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Abstract 

Quercus is important ecologically and economically because it provides food and habitat for wildlife, 

wood and paper products for humans. Oaks are endangered due to various factors like shifting climates, 

habitat loss, drought, pathogens and genetic swamping. Quercus georgiana (M.A. Curtis) is an 

endangered and restricted oak species which is remaining only in the southeastern part of the US. 

Efforts are required to conserve this endangered species from extinction. Conservation of this species 

can be done through these methods: ex-situ conservation (arboretum and botanical garden) and in-situ 

conservation strategies which protect the species in its natural habitat. For this conservation strategy, 

it is important to ensure that sample collections capture as much of the gene pool as possible so that 

the biodiversity is maintained. A variety of molecular markers are available for Quercus. These markers 

which are highly polymorphic, co-dominant and multiallelic loci will be useful in the study of 

population genetics of Q. georgiana. Genetic variations in both, among and within the populations, 

have to be considered if sampling and conservation strategies are developed for this rare and 

endangered species. These analyses are important in the future for sample collection trips so that the 

conservation goal is obtained.   
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Introduction 

Deforestation, pollution, and climate change are threatening the forest diversity all over the world 

(Ledig 1988). Since forests are the habitats for diverse organisms, the threat to forest diversity is 

extended to these flora and fauna that are associated with forests and not only the forest trees. When a 

species becomes extinct, along with that much of the genetic diversity is lost too upon which long-term 

survival and evolution depend. Genetic variation is essential for a population in order to adapt to the 

environment and survive (Reed, Frankham 2003). Once a species or a population with a unique genetic 

information has been lost, it cannot be restored. The protection of endangered species and its genes for 

future generations is important to maintain the genetic diversity in a species (Ledig 1988). Therefore, 

conservation biology plays an important role in the preservation of these genes. The field of 

conservation biology is dealing with scientific knowledge useful to preserve biodiversity. A great deal 

of effort in conservation biology has focused on conservation genetics. Conservation efforts are usually 

classified as in-situ and ex-situ, meaning in the natural position (or in place) and out of the natural 

position, respectively. 

 

Quercus georgiana 

According to Botanic Gardens Conservation International (BGCI US), 17 species of oaks in the US are 

endangered like Quercus acerifolia (Palmer), Quercus alba (U. S. P), Quercus hinckleyi (C. H. Muller), 

Quercus georgiana (M. A. Curtis). Quercus georgiana is an endangered US endemic oak species that 

is left in only a few populations of the Piedmont region in the southeastern US (GA, AL, and NC). 

There are 14 counties of this species in Georgia and 3 counties in Alabama. There are only five 

individual trees of the entire population that are remaining in North Carolina and the remnant 



6 
 

populations in the South Carolina which are considered to be the part of the historic range of this species 

are now eliminated (Oldfield, S. and A. Eastwood 2007).  Quercus georgiana is important from both 

ecological and economic perspectives. Quercus georgiana has ornamental value because of its glossy 

green leaves, attractive autumn colors of purples and reds and its resilience to drought and heat.  Its 

leaves and acorns are food sources for larvae and woodpeckers, deers and small mammals (Toppila 

2012). Oaks are anemophilous i.e. gene flow occurs by wind pollination.  

 

Threats 

Tourism and recreation are major threats to Q. georgiana. This species is present at popular hiking 

trails within state parks and nature reserves at Stone Mountain. Erosion, poor regeneration, climate 

change, drought conditions and compacted soils that result in foot and vehicle traffic on granite 

outcrops are also major reasons of threats. Genetic swamping and introgression from surrounding red 

oak species such as Quercus (section Lobatae) results in the threatening of the genetic identity of 

Quercus georgiana (Wenzell 2015).  

 

Molecular methods 

Molecular tools such as microsatellites, RAPDs, AFLPs and chloroplast DNA are used for population 

genetic studies. Microsatellite markers provide information in genetic analysis studies because of their 

high polymorphism and co-dominant nature of inheritance (Sertse et al. 2013; Keiper et al. 2003; 

Stefenon et al. 2008). Microsatellites are multiple repeats of short sequences of DNA which are used 

to assess genetic variation. The populations of threatened or endangered organisms are analyzed using 

molecular markers that need to be saved before they go extinct. Expressed Sequence Tags (ESTs) are  
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rich sources of SSRs which are often not only polymorphic within the source taxon, but in related taxa, 

as well (Ellis & Burke 2007). 

Ex-situ and In-situ conservation of exceptional species 

Quercus georgiana is an ‘exceptional species’. The seeds of this species cannot be banked because 

acorns will not survive long-term dry storage. Research is going on for the acorns of the species which 

cannot be stored in seed banks using in vitro propagation and cryopreservation as a conservation 

method (Toppila 2012). Ex-situ collections must target the entire range of individual samples to seize 

the maximum genetic diversity possible from them. The second method of conservation is the in-situ 

conservation strategy where the species are protected in its natural habitat.  

The Morton Arboretum and Chicago Botanic Garden aims at studying the genetic diversity of Q. 

georgiana from both natural and cultivated collections for future conservation efforts. The main aim 

of the project is to characterize genic microsatellite markers (EST-SSRs) in this endangered oak species 

in nine populations in Georgia and Alabama. The sampling from the other populations was not made 

because Q. georgiana was infrequent and the trees appeared to be hybrids in those populations. Hence, 

these nine populations are the collection representatives that cover the distribution range of the species.  

The overall goal is to perform genetic variation analyses using Q. georgiana as a case study. Decisions 

can be made regarding which populations in a species and how many should be conserved which is 

important in the future, for sample collection trips so that the ex-situ conservation prime mission is 

obtained that can lead to future reintroduction and restoration efforts (Whitlock 2016).  
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Materials and Methods  

Plant Material 

A total of 215 samples consisting of the nine populations of Quercus georgiana were sampled in 

Alabama and Georgia (Table 1), and sampled plants were at least five meters apart. Also, the GPS 

coordinates were recorded for each plant. The nine populations consisted of 24 samples for most 

populations and 23 samples for one population (Stone Mountain).  

Marker analyses 

A total of 27 genic microsatellites (Expressed Sequence Tag- Simple Sequence Repeats, EST-SSRs) 

originally developed and genetically mapped in Quercus robur (Durand et al. 2010; Bodénès et al. 

2012) were tested in a total of eight samples from four Q. georgiana populations. Markers were selected 

based on successful transferability to North American oak species of section Lobatae (Lind and Gailing 

2013, Sullivan et al. 2013, Lind-Riehl et al. 2014). Twelve of these markers were successfully adopted 

for use in Q. georgiana and all samples were analyzed at these markers. Functional annotations were 

assigned to EST-SSRs using the Blast2GO software (Conesa et al. 2005).  

PCR amplification followed the protocol described in Lind and Gailing (2013). Specifically, samples 

were amplified in a GeneAmp PCR system 2700 (Applied Biosystem) with the following program: 

initial denaturation at 95 °C for 15 min followed by 35 cycles of denaturation at 94 °C for 45 sec, 

annealing at Ta (Table 2) for 45 sec and extension at 72 °C for 45 sec. The final extension step was for 

20 min at 72 °C. Each PCR was performed in a 15 μl reaction mix composed of 5 μl HotFIREPol (Oak 

Biotechnologies, containing 10 mM MgCl2, 0.6 units of HOT FIREPol® Taq polymerase, and 2 mM 

of each dNTP), 2 μl fluorescently labeled forward primers (5 μM), 2 μl reverse primers (5 μM), 2 μl 

DNA (~2 ng), and 4 μl molecular grade ultra-pure water (Phenix Research Labs). The PCR amplicons 
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were checked on 2% agarose gels in 1x TAE buffer at 200 V for 20 minutes. Exact fragment sizes of 

the amplified DNA products were determined on an ABI3730 Genetic Analyzer with the internal size 

standard GS-LIZ-500 (Applied Biosystems).  

Data Analysis 

The scoring of the data was done with the software GeneMarker® V2.6.3 (SoftGenetics) and fragments 

were assigned to bins after careful visual inspection.  

Genetic diversity analyses 

Genetic variation parameters expected heterozygosity (He) (Nei 1973), observed heterozygosity (Ho) 

and number of alleles per locus (Na) were calculated in GENAlEx v. 6 (Peakall and Smouse 2006). 

Also, the number of private alleles and of locally common alleles (found in ≤ 25% of all populations) 

was calculated in GENEALEx. For individual markers, the inbreeding coefficient F (Wright 1965) was 

calculated for all populations. Significant deviation from Hardy-Weinberg proportions was tested in 

GENEPOP 4.2 (Raymond and Rousset 1995, Rousset 2008) using probability tests for each marker 

and population. Pairwise genetic differentiation between populations (FST) was calculated and tested 

for significance in GENEPOP 4.1with the exact G test using default settings (Raymond and Rousset 

1995, Rousset 2008).  A Mantel test (Mantel 1967) was performed in GENAlEx v. 6 which compares 

a genetic distance matrix with a geographical distance matrix to test for correlation between genetic 

distance and geographical location. The Mantel test performs permutations on one matrix while holding 

the other constant.  

Genetic assignment analysis 

STRUCTURE v. 2.3.4 was used to infer population genetic structure using the multi-locus genotype 

data (Pritchard, Stephens and Donnelly 2000.) The Structure software implements a model-based 
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genetic admixture analysis using Bayesian methods to assign individuals to populations. To determine 

the number of clusters K that best fit our data, we performed five independent runs with a burn-in 

period of 30,000 iterations followed by 106 iterations for each value of K (K=1-9) under the admixture 

model with correlated allele frequencies without any prior information regarding species identification. 

A dendrogram (Neighbor joining method) was created based on Cavalli-Sforza and Edward’s (1967) 

pairwise genetic distances at EST-SSRs using Populations 2.0 (Langella 1999). Statistical support of 

clusters was determined with 1,000 bootstrap replicates. TreeViewX (Page 1996) was used to visualize 

the dendrogram. 
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Results  

All twelve microsatellite primers amplified and were polymorphic (Table 3). For individual markers, 

observed heterozygosity (Ho) across populations was highest at marker FIR048 and it was found to be 

0.838 and expected heterozygosity (He) across populations was highest at marker FIR043 and it was 

found to be 0.802. Marker VIT081 has the lowest observed heterozygosity (Ho) and expected 

heterozygosity (He) values. The mean F values (inbreeding coefficient) was highest at locus GOT037 

and it was found to be 0.1924 and the lowest at the locus PIE039 which was found to be -0.1763 (no 

indication of inbreeding at this marker). The number of alleles per locus ranged from 2 to 9 (Table 3).  

There was no indication of null alleles in any of the populations. At the population level, CB and AM 

populations had the highest observed heterozygosity (Ho), i.e. 0.567, and expected heterozygosity (He), 

i.e. 0.574, values whereas PN population had the lowest values of 0.447 and 0.471, respectively. The 

mean inbreeding coefficient was highest in population AM (0.116) and lowest in population CR (-

0.114). It was seen that the F values were not consistently positive at most markers per population. 

Thus, there was no indication of inbreeding in any of the populations. The number of private alleles 

and locally common alleles (≤ 25%) were also calculated. CB population had the highest number of 

private and locally common alleles. The number of alleles per population ranged from 3 to 5 (Table 4).  

Hardy- Weinberg Exact tests (HWE) were performed by locus in each population. Values in boldface 

type are significantly different from Hardy-Weinberg proportions (α=0.05) after Bonferroni correction 

(p<0.05/12=0.00416) (Table 5). It was seen that most of the markers did not show significant deviations 

from Hardy- Weinberg proportions except for marker FIR028 in population ED (positive F value), 

GOT037 in population AM (positive F value), FIR043 and PIE200 in population CR (negative F 

values) which were significantly different from Hardy-Weinberg proportions. ANOVA (Analysis of 
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Variance) and Posthoc tests were performed which indicate no significant differences in mean He, 

mean Ho and mean Na between populations.  

Pairwise genetic distances (FST) between populations were found to be significant after exact G test 

(p<0.001). The pairwise genetic distance (FST) values between the populations PN and DK was highest 

(0.129) (Table 6) and it was seen in the STRUCTURE results that they are not clustered together. 

Pairwise geographic distances between populations in kilometers were also calculated. But according 

to the geographic distance, the distance between PN and DK is 57.22 kilometers. The lowest FST values 

were between ED and DK and between WG and DK populations indicating that they are genetically 

related to each other. But according to the geographic distance, the distance between ED and DK is 

176.3 kilometers and between WG and DK is 162.98 kilometers. The highest pairwise geographic 

distance was between WG and MR and it was found to be 420.3 kilometers (Table 7). A Mantel test, 

based on the correlation between a genetic distance matrix and a geographical distance matrix was 

performed. The regression coefficient R2 is comparatively low (0.2692) and p value is 0.100 (not 

significant), indicating that there is no correlation between genetic and geographic distance (Fig. 1).  

Genetic assignment analysis performed in STRUCTURE indicated K=2 as the most likely number of 

genetic clusters (Fig. 2). In each population most individuals were assigned genetically to one of the 

two clusters such that the first four populations (DK, CB, ED, WG) were grouped in cluster 1 (red) and 

the remaining five populations (PN, AM, SM, MR, CR) were grouped in cluster 2 (green). The 

dendrogram (Neighbor joining method) based on Cavalli-Sforza and Edwards (1967) pairwise genetic 

distances at EST-SSRs revealed low and non-significant bootstrap values for most clusters (bootstrap 

values < 50). The grouping of populations was not related to their geographic location (Fig. 3). The 

analysis of population structure identified two distinct genetic clusters, but no association between 
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ancestry in one of the clusters and geographic location in one of the three sampled forest fragments 

was detected (Fig. 4). 
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Discussion 

Quercus georgiana was used to study genetic diversity through the use of microsatellites. In this study, 

genetic variation, measured by mean expected heterozygosity, was analyzed in the endangered species 

Q. georgiana.  

Pairwise genetic distances (FST) between populations were found to be significant but no 

correspondence with geographic distances (Fig. 4). There was no association between genetic and 

geographic distances. Mantel tests also indicated that there is no correlation between genetic and 

geographic distance (Fig. 1). Though Q. georgiana is discontinuously distributed throughout the 

Piedmont region because of habitat loss and fragmentation, it might be due to historic gene flow 

between populations through pollen movement by wind.  

Genetic variation of Quercus georgiana was low when compared to another endangered oak species 

Quercus hinckleyi (C.H. Muller). Quercus hinckleyi is distributed in the Brewster and Presidio counties 

in Texas (Backs et al. 2016).  The genetic variation measured by expected heterozygosity was found to 

be 0.853 which is high than the genetic variation of Q. georgiana species. The comparison of 

population genetic diversity between a rare, narrowly distributed species Quercus georgiana and a 

common, widespread species of Quercus rubra was studied. Northern red oak (Quercus rubra) is 

widely distributed throughout the eastern part of US. It extends from the Atlantic coast in the east to 

the Mississippi River in the west and from southern Ontario in the north to central Georgia in the south 

(Sork et al. 1993; Lind and Gailing 2013). For Quercus rubra, the expected heterozygosity (mean) was 

0.71 at EST-SSRs and that of Quercus georgiana was 0.510 (only EST-SSRs were compared for both 

the species). This indicates the impact of small population size and high isolation on genetic diversity 

in Quercus georgiana and this data can be used in conservation planning of this endangered species.  
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Decisions should be made on the sampling strategy depending upon the level of genetic variation of 

this endangered species. Since the pairwise genetic differentiation between the populations is 

significant, sampling from all the populations should be done to incorporate all the genetic diversity 

for conservation. But considering the limited resources for ex-situ conservation strategy, the results of 

the pairwise genetic differentiation between the populations with higher values can be given priority 

for conservation purpose. For example, the populations PN, DK, MR, ED and WG should be given 

priority for conservation since they have high pairwise genetic differentiation values. The 

STRUCTURE results identify two genetic clusters (Fig. 2) that can be seen in the dendrogram result 

as well (Fig. 3). For example, the populations DK, CB, ED and WG are clustered together on both the 

dendrogram and the STRUCTURE diagram. These findings suggest that when building the ex-situ 

collections at least two populations should be sampled that will represent the two genetic clusters 

identified in STRUCTURE and dendrogram. Also, in the dendrogram, the populations showing 

bootstrap values higher than 50% (statistical support) should be prioritize for sampling i.e.  populations 

DK, ED, WG and CB. AM population has the highest genetic distance (Fig. 3) to all populations and 

therefore future collections should target AM populations since it is genetically differentiated from the 

other populations.  
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Conclusion 

The present studies utilized wild populations of Quercus georgiana. Genetic variation in wild 

populations can be compared to that of ex-situ collections so that effective conservation plans can be 

developed of this threatened species to support the in-situ conservation. Results from this study can be 

used to make decisions regarding the ex-situ conservation strategies in this species such that the entire 

gene pool is captured to maintain high genetic diversity. The ex-situ conservation can support the 

reintroduction and restoration strategies to enlarge wild plants in their current locations. Conversely, 

this study can also be a baseline for building and improving the collection of Quercus georgiana in 

arboretums and botanical gardens.  
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Tables 

Table 1. Sampled Quercus georgiana populations.  

 

 

 

 

 

 

 

 
Locality County State 

Pop. 
Code 

Sample 
size (n) Latitude Longitude 

 
Davidson-Arabia Mountain 
Nature Preserve DeKalb GA AM 24 33.667 -84.125 
 
Chattahoochee Bend State 
Park Coweta GA CB 24 33.421 -84.962 
 
Concord Road Pike GA CR 24 33.147 -84.464 
 
Dowdell’s Knob, F.F. 
Roosevelt State Park Harris GA DK 24 32.84 -84.746 
 
Eden St. Claire AL ED 24 33.64 -86.369 
 
Moss Rock Preserve Jefferson AL MR 24 33.384 -86.841 
 
Penton Chambers AL PN 24 33.026 -85.483 
 
Stone Mountain DeKalb GA SM 23 33.809 -84.152 
 
Walnut Grove Walton GA WG 24 33.751 -83.832 
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Table 2. Description of genic EST-SSRs. 

Locus Repeat motif Forward primer 
sequence (5’-3’) 

Reverse primer 
sequence (5’-3’) 

Ta 
(C°) 

Size range (in 
base pairs) 

Species Linkage 
groupg 

Functional annotation b 

   FIR013 (CAG)5 6-FAM 
CGGGGAGGTTGA
TGAGTATT 
 

AACACTGTCACCCCC
ATAGC 

56 133-144 Q. robur 2 constans-like protein COL 
(flowering time) 

FIR039 (CT)7 PET-
GAGCCTCTTTCAT
CGCTCAC 
 

TCAACACCCCAAAA
CTCCAT 

59 111-132 Q. robur 1 histone deacetylase (drought 
stress) 

FIR043 (TC)9 PET-
TTCTCCATTTCAC
ACGCTTC 
 

ACGACATCGTTTTGG
AGCTT 

56 114-146 Q. robur 7 EBP1 (regulates cell growth) 

FIR048 (CT)9 PET-
TGCACCAAAATT
GGAGGATG 
 

TTGATGCAAGGTGC
AGTTTC 

56 187-219 Q. robur 2 Cell division protein ftsH, 
putative 

GOT037 (CT)11 PET-
CCATCCTTTTCAT
TCTTTCCA 
 

TGTTGTTGTTGCTGT
TGTCG 

57 239-265 Q. robur 5 Acid-phosphatase, putative 

PIE039 (CTT)8 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

6-FAM 
GTAAAACGACGG
CCAGTGTCCTCAC
CCTCTGCGGTCT 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CAGAAAGGGCTGCA
AAGC 
 
 

59 157-178 Q. robur 12 Unknown protein 
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Locus Repeat motif Forward primer 
sequence (5’-3’) 

Reverse primer 
sequence (5’-3’) 

Ta 
(C°) 

Size range (in 
base pairs) 

Species Linkage 
groupg 

Functional annotation b 

PIE200 (CAA)5 6-FAM 
ACAACATGTGCC
AAAACTGC 

TCGATGATGTGGTTG
TTGATG 

56 
 

107-119 Q. robur Not 
assigned 

Zinc finger a20 an1 domain-
containing stress-associated 
protein 5-like 

PIE125 (GGAAGC)3     PET-
AATACAAATCGC
AGGAGGTG 

CTAACCCATCGTTCA
TGGAG 

57 146-162 Q. robur 6 chaperone protein dna J, 
chloroplast, putative (heat 
shock protein, stress) 

FIR035 (AT)6 NED-
GCTAAGGTTCCGT
GTTCCAA 

GGCCAGCAACTAAA
CCAAGA 

56 146-152 Q. robur 5 chaperone protein dna J, 
chloroplast, putative (heat 
shock protein, stress) 

FIR028 (TC)8 VIC-
GGAAGAGTGTTC
GGAAAGCA 
 

CCAGCTCCTCCACAA
TAGCA 

56 201-237 Q. robur 1 tropinone reductase, putative 
(drought stress) 

VIT081 (CAT)3 6-FAM 
AATTCAAACCCA
GCCAACTG 
 

TCCTCTGGATGCTCC
ATCA 

56 112-136 Q. robur Not 
assigned 

Proline- rich protein 

VIT086 (CAG)5 VIC-
AAGAACACCCAT
TTCCACCA 

TAAAATCCATTTGCC
GGTTC 

56 184-207 Q. robur Not 
assigned 

Chaperone protein dnaj 
chloroplast 

Note. b Putative function determined through a BLASTx search following the method in (Luro et al., 2008), g on Q. robur linkage map in either 
Durand et al. (2010) or Bodénès et al. (2012). All EST-SSRs were originally developed for Quercus robur (Durand et al. 2010) and adapted for North 
American red oak species (section Lobatae) (Sullivan et al. 2013, Lind-Riehl et al. 2014).  
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Table 3. Mean genetic variation values for each marker across all samples. 

Na: number of different alleles, Ho: observed heterozygosity, He: expected heterozygosity, F (fixation index) = (He-Ho)/He. 

 

 

 

 

 

FIR039 FIR013 FIR048 FIR043 PIE039 GOT037 PIE200 FIR035 VIT081 VIT086 PIE125 FIR028 

Na 4.778 3.000 9.111 8.667 3.000 6.333 2.889 2.444 2.000 2.556 4.889 6.000 

Ho 0.636 0.535 0.838 0.808 0.407 0.575 0.545 0.345 0.183 0.226 0.550 0.449 

He 0.629 0.526 0.801 0.802 0.346 0.712 0.505 0.343 0.186 0.260 0.507 0.499 

F  0.0111  -0.0171  -0.0461  0.0074  -0.1763   0.1924  -0.0792  0.0058  0.0161  0.1307  -0.0848  0.1002 
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Table 4. Mean genetic variation estimates for each population. 

Private alleles are alleles that are found only in a single population among a broader collection of populations 
whereas locally common alleles (≤ 25%) are present in ≤ 25% of populations.  
 

 

 

 

 

 

 

 
Population 

Na Ho He F 

No. of 
private 
alleles 

No. of locally 
common alleles 

(≤25%) 
 
DK 4.583 0.497 0.480 -0.035 0.000 0.417 
 
CB 5.000 0.567 0.568 0.001 0.333 0.500 
 
ED 5.000 0.525 0.516 -0.017 0.167 0.250 
 
WG 4.333 0.499 0.506 0.013 0.083 0.333 
 
PN 4.167 0.447 0.471 0.050 0.333 0.167 
 
AM 5.333 0.507 0.574 0.116 0.167 0.250 
 
SM 4.750 0.493 0.501 0.015 0.083 0.250 
 
MR 4.667 0.490 0.479 0.023 0.083 0.167 
 
CR 3.917 0.547 0.491 -0.114 0.083 0.250 
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Table 5. HWE exact test (Cockerham, 1984) by locus in each population.  

DK 

Locus Ho He F p-value 

FIR039 0.609 0.548 -0.1103 1.0000 

FIR013 0.955 0.658 -0.4505 0.0237 

FIR048 0.905 0.856 -0.0570 0.6833 

FIR043 0.667 0.822 0.1890 0.0681 

PIE039 0.273 0.247 -0.1046 1.0000 

GOT037 0.636 0.536 -0.1869 0.5628 

PIE200 0.333 0.497 0.3287 0.0845 

FIR035 0.292 0.249 -0.1707 1.0000 

VIT081 0.167 0.153 -0.0909 1.0000 

VIT086 0.083 0.081 -0.0323 1.0000 

PIE125 0.667 0.590 -0.1294 0.5708 

FIR028 0.375 0.523 0.2824 0.1690 

CB 

Locus Ho He F p-value 

FIR039 0.591 0.510 -0.1579 0.7003 

FIR013 0.478 0.521 0.0817 0.6770 

FIR048 1.000 0.848 -0.1795 0.6867 

FIR043 0.824 0.867 0.0499 0.0359 

PIE039 0.750 0.735 -0.0201 0.1048 

GOT037 0.708 0.767 0.0769 0.6560 

PIE200 0.167 0.288 0.4217 0.0553 

FIR035 0.500 0.469 -0.0667 1.0000 

VIT081 0.208 0.249 0.1638 0.3976 

VIT086 0.500 0.452 -0.1056 0.8193 

PIE125 0.542 0.596 0.0917 0.0058 

FIR028 0.542 0.558 0.0295 0.5152 

ED 
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Locus  Ho He F p-value 

FIR039 0.714 0.687 -0.0396 0.5387 

FIR013 0.636 0.563 -0.1303 0.8851 

FIR048 0.913 0.774 -0.1795 0.6923 

FIR043 0.750 0.866 0.1343 0.2234 

PIE039 0.708 0.484 -0.4650 0.0602 

GOT037 0.458 0.589 0.2212 0.2663 

PIE200 0.391 0.446 0.1229 0.4628 

FIR035 0.333 0.278 -0.2000 1.0000 

VIT081 0.042 0.041 -0.0213 - 

VIT086 0.083 0.155 0.4637 0.1276 

PIE125 0.750 0.629 -0.1917 0.8439 

FIR028 0.522 0.679 0.2312 0.0000 

WG 

Locus  Ho He F p-value 

FIR039 0.632 0.633 0.0022 0.4249 

FIR013 0.609 0.499 -0.2197 0.4212 

FIR048 0.864 0.811 -0.0650 0.5446 

FIR043 0.833 0.839 0.0072 0.1420 

PIE039 0.417 0.359 -0.1622 1.0000 

GOT037 0.591 0.707 0.1637 0.2825 

PIE200 0.292 0.353 0.1744 0.5533 

FIR035 0.208 0.187 -0.1163 1.0000 

VIT081* 0.043 0.043 -0.0222 - 

VIT086 0.500 0.477 -0.0492 0.2785 

PIE125 0.583 0.648 0.0992 0.3547 

FIR028 0.417 0.519 0.1973 0.0400 

PN 

Locus  Ho He F p-value 

FIR039 0.750 0.722 -0.0385 0.9295 

FIR013 0.458 0.580 0.2096 0.2754 
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FIR048 0.458 0.575 0.2024 0.0818 

FIR043 0.708 0.778 0.0893 0.6377 

PIE039 0.125 0.119 -0.0511 1.0000 

GOT037 0.667 0.732 0.0890 0.0689 

PIE200 0.833 0.611 -0.3636 0.0056 

FIR035 0.375 0.305 -0.2308 0.5512 

VIT081 0.333 0.424 0.2147 0.4963 

VIT086 0.238 0.427 0.4430 0.0495 

PIE125 0.250 0.226 -0.1077 1.0000 

FIR028 0.167 0.156 -0.0667 1.0000  

AM 

Locus  Ho He F p-value 

FIR039 0.591 0.685 0.1373 0.0932 

FIR013 0.417 0.444 0.0625 1.0000 

FIR048 0.739 0.839 0.1194 0.0513 

FIR043 0.833 0.882 0.0551 0.3658 

PIE039 0.500 0.404 -0.2379 0.7764 

GOT037 0.318 0.793 0.5990 0.0000 

PIE200 0.750 0.659 -0.1383 0.0530 

FIR035 0.292 0.415 0.2971 0.0383 

VIT081 0.292 0.249 -0.1707 1.0000 

VIT086 0.125 0.117 -0.0667 1.0000 

PIE125 0.667 0.659 -0.0119 0.4492 

FIR028 0.565 0.744 0.2402 0.0185 

SM 

Locus  Ho He F p-value 

FIR039 0.591 0.628 0.0592 0.4391 

FIR013 0.348 0.468 0.2566 0.3340 

FIR048 0.826 0.845 0.0224 0.3878 

FIR043 0.783 0.830 0.0569 0.0552 

PIE039 0.348 0.287 -0.2105 1.0000 
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GOT037 0.524 0.706 0.2584 0.0334 

PIE200 0.636 0.533 -0.1938 0.5766 

FIR035 0.435 0.386 -0.1275 1.0000 

VIT081 0.478 0.364 -0.3143 0.2742 

VIT086 0.130 0.198 0.3397 0.2128 

PIE125 0.364 0.319 -0.1392 1.0000 

FIR028 0.455 0.452 -0.0046 0.2500 

MR 

Locus  Ho He F p-value 

FIR039 0.583 0.574 -0.0166 0.5846 

FIR013 0.375 0.471 0.2044 0.4518 

FIR048 0.917 0.839 -0.0932 0.8283 

FIR043 0.875 0.779 -0.1237 0.2438 

PIE039 0.000 0.000            - - 

GOT037 0.667 0.782 0.1476 0.0435 

PIE200 0.667 0.530 -0.2570 0.3371 

FIR035 0.500 0.584 0.1441 0.4440 

VIT081 0.000 0.000             - - 

VIT086 0.000 0.080 1.0000 0.0210 

PIE125 0.667 0.560 -0.1907 0.6089 

FIR028 0.625 0.551 -0.1339 1.0000 

CR 

Locus  Ho He F p-value 

FIR039 0.667 0.669 0.0039 0.2623 

FIR013 0.542 0.574 0.0560 0.8198 

FIR048 0.917 0.819 -0.1186 0.5243 

FIR043 1.000 0.556 -0.7972 0.0000 

PIE039 0.542 0.478 -0.1325 0.8896 

GOT037 0.609 0.796 0.2352 0.0644 

PIE200 0.833 0.625 -0.3333 0.0017 

FIR035 0.167 0.219 0.2381 0.2987 
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VIT081 0.083 0.153 0.4545 0.1283 

VIT086 0.375 0.353 -0.0614 1.0000 

PIE125 0.458 0.380 -0.2055 1.0000 

FIR028 0.375 0.312 -0.2033 1.0000 

Significant values in boldface type are significantly different from Hardy-Weinberg proportions (α=0.05) 
after Bonferroni correction (p<0.05/12=0.00416). *: no p-value was calculated for this marker with very 
low variation within population WG. 
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Table 6. Pairwise genetic distances (FST) between populations. 

 
Population 

 
DK 

 
CB 

 
ED 

 
WG 

 
PN 

 
AM 

 
SM 

 
MR 

 
CR 

 
DK 0.000 

        

 
CB 0.054 0.000 

       

 
ED 0.028 0.048 0.000 

      

 
WG 0.028 0.038 0.035 0.000 

     

 
PN 0.129 0.094 0.125 0.111 0.000 

    

 
AM 0.075 0.065 0.065 0.079 0.058 0.000 

   

 
SM 0.087 0.066 0.077 0.092 0.046 0.025 0.000 

  

 
MR 0.115 0.087 0.102 0.115 0.083 0.049 0.049 0.000 

 

 
CR 0.083 0.060 0.077 0.062 0.050 0.039 0.034 0.070 

 
0.000 

All values are significant (p<0.001, exact G test). 
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Table 7. Pairwise geographic distance in kilometers between populations. 

 
Population 

 
DK 

 
CB 

 
ED 

 
WG 

 
PN 

 
AM 

 
SM 

 
MR 

 
CR 

 
DK 0.000 

        

 
CB 

 
82.39 0.000 

       

 
ED 176.3 152.07 0.000 

      

 
WG 162.98 103.21 245.81 0.000 

     

 
PN 57.22 97.5 138.03 200.52 0.000 

    

 
AM 134.97 71.74 212.13 38.7 167.92 0.000 

   

 
SM 147.35 76.76 203.73 43.36 172.56 13.91 0.000 

  

 
MR 285.16 314.88 199.45 420.3 233.94 389.52 388.27 0.000 

 

 
CR 61.99 50.84 192.92 101.51 105.01 75.42 91.57 339.27 

 
0.000 

 

 

 

 

 

 

 

 

 

 



29 
 

                 Figures 

 

Figure 1.  Geographic distance (measured in kilometers) versus genetic distance for pairwise comparisons of 
nine populations of Quercus georgiana using a Mantel test.  
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Figure 2. Genetic assignment of individuals using the Bayesian method in STRUCTURE 2.3.4 (Pritchard et al. 
2000).  Individuals are grouped by population. 
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Figure 3. Dendrogram (Neighbor joining method) based on Cavalli-Sforza and Edwards (1967) genetic 
distances at EST-SSRs; numbers at nodes are percentages over 1,000 bootstrap replicates using Populations 
2.0 (Langella 1999). 
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Figure 4. Geographic distribution of percentage of ancestry per population as inferred in STRUCTURE. 
Geographic distribution of genetic cluster 1 (red) and cluster 2 (green).   
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