
Michigan Technological University Michigan Technological University 

Digital Commons @ Michigan Tech Digital Commons @ Michigan Tech 

Dissertations, Master's Theses and Master's Reports 

2017 

Computational Studies on Biomechanics of Concussion and on Computational Studies on Biomechanics of Concussion and on 

Efficacy of Football Helmets Efficacy of Football Helmets 

David Labyak 
Michigan Technological University, dmlabyak@mtu.edu 

Copyright 2017 David Labyak 

Recommended Citation Recommended Citation 
Labyak, David, "Computational Studies on Biomechanics of Concussion and on Efficacy of Football 
Helmets", Open Access Dissertation, Michigan Technological University, 2017. 
https://doi.org/10.37099/mtu.dc.etdr/345 

Follow this and additional works at: https://digitalcommons.mtu.edu/etdr 

 Part of the Applied Mechanics Commons, Biomechanics and Biotransport Commons, and the Other 
Mechanical Engineering Commons 

http://www.mtu.edu/
http://www.mtu.edu/
https://digitalcommons.mtu.edu/
https://digitalcommons.mtu.edu/etdr
https://doi.org/10.37099/mtu.dc.etdr/345
https://digitalcommons.mtu.edu/etdr?utm_source=digitalcommons.mtu.edu%2Fetdr%2F345&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/295?utm_source=digitalcommons.mtu.edu%2Fetdr%2F345&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/234?utm_source=digitalcommons.mtu.edu%2Fetdr%2F345&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/304?utm_source=digitalcommons.mtu.edu%2Fetdr%2F345&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/304?utm_source=digitalcommons.mtu.edu%2Fetdr%2F345&utm_medium=PDF&utm_campaign=PDFCoverPages


 

 

 

 

COMPUTATIONAL STUDIES ON BIOMECHANICS OF CONCUSSION AND ON 

EFFICACY OF FOOTBALL HELMETS 

 

By 

David M. Labyak 

 

 

 

A DISSERTATION 

Submitted in partial fulfillment of the requirements for the degree of 

DOCTOR OF PHILOSOPHY 

In Mechanical Engineering-Engineering Mechanics 

 

MICHIGAN TECHNOLOGICAL UNIVERSITY 

2017 

 

© 2017 David M. Labyak 

 



This dissertation has been approved in partial fulfillment of the requirements for the 

Degree of DOCTOR OF PHILOSOPHY in Mechanical Engineering-Engineering 

Mechanics. 

Department of Mechanical Engineering-Engineering Mechanics 

Dissertation Advisor: Dr Gopal Jayaraman  

Committee Member: Dr. Allan Struthers 

Committee Member: Dr. Ibrahim Miskioglu 

Committee Member: Dr. Mahesh Gupta 

Department Chair: Dr. William Predebon



iii 

Table of Contents 

Table of Figures ................................................................................................................. x 

Tables ............................................................................................................................... xx 

Acknowledgements ......................................................................................................... xxi 

Abstract .......................................................................................................................... xxii 

1 Introduction ................................................................................................................ 1 

1.1 Introduction ......................................................................................................... 1 

1.2 Problem Statement .............................................................................................. 2 

1.3 Objective ............................................................................................................. 4 

2 Head Impacts on the Football Field ........................................................................... 5 

2.1 Introduction ......................................................................................................... 5 

2.2 Objective ............................................................................................................. 6 

2.3 Relevance of Research ........................................................................................ 6 

2.4 Methods and Materials Used to Achieve Results................................................ 7 

2.5 Development of 3D FE model ............................................................................ 7 

2.6 Validation of the 3D FE Model ........................................................................... 9 

2.7 Head Impact Simulations .................................................................................. 16 

2.7.1 Injury Severity Scale .................................................................................. 18 



 

 

iv 

 

2.8 Interpretation of Results from Head Impact Simulations.................................. 19 

2.9 Frontal Impact ................................................................................................... 19 

2.10 Lateral Impact ................................................................................................... 26 

2.11 Posterior Impact ................................................................................................ 32 

2.12 Superior Impact ................................................................................................. 38 

2.13 Conclusion For Head Impacts ........................................................................... 43 

2.13.1 Frontal Impact – Shear Stress Risk Factor ................................................. 43 

2.13.2 Side Impact – Shear Stress Risk Factor ..................................................... 43 

2.13.3 Posterior Impact – Shear Stress Risk Factor .............................................. 44 

2.13.4 Superior Impact – Shear Stress Risk Factor .............................................. 44 

2.13.5 Frontal Impacts – Peak Pressure and Peak Shear Stress ............................ 45 

2.13.6 Side Impacts – Peak Pressure and Peak Shear Stress ................................ 45 

2.13.7 Posterior Impacts – Peak Pressure and Peak Shear Stress ......................... 45 

2.13.8 Superior Impacts – Peak Pressure and Peak Shear Stress .......................... 46 

3 TBI Dynamics due to Head Impacts on the Football Field ..................................... 47 

3.1 Objective ........................................................................................................... 47 

3.2 Relevance of Research ...................................................................................... 47 

3.3 Methods and Materials Used to Achieve Results.............................................. 48 

3.4 NOCSAE Drop Tests ........................................................................................ 48 



 

 

v 

 

3.5 Analytical Procedures to Determine Impact Pressure ....................................... 52 

3.6 Simplified Analytical Procedure to Determine Rotational Acceleration .......... 55 

3.7 Relationship between Linear and Rotational Acceleration ............................... 57 

4 EBM Helmet Impact Energy Attenuator ................................................................. 64 

4.1 Objective ........................................................................................................... 64 

4.2 Relevance of Research ...................................................................................... 65 

4.3 Methods and Material Used to Achieve Results ............................................... 66 

4.4 Commercial Helmet IEA System ...................................................................... 68 

4.4.1 Components of the Commercial Football Helmet ..................................... 68 

4.4.2 Impact Results ............................................................................................ 69 

4.5 EBM Helmet IEA Model .................................................................................. 72 

4.5.1 Components ............................................................................................... 72 

4.5.2 Material Properties ..................................................................................... 74 

4.5.3 Impact Results ............................................................................................ 75 

4.6 Maximized EBM Helmet IEA System .............................................................. 84 

4.7 Final EBM IEA System..................................................................................... 86 

5 Concept and Configuration of VSR4 Football Helmet by Riddell .......................... 88 

5.1 Objective ........................................................................................................... 89 

5.2 Relevance of Research ...................................................................................... 89 



 

 

vi 

 

5.3 Methods and Materials Used to Achieve Results.............................................. 89 

5.4 Finite Element Modeling of the Riddell VSR4 Football Helmet ...................... 90 

5.5 Validation of the Helmet Model........................................................................ 94 

5.6 Impact Validation .............................................................................................. 99 

6 VSR4 by Riddell Football Helmet Fitted onto a Human Head Model by Finite 

Element Modeling .......................................................................................................... 100 

6.1 Helmet and Human Head Model ..................................................................... 102 

6.2 Impact Simulation and Boundary Conditions ................................................. 103 

6.2.1 Frontal Impact Simulation ....................................................................... 105 

6.2.2 Lateral Impact Simulation........................................................................ 106 

6.2.3 Posterior Impact Simulation .................................................................... 107 

6.2.4 Superior Impact Simulation ..................................................................... 108 

7 Concept and Configuration of the EBM Helmet Fitted onto a Human Head Model 

by Finite Element Modeling .......................................................................................... 110 

7.1 Design Methodology of the Enhanced Bio-Morphic Football Helmet ........... 110 

8 EBM Helmet Fitted onto a Human Head Model by Finite Element Method ........ 116 

8.1 EBM Finite Element Model ............................................................................ 117 

8.2 Shear Layer – Sorbothane Material ................................................................. 120 

8.3 Material Properties of the EBM Helmet Model .............................................. 121 



 

 

vii 

 

8.4 Impact Simulation and Boundary Conditions ................................................. 123 

9 VSR4 and EBM Helmet Comparison .................................................................... 125 

9.1 Angular Acceleration Calculation ................................................................... 125 

9.2 Frontal Impact ................................................................................................. 127 

9.2.1 Frontal Impact 0° - von Mises Stresses ................................................... 131 

9.2.2 Frontal Impact 30° - von Mises Stresses ................................................. 132 

9.2.3 Frontal Impact 45° - von Mises Stresses ................................................. 134 

9.2.4 Frontal Impact 0° - Principal Stresses ...................................................... 137 

9.2.5 Frontal Impact 30° - Principal Stresses .................................................... 138 

9.2.6 Frontal Impact 45° - Principal Stresses .................................................... 139 

9.3 Lateral Impact ................................................................................................. 140 

9.3.1 Lateral Impact 0° - von Mises Stresses .................................................... 145 

9.3.2 Lateral Impact 30° - von Mises Stresses .................................................. 147 

9.3.3 Lateral Impact 45° - von Mises Stresses .................................................. 149 

9.3.4 Lateral Impact 0° - Principal Stresses ...................................................... 152 

9.3.5 Lateral Impact 30° - Principal Stresses .................................................... 153 

9.3.6 Lateral Impact 45° - Principal Stresses .................................................... 154 

9.4 Posterior Impact .............................................................................................. 155 

9.4.1 Posterior Impact 0° - von Mises Stresses ................................................. 159 



 

 

viii 

 

9.4.2 Posterior Impact 30° - von Mises Stresses ............................................... 160 

9.4.3 Posterior Impact 45° - von Mises Stresses ............................................... 162 

9.4.4 Posterior Impact 0° - Principal Stresses ................................................... 164 

9.4.5 Posterior Impact 30° - Principal Stresses ................................................. 165 

9.4.6 Posterior Impact 45° - Principal Stresses ................................................. 166 

9.5 Superior Impact ............................................................................................... 167 

9.5.1 Superior Impact 0° - von Mises Stresses ................................................. 171 

9.5.2 Superior Impact 30° - von Mises Stresses ............................................... 172 

9.5.3 Superior Impact 45° - von Mises Stresses ............................................... 173 

9.5.4 Superior Impact 0° - Principal Stresses ................................................... 175 

9.5.5 Superior Impact 30° - Principal Stresses ................................................. 176 

9.5.6 Superior Impact 45° - Principal Stresses ................................................. 177 

9.6 Summary of Comparison Results .................................................................... 178 

9.6.1 Frontal Impact .......................................................................................... 178 

9.6.2 Lateral Impact .......................................................................................... 180 

9.6.3 Posterior Impact ....................................................................................... 182 

9.6.4 Superior Impact ........................................................................................ 184 

10 Summary ................................................................................................................ 186 

11 Recommendations for Future Work....................................................................... 188 



 

 

ix 

 

12 References .............................................................................................................. 189 

13 Appendix ................................................................................................................ 194 

 

  



 

 

x 

 

Table of Figures 

Figure 2-1 Finite Element Mesh of the Skull (isometric view) .......................................... 8 

Figure 2-2 Head Impact - Validation Setup ........................................................................ 9 

Figure 2-3 Impact Force Time History – Validation Model ............................................. 10 

Figure 2-4 Coup Pressure Time History ........................................................................... 11 

Figure 2-5 Contrecoup Time History ................................................................................ 12 

Figure 2-6 Left Parietal Pressure Time History ................................................................ 13 

Figure 2-7 Occipital #1 Pressure Time History ................................................................ 13 

Figure 2-8 Occipital #2 Pressure Time History ................................................................ 14 

Figure 2-9 Linear Head Acceleration Time History ......................................................... 15 

Figure 2-10 Frontal, Lateral, and Superior Impact Angles ............................................... 17 

Figure 2-11 Posterior Impact Angles ................................................................................ 17 

Figure 2-12 Frontal Impact 0º - Pressure Distribution ...................................................... 20 

Figure 2-13 Frontal Impact 0º - von Mises Stress Distribution ........................................ 20 

Figure 2-14 Frontal Impact 15º - Pressure Distribution .................................................... 21 

Figure 2-15 Frontal Impact 15º - von Mises Stress Distribution ...................................... 22 

Figure 2-16 Frontal Impact 30º - Pressure Distribution .................................................... 22 

Figure 2-17 Frontal Impact 30º - von Mises Stress Distribution ...................................... 23 

Figure 2-18 Frontal Impact 45º - Pressure Distribution .................................................... 24 

Figure 2-19 Frontal Impact 45º - von Mises Stress Distribution ...................................... 24 

Figure 2-20 Frontal Impact 45º, Cross-Section View ....................................................... 25 

Figure 2-21 Lateral Impact 0º - Pressure Distribution ...................................................... 27 



 

 

xi 

 

Figure 2-22 Lateral Impact 0º - von Mises Stress Distribution ........................................ 27 

Figure 2-23 Lateral Impact 15º - Pressure Distribution .................................................... 28 

Figure 2-24 Lateral Impact 15º - von Mises Stress Distribution ...................................... 28 

Figure 2-25 Lateral Impact 30º - Pressure Distribution .................................................... 29 

Figure 2-26 Lateral Impact 30º - von Mises Stress Distribution ...................................... 29 

Figure 2-27 Lateral Impact 45º - Pressure Distribution .................................................... 30 

Figure 2-28 Lateral Impact 45º - von Mises Stress Distribution ...................................... 30 

Figure 2-29 Lateral Impact 45º, Cross-Section View ....................................................... 31 

Figure 2-30 Posterior Impact 0º - Pressure Distribution ................................................... 33 

Figure 2-31 Posterior Impact 0º - von Mises Stress Distribution ..................................... 33 

Figure 2-32 Posterior Impact 15º - Pressure Distribution ................................................. 34 

Figure 2-33 Posterior Impact 15º - von Mises Stress Distribution ................................... 35 

Figure 2-34 Posterior Impact 30º - Pressure Distribution ................................................. 35 

Figure 2-35 Posterior Impact 30º - von Mises Stress Distribution ................................... 36 

Figure 2-36 Posterior Impact 45º - Pressure Distribution ................................................. 36 

Figure 2-37 Posterior Impact 45º - von Mises Stress Distribution ................................... 37 

Figure 2-38 Posterior Impact 45º, Cross-Section View .................................................... 37 

Figure 2-39 Superior Impact 0º - Pressure Distribution ................................................... 38 

Figure 2-40 Superior Impact 0º - von Mises Stress Distribution ...................................... 39 

Figure 2-41 Superior Impact 15º - Pressure Distribution ................................................. 40 

Figure 2-42 Superior Impact 15º - von Mises Stress Distribution .................................... 40 

Figure 2-43 Superior Impact 30º - Pressure Distribution ................................................. 41 



 

 

xii 

 

Figure 2-44 Superior Impact 30º - von Mises Stress Distribution .................................... 41 

Figure 2-45 Superior Impact 45º - Pressure Distribution ................................................. 42 

Figure 2-46 Superior Impact 45º - von Mises Stress Distribution .................................... 43 

Figure 3-1 NOCSAE Standard Drop Tester at MTU based upon NOCSAE Standard Drop 

Test Equipment [9] ........................................................................................................... 49 

Figure 3-2 Representation of Fujifilm Prescale that is available from Sensor Products Inc. 

[10] .................................................................................................................................... 50 

Figure 3-3 Exposed Fujifilm from 2 Foot Drop - Experimental Results [11] .................. 51 

Figure 3-4 Digitized Pressure Results of Exposed Fujifilm [11] ...................................... 51 

Figure 3-5 Impact Pressure Areas on the Frontal (A), Front Boss (B), Lateral (C), and 

Posterior (D) Regions of the FE Model [11] .................................................................... 53 

Figure 3-6 Spring Element Added to Base of Skull [11] .................................................. 54 

Figure 3-7 Remote Measurement Point Relative to the Base of the Skull [11] ................ 55 

Figure 3-8 Frontal Impact Acceleration Results [11] ....................................................... 58 

Figure 3-9 Front Boss (45° to frontal) Impact Acceleration Results [11] ........................ 59 

Figure 3-10 Lateral Impact Acceleration Results [11] ..................................................... 60 

Figure 3-11 Posterior Impact Acceleration Results [11] .................................................. 60 

Figure 4-1 Impact Models – Commercial Helmet IEA Model (left) and EBM Helmet IEA 

Model (right) ..................................................................................................................... 66 

Figure 4-2 Strain Energy Absorption of the Commercial Helmet IEA Polycarbonate Shell

........................................................................................................................................... 69 

Figure 4-3 Strain Energy Absorption of the Commercial Helmet IEA Foam Padding .... 70 



 

 

xiii 

 

Figure 4-4 Deflection Results of Commercial Helmet IEA FE Model ............................ 71 

Figure 4-5 EBM Helmet IEA Cross-Section .................................................................... 72 

Figure 4-6 Strain Energy Absorption of Polycarbonate Shell with Various Inner Shell 

Layers ................................................................................................................................ 76 

Figure 4-7 Peak Strain Energy of Polycarbonate Shell with Various Inner Shell Layers 77 

Figure 4-8 Strain Energy Absorption of Sorbothane® Layer ............................................ 78 

Figure 4-9 Peak Strain Energy for Sorbothane® Layer with Various Inner Shell Layers 79 

Figure 4-10 Strain Energy Absorption of Various Inner Shell Layers ............................. 79 

Figure 4-11 Peak Strain Energy for Various Inner Shell Layers ...................................... 80 

Figure 4-12 Strain Energy Absorption for Foam Padding with Various Inner Shell Layers

........................................................................................................................................... 81 

Figure 4-13 Peak Strain Energy for Foam Padding with Various Inner Shell Layers ...... 82 

Figure 4-14 Peak Impactor Displacement of EBM IEA with Various Inner Shell Layers83 

Figure 4-15 Peak Stress Values of Various Inner Shell Layers ........................................ 84 

Figure 5-1 Geometry of VSR-4 Helmet Shell .................................................................. 90 

Figure 5-2 VSR-4 Football Helmet by Riddell without Facemask .................................. 92 

Figure 5-3 VSR-4 Football Helmet by Riddell Bottom View .......................................... 93 

Figure 5-4 VSR-4 Football Helmet by Riddell Cross-Sectional View ............................. 94 

Figure 5-5 NOCSAE Standard Drop Tester at MTU for Football Helmet Testing based 

upon NOCSAE Standard Drop Test Equipment [9] ......................................................... 96 

Figure 5-6 Stress-Strain Energy Liner Behavior .............................................................. 99 

Figure 6-1 VSR-4 Football Helmet by Riddell without facemask ................................. 102 



 

 

xiv 

 

Figure 6-2 VSR-4 Football Helmet and Human Head Model Assembly ....................... 103 

Figure 6-3 Frontal Impact 0° Simulation Model ............................................................ 105 

Figure 6-4 Frontal Impact 0° Linear Head Acceleration ................................................ 105 

Figure 6-5 Lateral Impact 0° Simulation Model ............................................................. 106 

Figure 6-6 Lateral Impact 0° Linear Head Acceleration ................................................ 106 

Figure 6-7 Posterior Impact 0° Simulation Model .......................................................... 107 

Figure 6-8 Posterior Impact 0° Linear Head Acceleration ............................................. 107 

Figure 6-9 Superior Impact 0° Simulation Model .......................................................... 108 

Figure 6-10 Superior Impact 0° Linear Head Acceleration ............................................ 109 

Figure 8-1 EBM Football Helmet without Facemask ..................................................... 118 

Figure 8-2 EBM Football Helmet Bottom View ............................................................ 119 

Figure 8-3 EBM Football Helmet Cross-Sectional View ............................................... 120 

Figure 8-4 EBM Football Helmet and Human Head Model Assembly.......................... 122 

Figure 8-5 Frontal (A), Lateral (B), Posterior (C), and Superior (D) Impact Models .... 124 

Figure 9-1 Angular Acceleration Calculation Methodology .......................................... 126 

Figure 9-2 Frontal Impact Arrangement ......................................................................... 127 

Figure 9-3 VSR4 and EBM Helmet – Frontal Impact –  Impact Force on the Scalp at the 

Site of Impact .................................................................................................................. 129 

Figure 9-4 VSR4 and EBM Helmet - Frontal Impact – Brain Peak von Mises Stress ... 129 

Figure 9-5 VSR4 and EBM Helmet – Frontal Impact - Angular Acceleration Comparison

......................................................................................................................................... 130 

Figure 9-6 VSR4 and EBM Helmet – Frontal Impact - Linear Acceleration ................. 130 



 

 

xv 

 

Figure 9-7 VSR4 Helmet - Frontal Impact 0° - von Mises Stress .................................. 131 

Figure 9-8 EBM Helmet - Frontal Impact 0° - von Mises Stress ................................... 131 

Figure 9-9 VSR4 Helmet - Frontal Impact 30° - von Mises Stress ................................ 132 

Figure 9-10 EBM Helmet - Frontal Impact 30° - von Mises Stress ............................... 133 

Figure 9-11 VSR4 Helmet - Frontal Impact 45° - von Mises Stress .............................. 135 

Figure 9-12 EBM Helmet - Frontal Impact 45° - von Mises Stress ............................... 135 

Figure 9-13 VSR4 (left) and EBM (right) Helmet - Frontal Impact 45° - von Mises Stress 

Traverse Plane Cross-Section ......................................................................................... 136 

Figure 9-14 VSR4 (left) and EBM (right) Helmet - Frontal Impact 45° - von Mises Stress 

Sagittal Cross-Section ..................................................................................................... 136 

Figure 9-15 VSR4 Helmet - Frontal Impact 0° - Principal Stress .................................. 137 

Figure 9-16 EBM Helmet - Frontal Impact 0° - Principal Stress ................................... 137 

Figure 9-17 VSR4 Helmet - Frontal Impact 30° - Principal Stress ................................ 138 

Figure 9-18 EBM Helmet - Frontal Impact 30° - Principal Stress ................................. 138 

Figure 9-19 VSR4 Helmet - Frontal Impact 45° - Principal Stress ................................ 139 

Figure 9-20 EBM Helmet - Frontal Impact 45° - Principal Stress ................................. 139 

Figure 9-21 Lateral Impact Arrangement ....................................................................... 140 

Figure 9-22 VSR4 and EBM Helmet – Lateral Impact – Impact Force on the Scalp at the 

Site of Impact .................................................................................................................. 142 

Figure 9-23 VSR4 and EBM Helmet - Lateral Impact – Brain Peak von Mises Stress . 143 

Figure 9-24 VSR4 and EBM Helmet – Lateral Impact - Angular Acceleration 

Comparison ..................................................................................................................... 143 



 

 

xvi 

 

Figure 9-25 VSR4 and EBM Helmet – Lateral Impact - Linear Acceleration ............... 144 

Figure 9-26 VSR4 Helmet - Lateral Impact 0° - von Mises Stress ................................ 146 

Figure 9-27 EBM Helmet - Lateral Impact 0° - von Mises Stress ................................. 146 

Figure 9-28 VSR4 Helmet - Lateral Impact 30° - von Mises Stress .............................. 147 

Figure 9-29 EBM Helmet - Lateral Impact 30° - von Mises Stress ............................... 148 

Figure 9-30 VSR4 Helmet - Lateral Impact 45° - von Mises Stress .............................. 149 

Figure 9-31 EBM Helmet - Lateral Impact 45° - von Mises Stress ............................... 149 

Figure 9-32 VSR4 (left) and EBM (right) Helmet - Lateral Impact 45° - von Mises Stress 

Traverse Plane Cross-Section ......................................................................................... 150 

Figure 9-33 VSR4 (left) and EBM (right) Helmet - Lateral Impact 45° - von Mises Stress 

Sagittal Cross-Section ..................................................................................................... 151 

Figure 9-34 VSR4 Helmet - Lateral Impact 0° - Principal Stress................................... 152 

Figure 9-35 EBM Helmet - Lateral Impact 0° - Principal Stress .................................... 152 

Figure 9-36 VSR4 Helmet - Lateral Impact 30° - Principal Stress ................................ 153 

Figure 9-37 EBM Helmet - Lateral Impact 30° - Principal Stress .................................. 153 

Figure 9-38 VSR4 Helmet - Lateral Impact 45° - Principal Stress ................................ 154 

Figure 9-39 EBM Helmet - Lateral Impact 45° - Principal Stress .................................. 154 

Figure 9-40 Posterior Impact Arrangement .................................................................... 155 

Figure 9-41 VSR4 and EBM Helmet – Posterior Impact – Impact Force on the Scalp at 

the Site of Impact ............................................................................................................ 156 

Figure 9-42 VSR4 and EBM Helmet - Posterior Impact – Brain Peak von Mises Stress

......................................................................................................................................... 157 



 

 

xvii 

 

Figure 9-43 VSR4 and EBM Helmet – Posterior Impact - Angular Acceleration 

Comparison ..................................................................................................................... 157 

Figure 9-44 VSR4 and EBM Helmet – Posterior Impact - Linear Acceleration ............ 158 

Figure 9-45 VSR4 Helmet - Posterior Impact 0° - von Mises Stress ............................. 159 

Figure 9-46 EBM Helmet - Posterior Impact 0° - von Mises Stress .............................. 159 

Figure 9-47 VSR4 Helmet - Posterior Impact 30° - von Mises Stress ........................... 160 

Figure 9-48 EBM Helmet - Posterior Impact 30° - von Mises Stress ............................ 161 

Figure 9-49 VSR4 Helmet - Posterior Impact 45° - von Mises Stress ........................... 162 

Figure 9-50 EBM Helmet - Posterior Impact 45° - von Mises Stress ............................ 162 

Figure 9-51 VSR4 (left) and EBM (right) Helmet - Posterior Impact 45° - von Mises 

Stress Traverse Plane Cross-Section ............................................................................... 163 

Figure 9-52 VSR4 (left) and EBM (right) Helmet - Posterior Impact 45° - von Mises 

Stress Sagittal Cross-Section .......................................................................................... 163 

Figure 9-53 VSR4 Helmet - Posterior Impact 0° - Principal Stress ............................... 164 

Figure 9-54 EBM Helmet - Posterior Impact 0° - Principal Stress ................................ 164 

Figure 9-55 VSR4 Helmet - Posterior Impact 30° - Principal Stress ............................. 165 

Figure 9-56 EBM Helmet - Posterior Impact 30° - Principal Stress .............................. 165 

Figure 9-57 VSR4 Helmet - Posterior Impact 45° - Principal Stress ............................. 166 

Figure 9-58 EBM Helmet - Posterior Impact 45° - Principal Stress .............................. 166 

Figure 9-59 Superior Impact Arrangement ..................................................................... 167 

Figure 9-60 VSR4 and EBM Helmet – Superior Impact – Impact Force on the Scalp at 

the Site of Impact ............................................................................................................ 169 



 

 

xviii 

 

Figure 9-61 VSR4 and EBM Helmet - Superior Impact – Brain Peak von Mises Stress 169 

Figure 9-62 VSR4 and EBM Helmet – Superior Impact - Angular Acceleration 

Comparison ..................................................................................................................... 170 

Figure 9-63 VSR4 and EBM Helmet – Superior Impact - Linear Acceleration ............. 170 

Figure 9-64 VSR4 Helmet - Superior Impact 0° - von Mises Stress .............................. 171 

Figure 9-65 EBM Helmet - Superior Impact 0° - von Mises Stress ............................... 171 

Figure 9-66 VSR4 Helmet - Superior Impact 30° - von Mises Stress ............................ 172 

Figure 9-67 EBM Helmet - Superior Impact 30° - von Mises Stress ............................. 172 

Figure 9-68 VSR4 Helmet - Superior Impact 45° - von Mises Stress ............................ 173 

Figure 9-69 EBM Helmet - Superior Impact 45° - von Mises Stress ............................. 173 

Figure 9-70 VSR4 (left) and EBM (right) Helmet - Superior Impact 45° - von Mises 

Stress Traverse Plane Cross-Section ............................................................................... 174 

Figure 9-71 VSR4 (left) and EBM (right) Helmet - Superior Impact 45° - von Mises 

Stress Sagittal Cross-Section .......................................................................................... 174 

Figure 9-72 VSR4 Helmet - Superior Impact 0° - Principal Stress ................................ 175 

Figure 9-73 EBM Helmet - Superior Impact 0° - Principal Stress ................................. 175 

Figure 9-74 VSR4 Helmet - Superior Impact 30° - Principal Stress .............................. 176 

Figure 9-75 EBM Helmet - Superior Impact 30° - Principal Stress ............................... 176 

Figure 9-76 VSR4 Helmet - Superior Impact 45° - Principal Stress .............................. 177 

Figure 9-77 EBM Helmet - Superior Impact 45° - Principal Stress ............................... 177 

Figure 9-78 VSR4 and EBM Helmet – Frontal Impact - Angular Acceleration 

Comparison ..................................................................................................................... 178 



 

 

xix 

 

Figure 9-79 VSR4 and EBM Helmet - Frontal Impact – Brain Peak von Mises Stress . 179 

Figure 9-80 VSR4 and EBM Helmet - Lateral Impact – Brain Peak von Mises Stress . 180 

Figure 9-81 VSR4 and EBM Helmet – Lateral Impact - Angular Acceleration 

Comparison ..................................................................................................................... 181 

Figure 9-82 VSR4 and EBM Helmet - Posterior Impact – Brain Peak von Mises Stress

......................................................................................................................................... 183 

Figure 9-83 VSR4 and EBM Helmet – Posterior Impact - Angular Acceleration 

Comparison ..................................................................................................................... 183 

Figure 9-84 VSR4 and EBM Helmet - Superior Impact – Brain Peak von Mises Stress 184 

Figure 9-85 VSR4 and EBM Helmet – Superior Impact - Angular Acceleration 

Comparison ..................................................................................................................... 185 

 
 
  



 

 

xx 

 

Tables 

Table 2-1 Material Properties – FEM Head Model .......................................................... 15 

Table 3-1 TBI Tolerance Results [11] .............................................................................. 62 

Table 4-1 Elastic Material Properties of a Commercial Helmet ....................................... 69 

Table 4-2 Elastic Material Properties of EBM Helmet IEA ............................................. 74 

Table 5-1 VSR-4 Football Helmet FE Model Breakdown ............................................... 91 

Table 5-2 VSR-4 Football Helmet Material Properties .................................................... 97 

Table 6-1 VSR-4 Football Helmet FE Model Breakdown ............................................. 100 

Table 6-2 Impactor Material Properties .......................................................................... 104 

Table 8-1 EBM Football Helmet FE Model Breakdown ................................................ 117 

Table 8-2 EBM Football Helmet Material Properties ..................................................... 122 

Table 8-3 Impactor Material Properties .......................................................................... 123 

 
  



 

 

xxi 

 

Acknowledgements 

First and foremost I would like to thank my wife, Elissa, for her unwavering support of 

me throughout this entire doctoral process.  You are my best friend.  Thank you for 

taking care of all the aspects of our lives that I had to pass off.  You have encouraged me 

when I needed it and pushed me when I needed pushing.  My only wish is that I can fully 

express my appreciation. 

To our children, Madison, Marissa, and Evan: You three have been the most patient with 

me throughout my studies.  It took longer than I hoped, but the time we’ve spent together 

is priceless. 

I would like to thank my mother, Nancy Labyak. Thank you for understanding the time 

commitment I needed to devote to this work over the years.  

I would like to thank my late father, John Labyak.  His frankness and demeanor have 

influenced who I am today.  I only wish he was still around to see me complete my work.  

I would like to thank my father in-law and mother in-law, Bob and Bonnie Johnson, for 

the encouragement and support they have given to me and my family during the past 

years.  Your help has been invaluable. 

I am so grateful to my advisor Dr. Gopal Jayaraman.  Dr. Jay has been incredibly 

supportive of my work.  You have been understanding beyond belief.  Without your 

encouragement and guidance, I don’t think I could have completed this work. 

Thanks to the rest of my defense committee, Dr. Allan Struthers, Dr, Ibrahim Miskioglu, 

and Dr. Mahesh Gupta for being so patient with the completion of my work.  I have great 

respect for all of you.  The classes you’ve taught, the feedback you’ve given, and support 

you’ve shown me has been an inspiration for me. 

 

 



 

 

xxii 

 

Abstract 

Football helmets have been used for many years to prevent head injuries to players.  Over 

the years, the helmet design has evolved from a crude leather head covering to the more 

recent form fitting helmets that are seen today.  The one design feature that has been 

common in the majority of all helmets is a hard polycarbonate shell with a foam cushion 

padding.  The main goal of the padding layer was to reduce the amount of linear 

acceleration during an impact event.  The one feature that has been overlooked is how 

stiff the padding is in rotation. 

 

The purpose of this work is to evaluate how well the Enhanced Bio-Morphic (EBM) 

football helmet performs as compared to a commercially available football helmet.  The 

EBM helmet is designed to capture the existing features of the current football helmet, 

but to also include a shear layer between the polycarbonate shell and foam padding.  The 

shear layer is included to help reduce the severity of angular acceleration that is imposed 

on the human head that is responsible for concussions. 

 

This dissertation presents the makeup of the EBM helmet, the rational for selecting the 

components of the EBM IEA system, and a comparison of the predicted performance of 

the EBM as compared to a commercially available VSR4 helmet by Riddell.  The results 

will show the EBM helmet has the ability to reduce the angular acceleration for an 

oblique impact, thereby reducing the amount of stress in the human brain.  This stress 

reduction has the ability to help reduce the possibility of concussion more commonly 
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seen in sports related injuries.  This finding is an important discovery in helmet 

technology.  Although the technology studied here is focuses on football helmets, it is not 

by any means limited to football helmets.  This can be used throughout different sports as 

well as throughout other applications where helmets are used. 
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1 Introduction 

1.1 Introduction 

Over the past decade, from 2001 to 2010, the amount of Traumatic Brain Injury (TBI) 

related emergency department visits have increased by 70%.  It is estimated that 

approximately 2.8 million Americans sustained a Traumatic Brain Injury in 2013.  

Traumatic Brain Injury (TBI) can range from a mild injury that involves a brief change in 

consciousness or mental status, to a severe injury that can result in an extended period of 

unconsciousness or possibly memory loss [1].   

 

As a result of these injuries, approximately 282,000 people are hospitalized and survive, 

80,000 people experience the onset of long-term disability, and 50,000 people die.  

Studies indicate that males are about three times as likely to incur TBI as compared to 

females, and persons 15 to 24 years of age are at highest risk of TBI.  In 2012 alone, 

approximately 329,290 children (ages 19 and younger) were diagnosed with a concussion 

or TBI for sports and recreation-related related injuries [2].  Consequences of TBI are 

problems with memory, judgment, mood, strength, coordination, balance, and vision.  

TBI can also cause seizures such as epilepsy.  Repeated mild brain impacts occurring 

within hours, days, or even weeks, can be fatal [1]. 
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1.2 Problem Statement 

For closed head trauma there are two theories that are used to describe the cause of brain 

injuries: injuries caused by the translational motion of the head and injuries caused by 

rotational motion of the head.  A head injury caused by translational motion of the head 

has been postulated to be the sole cause of injuries at the site of impact, or coup injuries, 

and opposite the site of impact, or countercoup injuries.  Head injuries caused by 

rotational motion of the head, on the other hand, have been postulated to be the sole cause 

of injuries on a global scale, or diffuse axonal injuries.  Although there has been a great 

deal of research done in the area of brain injuries and the mechanisms that cause brain 

injuries, these two theories have been studied most often exclusively. 

 

Concussion is a type of traumatic brain injury (TBI) [1].  It is a brain injury due to linear 

and angular acceleration/deceleration of the head due to impacts forcing interactions 

between the inner surface of the skull and the floating brain.  Most impacts on the helmet 

cause both linear and angular accelerations.  Linear acceleration causes pressure gradient 

while angular acceleration causes shear strain gradient.  Frontal and posterior impacts 

cause both pressure and shear stress distributions in the brain.  While comparable 

compressive pressures developed in the countercoup regions, shear stress distributions 

remained identical regardless of the impact direction, correlating with clinically observed 

patterns for contusion.  Therefore, shear strain theory appears to account better for the 

clinical findings in cerebral contusion [7].  Angular acceleration is therefore the primary 

causation factor for concussion. 
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A football helmet, is a safety headgear to protect players from head injuries due to 

impacts on the field.  Head injuries include skull fractures and brain concussion.  Current 

football helmets are designed with a stiff plastic outer shell to distribute impact forces 

combined with an elastic foam inner layer to absorb the impact shock and to reduce the 

impact forces in order to minimize the risk of skull fractures.  Current helmet technology 

does provide adequate design provisions to attenuate normal impact forces, but it lacks 

design provisions to attenuate tangential impact forces. 

 

The goal of this research is to propose a new football helmet, the Enhance Bio-Morphic 

Helmet (EBM), that provides adequate attenuation for normal impact forces and adds 

provisions to attenuate angular acceleration.  The purpose of the EBM helmet is not only 

to minimize linear acceleration of the head to prevent catastrophic brain injury like 

hemorrhages, but also to minimize angular accelerations of the head to prevent 

concussion.   

 

  



 

 

4 

 

1.3 Objective 

In order to present the EBM helmet as a viable helmet for football players, a full 

assessment of the design features against the current football helmet technology is 

required.  The methods and materials used evaluate the EBM helmet are as follows: 

• Study of head impacts on the football field. 

• Brain injury dynamics due to head impacts on the football field. 

• Development of Impact Energy Attenuators (IEAs). 

• Impact study of the helmet fitted on the human head model by FEM. 

• Impact study of the EBM helmet fitted onto human head model by FEM. 

• Comparative study of the overall effectiveness of the EBM helmet. 
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2 Head Impacts on the Football Field 

2.1 Introduction 

Traumatic Brain Injury (TBI) is defined by the Centers for Disease Control (CDC) as “a 

disruption in the normal function of the brain that can be caused by a bump, blow, or jolt 

to the head, or penetrating head injury." "The severity of a TBI may range from mild (i.e., 

a brief change in mental status or consciousness) to severe (i.e., an extended period of 

unconsciousness or memory loss after the injury)."  In the United States alone, it is 

estimated that 2.8 million Americans sustain a TBI each year [1]. 

 

Of the estimated 2.8 million TBI's each year, over 300,000 of these injuries are related to 

sports or other physical activities.  From 2001 to 2012, studies show that the rate of 

emergency room visits have more than doubled for sports and recreation related injuries 

for children 19 years of age and younger.  The main diagnosis for these injuries was 

concussion or TBI.  Although the amount of deaths have decreased by approximately 7% 

between the years of 2007 and 2013, the hospitalization rates have increased by 

approximately 11% [2].  With the increase in TBI related injuries that is seen in a clinical 

setting, the need for better sports equipment is very important. 
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2.2 Objective 

The main objective of this study is to investigate the effect an oblique impact has on the 

pressure and shear stress distribution in the human brain.  Specifically, this study will 

address the following questions: 

• Is there a critical angle of oblique impact at the given site on the head which will 

cause the shear stress in the brain to reach a concussion tolerance? 

• Is there any relationship between the peak pressure and peak shear stress 

distribution at each site of oblique impact on the head to identify a critical angle 

for a given site? 

 

2.3 Relevance of Research 

For closed head trauma there are two theories that are used to describe the cause of brain 

injuries: injuries caused by the translational motion of the head and injuries caused by 

rotational motion of the head.  A head injury caused by translational motion of the head 

has been postulated to be the sole cause of injuries at the site of impact, or coup injuries, 

and opposite the site of impact, or countercoup injuries.  Head injuries caused by 

rotational motion of the head, on the other hand, have been postulated to be the sole cause 

of injuries on a global scale, or diffuse axonal injuries.  Although there has been a great 

deal of research done in the area of brain injuries and the mechanisms that cause brain 

injuries, these two theories have been studied most often exclusively. 
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2.4 Methods and Materials Used to Achieve Results 

To address these questions, the following goals are established: 

• Develop and validate a biomechanical 3-D finite element model of the human 

head. 

• Subject the validated FE human head model to oblique impacts on the frontal, 

lateral, posterior, and superior aspects of the head.  

• Identify the peak pressure, the peak shear stress, and the corresponding regions in 

the brain with respect to angle of oblique impact. 

• Correlate the stress criteria to the type of injury. 

 

2.5 Development of 3D FE model 

The development of the 3D FE model of the human head was achieved through the use of 

CT image files of the 50th percentile male human from the National Library of Medicine 

(NLM) Visible Human Project [3].  The Visible Human Project (VHP) provides complete 

anatomically detailed 3-D representation of the male and female human body.  CT scans 

and image files of the head and neck were used to construct a head surface model.  The 

CT scans and image files consist of axial scans taken at 1 mm intervals of the head and 

neck.  With permission from NLM, the CT scans and image files were downloaded from 

the VHP web site to generate the transverse surfaces of the geometric model.   
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The model was developed by taking axial scans of the head and neck and then convert 

them to points, lines, and surfaces.  The first step in this process was to extract point data 

from CT scans and image files.  A solid model of the skull was then generated by from 

the surface data that was ultimately imported and meshed using HyperMesh, by Altair 

Engineering Inc.  The skull, dura, brain, and scalp were all generated in HyperMesh [4].  

The model consists of 40,018 first order tetrahedral elements and 7,819 first order penta 

elements.  Figure 2-1 shows the finite element mesh of the skull. 

 

 

Figure 2-1 Finite Element Mesh of the Skull (isometric view) 
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2.6 Validation of the 3D FE Model 

The 3-D FE model, was then validated using Nahum et al’s [5] frontal head impact 

experiments for impact force, intracranial pressures, and linear head acceleration.  The 

linear frontal head impact experiment # 37 by Nahum et al [5] was chosen to validate the 

FE model.  Towards this goal, the same general setup, as in the experiment had to be 

employed when modeling the 3-D FE model.  The impactor in this FE model is a steel, 

cylindrical impactor with padding, traveling at an initial constant velocity.  Impactor 

mass was fixed at 5.6 kg.  The impactor travels in an anterior-posterior motion in the 

mid-sagittal plane directed at the frontal bone.  The head, shown in Figure 2-2 is rotated 

such that the transverse plane of the skull is inclined 45º relative to horizontal.  The 

impact is essentially normal to the surface of the skull and directly in line with the head’s 

center of mass.   

 

Figure 2-2 Head Impact - Validation Setup 
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Validation of the model was done by comparing impact force, coup pressure, contrecoup 

pressure, left parietal pressure, occipital #1 pressure, and occipital #2 pressure.  The 

impact force is measured at the site of impact, for the contact pairs: scalp and padding.  

Coup pressure is measured below the site of impact, on the surface of the brain.  

Contrecoup pressure is measured on the surface of the brain at the posterior fossa.  

Parietal pressure is measured on the surface of the brain immediately posterior and 

superior to the coronal and squamosal sutures respectively in the parietal bone.  Finally, 

occipital pressures #1 and #2 are both measured on the surface of the brain inferior to the 

lambdoidal suture in the occipital bone; one on the left and one on the right.  Although 

the finite element model lacks the exact anatomical features of a real human head, a great 

deal of effort was spent making sure the locations of measurements closely matched the 

anatomical location described by Nahum et al [5].   

 

Figure 2-3 Impact Force Time History – Validation Model 
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The coup pressure time history curve, Figure 2-4, of the validation model also validate 

with the coup pressure histories by Nahum’s experiments [5] and 3-D FE models by 

Kang [6] and Raun [7].  Coup pressure is measured below the site of impact, on the 

surface of the brain.  The pressure time histories for six adjacent elements on the surface 

of the brain were used to obtain an average pressure for the impact event.  The positive 

value of pressure indicates compression.  Error bars are included to show the pressure 

variation for the six elements due to the profile of the brain surface.  The pressure results 

from the finite element model qualitatively agree with the published results. 

 

Figure 2-4 Coup Pressure Time History 

Contrecoup pressure results shown in Figure 2-5, also validate with the contrecoup 

pressure histories by Nahum’s experiments [5] and 3-D FE models by Kang [6] and Raun 

[7].  Contrecoup pressures are measured opposite the site of impact. 
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Figure 2-5 Contrecoup Time History 

 

The left parietal pressure time history curve, seen in  Figure 2-6, of the validation model 

also validate with the contrecoup pressure histories by Nahum’s experiments [5] and   3-

D FE models by Kang [6] and Raun [7].  Left parietal pressure is measured on the surface 

of the brain immediately posterior and superior to the coronal and squamosal sutures 

respectively in the parietal bone.  The pressure time histories for five adjacent elements 

on the surface of the brain were used to obtain an average pressure for the impact event.  

The positive value of pressure indicates compression.  Error bars are included to show the 

pressure variation for the five elements due to the surface profile of the lateral side of the 

brain.  The pressure results from the finite element model qualitatively agree with the 

published results. 
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Figure 2-6 Left Parietal Pressure Time History 

 

Figure 2-7 Occipital #1 Pressure Time History 
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Figure 2-8 Occipital #2 Pressure Time History 

The linear head acceleration history curve, shown in Figure 2-9 of the validation model 

also validate with the linear head acceleration histories by Nahum’s experiments [5] and 

3D FE model by Kang [6].  Linear head acceleration is measured on the outer surface of 

the skull on the occipital bone.  Although the acceleration curve in Figure 2-9 is averaged 

and not filtered beyond the sampling frequency, additional filtering would eliminate the 

unwanted noise.    
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Figure 2-9 Linear Head Acceleration Time History 

Final material properties for the FE model was determined from validating the model to 

the pressures and accelerations in the reviewed literature.  Table 2-1 lists the final 

material properties used in the validated FE model. 

 

Table 2-1 Material Properties – FEM Head Model 
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2.7 Head Impact Simulations  

Since it is postulated that some combination of translation and rotational motion of the 

head is involved with the majority of head impacts, this objective is to investigate the 

effect an oblique impact has on the pressure and shear stress distribution in the human 

brain.  The 3D FE model developed earlier was used to simulate four different types of 

impact: frontal, lateral, posterior, and superior.  At each impact location, oblique impacts 

are simulated by an increasing angle of impact incidence.  Impact angles start at a direct 

inline impact of 0º and increase to 15º, 30º, and 45º.  The angles simulate the increasing 

tangential component of an oblique impact relative to the impact site.  These impact 

simulations are used as a tool in determining the critical impact angle at which the shear 

stress in the brain becomes more critical than pressure.  For frontal, lateral, and posterior 

impact locations the angles are increased relative to the transverse plane.  The superior 

impacts, on the other hand, are increased in the coronal plane.  Figure 2-10 is an 

illustration of the impact locations and angles.  The output results of the finite element 

analysis are impact force, pressure stress (or octahedral normal stress), and shear stress 

(or von-Mises stress).  Impact pressure and shear stress distributions are displayed in 

different shades in the color distribution plots.   
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Figure 2-10 Frontal, Lateral, and Superior Impact Angles 

 

Figure 2-11 Posterior Impact Angles 
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2.7.1 Injury Severity Scale 

The individual results of FE simulations were coded using an injury severity scale for 

pressure and shear stress.  The injury severity scale code relative to intracranial pressure 

results (absolute pressure, or |pressure|), are described as follows: 

0 – No injury, or no hemorrhage  (pressure less than 0.18 MPa) 

1 – Minor injury, or petechial hemorrhaging in high-pressure regions           

(pressure range 0.08 MPa to 0.24 MPa) 

2 – Moderate injury, or possible contusion or subdural hemorrhage in high-

pressure regions (pressure range 0.18 MPa to 0.32 MPa) 

3 – Severe or fatal injury, or contusion in high-pressure regions    

(pressure greater than 0.24 MPa) 

Note: The pressure range described above is used according to Ward et al [8].   

 

For shear stress, a risk factor is used to describe the potential of injuries related to shear 

stress.  The ratio is calculated using Kang et al’s [6] finding for an upper tolerance of the 

human brain in shear of 16.5 kPa, causing a contusion or subdural hematoma.  The ratio 

is defined in the present equation: 

kPa
SimulationFEfromStressShearFactorRiskStressShear

5.16
=   (2.1) 

Risk Factor < 1 → injury related to shear stress is not likely to occur. 

Risk Factor ≥ 1 → injury related to shear stress is likely to occur. 
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2.8 Interpretation of Results from Head Impact Simulations 

The FE results of the head impact simulations were used to relate a specific brain injury 

to the brain’s pressure and shear stress response when the head is subjected to a defined 

impact.  By identifying the areas of the brain that have a greater pressure severity index 

and a shear stress risk factor, it is possible to indicate areas of the brain that are 

particularly at risk to injury.  The key factor in assigning a specific brain injury is being 

able to identify the angle of impact at which pressure and shear stress are or are not 

critical. 

2.9 Frontal Impact 

From the FE results of a 0º frontal impact, it is shown that the severity index for pressure 

is severe at the site of impact (severity index of 3) and moderate on the opposite site of 

impact (severity index of 2).  Another inherent feature is the shear stress risk factor 

around the cerebral hemispheres is < 1, indicating no injury from shear, but is > 1 in the 

brain stem region indicating an injury from shear.  Since the head mainly experiences 

linear acceleration, there is no surprise with these initial results.  As the impact takes 

place, the cerebral hemispheres deform little from compression, while the brain stem has 

the tendency to be pulled into the cranial cavity.  In other words, linear acceleration does 

not cause distortion of the brain.   



 

 

20 

 

  

Figure 2-12 Frontal Impact 0º - Pressure Distribution 

For all of the pressure distribution images, peak positive pressure, or compression, is 

indicated in (red).  Negative pressure, or tension, is indicated in (blue). 

    

Figure 2-13 Frontal Impact 0º - von Mises Stress Distribution 

As the impact angle increases to 15º, the severity index for coup and contrecoup pressure 

remains unchanged at 3 and 2 respectively.  Also unchanged from the 0º impact, the shear 

stress risk factors.  In the cerebral hemispheres the shear stress risk factor is < 1, 



 

 

21 

 

indicating no injury from shear, and is > 1 in the brain stem region indicating an injury 

caused by shear.  See Figure 2-14 and Figure 2-15. 

  

Figure 2-14 Frontal Impact 15º - Pressure Distribution 

Therefore, for an impact angle of 0º and 15º, an injury to the frontal lobe, in the form of a 

contusion, is most likely to occur due to the severity of pressure in the frontal lobe and a 

subdural injury in the brain stem due to the high shear stress.  The contusion in the frontal 

lobe would more than likely be fatal.  The subdural injury to the brain stem, if not fatal, 

could cause problems with heart rate, blood pressure, breathing, reflexes to hearing, and 

vision just to name a few.   
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Figure 2-15 Frontal Impact 15º - von Mises Stress Distribution 

  

Figure 2-16 Frontal Impact 30º - Pressure Distribution 



 

 

23 

 

  

Figure 2-17 Frontal Impact 30º - von Mises Stress Distribution 

At a 30º impact angle, the severity index for pressure remains at 3 on the coup side and 2 

on the contrecoup side.  The severity index almost reduces one level for coup and 

contrecoup pressure, however, the pressures do not change significantly enough to rate 

them as lower indices.  The shear stress risk factor for 30º, is still > 1 in the brain stem 

region and now at 1.4 in the posterior temporal lobe indicating a temporal lobe injury due 

to shear.  See Figure 2-16 and Figure 2-17. 

 

Once the impact angle reaches 45º, the pressure severity index on the coup side reduces 

to a moderate injury index of 2, and a minor injury index of 1 on the contrecoup side.  

See Figure 2-18.  Although pressure is no longer severe at 45º, the shear stress continues 

to increase around the entire surface of the brain, as seen in Figure 2-19.  Along the 

posterior border of the right temporal lobe, the shear stress risk factor increases to 1.65.   
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Figure 2-18 Frontal Impact 45º - Pressure Distribution 

  

Figure 2-19 Frontal Impact 45º - von Mises Stress Distribution 

What is very interesting about this area of peak shear is it is located approximately 

opposite the site of impact.  Since brain movement with respect to the skull has been 

postulated as an injury mechanism for surface contusions in the frontal and temporal 

lobes [45], this may be the development of a contrecoup injury.  In other words, the peak 

pressure at the site of impact being responsible for causing a cerebral contusion and the 
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shearing action in the posterior location of the temporal lobe causing a surface contusion 

or subdural hematoma.  Figure 2-20 is a cross-sectional slice through the peak area of 

shear stress for a frontal impact at 45º to give an indication of the depth of high risk 

factor shear stress.  A contusion in the frontal lobe is likely to affect memory, emotions 

(irritability), and expressive language (word association).  A surface contusion or 

subdural injury in the temporal lobe, given the high risk factor, could be fatal. 

 

As seen in Figure 2-20, there is very little shear stress in the central portion of the brain, 

with the increased shear stress on the outer surface of the brain.  This also indicates that 

the injury location would be near the surface of the brain or in the subdural space.   

 

Figure 2-20 Frontal Impact 45º, Cross-Section View  
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2.10 Lateral Impact 

From the lateral impact FE results, as similarly seen with frontal, posterior, and superior 

impacts, a 0º impact in Figure 2-21 produces peak positive pressure at the site of impact 

with a reduced pressure distribution to the area opposite the site of impact.  The pressure 

distribution is not as uniform as with frontal impacts, but a severity index of 3 on the 

coup side and of 2 on the contrecoup side coincide with frontal, posterior, and superior 

impact locations.  Once the impact angle reaches 45º, the coup pressure on the right 

lateral side changes to a moderate severity index of 2 and a minor severity index of 1 on 

the contrecoup, or left lateral, side. 

 

How lateral impacts differ from frontal, posterior, and superior impacts is the high shear 

stress risk factor at an impact angle of 0º.  See Figure 2-22.  At 0º, the shear stress risk 

factor throughout the temporal lobe, occipital lobe, and the inferior side of the parietal 

lobe is already at a risk factor of 1.05, which predicts an injury related to shear.  When 

the angle of impact increases to 45º, the risk factor increases in the frontal lobe and 

posterior fossa to 1.65, which was previously < 1, and peaks in localized areas on the 

coup and contrecoup locations to > 2.   
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Figure 2-21 Lateral Impact 0º - Pressure Distribution 

  

Figure 2-22 Lateral Impact 0º - von Mises Stress Distribution 

The severe shear stress risk factor in localized areas on the coup and contrecoup sides can 

be attributed to the direction of impact relative to the head’s center of mass.  A unique 

phenomenon with this type of impact is that at 0º, the impact force vector is eccentric 

with respect to the center of mass of the head.  With 0º frontal, posterior, and superior 

impact arrangements, the force vector passes closely to the head’s center of mass.  The 
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impact becomes oblique when the angle of impact increases.  Regardless of the impact 

angle simulated in this study, the force vector for lateral impact is always eccentric to the 

head’s center of mass.  Therefore, even a 0º impact on the lateral side of the head has the 

capability of producing high shear stress throughout the surface of the brain.   

  

Figure 2-23 Lateral Impact 15º - Pressure Distribution 

   

Figure 2-24 Lateral Impact 15º - von Mises Stress Distribution 
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Figure 2-25 Lateral Impact 30º - Pressure Distribution 

  

Figure 2-26 Lateral Impact 30º - von Mises Stress Distribution 
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Figure 2-27 Lateral Impact 45º - Pressure Distribution 

  

Figure 2-28 Lateral Impact 45º - von Mises Stress Distribution 

Given the significantly high shear stress risk factor (i.e. > 2) for 30º and 45º lateral 

impacts, a diffuse axonal injury appears to be the most probable form of injury.  See 

Figure 2-23 through Figure 2-28. While a contusion or subdural hematoma may be 

caused by pressure at the site of impact for 0º or 15º, this does not appear to be an injury 

mechanism for 30º or 45º.  At 30º and 45º, there is far more rotation of the brain relative 
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to the skull as compared with frontal, posterior, and superior impacts at the same angles.  

Given the overall magnitude of shear stress around the brain, a global injury to the brain 

appears to be the only basis for injury.  Therefore, the diffuse axonal injury appears to be 

the most realistic type of injury for all of the lateral impacts.  A diffuse axonal injury, in 

the form of a severe concussion, for 0º and 15º impacts would probably cause immediate 

loss of consciousness.  A diffuse axonal injury, in the form of severe global bleeding, for 

30º and 45º impacts could cause immediate loss of consciousness, rapid neurological 

dysfunction, and death. Figure 2-29 is a cross-sectional view of the shear stress 

distribution that indicates how a lateral impact at 45º produces a great deal of 

displacement of the brain relative to the skull.  Also, with the exception of a small area in 

the center of the brain, the majority of the cerebral hemispheres are at a shear stress risk 

factor > 1. 

 

Figure 2-29 Lateral Impact 45º, Cross-Section View  
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2.11 Posterior Impact 

From the posterior impact FE results, there is also no surprise for intracranial pressure 

results at an angle of 0º.  Raun et al [7] also modeled a posterior impact in the anterior-

posterior direction, and show similar pressure distributions [7].  The pressure distribution 

for a 0º impact is similar in nature to frontal and superior impacts in that the pressure is 

uniformly distributed.  The pressure severity index of 3 on the coup side and 2 on the 

contrecoup side coincides with 0º frontal, lateral, and superior impacts.  Since the shear 

stress risk factor is < 1 for 0º and 15º impacts, this indicates that these impacts produce 

mostly translation acceleration and very little angular acceleration.   At 30º, the shear 

stress risk factor for the left posterior border of the frontal lobe and superior border of the 

temporal lobe is 1.23, indicating a shear related injury.  Once the impact angle reaches 

45º, the pressure severity index for the occipital lobe reduces from 3 to 2 and in the 

frontal lobe from 2 to 1.  Shear stress at 45º continues to rise globally with the highest 

risk factor around the left posterior border of the frontal lobe and superior border of the 

temporal lobe at 1.65.   
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Figure 2-30 Posterior Impact 0º - Pressure Distribution 

  

Figure 2-31 Posterior Impact 0º - von Mises Stress Distribution 

An interesting point to note is the location of the maximum shear stress.  For the posterior 

impacts, the head is traveling in the posterior direction from left to right.  Therefore, the 

impact force vector on the head is directed in the posterior to anterior direction from right 

to left.  The peak positive pressure indicates the impact site, but the peak shear stress is 

located approximately opposite the site of impact.  As previously seen with frontal 



 

 

34 

 

impacts, peak pressure is located on the coup side and maximum shear around the 

contrecoup side.  Therefore, from the results in Figure 2-34 and Figure 2-35, it appears an 

oblique posterior impact of 30º has the potential of producing coup injury in the occipital 

lobe in the form of a contusion and a contrecoup injury in the frontal lobe in the form of a 

surface contusion or subdural hematoma.  A contusion at 0º, and a surface contusion or 

subdural hematoma at 30º would probably be fatal given the high severity index and 

shear stress risk factor respectively.  Figure 2-38 is a cross-sectional view through the 

high shear stress risk factor area of the left posterior border of the frontal lobe showing 

the shear stress distribution through the depth of the brain.  Note the high risk factor shear 

stress is along the outer surface of the brain near the subdural space. 

   

Figure 2-32 Posterior Impact 15º - Pressure Distribution 
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Figure 2-33 Posterior Impact 15º - von Mises Stress Distribution 

  

Figure 2-34 Posterior Impact 30º - Pressure Distribution 
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Figure 2-35 Posterior Impact 30º - von Mises Stress Distribution 

  

Figure 2-36 Posterior Impact 45º - Pressure Distribution 
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Figure 2-37 Posterior Impact 45º - von Mises Stress Distribution 

 

 

Figure 2-38 Posterior Impact 45º, Cross-Section View  
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2.12 Superior Impact 

From the FE results of a 0º superior impact, intracranial pressures coincide with frontal, 

lateral, and posterior impacts for a severity index of 3 for coup pressure and 2 for 

contrecoup pressure.  The pressure distribution is also uniformly distributed as seen in 

Figure 2-39 with frontal and posterior 0º impacts.  Since the pressure severity index does 

not change for impacts of 0º and 15º, this indicates these impacts produce mostly 

translation acceleration and very little angular acceleration, as seen with frontal and 

posterior of 0º and 15º.  As the angle of impact increases, in the sagittal plane, the 

pressure decreases and moves towards the frontal lobe.  This is due to the impact force 

spinning the head in a backwards direction.  At an impact angle of 45º, the severity index 

for coup pressure is rated at 2, or a moderate injury, and is no longer severe.   

  

Figure 2-39 Superior Impact 0º - Pressure Distribution 
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Figure 2-40 Superior Impact 0º - von Mises Stress Distribution 

Shear stress in Figure 2-40, on the other hand, is quite different from frontal and posterior 

impact simulations.  The shear stress risk factor in the brain stem region is > 2, and 

remains at this level for all superior impact angles.  High shear stress in the brain stem is 

caused by the spinal cord being pulled through the foramen magnum of the skull into the 

cranial vault.  For 0º and 15º impacts, the shear stress risk factor is < 1 in the frontal, 

temporal, parietal, and occipital lobes.  At 30º, the shear stress risk factor in the superior 

parietal lobe is 1.03, which is just at the injury tolerance and predicts an injury due to 

shear.  Once the angle of impact reaches 45º, the shear stress risk factor in the superior 

parietal lobe is 1.23, while the frontal, temporal and occipital lobes are < 1.   
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Figure 2-41 Superior Impact 15º - Pressure Distribution 

  

Figure 2-42 Superior Impact 15º - von Mises Stress Distribution 
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Figure 2-43 Superior Impact 30º - Pressure Distribution 

  

Figure 2-44 Superior Impact 30º - von Mises Stress Distribution 

From the FE results, it can be concluded that all the superior impacts simulated could 

produce an injury to the brain stem due to a risk factor > 2.  A brain stem injury with this 

high of a risk factor, if not fatal, would definitely cause problems with heart rate, blood 

pressure, breathing, vision, and reflexes to hearing just to name a few.  In the frontal, 

temporal, and occipital lobes, however, no injury relative to shear would be predicted for 
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all the impact angles simulated.  At 30º and 45º impact angles, the shear stress risk factors 

in the superior parietal lobe are slightly > 1, indicating a possible injury related to shear, 

most likely in the form of a subdural hematoma. See Figure 2-44 and Figure 2-46.  The 

subdural hematoma, given the location in the parietal lobe, could cause problems with 

visual attention, touch perception, or manipulation of objects to name a few.  Contusions 

on the coup side, or superior frontal lobe, would be possible with impact angles of 0º and 

15º and have the potential of being fatal.   

  
Figure 2-45 Superior Impact 45º - Pressure Distribution 
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Figure 2-46 Superior Impact 45º - von Mises Stress Distribution 

2.13 Conclusion For Head Impacts 

For the first question listed at the beginning of this chapter, the following responses are 

discussed: 

• Is there a critical angle of oblique impact at the given site on the head which will 

cause the shear stress in the brain to reach a concussion tolerance? 

2.13.1 Frontal Impact – Shear Stress Risk Factor 

For frontal impacts, the shear stress risk factor doesn’t reach a concussion tolerance level 

greater than 1 until 30°, in the right temporal lobe at a value of 1.4  Once the angle is 

increased to 45°, globally the shear stress risk factor is 1.26 and locally at 1.65 in right 

temporal lobe.   

2.13.2 Side Impact – Shear Stress Risk Factor 

For side impacts the shear stress risk factor reaches a concussion tolerance level at 0°.  At 

0°, the  shear stress risk factor is 1.05 in temporal lobe, occipital lobe, and parietal lobe.  
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At a 15° impact angle, the shear stress risk factor increases to 1.65.   At 30°, shear stress 

risk factor is 1.84.  Once the angle of impact increases to 45°, the shear stress risk factor 

increases to a level greater than 2.  From the results, the side impact is clearly produces 

the highest stress levels around the brain. 

2.13.3 Posterior Impact – Shear Stress Risk Factor 

For posterior impacts the shear stress risk factor doesn’t reach a concussion tolerance 

level that is greater than 1 until 30° in the left temporal lobe at a value of 1.05.  For an 

impact of 45° the shear stress risk factor in the left temporal lobe increases to a value of 

1.23. 

2.13.4 Superior Impact – Shear Stress Risk Factor 

For superior impacts, the shear stress risk factor in the brain stem, for all impacts 0° to 

45°, is  greater than 2.0.  Globally, specifically in the parietal lobe of the brain, the shear 

stress risk factor reaches a value of 1.23 once the angle of impact increases to 45°.. 

 

For the second question listed at the beginning of this chapter, the following responses 

are discussed: 

• Is there any relationship between the peak pressure and peak shear stress 

distribution at each site of oblique impact on the head to identify a critical angle 

for a given site? 
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2.13.5 Frontal Impacts – Peak Pressure and Peak Shear Stress 

For all frontal impacts, the peak positive pressure, or compression, is located at the site of 

impact and peak negative pressure, or tension, is located opposite the site of impact.  This 

is true for all angles of impact.  For the location where the shear stress risk factors 

increase greater than 1, however, they are located on the temporal lobe, or the lateral side 

of the head. 

2.13.6 Side Impacts – Peak Pressure and Peak Shear Stress 

For all side impacts, the peak positive pressure, or compression, is located at the site of 

impact and peak negative pressure, or tension, is located opposite the site of impact.  This 

is true for all angles of impact.  Although the pressure distributions are not as well 

defined for the side impacts as they are for the frontal, posterior, and superior impacts.  

For the location where the shear stress risk factors increase greater than 1, however, they 

are located around the entire perimeter of the brain, regardless of the angle of impact. 

2.13.7 Posterior Impacts – Peak Pressure and Peak Shear Stress 

Posterior impacts follow the same trend as frontal impacts where, the peak positive 

pressure, or compression, is located at the site of impact and peak negative pressure, or 

tension, is located opposite the site of impact.  For the location where the shear stress risk 

factors increase greater than 1, however, they are located on the temporal lobe, or the 

lateral side of the head. 
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2.13.8 Superior Impacts – Peak Pressure and Peak Shear Stress 

Superior impacts follow the same trend as frontal and posterior impacts where, the peak 

positive pressure, or compression, is located at the site of impact and peak negative 

pressure, or tension, is located opposite the site of impact.  A unique result with superior 

impacts shear stress risk factors locations is that the risk factor is always greater than 2 in 

the brain stem region.  The parietal lobe sees a shear stress risk factor, near the site of 

impact, at 1.23 only until the angle of impact is increased 45°. 
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3 TBI Dynamics due to Head Impacts on the Football Field 

3.1 Objective 

 

The main objective of this study is to contribute to the field of youth TBIs.  Specifically, 

this study will address the following questions: 

• Do angular accelerations of the head play a prominent role in causing TBI along 

with linear accelerations of the head? 

• Can a TBI criterion be derived through their relation? 

• Do TBIs causing high stress concentrations also cause detectable structural 

damage (i.e.: coup, countercoup, diffuse axonal injuries) in the brain tissue? 

• Do impact tolerances change with respect to impact regions of the human head? 

 

3.2 Relevance of Research 

 

Earlier studies of head impacts have related head kinematics (linear and angular 

accelerations) to TBIs, however, fewer studies have dealt with brain kinetics (impact 

pressures and shear stresses) occurring during head impacts.  In order to study the effect 

of angular acceleration on the brain a series of experimental tests were performed [11].   
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The National Operating Committee on Standards for Athletic Equipment (NOCSAE) 

drop tests [9] were conducted for linear head accelerations and the Head Impact Contact 

Pressures (HICP) calculated from them are applied to a validated FE head model.     

 

3.3 Methods and Materials Used to Achieve Results 

 

To address these questions, following milestones were established: 

• Propose to conduct NOCSAE drop tests to acquire linear accelerations of the 

head and head contact impact pressures. 

• Carry out analytical procedures to determine impact contact pressures and 

angular accelerations of the head from available linear accelerations and 

headform dimensions. 

• For various impact regions, determine the relationship between linear and angular 

accelerations (at specific drop heights) of the head. 

 

3.4 NOCSAE Drop Tests 

The experimental method used to acquire linear accelerations of the head and head 

contact impact pressures was to use the NOCSAE drop tester at MTU.  The NOCSAE 

drop tester is equipped with a tri-axial accelerometer to measure the impact event.  The 

standard NOCSAE drop tester comes with a Severity Index Computer to report the peak 

acceleration and calculate the corresponding severity index from the impact event [9].  A 
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Siglab data acquisition system was used to record the impact time history event, that 

could be used for input for the FE head model.  Impact locations for the frontal, lateral, 

posterior, and front boss (or 45° to the frontal region) were measured.   

 

 

Figure 3-1 NOCSAE Standard Drop Tester at MTU based upon NOCSAE Standard Drop Test 

Equipment [9] 
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In addition to the measured accelerometer impact time histories, impact pressure 

measurements were also recorded through the use of Fuji Prescale pressure film 

(provided by Sensor Products, Inc.) [10].  The pressure film is a Mylar based film that 

contains a layer of microcapsules that rupture upon contact.  See Figure 3-2.  The 

resulting outcome is a pressure image across the contact area where the color contrast 

directly correlates to the pressure gradient.  The color contrast can be determined by 

scanning the exposed film in a Topaq analyzer scanner to determine the resulting 

pressure gradient. 

 

 

Figure 3-2 Representation of Fujifilm Prescale that is available from Sensor Products Inc. [10] 
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Figure 3-3 Exposed Fujifilm from 2 Foot Drop - Experimental Results [11] 

 

Figure 3-4 Digitized Pressure Results of Exposed Fujifilm [11] 

Although this method has some validity for obtaining maximum impact pressure, the 

pressure contour was not well enough defined to obtain an average value for use as an 
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input for the FE head model.  In addition, another issue with using the pressure film was 

the film is only good for a single impact.  With the drop tester there are additional 

rebound impacts that occur after the initial impact that potentially introduce additional 

reading errors.  The impact pressure images were, however, useful in determining impact 

areas and served useful in correlating the analytical method. 

 

3.5 Analytical Procedures to Determine Impact Pressure 

An alternative approach to obtain the average pressure input for the FE head model was 

employed by using the experimental results of the drop test where the impact area and 

acceleration time history were used to calculate an average pressure measurement [11].  

This average pressure measurement was used for the input for the FE model.  Using the 

equation: 

𝑃𝑃 = 𝑚𝑚ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ∙ 𝑎𝑎���⃗ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝐴𝐴

    (3.1) 

 

Where: 

  P = Head Impact Contact Pressure (HICP) 

  𝑚𝑚ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = mass of the head form 

  𝑎⃗𝑎𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = linear acceleration time history from drop test experiment. 

  A = area of impact measured from the pressure film. 
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Figure 3-5 Impact Pressure Areas on the Frontal (A), Front Boss (B), Lateral (C), and Posterior 

(D) Regions of the FE Model [11] 

 

The impact regions that were obtained from the NOCSAE drop test experiments were 

then applied to the validated FE model of the 50th percentile human male.  The areas 

shown in Figure 3-5 were manually applied to the FE head model. [11] 

A B 

C D 
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Figure 3-6 Spring Element Added to Base of Skull [11] 

 

To simulate the connection of the neck, a spring element was added to the base of the 

skull around the brain stem as seen in Figure 3-6.  The addition of this spring element not 

only adds a boundary condition to the model, but helps to simulate the stiffness offered 

by the presence of the neck.  Chandrika Abhang also added a remote measurement point 

to the base of the skull, at the brain stem opening seen in Figure 3-7.  The remote point 

was used to obtain acceleration measurements of the FE head model. [11] 
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Figure 3-7 Remote Measurement Point Relative to the Base of the Skull [11] 

3.6 Simplified Analytical Procedure to Determine Rotational Acceleration 

Because the NOCSAE drop tester measures linear acceleration, a method for obtaining 

the calculated rotational acceleration is determined by using the following equation [11]:  

 

𝐹⃗𝐹 = 𝑚𝑚ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ∙ 𝑎⃗𝑎𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑   (3.2) 

 

Where:   𝐹⃗𝐹 = Impact force 

   𝑚𝑚ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = mass of headform 

   𝑎⃗𝑎𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = measured linear acceleration of drop test 
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𝑇𝑇�⃗ = 𝐼𝐼 ∙ 𝛼⃗𝛼    (3.3) 

 

Where:   𝑇𝑇�⃗  = torque or moment 

   I = mass moment of inertia 

   𝛼⃗𝛼 = angular acceleration 

 

The torque or moment is also expressed as the cross product of the position and force 

vector, by the equation [11]: 

 

𝑇𝑇�⃗ = 𝑟𝑟 ∙ 𝐹⃗𝐹   (3.4) 

 

Where:   𝑟𝑟 = position vector from the axis of rotation to the point of impact 

   𝐹⃗𝐹 = impact force 

 

By substituting the values of rx, ry, and rz and values of Fx, Fy, and Fz the torque values 

Tx, Ty, and Tz can be calculated. 

 

By substituting the calculated values of torque into equation (3.3) the resulting angular 

acceleration can be calculated by the equation [11]: 

 

𝛼⃗𝛼 = 𝑇𝑇�⃗

𝐼𝐼
   (3.5) 
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Which results in the angular acceleration about the X, Y, and Z axis by: 

 

𝛼𝛼𝑥𝑥𝑥𝑥 = 𝑇𝑇𝑥𝑥
𝐼𝐼𝑥𝑥𝑥𝑥

   (3.6) 

𝛼𝛼𝑦𝑦𝑦𝑦 = 𝑇𝑇𝑦𝑦
𝐼𝐼𝑦𝑦𝑦𝑦

   (3.7) 

𝛼⃗𝛼𝑧𝑧𝑧𝑧 = 𝑇𝑇𝑧𝑧
𝐼𝐼𝑧𝑧𝑧𝑧

   (3.8) 

 

Where: αxx, αyy, and αzz are the angular accelerations components with 

respect to the X, Y, and Z axes. 

 

The resulting angular acceleration, αR, is calculated by the following equation [11]: 

 

𝛼𝛼𝑅𝑅 = �𝛼𝛼𝑥𝑥𝑥𝑥2 + 𝛼𝛼𝑦𝑦𝑦𝑦2  + 𝛼𝛼𝑧𝑧𝑧𝑧2    (3.9) 

 

3.7 Relationship between Linear and Rotational Acceleration 

Figure 3-8 through Figure 3-11 show the experimental and analytical results taken by 

Chandrika Abhang [11].  Plotted in these figures are the linear acceleration results 

calculated from the pressure area measurements, linear acceleration experimental results 

from the NOCSAE drop tester and Siglab data acquisition system, and the calculated 

angular acceleration results. 
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Figure 3-8 Frontal Impact Acceleration Results [11] 

 

The linear acceleration calculated from the pressure measurements underestimates the 

linear acceleration of the linear acceleration from the experimental tests.  This is due to 

the discrepancy between the calculated area of impact for pressure measurement. 
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Figure 3-9 Front Boss (45° to frontal) Impact Acceleration Results [11] 

 

With the front boss acceleration results seen in Figure 3-9, the calculated linear 

acceleration closely agrees with the drop test linear acceleration.   

 

In Figure 3-10 and Figure 3-11, the calculated linear acceleration over estimates the 

linear acceleration obtained from the drop test linear acceleration.  The discrepancy 

between calculated linear acceleration and experimental linear acceleration is due to the 

measurement error in pressure calculation in both cases. 
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Figure 3-10 Lateral Impact Acceleration Results [11] 

 

Figure 3-11 Posterior Impact Acceleration Results [11] 
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It is proposed in this work to define a new concussion criteria which combines the effects 

of linear and angular acceleration.  Concussion criteria is defined as: 

 

𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑎𝑎𝑇𝑇𝑇𝑇𝑇𝑇 (max)

+ 𝛼𝛼𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝛼𝛼𝑇𝑇𝑇𝑇𝑇𝑇(max)

≤ 1 𝑡𝑡ℎ𝑒𝑒𝑒𝑒 𝑛𝑛𝑛𝑛 𝑇𝑇𝑇𝑇𝑇𝑇  (3.10) 

 

Where: aregional = linear impact acceleration for a specific impact region 

and drop height. 

 aTBI(max) = TBI tolerant linear impact acceleration (318 G’s) [12] 

αTBI(max) = angular impact acceleration for a specific impact region 

and drop height. 

αTBI(max) = TBI tolerant angular impact acceleration (23 krad/s2) 

[12] 

 

In order to use the equation above to determine the tolerance level for TBI likelihood, the 

results from the linear acceleration and angular acceleration are used.  Since impacts on 

the head are a combination of linear and angular acceleration, the equation above is used 

to determine what contribution is due to each.  The reported TBI tolerance level due to 

linear acceleration has been proposed by [12] at 318 G’s and angular acceleration TBI 

tolerance level due to angular acceleration at 23 krad/s2 [12].  By using the equation 

above, along with the analytical results of the FE model, a determination can be drawn 

from the impact results. 
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Table 3-1 TBI Tolerance Results [11] 

 

 

Shown in Table 3-1 are the resulting TBI tolerance levels for the analytical results.  The 

results show the lateral region of the head as the most vulnerable region to damage from 

any from height or impact distance followed by the posterior region.  What is interesting 

Drop 
Height (ft)

Linear 
Acceleration 

(G's)

Linear TBI 
Tolerance

Angular 
Acceleration 

(rad/s2)

Angular TBI 
Tolerance

TBI Tolerance 
Level

2 235 0.74 29273 1.27 2.01
3 309 0.97 36129 1.57 2.54
4 370 1.16 43319 1.88 3.05
5 430 1.35 47785 2.08 3.43

Drop 
Height (ft)

Linear 
Acceleration 

(G's)

Linear TBI 
Tolerance

Angular 
Acceleration 

(rad/s2)

Angular TBI 
Tolerance

TBI Tolerance 
Level

2 261 0.82 8066 0.35 1.17
3 345 1.08 9331 0.41 1.49
4 399 1.25 10254 0.45 1.70
5 463 1.46 10410 0.45 1.91

Drop 
Height (ft)

Linear 
Acceleration 

(G's)

Linear TBI 
Tolerance

Angular 
Acceleration 

(rad/s2)

Angular TBI 
Tolerance

TBI Tolerance 
Level

2 206 0.65 20888 0.91 1.56
3 255 0.80 25118 1.09 1.89
4 308 0.97 29575 1.29 2.25
5 349 1.10 33220 1.44 2.54

Drop 
Height (ft)

Linear 
Acceleration 

(G's)

Linear TBI 
Tolerance

Angular 
Acceleration 

(rad/s2)

Angular TBI 
Tolerance

TBI Tolerance 
Level

2 254 0.80 18875 0.82 1.62
3 331 1.04 23401 1.02 2.06
4 400 1.26 29268 1.27 2.53
5 460 1.45 31407 1.37 2.81

Frontal Impact

Lateral Impact

Front Boss (45° to frontal)

Posterior Impact
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in all the measured results is that all of the resulting impacts have a total TBI tolerance 

value that is greater than 1, indicating the possibility of a TBI.  If the measured values are 

measured separately, a false conclusion can be drawn showing a TBI tolerance less than 

1, as in the case for all of the drop heights.  This information is extremely important when 

evaluating the possibility of TBI and also in designing a football helmet that can 

minimize both linear and angular acceleration of the head. 
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4 EBM Helmet Impact Energy Attenuator 

 

The principal function of the EBM helmet is to minimize the risk of concussion injury to 

football players by absorbing head impact energy and reducing head translational and 

rotational accelerations.  The Impact Energy attenuating (IEA) System of the EBM 

helmet is modelled to help protect the brain against impacts to the head.  The IEA system 

of the EBM helmet, consists of four layers of four materials bonded together to diffuse, 

distribute, dissipate, and absorb impact force and shock energy.  This effort is based on a 

finite element (FE) study of the impact response of FE model IEA systems of the EBM 

helmet and the currently available commercial helmet due to direct impacts. 

 

4.1 Objective 

• The development of a head Impact Energy Attenuator (IEA) for the EBM helmet. 

• The head impact energy attenuating system of the EBM helmet is modelled to 

help protect the brain against impacts to the head.  

• The IEA system of the EBM helmet, consists of four layers of four materials 

bonded together to diffuse, distribute, dissipate, and absorb impact force and 

shock energy. 
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4.2 Relevance of Research 

 

The current football helmet design involves a stiff plastic outer shell to distribute impact 

forces combined with an elastic foam inner shell to absorb the impact shock and to 

reduce the impact forces in order to minimize the risk of skull fractures.  The National 

Operating Committee on Standards for Athletic Equipment (NOCSAE) provides a set of 

voluntary standards based on the Wayne State Tolerance Curve (WSTC) to assess a 

helmet’s ability to prevent skull fracture.  NOCSAE standards have helped to 

successfully eliminate skull fractures due to impacts in football games while wearing 

helmets designed with an impact distributor in the form of a stiff plastic outer shell and 

an impact attenuator in the form of an elastic foam inner shell [9]. 

 

Impacts on a helmet cause linear and angular accelerations of the head which bring forth 

pressure and shearing interactions between the skull and the brain resulting in 

concussion.  The purpose of the EBM helmet is not only to minimize linear acceleration 

of the head to prevent catastrophic brain injury like hemorrhages, but also to minimize 

angular accelerations of the head to prevent concussion.  Current helmet technology does 

provide adequate design provisions to attenuate normal impact forces, but it lacks design 

provisions to attenuate tangential impact forces. 
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4.3 Methods and Material Used to Achieve Results 

 

• Create a IEA finite element model of the commercial IEA system to determine the 

impact characteristics. 

• Create a IEA finite element model of the proposed EBM IEA system to determine 

the impact characteristics. 

• Compare the two IEA systems. 

 

  

Figure 4-1 Impact Models – Commercial Helmet IEA Model (left) and EBM Helmet IEA Model 

(right) 

 

The two finite element models are used to evaluate the IEA systems are shown in Figure 

4-1.  The first IEA model, is a model simulating the makeup of a commercially available 

football helmet.  The second IEA model, represents the makeup of the EBM helmet.  

Both IEA models are setup using linear elastic material properties.  The mass of the rigid 

sphere was set to 5 kg with an initial velocity of 7 m/s.  The commercial helmet IEA 

model uses a layer of polycarbonate for the outer surface and an inner layer of foam 
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padding.  The total thickness of the cross-section is 35mm, which represents a cross-

section of a typical helmet.  Table 4-1 lists the materials used for each layer and their 

corresponding material properties and thicknesses. 

  

The EBM IEA model uses four layers: a layer of polycarbonate for the outer surface, a 

shear layer, an inner shell layer, and an inner layer of foam padding.  The outer 

polycarbonate layer replicates the same shape and thickness as the commercially 

available polycarbonate shell.  The shear layer, below the polycarbonate layer, provides a 

compliant shear layer for the EBM IEA system.  The inner shell, separating the shear 

layer from the foam padding layers, encapsulates the shear layer to help it perform in 

shear only.  The inner layer of foam, which is thinner than the commercially available 

helmet, conforms to the same inner shape as the commercially available helmet.  The 

total thickness of the EBM IEA system is 35mm.  Table 4-2 lists the materials used for 

each layer and their corresponding material properties and thicknesses. 
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4.4 Commercial Helmet IEA System 

4.4.1 Components of the Commercial Football Helmet 

Standard commercially available football helmets consist of the following components: 

1. Outer Polycarbonate Shell 

2. Impact Padding and Comfort Foam 

 

4.4.1.1 Outer Polycarbonate Shell 

The outer polycarbonate shell of the helmet is primarily designed to provide protection 

against penetrating injuries to the head.  It is also designed to distribute impact forces 

over a larger area.  Since the outer shell is a critical part of the helmet, it needs to 

function in a variety of conditions.  The most common material used for football helmets 

are Rubber-reinforced thermoplastics like Polycarbonate or Acrylonitrile Butadiene 

Styrene polymer and Fiber reinforced thermoset resin composites. 

 

4.4.1.2 Impact Padding and Comfort Foam 

The impact padding and comfort foam components of the helmet provide the impact 

energy attenuation system of the standard helmet.  Impact padding for different helmet 

brands vary, however, the typical material is expanded polystyrene foam.  Some other 

padding used are semi rigid polyurethane foams, vinyl nitrile, or inflatable rubber 

bladders filled with air.  Since the Impact padding layer is used as an energy attenuation 

system for the helmet, the padding is typically placed in a compressive nature. 
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Table 4-1 Elastic Material Properties of a Commercial Helmet 

 

 

4.4.2 Impact Results 

The impact results shown in Figure 4-2 through Figure 4-3 plot the Strain Energy of the 

polycarbonate and foam layers respectively.  Since the energy of the impact event is 

dissipated as strain energy, the corresponding plots shown here are used to evaluate the 

individual layers of the system. 

 

Figure 4-2 Strain Energy Absorption of the Commercial Helmet IEA Polycarbonate Shell 

Layer 
Number Material

Young's 
Modulus 

(MPa)
Poisson's ratio

Density 
(g/cc)

Layer 
Thickness 

(mm)
1 Polycarbonate 2750 0.32 1.3 4
2 Foam 2.7 0.01 0.32 31

Commercial Helmet IEA Model
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Shown in Figure 4-2 is the strain energy of the polycarbonate layer during the impact 

event.   

 

 

Figure 4-3 Strain Energy Absorption of the Commercial Helmet IEA Foam Padding 

 

Shown in Figure 4-3 is the strain energy of the foam layer for the commercial helmet 

IEA.  Although the foam layer for the commercial helmet is thicker, by 6mm, than the 

EBM helmets, the strain energy for the three types of helmets are very comparable. 
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Figure 4-4 Deflection Results of Commercial Helmet IEA FE Model 

 

Figure 4-4 shows the deformation configuration for the maximum deflection of the 

commercial helmet IEA system.  The full comparison of deflections results can be seen in 

Figure 4-14. 
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4.5 EBM Helmet IEA Model 

4.5.1 Components 

The proposed EBM helmet consists of the following components: 

1. Outer Polycarbonate Shell 

2. Inner Shear Layer (Sorbothane®) [13] 

3. Inner Shell (Fiberglass) 

4. Impact Padding and Comfort Foam 

 

 

Figure 4-5 EBM Helmet IEA Cross-Section 

4.5.1.1 Outer Polycarbonate Shell 

The outer polycarbonate layer replicates the same shape and thickness as the 

commercially available polycarbonate shell.  The outer polycarbonate shell of the EBM 

helmet functions in the same manner as the commercially available helmet, where it 
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provides protection against penetrating injuries to the head and distributes impact forces 

over a larger area. 

4.5.1.2 Shear Layer 

The shear layer, below the polycarbonate layer, provides a compliant shearing layer for 

the EBM IEA system.  The material used for the shear layer is Sorbothane®.  

Sorbothane® is a thermoset, polyether-based, polyurethane material that is a visco-elastic 

polymer.  For the purposes of this evaluation, linear elastic material properties are used to 

define the material characteristics [13]. 

4.5.1.3 Inner Shell Layer 

The inner shell, separating the shear layer from the foam padding layers, encapsulates the 

shear layer to help it perform in shear only.  Since the inner shell of the EBM IEA system 

has to be thin and light, a fiberglass composite layer is chosen.  For this study, the 

material properties and thicknesses are changed in order to maximized the thickness and 

material strength characteristics.  Thickness of 2mm and 3mm are chosen for evaluation.  

Since this is an additional component to be added to the helmet IEA system, the thickness 

is a critical value.  Since this layer is critical, there are three criteria that need to be 

considered in designing the inner shell. 

1. The inner shell has to be light (i.e.: it cannot add a significant amount of mass to 

the helmet). 

2. The inner shell has to be strong, yet flexible (i.e.: it has to be provide backing 

stiffness for the shear layer, yet flexible enough to move with the polycarbonate 
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shell of the helmet when it deforms during impact or when the helmet is fitted 

onto the players head). 

3. The inner shell has to be able to be manufactured.  

Comparison graphs, shown in the following sections, indicate the bounding thicknesses 

and material properties results. 

4.5.1.4 Impact Padding and Comfort Foam 

The impact padding and comfort foam components of the helmet provide the impact 

energy attenuation system of the standard helmet.  Impact padding for different helmet 

brands vary, however, the typical material is expanded polystyrene foam. 

4.5.2 Material Properties 

Table 4-2 lists the materials used in the EBM IEA helmet model.  As noted below, the 

elastic modulus and thickness values were varied to achieve the best possible 

combinations.  The following impact results will show the analysis results.  

 

Table 4-2 Elastic Material Properties of EBM Helmet IEA 

 

Layer 
Number Material

Young's 
Modulus 

(GPa)

Poisson's 
ratio

Density 
(g/cc)

Layer 
Thickness 

(mm)
1 Polycarbonate 2.75 0.32 1.3 4
2 Sorbothane 1.69 MPa 0.499 1.412 3
3 Fiberglass 4 to 28 0.13 1.9 2 to 3
4 Foam 2.7 MPa 0.01 0.32 25

EBM Helmet IEA Model



 

 

75 

 

4.5.3 Impact Results 

The impact results shown in Figure 4-6 through Figure 4-15 plot the Strain Energy of the 

IEA polycarbonate, shear, inner shell, and foam layers respectively.  Also included are 

comparison charts showing the peak strain energy for the different layers.  Since the goal 

of this study was to determine the bounding material properties for the inner shell layer, 

different models were analyzed using the corresponding material properties and 

thicknesses.  Shown in the following figures are the shear strain results for the different 

layers. 

 

It should be noted the results for the 4 GPa models were not successful analysis runs.  

The elastic modulus for the inner shell was too low to obtain good results.  This was 

evident in both the 2mm thickness and 3mm thickness models.  In addition, this low 

elastic modulus is below the range for physically producing an effective fiberglass layup.  

Since the possibility for achieving a layup of resin and glass layers is above the 4 GPa 

elastic modulus range, this serves as a lower bounds for the material. 
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Figure 4-6 Strain Energy Absorption of Polycarbonate Shell with Various Inner Shell Layers 

 

Shown in Figure 4-6 are the strain energy results for the EBM IEA helmet polycarbonate 

layer with different inner shell material properties.  From the results shown above it can 

be observed that as the elastic modulus for the inner shell is increased the strain energy 

for the polycarbonate layer decreases.  As well, as the thickness of the shell increases the 

strain energy for the polycarbonate layer decreases.  These results indicate the presence 

of the inner shell provides more structure to the outer shell of the helmet preventing the 

outer polycarbonate shell of the EBM IEA helmet from deforming as significantly 

compared to the commercial helmet. 
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Figure 4-7 Peak Strain Energy of Polycarbonate Shell with Various Inner Shell Layers 
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Figure 4-8 Strain Energy Absorption of Sorbothane® Layer 

 

Shown in Figure 4-8 are the strain energy results for the EBM IEA helmet shear layer 

with different inner shell material properties.  From the results shown above it can be 

observed that as the elastic modulus for the inner shell is increased the strain energy for 

the shear layer increases.  As well, as the thickness of the shell increases the strain energy 

for the polycarbonate layer increases.  These results indicate the addition of the inner 

shell reduces the deformation of the outer polycarbonate shell and transfers some of that 

strain energy to the shear layer. 
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Figure 4-9 Peak Strain Energy for Sorbothane® Layer with Various Inner Shell Layers 

 

Figure 4-10 Strain Energy Absorption of Various Inner Shell Layers 
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Shown in Figure 4-10 are the strain energy results for the EBM IEA helmet inner shell 

layer.  From the results shown above it can be observed that as the elastic modulus for the 

inner shell is increased the strain energy within this layer remains consistent between 

8GPa and 28GPa.  There is some variation, with slightly lower peak strain energy at 

28GPa, however the strain energy is relatively consistent.  

 

 

 

Figure 4-11 Peak Strain Energy for Various Inner Shell Layers 
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Figure 4-12 Strain Energy Absorption for Foam Padding with Various Inner Shell Layers 

 

Shown in Figure 4-12 are the strain energy results for the EBM IEA helmet foam layer.  

From the results shown above it can be observed that as the elastic modulus for the inner 

shell is increased the strain energy within this layer remains consistent for all the inner 

shell elastic modulus and thickness combinations.  There is some slight variation, with 

the higher thickness and higher elastic modulus properties resulting in lower strain 

energies in the foam layer, however the strain energy is relatively consistent. 
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Figure 4-13 Peak Strain Energy for Foam Padding with Various Inner Shell Layers 

 

Also included are the maximum displacement results for all the material models.  From 

the results in Figure 4-14, the peak displacement for all combinations of inner shell 

materials remain consistent around 21mm to 22mm.  The peak displacement for the 

commercially available football helmet material model is approximately 30mm.  The 

reason for the difference in displacement is the commercial helmet material model has 

6mm more foam padding than compared to the EBM helmet.   
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Figure 4-14 Peak Impactor Displacement of EBM IEA with Various Inner Shell Layers 

 

In order to evaluate the strength requirements of the inner shell layer, the peak von Mises 

stress results are displayed in Figure 4-15.  These results indicate that the higher elastic 

modulus materials experience a higher stress during impact.  They also indicate the 

thinner the inner layer experiences a higher stress.  These results indicate a lower overall 

elastic modulus should be used for the inner shell that is on the thicker side of the 

spectrum.   
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Figure 4-15 Peak Stress Values of Various Inner Shell Layers 

 

4.6 Maximized EBM Helmet IEA System 

For the final material makeup of the EBM helmet IEA system, the following materials 

were chosen: 

• Polycarbonate thickness = 4mm 

• Sorbothane thickness = 3mm 

• Fiberglass (12GPa) thickness = 3mm 

• Foam Padding thickness = 25mm 

 

The final thickness and material strength for the fiberglass layer was chosen because it 

provided good energy absorption characteristics, good strength characteristics, and did 

not have too high of an elastic modulus to cause brittle failure concerns.  When 
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comparing at the peak von Mises stress for the different layer strengths, the 28 GPa 

material had an approximately 100 MPa high peak stress compared to the 12 GPa layer.  

This would be a concern for possible fatigue failure. 

 

When comparing results for the thicknesses of the 12 GPa IEA models, there is no 

significant difference between the peak strain energy absorption, deflection, or peak von 

Mises stress.  The deciding factor came down to ability to manufacture the two layers.  

Since the 2mm thickness is more difficult to manufacture, the 3mm thickness was 

chosen.  The 3mm thickness provides a better opportunity to make a strong composite, 

without having the possibility of having the percent matrix to fiber being difficult to 

achieve. 
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4.7 Final EBM IEA System 

Once the maximized IEA makeup was chosen for the EBM helmet IEA system, a finite 

element model of the helmet and human head was developed.  From the initial impact 

analysis, it was observed that the four layer IEA system was too stiff in rotation as 

compared to the standard VSR4 helmet.  The EBM helmet performed as expected for the 

0° impact angles, but as the angle of impact increased to 30°, the stress levels on the 

surface of the brain increased over those of the VSR4 helmet. 

 

A re-evaluation was then done to eliminate the fiberglass layer from the EBM IEA 

system.  The reason behind removing the fiberglass layer are listed below: 

 

• There is no significant change in strain energy absorption between the various 

IEA models for the Sorbothane layer. 

• There is no significant change in strain energy absorption between the various 

IEA models for the foam layer. 

• The fiberglass layer does provide strain energy absorption for the EBM IEA 

system, which also reduces the strain energy absorbed by the polycarbonate layer.  

By eliminate the fiberglass layer, the amount of strain energy absorption for the 

polycarbonate layer will increase, but it will not be greater than the commercial 

helmet IEA system. 
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For these reasons the fiberglass layer was removed and the final EBM IEA system was 

defined using three layers as listed: 

• Polycarbonate thickness = 4mm 

• Sorbothane thickness = 3mm 

• Foam Padding thickness = 28mm 

The final thickness for the EBM IEA will obviously vary for different areas of the 

helmet, where the padding thickness changes, however, the final three layers are listed. 
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5 Concept and Configuration of VSR4 Football Helmet by 

Riddell  

 

The principal function of the VSR4 football helmet by Riddell is to minimize the risk of 

concussion injury to football players by absorbing head impact energy thereby reducing 

head translational acceleration.  The main goal of a helmet is to prevent skull fractures 

and reduce the acceleration to the player by absorbing some of the impact energy.  

Helmets have been designed with the intent to reduce the linear acceleration due to 

normal impacts.  Normal impacts, or translational motion impacts, on football helmets 

have been well studied through the use of the NOCSAE drop tester and FE head 

modeling.  However, in actual real life scenarios, very few impacts actually result in just 

normal impacts.  In reality, the majority of impacts on the football field are in some form 

or another oblique type impacts.  Furthermore, there are very few studies that evaluate the 

response of the human head and helmet as they are subjected to oblique impacts.  This 

makes it difficult to accurately study the effect of the helmet in reducing the peak 

pressure stress and peak shear stress on the brain.  A fully integrated helmeted head FE 

model system is needed to truly assess the underlying head response due to impact on the 

helmet. 
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5.1 Objective 

The goal of the research is to study the efficacy of the football helmet against normal and 

oblique impacts at the frontal, lateral, superior, and posterior location on the helmet.  This 

study will evaluate the performance of a current football helmet fitted onto a human head 

model by FEM. 

 

The specific objectives of the study are to: 

• Develop an integrated FE model of a current football helmet and head.   

• Evaluate the helmet performance and study the effect of the helmet in reducing 

the shear stress and pressure on the brain. 

 

5.2 Relevance of Research 

This study is an attempt to fill the gap in the computational analysis of an integrated 3D 

head and football helmet.  The goal of the research is to study the efficacy of the current 

football helmet against normal and oblique impacts at the frontal, lateral, superior, and 

posterior location on the helmet. 

 

5.3 Methods and Materials Used to Achieve Results 

• Develop a FE model of the VSR4 football helmet made by Riddell. 

• Validate the FE model of the helmet with respect to ASTM impact test results. 
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5.4 Finite Element Modeling of the Riddell VSR4 Football Helmet 

The Riddell VSR4 football helmet was used for the purpose of this study to represent the 

commercial football helmet.  The helmet geometry was digitized, to obtain a point cloud 

of the outer profile of the helmet shell.  The helmet was digitized where a white light 

scanner was used [14] to measure the outer surface of the helmet shell.  A solid model 

was then built off the point cloud by generating spline curves.  Corresponding surfaces 

were then generated by connecting the spline curves from the obtained data points [14]. 

 

Figure 5-1 Geometry of VSR-4 Helmet Shell 

Since the model developed by Kangana was not available, a new FE model was 

generated by importing the original geometry file, used by Bhushan [13], as a *.stp file, 

to HyperMesh 14.0 [4].  The outer surface geometry, in Figure 5-1, was then used to 
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develop the entire FE model used by Bhushan [14].  The model generated consists of 

90,486 nodes and 81,039 elements.  Elements used in the helmet model are HEXA8 and 

PENTA6 solid elements.  Total mass of the FE model matches the actual mass of the 

existing helmet at 1.5kg and the mass of the FE model developed by Bhushan [14].  This 

recreated model uses the same geometry file.  

 

Table 5-1 VSR-4 Football Helmet FE Model Breakdown 

 

 

The internal padding of the helmet was meshed separately to incorporate the different 

thicknesses of the pads on the interior of the helmet.  The forehead pad, crown pad, side 

and rear pads were modeled according to the measured thickness of the existing helmet.  

The corresponding thickness of the internal padding is as follows: 

• Forehead pad = 24mm 

• Crown pad = 27.5mm 

• Side pad = 20mm 

• Rear pad = 20mm 

Location
Number of 
Elements Element Type

Layer 
Thickness 

(mm)
Shell Outer Surface 25,770 hexa8 & penta6 4

Padding Forehead 4,410 hexa8 & penta6 24
Side/Posterior 21,590 hexa8 & penta6 20

Crown 7,590 hexa8 & penta6 27.5
Jaw 2,440 hexa8 & penta6 20

Details of VSR 4 Football Helmet FE Model
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Figure 5-2 through Figure 5-4 shows FE model of the complete football helmet.  For this 

study, the facemask is not included in the analysis.  Since the facemask is removed from 

the helmet during standard NOCSAE testing, it was excluded from this analysis [9]. 

 

 

Figure 5-2 VSR-4 Football Helmet by Riddell without Facemask 
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Figure 5-3 VSR-4 Football Helmet by Riddell Bottom View 
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Figure 5-4 VSR-4 Football Helmet by Riddell Cross-Sectional View 

5.5 Validation of the Helmet Model 

The material properties used in the FE model were validated by Bhushan [14].  

Kangana’s FE model was validated with respect to the ASTM test results published by 

Zhang [15] that was performed on the VSR-4 large helmet by Riddell.  ASTM test results 

for the Frontal, Lateral, Posterior, and Superior locations were available and were 

subsequently used to validate the model. 

 

The headform used by Bhushan [14], to simulate the ASTM drop tests, was the NOCSAE 

headform.  The headform was digitized using a coordinate measuring machine (CMM) 



 

 

95 

 

available in the ME-EM Department at MTU.  This method used is a similar method in 

which the FE model of the helmet was developed.  

 

The coordinate points obtained from the CMM were used to create a point cloud of the 

headform.  The point cloud was then used to generate a surface model that could be later 

used to generate a FE headform model.  The exterior surface of the headform was then 

generated using shell elements, where the material density was modified to match the 

total mass of the headform.  The center of mass (COM) and COM location was defined in 

accordance with the physical location of the NOCSAE headform. 

  

To simulate the impact test, the helmet and NOCSAE headform were assembled in 

accordance with the guidelines and instructions provided by Riddell, Inc. [14].  The 

assembled model was given an initial velocity of 5.47 m/s, to simulate the headform and 

helmet assembly being dropped from a 60 inch vertical height.  The corresponding 

velocity was used to validate the impact acceleration for the ASTM experimental event 

by Zhang [15].  

 

ASTM F429, F717, and F1446 [16], [17], [18] define the testing method for evaluating 

the shock attenuating characteristics of a commercially available football helmet.  The 

test apparatus can be setup in six different headform positions and dropped from a 

vertical height of 60 inches to an impact velocity of 5.47 ± 0.04 m/s.  The six different 

headform positions are: Front, Front Boss, Side, Posterior, Posterior Boss, and Crown.  A 
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triaxial accelerometer, mounted at the center of mass, is used to measure the impact 

event.  The NOCSAE drop tester is based upon these standards and shown below. 

 

Figure 5-5 NOCSAE Standard Drop Tester at MTU for Football Helmet Testing based upon 

NOCSAE Standard Drop Test Equipment [9] 

Anvil with 
impact pad 

Headform with 
tri-axial 
accelerometer 

Frame Guide wires 
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Since the exact material properties of the helmet were not available during Kangana’s 

study, a reverse engineering approach was used to estimate the material characteristics of 

each padding region [14].  A list of material properties used for the validation of the 

helmet is listed in Table 5-2.  The approach taken to finalize these material properties is 

described below. 

 

Table 5-2 VSR-4 Football Helmet Material Properties 

 

 

The helmet padding of the VSR-4 Riddell helmet is made of vinyl nitrile and 

polyurethane foam [14].  This foam material is a highly compressible elastic material.  

The pads within the helmet are separated into different regions, corresponding to their 

physical location and measured thicknesses.  The Forehead pad, Crown pad, 

Side/Posterior pad, and the Jaw pad designations are used to identify the padding regions.  

The material model used in the analysis model in Radioss by Altair [4] is the Visco-

elastic Plastic Foam Material.  In Radioss, this material model is typically used to model 

Location Material 
Model

Density 
(kg/mm3)

Poission's 
Ratio 

Shell Outer Surface Elastic 1.30E-06 0.32
Padding Forehead Foam 3.20E-07 0.01

Side/Posterior Foam 2.00E-07 0.01
Crown Foam 2.80E-07 0.01

Jaw Foam 2.00E-07 0.01

Material Properties of VSR 4 Football Helmet FE Model
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low density, closed cell polyurethane foams used for impact.  The calculated densities of 

each region were based upon measured volume and mass of each pad region by using the 

equation [14]: 

𝜌𝜌 = 𝑚𝑚
𝑉𝑉

    (5.1) 

Where:   ρ is the objects density in kg/mm3 

   m is the objects mass in kg 

   V is the objects volume in mm3 

 

Uniaxial compression data was used to define the material of the helmet pads.  The 

compressive stress and strain data of the pad regions was tuned to get the required 

acceleration response of the headform [14].  Kangana Bhushan first used material 

properties derived by Zhang [15] for the padding material and then modified the 

properties once subsequent iterations were performed.  It was determined that the 

maximum compression had little effect on the peak acceleration of the headform due to 

helmet impact.  Changing the initial elastic region of the stress strain curve, however, had 

a strong influence of the peak acceleration.  The stress-strain data that best matched the 

ASTM test results used by Kangana Bhushan [14] are presented and re-plotted in Figure 

5-6. 
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Figure 5-6 Stress-Strain Energy Liner Behavior 

 

5.6 Impact Validation 

Validation of the VSR-4 and the drop test headform finite element model was performed 

for the Frontal, Side, Posterior, and Superior impact regions.  Kangana Bhushan 

performed a series of simulations, as a tuning process, for estimating the material 

properties of the football helmet padding.  The resulting acceleration responses from the 

simulations were compared to the published ASTM test results by Zhang [14].  From the 

results the impact results closely matched the published results. 
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6 VSR4 by Riddell Football Helmet Fitted onto a Human 

Head Model by Finite Element Modeling 

 

Since the model developed by Kangana Bhushan was not available, a new FE VSR4 

Riddell helmet model was generated by importing the original geometry file, used by 

Bhushan [14], as a *.stp file, to HyperMesh 14.0.  The outer surface geometry was then 

used to develop the entire FE model used by Kangana Bhushan [14].  The model 

generated consists of 90,486 nodes and 81,039 elements.  Elements used in the helmet 

model are HEXA8 and PENTA6 solid elements.  Total mass of the FE model matches the 

actual mass of the existing helmet at 1.5kg and the mass of the FE model developed by 

Bhushan [14].  This recreated model uses the same geometry file.  

 

Table 6-1 VSR-4 Football Helmet FE Model Breakdown 

 

 

Location
Number of 
Elements Element Type

Layer 
Thickness 

(mm)
Shell Outer Surface 25,770 hexa8 & penta6 4

Padding Forehead 4,410 hexa8 & penta6 24
Side/Posterior 21,590 hexa8 & penta6 20

Crown 7,590 hexa8 & penta6 27.5
Jaw 2,440 hexa8 & penta6 20

Details of VSR-4 Football Helmet FE Model
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The internal padding of the helmet was meshed separately to incorporate the different 

thicknesses of the pads on the interior of the helmet.  The forehead pad, crown pad, side 

and rear pads were modeled according to the measured thickness of the existing helmet.  

The corresponding thickness of the internal padding is as follows: 

• Forehead pad = 24mm 

• Crown pad = 27.5mm 

• Side pad = 20mm 

• Rear pad = 20mm 

 

Figure 6-1 through Figure 6-2 shows FE model of the complete football helmet.  For this 

study, the facemask is not included in the analysis.  Since the facemask is removed from 

the helmet during standard NOCSAE testing, it was excluded from this analysis. 
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Figure 6-1 VSR-4 Football Helmet by Riddell without facemask 

6.1 Helmet and Human Head Model 

The validated VSR4 Riddell helmet model described in Section 4.4 and the validated FE 

model of the human head described in Section 2.5 were assembled for Frontal, Lateral, 

Posterior, and Superior impacts.  Each impact location simulates the impact location that 

is performed on the NOCSAE drop tester.  The impact locations are standard impact 

locations used with the NOCSAE drop tester to determine the effectiveness of a football 

helmet with respect to linear impact acceleration.  Within this study, the overall 

effectiveness of the football helmet is evaluated with respect to linear impact acceleration 

along with pressure distribution, von Mises stress distribution in the brain, and angular 

acceleration of the human head model. 
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Figure 6-2 VSR-4 Football Helmet and Human Head Model Assembly 

 

6.2 Impact Simulation and Boundary Conditions 

Impact simulations for the frontal, lateral, posterior, and superior locations are shown in 

Figure 6-3 through Figure 6-10.  To be consistent with the NOCSAE drop test setup, the 

head model was positioned using the same impact angles the NOCSAE drop test frame.  

The impactor used in these simulations is a flat steel plate with an elastic padding surface.  

The impactor is the same impactor that was used in the human head impact simulations 

done previously.  The material properties of the impactor are listed in Table 6-2. 
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Table 6-2 Impactor Material Properties 

 

 

For the impact simulations, the impactor is stationary, whereas, the helmet and head 

model are given an initial velocity  to simulate the impact event.  For all impact 

simulations an initial velocity of 5.47 m/s is prescribed for the helmet and human head 

assembly.  All simulations were performed using Radioss, by Altair Engineering Inc. [4].  

To define an oblique impact, the vector quantity of the 5.47 m/s velocity is divided to 

result in an angle of impact.  The helmet and head assembly have a free-free boundary 

condition associated to them to simulate the impact. 

 

Contact conditions between the helmet and impactor, and the head and helmet were 

defined in the finite element model using a multi-usage impact interface, type 7, in 

Radioss [4].  Contact between contact pairs was defined using a master surface and group 

of slave nodes.  This type of contact definition has the advantage of increasing the contact 

stiffness to limit penetration, which lends itself well to simulating high speed impact for 

contact between parts.   

Material 
Model

Young's 
Modulus 

(Mpa)

Density 
(kg/m3)

Poission's 
Ratio 

Padding Elastic 10 1200 0.3
Steel Elastic 209000 7800 0.29

Material Properties of Impactor
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6.2.1 Frontal Impact Simulation 

 

Figure 6-3 Frontal Impact 0° Simulation Model 

The frontal impact simulation model is shown in Figure 6-3.  The linear head impact 

acceleration time history for the simulation is show in Figure 6-4.  

 

 

Figure 6-4 Frontal Impact 0° Linear Head Acceleration  
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6.2.2 Lateral Impact Simulation 

The lateral impact simulation model is shown in Figure 6-5.  The linear head impact 

acceleration time history for the simulation is shown in Figure 6-6. 

 

Figure 6-5 Lateral Impact 0° Simulation Model 

 

Figure 6-6 Lateral Impact 0° Linear Head Acceleration 
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6.2.3 Posterior Impact Simulation 

 

Figure 6-7 Posterior Impact 0° Simulation Model 

The posterior impact simulation model is shown in Figure 6-7.  The linear head impact 

acceleration time history for the simulation is shown in Figure 6-8. 

 

 

Figure 6-8 Posterior Impact 0° Linear Head Acceleration 
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6.2.4 Superior Impact Simulation 

The superior impact simulation model is shown in Figure 6-9.  The linear head impact 

acceleration time history for the simulation is shown in Figure 6-10. 

 

 

Figure 6-9 Superior Impact 0° Simulation Model 
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Figure 6-10 Superior Impact 0° Linear Head Acceleration 

 

For all of the impact simulations, the stress results and rotational acceleration results are 

shown in Chapter 8.  The results in Chapter 8 are used to evaluate the performance of the 

VSR-4 helmet against the EBM helmet.  A complete list of helmet performance 

evaluation is given in Chapter 8.  
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7 Concept and Configuration of the EBM Helmet Fitted onto 

a Human Head Model by Finite Element Modeling  

 

The principal function of the EBM helmet is to minimize the risk of concussion injury to 

football players by absorbing head impact energy and reducing head translational and 

rotational accelerations.  Since the majority of impacts on a helmet cause both linear and 

angular accelerations, the design of the EBM helmet is to utilize the existing padding for 

linear accelerations and provide an additional shear layer to address rotational 

accelerations.  Linear acceleration causes pressure gradient while angular acceleration 

causes shear strain gradient.  Frontal and occipital impacts cause both pressure and shear 

stress distributions in the brain [30]. 

 

7.1 Design Methodology of the Enhanced Bio-Morphic Football Helmet 

As stated previously, concussion is a type of traumatic brain injury (TBI).  It is a brain 

injury due to linear/angular acceleration/deceleration of the head due to impacts forcing 

interactions between the inner surface of the skull and the floating brain.  Most impacts 

on the helmet cause both linear and angular accelerations.  Linear acceleration of the 

head has been postulated to be the sole cause of injuries at the site of impact, or coup 

injuries, and opposite the site of impact, or countercoup injuries.  Angular acceleration of 

the head, on the other hand, have been postulated to be the sole cause of injuries on a 

global scale, or diffuse axonal injuries.  “While comparable negative pressure developed 
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in the countercoup regions, shear stress distributions remained identical regardless of the 

impact direction, consistent with the clinically observed pattern for contusion.  Therefore, 

shear strain theory appears to account better for the clinical findings in cerebral contusion 

[21].”  Angular acceleration is therefore the primary causation factor for concussion. 

 

A football helmet is a safety head gear used to protect players from head injuries due to 

impacts on the field.  Head injuries include skull fractures and brain concussion.  A given 

impact force at any location on the helmet can be resolved into normal and tangential 

impact forces.  The tangential impact force at any location can be replaced by a tangential 

impact force (TIF) at the center of mass and torque (TTIF) about the center of mass due 

to TIF.  Similarly, the normal impact force at any location can be replaced by a normal 

impact force (NIF) at the center of mass and a torque (TNIF) about the center of mass due 

to NIF.  Resultant impact force (RIF) at the center of mass can be shown as: 

 

RIF = (TIF) + (NIF)  (7.1) 

 

Resultant impact moment (RIM) about the center of mass is equal to: 

 

RIT = (TTIF) + (TNIF) (7.2) 

Kinetics: 

RIF = m āG     (7.3) 

RIT = IG 𝛼⃗𝛼   (7.4) 
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Where: 

m = mass of the helmet 

āG = linear acceleration of the center of mass 

IG - Mass moment of inertia of the helmet 

𝛼⃗𝛼 = angular acceleration about the center of mass 

 

āG directly proportional to RIF, is a measure of skull fractures while m is a measure of 

resistance to linear acceleration.  On the other hand, both IG and α, directly proportional 

to RIT, are a measure of concussion, while IG is a measure of resistance to angular 

acceleration.  

 

The current football helmet design involves a stiff plastic outer shell to distribute RIF 

combined with an elastic foam inner shell to absorb the impact shock and to reduce the 

RIF in order to minimize the risk of skull fractures.  The National Operating Committee 

on Standards for Athletic Equipment (NOCSAE) provides a set of voluntary standards, 

based on the Wayne State Tolerance Curve (WSTC), to evaluate a helmet’s ability to 

prevent skull fracture.  NOCSAE standards have helped to successfully eliminate skull 

fractures due to impacts in football games while wearing helmets designed with an RIF 

distributor; a stiff plastic outer shell and a RIF attenuator in the form of an elastic foam 

inner shell [22]. 
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As per Equations (7.3) and (7.4), the impacts on the helmet cause linear and angular 

accelerations of the head which bring forth pressure and shearing stress due to 

interactions between the skull and the brain resulting in concussion.  To minimize linear 

acceleration, as seen from Equation (7.1), one can either minimize RIF or maximize the 

mass of the helmet.  But “I can’t have the helmet weigh too much because then I am 

putting stress loads on the neck and I am creating a whole set of different problems.  I 

can’t put in too much padding, then I am creating a heat-related issue.  I can’t make it too 

thin, I can’t make it too thick,” said Schutt Sports President and CEO, Robert Erb.[22]  

Similarly, to minimize angular acceleration, one can maximize the mass moment of 

inertia.  But, “fashion cues are a factor.  Older helmets such as the VSR-4 have smooth 

styling that players find cool: concussion resistant helmets bulge outward like the heads 

of cartoon space aliens” [23].  Besides, it maximizes TTIF. 

 

During the 2012 and 2013 high school football season, U.W. Madison researchers [26], 

collected data from thirty-four public and private high schools in Wisconsin.  Players in 

the study wore helmets from one of three helmet manufacturers: Riddell, Schutt, and 

Xenith.  The researchers found no differences in the rate of sports-related concussions 

among helmet brands, the age of helmets, or reconditioned helmets.  Of the 2081 high 

school athletes followed during the two year period, approximately 10% sustained a 

concussion.  “Helmets of present day technology are supposed to prevent catastrophic 

brain injury like hemorrhages,” said Kevin Guskiewicz, Chair of the NFL Subcommittee 
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on Safety Equipment and Playing Rules.  “They do a good job of that, but we want a 

helmet that does that as well as prevent concussion” [27]. 

 

The purpose of the EBM helmet is not only to minimize linear acceleration of the head to 

prevent catastrophic brain injury like hemorrhages, but also to minimize angular 

accelerations of the head to prevent concussion.  In order to minimize linear acceleration, 

the helmet must have design provisions to attenuate RIF (See Equation (7.1)).  Similarly, 

to minimize angular acceleration, the helmet must have design provisions to attenuate 

RIT (See Equation (7.2)).  Current helmet technology does provide adequate design 

provisions to attenuate NIF, but it lacks design provisions to attenuate TIF. 

 

The goal of EBM helmet technology is to introduce both impact force distributors and 

impact shock energy absorbers, not only to address NIF, but also to address TIF.  

Towards this goal, the EBM helmet is modeled to incorporate the addition of a shear 

layer, between the outer polycarbonate shell and the internal impact padding, to minimize 

the TIF that is imposed on the human head.  All three materials bonded together to 

diffuse, distribute, dissipate, and absorb impact force and shock energy.  

 

From the NFL, the injury tolerance for angular acceleration for a football player is 5757 

to 5900 rad/sec2 [27].  Zhang determined that the maximum resulting angular 

accelerations for a 50% probability of sustaining a Mild Traumatic Brain Injury (MTBI) 

is approximately 5900 rad/sec2 for impact duration lasting between 10 and 30 
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milliseconds [19].  For this reason, the EBM helmet was designed to help reduce the 

amount of angular acceleration that is transferred to the human brain. 
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8 EBM Helmet Fitted onto a Human Head Model by Finite 

Element Method  

 

The generation of the finite element model of the EBM helmet was performed in a same 

manner as how the VSR-4 helmet model was developed.  The model was constructed 

from the same geometry model used to generate the VSR-4 finite element model.  Using 

the same shell geometry and padding assured that a good and accurate comparison 

between the two types of helmets could be presented.  

 

As stated previously the goal of the EBM helmet is to introduce both impact force 

distributors and impact shock energy absorbers, not only to address the normal impact 

force, but also to address the oblique impact force.  This is accomplished by adding a 

shear layer between the polycarbonate shell and internal impact padding.  This additional 

material is a key factor in addressing the oblique impact force reduction.  The following 

sections describes the EBM finite element model in detail. 
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8.1 EBM Finite Element Model 

 

The EBM helmet model generated consists of 91254 nodes and 83,175 elements.  

Elements used in the model are HEXA8 and PENTA6 solid elements.  Total mass of the 

FE model is 1.76kg, which is approximately 0.26kg heavier than the VSR-4 helmet of the 

same size.  The additional mass associated with the EBM helmet is due to the additional 

shear layer. 

 

Table 8-1 EBM Football Helmet FE Model Breakdown 

 

The internal padding of the helmet was meshed, in the same manner as the standard 

football helmet, to incorporate the different thicknesses of the pads on the interior of the 

helmet.  The difference between the EBM helmet and the standard football helmet is the 

addition of the shear layer between the outer shell and padding material.  The overall 

thickness of each region of padding is reduced to take into account of the additional 

thickness introduced by the shear layer.  Therefore, the large EBM helmet will fit the 

Location
Number of 
Elements Element Type

Layer 
Thickness 

(mm)
Shell Outer Surface 25,770 hexa8 & penta6 4

Sorbothane Between Shell and 
Padding

21,375 hexa8 & penta6 3

Padding Forehead 4,410 hexa8 & penta6 21
Side/Posterior 21,590 hexa8 & penta6 17

Crown 7,590 hexa8 & penta6 24.5
Jaw 2,440 hexa8 & penta6 17

Details of EBM Football Helmet FE Model
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same as a large VSR-4 football helmet.  The forehead pad, crown pad, side and rear pads 

were modeled according to the measured thickness of the existing helmet, minus the 

thickness of the shear layer.  The corresponding thickness of the internal padding is as 

follows: 

• Forehead pad = 21mm 

• Crown pad = 24.5mm 

• Side and Posterior pad = 17mm 

• Jaw pad = 17mm 

Figure 8-1 through Figure 8-3 shows FE model of the complete EBM football helmet.  

For this study, the facemask is not included in the analysis.   

 

 

Figure 8-1 EBM Football Helmet without Facemask 
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Figure 8-2 EBM Football Helmet Bottom View 
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Figure 8-3 EBM Football Helmet Cross-Sectional View 

 

8.2 Shear Layer – Sorbothane Material 

The material used to represent the shear layer in the EBM helmet is Sorbothane®.  

Sorbothane® is the brand name of a polyether-based synthetic viscoelastic urethane 

polymer [13].  It is a thermoset with a very high damping coefficient.  It is regarded as an 

excellent material for attenuating shock, isolating vibration, and damping.  Sorbothane® 

is a solid that behaves like a liquid by absorbing shock in all directions.  It is a stable 

material over a wide range of temperatures with a long fatigue life. 
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The method used to define the material model in the finite element model is a material 

complex shear modulus, shear storage modulus, and loss factor is defined using the 

following equation [29]: 

𝐺𝐺(𝜔𝜔) = 𝐺𝐺′(𝜔𝜔) ∙ [1 + 𝑗𝑗𝑗𝑗(𝜔𝜔)]   (8.1) 

 

Where:   G(ω) = complex shear modulus 

   G’(ω) =  shear storage modulus 

   η(ω) = loss factor 

 

For Sorbothane® DURO 50, the storage modulus used was 194 kPa and a loss factor used 

was 0.570 [29]. 

 

8.3 Material Properties of the EBM Helmet Model 

The material properties used in the EBM helmet model are the same materials that were 

used to validate the VSR-4 football helmet by Kangana Bhushan [14], with the exception 

of the Sorbothane® layer.  The material properties displayed in Table 8-2 is a list of the 

material used in the FE model and the corresponding material model used for the finite 

element analysis. 
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Table 8-2 EBM Football Helmet Material Properties 

 

 

Figure 8-4 EBM Football Helmet and Human Head Model Assembly 

Location Material 
Model

Density 
(kg/mm3)

Poission's 
Ratio 

Shell Outer Shell Elastic 1.30E-06 0.32

Sorbothane Between Shell and 
Padding

Hyperelastic 1.41E-06 0.499

Padding Forehead Foam 3.20E-07 0.01
Side/Posterior Foam 2.00E-07 0.01

Crown Foam 2.80E-07 0.01
Jaw Foam 2.00E-07 0.01

Material Properties of EBM Football Helmet FE Model
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8.4 Impact Simulation and Boundary Conditions 

 

Impact simulations for the frontal, lateral, posterior, and superior locations are shown in 

Figure 8-5.  To be consistent with the NOCSAE drop test setup, the head model was 

positioned using the same impact angles the drop test frame uses.  The impactor used in 

these simulations is the same impactor that was used in the VSR-4 helmet evaluation by 

Kangana [14] and human head impact evaluation by myself [30].  The material properties 

of the impactor are listed in Table 8-3. 

 

Table 8-3 Impactor Material Properties 

 

 

The impactor in this set of analyses is actually fixed to ground and the helmet and head 

model are given an initial velocity  to simulate the impact event.  For all impact 

simulations an initial velocity of 5.47 m/s is prescribed for the helmet and human head 

assembly.  To define an oblique impact, the vector quantity of 5.47 m/s velocity is 

resolved to an angle of impact.  The helmet and head assembly do not have any other 

boundary conditions associated to them other than the initial velocity. 
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Figure 8-5 Frontal (A), Lateral (B), Posterior (C), and Superior (D) Impact Models 

 

Contact conditions between contact pairs was defined using the same multi-usage impact 

interface, as described in Chapter 5.2 for the simulation of the VSR-4 helmet impacts.  

The use of the same contact definitions applied with the EBM helmet model assured the 

two models would be using the same model descriptions. 

  

A B 

C D 
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9 VSR4 and EBM Helmet Comparison 

In order to quantify the benefit of the EBM helmet over the commercially available 

VSR4 football helmet, a full helmet to helmet comparison is required.  In this chapter, the 

impact results of the EBM helmet are shown adjacent to the results of the VSR4 helmet.  

The ultimate evaluation of a helmet is to show how well it performs in reducing the 

transfer of energy from the impacting surface to the human brain.  The primary design 

consideration in every helmet is to reduce the impact energy.  That energy transfer, 

results in stress distribution to the brain is the proving factor in determining how well a 

helmet performs.   

 

9.1 Angular Acceleration Calculation 

The method used to calculate angular acceleration is described using the coordinate 

system triad in Figure 9-1.  Linear accelerations for nodes within the brain are recorded 

for the center of mass, frontal region, lateral region, superior region, and posterior region.  

The nodes used coincide with the global coordinate system.  Distances of each node is 

measured relative to the center of mass node.  The X, Y, and Z component of acceleration 

is then calculated using the difference in acceleration between that corresponding node 

and the center of mass.  The angular acceleration about each direction is then calculated 

from the linear acceleration.  As an example, the angular acceleration about the X-axis is 

calculated using the amount of linear Z-axis acceleration and Y-axis acceleration that 
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cause the angular acceleration about the X-axis.  The same methodology is used to 

calculate the angular acceleration about the Y-axis and Z-axis. 

 

Figure 9-1 Angular Acceleration Calculation Methodology 

Nodal results for the different regions of the brain are then used to calculate angular 

acceleration for the Frontal, Side, Posterior, and Superior impact simulations.  This 

methodology is used to calculate angular acceleration to account for the off axis rotation 

that is expected with an impact event. 
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9.2 Frontal Impact 

The setup for the frontal impact simulation is shown in Figure 9-2.  The head is inclined 

at a 5° angle relative to the transverse plane similar to the NOCSAE drop test 

configuration for frontal impacts.  As previously stated in Chapter 7, the impactor used is 

a stationary impactor with the velocity of the head given an initial velocity boundary 

condition.  The initial velocity of the head and helmet assembly is 5.47 m/s.  For all of 

the impact simulations, the 15° impact angle is eliminated.  This is due to the relative 

small difference from a normal impact angle.  Although the final outcome of the analysis 

can be determined for 15°, the simulation results were not performed. 

 

 

Figure 9-2 Frontal Impact Arrangement 
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A comparison of the impact results of the EBM helmet and VSR4 helmet are shown in 

Figure 9-3 through Figure 9-6.  The impact force, in Figure 9-3, and linear impact 

acceleration, in Figure 9-6, for both helmets are very close to each other for the 0° impact 

simulation, with the VSR4 impact force and acceleration being slightly higher.  Upon 

reviewing the results, this is the outcome for all the impact simulations.  The difference 

can be most likely explained by the fitting of the head model into the padding of the 

helmet once impact is initiated.  Although this happens with both helmet types, the EBM 

helmet’s shear layer helps provide a cushioning effect for the inconsistencies between the 

contour of the helmet padding and the contour of the forehead.  Thereby, allowing a 

better fit transition during the impact event.  This can also be seen in the time duration of 

the impact curve comparison where the impact event of the EBM helmet is slightly 

longer than that of the VSR4.  Although there is only a small difference between the two, 

there is still a difference.   

 

What becomes apparent between the two helmet types, however, is the reduction in 

angular acceleration with the EBM helmet once the angle of impact increases from 0° to 

30°.  The additional shear layer provides a attenuation mechanism to reduce the amount 

of rotational acceleration transferred to the brain.  The largest percent reduction of 46% is 

seen with the 30° impact angle.  This reduction in angular acceleration is very important 

when reviewing the stress results for the various impacts. 
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Figure 9-3 VSR4 and EBM Helmet – Frontal Impact –  Impact Force on the Scalp at the Site of 

Impact 

 

 

Figure 9-4 VSR4 and EBM Helmet - Frontal Impact – Brain Peak von Mises Stress 
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Figure 9-5 VSR4 and EBM Helmet – Frontal Impact - Angular Acceleration Comparison 

 

 

Figure 9-6 VSR4 and EBM Helmet – Frontal Impact - Linear Acceleration  
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9.2.1 Frontal Impact 0° - von Mises Stresses 

Stress comparison on the brain of VSR4 and EBM helmet impacts follows the predicted 

results of the calculated angular acceleration. The EBM helmet shows a 12% increase in 

angular acceleration over the VSR4 helmet.  The results from the EBM helmet show a 

peak stress range of 5.1 kPa to 6.3 kPa as compared to the VSR4 helmet of 3.9 kPa to 5.1 

kPa, which is a slight increase in stresses over the superior area of the brain.  The stress 

area of 3.9 kPa to 5.1 kPa for the EBM helmet also covers a larger area over the superior 

region of the brain.  Both stress results are scaled the same for a direct comparison. 

 

Figure 9-7 VSR4 Helmet - Frontal Impact 0° - von Mises Stress 

 

Figure 9-8 EBM Helmet - Frontal Impact 0° - von Mises Stress  
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9.2.2 Frontal Impact 30° - von Mises Stresses 

As seen in Figure 9-5, the EBM helmet provides an added feature in reducing angular 

acceleration transferred to the brain.  As seen below, the additional shear layer provides 

means for reducing the stresses caused by the helmet and head rotating from the impact 

event.  The stress peak stress level for the EBM helmet is between 8.9 kPa to 10.2 kPa 

over a small region of the left lateral side of the brain.  Whereas, the VSR4 helmet model 

shows a peak stress level between 10.2 kPa and 11.6 kPa.  The peak stress area for the 

VSR4 helmet is small, but a greater increase overall.  In addition, the stress level between 

8.9 kPa to 10.2 kPa covers a much larger area for the VSR4 helmet.   

 

Stress levels on the right side of the brain are also higher for the VSR4 helmet.  Stress 

levels for this helmet are between 6.2 kPa and 7.3 kPa as compared to 4.9 kPa to 6.3 kPa 

for the EBM helmet.  Another significant point to note is the area of stress between 0.93 

kPa to 2.2 kPa for the EBM helmet being much larger than the VSR4 helmet. 

 

 

Figure 9-9 VSR4 Helmet - Frontal Impact 30° - von Mises Stress 
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Figure 9-10 EBM Helmet - Frontal Impact 30° - von Mises Stress 
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9.2.3 Frontal Impact 45° - von Mises Stresses 

Although, the amount of angular acceleration reduction for the 45° impact is not as 

significant as compared to the 30° impact (27% reduction compared to 46%), the added 

benefit is still present.  As seen below, the stress reduction for the EBM helmet is 

significantly better than the VSR4 helmet.  The peak stress level on the left lateral side 

for the VSR4 helmet is between 10.8 kPa to 12.0 kPa as compared to a peak stress 

between 8.4 kPa to 9.6 kPa for the EBM helmet.  This reduction in peak stress is 

significant for the EBM helmet.  In addition, the area of peak stress for the VSR4 helmet 

covers a larger area as compared to the peak stress area for the EBM helmet. 

 

Stress levels on the right side of the brain are also higher for the VSR4 helmet.  Stress 

levels for this helmet are between 8.4 kPa to 9.6 kPa as compared to 5.9 kPa to 7.1 kPa 

for the EBM helmet.  Another significant point to note is the larger area of low stress for 

the EBM helmet being between 0.93 kPa to 2.2 kPa as compared to the area of low stress 

for the VSR4 helmet. 
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Figure 9-11 VSR4 Helmet - Frontal Impact 45° - von Mises Stress 

 

 

Figure 9-12 EBM Helmet - Frontal Impact 45° - von Mises Stress 

 

For the 45° impact results, a cross-section of the transverse plane and sagittal plane is 

shown.  See Figure 9-13 and Figure 9-14.  As seen in these stress contours, the highest 

stress is located around the perimeter surface of the brain, were as, the central portion of 

the brain is lower.  The area of stress, in the interior of the brain for the EBM helmet are 

between 2.6 kPa to 3.5 kPa are lower compared to a higher level for the VSR4 helmet 

between 3.5 kPa to 4.7 kPa.  The sagittal plate cross-section also indicates an axis of 
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rotation for the head.  With these results, the injury mechanism points toward a global 

shearing type of injury around the outer region of the brain, commonly found with 

concussions. 

 

 

Figure 9-13 VSR4 (left) and EBM (right) Helmet - Frontal Impact 45° - von Mises Stress 

Traverse Plane Cross-Section 

 

Figure 9-14 VSR4 (left) and EBM (right) Helmet - Frontal Impact 45° - von Mises Stress Sagittal 

Cross-Section  
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9.2.4 Frontal Impact 0° - Principal Stresses 

Principal stress comparison of the VSR4 and EBM helmets are shown in Figure 9-15 and 

Figure 9-16.  For the principal stresses, the peak stress shown in (red) indicates the region 

in tension (opposite the site of impact), whereas, the peak stress shown in (blue) is 

compression (site of impact).  Both the VSR4 and EBM helmet yield similar results, 

however the area of peak compression for the EBM helmet is smaller as compared to the 

area of the VSR4 helmet. 

 

Figure 9-15 VSR4 Helmet - Frontal Impact 0° - Principal Stress 

 

Figure 9-16 EBM Helmet - Frontal Impact 0° - Principal Stress  
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9.2.5 Frontal Impact 30° - Principal Stresses 

Principal stresses for the 30° Frontal impact yield similar results for both helmets.  

Differences between the peak compressive and tensile stresses for either helmet is 

insignificant.  

  

Figure 9-17 VSR4 Helmet - Frontal Impact 30° - Principal Stress 

 

  

Figure 9-18 EBM Helmet - Frontal Impact 30° - Principal Stress 
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9.2.6 Frontal Impact 45° - Principal Stresses 

Principal stresses for the 45° frontal impact yield similar results for both helmets as well.  

Differences between the peak compressive and tensile stresses for either helmet is 

insignificant.  

 

 

Figure 9-19 VSR4 Helmet - Frontal Impact 45° - Principal Stress 

 

 

Figure 9-20 EBM Helmet - Frontal Impact 45° - Principal Stress 
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9.3 Lateral Impact 

 

Figure 9-21 Lateral Impact Arrangement 

The setup for the lateral impact simulation is shown in Figure 9-21.  The head is oriented 

in line with the global coordinate system and perpendicular to the impacting surface.  

With the lateral impact, there is no angle of incline associated with the helmet relative to 

the impactor.  This impact configuration coincides with the NOCSAE drop test 

configuration for lateral impacts.  The initial velocity of the head and helmet assembly is 

5.47 m/s traveling in the +Z axis, into the impactor plate.  
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A comparison of the lateral impact results of the EBM and VSR4 helmets are shown in 

Figure 9-22 through Figure 9-25.  The linear impact acceleration for both helmets are 

very close to each other for the 0° impact simulation, with the VSR4 helmet being 

slightly higher than the EBM helmet.  This difference follows the same logic for the fit 

between the head and helmet explained in the frontal impacts.  Since the side, or lateral, 

area of the head is flatter than the frontal region of the head, the impact duration is similar 

in both cases.   

 

The impact force, at the surface of the scalp, for the VSR4 and EBM helmet are nearly 

the same without any significant differences.  See Figure 9-22.  Both time duration and 

peak impact force are very similar.  Since the area of impact on the surface of the scalp is 

large for lateral impacts, a good measurement for impact force was achieved.  This is a 

common result with all lateral impacts. 

 

An interesting result of the lateral impact, as compared to the frontal impact, is the 

amount of reduction of angular acceleration at 0° and then the similar results at 45°.  For 

the lateral impact, the amount of angular acceleration for a 0° impact is large, due to the 

impact vector not being in line with the center of mass of the head.  This is an inherent 

problem with lateral impacts in general.  With the normal impact not being in line with 

the center of mass of the head, the resulting shearing stresses on the brain are higher than 

all the other impact arrangements.  From the impact simulations, the center of mass of the 

head is slightly forward of the impact location on the helmet.  Once the impact angle 
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increases, however, the impact vector is directed more in line with the center of mass of 

the head.  This is apparent from the reduction in angular acceleration once the impact 

angle increases. 

 

 

Figure 9-22 VSR4 and EBM Helmet – Lateral Impact – Impact Force on the Scalp at the Site of 

Impact 
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Figure 9-23 VSR4 and EBM Helmet - Lateral Impact – Brain Peak von Mises Stress  

 
Figure 9-24 VSR4 and EBM Helmet – Lateral Impact - Angular Acceleration Comparison 
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Figure 9-25 VSR4 and EBM Helmet – Lateral Impact - Linear Acceleration  
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9.3.1 Lateral Impact 0° - von Mises Stresses 

The peak stress level, on the posterior region of the brain, for the VSR4 and EBM 

helmets is between 16.5 kPa to 18.6 kPa for the 0° lateral impact.  However, the area of 

peak stress for the EBM helmet is a very small area compared to the VSR4 helmet.  The 

next stress range of 14.5 kPa to 16.5 kPa is also relatively small for the EBM helmet 

compared to the VSR4 helmet.   

 

A significant point to mention with the 0° lateral impact as compared to the frontal, 

posterior, and superior impacts is the overall high stress levels.  The peak stresses for a 0° 

frontal, posterior, or superior impact is in the range of 2.7 kPa to 3.9 kPa, 7.4 kPa to 8.6 

kPa, and 3.8 kPa to 5.4 kPa respectively, which is much less than the lateral impact range 

of 16.5 kPa to 18.6 kPa.  This indicates a high level of angular acceleration for a 0° 

lateral impact angle not observed in the other impacts.  Angular acceleration for this 

impact can be as high as 6,300 rad/sec2 as compared to less than 1,000 rad/sec2. 

 

Peak stresses for the lateral impact is primarily located on the lateral and poster regions 

of the brain.  Since the primary angular acceleration is due to rotating about the vertical 

axis, the higher stresses follow the extreme distance from the impact location. 
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Figure 9-26 VSR4 Helmet - Lateral Impact 0° - von Mises Stress 

 

 

Figure 9-27 EBM Helmet - Lateral Impact 0° - von Mises Stress 
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9.3.2 Lateral Impact 30° - von Mises Stresses 

Once the impact angle is increased to 30°, the area associated with peak stress level on 

the brain with the VSR4 helmet increase significantly over the EBM helmet.  Again, the 

peak stress levels in both cases remain between 17.6 kPa to 19.6 kPa, however, the area 

affected is higher with the VSR4 helmet as seen in Figure 9-28 and Figure 9-29. 

 

The next lower level of 14.3 kPa to 17.6 kPa also shows a significant difference between 

the two helmets.  The area of the brain for the VSR4 helmet that has a stress level in this 

range is much greater as compared to the EBM helmet.  Overall, the area of mid-range 

stress between 10.4 kPa to 14.5 kPa for the EBM helmet is much less compared to the 

area of the VSR4 helmet. 

 

The percent reduction in angular acceleration for the EBM helmet is approximately 30% 

over that of the VSR4 helmet.  Although this is less than the percent reduction of 60% 

seem with a 0° side impact, the angular acceleration is still relatively high between 2700 

rad/sec2 to 3700 rad/sec2. 

 

Figure 9-28 VSR4 Helmet - Lateral Impact 30° - von Mises Stress 
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Figure 9-29 EBM Helmet - Lateral Impact 30° - von Mises Stress 
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9.3.3 Lateral Impact 45° - von Mises Stresses 

Although, the amount of angular acceleration reduction for the 45° impact drops to 

approximately 11% for EBM helmet, the presents of the shear layer provides a stress 

reducing mechanism for the brain.  As seen below, the stress reduction for the EBM 

helmet is significantly better than the VSR4 helmet.  The peak stress for the VSR4 helmet 

is between 16.2 kPa to 18.0 kPa as compared to a small area of stress between 14.3 kPa 

to 16.2 kPa for the EBM helmet.   

 

Figure 9-30 VSR4 Helmet - Lateral Impact 45° - von Mises Stress 

 

 

Figure 9-31 EBM Helmet - Lateral Impact 45° - von Mises Stress 
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For the 45° impact results, a cross-section of the transverse plane and sagittal plane is 

shown in Figure 9-32 and Figure 9-33.  As seen in these stress contours, the highest stress 

is located around the perimeter surface of the brain, were as, the central portion of the 

brain is lower.  With the peak stress levels being higher with the VSR4 helmet, the 

central portion of the brain stresses are also higher.  The central portion of the brain for 

the VSR4 helmet are between 3.3 kPa to 5.1 kPa as compared to 1.4 kPa to 3.3 kPa for 

the EBM helmet.  In addition, the overall stress levels observed with the EBM helmet 

cross-section are significantly lower. 

 

Referring to the sagittal plane cross-section comparison in Figure 9-33, the lower stress 

level between 1.4 kPa to 3.3 kPa carry over a much larger volume for the EBM helmet 

compared to the VSR4 helmet.  The stress levels in the brain at this range for the VSR4 

helmet only covers a small region of the brain stem, whereas, the volume of the brain for 

the EBM helmet carries through the entire vertical axis. 

 

 

Figure 9-32 VSR4 (left) and EBM (right) Helmet - Lateral Impact 45° - von Mises Stress 

Traverse Plane Cross-Section 



 

 

151 

 

 

Figure 9-33 VSR4 (left) and EBM (right) Helmet - Lateral Impact 45° - von Mises Stress Sagittal 

Cross-Section  
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9.3.4 Lateral Impact 0° - Principal Stresses 

Principal stress comparison of the VSR4 and EBM helmets are shown in Figure 9-34 and 

Figure 9-35.  For the principal stresses, the peak stress shown in (red) indicates the region 

in tension (opposite the site of impact), whereas, the peak stress shown in (blue) is 

compression (site of impact).  With the 0° lateral impact, the peak compressive stress 

between -0.154 kPa to -0.196 kPa for the EBM helmet is smaller compared to the VSR4 

helmet.  This indicates the high amount of angular acceleration associated with this type 

of impact. 

 

Figure 9-34 VSR4 Helmet - Lateral Impact 0° - Principal Stress 

 
Figure 9-35 EBM Helmet - Lateral Impact 0° - Principal Stress  
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9.3.5 Lateral Impact 30° - Principal Stresses 

The comparison conclusion for the 30° impact follows the same conclusion observed in 

the 0° side impact where peak principal stress areas for the EBM helmet are less than the 

VSR4 helmet.  Peak principal stresses results are consistent between the two applications. 

 

 

Figure 9-36 VSR4 Helmet - Lateral Impact 30° - Principal Stress 

 

Figure 9-37 EBM Helmet - Lateral Impact 30° - Principal Stress 
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9.3.6 Lateral Impact 45° - Principal Stresses 

Once the angle of impact reaches 45°, the peak principal stresses drop slightly for 

compression between -0.138 kPa to -0.178 kPa and between 0.138 kPa to 0.177 for 

tension.  Differences between the peak principal stresses for either helmet is insignificant. 

 

Figure 9-38 VSR4 Helmet - Lateral Impact 45° - Principal Stress 

 

 

Figure 9-39 EBM Helmet - Lateral Impact 45° - Principal Stress 
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9.4 Posterior Impact 

 

Figure 9-40 Posterior Impact Arrangement 

The setup for the posterior impact simulation is shown in Figure 9-40.  The head is 

oriented in line with the global coordinate system and in line with the impacting surface.  

With the posterior impact, there is no angle of incline associated with the helmet relative 

to the impactor.  This impact configuration coincides with the NOCSAE drop test 

configuration for posterior impacts.  The initial velocity of the head and helmet assembly 

is 5.47 m/s traveling in the +Z axis, into the impactor plate.  
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A comparison of the posterior impact results of the EBM and VSR4 helmets are shown in 

Figure 9-41 through Figure 9-44.  The linear impact acceleration for both helmets are 

very close to each other for the 0° impact simulation, with the VSR4 helmet being 

slightly higher than the EBM helmet.  This difference follows the same logic for the fit 

between the head and helmet explained in the frontal and side impacts.  

 

With the posterior impact simulations, the relative percent reduction in angular 

acceleration for the EBM helmet is consistent for 30° and 45°, whereas there is no real 

reduction at 0°.  For the posterior impact at 0°, it can be determined this impact is more in 

line with the center of mass of the head as compared to the other impact configurations.  

Although there is still some measurable angular acceleration, the amount is relatively 

small. 

 

Figure 9-41 VSR4 and EBM Helmet – Posterior Impact – Impact Force on the Scalp at the Site of 

Impact 
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Figure 9-42 VSR4 and EBM Helmet - Posterior Impact – Brain Peak von Mises Stress 

 
Figure 9-43 VSR4 and EBM Helmet – Posterior Impact - Angular Acceleration Comparison 
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Figure 9-44 VSR4 and EBM Helmet – Posterior Impact - Linear Acceleration 
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9.4.1 Posterior Impact 0° - von Mises Stresses 

The peak stress levels with the 0° posterior impact for the VSR4 and EBM helmets are  

nearly identical and the differences are insignificant.  The peak stress for both helmets is 

between 7.4 kPa to 8.6 kPa.   

 

 

Figure 9-45 VSR4 Helmet - Posterior Impact 0° - von Mises Stress 

 

Figure 9-46 EBM Helmet - Posterior Impact 0° - von Mises Stress 
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9.4.2 Posterior Impact 30° - von Mises Stresses 

Once the impact angle is increased to 30°, the area associated with peak stress level on 

the brain with the VSR4 helmet increases as compared to the EBM helmet.  The peak 

stress levels on the left side of the brain for the VSR4 helmet are between 13.5 kPa to 

15.0 kPa, compared to the EBM helmet peak stress between 11.9 kPa to 13.5 kPa.  The 

area of stress between 11.9 kPa to 13.5 kPa for the VSR4 helmet also covers a larger area 

compared to the EBM helmet. 

 

The area of peak stress on the right side of the brain is also greater for the VSR4 helmet.  

Stress levels on the right side of the brain for both helmets range between 7.3 kPa and 8.8 

kPa, however, the area for the VSR4 helmet is much larger than the area for the EBM 

helmet.   

 

 

 

Figure 9-47 VSR4 Helmet - Posterior Impact 30° - von Mises Stress 
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Figure 9-48 EBM Helmet - Posterior Impact 30° - von Mises Stress 
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9.4.3 Posterior Impact 45° - von Mises Stresses 

The peak stress levels with the 0° posterior impact for the VSR4 and EBM helmets are  

nearly identical and the differences are insignificant.  The peak stress for both helmets is 

between 14.7 kPa to 16.6 kPa.   

 

 

Figure 9-49 VSR4 Helmet - Posterior Impact 45° - von Mises Stress 

 

 

Figure 9-50 EBM Helmet - Posterior Impact 45° - von Mises Stress 
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For the 45° impact results, a cross-section of the transverse plane and sagittal plane is 

shown in Figure 9-51 and Figure 9-52.  As seen in these stress contours, the highest stress 

is located around the perimeter surface of the brain, were as, the central portion of the 

brain is lower.  Both helmet simulations show stress levels at the central portion of the 

brain between 2.9 kPa to 4.6 kPa, however, the EBM helmet shows a slightly larger area 

at this level. 

 

Figure 9-51 VSR4 (left) and EBM (right) Helmet - Posterior Impact 45° - von Mises Stress 

Traverse Plane Cross-Section 

 
Figure 9-52 VSR4 (left) and EBM (right) Helmet - Posterior Impact 45° - von Mises Stress 

Sagittal Cross-Section  
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9.4.4 Posterior Impact 0° - Principal Stresses 

Principal stress comparison for the VSR4 and EBM helmets are shown in Figure 9-53 

and Figure 9-54.  For the principal stresses, the peak stress shown in (red) indicate tensile 

stress (opposite the site of impact), whereas, the peak stress shown in (blue) is 

compression (site of impact).  Both the VSR4 and EBM helmet yield similar peak 

compressive stress between -0.167 kPa to -0.214 kPa results, however the area of peak 

compression for the EBM helmet is smaller as compared to the area of the VSR4 helmet. 

 

Figure 9-53 VSR4 Helmet - Posterior Impact 0° - Principal Stress 

 

Figure 9-54 EBM Helmet - Posterior Impact 0° - Principal Stress  
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9.4.5 Posterior Impact 30° - Principal Stresses 

Principal stresses for the 30° posterior impact yield similar results for both helmets.  

Differences between the peak compressive and tensile stresses for either helmet is 

insignificant. 

 

 

Figure 9-55 VSR4 Helmet - Posterior Impact 30° - Principal Stress 

 

Figure 9-56 EBM Helmet - Posterior Impact 30° - Principal Stress 
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9.4.6 Posterior Impact 45° - Principal Stresses 

Principal stresses for the 45° posterior impact yield similar results for both helmets as 

seen with the 30° impact angle.  Differences between the peak compressive and tensile 

stresses for either helmet is insignificant. 

 

 

Figure 9-57 VSR4 Helmet - Posterior Impact 45° - Principal Stress 

 

Figure 9-58 EBM Helmet - Posterior Impact 45° - Principal Stress 
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9.5 Superior Impact 

The setup for the posterior impact simulation is shown in Figure 9-59.  The head is 

oriented in line with the global coordinate system and in line with the impacting surface.  

With the superior impact, there is no angle of incline associated with the helmet relative 

to the impactor.  This impact configuration coincides with the NOCSAE drop test 

configuration for superior impacts.  The initial velocity of the head and helmet assembly 

is 5.47 m/s traveling in the +Z axis, into the impactor plate.  

 

 

Figure 9-59 Superior Impact Arrangement 
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A comparison of the superior impact results of the EBM and VSR4 helmets are shown in 

Figure 9-60 through Figure 9-63.  The peak linear acceleration for both helmets are very 

similar for the 0° impact simulation.   

 

With the superior impact simulations, the angular acceleration for the EBM helmet 

decreases from 0° to 45°., whereas the VSR4 helmet angular acceleration increases.  This 

increasing angular acceleration associated with the VSR4 helmet indicates the increased 

rotational motion that is imposed on the helmet during impact simulations.  Since the 

impact vector is further oriented away from the center of mass of the head, the angular 

acceleration transferred to the head is also increased.  The EBM helmet shear layer helps 

reduce this rotational motion to the brain which is also shown in the stress results for the 

different impacts. 
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Figure 9-60 VSR4 and EBM Helmet – Superior Impact – Impact Force on the Scalp at the Site of 

Impact 

 
Figure 9-61 VSR4 and EBM Helmet - Superior Impact – Brain Peak von Mises Stress 
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Figure 9-62 VSR4 and EBM Helmet – Superior Impact - Angular Acceleration Comparison 

 
Figure 9-63 VSR4 and EBM Helmet – Superior Impact - Linear Acceleration  
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9.5.1 Superior Impact 0° - von Mises Stresses 

The peak stress level, on the superior region of the brain, is between 6.4 kPa to 8.4 kPa 

for the VSR4 helmet and between 4.4 kPa to 6.4 kPa for the EBM helmet.  The area of 

stress between 2.4 kPa to 4.4 kPa that outlines the surface of the brain is very similar in 

both cases.  The highest peak stress in both instances, however, is located in the brain 

stem region, at a value greater than 15.0 kPa.   

 

 

Figure 9-64 VSR4 Helmet - Superior Impact 0° - von Mises Stress 

 

Figure 9-65 EBM Helmet - Superior Impact 0° - von Mises Stress  
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9.5.2 Superior Impact 30° - von Mises Stresses 

At an impact angle of 30°, the peak stress levels with the VSR4 helmet are between 13.7 

kPa to 15.6 kPa compared to 8.1 kPa to 9.9 kPa for the EBM helmet.  The area of low 

stress between 0.5 kPa to 2.4 kPa is substantially larger with the EBM helmet as 

compared to the VSR4 helmet.  Although the angular acceleration levels are below 700 

rad/sec2, the EBM helmet provides a 39% reduction, which helps reduce stress. 

 

Figure 9-66 VSR4 Helmet - Superior Impact 30° - von Mises Stress 

 

 
Figure 9-67 EBM Helmet - Superior Impact 30° - von Mises Stress 
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9.5.3 Superior Impact 45° - von Mises Stresses 

At an impact angle of 45°, the peak stress levels are between 16.5 kPa to 18.5 kPa with 

the VSR4 helmet, as compared to the EBM helmet being between 8.1 kPa to 9.9 kPa.  

The area of low stress between 0.4 kPa to 2.4 kPa is substantially larger with the EBM 

helmet as compared to the VSR4 helmet.  With the angular acceleration increasing to 

below 1,000 rad/sec2, the EBM helmet provides a 70% reduction, which helps to 

significantly reduce stress. 

 

Figure 9-68 VSR4 Helmet - Superior Impact 45° - von Mises Stress 

 
Figure 9-69 EBM Helmet - Superior Impact 45° - von Mises Stress 
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For the 45° impact results, a cross-section for the transverse plane and sagittal plane is 

shown.  See Figure 9-70 and Figure 9-71.  For the EBM helmet results, there is a large 

region of stress between 0.4 kPa to 2.4 kPa as compared to the VSR4 helmet.  The VSR4 

helmet has a small region of stress between 4.4 kPa to 6.4 kPa and a region near the 

frontal lobe between 8.4 kPa to 10.5 kPa, not observed with the EBM helmet. 

 

 
Figure 9-70 VSR4 (left) and EBM (right) Helmet - Superior Impact 45° - von Mises Stress 

Traverse Plane Cross-Section 

 

 
Figure 9-71 VSR4 (left) and EBM (right) Helmet - Superior Impact 45° - von Mises Stress 

Sagittal Cross-Section 
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9.5.4 Superior Impact 0° - Principal Stresses 

Principal stress comparison of the VSR4 and EBM helmets are shown in Figure 9-72 and 

Figure 9-73.  The peak principal stress, indicating compression, shown in (blue), is at the 

site of impact.  Differences between the peak compressive and tensile stresses for either 

helmet is insignificant. 

 

 

Figure 9-72 VSR4 Helmet - Superior Impact 0° - Principal Stress 

 

 
Figure 9-73 EBM Helmet - Superior Impact 0° - Principal Stress 
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9.5.5 Superior Impact 30° - Principal Stresses 

At an impact angle of 30°, the principal stresses for the EBM helmet are substantially 

different that the VSR4 helmet.  The peak compressive stress levels between -0.144 kPa 

to -0.185 kPa are the same, however the peak area for the EBM is much larger.  This is 

due to the EBM helmet reducing the amount of rotation of the head and making the 

impact more normal to the center of mass of the head. 

 

 

Figure 9-74 VSR4 Helmet - Superior Impact 30° - Principal Stress 

 
Figure 9-75 EBM Helmet - Superior Impact 30° - Principal Stress 
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9.5.6 Superior Impact 45° - Principal Stresses 

At an impact angle of 45°, the principal stresses for the EBM helmet are still substantially 

different that the VSR4 helmet, as seen with the 30° impact angle.  The peak compressive 

stress level, which is less than the 30° impact, is between -0.121 kPa to -0.162 kPa are the 

same, however the peak area for the EBM is much larger.  This is due to the EBM helmet 

reducing the amount of rotation of the head and making the impact more normal to the 

center of mass of the head. 

 

Figure 9-76 VSR4 Helmet - Superior Impact 45° - Principal Stress 

 

Figure 9-77 EBM Helmet - Superior Impact 45° - Principal Stress 
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9.6 Summary of Comparison Results 

9.6.1 Frontal Impact 

One of the key features of the EBM helmet is its ability to reduce the amount of angular 

acceleration to the brain.  From Figure 9-78, it can be observed that as the angle of 

impact is increased from 0° to 45°, the amount of angular acceleration in the brain also 

increases.  Having the angular acceleration increase once the angle of impact increases is 

not a surprise.  Since the NFL tolerance level for angular acceleration has been proposed 

to be 5757 rad/sec2 [27] the EBM helmet provides a mechanism to reduce the amount of 

angular acceleration to a level that will not cause a Mild Traumatic Brain Injury (MTBI). 

 

Figure 9-78 VSR4 and EBM Helmet – Frontal Impact - Angular Acceleration Comparison 
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The results from a 0° for both helmets yield similar results for angular acceleration, 

whereas, the von Mises stress results for the EBM helmet are slightly higher.  Since the 

EBM has 3mm less padding in the front pad, due to the additional shear layer, this makes 

sense that the peak stress levels result in a higher resulting value.  The stresses are low 

enough, however, that there is no risk of injury due to angular acceleration. 

 

 

Figure 9-79 VSR4 and EBM Helmet - Frontal Impact – Brain Peak von Mises Stress 

Once the angle of impact reaches 30° and 45°, the angular acceleration approaches and 

then surpasses the tolerance level of 5757 rad/sec2 published as the injury tolerance due 

to MTBI caused by angular accelerations [27].   The EBM helmet results show the 

angular acceleration results are below the threshold, thereby reducing the peak von Mises 

stresses.  
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9.6.2 Lateral Impact 

The results from the 0° and 15° impact angle simulations yield similar results for peak 

von Mises stress with both helmets.  What is different between the two is the area of peak 

von Mises stress for each model being larger for the VSR4 helmet as compared to the 

EBM helmet.  The EBM helmet reduces the von Mises stress area significantly.  The 

areas can be observed in Figure 9-26 through Figure 9-31. 

 

Another result observed with the 0° and 15° impact angles is the amount of angular 

acceleration reduction seen with the EBM helmet.  The percent reduction in angular 

acceleration is 59% for a 0° impact angle and 30% for a 15° impact as seen in Figure 

9-81.  Once the angle of impact is increased to 45°, the percent reduction is reduced to 

11%. 

 

Figure 9-80 VSR4 and EBM Helmet - Lateral Impact – Brain Peak von Mises Stress 
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In general, the results observed with lateral impacts with football helmets, follows the 

results observed with the head impact simulations in Chapter 2.  The lateral impact, even 

at an angle of 0°, results in a stress distribution globally around the brain.  As was 

concluded from the head impact simulations in Chapter 2, a so called normal impact 

force vector is eccentric with respect to the center of mass of the head.  This holds true 

for the simulations with a head and helmet combination as well.  

 

 

Figure 9-81 VSR4 and EBM Helmet – Lateral Impact - Angular Acceleration Comparison 
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9.6.3 Posterior Impact 

Posterior impacts tend to follow a similar result as the frontal impact where the results for 

a 0° are similar for both peak von Mises stress and angular acceleration.  This type of 

impact is close to the direction of the center of mass of the head which results in very 

little angular movement.  See Figure 9-82 and Figure 9-83. 

 

With the angle of impact increasing to 30°, the shear layer in the EBM helmet helps to 

provide a 17% reduction in angular acceleration in the brain.  This helps reduce the peak 

von Mises stress that is present.   

 

Once the angle of impact increases to 45°, the results of the EBM compared to the VSR4 

helmet are nearly identical.  Although there is a reduction in angular acceleration with the 

EBM helmet, the differences between the two helmets for von Mises stress peak values 

and contour plots are insignificant.  This can be a result of the amount of padding in the 

posterior region of the helmet being thinner than all the other areas.  The posterior 

padding in the VSR4 helmet is 20mm and 17mm for the EBM helmet.  This reduced 

thickness for the EBM helmet ma play a role in the overall von Mises stress results, even 

though providing a 20% reduction in angular acceleration. 
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Figure 9-82 VSR4 and EBM Helmet - Posterior Impact – Brain Peak von Mises Stress 

 

Figure 9-83 VSR4 and EBM Helmet – Posterior Impact - Angular Acceleration Comparison 
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9.6.4 Superior Impact 

Superior impacts results for peak von Mises stress and angular acceleration shown in 

Figure 9-84 and Figure 9-85 shows that as the angle of impact increases from 0° to 45°, 

the percent reduction for angular acceleration provides a protecting feature for the human 

brain against concussion.  The percent reduction of angular acceleration increases as the 

angle of impact increase, causing the peak von Mises stress to be reduced. 

 

 

Figure 9-84 VSR4 and EBM Helmet - Superior Impact – Brain Peak von Mises Stress 

Although the angular acceleration levels are lower compared to those observed in the 

other impact simulations, the amount of angular acceleration reduced helps reduce the 

peak von Mises stress. 
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Figure 9-85 VSR4 and EBM Helmet – Superior Impact - Angular Acceleration Comparison 
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10 Summary 

In the course of this study, a 3D finite element of the human head was used to evaluate 

the efficacy of two football helmets.  The commercially available VSR4 helmet by 

Riddell is used as a comparison to the proposed Enhanced Bio-Morphic (EBM) helmet 

designed at MTU.  As part of this study, the all the components of the football helmet 

were evaluated to determine their effectiveness once they were combined into a final 

helmet configuration. 

 

Also part of this study was to look at the development of the human head model.  A 50th 

percentile human male finite element model was developed to further help understand 

what effect a football helmet has on a player, before a helmet is actually used.  The head 

model developed here has provided an extreme insight into head injuries.  It has been a 

beneficial tool in studying the effect an impact has on the human head. 

 

When looking through the results of the EBM helmet compared to the results of the 

VSR4 helmet, the overall conclusion is that the helmet works.  Not only is the EBM 

helmet effective in reducing the angular acceleration in the human head, but it is also 

effective in reducing the peak stress in the brain as a result of these impacts.  The 

additional mass shear layer adds to the EBM helmet and the reduced padding thickness 

does not have a detrimental effect to the overall performance of the helmet. 
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It has been shown, that the reduction in angular acceleration the EBM helmet provides is 

an added benefit when looking at the stress results in the brain.  In the majority of impact 

simulations, the stress results are significantly reduced with the EBM helmet.  In some 

cases where the peak von Mises stress levels are the same between the two helmets, the 

area contour plots show a much smaller are of peak stress associated with use of the EBM 

helmet compared to the use of the VSR4 helmet.  
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11 Recommendations for Future Work 

There are a few suggestions to further the study of the EBM helmet presented in this 

research.  The following suggestions can be helpful for future research to further improve 

the overall study of head impacts, with and without a helmet, and the results obtained in 

the finite element analysis: 

• Given the results of the EBM helmet performance, it’s time to build a helmet and 

start testing the technology. 

• Improve the model of the human head.  With the advancement in computing, an 

improved finite element model of the human head should be developed.  This 

could include a more detailed modeling effort of the brain as well.  The head 

model developed at MTU has been used for a number of studies and should 

continue to be used for future studies. 

• Further validation of the human head finite element model.  With more research 

looking into the material properties of biological tissue, further studies can be 

performed to improve the human head finite element model. 

• Develop a model of a youth human head.  With more and more youths getting 

involved in contact sports, the need for evaluating protective headgear is 

paramount.  Sports equipment that’s available for youth sports teams does not 

appear to be as well built as it is for adults.  Protection for youth players should 

have a higher level of priority. 
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