the force vector passes closely to the head’s center of mass. The
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impact becomes oblique when the angle of impact increases. Regardless of the impact

angle simulated in this study, the force vector for lateral impact is always eccentric to the

head’s center of mass. Therefore, even a 0° impact on the lateral side of the head has the

capability of producing high shear stress throughout the surface of the brain.
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Figure 2-25 Lateral Impact 30° - Pressure Distribution
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Figure 2-26 Lateral Impact 30° - von Mises Stress Distribution

29



Viewport: 1 ODB: Aocaliresearchivislon/Da. .eVLateralfateral_d5.odb Viewport: 1 ODB: Aocaliresearchivislon/Da. .eVLateralfateral_d5.odb

{ave, Crit.s 100%) {ave, Crit.s 100%)
e S e EnEaEEE =N
e , = . e P
st AVAVAVAVAVAVAN AN Ny A st S N
+2400e-01 /ﬂmﬂVAAVAVAVAVQAE\NA}Q 12 li00e-a1 'ﬂf‘"{“uﬂﬂ!ﬁ \\\.\
G s A Emr SIS R S s 2 AT
16.0002r00 \PAVAY PAY SRR 16.0002r00 .
s S AN SIS SO SN s immuﬁlg‘%'%"
Eieht G o AATATAYYATA

{VAYA EATAT
wﬂ%gg% iy

1 :
2l AR i
il ST, S, | CERREDoPURS
IO ONMRAARKRET ROTASSS vy i SED 1
mmw"""u"""v"‘u"ﬂﬂVAV‘VAVA"‘-“"";';" bR 1z"¢y)ﬁﬂﬁﬂhv"""‘ Eekliom
TTAPAYA VAAVAVAVAVAVAVAVAVAVAY)V =< baVi Vi, ey VA VATA R SR
D= viviaravavavav ) A R e SO
= VAN pavasss AR N WAVAVAYAVE Ly VAT o2
m'ﬁmm&mmmmm&éﬁy" - S PATAYIEE i
AR R
- S
WEEH

LATERAL HEAD IMPACT SIMULATION

LATERAL HEAD IMPACT SIMULATION

OOB: lateral f5.odb  ABAQUS/Explicit 6.2-1  Mon Oct 14 13:43:36 EDT 2002 OOB: lateral f5.odb  ABAQUS/Explicit 6.2-1  Mon Oct 14 13:43:36 EDT 2002
2 2
1 Step: Step-1 1 Step: Step-1

Increment  5545: Step Time =  4.5000E-03 Increment  5545: Step Time =  4.5000E-03

Erimary Var: s, Fressurs Erimary Var: s, Fressurs

Deformad Var: 0 Dafarmation Scals Factor: +1.0002+00 d Deformad Var: 0 Dafarmation Scals Factor: +1.0002+00

Figure 2-27 Lateral Impact 45° - Pressure Distribution
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Figure 2-28 Lateral Impact 45° - von Mises Stress Distribution

Given the significantly high shear stress risk factor (i.e. > 2) for 30° and 45° lateral
impacts, a diffuse axonal injury appears to be the most probable form of injury. See
Figure 2-23 through Figure 2-28. While a contusion or subdural hematoma may be
caused by pressure at the site of impact for 0° or 15°, this does not appear to be an injury

mechanism for 30° or 45°. At 30° and 45°, there is far more rotation of the brain relative
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to the skull as compared with frontal, posterior, and superior impacts at the same angles.
Given the overall magnitude of shear stress around the brain, a global injury to the brain
appears to be the only basis for injury. Therefore, the diffuse axonal injury appears to be
the most realistic type of injury for all of the lateral impacts. A diffuse axonal injury, in
the form of a severe concussion, for 0° and 15° impacts would probably cause immediate
loss of consciousness. A diffuse axonal injury, in the form of severe global bleeding, for
30° and 45° impacts could cause immediate loss of consciousness, rapid neurological
dysfunction, and death. Figure 2-29 is a cross-sectional view of the shear stress
distribution that indicates how a lateral impact at 45° produces a great deal of
displacement of the brain relative to the skull. Also, with the exception of a small area in
the center of the brain, the majority of the cerebral hemispheres are at a shear stress risk

factor > 1.
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Figure 2-29 Lateral Impact 45°, Cross-Section View
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2.11 Posterior Impact

From the posterior impact FE results, there is also no surprise for intracranial pressure
results at an angle of 0°. Raun et al [7] also modeled a posterior impact in the anterior-
posterior direction, and show similar pressure distributions [7]. The pressure distribution
for a 0° impact is similar in nature to frontal and superior impacts in that the pressure is
uniformly distributed. The pressure severity index of 3 on the coup side and 2 on the
contrecoup side coincides with 0° frontal, lateral, and superior impacts. Since the shear
stress risk factor is < 1 for 0° and 15° impacts, this indicates that these impacts produce
mostly translation acceleration and very little angular acceleration. At 30°, the shear
stress risk factor for the left posterior border of the frontal lobe and superior border of the
temporal lobe is 1.23, indicating a shear related injury. Once the impact angle reaches
45°, the pressure severity index for the occipital lobe reduces from 3 to 2 and in the
frontal lobe from 2 to 1. Shear stress at 45° continues to rise globally with the highest
risk factor around the left posterior border of the frontal lobe and superior border of the

temporal lobe at 1.65.
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Figure 2-31 Posterior Impact 0° - von Mises Stress Distribution

An interesting point to note is the location of the maximum shear stress. For the posterior
impacts, the head is traveling in the posterior direction from left to right. Therefore, the
impact force vector on the head is directed in the posterior to anterior direction from right
to left. The peak positive pressure indicates the impact site, but the peak shear stress is

located approximately opposite the site of impact. As previously seen with frontal
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impacts, peak pressure is located on the coup side and maximum shear around the
contrecoup side. Therefore, from the results in Figure 2-34 and Figure 2-35, it appears an
oblique posterior impact of 30° has the potential of producing coup injury in the occipital
lobe in the form of a contusion and a contrecoup injury in the frontal lobe in the form of a
surface contusion or subdural hematoma. A contusion at 0°, and a surface contusion or
subdural hematoma at 30° would probably be fatal given the high severity index and
shear stress risk factor respectively. Figure 2-38 is a cross-sectional view through the
high shear stress risk factor area of the left posterior border of the frontal lobe showing
the shear stress distribution through the depth of the brain. Note the high risk factor shear

stress is along the outer surface of the brain near the subdural space.
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Figure 2-32 Posterior Impact 15° - Pressure Distribution

34



Viewport: 1 ODB: flocaliresearchivislon/Da...osterlo tposterior_i5.0db Viewport: 1 ODB: flocalfresearchivislon/Da...osterdorpasterlor_15.0db

5 wices
tave. Crit.: 100%)
i .000e
R e
e R Fonu ]
e NS
S
+2.355a-02
+2.027e-02
+1.698=-492
+1.369=-402
+1.040=-92
R ]
e et ol
""‘“ vs» r\‘
‘Nl}%“‘vu ‘-3
i
M""‘ i
e
FOSTERTOR HEAD TWPACT STMDLATION FOSTERTOR HEAD TMPACT STMULATION
O0B: posterior 15.cdh | ABAGDS/Explicit 6.2-1  Fri oot 13 15:50:15 EOT 2002 O05: posterior 15.odb | ABAQDS/Explicit 6.2-1  Fri oot 18 15:50:15 EDT 2002
2 1
Step: Step-l Steps Step-1l
Incranmt 47603 StEp Time = 4.0000E-03 Incxanmt 476403 Step Time = 4.0000E-03
Trimary var: 5. Wi Erimazy var: 5. mi
) Defommed var: D beformation Scale Factor: +1.000er00 ! Defommed war: D beformation Scale Factor: +L.000er00

Figure 2-33 Posterior Impact 15° - von Mises Stress Distribution
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Figure 2-35 Posterior Impact 30° - von Mises Stress Distribution
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Figure 2-36 Posterior Impact 45° - Pressure Distribution

36



Viewport: 1 ODB: flocaliresearchivislon/Da...osterlo tposterior_d5.0db Viewport: 1 ODB: flocalfresearchivislon/Da...osterdorpasterlor_a5.0db

i)

7o
It
ol

RO,
) AT

FOSTERIOR HEAD TMEACT SIMULATION FOSTERIOR HEAD IMPACT SIMILATION
ODB: posterior_45.odb  ABAQUS/Explicit 6.2-1  Sat Oct 18 15:47:26 EDT 2002 ODB: posterior_15.odb  ABAQUS/Explicit 6.2-1  Sat oot 18 15:47:26 EDT 2002
2 1
Step: Ftep-1 Steps Step-1
Increment  5344: Step Time =  4.5000E-03 Increment  5344: Step Time =  4.50008-03
Primary Var: 5, mizes Frimary var: 5, Mizes
i Deformed Var: U Deformation Scals Factor: +1.000er00 I Deformed Var: U Deformation Scals Facter: +1.000e+00

Figure 2-37 Posterior Impact 45° - von Mises Stress Distribution
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Figure 2-38 Posterior Impact 45°, Cross-Section View
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2.12 Superior Impact

From the FE results of a 0° superior impact, intracranial pressures coincide with frontal,
lateral, and posterior impacts for a severity index of 3 for coup pressure and 2 for
contrecoup pressure. The pressure distribution is also uniformly distributed as seen in
Figure 2-39 with frontal and posterior 0° impacts. Since the pressure severity index does
not change for impacts of 0° and 15°, this indicates these impacts produce mostly
translation acceleration and very little angular acceleration, as seen with frontal and
posterior of 0° and 15°. As the angle of impact increases, in the sagittal plane, the
pressure decreases and moves towards the frontal lobe. This is due to the impact force
spinning the head in a backwards direction. At an impact angle of 45°, the severity index

for coup pressure is rated at 2, or a moderate injury, and is no longer severe.
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Figure 2-39 Superior Impact 0° - Pressure Distribution
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Figure 2-40 Superior Impact 0° - von Mises Stress Distribution

Shear stress in Figure 2-40, on the other hand, is quite different from frontal and posterior
impact simulations. The shear stress risk factor in the brain stem region is > 2, and
remains at this level for all superior impact angles. High shear stress in the brain stem is
caused by the spinal cord being pulled through the foramen magnum of the skull into the
cranial vault. For 0° and 15° impacts, the shear stress risk factor is < 1 in the frontal,
temporal, parietal, and occipital lobes. At 30°, the shear stress risk factor in the superior
parietal lobe is 1.03, which is just at the injury tolerance and predicts an injury due to
shear. Once the angle of impact reaches 45°, the shear stress risk factor in the superior

parietal lobe is 1.23, while the frontal, temporal and occipital lobes are < 1.
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From the FE results, it can be concluded that all the superior impacts simulated could

produce an injury to the brain stem due to a risk factor > 2. A brain stem injury with this

high of a risk factor, if not fatal, would definitely cause problems with heart rate, blood

pressure, breathing, vision, and reflexes to hearing just to name a few. In the frontal,

temporal, and occipital lobes, however, no injury relative to shear would be predicted for
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all the impact angles simulated. At 30° and 45° impact angles, the shear stress risk factors

in the superior parietal lobe are slightly > 1, indicating a possible injury related to shear,

most likely in the form of a subdural hematoma. See Figure 2-44 and Figure 2-46. The

subdural hematoma, given the location in the parietal lobe, could cause problems with

visual attention, touch perception, or manipulation of objects to name a few. Contusions

on the coup side, or superior frontal lobe, would be possible with impact angles of 0° and

15° and have the potential of being fatal.
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2.13 Conclusion For Head Impacts
For the first question listed at the beginning of this chapter, the following responses are
discussed:

e Is there a critical angle of oblique impact at the given site on the head which will

cause the shear stress in the brain to reach a concussion tolerance?

2.13.1 Frontal Impact — Shear Stress Risk Factor

For frontal impacts, the shear stress risk factor doesn’t reach a concussion tolerance level
greater than 1 until 30°, in the right temporal lobe at a value of 1.4 Once the angle is
increased to 45°, globally the shear stress risk factor is 1.26 and locally at 1.65 in right

temporal lobe.

2.13.2 Side Impact — Shear Stress Risk Factor
For side impacts the shear stress risk factor reaches a concussion tolerance level at 0°. At

0°, the shear stress risk factor is 1.05 in temporal lobe, occipital lobe, and parietal lobe.
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At a 15° impact angle, the shear stress risk factor increases to 1.65. At 30°, shear stress
risk factor is 1.84. Once the angle of impact increases to 45°, the shear stress risk factor
increases to a level greater than 2. From the results, the side impact is clearly produces

the highest stress levels around the brain.

2.13.3 Posterior Impact — Shear Stress Risk Factor
For posterior impacts the shear stress risk factor doesn’t reach a concussion tolerance
level that is greater than 1 until 30° in the left temporal lobe at a value of 1.05. For an

impact of 45° the shear stress risk factor in the left temporal lobe increases to a value of

1.23.

2.13.4 Superior Impact — Shear Stress Risk Factor
For superior impacts, the shear stress risk factor in the brain stem, for all impacts 0° to
45°, 1s greater than 2.0. Globally, specifically in the parietal lobe of the brain, the shear

stress risk factor reaches a value of 1.23 once the angle of impact increases to 45°..

For the second question listed at the beginning of this chapter, the following responses
are discussed:
e Is there any relationship between the peak pressure and peak shear stress
distribution at each site of oblique impact on the head to identify a critical angle

for a given site?
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2.13.5 Frontal Impacts — Peak Pressure and Peak Shear Stress

For all frontal impacts, the peak positive pressure, or compression, is located at the site of
impact and peak negative pressure, or tension, is located opposite the site of impact. This
is true for all angles of impact. For the location where the shear stress risk factors
increase greater than 1, however, they are located on the temporal lobe, or the lateral side

of the head.

2.13.6 Side Impacts — Peak Pressure and Peak Shear Stress

For all side impacts, the peak positive pressure, or compression, is located at the site of
impact and peak negative pressure, or tension, is located opposite the site of impact. This
is true for all angles of impact. Although the pressure distributions are not as well
defined for the side impacts as they are for the frontal, posterior, and superior impacts.
For the location where the shear stress risk factors increase greater than 1, however, they

are located around the entire perimeter of the brain, regardless of the angle of impact.

2.13.7 Posterior Impacts — Peak Pressure and Peak Shear Stress

Posterior impacts follow the same trend as frontal impacts where, the peak positive
pressure, or compression, is located at the site of impact and peak negative pressure, or
tension, is located opposite the site of impact. For the location where the shear stress risk
factors increase greater than 1, however, they are located on the temporal lobe, or the

lateral side of the head.
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2.13.8 Superior Impacts — Peak Pressure and Peak Shear Stress

Superior impacts follow the same trend as frontal and posterior impacts where, the peak
positive pressure, or compression, is located at the site of impact and peak negative
pressure, or tension, is located opposite the site of impact. A unique result with superior
impacts shear stress risk factors locations is that the risk factor is always greater than 2 in
the brain stem region. The parietal lobe sees a shear stress risk factor, near the site of

impact, at 1.23 only until the angle of impact is increased 45°.
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3 TBI Dynamics due to Head Impacts on the Football Field

3.1 Objective

The main objective of this study is to contribute to the field of youth TBIs. Specifically,
this study will address the following questions:
e Do angular accelerations of the head play a prominent role in causing TBI along
with linear accelerations of the head?
e Can a TBI criterion be derived through their relation?
e Do TBIs causing high stress concentrations also cause detectable structural
damage (i.e.: coup, countercoup, diffuse axonal injuries) in the brain tissue?

e Do impact tolerances change with respect to impact regions of the human head?

3.2 Relevance of Research

Earlier studies of head impacts have related head kinematics (linear and angular
accelerations) to TBIs, however, fewer studies have dealt with brain kinetics (impact
pressures and shear stresses) occurring during head impacts. In order to study the effect

of angular acceleration on the brain a series of experimental tests were performed [11].
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The National Operating Committee on Standards for Athletic Equipment (NOCSAE)
drop tests [9] were conducted for linear head accelerations and the Head Impact Contact

Pressures (HICP) calculated from them are applied to a validated FE head model.

3.3 Methods and Materials Used to Achieve Results

To address these questions, following milestones were established:

e Propose to conduct NOCSAE drop tests to acquire linear accelerations of the
head and head contact impact pressures.

e (arry out analytical procedures to determine impact contact pressures and
angular accelerations of the head from available linear accelerations and
headform dimensions.

e For various impact regions, determine the relationship between linear and angular

accelerations (at specific drop heights) of the head.

3.4 NOCSAE Drop Tests

The experimental method used to acquire linear accelerations of the head and head
contact impact pressures was to use the NOCSAE drop tester at MTU. The NOCSAE
drop tester is equipped with a tri-axial accelerometer to measure the impact event. The
standard NOCSAE drop tester comes with a Severity Index Computer to report the peak

acceleration and calculate the corresponding severity index from the impact event [9]. A
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Siglab data acquisition system was used to record the impact time history event, that
could be used for input for the FE head model. Impact locations for the frontal, lateral,

posterior, and front boss (or 45° to the frontal region) were measured.

Figure 3-1 NOCSAE Standard Drop Tester at MTU based upon NOCSAE Standard Drop Test

Equipment [9]
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In addition to the measured accelerometer impact time histories, impact pressure
measurements were also recorded through the use of Fuji Prescale pressure film
(provided by Sensor Products, Inc.) [10]. The pressure film is a Mylar based film that
contains a layer of microcapsules that rupture upon contact. See Figure 3-2. The
resulting outcome is a pressure image across the contact area where the color contrast
directly correlates to the pressure gradient. The color contrast can be determined by
scanning the exposed film in a Topaq analyzer scanner to determine the resulting

pressure gradient.

Fuji Film Prescale® Film

<— Substrate Layer
(polyesterbase) 4 mils thickness

O0000000 00000000 «—— Microcapsule Layer

4

Developer Sheet

Transfer Sheet

<—— Color Developing Layer

<—— Substrate Layer
(polyester base) 4 mils thickness

Figure 3-2 Representation of Fujifilm Prescale that is available from Sensor Products Inc. [10]
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Figure 3-3 Exposed Fujifilm from 2 Foot Drop - Experimental Results [11]

Figure 3-4 Digitized Pressure Results of Exposed Fujifilm [11]

Although this method has some validity for obtaining maximum impact pressure, the

pressure contour was not well enough defined to obtain an average value for use as an
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input for the FE head model. In addition, another issue with using the pressure film was
the film is only good for a single impact. With the drop tester there are additional
rebound impacts that occur after the initial impact that potentially introduce additional
reading errors. The impact pressure images were, however, useful in determining impact

areas and served useful in correlating the analytical method.

3.5 Analytical Procedures to Determine Impact Pressure

An alternative approach to obtain the average pressure input for the FE head model was
employed by using the experimental results of the drop test where the impact area and
acceleration time history were used to calculate an average pressure measurement [11].
This average pressure measurement was used for the input for the FE model. Using the
equation:

p = Mheadform 'Tidroptest
A

3.1)

Where:
P = Head Impact Contact Pressure (HICP)

Mpeadform = mass of the head form
Aaroptest = linear acceleration time history from drop test experiment.

A = area of impact measured from the pressure film.
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Figure 3-5 Impact Pressure Areas on the Frontal (A), Front Boss (B), Lateral (C), and Posterior

(D) Regions of the FE Model [11]

The impact regions that were obtained from the NOCSAE drop test experiments were
then applied to the validated FE model of the 50" percentile human male. The areas

shown in Figure 3-5 were manually applied to the FE head model. [11]
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Figure 3-6 Spring Element Added to Base of Skull [11]

To simulate the connection of the neck, a spring element was added to the base of the
skull around the brain stem as seen in Figure 3-6. The addition of this spring element not
only adds a boundary condition to the model, but helps to simulate the stiffness offered
by the presence of the neck. Chandrika Abhang also added a remote measurement point
to the base of the skull, at the brain stem opening seen in Figure 3-7. The remote point

was used to obtain acceleration measurements of the FE head model. [11]
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Figure 3-7 Remote Measurement Point Relative to the Base of the Skull [11]

3.6 Simplified Analytical Procedure to Determine Rotational Acceleration
Because the NOCSAE drop tester measures linear acceleration, a method for obtaining

the calculated rotational acceleration is determined by using the following equation [11]:

= -
F= Mhpeadform * Adroptest (3.2)

-

Where: F = Impact force
Mhpeadform = Mass of headform

Agroptest = measured linear acceleration of drop test
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(3.3)

~
Il
—~
Qu

Where: T= torque or moment

I = mass moment of inertia

. .
a = angular acceleration

The torque or moment is also expressed as the cross product of the position and force

vector, by the equation [11]:

(3.4)

~|
Il
=
T

Where: 7 = position vector from the axis of rotation to the point of impact

F= impact force

By substituting the values of rx, 1y, and r; and values of Fx, Fy, and F. the torque values

Tx, Ty, and T, can be calculated.

By substituting the calculated values of torque into equation (3.3) the resulting angular

acceleration can be calculated by the equation [11]:

(3.5)

A
Il
~ 1=
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Which results in the angular acceleration about the X, Y, and Z axis by:

T.
Ay = I—" (3.6)
XX
Ty
Ayy = = (3.7)
yy Lyy
5 T,
Ayy = I—Z (3.8)
zZZ
Where: Oxx, 0y, and a:: are the angular accelerations components with

respect to the X, Y, and Z axes.

The resulting angular acceleration, agr, is calculated by the following equation [11]:

ag =+/a%, + aly, + aZ, (3.9)

3.7 Relationship between Linear and Rotational Acceleration

Figure 3-8 through Figure 3-11 show the experimental and analytical results taken by
Chandrika Abhang [11]. Plotted in these figures are the linear acceleration results
calculated from the pressure area measurements, linear acceleration experimental results
from the NOCSAE drop tester and Siglab data acquisition system, and the calculated

angular acceleration results.
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Figure 3-8 Frontal Impact Acceleration Results [11]

The linear acceleration calculated from the pressure measurements underestimates the
linear acceleration of the linear acceleration from the experimental tests. This is due to

the discrepancy between the calculated area of impact for pressure measurement.
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Figure 3-9 Front Boss (45° to frontal) Impact Acceleration Results [11]

With the front boss acceleration results seen in Figure 3-9, the calculated linear

acceleration closely agrees with the drop test linear acceleration.

In Figure 3-10 and Figure 3-11, the calculated linear acceleration over estimates the
linear acceleration obtained from the drop test linear acceleration. The discrepancy
between calculated linear acceleration and experimental linear acceleration is due to the

measurement error in pressure calculation in both cases.
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Figure 3-10 Lateral Impact Acceleration Results [11]
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Figure 3-11 Posterior Impact Acceleration Results [11]
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It is proposed in this work to define a new concussion criteria which combines the effects

of linear and angular acceleration. Concussion criteria is defined as:

“regional  Zregional < then no TBI (3.10)

ATBI (max) ATBI(max)

Where: aregional = 11near impact acceleration for a specific impact region
and drop height.
arsimax) = TBI tolerant linear impact acceleration (318 G’s) [12]
oTBImax) = angular impact acceleration for a specific impact region
and drop height.
arsimax) = TBI tolerant angular impact acceleration (23 krad/s?)

[12]

In order to use the equation above to determine the tolerance level for TBI likelihood, the
results from the linear acceleration and angular acceleration are used. Since impacts on
the head are a combination of linear and angular acceleration, the equation above is used
to determine what contribution is due to each. The reported TBI tolerance level due to
linear acceleration has been proposed by [12] at 318 G’s and angular acceleration TBI
tolerance level due to angular acceleration at 23 krad/s? [12]. By using the equation
above, along with the analytical results of the FE model, a determination can be drawn

from the impact results.
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Table 3-1 TBI Tolerance Results [11]

Frontal Impact
D Linear - arTRI | neuar TBI TBI Tol
rop Acceleration inear Acceleration ngular olerance
Height (ft) , Tolerance 2 Tolerance Level
(G's) (rad/s”)
2 235 0.74 29273 1.27 2.01
3 309 0.97 36129 1.57 2.54
4 370 1.16 43319 1.88 3.05
5 430 1.35 47785 2.08 3.43
Lateral Impact
Linear . Angular
Drop . Linear TBI . Angular TBI TBI Tolerance
Acceleration Acceleration
Height (ft) , Tolerance 2 Tolerance Level
(G's) (rad/s”)
2 261 0.82 8066 0.35 1.17
3 345 1.08 9331 0.41 1.49
4 399 1.25 10254 0.45 1.70
5 463 1.46 10410 0.45 1.91
Front Boss (45° to frontal)
D Linear o oar TBI | "8 ular TBI TBI Tol
rop Acceleration Lin€ar Acceleration Angular olerance
Height (ft) , Tolerance 2 Tolerance Level
(G's) (rad/s”)
2 206 0.65 20888 0.91 1.56
3 255 0.80 25118 1.09 1.89
4 308 0.97 29575 1.29 2.25
5 349 1.10 33220 1.44 2.54
Posterior Impact
Linear . Angular
Drop . Linear TBI . Angular TBI TBI Tolerance
Acceleration Acceleration
Height (ft) , Tolerance 2 Tolerance Level
(G's) (rad/s”)
2 254 0.80 18875 0.82 1.62
3 331 1.04 23401 1.02 2.06
4 400 1.26 29268 1.27 2.53
5 460 1.45 31407 1.37 2.81

Shown in Table 3-1 are the resulting TBI tolerance levels for the analytical results. The
results show the lateral region of the head as the most vulnerable region to damage from

any from height or impact distance followed by the posterior region. What is interesting
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in all the measured results is that all of the resulting impacts have a total TBI tolerance
value that is greater than 1, indicating the possibility of a TBI. If the measured values are
measured separately, a false conclusion can be drawn showing a TBI tolerance less than
1, as in the case for all of the drop heights. This information is extremely important when
evaluating the possibility of TBI and also in designing a football helmet that can

minimize both linear and angular acceleration of the head.
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4 EBM Helmet Impact Energy Attenuator

The principal function of the EBM helmet is to minimize the risk of concussion injury to
football players by absorbing head impact energy and reducing head translational and
rotational accelerations. The Impact Energy attenuating (IEA) System of the EBM
helmet is modelled to help protect the brain against impacts to the head. The IEA system
of the EBM helmet, consists of four layers of four materials bonded together to diffuse,
distribute, dissipate, and absorb impact force and shock energy. This effort is based on a
finite element (FE) study of the impact response of FE model IEA systems of the EBM

helmet and the currently available commercial helmet due to direct impacts.

4.1 Objective
e The development of a head Impact Energy Attenuator (IEA) for the EBM helmet.
e The head impact energy attenuating system of the EBM helmet is modelled to
help protect the brain against impacts to the head.
e The IEA system of the EBM helmet, consists of four layers of four materials
bonded together to diffuse, distribute, dissipate, and absorb impact force and

shock energy.
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4.2 Relevance of Research

The current football helmet design involves a stiff plastic outer shell to distribute impact
forces combined with an elastic foam inner shell to absorb the impact shock and to
reduce the impact forces in order to minimize the risk of skull fractures. The National
Operating Committee on Standards for Athletic Equipment (NOCSAE) provides a set of
voluntary standards based on the Wayne State Tolerance Curve (WSTC) to assess a
helmet’s ability to prevent skull fracture. NOCSAE standards have helped to
successfully eliminate skull fractures due to impacts in football games while wearing
helmets designed with an impact distributor in the form of a stiff plastic outer shell and

an impact attenuator in the form of an elastic foam inner shell [9].

Impacts on a helmet cause linear and angular accelerations of the head which bring forth
pressure and shearing interactions between the skull and the brain resulting in
concussion. The purpose of the EBM helmet is not only to minimize linear acceleration
of the head to prevent catastrophic brain injury like hemorrhages, but also to minimize
angular accelerations of the head to prevent concussion. Current helmet technology does
provide adequate design provisions to attenuate normal impact forces, but it lacks design

provisions to attenuate tangential impact forces.
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4.3 Methods and Material Used to Achieve Results

* Create a [EA finite element model of the commercial IEA system to determine the
impact characteristics.

* Create a [EA finite element model of the proposed EBM IEA system to determine
the impact characteristics.

*  Compare the two IEA systems.

Rigid Sphere Rigid Sphere
Mass = Skg Mass = 5kg
Velocity =7 m/s Velocity =7 m/s

Polycarbonate

Polycarbonate Shear Layer

<—— Inner Shell

Foam <—— Foam

Figure 4-1 Impact Models — Commercial Helmet IEA Model (left) and EBM Helmet [EA Model

(right)

The two finite element models are used to evaluate the IEA systems are shown in Figure
4-1. The first [IEA model, is a model simulating the makeup of a commercially available
football helmet. The second IEA model, represents the makeup of the EBM helmet.
Both IEA models are setup using linear elastic material properties. The mass of the rigid
sphere was set to 5 kg with an initial velocity of 7 m/s. The commercial helmet IEA

model uses a layer of polycarbonate for the outer surface and an inner layer of foam
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padding. The total thickness of the cross-section is 35mm, which represents a cross-
section of a typical helmet. Table 4-1 lists the materials used for each layer and their

corresponding material properties and thicknesses.

The EBM IEA model uses four layers: a layer of polycarbonate for the outer surface, a
shear layer, an inner shell layer, and an inner layer of foam padding. The outer
polycarbonate layer replicates the same shape and thickness as the commercially
available polycarbonate shell. The shear layer, below the polycarbonate layer, provides a
compliant shear layer for the EBM IEA system. The inner shell, separating the shear
layer from the foam padding layers, encapsulates the shear layer to help it perform in
shear only. The inner layer of foam, which is thinner than the commercially available
helmet, conforms to the same inner shape as the commercially available helmet. The
total thickness of the EBM IEA system is 35mm. Table 4-2 lists the materials used for

each layer and their corresponding material properties and thicknesses.
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4.4 Commercial Helmet IEA System

4.4.1 Components of the Commercial Football Helmet
Standard commercially available football helmets consist of the following components:
1. Outer Polycarbonate Shell

2. Impact Padding and Comfort Foam

4.4.1.1 Outer Polycarbonate Shell

The outer polycarbonate shell of the helmet is primarily designed to provide protection
against penetrating injuries to the head. It is also designed to distribute impact forces
over a larger area. Since the outer shell is a critical part of the helmet, it needs to
function in a variety of conditions. The most common material used for football helmets
are Rubber-reinforced thermoplastics like Polycarbonate or Acrylonitrile Butadiene

Styrene polymer and Fiber reinforced thermoset resin composites.

4.4.1.2 Impact Padding and Comfort Foam

The impact padding and comfort foam components of the helmet provide the impact
energy attenuation system of the standard helmet. Impact padding for different helmet
brands vary, however, the typical material is expanded polystyrene foam. Some other
padding used are semi rigid polyurethane foams, vinyl nitrile, or inflatable rubber
bladders filled with air. Since the Impact padding layer is used as an energy attenuation

system for the helmet, the padding is typically placed in a compressive nature.
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Table 4-1 Elastic Material Properties of a Commercial Helmet

Commercial Helmet IEA Model
Layer . Young's . . Density Ijayer
Material Modulus Poisson's ratio Thickness
Number (g/cc)
(MPa) (mm)
1 Polycarbonate 2750 0.32 1.3 4
2 Foam 2.7 0.01 0.32 31

4.4.2 Impact Results

The impact results shown in Figure 4-2 through Figure 4-3 plot the Strain Energy of the

polycarbonate and foam layers respectively. Since the energy of the impact event is

dissipated as strain energy, the corresponding plots shown here are used to evaluate the

individual layers of the system.
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Figure 4-2 Strain Energy Absorption of the Commercial Helmet IEA Polycarbonate Shell




Shown in Figure 4-2 is the strain energy of the polycarbonate layer during the impact

event.

Commercial Helmet - Foam Layer
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Figure 4-3 Strain Energy Absorption of the Commercial Helmet IEA Foam Padding

Shown in Figure 4-3 is the strain energy of the foam layer for the commercial helmet
IEA. Although the foam layer for the commercial helmet is thicker, by 6mm, than the

EBM helmets, the strain energy for the three types of helmets are very comparable.
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Figure 4-4 Deflection Results of Commercial Helmet IEA FE Model

Figure 4-4 shows the deformation configuration for the maximum deflection of the

commercial helmet IEA system. The full comparison of deflections results can be seen in

Figure 4-14.
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4.5 EBM Helmet IEA Model

4.5.1 Components

The proposed EBM helmet consists of the following components:

[a—

Outer Polycarbonate Shell

2. Inner Shear Layer (Sorbothane®) [13]

(98]

Inner Shell (Fiberglass)

b

Impact Padding and Comfort Foam

Rigid Sphere
Mass = 5kg
Velocity = 7 m/s

Polycarbonate

Shear Layer

<—— |nner Shell

<«—— Fopam

.

Figure 4-5 EBM Helmet IEA Cross-Section

4.5.1.1 Outer Polycarbonate Shell
The outer polycarbonate layer replicates the same shape and thickness as the
commercially available polycarbonate shell. The outer polycarbonate shell of the EBM

helmet functions in the same manner as the commercially available helmet, where it
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provides protection against penetrating injuries to the head and distributes impact forces

over a larger arca.

4.5.1.2 Shear Layer

The shear layer, below the polycarbonate layer, provides a compliant shearing layer for
the EBM IEA system. The material used for the shear layer is Sorbothane®.

Sorbothane® is a thermoset, polyether-based, polyurethane material that is a visco-elastic
polymer. For the purposes of this evaluation, linear elastic material properties are used to

define the material characteristics [13].

4.5.1.3 Inner Shell Layer
The inner shell, separating the shear layer from the foam padding layers, encapsulates the
shear layer to help it perform in shear only. Since the inner shell of the EBM IEA system
has to be thin and light, a fiberglass composite layer is chosen. For this study, the
material properties and thicknesses are changed in order to maximized the thickness and
material strength characteristics. Thickness of 2mm and 3mm are chosen for evaluation.
Since this is an additional component to be added to the helmet IEA system, the thickness
is a critical value. Since this layer is critical, there are three criteria that need to be
considered in designing the inner shell.

1. The inner shell has to be light (i.e.: it cannot add a significant amount of mass to

the helmet).
2. The inner shell has to be strong, yet flexible (i.e.: it has to be provide backing

stiffness for the shear layer, yet flexible enough to move with the polycarbonate
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shell of the helmet when it deforms during impact or when the helmet is fitted

onto the players head).

3. The inner shell has to be able to be manufactured.

Comparison graphs, shown in the following sections, indicate the bounding thicknesses

and material properties results.

4.5.1.4 Impact Padding and Comfort Foam

The impact padding and comfort foam components of the helmet provide the impact

energy attenuation system of the standard helmet. Impact padding for different helmet

brands vary, however, the typical material is expanded polystyrene foam.

4.5.2 Material Properties

Table 4-2 lists the materials used in the EBM IEA helmet model. As noted below, the

elastic modulus and thickness values were varied to achieve the best possible

combinations. The following impact results will show the analysis results.

Table 4-2 Elastic Material Properties of EBM Helmet IEA

EBM Helmet IEA Model
Young's . , . Layer
NIIiI};lC;:r M aterial Modulus Po::lst;)on > D(eg;lcscl;y Thickness

(GPa) (mm)

1 Polycarbonate 2.75 0.32 1.3 4

2 Sorbothane 1.69 MPa 0.499 1.412 3
3 Fiberglass 4 to 28 0.13 1.9 2t03

4 Foam 2.7 MPa 0.01 0.32 25
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4.5.3 Impact Results

The impact results shown in Figure 4-6 through Figure 4-15 plot the Strain Energy of the
IEA polycarbonate, shear, inner shell, and foam layers respectively. Also included are
comparison charts showing the peak strain energy for the different layers. Since the goal
of this study was to determine the bounding material properties for the inner shell layer,
different models were analyzed using the corresponding material properties and
thicknesses. Shown in the following figures are the shear strain results for the different

layers.

It should be noted the results for the 4 GPa models were not successful analysis runs.
The elastic modulus for the inner shell was too low to obtain good results. This was
evident in both the 2mm thickness and 3mm thickness models. In addition, this low
elastic modulus is below the range for physically producing an effective fiberglass layup.
Since the possibility for achieving a layup of resin and glass layers is above the 4 GPa

elastic modulus range, this serves as a lower bounds for the material.

75



Polycarbonate Layer
5000

4500 \
/ \
4000 \

3500

:

E
£ ——8GPa 2mm
=
> ——38GPa 3mm
5 2500
g 12GPa 2mm
w
= —12GPa 3mm
= 2000
b ——28GPa 2mm
——28GPa 3mm
1500
1000
500

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
Time (sec)

Figure 4-6 Strain Energy Absorption of Polycarbonate Shell with Various Inner Shell Layers

Shown in Figure 4-6 are the strain energy results for the EBM IEA helmet polycarbonate
layer with different inner shell material properties. From the results shown above it can
be observed that as the elastic modulus for the inner shell is increased the strain energy
for the polycarbonate layer decreases. As well, as the thickness of the shell increases the
strain energy for the polycarbonate layer decreases. These results indicate the presence
of the inner shell provides more structure to the outer shell of the helmet preventing the
outer polycarbonate shell of the EBM IEA helmet from deforming as significantly

compared to the commercial helmet.

76



5000

4500

4000

3500

3000

2500

2000

1500

1000

500

Peak Strain Energy (N-mm) of EBM IEA Polycarbonate Layer
with Various Fiberglass Layers

8GPa 2Zmm 8GPa 3mm 12GPa 2Zmm 12GPa 3mm 28GPa 2mm 28GPa 3mm

Figure 4-7 Peak Strain Energy of Polycarbonate Shell with Various Inner Shell Layers
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Figure 4-8 Strain Energy Absorption of Sorbothane® Layer

Shown in Figure 4-8 are the strain energy results for the EBM IEA helmet shear layer
with different inner shell material properties. From the results shown above it can be
observed that as the elastic modulus for the inner shell is increased the strain energy for
the shear layer increases. As well, as the thickness of the shell increases the strain energy
for the polycarbonate layer increases. These results indicate the addition of the inner
shell reduces the deformation of the outer polycarbonate shell and transfers some of that

strain energy to the shear layer.
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Peak Strain Energy (N-mm) of EBM IEA Sorbothane Layer
with Various Fiberglass Layers
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Figure 4-9 Peak Strain Energy for Sorbothane® Layer with Various Inner Shell Layers
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Figure 4-10 Strain Energy Absorption of Various Inner Shell Layers
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Shown in Figure 4-10 are the strain energy results for the EBM IEA helmet inner shell
layer. From the results shown above it can be observed that as the elastic modulus for the
inner shell is increased the strain energy within this layer remains consistent between
8GPa and 28GPa. There is some variation, with slightly lower peak strain energy at

28GPa, however the strain energy is relatively consistent.

Peak Strain Energy (N-mm) of EBM IEA Fiberglass Layers
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Figure 4-11 Peak Strain Energy for Various Inner Shell Layers
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Figure 4-12 Strain Energy Absorption for Foam Padding with Various Inner Shell Layers

Shown in Figure 4-12 are the strain energy results for the EBM IEA helmet foam layer.
From the results shown above it can be observed that as the elastic modulus for the inner
shell is increased the strain energy within this layer remains consistent for all the inner
shell elastic modulus and thickness combinations. There is some slight variation, with
the higher thickness and higher elastic modulus properties resulting in lower strain

energies in the foam layer, however the strain energy is relatively consistent.
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Peak Strain Energy (N-mm) of EBM IEA Foam Layer
with Various Fiberglass Layers
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Figure 4-13 Peak Strain Energy for Foam Padding with Various Inner Shell Layers

Also included are the maximum displacement results for all the material models. From
the results in Figure 4-14, the peak displacement for all combinations of inner shell
materials remain consistent around 21mm to 22mm. The peak displacement for the
commercially available football helmet material model is approximately 30mm. The
reason for the difference in displacement is the commercial helmet material model has

6mm more foam padding than compared to the EBM helmet.
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Impactor Displacement of EBM IEA
for Various Fiberglass Layers
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Figure 4-14 Peak Impactor Displacement of EBM IEA with Various Inner Shell Layers

In order to evaluate the strength requirements of the inner shell layer, the peak von Mises
stress results are displayed in Figure 4-15. These results indicate that the higher elastic
modulus materials experience a higher stress during impact. They also indicate the
thinner the inner layer experiences a higher stress. These results indicate a lower overall
elastic modulus should be used for the inner shell that is on the thicker side of the

spectrum.
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Figure 4-15 Peak Stress Values of Various Inner Shell Layers

4.6 Maximized EBM Helmet IEA System

For the final material makeup of the EBM helmet IEA system, the following materials
were chosen:

e Polycarbonate thickness = 4mm

e Sorbothane thickness = 3mm

e Fiberglass (12GPa) thickness = 3mm

e Foam Padding thickness = 25mm

The final thickness and material strength for the fiberglass layer was chosen because it
provided good energy absorption characteristics, good strength characteristics, and did

not have too high of an elastic modulus to cause brittle failure concerns. When
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comparing at the peak von Mises stress for the different layer strengths, the 28 GPa
material had an approximately 100 MPa high peak stress compared to the 12 GPa layer.

This would be a concern for possible fatigue failure.

When comparing results for the thicknesses of the 12 GPa IEA models, there is no
significant difference between the peak strain energy absorption, deflection, or peak von
Mises stress. The deciding factor came down to ability to manufacture the two layers.
Since the 2mm thickness is more difficult to manufacture, the 3mm thickness was
chosen. The 3mm thickness provides a better opportunity to make a strong composite,
without having the possibility of having the percent matrix to fiber being difficult to

achieve.
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4.7 Final EBM IEA System

Once the maximized IEA makeup was chosen for the EBM helmet IEA system, a finite
element model of the helmet and human head was developed. From the initial impact
analysis, it was observed that the four layer IEA system was too stiff in rotation as
compared to the standard VSR4 helmet. The EBM helmet performed as expected for the
0° impact angles, but as the angle of impact increased to 30°, the stress levels on the

surface of the brain increased over those of the VSR4 helmet.

A re-evaluation was then done to eliminate the fiberglass layer from the EBM IEA

system. The reason behind removing the fiberglass layer are listed below:

e There is no significant change in strain energy absorption between the various
IEA models for the Sorbothane layer.

e There is no significant change in strain energy absorption between the various
IEA models for the foam layer.

e The fiberglass layer does provide strain energy absorption for the EBM IEA
system, which also reduces the strain energy absorbed by the polycarbonate layer.
By eliminate the fiberglass layer, the amount of strain energy absorption for the
polycarbonate layer will increase, but it will not be greater than the commercial

helmet IEA system.
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For these reasons the fiberglass layer was removed and the final EBM IEA system was
defined using three layers as listed:

e Polycarbonate thickness = 4mm

e Sorbothane thickness = 3mm

e Foam Padding thickness = 28mm
The final thickness for the EBM IEA will obviously vary for different areas of the

helmet, where the padding thickness changes, however, the final three layers are listed.
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5 Concept and Configuration of VSR4 Football Helmet by

Riddell

The principal function of the VSR4 football helmet by Riddell is to minimize the risk of
concussion injury to football players by absorbing head impact energy thereby reducing
head translational acceleration. The main goal of a helmet is to prevent skull fractures
and reduce the acceleration to the player by absorbing some of the impact energy.
Helmets have been designed with the intent to reduce the linear acceleration due to
normal impacts. Normal impacts, or translational motion impacts, on football helmets
have been well studied through the use of the NOCSAE drop tester and FE head
modeling. However, in actual real life scenarios, very few impacts actually result in just
normal impacts. In reality, the majority of impacts on the football field are in some form
or another oblique type impacts. Furthermore, there are very few studies that evaluate the
response of the human head and helmet as they are subjected to oblique impacts. This
makes it difficult to accurately study the effect of the helmet in reducing the peak
pressure stress and peak shear stress on the brain. A fully integrated helmeted head FE
model system is needed to truly assess the underlying head response due to impact on the

helmet.
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5.1 Objective
The goal of the research is to study the efficacy of the football helmet against normal and
oblique impacts at the frontal, lateral, superior, and posterior location on the helmet. This

study will evaluate the performance of a current football helmet fitted onto a human head

model by FEM.

The specific objectives of the study are to:
e Develop an integrated FE model of a current football helmet and head.
e Evaluate the helmet performance and study the effect of the helmet in reducing

the shear stress and pressure on the brain.

5.2 Relevance of Research

This study is an attempt to fill the gap in the computational analysis of an integrated 3D
head and football helmet. The goal of the research is to study the efficacy of the current
football helmet against normal and oblique impacts at the frontal, lateral, superior, and

posterior location on the helmet.

5.3 Methods and Materials Used to Achieve Results
e Develop a FE model of the VSR4 football helmet made by Riddell.

e Validate the FE model of the helmet with respect to ASTM impact test results.
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5.4 Finite Element Modeling of the Riddell VSR4 Football Helmet

The Riddell VSR4 football helmet was used for the purpose of this study to represent the
commercial football helmet. The helmet geometry was digitized, to obtain a point cloud
of the outer profile of the helmet shell. The helmet was digitized where a white light
scanner was used [14] to measure the outer surface of the helmet shell. A solid model
was then built off the point cloud by generating spline curves. Corresponding surfaces

were then generated by connecting the spline curves from the obtained data points [14].

S

Figure 5-1 Geometry of VSR-4 Helmet Shell

Since the model developed by Kangana was not available, a new FE model was
generated by importing the original geometry file, used by Bhushan [13], as a *.stp file,

to HyperMesh 14.0 [4]. The outer surface geometry, in Figure 5-1, was then used to
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develop the entire FE model used by Bhushan [14]. The model generated consists of
90,486 nodes and 81,039 elements. Elements used in the helmet model are HEXAS8 and
PENTAG solid elements. Total mass of the FE model matches the actual mass of the
existing helmet at 1.5kg and the mass of the FE model developed by Bhushan [14]. This

recreated model uses the same geometry file.

Table 5-1 VSR-4 Football Helmet FE Model Breakdown

Details of VSR 4 Football Helmet FE Model
Layer
Location Number of Element Type Thiclz,ness
Ele ments

(mm)
Shell Outer Surface 25,770 hexa8 & penta6 4
Padding Forehead 4,410 hexa8 & penta6 24
Side/Posterior 21,590 hexa8 & penta6 20

Crown 7,590 hexa8 & penta6 27.5

Jaw 2,440 hexa8 & penta6 20

The internal padding of the helmet was meshed separately to incorporate the different
thicknesses of the pads on the interior of the helmet. The forehead pad, crown pad, side
and rear pads were modeled according to the measured thickness of the existing helmet.
The corresponding thickness of the internal padding is as follows:

e Forehead pad = 24mm

e Crown pad =27.5mm

e Side pad =20mm

e Rear pad = 20mm
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Figure 5-2 through Figure 5-4 shows FE model of the complete football helmet. For this
study, the facemask is not included in the analysis. Since the facemask is removed from

the helmet during standard NOCSAE testing, it was excluded from this analysis [9].

Figure 5-2 VSR-4 Football Helmet by Riddell without Facemask
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Figure 5-3 VSR-4 Football Helmet by Riddell Bottom View
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Figure 5-4 VSR-4 Football Helmet by Riddell Cross-Sectional View

5.5 Validation of the Helmet Model

The material properties used in the FE model were validated by Bhushan [14].

Kangana’s FE model was validated with respect to the ASTM test results published by
Zhang [15] that was performed on the VSR-4 large helmet by Riddell. ASTM test results
for the Frontal, Lateral, Posterior, and Superior locations were available and were

subsequently used to validate the model.

The headform used by Bhushan [14], to simulate the ASTM drop tests, was the NOCSAE

headform. The headform was digitized using a coordinate measuring machine (CMM)
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available in the ME-EM Department at MTU. This method used is a similar method in

which the FE model of the helmet was developed.

The coordinate points obtained from the CMM were used to create a point cloud of the
headform. The point cloud was then used to generate a surface model that could be later
used to generate a FE headform model. The exterior surface of the headform was then
generated using shell elements, where the material density was modified to match the
total mass of the headform. The center of mass (COM) and COM location was defined in

accordance with the physical location of the NOCSAE headform.

To simulate the impact test, the helmet and NOCSAE headform were assembled in
accordance with the guidelines and instructions provided by Riddell, Inc. [14]. The
assembled model was given an initial velocity of 5.47 m/s, to simulate the headform and
helmet assembly being dropped from a 60 inch vertical height. The corresponding
velocity was used to validate the impact acceleration for the ASTM experimental event

by Zhang [15].

ASTM F429, F717, and F1446 [16], [17], [18] define the testing method for evaluating
the shock attenuating characteristics of a commercially available football helmet. The
test apparatus can be setup in six different headform positions and dropped from a
vertical height of 60 inches to an impact velocity of 5.47 + 0.04 m/s. The six different
headform positions are: Front, Front Boss, Side, Posterior, Posterior Boss, and Crown. A
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triaxial accelerometer, mounted at the center of mass, is used to measure the impact

event. The NOCSAE drop tester is based upon these standards and shown below.

Headform with
tri-axial
accelerometer

-

Anvil with
impact pad

Figure 5-5 NOCSAE Standard Drop Tester at MTU for Football Helmet Testing based upon
NOCSAE Standard Drop Test Equipment [9]
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Since the exact material properties of the helmet were not available during Kangana’s
study, a reverse engineering approach was used to estimate the material characteristics of
each padding region [14]. A list of material properties used for the validation of the
helmet is listed in Table 5-2. The approach taken to finalize these material properties is

described below.

Table 5-2 VSR-4 Football Helmet Material Properties

Material Properties of VSR 4 Football Helmet FE Model
) Material Density Poission's
Location 3 .
Model (kg/mm’) Ratio
Shell Outer Surface Elastic 1.30E-06 0.32
Padding Forehead Foam 3.20E-07 0.01
Side/Posterior Foam 2.00E-07 0.01
Crown Foam 2.80E-07 0.01
Jaw Foam 2.00E-07 0.01

The helmet padding of the VSR-4 Riddell helmet is made of vinyl nitrile and
polyurethane foam [14]. This foam material is a highly compressible elastic material.
The pads within the helmet are separated into different regions, corresponding to their
physical location and measured thicknesses. The Forehead pad, Crown pad,
Side/Posterior pad, and the Jaw pad designations are used to identify the padding regions.
The material model used in the analysis model in Radioss by Altair [4] is the Visco-

elastic Plastic Foam Material. In Radioss, this material model is typically used to model
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low density, closed cell polyurethane foams used for impact. The calculated densities of
each region were based upon measured volume and mass of each pad region by using the

equation [14]:
p== (5.1)

Where: p is the objects density in kg/mm’

m 1s the objects mass in kg

V is the objects volume in mm?

Uniaxial compression data was used to define the material of the helmet pads. The
compressive stress and strain data of the pad regions was tuned to get the required
acceleration response of the headform [14]. Kangana Bhushan first used material
properties derived by Zhang [15] for the padding material and then modified the
properties once subsequent iterations were performed. It was determined that the
maximum compression had little effect on the peak acceleration of the headform due to
helmet impact. Changing the initial elastic region of the stress strain curve, however, had
a strong influence of the peak acceleration. The stress-strain data that best matched the
ASTM test results used by Kangana Bhushan [14] are presented and re-plotted in Figure

5-6.
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Figure 5-6 Stress-Strain Energy Liner Behavior

5.6 Impact Validation

Validation of the VSR-4 and the drop test headform finite element model was performed
for the Frontal, Side, Posterior, and Superior impact regions. Kangana Bhushan
performed a series of simulations, as a tuning process, for estimating the material
properties of the football helmet padding. The resulting acceleration responses from the
simulations were compared to the published ASTM test results by Zhang [14]. From the

results the impact results closely matched the published results.
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6 VSR4 by Riddell Football Helmet Fitted onto a Human

Head Model by Finite Element Modeling

Since the model developed by Kangana Bhushan was not available, a new FE VSR4
Riddell helmet model was generated by importing the original geometry file, used by
Bhushan [14], as a *.stp file, to HyperMesh 14.0. The outer surface geometry was then
used to develop the entire FE model used by Kangana Bhushan [14]. The model
generated consists of 90,486 nodes and 81,039 elements. Elements used in the helmet
model are HEXAS8 and PENTAG solid elements. Total mass of the FE model matches the
actual mass of the existing helmet at 1.5kg and the mass of the FE model developed by

Bhushan [14]. This recreated model uses the same geometry file.

Table 6-1 VSR-4 Football Helmet FE Model Breakdown

Details of VSR-4 Football Helmet FE Model
Layer
Location Number of Element Type | Thickness
Elements

(mm)
Shell Outer Surface 25,770 hexa8 & penta6 4
Padding Forehead 4,410 hexa8 & penta6 24
Side/Posterior 21,590 hexa8 & penta6 20

Crown 7,590 hexa8 & penta6 27.5

Jaw 2,440 hexa8 & penta6 20
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The internal padding of the helmet was meshed separately to incorporate the different
thicknesses of the pads on the interior of the helmet. The forehead pad, crown pad, side
and rear pads were modeled according to the measured thickness of the existing helmet.
The corresponding thickness of the internal padding is as follows:

e Forehead pad = 24mm

e Crown pad =27.5mm

e Side pad =20mm

e Rear pad = 20mm

Figure 6-1 through Figure 6-2 shows FE model of the complete football helmet. For this

study, the facemask is not included in the analysis. Since the facemask is removed from

the helmet during standard NOCSAE testing, it was excluded from this analysis.
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Figure 6-1 VSR-4 Football Helmet by Riddell without facemask

6.1 Helmet and Human Head Model

The validated VSR4 Riddell helmet model described in Section 4.4 and the validated FE
model of the human head described in Section 2.5 were assembled for Frontal, Lateral,
Posterior, and Superior impacts. Each impact location simulates the impact location that
is performed on the NOCSAE drop tester. The impact locations are standard impact
locations used with the NOCSAE drop tester to determine the effectiveness of a football
helmet with respect to linear impact acceleration. Within this study, the overall
effectiveness of the football helmet is evaluated with respect to linear impact acceleration
along with pressure distribution, von Mises stress distribution in the brain, and angular

acceleration of the human head model.
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Figure 6-2 VSR-4 Football Helmet and Human Head Model Assembly

6.2 Impact Simulation and Boundary Conditions

Impact simulations for the frontal, lateral, posterior, and superior locations are shown in
Figure 6-3 through Figure 6-10. To be consistent with the NOCSAE drop test setup, the
head model was positioned using the same impact angles the NOCSAE drop test frame.
The impactor used in these simulations is a flat steel plate with an elastic padding surface.
The impactor is the same impactor that was used in the human head impact simulations

done previously. The material properties of the impactor are listed in Table 6-2.
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Table 6-2 Impactor Material Properties

Material Properties of Impactor
Material h"{I(:)l:iI:lgl ss Density Poission's
u
Model Ko/m’ Ratio
(Mpa) (kg/m’)
Padding Elastic 10 1200 0.3
Steel Elastic 209000 7800 0.29

For the impact simulations, the impactor is stationary, whereas, the helmet and head
model are given an initial velocity to simulate the impact event. For all impact
simulations an initial velocity of 5.47 m/s is prescribed for the helmet and human head
assembly. All simulations were performed using Radioss, by Altair Engineering Inc. [4].
To define an oblique impact, the vector quantity of the 5.47 m/s velocity is divided to
result in an angle of impact. The helmet and head assembly have a free-free boundary

condition associated to them to simulate the impact.

Contact conditions between the helmet and impactor, and the head and helmet were
defined in the finite element model using a multi-usage impact interface, type 7, in
Radioss [4]. Contact between contact pairs was defined using a master surface and group
of slave nodes. This type of contact definition has the advantage of increasing the contact
stiffness to limit penetration, which lends itself well to simulating high speed impact for

contact between parts.
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6.2.1 Frontal Impact Simulation

Figure 6-3 Frontal Impact 0° Simulation Model

The frontal impact simulation model is shown in Figure 6-3. The linear head impact

acceleration time history for the simulation is show in Figure 6-4.
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Figure 6-4 Frontal Impact 0° Linear Head Acceleration
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6.2.2 Lateral Impact Simulation

The lateral impact simulation model is shown in Figure 6-5. The linear head impact

acceleration time history for the simulation is shown in Figure 6-6.

o

Figure 6-5 Lateral Impact 0° Simulation Model
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Figure 6-6 Lateral Impact 0° Linear Head Acceleration
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6.2.3 Posterior Impact Simulation

Figure 6-7 Posterior Impact 0° Simulation Model

The posterior impact simulation model is shown in Figure 6-7. The linear head impact

acceleration time history for the simulation is shown in Figure 6-8.
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Figure 6-8 Posterior Impact 0° Linear Head Acceleration
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6.2.4 Superior Impact Simulation
The superior impact simulation model is shown in Figure 6-9. The linear head impact

acceleration time history for the simulation is shown in Figure 6-10.

&
=

Figure 6-9 Superior Impact 0° Simulation Model
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Figure 6-10 Superior Impact 0° Linear Head Acceleration

For all of the impact simulations, the stress results and rotational acceleration results are
shown in Chapter 8. The results in Chapter 8 are used to evaluate the performance of the
VSR-4 helmet against the EBM helmet. A complete list of helmet performance

evaluation is given in Chapter 8.
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7 Concept and Configuration of the EBM Helmet Fitted onto

a Human Head Model by Finite Element Modeling

The principal function of the EBM helmet is to minimize the risk of concussion injury to
football players by absorbing head impact energy and reducing head translational and
rotational accelerations. Since the majority of impacts on a helmet cause both linear and
angular accelerations, the design of the EBM helmet is to utilize the existing padding for
linear accelerations and provide an additional shear layer to address rotational
accelerations. Linear acceleration causes pressure gradient while angular acceleration
causes shear strain gradient. Frontal and occipital impacts cause both pressure and shear

stress distributions in the brain [30].

7.1 Design Methodology of the Enhanced Bio-Morphic Football Helmet

As stated previously, concussion is a type of traumatic brain injury (TBI). It is a brain
injury due to linear/angular acceleration/deceleration of the head due to impacts forcing
interactions between the inner surface of the skull and the floating brain. Most impacts
on the helmet cause both linear and angular accelerations. Linear acceleration of the
head has been postulated to be the sole cause of injuries at the site of impact, or coup
injuries, and opposite the site of impact, or countercoup injuries. Angular acceleration of
the head, on the other hand, have been postulated to be the sole cause of injuries on a

global scale, or diffuse axonal injuries. “While comparable negative pressure developed
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in the countercoup regions, shear stress distributions remained identical regardless of the
impact direction, consistent with the clinically observed pattern for contusion. Therefore,
shear strain theory appears to account better for the clinical findings in cerebral contusion

[21].” Angular acceleration is therefore the primary causation factor for concussion.

A football helmet is a safety head gear used to protect players from head injuries due to
impacts on the field. Head injuries include skull fractures and brain concussion. A given
impact force at any location on the helmet can be resolved into normal and tangential
impact forces. The tangential impact force at any location can be replaced by a tangential
impact force (71F) at the center of mass and torque (771F) about the center of mass due
to T1F. Similarly, the normal impact force at any location can be replaced by a normal
impact force (NVIF) at the center of mass and a torque (TNIF) about the center of mass due

to NIF. Resultant impact force (R/F) at the center of mass can be shown as:

RIF = (TIF) + (NIF) (7.1)

Resultant impact moment (R/M) about the center of mass is equal to:

RIT = (TTIF) + (TNIF) (7.2)
Kinetics:
RIF = m dg (7.3)
RIT=Ica (7.4)
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Where:
m = mass of the helmet
ac = linear acceleration of the center of mass
I - Mass moment of inertia of the helmet

@ = angular acceleration about the center of mass

ag directly proportional to RIF, is a measure of skull fractures while m is a measure of
resistance to linear acceleration. On the other hand, both /¢ and ¢, directly proportional
to RIT, are a measure of concussion, while /¢ is a measure of resistance to angular

acceleration.

The current football helmet design involves a stiff plastic outer shell to distribute R/F
combined with an elastic foam inner shell to absorb the impact shock and to reduce the
RIF in order to minimize the risk of skull fractures. The National Operating Committee
on Standards for Athletic Equipment (NOCSAE) provides a set of voluntary standards,
based on the Wayne State Tolerance Curve (WSTC), to evaluate a helmet’s ability to
prevent skull fracture. NOCSAE standards have helped to successfully eliminate skull
fractures due to impacts in football games while wearing helmets designed with an RIF
distributor; a stiff plastic outer shell and a RIF attenuator in the form of an elastic foam

inner shell [22].
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As per Equations (7.3) and (7.4), the impacts on the helmet cause linear and angular
accelerations of the head which bring forth pressure and shearing stress due to
interactions between the skull and the brain resulting in concussion. To minimize linear
acceleration, as seen from Equation (7.1), one can either minimize R/F or maximize the
mass of the helmet. But “I can’t have the helmet weigh too much because then I am
putting stress loads on the neck and I am creating a whole set of different problems. 1
can’t put in too much padding, then I am creating a heat-related issue. I can’t make it too
thin, I can’t make it too thick,” said Schutt Sports President and CEO, Robert Erb.[22]
Similarly, to minimize angular acceleration, one can maximize the mass moment of
inertia. But, “fashion cues are a factor. Older helmets such as the VSR-4 have smooth
styling that players find cool: concussion resistant helmets bulge outward like the heads

of cartoon space aliens” [23]. Besides, it maximizes 77IF.

During the 2012 and 2013 high school football season, U.W. Madison researchers [26],
collected data from thirty-four public and private high schools in Wisconsin. Players in
the study wore helmets from one of three helmet manufacturers: Riddell, Schutt, and
Xenith. The researchers found no differences in the rate of sports-related concussions
among helmet brands, the age of helmets, or reconditioned helmets. Of the 2081 high
school athletes followed during the two year period, approximately 10% sustained a
concussion. “Helmets of present day technology are supposed to prevent catastrophic

brain injury like hemorrhages,” said Kevin Guskiewicz, Chair of the NFL Subcommittee
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on Safety Equipment and Playing Rules. “They do a good job of that, but we want a

helmet that does that as well as prevent concussion” [27].

The purpose of the EBM helmet is not only to minimize linear acceleration of the head to
prevent catastrophic brain injury like hemorrhages, but also to minimize angular
accelerations of the head to prevent concussion. In order to minimize linear acceleration,
the helmet must have design provisions to attenuate R/F (See Equation (7.1)). Similarly,
to minimize angular acceleration, the helmet must have design provisions to attenuate
RIT (See Equation (7.2)). Current helmet technology does provide adequate design

provisions to attenuate NIF, but it lacks design provisions to attenuate 77F.

The goal of EBM helmet technology is to introduce both impact force distributors and
impact shock energy absorbers, not only to address N/F, but also to address 7T7F.
Towards this goal, the EBM helmet is modeled to incorporate the addition of a shear
layer, between the outer polycarbonate shell and the internal impact padding, to minimize
the 77F that is imposed on the human head. All three materials bonded together to

diffuse, distribute, dissipate, and absorb impact force and shock energy.

From the NFL, the injury tolerance for angular acceleration for a football player is 5757
to 5900 rad/sec’ [27]. Zhang determined that the maximum resulting angular
accelerations for a 50% probability of sustaining a Mild Traumatic Brain Injury (MTBI)

is approximately 5900 rad/sec® for impact duration lasting between 10 and 30
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milliseconds [19]. For this reason, the EBM helmet was designed to help reduce the

amount of angular acceleration that is transferred to the human brain.
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8 EBM Helmet Fitted onto a Human Head Model by Finite

Element Method

The generation of the finite element model of the EBM helmet was performed in a same
manner as how the VSR-4 helmet model was developed. The model was constructed
from the same geometry model used to generate the VSR-4 finite element model. Using
the same shell geometry and padding assured that a good and accurate comparison

between the two types of helmets could be presented.

As stated previously the goal of the EBM helmet is to introduce both impact force
distributors and impact shock energy absorbers, not only to address the normal impact
force, but also to address the oblique impact force. This is accomplished by adding a
shear layer between the polycarbonate shell and internal impact padding. This additional
material is a key factor in addressing the oblique impact force reduction. The following

sections describes the EBM finite element model in detail.
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8.1 EBM Finite Element Model

The EBM helmet model generated consists of 91254 nodes and 83,175 elements.
Elements used in the model are HEXAS8 and PENTAG solid elements. Total mass of the
FE model is 1.76kg, which is approximately 0.26kg heavier than the VSR-4 helmet of the
same size. The additional mass associated with the EBM helmet is due to the additional

shear layer.

Table 8-1 EBM Football Helmet FE Model Breakdown

Details of EBM Football Helmet FE Model
) Number of I',ayer
Location Elements Element Type | Thickness
(mm)
Shell Outer Surface 25,770 hexa8 & penta6 4
Sorbothane Between S,h elland 21,375 hexa8 & penta6 3
Padding
Padding Forehead 4,410 hexa8 & penta6 21
Side/Posterior 21,590 hexa8 & penta6 17
Crown 7,590 hexa8 & pentab 24.5
Jaw 2,440 hexa8 & penta6 17

The internal padding of the helmet was meshed, in the same manner as the standard
football helmet, to incorporate the different thicknesses of the pads on the interior of the
helmet. The difference between the EBM helmet and the standard football helmet is the
addition of the shear layer between the outer shell and padding material. The overall
thickness of each region of padding is reduced to take into account of the additional

thickness introduced by the shear layer. Therefore, the large EBM helmet will fit the
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same as a large VSR-4 football helmet. The forehead pad, crown pad, side and rear pads
were modeled according to the measured thickness of the existing helmet, minus the
thickness of the shear layer. The corresponding thickness of the internal padding is as
follows:

e Forehead pad =21mm

e Crown pad = 24.5mm

e Side and Posterior pad = 1 7mm

e Jaw pad = 17mm
Figure 8-1 through Figure 8-3 shows FE model of the complete EBM football helmet.

For this study, the facemask is not included in the analysis.

Figure 8-1 EBM Football Helmet without Facemask
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Figure 8-2 EBM Football Helmet Bottom View
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Figure 8-3 EBM Football Helmet Cross-Sectional View

8.2 Shear Layer — Sorbothane Material

The material used to represent the shear layer in the EBM helmet is Sorbothane®.
Sorbothane® is the brand name of a polyether-based synthetic viscoelastic urethane
polymer [13]. It is a thermoset with a very high damping coefficient. It is regarded as an
excellent material for attenuating shock, isolating vibration, and damping. Sorbothane®
is a solid that behaves like a liquid by absorbing shock in all directions. It is a stable

material over a wide range of temperatures with a long fatigue life.
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The method used to define the material model in the finite element model is a material
complex shear modulus, shear storage modulus, and loss factor is defined using the
following equation [29]:

G(w) =G6"(w)[1+ n(w)] (8.1)

Where: G(w) = complex shear modulus
G’(w) = shear storage modulus

n(w) = loss factor

For Sorbothane® DURO 50, the storage modulus used was 194 kPa and a loss factor used

was 0.570 [29].

8.3 Material Properties of the EBM Helmet Model

The material properties used in the EBM helmet model are the same materials that were
used to validate the VSR-4 football helmet by Kangana Bhushan [14], with the exception
of the Sorbothane® layer. The material properties displayed in Table 8-2 is a list of the
material used in the FE model and the corresponding material model used for the finite

element analysis.

121



Table 8-2 EBM Football Helmet Material Properties

Material Properties of EBM Football Helmet FE Model

) M aterial Density Poission's
Location 3 .
Model (kg/mm’) Ratio
Shell Outer Shell Elastic 1.30E-06 0.32
Sorbothane Between S,h cll and Hyperelastic 1.41E-06 0.499
Padding
Padding Forehead Foam 3.20E-07 0.01
Side/Posterior Foam 2.00E-07 0.01
Crown Foam 2.80E-07 0.01
Jaw Foam 2.00E-07 0.01

Figure 8-4 EBM Football Helmet and Human Head Model Assembly
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8.4 Impact Simulation and Boundary Conditions

Impact simulations for the frontal, lateral, posterior, and superior locations are shown in
Figure 8-5. To be consistent with the NOCSAE drop test setup, the head model was
positioned using the same impact angles the drop test frame uses. The impactor used in
these simulations is the same impactor that was used in the VSR-4 helmet evaluation by
Kangana [14] and human head impact evaluation by myself [30]. The material properties

of the impactor are listed in Table 8-3.

Table 8-3 Impactor Material Properties

Material Properties of Impactor
Material Young's Density Poission's
Model | Modulus i o md) Ratio
(Mpa)
Padding Elastic 10 1200 0.3
Steel Elastic 209000 7800 0.29

The impactor in this set of analyses is actually fixed to ground and the helmet and head
model are given an initial velocity to simulate the impact event. For all impact
simulations an initial velocity of 5.47 m/s is prescribed for the helmet and human head
assembly. To define an oblique impact, the vector quantity of 5.47 m/s velocity is
resolved to an angle of impact. The helmet and head assembly do not have any other

boundary conditions associated to them other than the initial velocity.
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Figure 8-5 Frontal (A), Lateral (B), Posterior (C), and Superior (D) Impact Models

Contact conditions between contact pairs was defined using the same multi-usage impact
interface, as described in Chapter 5.2 for the simulation of the VSR-4 helmet impacts.
The use of the same contact definitions applied with the EBM helmet model assured the

two models would be using the same model descriptions.
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9 VSR4 and EBM Helmet Comparison

In order to quantify the benefit of the EBM helmet over the commercially available
VSR4 football helmet, a full helmet to helmet comparison is required. In this chapter, the
impact results of the EBM helmet are shown adjacent to the results of the VSR4 helmet.
The ultimate evaluation of a helmet is to show how well it performs in reducing the
transfer of energy from the impacting surface to the human brain. The primary design
consideration in every helmet is to reduce the impact energy. That energy transfer,
results in stress distribution to the brain is the proving factor in determining how well a

helmet performs.

9.1 Angular Acceleration Calculation

The method used to calculate angular acceleration is described using the coordinate
system triad in Figure 9-1. Linear accelerations for nodes within the brain are recorded
for the center of mass, frontal region, lateral region, superior region, and posterior region.
The nodes used coincide with the global coordinate system. Distances of each node is
measured relative to the center of mass node. The X, Y, and Z component of acceleration
is then calculated using the difference in acceleration between that corresponding node
and the center of mass. The angular acceleration about each direction is then calculated
from the linear acceleration. As an example, the angular acceleration about the X-axis is

calculated using the amount of linear Z-axis acceleration and Y-axis acceleration that
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cause the angular acceleration about the X-axis. The same methodology is used to

calculate the angular acceleration about the Y-axis and Z-axis.

Figure 9-1 Angular Acceleration Calculation Methodology

Nodal results for the different regions of the brain are then used to calculate angular
acceleration for the Frontal, Side, Posterior, and Superior impact simulations. This
methodology is used to calculate angular acceleration to account for the off axis rotation

that is expected with an impact event.

126



9.2 Frontal Impact

The setup for the frontal impact simulation is shown in Figure 9-2. The head is inclined
at a 5° angle relative to the transverse plane similar to the NOCSAE drop test
configuration for frontal impacts. As previously stated in Chapter 7, the impactor used is
a stationary impactor with the velocity of the head given an initial velocity boundary
condition. The initial velocity of the head and helmet assembly is 5.47 m/s. For all of
the impact simulations, the 15° impact angle is eliminated. This is due to the relative
small difference from a normal impact angle. Although the final outcome of the analysis

can be determined for 15°, the simulation results were not performed.

'H

Figure 9-2 Frontal Impact Arrangement
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A comparison of the impact results of the EBM helmet and VSR4 helmet are shown in
Figure 9-3 through Figure 9-6. The impact force, in Figure 9-3, and linear impact
acceleration, in Figure 9-6, for both helmets are very close to each other for the 0° impact
simulation, with the VSR4 impact force and acceleration being slightly higher. Upon
reviewing the results, this is the outcome for all the impact simulations. The difference
can be most likely explained by the fitting of the head model into the padding of the
helmet once impact is initiated. Although this happens with both helmet types, the EBM
helmet’s shear layer helps provide a cushioning effect for the inconsistencies between the
contour of the helmet padding and the contour of the forehead. Thereby, allowing a
better fit transition during the impact event. This can also be seen in the time duration of
the impact curve comparison where the impact event of the EBM helmet is slightly
longer than that of the VSR4. Although there is only a small difference between the two,

there is still a difference.

What becomes apparent between the two helmet types, however, is the reduction in
angular acceleration with the EBM helmet once the angle of impact increases from 0° to
30°. The additional shear layer provides a attenuation mechanism to reduce the amount
of rotational acceleration transferred to the brain. The largest percent reduction of 46% is
seen with the 30° impact angle. This reduction in angular acceleration is very important

when reviewing the stress results for the various impacts.
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9.2.1 Frontal Impact 0° - von Mises Stresses

Stress comparison on the brain of VSR4 and EBM helmet impacts follows the predicted
results of the calculated angular acceleration. The EBM helmet shows a 12% increase in
angular acceleration over the VSR4 helmet. The results from the EBM helmet show a
peak stress range of 5.1 kPa to 6.3 kPa as compared to the VSR4 helmet of 3.9 kPa to 5.1
kPa, which is a slight increase in stresses over the superior area of the brain. The stress
area of 3.9 kPa to 5.1 kPa for the EBM helmet also covers a larger area over the superior

region of the brain. Both stress results are scaled the same for a direct comparison.
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9.2.2 Frontal Impact 30° - von Mises Stresses

As seen in Figure 9-5, the EBM helmet provides an added feature in reducing angular
acceleration transferred to the brain. As seen below, the additional shear layer provides
means for reducing the stresses caused by the helmet and head rotating from the impact
event. The stress peak stress level for the EBM helmet is between 8.9 kPa to 10.2 kPa
over a small region of the left lateral side of the brain. Whereas, the VSR4 helmet model
shows a peak stress level between 10.2 kPa and 11.6 kPa. The peak stress area for the
VSR4 helmet is small, but a greater increase overall. In addition, the stress level between

8.9 kPa to 10.2 kPa covers a much larger area for the VSR4 helmet.

Stress levels on the right side of the brain are also higher for the VSR4 helmet. Stress
levels for this helmet are between 6.2 kPa and 7.3 kPa as compared to 4.9 kPa to 6.3 kPa
for the EBM helmet. Another significant point to note is the area of stress between 0.93

kPa to 2.2 kPa for the EBM helmet being much larger than the VSR4 helmet.
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Figure 9-9 VSR4 Helmet - Frontal Impact 30° - von Mises Stress
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Figure 9-10 EBM Helmet - Frontal Impact 30° - von Mises Stress
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9.2.3 Frontal Impact 45° - von Mises Stresses

Although, the amount of angular acceleration reduction for the 45° impact is not as
significant as compared to the 30° impact (27% reduction compared to 46%), the added
benefit is still present. As seen below, the stress reduction for the EBM helmet is
significantly better than the VSR4 helmet. The peak stress level on the left lateral side
for the VSR4 helmet is between 10.8 kPa to 12.0 kPa as compared to a peak stress
between 8.4 kPa to 9.6 kPa for the EBM helmet. This reduction in peak stress is
significant for the EBM helmet. In addition, the area of peak stress for the VSR4 helmet

covers a larger area as compared to the peak stress area for the EBM helmet.

Stress levels on the right side of the brain are also higher for the VSR4 helmet. Stress
levels for this helmet are between 8.4 kPa to 9.6 kPa as compared to 5.9 kPa to 7.1 kPa
for the EBM helmet. Another significant point to note is the larger area of low stress for
the EBM helmet being between 0.93 kPa to 2.2 kPa as compared to the area of low stress

for the VSR4 helmet.
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Figure 9-11 VSR4 Helmet - Frontal Impact 45° - von Mises Stress
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Figure 9-12 EBM Helmet - Frontal Impact 45° - von Mises Stress

For the 45° impact results, a cross-section of the transverse plane and sagittal plane is
shown. See Figure 9-13 and Figure 9-14. As seen in these stress contours, the highest
stress is located around the perimeter surface of the brain, were as, the central portion of
the brain is lower. The area of stress, in the interior of the brain for the EBM helmet are
between 2.6 kPa to 3.5 kPa are lower compared to a higher level for the VSR4 helmet

between 3.5 kPa to 4.7 kPa. The sagittal plate cross-section also indicates an axis of
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rotation for the head. With these results, the injury mechanism points toward a global

shearing type of injury around the outer region of the brain, commonly found with

concussions.
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Figure 9-13 VSR4 (left) and EBM (right) Helmet - Frontal Impact 45° - von Mises Stress

Traverse Plane Cross-Section

Contour Plot 1: Test_B_Standard_Helmet_45_degree_Frontal FOAM  Cantour Plot 1: EBM_Helmet_1_wo_Fiberglass_45_degree_Frontal_Visco_FOAM
StressivanMises) Loadease 1 Time = 650000003 : Frame 14 Stress(vonhises) Loadease 1 : Time = 7.0000e-003 - Frame 15
g::l,lz.i spetem Analysie system
o
1.200E-02 13608 02
1.079E-02 [1.DTSE-GZ
9.568E-03 9.565E-03
—8.350E-03 —8.348E-03
7.132E-03 7.131E-03
5.915E-03 §.913E-03
4.697E-03 4.696E-03
3.479E-03 3.479E-03
2.262E-03 2.261E-03
1.044E-03 1.044E-03
¥ Y
$ 1
Zm— Zaa— gy

Figure 9-14 VSR4 (left) and EBM (right) Helmet - Frontal Impact 45° - von Mises Stress Sagittal

Cross-Section
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9.2.4 Frontal Impact 0° - Principal Stresses

Principal stress comparison of the VSR4 and EBM helmets are shown in Figure 9-15 and
Figure 9-16. For the principal stresses, the peak stress shown in (red) indicates the region
in tension (opposite the site of impact), whereas, the peak stress shown in (blue) is
compression (site of impact). Both the VSR4 and EBM helmet yield similar results,
however the area of peak compression for the EBM helmet is smaller as compared to the

area of the VSR4 helmet.
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Figure 9-15 VSR4 Helmet - Frontal Impact 0° - Principal Stress
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Figure 9-16 EBM Helmet - Frontal Impact 0° - Principal Stress
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9.2.5 Frontal Impact 30° - Principal Stresses
Principal stresses for the 30° Frontal impact yield similar results for both helmets.

Differences between the peak compressive and tensile stresses for either helmet is

insignificant.
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Figure 9-17 VSR4 Helmet - Frontal Impact 30° - Principal Stress

Contour Plot : EBM Helgot 1_wo_Fiberglass_30_degree_Frontal Visco_FOAM  Contour Plot 1: EBM Helmet_1_wo_Fiberglass_30_degree_Frontal_Visco_FOAM
Stress(P1 (major]) aadcase 1 : Time =7.0000e-003 : Frame 15 Stress(P1 (major)) Loadcase 1 : Time = 7 0000e-003 - Frame 15
Analysis system Analysis system
Simple Average Simple Average

1.489E-01 1.489E-01
[1.15!E-ﬂ1 [1.15!E-ﬂ1

8.290E-02 8.290E-02
—4.990E-02 —4.990E-02

1.690E-02 1.690E-02
-1.610E-02 -1.610E-02
-4.910E-02 -4.910E-02
-8.210E-02 -8.210E-02
-1.151E-01 -1.151E-01
-1.481E-01 -1.481E-01

Figure 9-18 EBM Helmet - Frontal Impact 30° - Principal Stress
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9.2.6 Frontal Impact 45° - Principal Stresses

Principal stresses for the 45° frontal impact yield similar results for both helmets as well.

Differences between the peak compressive and tensile stresses for either helmet is

insignificant.
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Figure 9-19 VSR4 Helmet - Frontal Impact 45° - Principal Stress
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Figure 9-20 EBM Helmet - Frontal Impact 45° - Principal Stress
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9.3 Lateral Impact

—te—

Figure 9-21 Lateral Impact Arrangement

The setup for the lateral impact simulation is shown in Figure 9-21. The head is oriented
in line with the global coordinate system and perpendicular to the impacting surface.
With the lateral impact, there is no angle of incline associated with the helmet relative to
the impactor. This impact configuration coincides with the NOCSAE drop test
configuration for lateral impacts. The initial velocity of the head and helmet assembly is

5.47 m/s traveling in the +Z axis, into the impactor plate.
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A comparison of the lateral impact results of the EBM and VSR4 helmets are shown in
Figure 9-22 through Figure 9-25. The linear impact acceleration for both helmets are
very close to each other for the 0° impact simulation, with the VSR4 helmet being
slightly higher than the EBM helmet. This difference follows the same logic for the fit
between the head and helmet explained in the frontal impacts. Since the side, or lateral,
area of the head is flatter than the frontal region of the head, the impact duration is similar

in both cases.

The impact force, at the surface of the scalp, for the VSR4 and EBM helmet are nearly
the same without any significant differences. See Figure 9-22. Both time duration and
peak impact force are very similar. Since the area of impact on the surface of the scalp is
large for lateral impacts, a good measurement for impact force was achieved. This is a

common result with all lateral impacts.

An interesting result of the lateral impact, as compared to the frontal impact, is the
amount of reduction of angular acceleration at 0° and then the similar results at 45°. For
the lateral impact, the amount of angular acceleration for a 0° impact is large, due to the
impact vector not being in line with the center of mass of the head. This is an inherent
problem with lateral impacts in general. With the normal impact not being in line with
the center of mass of the head, the resulting shearing stresses on the brain are higher than
all the other impact arrangements. From the impact simulations, the center of mass of the

head is slightly forward of the impact location on the helmet. Once the impact angle
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increases, however, the impact vector is directed more in line with the center of mass of

the head. This is apparent from the reduction in angular acceleration once the impact

angle increases.
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Figure 9-22 VSR4 and EBM Helmet — Lateral Impact — Impact Force on the Scalp at the Site of

Impact
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Figure 9-23 VSR4 and EBM Helmet - Lateral Impact — Brain Peak von Mises Stress
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Figure 9-24 VSR4 and EBM Helmet — Lateral Impact - Angular Acceleration Comparison
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Figure 9-25 VSR4 and EBM Helmet — Lateral Impact - Linear Acceleration

144



9.3.1 Lateral Impact 0° - von Mises Stresses

The peak stress level, on the posterior region of the brain, for the VSR4 and EBM
helmets is between 16.5 kPa to 18.6 kPa for the 0° lateral impact. However, the area of
peak stress for the EBM helmet is a very small area compared to the VSR4 helmet. The
next stress range of 14.5 kPa to 16.5 kPa is also relatively small for the EBM helmet

compared to the VSR4 helmet.

A significant point to mention with the 0° lateral impact as compared to the frontal,
posterior, and superior impacts is the overall high stress levels. The peak stresses for a 0°
frontal, posterior, or superior impact is in the range of 2.7 kPa to 3.9 kPa, 7.4 kPa to 8.6
kPa, and 3.8 kPa to 5.4 kPa respectively, which is much less than the lateral impact range
of 16.5 kPa to 18.6 kPa. This indicates a high level of angular acceleration for a 0°
lateral impact angle not observed in the other impacts. Angular acceleration for this

impact can be as high as 6,300 rad/sec? as compared to less than 1,000 rad/sec?.

Peak stresses for the lateral impact is primarily located on the lateral and poster regions

of the brain. Since the primary angular acceleration is due to rotating about the vertical

axis, the higher stresses follow the extreme distance from the impact location.
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Figure 9-26 VSR4 Helmet - Lateral Impact 0° - von Mises Stress
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Figure 9-27 EBM Helmet - Lateral Impact 0° - von Mises Stress
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9.3.2 Lateral Impact 30° - von Mises Stresses

Once the impact angle is increased to 30°, the area associated with peak stress level on
the brain with the VSR4 helmet increase significantly over the EBM helmet. Again, the
peak stress levels in both cases remain between 17.6 kPa to 19.6 kPa, however, the area

affected is higher with the VSR4 helmet as seen in Figure 9-28 and Figure 9-29.

The next lower level of 14.3 kPa to 17.6 kPa also shows a significant difference between
the two helmets. The area of the brain for the VSR4 helmet that has a stress level in this
range is much greater as compared to the EBM helmet. Overall, the area of mid-range
stress between 10.4 kPa to 14.5 kPa for the EBM helmet is much less compared to the

area of the VSR4 helmet.

The percent reduction in angular acceleration for the EBM helmet is approximately 30%
over that of the VSR4 helmet. Although this is less than the percent reduction of 60%
seem with a 0° side impact, the angular acceleration is still relatively high between 2700

rad/sec? to 3700 rad/sec?.
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Figure 9-28 VSR4 Helmet - Lateral Impact 30° - von Mises Stress
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Figure 9-29 EBM Helmet - Lateral Impact 30° - von Mises Stress
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9.3.3 Lateral Impact 45° - von Mises Stresses

Although, the amount of angular acceleration reduction for the 45° impact drops to
approximately 11% for EBM helmet, the presents of the shear layer provides a stress
reducing mechanism for the brain. As seen below, the stress reduction for the EBM
helmet is significantly better than the VSR4 helmet. The peak stress for the VSR4 helmet
is between 16.2 kPa to 18.0 kPa as compared to a small area of stress between 14.3 kPa

to 16.2 kPa for the EBM helmet.
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Figure 9-30 VSR4 Helmet - Lateral Impact 45° - von Mises Stress
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Figure 9-31 EBM Helmet - Lateral Impact 45° - von Mises Stress
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For the 45° impact results, a cross-section of the transverse plane and sagittal plane is
shown in Figure 9-32 and Figure 9-33. As seen in these stress contours, the highest stress
is located around the perimeter surface of the brain, were as, the central portion of the
brain is lower. With the peak stress levels being higher with the VSR4 helmet, the
central portion of the brain stresses are also higher. The central portion of the brain for
the VSR4 helmet are between 3.3 kPa to 5.1 kPa as compared to 1.4 kPa to 3.3 kPa for
the EBM helmet. In addition, the overall stress levels observed with the EBM helmet

cross-section are significantly lower.

Referring to the sagittal plane cross-section comparison in Figure 9-33, the lower stress
level between 1.4 kPa to 3.3 kPa carry over a much larger volume for the EBM helmet
compared to the VSR4 helmet. The stress levels in the brain at this range for the VSR4
helmet only covers a small region of the brain stem, whereas, the volume of the brain for

the EBM helmet carries through the entire vertical axis.
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Figure 9-32 VSR4 (left) and EBM (right) Helmet - Lateral Impact 45° - von Mises Stress

Traverse Plane Cross-Section
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Figure 9-33 VSR4 (left) and EBM (right) Helmet - Lateral Impact 45° - von Mises Stress Sagittal

Cross-Section
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9.3.4 Lateral Impact 0° - Principal Stresses

Principal stress comparison of the VSR4 and EBM helmets are shown in Figure 9-34 and
Figure 9-35. For the principal stresses, the peak stress shown in (red) indicates the region
in tension (opposite the site of impact), whereas, the peak stress shown in (blue) is
compression (site of impact). With the 0° lateral impact, the peak compressive stress
between -0.154 kPa to -0.196 kPa for the EBM helmet is smaller compared to the VSR4

helmet. This indicates the high amount of angular acceleration associated with this type

of impact.
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Figure 9-34 VSR4 Helmet - Lateral Impact 0° - Principal Stress
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Figure 9-35 EBM Helmet - Lateral Impact 0° - Principal Stress
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9.3.5 Lateral Impact 30° - Principal Stresses
The comparison conclusion for the 30° impact follows the same conclusion observed in
the 0° side impact where peak principal stress areas for the EBM helmet are less than the

VSR4 helmet. Peak principal stresses results are consistent between the two applications.
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Figure 9-36 VSR4 Helmet - Lateral Impact 30° - Principal Stress
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Figure 9-37 EBM Helmet - Lateral Impact 30° - Principal Stress
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9.3.6 Lateral Impact 45° - Principal Stresses
Once the angle of impact reaches 45°, the peak principal stresses drop slightly for
compression between -0.138 kPa to -0.178 kPa and between 0.138 kPa to 0.177 for

tension. Differences between the peak principal stresses for either helmet is insignificant.
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Figure 9-38 VSR4 Helmet - Lateral Impact 45° - Principal Stress

Contour Plat B Helmet_1_wo_Fiverglass_45_degree_Side_Visco_FOAM  Cortour Plot

Stress{P1 (majar)) pacase 1 Time = 7 0001e-003 : Frame 15 Stress(P1 (major))

Analysis system Analysis system

Simple Average Simple Average
1.446E-01

1: EBM_Helmet_1_wa_Fibsrglass_45_degree_Side_Visco_FOAM
Loadease 1 Time = 7.00012-003 : Frame 1§

1.446E-01
1.131E-01 1.131E-01
8.169E-02 8.169E-02
—5.023E-02 —35.023E-02
1.878E-02 1.878E-02
-1.268E-02 -1.268E-02
-4.413E-02 4.413E-02
-7.559E-02 -7.559E-02
=1.070E-01 =1.070E-01
-1.385E-01 -1.385E-01

¥ L4

) )

Z | X
r— <

Figure 9-39 EBM Helmet - Lateral Impact 45° - Principal Stress
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9.4 Posterior Impact

'ﬂ—-Fn

Figure 9-40 Posterior Impact Arrangement

The setup for the posterior impact simulation is shown in Figure 9-40. The head is
oriented in line with the global coordinate system and in line with the impacting surface.
With the posterior impact, there is no angle of incline associated with the helmet relative
to the impactor. This impact configuration coincides with the NOCSAE drop test
configuration for posterior impacts. The initial velocity of the head and helmet assembly

is 5.47 m/s traveling in the +Z axis, into the impactor plate.
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A comparison of the posterior impact results of the EBM and VSR4 helmets are shown in
Figure 9-41 through Figure 9-44. The linear impact acceleration for both helmets are
very close to each other for the 0° impact simulation, with the VSR4 helmet being
slightly higher than the EBM helmet. This difference follows the same logic for the fit

between the head and helmet explained in the frontal and side impacts.

With the posterior impact simulations, the relative percent reduction in angular
acceleration for the EBM helmet is consistent for 30° and 45°, whereas there is no real
reduction at 0°. For the posterior impact at 0°, it can be determined this impact is more in
line with the center of mass of the head as compared to the other impact configurations.
Although there is still some measurable angular acceleration, the amount is relatively

small.
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Figure 9-41 VSR4 and EBM Helmet — Posterior Impact — Impact Force on the Scalp at the Site of

Impact
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Figure 9-42 VSR4 and EBM Helmet - Posterior Impact — Brain Peak von Mises Stress
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Figure 9-43 VSR4 and EBM Helmet — Posterior Impact - Angular Acceleration Comparison
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Figure 9-44 VSR4 and EBM Helmet — Posterior Impact - Linear Acceleration
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9.4.1 Posterior Impact 0° - von Mises Stresses
The peak stress levels with the 0° posterior impact for the VSR4 and EBM helmets are
nearly identical and the differences are insignificant. The peak stress for both helmets is

between 7.4 kPa to 8.6 kPa.
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Figure 9-45 VSR4 Helmet - Posterior Impact 0° - von Mises Stress
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Figure 9-46 EBM Helmet - Posterior Impact 0° - von Mises Stress
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9.4.2 Posterior Impact 30° - von Mises Stresses

Once the impact angle is increased to 30°, the area associated with peak stress level on
the brain with the VSR4 helmet increases as compared to the EBM helmet. The peak
stress levels on the left side of the brain for the VSR4 helmet are between 13.5 kPa to
15.0 kPa, compared to the EBM helmet peak stress between 11.9 kPa to 13.5 kPa. The
area of stress between 11.9 kPa to 13.5 kPa for the VSR4 helmet also covers a larger area

compared to the EBM helmet.

The area of peak stress on the right side of the brain is also greater for the VSR4 helmet.
Stress levels on the right side of the brain for both helmets range between 7.3 kPa and 8.8

kPa, however, the area for the VSR4 helmet is much larger than the area for the EBM

helmet.
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Figure 9-47 VSR4 Helmet - Posterior Impact 30° - von Mises Stress
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Figure 9-48 EBM Helmet - Posterior Impact 30° - von Mises Stress
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9.4.3 Posterior Impact 45° - von Mises Stresses
The peak stress levels with the 0° posterior impact for the VSR4 and EBM helmets are
nearly identical and the differences are insignificant. The peak stress for both helmets is

between 14.7 kPa to 16.6 kPa.
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Figure 9-49 VSR4 Helmet - Posterior Impact 45° - von Mises Stress

Contour Plat 1: EBM_Helmet_1_wo_Fiberglass_45_degree_Posterior_Visco_FOAM Cantour Plot 1; EBM_Helmet_1_wo_Fibergiass_45_degree_Posterior_Visca_FOAM
Stress(vonMises) Loadcase 1 : Time = 550006003 : Frame 12 Stressivonhises) Loadcase 1 : Time = 550006003 : Frame 12
Analysis system Analysis system
Simple Average Simple Average
-02 -02
1.474E-02 1.474E-02
1.291E-02 1.291E-02
—1.109E-02 —1.109E-02
9.257E-03 9.257E-03
7.429E-03 7.429E-03
5.600E-03 5.600E-03
3.77T2E-03 3.772E-03
1.944E-03 1.944E-03
1.157E-04 1.157E-04
v Y
Il ]
x E3
< T

Figure 9-50 EBM Helmet - Posterior Impact 45° - von Mises Stress
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For the 45° impact results, a cross-section of the transverse plane and sagittal plane is
shown in Figure 9-51 and Figure 9-52. As seen in these stress contours, the highest stress
is located around the perimeter surface of the brain, were as, the central portion of the
brain is lower. Both helmet simulations show stress levels at the central portion of the
brain between 2.9 kPa to 4.6 kPa, however, the EBM helmet shows a slightly larger area

at this level.
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Figure 9-51 VSR4 (left) and EBM (right) Helmet - Posterior Impact 45° - von Mises Stress

Traverse Plane Cross-Section
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Figure 9-52 VSR4 (left) and EBM (right) Helmet - Posterior Impact 45° - von Mises Stress

Sagittal Cross-Section

163



9.4.4 Posterior Impact 0° - Principal Stresses

Principal stress comparison for the VSR4 and EBM helmets are shown in Figure 9-53
and Figure 9-54. For the principal stresses, the peak stress shown in (red) indicate tensile
stress (opposite the site of impact), whereas, the peak stress shown in (blue) is
compression (site of impact). Both the VSR4 and EBM helmet yield similar peak
compressive stress between -0.167 kPa to -0.214 kPa results, however the area of peak

compression for the EBM helmet is smaller as compared to the area of the VSR4 helmet.
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Figure 9-53 VSR4 Helmet - Posterior Impact 0° - Principal Stress
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Figure 9-54 EBM Helmet - Posterior Impact 0° - Principal Stress
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9.4.5 Posterior Impact 30° - Principal Stresses
Principal stresses for the 30° posterior impact yield similar results for both helmets.

Differences between the peak compressive and tensile stresses for either helmet is
insignificant.
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Figure 9-55 VSR4 Helmet - Posterior Impact 30° - Principal Stress
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Figure 9-56 EBM Helmet - Posterior Impact 30° - Principal Stress
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9.4.6 Posterior Impact 45° - Principal Stresses
Principal stresses for the 45° posterior impact yield similar results for both helmets as
seen with the 30° impact angle. Differences between the peak compressive and tensile

stresses for either helmet is insignificant.
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Figure 9-57 VSR4 Helmet - Posterior Impact 45° - Principal Stress
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Figure 9-58 EBM Helmet - Posterior Impact 45° - Principal Stress
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9.5 Superior Impact

The setup for the posterior impact simulation is shown in Figure 9-59. The head is
oriented in line with the global coordinate system and in line with the impacting surface.
With the superior impact, there is no angle of incline associated with the helmet relative
to the impactor. This impact configuration coincides with the NOCSAE drop test
configuration for superior impacts. The initial velocity of the head and helmet assembly

is 5.47 m/s traveling in the +Z axis, into the impactor plate.

-

Figure 9-59 Superior Impact Arrangement
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A comparison of the superior impact results of the EBM and VSR4 helmets are shown in
Figure 9-60 through Figure 9-63. The peak linear acceleration for both helmets are very

similar for the 0° impact simulation.

With the superior impact simulations, the angular acceleration for the EBM helmet
decreases from 0° to 45°., whereas the VSR4 helmet angular acceleration increases. This
increasing angular acceleration associated with the VSR4 helmet indicates the increased
rotational motion that is imposed on the helmet during impact simulations. Since the
impact vector is further oriented away from the center of mass of the head, the angular
acceleration transferred to the head is also increased. The EBM helmet shear layer helps
reduce this rotational motion to the brain which is also shown in the stress results for the

different impacts.
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Figure 9-60 VSR4 and EBM Helmet — Superior Impact — Impact Force on the Scalp at the Site of

Impact

Peak von Mises Stress (Brain)
Superior Impact

0° Impact 30° Impact 45° Impact
Impact Angle

=R e
N OB oo

m VSR4
mEBM

Peak von Mises (kPa)
'_\
o

O N B Oy

Figure 9-61 VSR4 and EBM Helmet - Superior Impact — Brain Peak von Mises Stress
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Figure 9-62 VSR4 and EBM Helmet — Superior Impact - Angular Acceleration Comparison
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Figure 9-63 VSR4 and EBM Helmet — Superior Impact - Linear Acceleration
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9.5.1 Superior Impact 0° - von Mises Stresses

The peak stress level, on the superior region of the brain, is between 6.4 kPa to 8.4 kPa
for the VSR4 helmet and between 4.4 kPa to 6.4 kPa for the EBM helmet. The area of
stress between 2.4 kPa to 4.4 kPa that outlines the surface of the brain is very similar in
both cases. The highest peak stress in both instances, however, is located in the brain

stem region, at a value greater than 15.0 kPa.
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Figure 9-64 VSR4 Helmet - Superior Impact 0° - von Mises Stress
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Figure 9-65 EBM Helmet - Superior Impact 0° - von Mises Stress
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9.5.2 Superior Impact 30° - von Mises Stresses

At an impact angle of 30°, the peak stress levels with the VSR4 helmet are between 13.7
kPa to 15.6 kPa compared to 8.1 kPa to 9.9 kPa for the EBM helmet. The area of low
stress between 0.5 kPa to 2.4 kPa is substantially larger with the EBM helmet as
compared to the VSR4 helmet. Although the angular acceleration levels are below 700
rad/sec?, the EBM helmet provides a 39% reduction, which helps reduce stress.
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Figure 9-66 VSR4 Helmet - Superior Impact 30° - von Mises Stress
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Figure 9-67 EBM Helmet - Superior Impact 30° - von Mises Stress
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9.5.3 Superior Impact 45° - von Mises Stresses

At an impact angle of 45°, the peak stress levels are between 16.5 kPa to 18.5 kPa with
the VSR4 helmet, as compared to the EBM helmet being between 8.1 kPa to 9.9 kPa.
The area of low stress between 0.4 kPa to 2.4 kPa is substantially larger with the EBM
helmet as compared to the VSR4 helmet. With the angular acceleration increasing to
below 1,000 rad/sec?, the EBM helmet provides a 70% reduction, which helps to

significantly reduce stress.
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Figure 9-68 VSR4 Helmet - Superior Impact 45° - von Mises Stress
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Figure 9-69 EBM Helmet - Superior Impact 45° - von Mises Stress
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For the 45° impact results, a cross-section for the transverse plane and sagittal plane is
shown. See Figure 9-70 and Figure 9-71. For the EBM helmet results, there is a large
region of stress between 0.4 kPa to 2.4 kPa as compared to the VSR4 helmet. The VSR4
helmet has a small region of stress between 4.4 kPa to 6.4 kPa and a region near the

frontal lobe between 8.4 kPa to 10.5 kPa, not observed with the EBM helmet.
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Figure 9-70 VSR4 (left) and EBM (right) Helmet - Superior Impact 45° - von Mises Stress

Traverse Plane Cross-Section
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Figure 9-71 VSR4 (left) and EBM (right) Helmet - Superior Impact 45° - von Mises Stress

Sagittal Cross-Section

174



9.5.4 Superior Impact 0° - Principal Stresses
Principal stress comparison of the VSR4 and EBM helmets are shown in Figure 9-72 and
Figure 9-73. The peak principal stress, indicating compression, shown in (blue), is at the

site of impact. Differences between the peak compressive and tensile stresses for either

helmet is insignificant.
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Figure 9-72 VSR4 Helmet - Superior Impact 0° - Principal Stress
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Figure 9-73 EBM Helmet - Superior Impact 0° - Principal Stress
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9.5.5 Superior Impact 30° - Principal Stresses

At an impact angle of 30°, the principal stresses for the EBM helmet are substantially
different that the VSR4 helmet. The peak compressive stress levels between -0.144 kPa
to -0.185 kPa are the same, however the peak area for the EBM is much larger. This is
due to the EBM helmet reducing the amount of rotation of the head and making the

impact more normal to the center of mass of the head.
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Figure 9-74 VSR4 Helmet - Superior Impact 30° - Principal Stress
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Figure 9-75 EBM Helmet - Superior Impact 30° - Principal Stress

176



9.5.6 Superior Impact 45° - Principal Stresses

At an impact angle of 45°, the principal stresses for the EBM helmet are still substantially
different that the VSR4 helmet, as seen with the 30° impact angle. The peak compressive
stress level, which is less than the 30° impact, is between -0.121 kPa to -0.162 kPa are the
same, however the peak area for the EBM is much larger. This is due to the EBM helmet
reducing the amount of rotation of the head and making the impact more normal to the

center of mass of the head.
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Figure 9-76 VSR4 Helmet - Superior Impact 45° - Principal Stress
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Figure 9-77 EBM Helmet - Superior Impact 45° - Principal Stress
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9.6 Summary of Comparison Results

9.6.1 Frontal Impact

One of the key features of the EBM helmet is its ability to reduce the amount of angular
acceleration to the brain. From Figure 9-78, it can be observed that as the angle of
impact is increased from 0° to 45°, the amount of angular acceleration in the brain also
increases. Having the angular acceleration increase once the angle of impact increases is
not a surprise. Since the NFL tolerance level for angular acceleration has been proposed
to be 5757 rad/sec? [27] the EBM helmet provides a mechanism to reduce the amount of
angular acceleration to a level that will not cause a Mild Traumatic Brain Injury (MTBI).
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Figure 9-78 VSR4 and EBM Helmet — Frontal Impact - Angular Acceleration Comparison
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The results from a 0° for both helmets yield similar results for angular acceleration,
whereas, the von Mises stress results for the EBM helmet are slightly higher. Since the
EBM has 3mm less padding in the front pad, due to the additional shear layer, this makes
sense that the peak stress levels result in a higher resulting value. The stresses are low

enough, however, that there is no risk of injury due to angular acceleration.
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Figure 9-79 VSR4 and EBM Helmet - Frontal Impact — Brain Peak von Mises Stress

Once the angle of impact reaches 30° and 45°, the angular acceleration approaches and
then surpasses the tolerance level of 5757 rad/sec? published as the injury tolerance due
to MTBI caused by angular accelerations [27]. The EBM helmet results show the
angular acceleration results are below the threshold, thereby reducing the peak von Mises

stresses.
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9.6.2 Lateral Impact

The results from the 0° and 15° impact angle simulations yield similar results for peak
von Mises stress with both helmets. What is different between the two is the area of peak
von Mises stress for each model being larger for the VSR4 helmet as compared to the
EBM helmet. The EBM helmet reduces the von Mises stress area significantly. The

areas can be observed in Figure 9-26 through Figure 9-31.

Another result observed with the 0° and 15° impact angles is the amount of angular
acceleration reduction seen with the EBM helmet. The percent reduction in angular
acceleration is 59% for a 0° impact angle and 30% for a 15° impact as seen in Figure
9-81. Once the angle of impact is increased to 45°, the percent reduction is reduced to

11%.
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Figure 9-80 VSR4 and EBM Helmet - Lateral Impact — Brain Peak von Mises Stress
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In general, the results observed with lateral impacts with football helmets, follows the
results observed with the head impact simulations in Chapter 2. The lateral impact, even
at an angle of 0°, results in a stress distribution globally around the brain. As was
concluded from the head impact simulations in Chapter 2, a so called normal impact
force vector is eccentric with respect to the center of mass of the head. This holds true

for the simulations with a head and helmet combination as well.
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Figure 9-81 VSR4 and EBM Helmet — Lateral Impact - Angular Acceleration Comparison
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9.6.3 Posterior Impact

Posterior impacts tend to follow a similar result as the frontal impact where the results for
a 0° are similar for both peak von Mises stress and angular acceleration. This type of
impact is close to the direction of the center of mass of the head which results in very

little angular movement. See Figure 9-82 and Figure 9-83.

With the angle of impact increasing to 30°, the shear layer in the EBM helmet helps to
provide a 17% reduction in angular acceleration in the brain. This helps reduce the peak

von Mises stress that is present.

Once the angle of impact increases to 45°, the results of the EBM compared to the VSR4
helmet are nearly identical. Although there is a reduction in angular acceleration with the
EBM helmet, the differences between the two helmets for von Mises stress peak values
and contour plots are insignificant. This can be a result of the amount of padding in the
posterior region of the helmet being thinner than all the other areas. The posterior
padding in the VSR4 helmet is 20mm and 17mm for the EBM helmet. This reduced
thickness for the EBM helmet ma play a role in the overall von Mises stress results, even

though providing a 20% reduction in angular acceleration.
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Figure 9-82 VSR4 and EBM Helmet - Posterior Impact — Brain Peak von Mises Stress
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Figure 9-83 VSR4 and EBM Helmet — Posterior Impact - Angular Acceleration Comparison
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9.6.4 Superior Impact

Superior impacts results for peak von Mises stress and angular acceleration shown in
Figure 9-84 and Figure 9-85 shows that as the angle of impact increases from 0° to 45°,
the percent reduction for angular acceleration provides a protecting feature for the human
brain against concussion. The percent reduction of angular acceleration increases as the

angle of impact increase, causing the peak von Mises stress to be reduced.
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Figure 9-84 VSR4 and EBM Helmet - Superior Impact — Brain Peak von Mises Stress

Although the angular acceleration levels are lower compared to those observed in the
other impact simulations, the amount of angular acceleration reduced helps reduce the

peak von Mises stress.
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Figure 9-85 VSR4 and EBM Helmet — Superior Impact - Angular Acceleration Comparison
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10 Summary

In the course of this study, a 3D finite element of the human head was used to evaluate
the efficacy of two football helmets. The commercially available VSR4 helmet by
Riddell is used as a comparison to the proposed Enhanced Bio-Morphic (EBM) helmet
designed at MTU. As part of this study, the all the components of the football helmet
were evaluated to determine their effectiveness once they were combined into a final

helmet configuration.

Also part of this study was to look at the development of the human head model. A 50
percentile human male finite element model was developed to further help understand
what effect a football helmet has on a player, before a helmet is actually used. The head
model developed here has provided an extreme insight into head injuries. It has been a

beneficial tool in studying the effect an impact has on the human head.

When looking through the results of the EBM helmet compared to the results of the
VSR4 helmet, the overall conclusion is that the helmet works. Not only is the EBM
helmet effective in reducing the angular acceleration in the human head, but it is also
effective in reducing the peak stress in the brain as a result of these impacts. The
additional mass shear layer adds to the EBM helmet and the reduced padding thickness

does not have a detrimental effect to the overall performance of the helmet.
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It has been shown, that the reduction in angular acceleration the EBM helmet provides is
an added benefit when looking at the stress results in the brain. In the majority of impact
simulations, the stress results are significantly reduced with the EBM helmet. In some
cases where the peak von Mises stress levels are the same between the two helmets, the
area contour plots show a much smaller are of peak stress associated with use of the EBM

helmet compared to the use of the VSR4 helmet.
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11 Recommendations for Future Work

There are a few suggestions to further the study of the EBM helmet presented in this

research. The following suggestions can be helpful for future research to further improve

the overall study of head impacts, with and without a helmet, and the results obtained in

the finite element analysis:

Given the results of the EBM helmet performance, it’s time to build a helmet and
start testing the technology.

Improve the model of the human head. With the advancement in computing, an
improved finite element model of the human head should be developed. This
could include a more detailed modeling effort of the brain as well. The head
model developed at MTU has been used for a number of studies and should
continue to be used for future studies.

Further validation of the human head finite element model. With more research
looking into the material properties of biological tissue, further studies can be
performed to improve the human head finite element model.

Develop a model of a youth human head. With more and more youths getting
involved in contact sports, the need for evaluating protective headgear is
paramount. Sports equipment that’s available for youth sports teams does not
appear to be as well built as it is for adults. Protection for youth players should

have a higher level of priority.
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