
Michigan Technological University Michigan Technological University 

Digital Commons @ Michigan Tech Digital Commons @ Michigan Tech 

Dissertations, Master's Theses and Master's 
Reports - Open 

Dissertations, Master's Theses and Master's 
Reports 

2008 

Adaptive control of sinusoidal brushless DC motor actuators Adaptive control of sinusoidal brushless DC motor actuators 

Liangtao Zhu 
Michigan Technological University 

Follow this and additional works at: https://digitalcommons.mtu.edu/etds 

 Part of the Mechanical Engineering Commons 

Copyright 2008 Liangtao Zhu 

Recommended Citation Recommended Citation 
Zhu, Liangtao, "Adaptive control of sinusoidal brushless DC motor actuators", Dissertation, Michigan 
Technological University, 2008. 
https://doi.org/10.37099/mtu.dc.etds/427 

Follow this and additional works at: https://digitalcommons.mtu.edu/etds 

 Part of the Mechanical Engineering Commons 

http://www.mtu.edu/
http://www.mtu.edu/
https://digitalcommons.mtu.edu/
https://digitalcommons.mtu.edu/etds
https://digitalcommons.mtu.edu/etds
https://digitalcommons.mtu.edu/etd
https://digitalcommons.mtu.edu/etd
https://digitalcommons.mtu.edu/etds?utm_source=digitalcommons.mtu.edu%2Fetds%2F427&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=digitalcommons.mtu.edu%2Fetds%2F427&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.37099/mtu.dc.etds/427
https://digitalcommons.mtu.edu/etds?utm_source=digitalcommons.mtu.edu%2Fetds%2F427&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=digitalcommons.mtu.edu%2Fetds%2F427&utm_medium=PDF&utm_campaign=PDFCoverPages


 

 

 

BY 

LIANGTAO ZHU 

 

A DISSERTATION 

Submitted in partial fulfillment of the requirements  

 for the degree of  

DOCTOR OF PHILOSOPHY  

(Mechanical Engineering-Engineering Mechanics)  

  

MICHIGAN TECHNOLOGICAL UNIVERSITY 

2008 

 i

 
 

Copyright © Liangtao Zhu 2008 

Adaptive control of  

Sinusoidal Brushless DC Motor actuators 

 



This dissertation, "Adaptive Control of Sinusoidal Brushless DC Motor 

Actuators," is hereby approved in partial fulfillment of the requirements for the 

degree of DOCTOR OF PHILOSOPHY in the field of Mechanical Engineering-

Engineering Mechanics. 

 

DEPARTMENT:   

Mechanical Engineering-Engineering Mechanics  

 

 

Signatures:   

  Dissertation Advisor        _________________________________________  
Typewritten Name: Gordon G. Parker 

   Date        _________________________________________   

   

  

   Department Chair        _________________________________________  
Typewritten Name: William W. Predebon 

   Date        _________________________________________  

 ii

 



ACKNOWLEDGEMENT 
 

I would like to express my gratitude to all those who gave me the possibility 

to complete this thesis. I am deeply indebted to my advisors Prof. Gordon 

Parker and Dr. Ravindra Patankar, whose help, stimulating suggestions and 

encouragement helped me in all the time of research for and writing of this 

thesis.  

The members of my dissertation committee, Dr. Roshan D’Souza, Prof. 

Charles Van Karsen, and Prof. Clark Givens, have generously given their time 

and expertise to better my work. I thank them for their contribution and 

support. 

 iii

Especially, I would like to give my special thanks to my wife Nadia whose 

patient love enabled me to complete this work. I would also like to thank my 

mom Yufen for her unwavering faith in me.  



 

 

THIS DISSERTATION IS DEDICATED TO  

MY WIFE NADIA AND MY DAUGHTER KIMBERLIE 

 iv



 v

TABLE OF CONTENTS 

 

Table of Contents ........................................................................................................v 

List of Figures............................................................................................................ ix 

List of Tables ........................................................................................................... xiii 

Abstract.................................................................................................................... xiv 

Chapter 1 Introduction.............................................................................................1 

1.1 Electrical Power-Assisted Steering System............................................1 

1.2 Electric Motor Actuator For EPAS.........................................................3 

1.3 BLDC Motors and Control Overview.....................................................4 

1.4 Literature Review on BLDC Motor Control.........................................11 

1.5 Adaptive Control for Sinusoidal BLDC Motors...................................16 

1.6 Publications...........................................................................................22 

1.7 Summary ...............................................................................................23 

Chapter 2 Sinusoidal Brushless DC Motor Modeling...........................................25 

2.1 Permanent Magnet Synchronous Motor Modeling...............................25 

2.1.1 The three-phase model..........................................................................26 

2.1.2 The direct quadrature coordinate model ...............................................28 

2.1.3 Implementation of dq coordinate controllers .......................................36 

2.2 Torque Control of Sinusoidal BLDC Motors .......................................38 

2.2.1 PI controller ..........................................................................................39 

2.2.2 Feedforward inverse dynamics controller.............................................41 

2.2.3 Controller selection...............................................................................43 



 vi

2.3 Summary ...............................................................................................45 

Chapter 3 Adaptive Parameter Estimation ............................................................47 

3.1 Motor Inverse Controller Model...........................................................47 

3.2 Single Parameter Estimation.................................................................49 

3.2.1 Single parameter estimation..................................................................49 

3.2.2 Stability of the single parameter estimation scheme.............................51 

3.2.3 Simulation results..................................................................................55 

3.3 Multiple Parameter Estimation .............................................................57 

3.3.1 Multiple parameter estimation ..............................................................57 

3.3.2 Proof of stability ...................................................................................59 

3.4 Improving The Dynamic Performance Of The Adaptive Algorithm....62 

3.4.1 Motor electrical dynamics.....................................................................63 

3.4.2 Motor speed sampling delay .................................................................68 

3.5 Multiple Parameter Estimation Using Gram-Schmidt 

Orthonormalization..............................................................................................73 

3.5.1 Multi-parameter estimation using Gram-Schmidt orthonormalization.74 

3.5.2 Proof of stability ...................................................................................76 

3.6 Multi-Parameter Estimation Using q and d Axis Current.....................80 

3.6.1 Parameter estimation.............................................................................80 

3.6.2 Proof of unbiased estimation ................................................................83 

3.7 Conclusion ............................................................................................91 

Chapter 4 Recursive Parameter Identification.......................................................92 

4.1 Discrete Model of the BLDC Motor Dynamics....................................93 



 vii

4.2 Recursive Least Square Estimation ......................................................96 

4.3 RLS Simulation Results........................................................................98 

4.4 Extended Kalman Filter ......................................................................101 

4.5 EKF Simulation Results......................................................................106 

4.6 Summary .............................................................................................109 

Chapter 5 Model Reference Adaptive Control Design........................................111 

5.1 Model Reference Adaptive Control ....................................................112 

5.1.1 The BLDC motor reference model .....................................................113 

5.1.2 The control law ...................................................................................114 

5.1.3 The adaptation law..............................................................................115 

5.2 Simulation Results ..............................................................................119 

5.3 Conclusion ..........................................................................................121 

Chapter 6 Closed loop Simulation and Controller Performance Evaluation.......123 

6.1 EPAS closed loop simulation..............................................................123 

6.1.1 EPAS close loop system model ..........................................................124 

6.1.2 EPAS simulation results and analysis.................................................126 

6.2 Closed Loop Simulation Of a Motor Speed Control Application.......135 

6.3 Conclusion ..........................................................................................139 

Chapter 7 An Operation Simulation Model for BLDC Motors...........................146 

7.1 A Quasi-Physical BLDC Motor Model ..............................................147 

7.1.1 The Line-to-Line PMSM model .........................................................148 

7.1.2 The H-bridge PWM inverter model....................................................150 

7.1.3 The rotor angular displacement transducer.........................................152 



 viii

7.1.4 The Hall effect sensor .........................................................................153 

7.1.5 SVPWM..............................................................................................154 

7.1.6 Simulation configuration ....................................................................157 

7.2 Study of Controller Implementation Issues in Simulation..................159 

7.2.1 Initialization ........................................................................................160 

7.2.2 Incremental encoder resolution...........................................................164 

7.3 Limit of the Quasi-Physical BLDC Motor Model ..............................165 

7.4 Summary .............................................................................................167 

Chapter 8 Conclusion and Future Works ............................................................168 

8.1 Conclusion ..........................................................................................168 

8.2 Future Works ......................................................................................173 

Appendix I The probability density function derivation.....................................175 

Appendix II Solution of the Integration Terms in Equation (4.6)........................177 

Appendix III Continuous Extended Kalman Filter for BLDC Motors..................179 

References................................................................................................................182 

 



LIST OF FIGURES 

 

Figure 1.1 Schematic diagram of a three-phase BLDC motor with one pair of  rotor 

permanent magnet poles. ........................................................................................5 

Figure 1.2 Typical trapezoidal and sinusoidal back EMF waveform .............................6 

Figure 1.3 Schematic diagram of a typical BLDC motor control system.......................7 

Figure 1.4 BLDC motor torque waveform when operated with back EMF zero 

crossing sensing mechanism. ..................................................................................9 

Figure 1.5 Typical adaptive controller block diagram..................................................17 

Figure 2.1 The three stator phase, the qd coordinates and the ab coordinates .............29 

Figure 2.2 Implementation of a generic controller designed in dq coordinates............37 

Figure 2.3 Step response of the BLDC motor with the PI controller and the 

feedforward controller at 00 =eω , assuming full knowledge of the plant 

parameters. ............................................................................................................43 

Figure 2.4 Step response of the BLDC motor with the PI controller and the 

feedforward controller at 00 =eω , with 10% error in Ke and 50% error in R......44 

Figure 3.1 The schematic diagram of the motor test system in simulation. .................56 

Figure 3.2 Single parameter estimation performance in simulation.............................57 

Figure 3.3 Two-parameter estimation performance in simulation................................62 

Figure 3.4 Single parameter estimation transient performances: non-dynamic motor 

inverse controller vs. approximated dynamic inverse controller. .........................66 

 ix



Figure 3.5 Multi-parameter estimation using non-dynamic motor inverse controller vs. 

dynamic motor inverse controller .........................................................................67 

Figure 3.6 Single parameter estimation performances: comparison of the basic 

estimation program and the performance improvements......................................71 

Figure 3.7 Performance comparison of estimation scheme in open loop simulation: 

case 1 − the basic scheme; case 3− with approximated mωΔ  compensation. ......72 

Figure 3.8 Performance comparison of 4 different estimation schemes in open loop 

simulation: two-parameter estimation...................................................................73 

Figure 3.9 Schematic diagram of Gram Schmidt Orthonormalization .........................75 

Figure 3.10 Parameter estimation performance with Gram-Schmidt 

orthonormalization: the initial parameter error R%50+  and Ke%15− ..............79 

Figure 3.11 The distribution of xy /1=  given ( )1),(~ xNx μ  for several values of 

)(xμ . .....................................................................................................................86 

Figure 3.12 The mean of xxxy r )( −=  given  ( )1),(~ xNx μ  compares to the 

algebraic function  ( ) )()( xxxy r μμ−= ..............................................................87 

Figure 3.13 The mean of  compares to xy /1= )(1 xμ . ..............................................88 

Figure 3.14 The qd-solver simulation results: R%50+  and Ke%15− ........................90 

Figure 4.1 RLS estimation simulation results of a1~a5 & b1~b5: constant 

sradm /100=ω . ...................................................................................................99 

Figure 4.2 RLS estimation simulation results of a1~a5 & b1~b5: variant velocity. .....101 

Figure 4.3 EKF estimation simulation: Rh(0)=1.25R, Keh(0)=0.9Ke.........................107 

Figure 4.4 EKF estimation simulation: Rh(0)=1.4R, Keh(0)=1.2Ke...........................107 

 x



Figure 4.5 EKF estimation simulation: Rh(0)=0.8R, Keh(0)=1.2Ke...........................108 

Figure 4.6 EKF estimation simulation: Rh(0)=0.8R, Keh(0)= 0.8Ke..........................108 

Figure 4.7 EKF estimation simulation: Rh(0)=R, Keh(0)= Ke....................................109 

Figure 5.1 A schematic diagram of a typical MRAC controller.................................112 

Fig 5.2 MRAC reference current tracking performance in simulation: , 

...................................................................................................120 

RRc 5.0)0( =

KeKec 2.1)0( =

Fig 5.3 MRAC parameter estimation performance in simulation, case 1: , 

...................................................................................................120 

RRc 5.0)0( =

KeKec 2.1)0( =

Fig 5.4 MRAC parameter estimation performance in simulation, case 2: , 

...................................................................................................121 

RRc 5.0)0( =

KeKec 8.0)0( =

Figure 6.1 Schematic diagram of a typical EPAS.......................................................124 

Figure 6.2 Comparison of the adaptive BLDC motor controllers in EPAS closed loop 

simulation:  and RR %50)0( +=Δ ee KK %10)0( +=Δ ........................................129 

Figure 6.3 Comparison of the adaptive BLDC motor controllers in EPAS closed loop 

simulation:  and RR %50)0( +=Δ ee KK %15)0( −=Δ ........................................130 

Figure 6.4 Comparison of the adaptive BLDC motor controllers in EPAS closed loop 

simulation:  and RR %50)0( −=Δ ee KK %15)0( −=Δ ........................................131 

Figure 6.5 Comparison of the adaptive BLDC motor controllers in EPAS closed loop 

simulation:  and RR %50)0( +=Δ ee KK %10)0( +=Δ ........................................132 

Figure 6.6 The block diagram of the motor shaft dynamics Simulink model. ...........136 

Figure 6.7 The block diagram of the anti-windup PI controller Simulink model.......137 

 xi



Figure 6.8 Comparison of the adaptive BLDC motor controllers in the motor speed 

control closed loop simulation: RR %50)0( +=Δ  and ee KK %10)0( +=Δ ........140 

Figure 6.9 Comparison of the adaptive BLDC motor controllers in the motor speed 

control closed loop simulation: RR %50)0( +=Δ  and ee KK %15)0( −=Δ ........141 

Figure 6.10 Comparison of the adaptive BLDC motor controllers in the motor speed 

control closed loop simulation: RR %50)0( −=Δ  and ee KK %15)0( −=Δ ........142 

Figure 6.11 Comparison of the adaptive BLDC motor controllers in the motor speed 

control closed loop simulation: RR %50)0( −=Δ  and ee KK %10)0( +=Δ ........143 

Figure 7.1 A typical three-phase BLDC motor system block diagram.......................148 

Figure 7.2 The line-to-line PMSM model in Simulink...............................................150 

Figure 7.3 A simplified circuit of the BLDC motor system. ......................................151 

Figure 7.4 The H-bridge inverter model. ....................................................................152 

Figure 7.5 The BLDC motor components block diagram. .........................................153 

Figure 7.6 The voltage vectors in the space vector modulation. ................................155 

Figure 7.7 Transistors’ on-off timing in the six sectors..............................................158 

Figure 7.8 SVPWM function implementation in Simulink ........................................159 

Figure 7.9 The Simulink model of a closed loop BLDC motor system .....................160 

Figure 7.10 The practical controller model in Simulink.............................................161 

Figure 7.11 The starting scheme Simulink model ......................................................162 

Figure 7.12 The BLDC motor physical model closed loop simulation ......................163 

Figure 7.13 The BLDC motor simulation with a low-resolution encoder (cpr=36)...165 

 xii

Figure 7.14 The BLDC motor simulation with a high-resolution encoder (cpr=4096)

.............................................................................................................................166 



 xiii

LIST OF TABLES 

 

Table 2.1 PI controller gains.........................................................................................41 

Table 3.1 Bound of errors in open loop simulation: two-parameter estimation ...........72 

Table 4.1 EKF parameter estimation mean and variance for different noise level.....107 

Table 6.1 Steady-state performances in EPAS closed loop simulation ......................133 

Table 6.2 Steady-state performances in speed control closed loop simulation ..........137 

Table 7.1 The eight basic voltage vectors in the SVPWM.........................................155 

Table 7.2 Summary of the transistor on-off timing calculation in each sector...........157 

 



 xiv

ABSTRACT 

 

Electrical Power Assisted Steering system (EPAS) will likely be used on future 

automotive power steering systems. The sinusoidal brushless DC (BLDC) motor has 

been identified as one of the most suitable actuators for the EPAS application. Motor 

characteristic variations, which can be indicated by variations of the motor parameters 

such as the coil resistance and the torque constant, directly impart inaccuracies in the 

control scheme based on the nominal values of parameters and thus the whole system 

performance suffers. The motor controller must address the time-varying motor 

characteristics problem and maintain the performance in its long service life.  

In this dissertation, four adaptive control algorithms for brushless DC (BLDC) 

motors are explored. The first algorithm engages a simplified inverse dq-coordinate 

dynamics controller and solves for the parameter errors with the q-axis current (iq) 

feedback from several past sampling steps. The controller parameter values are 

updated by slow integration of the parameter errors. Improvement such as dynamic 

approximation, speed approximation and Gram-Schmidt orthonormalization are 

discussed for better estimation performance. The second algorithm is proposed to use 

both the d-axis current (id) and the q-axis current (iq) feedback for parameter 

estimation since id always accompanies iq. Stochastic conditions for unbiased 

estimation are shown through Monte Carlo simulations. Study of the first two adaptive 

algorithms indicates that the parameter estimation performance can be achieved by 

using more history data. The Extended Kalman Filter (EKF), a representative 

recursive estimation algorithm, is then investigated for the BLDC motor application. 



 xv

Simulation results validated the superior estimation performance with the EKF. 

However, the computation complexity and stability may be barriers for practical 

implementation of the EKF. The fourth algorithm is a model reference adaptive 

control (MRAC) that utilizes the desired motor characteristics as a reference model. Its 

stability is guaranteed by Lyapunov’s direct method. Simulation shows superior 

performance in terms of the convergence speed and current tracking. These algorithms 

are compared in closed loop simulation with an EPAS model and a motor speed 

control application. The MRAC is identified as the most promising candidate 

controller because of its combination of superior performance and low computational 

complexity.  

A BLDC motor controller developed with the dq-coordinate model cannot be 

implemented without several supplemental functions such as the coordinate 

transformation and a DC-to-AC current encoding scheme. A quasi-physical BLDC 

motor model is developed to study the practical implementation issues of the dq-

coordinate control strategy, such as the initialization and rotor angle transducer 

resolution. This model can also be beneficial during first stage development in 

automotive BLDC motor applications.  
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Chapter 1 INTRODUCTION 

 

Electrical power assisted steering system (EPAS) will likely be used for future power 

steering systems and thus they are on intense target of technology innovation. Brushless 

DC (BLDC) motors are often selected as the actuator for EPAS in many publications. 

The characteristics of individual BLDC motors vary with environmental factors, service 

life, and manufacturing process. A BLDC motor controller that maintains the actuator 

performance regardless of these variations is highly desired in EPAS applications and is 

the focus of this research.  

1.1 Electrical Power-Assisted Steering System 

Automotive power-assisted steering systems have traditionally been dominated by 

hydraulic pumps. The “always-on” hydraulic pump consumes power from the engine 

whenever the engine is running. This results in unwanted fuel consumption if the driver is 

not moving the steering wheel. In contrast, electric motors only consume power when the 

driver demands assisting force. This has been recognized as an effective way to improve 

fuel economy.  

Kluger and Harris (Kluger and Harris 2007) compared engine brake specific fuel 

consumption (BSFC) effects of off-engine accessories on a heavy-duty truck and a light 

duty mini van. Through various driving cycle simulations, it was found that configuring 

vehicles with off-engine accessories is a method that provides fuel savings ranging from 

3% to 15%. For heavy-duty trucks the improvements ranged from 3-11%, and 8-15% for 



 2

minivans. Power steering is one of the major contributors for its low operational cycle 

(20%). 

An EPAS offers about 80% lower energy consumption than the hydraulic pump, and 

the omission of the hydraulic fluid decreases the environmental impact (Harter 2000). 

Similarly, Burton (Burton 2002) showed an average 3.0% reduction of fuel consumption 

on a 1.6L car in combined driving cycle, and up to 3.5% reduction in the city driving 

cycle. In today’s automotive market, the advantage in fuel economy alone can make the 

EPAS an attractive option over the traditional hydraulic power steering system. 

In addition, the EPAS is more compact and therefore easier for assembly and 

configuration. It can be adapted to a wide variety of vehicle applications with small 

changes to hardware. Furthermore, the EPAS is more flexible in terms of function. Its 

software control strategies can be modified to provide a wide range of handling 

characteristics without changing hardware. For example, it is desirable that steering 

systems give high assistance to the driver at low vehicle speeds while low assistance at 

high speeds. Cetin et al. (Cetin 2005) showed that this could not be achieved by 

conventional HPAS systems in which a torsion bar with constant mechanical properties 

(inertia, stiffness and damping) was used to determine the assistance amount. A 

compliant controller for the EPAS was proposed in this work and it was shown that this 

could be achieved by changing the virtual system dynamic parameters and the control 

gains. The flexibility of the EPAS also provides more opportunity for better vehicle 

handling performance. Tanaka et al. (Tanaka 2007) developed an active steering control 

algorithm for an EPAS. This algorithm increased the steering return torque in a region 

where the alignment torque was saturated due to the driver's excessive steering maneuver 



 3

on a slippery road. Kubota et al. (Kubota 2007) proposed an algorithm by using the 

EPAS to counteract steering-pull caused by lateral disturbances such as road contour, 

suspension alignment error and tire properties. The disturbance was estimated by finding 

the mean assisting torque in straight line driving and canceled by the EPAS.  

Due to these advantages and progress in electric motor technology, battery and 

microcontrollers, EPAS will become the main stream of the future power steering system 

and an intense target of technology innovation. 

1.2 Electric Motor Actuator For EPAS 

The electric motor is the heart of the EPAS. Electric motors are the most commonly 

used actuators in mechatronic systems. To name a few advantages, they have higher 

efficiency and higher power density (power/mass) compared to their mechanical or 

hydraulic counterparts. Traditionally, brushed DC motors and asynchronous or 

synchronous AC motors are the most widely used due to their low costs. However, the 

reliability and maintenance cost introduced by the brush has always been a limiting factor 

for brushed DC motors’ application to the EPAS. Traditional AC motors are rarely used 

in automotive applications because of unavailability of the AC power supply and their 

undesirable low speed characteristics.  

In the past two decades, there has been significant progress on rare-earth permanent 

magnet synchronous (PMS) motors. These motors are equipped with permanent magnet 

rotors. Switching devices, such as brushes, are no longer needed for their operation. 

Together with an inverter, a switching logic controller and some rotor position feedback 

mechanism, a PMS motor can be operated in self-controlled mode on a DC current 

source. Such a motor is often called a brushless DC (BLDC) motor. Due to the absence of 
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brushes and a commutator, BLDC motors have a number of advantages in maintenance, 

reliability and efficiency compared to conventional DC or AC motors.   

Iles-Klumpner (Iles-Klumpner 2005) reviewed electric actuator candidates for the 

electrical power steering application, including brushed and brushless drive systems 

based on permanent magnet brushed DC (DC), induction (IM), permanent magnet 

trapezoidal and sinusoidal synchronous, switched-reluctance (SR), and reluctance 

synchronous (RS) machines. A wide range of factors were considered in evaluation, 

including but not limited to torque density, peak to continuous torque capability, variable 

speed control, torque pulsations, temperature sensitivity, acoustic noise, power converter 

requirements, manufacturing, reliability, customer acceptance, cost. The sinusoidal and 

trapezoidal BLDC motors were identified as the most suitable actuators for the EPAS 

application. The trapezoidal BLDC motors have been implemented in production EPAS 

by Delphi Corporation since 2004. 

Though the BLDC motors have been accepted as the most suitable candidate actuators 

for the EPAS application, it is a fact that the BLDC motors require more sophisticated 

control than brushed DC motors, especially sinusoidal BLDC motors. This is the 

background and motivation of this research.  

1.3 BLDC Motors and Control Overview 

A BLDC motor is an AC synchronous motor with permanent magnets on the rotor and 

windings on the stator. Most BLDC motors have three phase stator windings, while their 

rotors can have several pairs of rotor magnet poles. Figure 1.1 is a schematic diagram of a 

three-phase BLDC motor with one pair of rotor magnet poles. The energized stator 

windings create an electromagnetic field, and the rotor is attracted to align with the stator 



field. When current is supplied to the stators in an appropriate sequence, the stator 

electromagnetic field rotates and drives the rotor magnets. The stator electromagnetic 

field and the rotor usually rotate at the same speed, and the phase lead between the stator 

field and the rotor needs to be maintained to generate constant torque. Measurement of 

the rotor position is needed for a BLDC motor’s operation to properly sequence the stator 

current.  

 

 

Figure 1.1 Schematic diagram of a three-phase BLDC motor with one pair of 

rotor permanent magnet poles.   

“com” indicate common lines; “a”, “b”, and “c” indicate stator terminals. 
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BLDC motors can be categorized as trapezoidal or sinusoidal according to the 

waveform of their back electromotive force (EMF), as shown in Figure 1.2. Structurally, 

these two types of BLDC motors are different in the way that their stator slots and coils 

distribute long the stator inner periphery, which creates different waveforms of back 

EMF in stator coils as the magnets rotating with the rotor. Both types of BLDC motors 

V
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require the current and back EMF in each stator phase to be synchronized so as to 

generate constant torque. The generated torque is proportional to the phase current value 

on each phase, and the total rotor shaft torque output is the summation of torque 

generated on all phases. 

 

0 60 120 180 240 300 36060
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(a) Trapezoidal back EMF (b) Sinusoidal back EMF 

Figure 1.2 Typical trapezoidal and sinusoidal back EMF waveform 

 

Figure 1.3 is a schematic diagram of a typical three-phase BLDC motor control system. 

It usually consists of an inverter, a micro-controller that controls the switching logic, a 

rotor position feedback mechanism and a permanent magnet synchronous motor. In the 

outer loop control system, the BLDC motor control system plays the role of its actuator, 
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so the objective of BLDC motor control is to generate appropriate desired torque for the 

outer loop system. 

 

Figure 1.3 Schematic diagram of a typical BLDC motor control system.  

PMSM is permanent magnet synchronous motor. 

 

Similar to brushed DC motors, the generated torque from a BLDC motor is generally 

proportional to the phase currents, so the torque control is basically the phase current 

control.  However, for the BLDC motor, current control consists of two sub-tasks: stator 

and rotor flux synchronization, and control of the phase current values. The former task 

ensures consistent torque generation, while the latter determines the magnitude of the 

generated torque. Both tasks are accomplished through the three-phase inverter of Figure 

1.3. To maintain the synchronization, the controller dynamically decides that a certain set 

of gates is to be turned on and the remaining gates to be off based on the rotor position. 

The phase current value control is usually achieved by adjusting the timing of those gates 
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to be turned on. Typically this is done by either hysteresis current control or pulse width 

modulation (PWM) control. In the hysteresis current control, the phase branch gates are 

switched on if the feedback current is outside a preset band of their corresponding 

reference values, and vice versa. Apparently, the gate switching frequency varies as the 

current error varies. In the PWM control mode, the gates are switched at a fixed 

frequency, and the current value is controlled through adjusting the PWM duty cycle.  

The control principle for the trapezoidal BLDC motors is that current should flow in 

only two of the three phases at a time (Texas Instruments Europe, 1997). There should be 

no torque production during the region of back EMF zero crossing for each individual 

stator phase. Trapezoidal BLDC motors are often equipped with transducers to detect the 

back EMF zero-crossing regions. The inverter gate switching logic can be obtained 

through a truth table based on the status of a set of Hall effect sensor outputs. 

Theoretically, constant torque can be generated with the rotor position feedback, as the 

back EMF is constant when the phases are switched on. However, due to the phase 

inductance, the stator phase current cannot be established instantaneously, thus torque 

ripple is inevitable at every phase commutation as shown in Figure 1.4(a). Sinusoidal 

BLDC motor can also operated in this way, but the torque ripple will be in sinusoidal 

shape due to the sinusoidal back EMF and phase commutation, as shown in Figure 1.4(b). 

In most trapezoidal BLDC motors, due to the fact that only two phases are on at a time 

and a single current flow through them, it is possible to control the current with one 

current sensor on the inverter input line from the DC power supply. Since the switching 

logic is fixed for each individual motor and is often programmed in hardware like a truth 



table, the current controller only needs to control the current value. In this aspect, it is 

quite similar to the brushed DC motors. 

 

 
(a) Torque generated by a Trapezoidal BLDC motor  

 

Rotor Angle, θ 

Rotor Angle, θ 

(b) Torque generated by a Sinusoidal BLDC motor 

Figure 1.4 BLDC motor torque waveform when operated with back EMF zero crossing 

sensing mechanism.  

 

Sinusoidal BLDC motors are capable of generating constant torque if the phase 

currents are controlled to be sinusoidal and in-phase with their corresponding back EMF. 

This usually requires high resolution of rotor position feedback, especially in the 

applications where motor speed and load vary significantly. In addition, the inverter 

switching schemes are more sophisticated as all stator phases are on during the operation 

of the motor. One of the most widely used methods for constant torque generation in 

sinusoidal BLDC motors is the Space Vector Pulse Width Modulation (SVPWM) or 

Field Oriented Control. In the SVPWM scheme, several base voltage vectors are defined 

in the stator magnetic field coordinates that are determined by the inverter gate on/off 

states. In each of the PWM periods the controller sends a set of gate on/off commands 

that correspond to specific base voltage vectors. Through adjusting the duty cycles of 
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each of these base voltage vectors, any voltage vector in this coordinate can be 

approximated by a linear combination of the base vectors.  

Three-phase sinusoidal BLDC motors, when controlled to achieve constant torque 

generation, need all three-phase currents to be sinusoidal and in phase with their 

corresponding back EMF. Unlike the single current control in trapezoidal BLDC motors, 

all phase currents of the sinusoidal BLDC motor contribute to the total torque output at 

all times. This usually requires two or three current sensors for feedback control to 

achieve reference torque tracking. The direct-quadrature (dq) model (1.1), which is 

obtained from the three-phase model through two coordinate transformations, is often 

implemented for the motor dynamics analysis and control development. 

qe

dqqpd
d

d

qeddpq
q

q

iK

viLniR
dt
diL

vKiLniR
dt
di

L

=

++−=

+−−−=

τ

ω

ωω

,

,

 (1.1) 

where subscripts d and q indicate the direct and quadrature coordinated variables, i  is the 

current, v  is the control voltage,  is the coil resistance,   is the coil inductance, R L ω  is 

the rotor velocity, and  is the number of rotor permanent magnet poles pairs.  pn

With the dq model, the three phase currents can be transformed into two independent 

virtual currents (id, iq) in the direct and quadrature coordinates. If the motor is operated 

under its rated speed, the generated torque is approximately proportional to the 

quadrature current component (iq). Therefore, given a reference torque from the outer 

loop controller, the reference current iq can be calculated. Since the direct axis current (id) 

does not contribute to the torque generation, it is often desirable to keep it as close to zero 
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as possible to improve energy efficiency. Control techniques such as proportional integral 

differential (PID) control can be implemented to achieve reference current tracking.  

1.4 Literature Review on BLDC Motor Control 

Though its application to the EPAS is relatively new, BLDC motor control has been an 

active subject in technical publications since the 1980s. Control techniques found in 

publications addressed speed/current-tracking performance, robustness to parameter 

variation, torque ripple, saturation and other issues related to BLDC motors. Below is an 

overview of references most closely related to this work. 

Pillay and Krishnan (Pillay 1989) presented a dq coordinate model for an industrial 

sinusoidal PMSM drive and a third order state space model for its speed control 

application. Simulation results were shown for a pulse width modulation (PWM) current 

control and hysteresis current control. Reference phase currents were transformed from 

the desired currents in dq coordinates, which in turn were determined by the speed error 

and torque command.  

Pelczewski and Kunz (Pelczewski 1990) designed an optimal controller to address the 

voltage saturation of BLDC motors. Instead of using a dq coordinate model, a 4th order 

state space model was used for the BLDC motor dynamics including rotor mechanical 

dynamics and stator coil electrical dynamics. The stator current dynamics were simplified 

as one of the state equations.  

Matsui and Ohashi (Matsui 1992) developed a digital signal processor (DSP) based 

adaptive controller for a BLDC motor. Space Vector Pulse Width Modulation (SVPWM) 

was shown to be superior to the Hall-sensor based vector selection PWM in terms of 

current control performance. The DSP controller was running at 200μs. The rotor 
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position feedback was from a resolver updated at every 800μs and interpolated every 

100μs. In this work, the PWM frequency was set to 10kHz. 

Hoang et al. (Hoang 1994) directly used the inverse of the dq coordinate model of the 

BLDC motor to calculate command voltage. The derivative was approximated by 

backwards-finite difference model. In addition, an integral of feedback current error was 

implemented for control correction. 

Kim et al. (Kim 1995) proposed an adaptive current controller for the PMSM. It was 

shown that parameter estimation was robust to other un-estimated parameter error, and 

this controller could be used to estimate motor speed if sensorless control was desired. 

Low et al. (Low 1996) defined a motor identity based on the BLDC current frequency 

content. It was shown that an optimal drive current could be determined in this way, 

which gave smooth and maximal torque.  

Sozer et al. (Sozer 1997) compared direct model reference adaptive control (DMRAC) 

with indirect model reference adaptive control (IMRAC). DMRAC gave good results on 

disturbance rejection in load, set point and parameters. IMRAC had difficulties when 

parameters changed fast. 

Chen et al. (Chen 2006) designed a two-degree-of-freedom controller for the BLDC 

motor current tracking. This controller showed better disturbance rejection than 

proportional integral controller. However, since the d axis dynamics and back EMF were 

defined as disturbances, the compensation through filtering the feedback would be later 

than direct estimation of the back EMF and d axis current. Therefore, it suffered the same 

problem as the PI controller, though to a lower extent. 
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Rahman et al. (Rahman 2003) proposed an adaptive backstepping control for a PMS 

motor, and showed it was globally asymptotically stable using Lyapunov’s direct method. 

Cauet et al. (Cauet 2001) derived a robust controller for a class of nonlinear system 

with parameter variation based on the linear matrix inequality (LMI) approach and 

polytopic model. Stability was analyzed using a parameter-dependent Lyapunov function 

and the global stability was proved in the presence of the nonlinearity that was ignored 

during the linearization process. This controller was implemented on an induction motor 

and simulation showed asymptotic tracking of the speed trajectory. 

Forrai et al. (Forrai 2001) studied robust control for BLDC motors in the presence of 

control voltage saturation. A BLDC motor model was identified as a 2nd order transfer 

function (from reference current to speed output) by using the Auto-Regressive 

eXogenous (ARX) method. Gain scheduling, based on the speed error, was used for the 

control strategy. 

Chen et al. (Chen 2000) proposed a combination of a PI controller, feedforward 

controller and a robust controller based on direct disturbance cancellation for the BLDC 

motor phase current control. This controller yielded fast phase current response for both 

trapezoidal and sinusoidal BLDC motors.  

Rubaai and Kotaru (Rubaai 2000) studied a three-layer feedforward artificial neural 

network (FANN) and a dynamic back propagation (DBP) neural network controller for a 

BLDC motor application. An adaptive online training strategy was proposed for the 

FANN. It converged much faster than the DBP learning algorithm with a constant 

learning rate. The stability of the neural network controllers was not discussed. 
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Petrovic et al. (Petrovic 2000) studied the 6th and 12th order harmonics of the 

permanent magnet flux in BLDC motors and their effect on the torque ripple. Since the 

coefficients of these harmonic components were changing with time, the authors 

proposed a Lyapunov stable adaptive estimation algorithm.  Simulation showed ideal 

cancellation of the torque ripple. However, they pointed out the practical performance 

would be limited by the sampling of the controller inputs and outputs. A lower speed 

limit occurred with increased delay in the speed measurement. Other hardware issues, 

like dead time and switch voltage drop compensation, had to be solved for successful 

controller implementation. Their controller was running on a TMS320C31 floating point 

DSP at a sampling interval of 500μs. 

Chen and Tang (Chen 1999) proposed a sliding-mode controller for BLDC motors. 

This controller was implemented as hardware logic circuit, and therefore had essentially 

no sampling delay problems. Test data showed fast current step response with controller 

implemented on a FPGA. 

Lin and Lin (Lin 1999) proposed a robust controller by combining an integral 

proportional tracking controller and an adaptive uncertainty observer. A lumped 

uncertainty was defined to capture the parametric and nonparametric model uncertainty. 

A Lyapunov function of the tracking error was used to derive the adaptation law.    

Sensorless control is one of the latest trends in BLDC motor control publications 

(Takeshita 1994, Rahman 2003, Haque 2004, Lee 2004, Bolognani 2002, Kim 2003, 

Johnson 1999 etc.). Here the word “sensorless” means that no rotor position sensors are 

used. The rotor position and speed are estimated using the back EMF measurement or 

other indirect methods.  However, most of these publications indicated unreliable speed 
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and angle estimation at low rotor speed, which is an inherent problem of sensorless 

estimation algorithms. This is undesirable for automotive steering system applications, 

considering the situation that assisting torque is required while the driver holds the 

steering wheel at some certain angle. 

Many of the BLDC motor control references above were based on the dq coordinate 

model. The dq coordinate model has been well established for AC motors including 

induction, synchronous, and PMS motors (Krause 1986, Pillay and Krishnan 1989, 

Rahman and Zhou 1994, Yang et al. 2003, and etc). These AC motors usually employ a 

sinusoidal AC power supply at a fixed frequency that is equivalent to the rotor speed. The 

coordinate transformations from the phase model to the dq coordinate model cancel the 

rotor angle involved in the dynamic equations (1.1), thus the complexity of analysis is 

reduced. BLDC motors do not have such dq-model-friendly power supply.  Thus, control 

developers must program the inverter to approximate the AC power supply using the 

rotor angle measurement. This usually requires knowledge of the inverter and power 

electronics. In some situations, such as in the application to EPAS, it is often desirable to 

have a full model of the BLDC motor including the inverter and the PMS motor so that 

the control program can be tested in simulation. Unfortunately, this type of model only 

appears in very limited publications. For example, Hossain and Deshpande (Hossain and 

Deshpande 2003) developed a detailed BLDC motor model in Simulink with thermal 

degradation, cogging torque, friction loss and digital controller quantization phenomena. 

Simulation results are shown for 1000rpm and 2Nm load torque. The simulation with 

non-idealities matched well with test bench measurements. Urasaki et al. (Urasaki 2000) 
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analyzed power loss factors in a BLDC motor, and identified the corresponding torque 

loss equations.  

In summary, many control techniques have been proven effective in BLDC motor 

control applications. It is not uncommon that multiple solutions exist for the same 

problem. However, it is noteworthy that adaptive control has been a popular choice for 

BLDC motors, especially sinusoidal BLDC motors.  

1.5 Adaptive Control for Sinusoidal BLDC Motors  

Sinusoidal BLDC motors are one of the most suitable actuators for the EPAS 

applications because of their high reliability, low maintenance cost and close-to-DC-

motor dynamic performance. Like many other mechanical or electrical systems, electric 

motor characteristics vary among individuals in the same model and from the same 

manufacturing process. Characteristics may also change with service life and 

environmental factors such as temperature. This is a serious potential problem for the 

EPAS application considering the automotive mass production, the expected long service 

life, and the harsh working environment. Therefore, it is critical for the EPAS to be 

equipped with a controller that is able to achieve the assisting torque generation task and 

be robust to motor parameter variation. 

The motor parameters most likely to vary include coil resistance, coil inductance, 

torque constant. The variations directly impart inaccuracies to the model-based control 

scheme due to its use of the nominal parameter values. In many practical applications of 

motor control, it is often the case that cost and design considerations prohibit the use of 

sensors placed directly on the motor windings or the magnets to monitor parameter 

variations. To ensure adequate torque control and acceptable frequency domain 



performance, it is desirable to compensate the controller for variations in motor 

parameters. Usually, the parameters change orders of magnitude slower than the motor 

electrical dynamics. Adaptive control appears to be a favorable choice for the sinusoidal 

BLDC motor application in EPAS. 

In general, an adaptive controller consists of a control law that is designed using 

nominal plant parameters, and an adaptation law that estimates and updates the 

parameters using plant states and/or output feedback, as shown in Figure 1.5. The 

adaptation keeps the control law updated for the varying characteristics of the plant, and 

maintains desirable closed loop performance even when the plant is changing. Adaptive 

control is a well-developed branch of control theory. There exist a large number of 

references covering the topics of parameter estimation and adaptive control (Ioannou and 

Sun 1996, Tao 2004, Ljung 1998, etc). Limited space in this dissertation would not allow 

a survey of all these adaptive control techniques. However, some basic concepts will be 

discussed, and the focus will be on some specific adaptive techniques that are potential 

candidates for the sinusoidal BLDC motor control in EPAS applications.  

 
 

Figure 1.5 Typical adaptive controller block diagram 
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Depending on how the control law and adaptation law are designed, adaptive control 

can be classified as direct or indirect. In the indirect adaptive control approach, the plant 

parameters are used explicitly to calculate the controller parameters. The adaptation law 

estimates the plant parameters, and therefore indirectly updates the controller. In contrast, 

the direct adaptive control engages the plant model in the controller parameters 

implicitly. The adaptation adjusts the control law parameters without calculating the plant 

parameters. In automotive control applications, it is often desirable to have on-line plant 

model information for control and diagnostics purposes. The indirect adaptive control 

obviously fits this requirement better.  

Model reference adaptive control is one of the main approaches to adaptive control. A 

reference model is designed for ideal performance of the closed loop system with 

consideration of the plant dynamics. The controller drives the plant output to track the 

output from the reference model. The adaptation law uses the controller command, plant 

output and the reference model trajectory tracking error to update the controller 

parameters. In the EPAS application, the ideal case is that the BLDC motor performs like 

a brushed DC motor. This indicates that the MRAC is a likely a candidate for the BLDC 

motor control, and the reference model is that of a brushed DC motor.  

The sinusoidal BLDC motor is a multi-input multi-output (MIMO) nonlinear system 

and time varying as shown in its dq coordinate model (1.1). Among the adaptive 

techniques, Lyapunov’s Direct method was often used to derive the adaptation law for 

nonlinear systems and to prove the stability of the closed loop system. The Extended 

Kalman Filter (EKF) has been an effective way for both state and parameter estimation in 

nonlinear systems. It calculates the optimal Kalman gains on-line for the linearization of 
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the system, and is relatively optimal at steady state. These two methods are candidates for 

the adaptation law for the sinusoidal BLDC motor adaptive control. In recent years, 

neural networks were presented in numerous publications for their application in adaptive 

control (Rovithakis 1999, Patino and Liu 2000). Various types of neural networks were 

engaged to approximate the unknown plant dynamics and the network weight factors 

were adaptively updated on-line. However, the sinusoidal BLDC motor model (1.1) has 

been widely used and proved effective for modeling its dynamics. It is not necessary to 

use such a “black box” model, therefore this method is not considered in this research. 

In the following paragraphs, a few references published in the past decade will be 

reviewed, which engaged the adaptive technique candidates for the sinusoidal BLDC 

motor application. 

Zhang et al. (Zhang et al. 2000) studied a class of first-order nonlinearly parameterized 

systems. By utilizing a special property of the systems considered, an integral-type 

Lyapunov function was introduced to construct a Lyapunov-based controller and 

parameter updating laws. It was shown that globally asymptotic tracking could be 

achieved, and explicit transient bounds on the tracking error were provided for different 

choices of Lyapunov functions. 

Hotzel and Karsenti (Hotzel and Karsenti 1998) presented an adaptive feedback 

tracking strategy for a class of uncertain single-input/single-output systems in strict 

parametric feedback form with nonlinear time-varying parameterization. The tracking 

scheme was based on a backstepping design. A local stability result was obtained via 

Lyapunov arguments. 
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An adaptive control scheme was proposed (Marino and Tomei 1999) to solve the 

asymptotic tracking output feedback problem for a class of observable, minimum phase, 

nonlinear systems with output dependent nonlinearities multiplying time-varying 

parameters. Proof of asymptotical stability was achieved by showing Lyapunov stability 

of the system. 

Loh et al. (Loh et al. 2003) proposed an adaptive controller that involved two tuning 

functions that were determined by a mini-max optimization approach. The proposed 

algorithm was shown to be Lyapunov stable and capable of achieving zero tracking error 

in steady state. 

Zhang et al. (Zhang et al. 2003) proposed a backstepping controller for linear time 

varying (LTV) systems with known and unknown parameters. The controller was derived 

by a series of Lyapunov candidate functions, global stability was guaranteed by choosing 

certain design parameters properly. 

Zhang and Ioannou (Zhang and Ioannou 2000) presented a new certainty equivalence 

based adaptive controller by a combining backstepping based control law with a 

normalized adaptive law. The new adaptive controller guaranteed stability and 

performance, as well as parametric robustness for the non-adaptive controller without the 

use of higher order nonlinearities. 

Liao and Chien (Liao and Chien 2000) presented an exponentially stable adaptive 

compensation for Coulomb friction in a simple servo control system. Stability was 

proved using the Lyapunov stability theorem. The proposed scheme provided exponential 

convergence for the Coulomb friction coefficient estimation and state tracking errors 

even without persistency of excitation. 



Kosmatopoulos and Ioannou (Kosmatopoulos and Ioannou 2002) proposed a switching 

adaptive controller for multi-input nonlinear systems whose dynamics were nonlinearly 

affected by external input disturbances. By making use of the notion of robust control 

Lyapunov functions and a modified version of the switching adaptive controller it was 

shown that the proposed controller guaranteed bounded closed loop signals and 

convergence of the state to a residual set. 

Limanond and Tsakalis (Limanond and Tsakalis 2000) addressed the model reference 

adaptive control problem of linear time-varying plants. A gradient-based adaptive law 

with projection and normalization was derived to estimate the unknown controller 

parameters. It was shown that, for a class of possibly fast time-varying plants, 

boundedness of the closed loop signals and small tracking errors in the mean-square 

normalized sense could be achieved, provided that only the unstructured part of the 

desired controller was slowly time-varying. 

Qu (Qu 2002) proposed that, despite of their nonlinearity and time variance, 

uncertainties or their bounding functions could be estimated as long as they were 

generated by exosystems whose models were either known or partially known. This was 

realized by finding a control algorithm that satisfied  of the Lyapunov candidate 

function, Q . 

0<Q&

Milman and Bortoff (Milman and Bortoff 1999) presented an observer based adaptive 

control through backstepping control approach, which ensured asymptotical stability. 

Experimental comparison with a full state feedback controller showed better transient 

performance and smaller steady state error of this observer-based controller. 
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Jiang and Hill (Jiang and Hill 1999) presented a constructive robust adaptive nonlinear 

control scheme that could be classified as a robustification of the adaptive backstepping 

algorithm. Simulations of a simple pendulum with unknown parameters and without 

velocity measurement illustrated the performance of the controller. 

Gobbo et al. (Gobbo et al. 2001) proposed a sensor failure detection and identification 

scheme by using an EKF to estimate the fault-related parameters, which were processed 

by a decision algorithm to detect possible failures. Experimental results, by applying 

different types of failures on the sensors of the inverted pendulum, validated the 

effectiveness of the approach. Zein et al. (Zein et al.) presented an efficient discrete-time 

second-order model of an induction motor for the rotor flux and real-time parameter 

estimation using an EKF. Experimental results showed great accuracy and fast 

convergence of the estimated parameters.  

In conclusion, Lyapunov’s Direct method is still one of the most commonly used ways 

for on-line parameter estimation in various latest adaptive control applications. The 

Extended Kalman Filter appears to be an option for deriving indirect adaptation law for 

many nonlinear systems. MRAC has been one of the main approaches to adaptive 

control.  These methods will be evaluated for the indirect adaptive control application on 

the sinusoidal BLDC motor.  

1.6 Publications 

Three journal papers and two conference papers have been published during the 

author’s doctoral study. The single parameter estimation algorithm using the q-axis 

current dynamics was presented in a SAE conference paper (Zhu and Patankar 2004). 

The multi-parameter estimation algorithm using the q-axis current dynamics process was 



 23

presented in American Control Conference 2004 (Patankar and Zhu 2004). The multi-

parameter estimation algorithm with the Gram-Schmidt process was published in the 

International Journal of Vehicle Automation Systems (Zhu and Patankar 2006). The 

parameter estimation algorithms can also be implemented for diagnostics and actuator 

health monitoring. A paper on this topic was published in the International Journal of 

Automation and Control (Patankar and Zhu 2007). Another paper about modeling and 

simulation of a single cylinder internal combustion engine (Chiang, Zhu and Patankar 

2007) was published on the Trends in Applied Sciences Research Journal.  

1.7 Summary 

Electrical Power-Assisted Steering systems will likely be used for the future power 

steering systems because of its advantage of energy efficiency, flexibility and reliability. 

The sinusoidal brushless DC motor has been identified as the most suitable candidate 

actuator for the EPAS. The long service life, harsh working environment and mass 

production impose motor parameter variation problem for the EPAS actuator controller. 

Adaptive control is an ideal technique to address this problem while achieving the control 

goals. Specifically, the indirect adaptive control, the model reference adaptive control, 

the Lyapunov method, and the Extended Kalman Filter are considered as candidate 

adaptive techniques for the sinusoidal BLDC motor application. They will be explored in 

detail in later chapters.  

The dissertation is organized as following: Chapter 2 will discuss the dq-model of the 

sinusoidal BLDC motor in detail. Based on the dq-model, Chapter 3 will present several 

indirect adaptive algorithms that parameter are estimated by solving algebraic equations 

formulated by several loops current feedback. In Chapter 4, recursive least square 
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algorithm and extended Kalman filter will be derived for the parameter estimation 

problem. Chapter 5 will present a model reference adaptive controller for the BLDC 

motor application. In Chapter 6, the algorithms developed in Chapter 3 to Chapter 5 are 

compared in closed loop simulation of an EPAS model and a speed control application. 

Chapter 7 will discuss some practical control implementation issues though simulation of 

a quasi-physical model of the BLDC motor system, including components such as the 

inverter, the space vector pulse width modulation (SVPWM), and etc. Chapter 8 will 

conclude the dissertation and discuss some future research directions.  
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Chapter 2 SINUSOIDAL BRUSHLESS DC MOTOR MODELING  

 

A BLDC motor is the combination of a permanent magnet synchronous motor 

(PMSM), an H-bridge DC-AC inverter, a rotor position feedback mechanism, and a 

digital controller. From a users perspective, the motor only needs DC power and does not 

have commutation devices such as brushes, thus it is called a Brushless DC motor. The 

controller is usually designed in self-controlled mode. Together with the H-bridge 

inverter, it generates AC current in each phase of the permanent magnet synchronous 

motor with a DC power supply. Assuming ideal operation of the inverter, a BLDC motor 

is actually a PMSM motor. The direct quadrature (dq) model, which is a well-established 

model for AC induction motor and synchronous motor, can be used for the BLDC motor 

dynamics analysis and control design.  

Since this research mainly concentrates on the sinusoidal BLDC motor, and 

considering the fact that most sinusoidal BLDC motors are three-phase Y-connected, a 

dq-axis model for such motors will be derived in this chapter, and torque/current control 

algorithms based on this model will be discussed.  

2.1 Permanent Magnet Synchronous Motor Modeling 

The actual motor in a sinusoidal BLDC Motor is a permanent magnet synchronous 

motor, which consists of a rotor with permanent magnets and several phases of 

sinusoidally distributed stator windings. A 3-phase PMSM model is presented in this 

section and a dq-coordinate model is derived from the 3-phase model. 



2.1.1 The three-phase model 

The electrical dynamics of a three-phase PMSM motor can be modeled as (Khorrami 

2003, Krause 2002): 
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are the equivalent inductance of the permanent magnet on the rotor. The quantity  is 

the fictitious current due to the permanent magnet. The inductance terms in (2.3) and 

(2.4) can be calculated as  
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where , , , and  are positive constants,  is the number of magnet pole 

pairs, and 

aL gL 0mL 1mL pn

θ  is the rotor position. The first terms of these inductance terms stand for the 

inductance within the loop formed by the stator iron and air gap between the stator and 

the rotor, and they are invariant to rotor position. The second terms represent the 

inductance in the loop formed by the stator iron and the permanent magnets. They are 

sinusoidal functions of the rotor angle because the permanent magnets are rotating with 

the rotor.  

The electromagnetic torque generated by the motor can be calculated as  
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and  is a positive constant associated to permanent magnets.  ffL

It is noteworthy that the inductance matrix in (2.3) and (2.7) are symmetrical, and the 

inductance terms contain sinusoidal functions of the rotor angle with a phase shift of 
3

2π  
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to each other. This is due to the fact that the stator phases are symmetrically distributed in 

the stator cylindrical inner surface, and the stator phases are identical in terms of their 

magnetic and electrical characteristics.  

Using (2.5), (2.7) can be expanded as  
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The equations (2.1) and (2.8) can be directly used for AC synchronous motors in which 

the phase currents and voltages are sinusoidal at a fixed frequency that is equivalent to 

the rotor magnetic field speed. However, they are not convenient for varying speed 

applications such as that of BLDC motors, as the rotor angle is explicitly involved in 

these equations. Therefore, it is desirable to simplify these equations. The most 

commonly used method is to transform them from the stator phase coordinates into the 

direct quadrature (dq) coordinates. 

2.1.2 The direct quadrature coordinate model  

Before performing coordinate transformations, let us see how the dq coordinates are 

defined. Let us use a three phase single magnet PMSM motor for illustration, as shown in 

Fig 2.1. The dq coordinates stand for the direct quadrature coordinates, and this 

coordinate system is fixed on the rotor magnet. The direct (d) axis is aligned with the 

magnet north pole axis, and the quadrature (q) axis is 90 degree counter-clockwise to the 

d axis. Similarly, a coordinate system, denoted as the ab coordinates, is defined as the 
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fixed frame on the stator. The a axis is aligned to the phase 1 axis, and the b axis is 90 

degree counter-clockwise to the a axis. The origins in both coordinates are the center of 

the rotor. In this example, the rotor angle θ is the angular displacement between the dq 

coordinates and the ab coordinates. If the rotor is equipped with more than one pair of 

permanent magnets, it can be modeled with an equivalent single pair magnet rotor with 

rotor angles of θpn , where  is the number of magnet pairs. pn
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a 

b

d

q

θ

Figure 2.1 The three stator phase, the qd coordinates and the ab coordinates 

 

In the configuration shown in Figure 2.1, the zero angle (θ=0) is the rotor position 

where the d axis is aligned to the a axis. However, the zero angle rotor position is not 

unique and can be defined in other configurations. For example, it could be defined when 

the q and a axis are aligned. The zero-angle position may seem to be trivial for the 
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control and analysis in the dq coordinates. However, it is essential for the synchronization 

between the stator the rotor magnetic fields. It determines the phase of almost all the 

sinusoidal functions involved in the (dq - ab) coordinate transformation and its inverse 

transformation. The definition of the zero-angle position must be consistent in the 

coordinate transformations especially when implementing the controller designed in the 

qd coordinates. In the following sections, the a-d alignment configuration show in Figure 

2.1 is adopted. 

To simplify the phase model (2.1), let us expand the flux terms by substituting 

(2.3~2.5) into (2.1), 

123123
123f

123
123123

123 iVLiLiL Ri
dt

d
f −=

∂
∂

+
∂

∂
+

θ
ω

θ
ω . (2.9) 

Notice that 

[ ] [ ] [ 000111 332313322212312111 ]=++++++=⋅ LLLLLLLLL123L ,  

 (2.10a) 

and similarly 

[ ] 0111 =
∂

∂
⋅

θ
123fL . (2.10b) 

In addition, since the neutral point is not accessible in almost all Y-connected BLDC 

motors, according to Kirchhoff first law, the sum of phase currents must be zero: 

[ ] 0111 =⋅ 123i . (2.10c) 

Apparently, the summation of all three equations in (2.9) gives a trivial equation with 

zero on both sides. This indicates that only two of the three phase equations are 

independent, and it is possible to transform them into simpler forms. 
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The currents, voltages and fluxes in the three-stator phases can be considered as vectors 

in the stator fixed ab coordinates. They can be projected to the a and b axes with a 

transformation 

1230 ff cab T= , (2.11) 

where  standing for , , or f i v Φ . [ ]T
ba fff0=0abf  is the vector of transformed 

quantities. The transformation matrix  is given by  cT
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Notice that the transformation matrix satisfies . The coefficient ITT =c
T

c 3
2  ensures 

that the transformation maintains energy conservation. Through the transformation 

(2.11), the inductance matrix  becomes  123L
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Also, 
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The generated torque τ  can be written in the new coordinates as  
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The electrical dynamics can be expressed in the  coordinates as ab0
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The first equation in the 13×  vector equation (2.16) is algebraic since the elements of 

the first row of  are zero, and, as shown in (2.10c), 0abL ( ) 0
3
1

3210 =++= iiii .  

Therefore, the first equation can be ignored in the analysis of the dynamics and in the 

control design. The second and third equations provide differential equations that govern 

the dynamics of  and : ai bi
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with  

⎥
⎦
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The original three phase model (2.1) and (2.8) are transformed into the simpler forms 

of (2.15) and (2.17) with only two dynamic equations. However, the rotor angular 

displacement θ  still explicitly presents in the equations. These equations are still 

inconvenient for analysis and control design.  
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Recall that the dq coordinate system is fixed on the rotor, and the projection from the 

ab coordinates to the dq coordinates contain the sinusoidal function of θ . It is possible 

that the position dependence of the torque expression (2.15) and the electrical dynamics 

(2.17) can be eliminated through the ab-dq projection, which is given by a transformation 

0ab0qd fTf p= . (2.19) 

where 
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and similar to (2.11). 

Combine (2.11) and (2.19), The dq coordinate variables can be obtained from the 

original three phase variables by 

123dq0qd fTf = . (2.21) 

with  
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Notice that , which means its inverse is equal to its transpose. Using the 

transformation (2.22), the inductance matrix in the dq coordinates can be obtained as   

ITT dqdq =T
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and the inductance terms for the rotor permanent magnet in the dq coordinates become 
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Notice that both  and  do not explicitly depend on the rotor position, and they 

are much simpler than their counterparts in the phase model as shown in (2.3) and (2.4).  

0dqL 0dqfL

To obtain the dynamic equations in the dq coordinates, care must be taken since the 

transformation matrix  consists of functions of the rotor angle. Note that dqT
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and recall that  is a constant, the electrical dynamics in the dq coordinates can be 

derived from (2.1) as  
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Notice that 
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Again, the first equation in the 13×  vector equations (2.26) is algebraic, and therefore 

can be ignored. The dynamic equations in the dq coordinates can be found as  
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Similarly, the torque expression in (2.15) can be transformed into the dq coordinates as  
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the electrical dynamic model of the BLDC motor transformed into the dq coordinates as  
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In the torque equation, the first term  indicates the contribution of the stator 

induction flux, while the second term  is the contribution of the permanent magnet 

flux. In the normal motor speed range, the permanent magnets play the dominant role in 

the flux linkage. Hence, in many applications the term  is much lower than the 

, and therefore can be neglected. The torque equation becomes  

qdiiKτ

qeiK

qdiiKτ

qeiK

.qeiK=τ  (2.32) 

The dq coordinate model of (2.31) is position independent and therefore more 

convenient than the 3-phase model of (2.1) for analysis and control purpose. It has been 

used in many references for BLDC motor control design. Similarly, all control algorithms 

developed in later chapters will be base on this dq-coordinate model.  
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2.1.3 Implementation of dq coordinate controllers 

Before moving onto the control design topics, the practical implementation of a 

controller designed on the dq coordinate model deserves a little bit more attention.  

The dq coordinate model in (2.31) is position independent, thus it is friendly for control 

development. However, all physically accessible variables from a motor, such as current, 

voltage and back EMF, are in the stator phase domain. To practically implement a 

controller designed on the dq coordinate model, the coordinate transformations in (2.12) 

and (2.20) must be done in real time. Thus, an actual BLDC motor control system needs a 

few more functions than the dq coordinate controller alone, as shown in Figure 2.2. The 

measured phase currents must be transformed into currents in dq coordinates (id, iq) 

through two coordinate transformations. Then the controller output voltages (vd, vq) must 

be transformed back to phase voltage for the real motor. The phase voltages are 

sinusoidal functions of the rotor angular position. Usually some special modulation 

method such as the space vector pulse width modulation (SVPWM) is involved to 

implement these alternative voltages from the DC power supply. The modulation requires 

well-coordinated software logic and power electronics hardware operation.  



 

Figure 2.2 Implementation of a generic controller designed in dq coordinates  

 

Even though the dq coordinate model (2.31) does not explicitly depend on the rotor 

position, almost all the supplement functions require the rotor angle (θ) measurement in 

real time. Therefore, accurate θ measurement is critical for operation of the BLDC motor 

and implementation of controllers designed on the dq coordinate model. Usually, θ is 

measured by using transducers such as optical encoders or resolvers. The measure 

angular position can be absolute or relative, but care must be taken when calculating the 

initial value of θ. Recall that the coordinate transformations in (2.12) and (2.20) are based 

on the zero-angle configuration in which the d and a axis are aligned. When 

implementing those transformation calculations in the controller, the initial value of the 
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angle feedback must be consistent with this zero-angle configuration. Transducer 

resolution is another factor for the implementation of controllers due to the real time 

coordinate transformations. Only if the transducer resolution is high enough, the 

coordinate transformations can be considered ideal and transparent to the controller. 

For the control design purpose, we shall assume that these supplemental functions for 

controller implementation are ideal. However, we need to be aware of the uniqueness of 

the BLDC motor controller implementation comparing to regular implementation of a 

digital controller to an analog system. 

2.2 Torque Control of Sinusoidal BLDC Motors 

When a motor is used as the actuator in a control system, usually the input to the motor 

controller is a command torque from the outer loop.  With the dq coordinate BLDC motor 

model, the q-axis current determines the motor torque shown in (2.32). Given a command 

torque cmdτ , the desired q-axis current can be calculated as 
e

cmd
cmdq K

i τ
=, .  

In many applications, it is a common practice to force  to as low as possible in 

amplitude. In another words, the desired d-axis current should be zero, i.e. 

di

0, ≡cmddi . In 

some applications, since the q-axis current dominates the motor torque, the desired d-axis 

current can be used to serve other purposes such as a random excitation signal for 

identification purpose.  

Thus, the torque control problem is equivalent to the current control problem where the 

desired currents are determined the outer loop torque command and other factors. 

Various control techniques can be utilized to achieve the current tracking tasks. A PI 

controller is probably the most popular candidate, especially in industrial applications.   
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2.2.1 PI controller 

The performance of a Proportional and Integral (PI) feedback controller mainly 

depends on its parameters, namely the proportional gain (kp) and the integral gain (ki).  

The gains are usually designed on a linear time invariant (LTI) model of the plant. If the 

plant is a nonlinear system, a PI controller may be designed for the linearized system 

model around some equilibrium states, and the PI gains can be programmed as outputs 

from lookup tables, which are driven by system states. In addition, a feedforward term is 

often engaged to account for the nonlinearity of the plant system. 

To design a PI controller, the BLDC motor model is restated here for the control design 

purpose, 
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The above equations are nonlinear since the second term on the right hand side of each 

equation involves product of states ω ,  and . The variables of interests are  and . 

Linearize the above equations with respect to the  and ,  
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The equilibrium point is  

00000 ωω eddpqq KiLniRv ++= , (2.34a) 

0000 qqpdd iLniRv ω−= . (2.34b) 
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The PI controller is designed with respect to  
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Given desired currents  and , the PI controller shall stabilize the motor 

current states around these value. In another words, the desired equilibrium point shall be 

( , ), and the proportional and integral gains shall be designed to achieve certain 

dynamic performances such as overshoot, response time etc. The final control law is 

therefore proposed as  

cmdqi , cmddi ,

cmdqi , cmddi ,

dtiikiikKiLniRv qcmdqiqcmdqpecmdddpcmdqq ∫ −+−+++= )()( ,,0,0, ωω , (2.36a) 

dtiikiikiLniRv dcmddiddcmdpcmdqqpcmddd ∫ −+−+−= )()( ,,0, ω . (2.36b) 

An example PI controller is designed for a motor ( Ω= 05.0R , , HLL qd 0001.0==

ANmKe 05.0= ). The PI gains for the rotor magnetic field rotating speed at 

00 =eω rad/s, 500 =eω  rad/s, 1000 =eω  rad/s, 2000 =eω  rad/s are designed using the 

MATLAB root locus tool. 

The PI gains can be implemented with lookup tables that are driven by the motor speed, 

and the PI controller is often called as a gain-scheduling controller (Ioannou 1996).  It 

provides some adaptation for performance loss caused by system nonlinearities and 

changing states. The PI controllers are simple and robust to system uncertainties. 

However, it relies on integration of the error between the feedback states and their 

respective reference to counteract the disturbances. This sometimes means sacrifice of 

dynamic performance. 
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Table 2.1 PI controller gains  

0eω (rad/s) kp ki

0 0.005 0.25 

50 0.005 0.5 

100 0.005 1 

200 0.005 2.5 

 

 

2.2.2 Feedforward inverse dynamics controller  

To use a BLDC motor as an actuator in a mechanical system such as automotive 

steering system, it is desirable to have the motor controller be the exact inverse of the 

motor electric dynamics. Thus the motor will produce the torque requested from the outer 

loop controller. In another words, the controller and motor together become a unitary-

gain feed-forward gain in the control loop. In nearly all practical applications, the motor 

drives a mechanical inertia as a part of its load. Usually the dynamics of the mechanical 

system are orders of magnitude slower in comparison to the electrical dynamics of the 

motor. Therefore, for the control purpose, the electrical dynamics of the motor can be 

neglected in comparison to the overall dynamics of the system, i.e. 

.0
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dt
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Given command currents and , the inverse dynamics control law is proposed 

as  

cmdqi , cmddi ,
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Assuming ideal knowledge of the plant, and substituting (2.37) back into the plant 

model, the closed loop system dynamics becomes 
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The closed loop system dynamics model (2.38) consists of two first order low pass filters 

with the time constants determined by the stator phase parameters. For the example motor 

mentioned before ( ,Ω= 05.0R HLL qd 0001.0== , ANmKe 05.0= ), the time constants 

for both the d and q axis current dynamics are 0.002s. This is usually fast enough for 

most mechanical systems.  

Figure 2.3 and 2.4 compared the step response of the two controllers in simulation. The 

reference current has a step increase of Aiqcmd 2=  at 0.2 seconds. Zero rotor movement 

was assumed for the purpose of current dynamics performance comparison. In the first 

simulation shown in Figure 2.3, it is assumed that the controller parameters matched the 

plant parameters ideally. Both controllers provided quick response to the step input when 

full knowledge of the plant was assumed. The PI controller showed slight overshoot due 

to the integration of current error. 

In Figure 2.4, the controller parameters has 10% error in Ke and 50% error in R 

comparing to the plant. With parameter errors presented, it took about half seconds for 

the PI controller to counteract the error and achieve zero steady state error, while the 

feedforward controller could not compensate the steady stator error caused by the 
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parameter error. 

 
Figure 2.3 Step response of the BLDC motor with the PI controller and the feedforward 

controller at 00 =eω , assuming full knowledge of the plant parameters. 

 

2.2.3 Controller selection 

The closed loop system performance varied more or less from one controller to another. 

The controller selection criteria often depend on the specific application. In the case of 

the automotive power-assisted steering system, it is desirable for the assisting motor to 

provide a consistent sense of stiffness to the driver. Besides, the chattering effect of 

assisting torque should be avoided, as human hands are very sensitive to vibrations. 

Based on the simulation results shown in Figure 2.3 and 2.4, the PI controller may not be 
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able to provide satisfactory performance in both respects. Given ideal knowledge of the 

plant, fine-tuning the gains or adding a derivative term may improve the overshoot 

problem. However, if significant parameter error exist between the controller and the 

plant, the slow compensation of the PI controller shown in Figure 2.4 would make the 

driver’s feeling of the steering wheel stiffness vary in the scale of seconds. This is highly 

undesirable. 

 
Figure 2.4 Step response of the BLDC motor with the PI controller and the feedforward 

controller at 00 =eω , with 10% error in Ke and 50% error in R. 

  

  

On the other hand, the feedforward motor inverse controller provides favorable 

 44
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responses for the EPAS application. If there exist parameter value error in the controller, 

driver may feel that the steering wheel is heavy but it is consistent. In addition, if 

implemented with some adaptation techniques, where the parameters involved in the 

control law can be updated with the actual plant, then the feedforward controller provides 

more desirable performance for EPAS.  

Considering the mass production of the EPAS and its expected long service life in such 

harsh environment, the motor characteristics variation is nearly inevitable across the same 

product model and over the service life of each individual motor. The adaptive 

feedforward dynamics inverse controller appears to be a favorable candidate for the 

BLDC motor in the EPAS application.  

2.3 Summary 

The dq-coordinate model has been widely used for the BLDC motor control design and 

analysis. One of the main advantages of the dq-coordinate model is that the rotor angular 

position θ is not explicitly involved in the motor dynamics equations. As a result, the 

control and dynamics analysis using the dq-coordinate model are significantly simpler 

than using the phase model. This chapter re-examined how the dq-coordinate model was 

derived from the three-phase permanent magnet synchronous motor model. The 

mathematical derivation revealed how θ was cancelled through the coordinate 

transformation from the three-phase frame to the dq-coordinates. It also explained how 

the d and q axis dynamics were obtained and their roles in the principle of the BLDC 

motor operation. In addition to provide a foundation to the control design, the derivation 

enlightened implementation issues for the controller designed with the dq-coordinate 

model. For example, though the rotor angular position θ is not explicitly engaged in the 
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dq-coordinate model, it is indispensable in the coordinate transformations that must be 

done in real time. Therefore the operation of the BLDC motor requires measurement of 

the rotor angular position θ. Another example is the zero-angle configuration that seems 

trivial for the control and analysis in the dq coordinates. When implementing a controller 

designed from the dq-coordinate model, the zero-angle configuration is critical to ensure 

the correct calculation of the coordinate transformation and synchronization of the stator 

and rotor magnetic fields.   

With the dq-coordinate model, The BLDC motor torque control problem can be 

converted into an equivalent current control problem. There exist numerous controller 

candidates for the motor current control task.  While it is a subjective matter as to the 

selection of control structure, the adaptive feedforward inverse dynamics controller 

showed desirable performance, and therefore is selected for as the favorable controller for 

the EPAS application. 



Chapter 3 ADAPTIVE PARAMETER ESTIMATION 

 

While designing an inverse motor dynamics controller such as that of (2.37), it is 

assumed that the motor parameters R , , and  are constant and the parameters used 

in the controller while executing the motor inverse model are the same as that in the 

motor. However, aging and changing environmental factors, such as temperature, 

humidity, etc. will change the values of the parameters 

L eK

R , , and . This can degrade 

the overall system performance. Often, it is necessary to take some corrective action so 

that the value of one or more parameters in the controller is as close as possible to the 

actual value in the motor. 

L eK

In this chapter, parameter estimation algorithms for a feedforward motor inverse 

controller are proposed as a solution to the above problem. From single parameter to 

multiple parameters, the estimation and compensation schemes are derived and stability 

of the estimation schemes is proved. Improvements for the parameter estimation are 

proposed by tightening the bound of error in the schemes. 

3.1 Motor Inverse Controller Model 

A BLDC motor dynamics inverse controller (3.1) had been proposed for the EPAS 

application (Klienau et al., 2003), 

meccmddecmdqq KiLRiVV ωωδ ++== ,,cos , (3.1a) 

cmdqecmddd iLRiVV ,,sin ωδ −=−= . (3.1b) 

where δ  is the phase advance angle of the control voltage vector to the q axis in the dq 

coordinate system, and V  is the magnitude of control voltage. The phase lead δ  can be 
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set as a function of the angular velocity of electro-magnetic field as ⎟
⎠
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⎝
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R
Leωδ 1tan . The 

q axis command current  is obtained from the outer loop torque command cmdqi , cmdτ  as 
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The control voltage magnitude V  can be solved by (3.1a) δcos× -(3.1b) δsin×  as 
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The d axis command current  can be solved by (3.1a)cmddi , δcos÷ +(3.1b) δsin÷  as  

22, )( LR
LKi

ec

eme
cmdd ω

ωω
+

−
= . (3.4) 

Equation (3.3) involves the motor parameters R , , and . Usually the nominal 

values of these parameters are used for the control design. Any variation in these 

parameter values will result in control voltage offset and therefore system performance 

suffers. Adaptive parameter estimation algorithms will be developed for this controller in 

this chapter. Let’s start with a simpler case of single parameter estimation.  

L eK
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3.2 Single Parameter Estimation 

In many situations, the change of the motor coil resistance R  is much higher if 

compared with other parameters such as , and . Assume that L eK R  is the single 

parameter that changes and affects the motor performance. Integration of the feedback 

current error scheme to estimate a motor parameter R in the controller is investigated in 

this section. 

3.2.1 Single parameter estimation 

In the following paragraphs, the parameters used in the controller are denoted by the 

suffix c. For the single parameter estimation purpose, we assume that , and  are 

known.  is the phase resistance used in controller and it may be different from its 

counterpart in the motor. Due to sampling delay and analog/digital conversion, the 

measured motor velocity 

L eK

cR

mcω  may be slightly different form the actual rotor velocity mω . 

With this notation, the control law in (3.1) can be restated as  

mcecmddeccmdqcq KLiiRVV ωωδ ++== ,,cos , (3.5a)  

cmdqeccmddcd LiiRVV ,,sin ωδ −=−= . (3.5b) 

Applying the control voltages (3.5) to the motor dynamics model, we have  

( ) ( )
L

Kii
L

RiiR
dt
di mmce

decmddec
qcmdqcq ωωωω −

+−+
−

= ,
, , (3.6a)  

( )cmdqecqe
dcmddcq ii

L
RiiR

dt
di

,
, ωω −+

−
= .  (3.6b) 

Define the parameter and velocity error as  

cRRR −=Δ , (3.7a)  
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mcmm ωωω −=Δ , (3.7b) 

ecee ωωω −=Δ , (3.7c) 

and the feedback current error as  

qcmdqq iii −=Δ , , (3.7d) 

dcmddd iii −=Δ , . (3.7e) 

Assuming the system is in equilibrium, i.e. 0,0 ==
dt
di

dt
di dq . Substitute (3.7) into 

(3.6a), neglect the high order error terms, and reorganize the equation to 

( meecmdddeq
cmdq

cmdq KLiiLiR
i

isign
R ωωω Δ−Δ−Δ+Δ=Δ ,

,

, )( ) .  (3.8) 

In normal BLDC motor operation, the current  is significant higher than . The 

velocity error caused by sampling delay is usually lower than the current error caused by 

the motor dynamics. Thus the first item on the right side of (3.8) is the dominant factor 

for 

qi di

RΔ  calculation. Therefore, the parameter error estimator is proposed as  

q
cmdq

cmdq iR
i

isign
R Δ=Δ

,

, )(ˆ .  (3.9) 

where R̂Δ  is the estimated resistance error. The controller value of the resistance can be 

updated by integrating the estimated error as 

∫ Δ+=
t

tcc dttRtCtRtR
0

)(ˆ)()()( 10 , (3.10) 

where  is an integration weighting factor. 1)(0 1 <≤ tC
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3.2.2 Stability of the single parameter estimation scheme 

Together with the parameter estimation algorithm in (3.9) and (3.10), the feedforward 

controller in (3.5) becomes an adaptive controller based on the current feedback. The 

stability of this closed loop control system will be discussed in this subsection. 

Assume the motor coil resistance R  is stationary, i.e. 0≈
dt
dR . Thus, the derivative of 

RΔ  can be found by differentiating (3.6a) as  

 
dt

dR
dt

dR
dt
dR

dt
Rd cc −=−=

Δ . (3.11) 

The right side of equation (3.11) can be expanded by differentiating (3.10). Taking the 

bounded zero-mean additive noise  of the current feedback sensor into account, the 

derivative of 

)(td

RΔ  can be obtained as  

( )meecmdddecmdqqcmdq KiLiLtdRisigntkitRkisign
dt

Rd ωωω Δ−Δ−Δ++Δ−=
Δ

,,, )()()()()( ,

 (3.12) 

where 
cmdqi
tCtk

,

1 )()( = . Equation (3.12) represents the first order nonlinear differential 

equation that defines the dynamics of the error in the estimate of R .  

Differentiating the current error in (3.7d) and (3.7e), and substituting 
dt
diq  and 

dt
did  with 

(3.6a) and (3.6b), the current error dynamics can be obtained as  

dt
di

L
KiR

L
i

ii
L
R

dt
id cmdqme

cmdde
cmdq

deq
q ,

,
, +

Δ
−Δ+Δ+Δ−Δ−=

Δ ωωω , (3.13) 

dt
di

iR
L

i
ii

L
R

dt
id cmdd

cmdqe
cmdd

qed
d ,

,
, +Δ+Δ+Δ+Δ−=

Δ ωω , (3.14) 
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Define a new state vector = [∆ix q, ∆id, ∆R]T. The three state equations can be written 

in terms of state x as 

),(),( xgxfx tt +=&  (3.15) 

where  

xxf ⋅
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−
−−

=
0)()()()(

),(

,,

,

,

tLkisigntRkisign
LiLR
LiLR

t

ecmddcmdq

cmdde

cmdqe

ω
ω

ω
, (3.16) 

and 

[ ]
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

Δ−Δ−

+Δ

+
Δ

−Δ

=

meecmddcmdq

cmdd
cmdqe

cmdqme
cmdde

KiLtdRtkisign
dt

di
i

dt
di

L
Ki

t

ωω

ω

ωω

,,

,
,

,
,

)()()(

),( xg . (3.17) 

),( xfx t=&  is the nominal system and  is the perturbation. Equation (3.15) 

represents the system with current feedback based motor resistance estimation.

),( xtg

In order to determine conditions for the stability of the nominal state-space model, the 

following theorem is used (Khalil 1996). 

Theorem 1 Let x=0 be an equilibrium point for the nonlinear system , where 

 is continuously differentiable, 

),( xfx t=&

[ ) nRD →×∞,0:f { }rRD n <∈=
2

xx , and the 

Jacobian matrix ⎥⎦
⎤

⎢⎣
⎡
∂
∂
x
f  is bounded and Lipschitz on , uniformly in . Let D t

0

),()(
=∂

∂
=

x

x
x
fA tt . Then the origin is an exponentially stable equilibrium point for the 
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nonlinear system if and only if it is an exponentially stable equilibrium point for the 

linear system . xAx ⋅= )(t&

In this case,  in (3.16) is continuously differentiable in , which satisfies the 

conditions of the above theorem. 

),( xf t x

[ ]T00,0, =x  is an equilibrium point for , and ),( xfx t=&

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⋅⋅⋅⋅⋅−
−
−−

=⎥⎦
⎤

⎢⎣
⎡
∂
∂

0)()()()(
//
//

tkLisigntkRisign
LiLR
LiLR

eqcomqcom

dcome

qcome

ω
ω

ω

x
f . (3.18) 

Since the motor speed (ωe) and the motor torque (iqcom) are bounded for any motor 

driving a non-zero load, ⎥⎦
⎤

⎢⎣
⎡
∂
∂
x
f  is bounded and Lipschitz on any domain defined over the 

operating region of the motor. Applying this theorem, it can be made sure that 

 is exponentially stable as required by Theorem 1 by setting the value of  

as required.  When the motor drives a load which is the case in most operations,  is 

guaranteed to be Hurwitz if  is chosen.  On rare occasions it is possible that the 

motor is back-driven by the load.  Under back–driving conditions,  is selected such 

that the following condition is satisfied.   

xAx ⋅= )(t& )(tk

)(tA

0)( >tk

)(tk

0)(2)( ,
,

2
2

, >
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−⎟

⎠
⎞

⎜
⎝
⎛

L
iR

isign
L
Ritk cmdde

cmdqecmdq
ω

ω  (3.19) 

Therefore,  is an exponentially stable equilibrium point for the nominal 

system  assuming  is appropriately scheduled. If back driving is indeed a 

rare occurrence,  can be made close to zero during back-driving to effectively stop 

parameter estimation. This will not affect the performance of the estimation scheme.  

[ T00,0, x = ]

),( xfx t=& )(tk

)(tk
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Given the stability of equilibrium point [ ]T00,0, x =  for the nominal system ),( xfx t=& , 

the stability of the error dynamics (3.15) can be shown by using theorem 2 (Khalil 1996).  

Theorem 2 Let { }rxRxD n <∈=
2

 and suppose the following assumptions are 

satisfied for all [ ) Dxt ×∞∈ ,0),( :  

1)  is continuously differentiable and the Jacobian matrix ),( xtf ⎥⎦
⎤

⎢⎣
⎡
∂
∂

x
f  is bounded and 

Lipschitz in x , uniformly in t. 

2) The origin  is an exponentially stable equilibrium point of the nominal 

system . 

0=x

),( xtfx =&

3) The perturbation term  is piecewise continuous in t  and locally Lipschitz in ),( xtg

x , and satisfies the bound Dxttxtg ∈∀≥≥∀≤ ,0,),( 0ρ . 

Let and denote solutions of the nominal system and the perturbed system, 

respectively. Then, there exist positive constants 

)(ty
∧

)(ty

β , γ , η , μ , λ  and , independent of k

ρ , such that if ληρ << )(, 0ty , and μ<−
∧

)()( 00 tyty , then the solutions and 

will be uniformly bounded for all  and  

)(ty
∧

)(ty 00 ≥≥ tt

βργ +−≤− −− )(ˆ)()(ˆ)( 00
)( 0 tytyketyty tt . (3.20) 

In this case,  is bounded by ),( xtg

),(max),( xtgxtg
t

=≤ ρ . (3.21) 

Since the desired motor torque, motor speed (assuming non-zero load) and acceleration 

are bounded, eωΔ , mωΔ , eω , , and cmdqi , dt
di cmdq ,  are bounded in real systems. In addition, 
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the sensor noise  is also bounded.  Therefore, )(td ),(max xg t
t

=ρ  is finite for all 

motors, and the conditions of Theorem 2 are satisfied. Thus, the solutions of (3.15) and 

its nominal system will be uniformly bounded and satisfy (3.20), i.e. the adaptive control 

scheme for  will result in a bounded value of estimated cR R  and the state vector  in 

(3.12) is uniformly bounded.  

x

3.2.3 Simulation results 

The control law (3.5) and the adaptation rule (3.9) and (3.10) were tested in simulation 

for a motor with following constant parameters: Ω= 05.0R , )/(05.0 sradVKe = , 

. This motor is a prototype BLDC motor for an EPAS application. It will 

be used as a plant for all adaptive controllers developed in this research. Usually the 

closed loop motor system (including the motor and the motor controller) is the actuator 

for an outer loop system, and the outer loop system characteristics often have some 

effects on the performance of the motor controller. However, since our main interest is 

the motor controller, we shall focus on the motor performance and assume that the motor 

operates independently to the outer loop system. In practice, this is similar to a motor 

bench test in which the motor can be operated with arbitrary speed and torque. Therefore, 

we assume that the motor subjects to random command torque 

HL 4101 −×=

cmdτ  and independently 

random motor velocity mω  in simulations. Figure 3.1 shows a schematic diagram of the 

closed loop motor tests in simulation.  
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Figure 3.1 The schematic diagram of the motor test system in simulation.  

 

The weighting factor  in (3.10) is set to avoid the singular points of )(1 tC 0, =cmdqi  and 

to satisfy the stability condition (3.15), as in the following equation  

⎩
⎨
⎧

≤⋅
>⋅>

=
0)()(,0

0)()(,002.0
)(1

cmdm

cmdm

signsign
signsign

tC
τω

τω
. (3.22)  

To verify the effectiveness of the parameter estimation algorithm, the initial value of 

 is assumed to have 10% error to cR R .  Root mean square (RMS) value of the state 

variables is used to approximate the bound on the error as 

)(6)( Δ⋅=Δ RMSb  (3.23) 

where  represents the error in the variables. Δ

Simulation results of the single parameter estimation are shown in Figure 3.2. 

Regardless of the sign of initial error,  converges to cR R  within 20 seconds and then 

stays in a bound (max norm) of    ).0.34%≈Ω× R(101.7228 -4

ωm 

iq , idParameter 

τcmd 

vq,vd
τout 

Motor

M

Parameter 
Estimator 

Control
Law 

Adaptive Controller 

Random 
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Figure 3.2 Single parameter estimation performance in simulation  

 

3.3 Multiple Parameter Estimation 

In many situations, coil resistance R  is usually the dominant parameter that is 

changing in the motor. The single parameter estimation scheme is able to identify this 

single parameter change in the motor inverse model. However, when there exist errors in 

more than one parameter, performance of the single-parameter estimation schemes will 

deteriorate, and the accuracy of the control system will also suffer. In the following 

subsections, a multi-parameter estimation scheme is proposed and the stability of the 

scheme is proved.  

3.3.1 Multiple parameter estimation 

Let’s investigate the discrete integration of the estimated parameter error in the 

controller: 

)(ˆ)()()1( 1 kRtCkRkR cc Δ+=+ , (3.24) 
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)(ˆ)()()1( 1 kKtCkKkK eecec Δ+=+ , (3.25) 

where  and  are the estimated error, )(ˆ kRΔ )(ˆ kKeΔ 1)(1 <kC  and 1)(2 <kC  are 

integration weighting functions, and  denotes the kth interval. Again, we denote the 

parameters and variables used for computation in the controller by suffix . The 

estimated error  and  will be derived below. 

k

c

)(ˆ kRΔ )(ˆ kK eΔ

Recall the control law  

mceccmddeccmdqcq KLiiRVV ωωδ ++== ,,cos , (3.26a)  

cmdqeccmddcd LiiRVV ,,sin ωδ −=−= . (3.26b) 

where  and  may be different from their counterparts in the motor.  ecK cR

Substituting the voltages in (3.26) back into the motor dynamics  model, we have  

( )
L

KKii
L

RiiR
dt
di memcec

decmddec
qcmdqcq ωωωω −

+−+
−

= ,
, , (3.27a)  

( cmdqecqe
dcmddcq ii

L
RiiR

dt
di

,
, ωω −+

−
= ). (3.27b) 

To find the parameter error equation, let’s adopt the same definition of errors in (3.7),  

cRRR −=Δ ,  (3.28a)  

ecee KKK −=Δ ,  (3.28b)  

qcmdqq iii −=Δ , ,  (3.28c) 

dcmddd iii −=Δ , ,  (3.28d) 

ecee ωωω −=Δ ,  (3.28e) 

mcmm ωωω −=Δ .  (3.28f) 
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Assuming the system in equilibrium: 0,0 ==
dt

di
dt
di dq , substituting (3.28) into 

(3.27a), and neglecting the high order error terms such as qiRΔΔ , we get  

meecmdddeqmecmdq KLiiLiRKRi ωωωω Δ−Δ−Δ+Δ=Δ+Δ ,, .  (3.29) 

It is reasonable to assume that )(tRΔ  and eKΔ  will not change significantly in one 

sampling period of 0.002 second. In the mean time, for most DC motors, RL <<  and 

; because of mechanical inertia, eKL << qiΔ<<Δω . Therefore, the last 3 terms in the 

right side of (3.29) can be possibly neglected if compare to the first term, we can find the 

value of RΔ  and  by solving following equations eKΔ

)()()(, kiRkKkRi qmecmdq Δ=Δ+Δ ω , (3.30) 

)1()1()1(, +Δ=+Δ++Δ kiRkKkRi qmecmdq ω . (3.31) 

Therefore, the estimated error  and  for the estimation scheme in (3.24) 

and (3.25) via feedback current error integration was proposed as 

)(ˆ kRΔ )(ˆ kK eΔ

)()1()1()(
)1()()()1(

)(ˆ
,, kkikki

kikRkikR
kR

mcmdqmcmdq

qmcqmc

ωω
ωω

+−+
+Δ−Δ+

=Δ , (3.32) 

)()1()1()(
)()1()1()(

)(ˆ
,,

,,

kkikki
kikiRkikiR

kK
mcmdqmcmdq

qcmdqcqcmdqc
e ωω +−+

Δ+−+Δ
=Δ . (3.33) 

3.3.2 Proof of stability  

Subtracting R  from both sides of (3.24), the error dynamics in R  becomes 

)(ˆ)()()1( 1 kRkCkRkR Δ−Δ=+Δ . (3.34) 

  To show the stability of parameter estimation in (3.34), we need to find the 

difference between the estimated parameter error and the actual parameter error. Recall 
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(3.29) that approximates the relationship between the actual parameter error and the 

current error in equilibrium, and include the bounded zero-mean additive noise  of 

the current feedback sensor and the neglected motor electrical dynamics 

)(td

dt
diq ,  

dt
di

tdiLiLKiRKRi q
ecmdddemeqmecmdq −+Δ−Δ+Δ−Δ=Δ+Δ )(,, ωωωω . (3.35) 

Define a perturbation  as )(tg

dt
di

tdiLiLKtg q
ecmdddeme −+Δ−Δ+Δ−= )()( , ωωω . (3.36) 

Solving equation (3.35) at kth interval and (k+1)th interval, the actual parameter error 

RΔ  and  can be solved as  eKΔ

)()1()1()(
)]1()()()1([

)()1()1()(
)]1()()()1([

)(
,,,, kkikki

kgkkgk
kkikki

kiRkkiRk
kR

mcmdqmcmdq

mm

mcmdqmcmdq

qmqm

ωω
ωω

ωω
ωω

+−+
+−+

+
+−+

+Δ−Δ+
=Δ

 (3.37) 

 Note that the first item on the right side of (3.37) is the same as . In another word,   )(ˆ kRΔ

RΔ  becomes  

)()1()1()(
)]1()()()1([)(ˆ)(

,, kkikki
kgkkgkkRkR

mcmdqmcmdq

mm

ωω
ωω

+−+
+−+

+Δ=Δ . (3.38) 

Let 

)()1()1()(
)]1()()()1([)(

,, kkikki
kgkkgkke

mcmdqmcmdq

mm

ωω
ωω

+−+
+−+

= . (3.39) 

Substitute the (3.38) and (3.39) into (3.34), 

)()()()](1[)1( 11 kekCkRkCkR +Δ−=+Δ . (3.40) 

By induction we have 
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[ ] )1()0()(1)1(
1

1 ++Δ
⎭
⎬
⎫

⎩
⎨
⎧

−=+Δ ∏
=

kERiCkR
k

i

, (3.41) 

where,  ( )∑ ∏
=

−

= ⎭
⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
+−−=+

k

j

jk

i

jejCikCkE
0

1
0

1 )()()1(1)1( .

Setting  for each controller computation interval , the first 

item on the right of (3.35) will decrease as 

1)(0 1 <≤ kC ])1(,[ TkkT +

∞→k . In some intervals  in (3.33) is 

high because of singularity caused by very low angular velocity or command torque 

input. The integration gain  can be set to be zero for these intervals. Otherwise, in a 

physical system, 

)(ke

)(1 kC

mωΔ , mω , , , and dcomi )(td
dt
diq  are all bounded, i.e. )()( kke δ<  for 

some positive constant )(kδ . Let  

[ ])(),(1max 11max kCkCC
k

−=   (3.42) 

and [ ])(maxmax k
k

δδ = , where { }∞=≠∈ ,,1,0,0)(1 LkkCkk . The second term )1( +kE  

on the right sides of (3.41) conforms the inequality of  

{ } max
max

1
max

0
maxmax 1

1
)()1( δδ

C
C

CkE
kk

j

i

−
−

=≤+
+

=
∑ . (3.43) 

Let max
max

1
max

1
1

)1( δ
C

C
kb

k

−
−

=+
+

. Since 10 max << C , max
max1

1)( δ
C

kb
−

→  as ∞→k . 

Therefore, the second item on the right side of (3.35) will be bounded as ∞→k . In 

summary, the estimation scheme of R  in (3.24) and (3.32) will be bounded. The 

boundedness of  can be proved similarly.  eK

The multi-parameter estimation algorithm in (3.24) and (3.25) is simulated for the same 

motor mentioned in section 3.2. Figure 3.3 shows the parameter estimation performance 
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in simulations. The initial parameter error were set as RtR %10)0( ±==Δ  and 

. To avoid the error caused by singularity points in (3.32) and 

(3.33),  and  in (3.24) and (3.25) are set as following: 

ee KtK %6)0( ±==Δ

)(1 kC )(2 kC

01.0)det(
01.0)det(

0
1.0

)()( 21 <
≥

⎩
⎨
⎧

==
k
k

kCkC , (3.44) 

where )()1()1()()det( ,, kkikkik mcmdqmcmdq ωω +−+= . In the simulation, the parameter 

estimation reached the bound of  and )%43.1(107.1656)( -4 RRb ≈×=Δ )( eKb Δ  

 within 80 seconds.  -4102.5125×= )%5.0( eK≈

 

 
Figure 3.3 Two-parameter estimation performance in simulation 

 

3.4 Improving The Dynamic Performance Of The Adaptive Algorithm 

The single and multiple parameter estimation schemes developed in the previous two 

sections are proved to be stable and validated to be effective in simulations. However, 

 62



faster parameter estimation convergence is always welcome for the overall system 

performance. The convergence speed can be improved by tuning the integration gains 

 and  but will result in noisier parameter estimation at steady state. The 

extent of improvement by gain tuning is limited by the tradeoff between converging 

speed and the bound of steady state error. A better way, without compromising the 

dynamic performance would be to reduce the perturbation to the error dynamics model. 

)(1 kC )(2 kC

Recall that both the single and multiple parameter estimation schemes are based on the 

motor inverse controller (3.1). The non-dynamic motor inverse model neglected motor 

electrical dynamics and introduced an error corresponding to neglected dynamics 
dt
diq  

and 
dt
did . If the dynamics are not neglected to obtain an algorithm for the applied voltage 

V, it is possible to reduce errors introduced in the earlier estimation approach. 

Furthermore, the basic estimation scheme of (3.9), (3.32) and (3.33) neglected the effect 

of mωΔ  and eωΔ , which were caused by the sampling delay. These terms presented in 

the perturbation (3.17) and (3.36). If the motor speed error is considered in the estimation 

scheme, the performance of the adaptive algorithm can be possibly improved. In the next 

subsections, these two possible improvements for parameter estimation will be explored.  

3.4.1 Motor electrical dynamics 

An analytical solution of the motor electrical dynamics of (2.31) is not available 

because of the nonlinear items that involve product of states eω ,  and . However, 

since the motor is driving the inertia, the electrical states can change significantly in 

duration of the order of the electrical time constant τ, whereas the mechanical states, e.g. 

qi di
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the motor speed mω , can hardly change over the same period due to slow dynamics of the 

mechanical system. It is possible to approximate the motor electrical dynamics by 

assuming mω  is a constant during each sampling interval T, which is of the order of the 

electrical time constant τ. With this assumption, the motor electrical dynamics equation 

(2.31) becomes a finite dimensional linear time-invariant state equation during the 

sampling interval T.  This equation can be solved exactly via the discrete time state 

transition matrix (Rugh 1996). 

Now consider (2.31) in matrix form as 

u

R

R
K

Ryy
e

⋅
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

−

−

+⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−−

=
0sin

cos
1

1
11

δ

δ

τζ
ζ

τ
& , (3.45) 

for  where , , ,)1( TktkT +≤≤ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

d

q

i
i

y ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

m

V
u

ω R
L

=τ , 
R
Leωδζ == tan .  

Equations (3.45) can be solved with the state transition matrix: 

[ ] [ ]
[ ] [ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−
−−−

=Φ
−

−

)(cos)(sin
)(sin)(cos

),(
kTtkTt
kTtkTt

etkT
ee

ee
kTt

ωω
ωω

τ

]  (3.46) 

for  .)1( TktkT +≤≤  The solution is 

∫
+

Φ+⋅+Φ=+
Tk

kT
duGkTkTxTkkTTkx

)1(
),()(])1(,[])1[( θθ , (3.47) 

where 
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

−

−

=
0sin

cos

R

R
K

RG
e

δ

δ

.  

The quantities G and u in the above equation can be treated as constants during each 

sampling interval because of the zero-order-hold sampling.  
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Given the command torque )(kcmdτ , which is the expected output at , the 

value of the state variable 

Tkt )1( +=

)1( +kiq  is expected to be . This value can be 

obtained from 

)(, ki cmdq

e

cmd
cmdq K

kki )()(,
τ

= , and the unknown  and   can be solved as )(kV )1( +kid

⎭
⎬
⎫

−−
⎩
⎨
⎧ +

+
=

−
)]sin()()cos()([)(sincos

1)( , TkiTkie
R
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R
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R
I

kV edeq

T

m
e
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 (3.48a) 
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where  
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⎥
⎦
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1)(
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2
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T

e
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ee

e ω
τω

ω
ωτω

τω ττ . (3.49b) 

Compared to the non-dynamic motor inverse controller in (3.1), the state transition 

matrix method approximates the electrical dynamics of the motor. (Hereafter it is called 

“dynamic motor inverse controller”). Therefore, when the motor speed is constant or 

changed at a lower frequency compared to the torque, the algorithm with the state 

transition matrix method can track the required torque with higher fidelity if the 

parameters in the controller match the actual values in the motor. If there is discrepancy 

between the parameter value in motor and in the controller, the output current error will 

reflect this discrepancy. Consequently, the performance of the estimation scheme and the 
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controller will be improved.  

Figure 3.4 compares the performance of single parameter estimation adaptive controller 

with non-dynamic motor inverse controller in (3.1) and with approximate dynamic motor 

inverse controller (3.48). The parameter estimation algorithms in these two cases are the 

same as in (3.9) and (3.10), and the integration gains in both cases are set as 

⎩
⎨
⎧

≤⋅
>⋅

=
0)()(,0
0)()(,1.0

)(1
cmdm

cmdm

signsign
signsign

tC
τω
τω

. (3.50) 

 

  
Figure 3.4 Single parameter estimation transient performances: non-dynamic motor 

inverse controller vs. approximated dynamic inverse controller. 

 

Apparently, the dynamic motor inverse controller improved the accuracy of parameter 

estimation and current tracking, though the parameter converging speed is generally the 

same. This also means that, the dynamic motor inverse controller allows faster parameter 

estimation via higher integration gain given the same requirement on steady state 

parameter estimation error. 
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Figure 3.5 compares the non-dynamic motor inverse controller and dynamic motor 

inverse controller in the case of the multi-parameter estimation. The parameter estimation 

gains are set as   

01.0)det(
01.0)det(

0
1.0

)()( 21 <
≥

⎩
⎨
⎧

==
k
k

kCkC  (3.51) 

for both controller.  

 
Figure 3.5 Multi-parameter estimation using non-dynamic motor inverse controller vs. 

dynamic motor inverse controller 

 

With the dynamic motor inverse controller provides, the steady state parameter error 

bounds (after 150s) are , which are about 

17.5% and 29.4% of corresponding values in the simulation with the non-dynamic motor 

inverse controller. Besides, the dynamic motor inverse controller results in lower 

overshoot of  (47% of that of the non-dynamic inverse controller), and the rise time 

of  about 10 seconds shorter. 

65 10365.3)(,10492.4)( −− ×=Δ×=Δ eKbRb

ecK

cR
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3.4.2 Motor speed sampling delay 

While calculating the voltage using (3.3) or (3.48a), the desired q-axis current during 

the next sampling period is known but the motor velocity during the next sampling period 

is not. The error mωΔ  is caused by the use of this “last available” sampled motor 

velocity. The parameter estimation scheme of (3.9), (3.32) and (3.33) neglected this error 

caused by the sampling delay.  It is possible to reduce the bound of error during 

estimation if mωΔ  is taken into account.  

The motor velocity is not constant during the sampling period , but it 

continuously varies from 

[ ].)1(, TkkT +

)(kmω  to )1( +kmω . It is reasonable to approximate the motor 

velocity error by )]()1([
2
1)(ˆ kkk mmm ωωω −+=Δ  during this sampling period. In the 

mean time, the control voltage is calculated based on variable values at the kth sample. If 

these values are kept in memory for the sampling period [ ].)1(, TkkT + , the approximate 

velocity error can be used together for parameter error estimation.  In short, the parameter 

estimation algorithm may take advantage of ,  and cmdqi , qi mω  that are saved in memory 

for the past a few samples. The feedforward controller, on the other hand, always uses 

current values of these variables for control voltage calculation. The physical parameters 

of the motor are stationary, so using the variable values in the past several samples will 

not introduce error on parameter estimation.  

For the single parameter estimation, an improvement is then proposed as  

)ˆˆ)(()(ˆ)( ,, meecmddqcmdq
c KLiiRtkisignRtk

dt
dR ωω Δ−Δ−Δ=Δ= . (3.52) 

With (3.52),  and  in (3.15) become ),( xtf ),( xtg
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and,  
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The disturbance function  in (3.54) has fewer terms that the  in (3.17). 

Mathematically its bound defined in (3.19) will be lower than or equal to the bound the 

 in (3.17). Physically, it is most likely lower.  

),( xtg ),( xtg

),( xtg

When using the approximate motor speed error in the multiple parameter estimation, 

the parameter error equations of (3.30~31) becomes 

)(ˆ)()()(, kKkiRkKkRi meqmecmdq ωω Δ−Δ=Δ+Δ , (3.55) 

)1(ˆ)1()1()1(, +Δ−+Δ=+Δ++Δ kKkiRkKkRi meqmecmdq ωω . (3.56) 

Thus the parameter error estimation scheme is changed to 

)()1()1()(
)]1()()()1([ˆ

,, kkikki
kSkkSkR

mcmdqmcmdq

mm

ωω
ωω

+−+
+Δ−Δ+

=Δ , (3.57) 

)()1()1()(
)]1()()()1([ˆ

,,

,,

kkikki
kSkikSki

K
mcmdqmcmdq

cmdqcmdq
e ωω +−+

+Δ+Δ+−
=Δ , (3.58) 
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where )()()( kKkiRkS meq ωΔ−Δ=Δ . The perturbation  becomes  )(tg

dtditdLiiLtg qecmddde −+Δ−Δ= )()( , ωω . (3.59) 

The bound of the perturbation is therefore lower than that of (3.36). 

Since the two ways of performance improvement discussed before are applied to the 

motor inverse model and parameter estimation algorithm respectively, it is possible to 

combine them together and tighten the bound of error, thereafter further improve the 

precision of the system. These improvements are verified in simulations. Figure 3.6 

compares the estimation algorithm with improvements and the baseline estimation 

algorithm for single parameter estimation. The algorithm with both the approximate 

motor dynamics and the motor velocity error achieved the lowest bound of 

 and 51083.2)( −×=ΔRb 96.0)( =Δ qib . 

Figure 3.7 shows the performance comparison of the estimation scheme with and without 

the approximated mωΔ  compensation for multi-parameter estimation. The scheme with 

mωΔ compensation (case 3) has lower steady state error bounds (after 150s): 

, , which are about 19.6% and 42.8% of 

corresponding values in the basic estimation model (case 1). 

410638.1)( −×=ΔRb 51039.6)( −×=Δ eKb
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Figure 3.6 Single parameter estimation performances: comparison of the basic 

estimation program and the performance improvements. 

 

Table 3.1 compares the bounds of estimated parameter error among the four different 

combinations of motor inverse model and parameter estimation scheme. Figure 3.8 shows 

the performance comparison of the parameter estimation with the four different 

algorithms. Apparently, the adaptive control with the dynamic motor inverse model and 

the mωΔ compensator achieves highest precision among the 4 cases. 
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Figure 3.7 Performance comparison of estimation scheme in open loop 

simulation: case 1 − the basic scheme; case 3− with approximated mωΔ  

compensation. 

 

Table 3.1 Bound of errors in open loop simulation: two-parameter estimation 

Percentage 
of )( Rb Δ  
compared 
to Case #1 

Bound 
of RΔ  

)( Rb Δ  
(×10-4) 

Motor 
Inverse 
Model 

Estimation  
scheme Case 

Bound 
of  eKΔ

)( eKb Δ  
(×10-4) 

Percentage 
of )( eKb Δ  
compared 
to Case #1 

1 Non-
Dynamic  Basic scheme  11.39 100% 2.243 100% 

2 Dynamic  Basic scheme  5.796 50.89% 1.573 70.16% 

3 
Non-
dynamic  
 

mωΔ compensator 10.73 94.23% 2.187 97.54% 

4 Dynamic  mωΔ compensator 1.072 9.41% 0.255 11.36% 
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Figure 3.8 Performance comparison of 4 different estimation schemes in 

open loop simulation: two-parameter estimation 

  

3.5 Multiple Parameter Estimation Using Gram-Schmidt Orthonormalization 

In the previous section, single parameter and multi-parameter estimation algorithms 

were developed for the control law of (3.1). These algorithms were proved to be stable 

and were validated in simulations. However, it would be more desirable if the parameter 

estimation algorithms can be faster while maintaining the bound of the steady state 

parameter error, especially in the multi-parameter case.  

Let’s re-examine the multi-parameter estimation algorithms (3.32~33, 3.57~58). In 

each of the parameter error estimators, when the value of the denominator was close to 

zero at any step, the integration gains in (3.24) and (3.25) were set to zero. By doing this, 
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the computation noise introduced by singularity can be avoided. On the other hand, 

useful information hidden in the calculation was discarded. Therefore, if the estimation 

algorithm can take advantage of the information in these near singularity calculations 

without adding noise, its performance of parameter estimation will be improved.  

Equations (3.32) and  (3.33) were obtained by solving (3.29) with data from two 

sampling intervals. As the actual motor parameters are stationary, we can add more data 

into the computation. The equation (3.29) can be in a vector format with the parameter 

error as unknown constants. The parameter errors can then be solved through the Gram-

Schmidt orthonormalization process. The singularity problem in (3.32) and (3.33) will be 

avoided as redundant data are used for solving the parameter error. In addition, today’s 

digital controllers are capable of saving a few steps of data in its memory, so the 

estimated values can be calculated and updated every several samples. Even though this 

is not literally real-time, it is fast enough for estimating the physical motor parameter 

values. This idea will be explored in this section.  

3.5.1 Multi-parameter estimation using Gram-Schmidt orthonormalization 

Define an inner product )(),( 21 txtx  on the function space ={all continuous 

functions on the interval 

)(If

),[ 00 ipTttI += }  

∫
+

= ipTt

t
dttxtxtxtx 0

0

)()()(),( 2121 , (3.60) 

where  may vary with time,  is a constant,  and  are continuous functions 

in .  and 

0t ipT )(1 tx )(2 tx

)(If )(, ti cmdq )(tmω  can be orthonormalized with this inner product. Considering 

that RΔ  and  are both slowly developing errors, it is reasonable to assume that eKΔ RΔ  
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and  are constants within the interval if we choose a short interval  for the inner 

product in (3.60). The estimated value of 

eKΔ ipT

RΔ  and eKΔ  can be computed from (3.29). As 

an example, we will find R̂Δ  through the following process.  

The projection of  onto )(tiqcom )(tmω , denoted  is )(tiω

)(
,
,

)( t
i

ti m
mm

mqcom ω
ωω
ω

ω = . (3.61) 

Subtracting   from , we get a vector orthogonal to )(tiω )(, ti cmdq )(tmω  in space , as 

shown in Figure 3.9.  

)(If

 )(, tcmdqI )(I tperpω

)(tmΩ
m

mm

mcmdq Ω
ΩΩ
ΩI

,
,,

Figure 3.9 Schematic diagram of Gram Schmidt Orthonormalization 

 

)(
,
,

)()( ,
, t

i
titi m

mm

mcmdq
cmdqperp ω

ωω
ω

ω −= . (3.62) 

Taking the inner product of  to both sides of (3.29) and neglecting the relatively 

small magnitude of  and 

)(ti perpω

dcomi diΔ , 

mecqcperpemcmdqperp KiRiKRii ωω ωω Δ−Δ=Δ+Δ ,, ,  (3.63) 

Note that 0, =mperpi ωω . The estimated value of RΔ  is proposed as 
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qcomperp

mperpecqperpc

ii
iKiiR

R
,

,,ˆ
ω

ωω ωΔ−Δ
=Δ . (3.64) 

Similarly,  can be proposed as  eK̂Δ

miperp

miperpecqiperpc
e

KiR
K

ωω

ωωω

,
,,ˆ Δ−Δ

=Δ . (3.65) 

where, )(
,
,

)( ,
,,

, ti
ii

i
t cmdq

cmdqcmdq

mcmdq
miperp

ω
ωω −= . 

The above estimated error R̂Δ  and  can then be used to compensate the 

parameters in the controller as 

eK̂Δ

)(ˆ)()()1( 1 kRkCkRkR cc Δ+=+ , (3.66a) 

)(ˆ)()()1( 2 kKkCkKkK eecec Δ+=+ , (3.66b) 

where,  and  are the values of )(kRc )(kKec R  and  in the controller for 

,  and  are the weighting factors and satisfy 

eK

ipip TktkT )1( +<≤ )(1 kC )(2 kC

1)(0,1)(0 21 <≤<≤ kCkC . 

3.5.2 Proof of stability 

Subtracting R  from both sides of (3.55a), the error of RΔ  at (k+1)th interval can be 

found as 

)(ˆ)()()1( 1 kRkCkRkR Δ−Δ=+Δ . (3.67) 

Including the bounded zero-mean additive noise  of the current feedback sensor and 

the neglected motor electrical dynamics 

)(td

dt
diq , equation (3.29) becomes 
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dt
di

tdiLiLKiRKRi q
ecmdddemeqmecmdq −+Δ−Δ+Δ−Δ=Δ+Δ )(,, ωωωω . (3.68) 

Define a perturbation  by )(tg

dt
di

tdLiiLtg q
ecmddde −+Δ−Δ= )()( , ωω . (3.69) 

Applying the Gram Schmidt orthonormalization procedure to (3.68),  

{
}

kqecmdddeperp

kmperpekqperp

kcmdqperp

dtditdLiiLi

iKiiR
ii

kR

−+Δ−Δ+

Δ−Δ=Δ
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ωω

ω

ω

ωω
ω . (3.70) 

Substituting (3.64) and (3.69) into (3.70),  

kcmdqperp

kperp

ii

tgi
kRkR

,,

)(,
)(ˆ)(

ω

ω
+Δ=Δ . (3.71) 

Substitute (3.71) into (3.67), we get the parameter error dynamics  

kcmdqperp

kperp

ii

tgi
kCkRkCkR

,
11 ,

)(,
)()()](1[)1(

ω

ω
+Δ−=+Δ . (3.72) 

By induction we have 
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=
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= ⎪⎭
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Setting  for each interval 1)(0 1 <≤ kC ))1(,[ ipip TkkT + , the first item on the right of 

(3.62) will be decreasing as ∞→k . Since mωΔ , eω , , , and cmddi , )(td
dt
diq  are all 
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bounded, i.e. )(
,

)(,
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k
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Since , 10 max <≤ C max
max1

1)( δ
C

kb
−

→  as ∞→k . Therefore, the second item on the 

right side of (3.73) will be bounded as ∞→k . In summary, the estimation scheme of 

(3.66) is bounded. 

Simulation results of the Gram-Schmidt estimation algorithm are shown in Figure 3.10. 

In the simulation, the orthonormalization interval was set as 250ms, and the controller-

sampling step was set as 2ms. The integration gains were set as 1.0)()( 21 == kCkC . 

Thanks to the orthonormalization process, the algorithms of (3.64~65) had better 

convergent speed (less than 15 seconds) and higher accuracy than the multi-parameter 

estimation algorithms developed in section 3.5. Note that the dynamics approximation 

and speed delay estimator proposed in section 3.4 were implemented in this algorithm for 

better results.  

 78



 
(a) Current tracking results 

 
(b) Parameter estimation results 

Figure 3.10 Parameter estimation performance with Gram-Schmidt orthonormalization: 

the initial parameter error  and R%50+ Ke%15−  
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3.6 Multi-Parameter Estimation Using q and d Axis Current 

In section 3.5, it was shown that the parameter estimation performance could be 

improved by including more data in the estimator through the Gram-Schmidt 

normalization process. The performance improvement was achieved at higher 

computation costs of the inner product (3.60). Examining the parameter estimation 

algorithms proposed in Sections 3.1 to 3.5, they are all based on the q-axis dynamics of 

the BLDC motor. It is true that d-axis current, id, has little effect on the torque generation, 

but there may be some information about the parameter difference hidden in the d-axis 

current dynamics. In addition, the d-axis current, id, always accompanies the q-axis 

current iq, because they are obtained from the phase currents though the coordinate 

transformations discussed in Chapter 2. It is possible to take advantage of the id dynamics 

for parameter estimation.  

On the other hand, though the boundedness of the proposed single and multiple 

parameter estimation algorithms are proved, it is still interesting to see the stochastic 

characteristics of the algorithms. In this section, we will discuss the estimation 

performance at the presence of zero mean Gaussian noise.  

3.6.1 Parameter estimation  

Let us re-examine the motor dynamics model   

.

,

,

qeout

dqed
d

qmedeq
q

iK

viLiR
dt
diL

vKiLiR
dt
di

L

=

++−=

+−−−=

τ

ω

ωω

 (3.75) 

Notice that the back EMF constant Ke was not explicitly involved in the d-axis current 
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dynamics equation. It is possible to use the d-axis current dynamics for estimation of the 

phase resistance R. The back EMF constant Ke can be estimated using the q-axis current 

feedback and the estimated R. In that case, it is desirable to have a d-axis command 

current  that is independent to the q-axis command current . The control law of 

(3.1) specified the phase of the voltage vector, thus  is no longer independent to 

.  Therefore, the control law proposed in  (2.37) will be used in this section, which is 

restated here as 

cmddi , cmdqi ,

cmddi ,

cmdqi ,

.

,

,,

,,

cmdqecmddcd

meccmddecmdqcq

iLiRv

KiLiRv

ω

ωω

−=

++=
 (3.76) 

Applying the control voltage (3.76) into the motor dynamics model (3.75), and 

assuming zero order hold sampling, the q-axis closed loop motor dynamics at the kth 

sample becomes  

[ ]
[ ] [ ])()1()()()()1(

)()()(

,

,

kKkKkiLkkiLk

kiRkiRk
dt
di

L

memecdecmdde

qcmdqc
q

ωωωω −−+−−+

−=
, (3.77) 

Assume that the motor mechanical dynamics is much slower than electrical dynamics, 

and the rotor speed does not change significantly, i.e. )1()( −≈ kk mm ωω . Substitute the 

current error and parameter error definition (3.28) into (3.77). The q-axis closed loop 

motor dynamics can be written as  

[ ] )()()()()()( kKkiLkkiRkiRk
dt
di

L medeqqc
q ωω Δ−Δ+Δ−Δ= . (3.78) 

It is reasonable to assume that the physical parameters vary significantly slower than 

the electrical dynamics or mechanical dynamics. Parameter identified by using data 
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history several samples ago would not introduce significant error. The quantity )(k
dt
diq  is 

not available in real time, but it can be approximated by extrapolation and used in (3.78) 

for finding parameter difference. Substituting the first order approximation 

T
kiki

k
dt
di qqq )()1(

)(
−+

=  into (3.78) yields,  

[ ] [ ] )()()()()()()1( kKkiLkkiRkiRkiki
T
L

medceqqcqq ωω Δ−Δ+Δ−Δ=−+ . (3.79) 

Reorganizing (3.79), we have the parameter error equation 

[ ])()1()()()()()( kiki
T
LkiLkkiRKkRki qqdeqcemq −+−Δ−Δ=Δ+Δ ωω . (3.80) 

Similarly, the d-axis closed loop motor dynamics at the kth sample is 

[ ] )()()()()( kiLkkiRkiRk
dt
diL qeddc

d Δ−Δ−Δ= ω , (3.81) 

Substituting the first order approximation 
T

kikik
dt
di ddd )()1()( −+

=  into (3.81), another 

parameter error equation is obtained as   

[ )()1()()()()( kiki
T
LkiLkkiRRki ddqedcd −+−Δ−Δ=Δ ω ]. (3.82) 

Once again, at steady state 0≈
dt
did  and 0≈

dt
diq , and equation (3.80) and (3.82) 

become 

)()()()( kiLkiRKkRki deqcemq Δ−Δ=Δ+Δ ωω  (3.83) 

)()()()( kiLkkiRRki qedcd Δ−Δ=Δ ω  (3.84) 

Solving (3.83) and (3.84) for RΔ  and eKΔ  gives 
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)]()()([
)(

1 kiLkkiR
ki

R qedc
d

Δ−Δ=Δ ω , (3.85) 

])()()()([
)(

1 RkikiLkkiR
k

K qdeqc
m

e Δ−Δ−Δ=Δ ω
ω

 . (3.86) 

To avoid the singularity and computation noise when , ))(kid (kmω  are close to zero, 

thresholds are set for the reciprocal calculation of , ))(kid (kmω . In the estimation, the 

measured , , and qi di mω are used to calculate the parameter estimation.  

3.6.2 Proof of unbiased estimation 

Next, consider using the noisy measured signals for parameter estimation. Since 

parameters vary much slower than the motor dynamics, and therefore can be treated as 

constants for any specific motor. Equation (3.82) with the noise terms becomes, 

[ ] [ ] [ ] vdiqqmpiddcidd nknkiLknknknkiRRknki +−Δ++−−Δ=Δ+ )]()([)()()()()()( ωω ,

 (3.87) 

where the state variables , , and qi di mω  are deterministic; , ,  and 

 are sensor noise and actuator disturbance. The parameter error  becomes 

)(knid )(knω )(kniq

)(knvd RΔ

[ ] [ ] [ ] [ ]{ }vdiqqpiddc
idd

nknkiLknknknkiR
knki

R +−Δ++−−Δ
+

=Δ )()()()()()(
)()(

1
ωω . 

 (3.88) 

A constant threshold 0>ε is set to avoid the singularity when the measured d-axis 

current is near zero, the estimated current error is calculated as 

[ ]( )
[ ]( ) [ ] [ ]{

[ ] }vdiqq

piddc
idd

idd

nknkiL

knknknkiR
knki
knkisignR

+−Δ+
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With the noise terms in (3.89), we need to show that quantity obtained by (3.89) is an 

unbiased estimation of the deterministic parameter error in (3.85). Assume the noise 

terms in (3.89) are Gaussian and independent, i.e. 

[ ] 0)()( =⋅ knkiE idd ,  (3.90a) 

[ ] ididid SknknE =⋅ )()( ,  (3. 90b) 

[ ] ωωω SknknE =⋅ )()( ,   (3. 90c) 

[ 0)()( =⋅ knknE id ω . (3. 90d) 

Thus at any instant, the measured d-axis current (denoted as x) is Gaussian, and its 

probability density function is  
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Let 
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and  

[ ] [ ] vdiqqpiddc nknkiLknknknkiRy +−Δ++−−Δ= )]()([)()()()(1 ωω . (3.93) 

Equation (3.89) is the production of y  and . The variable  is a summation of 

several Gaussian variables, therefore it is also Gaussian. The variable 

1y 1y

y  is a function of 

the measured current x, and it can be re-written as  
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The probability density function of y  (please see Appendix I for detailed derivation) 

can be found from  
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The equation (3.94) can be used to calculate the mean of the first item in the (3.89). 

Unfortunately, the analytical solution of the mean and the variance would be extremely 

complicated if not insolvable. Monte Carlo simulation is used to find the mean of the 

above random signals. In the simulation, 5000 zero mean unit variance random numbers 

are generated as the noise. A series of numbers xμ  from –10 to 10 are generated as the 

deterministic component. Actual random variable )1,(~ xNx μ  were the sum of the noise 

and the deterministic component.  For each deterministic component number, the inverse 

of the 5000 random numbers are calculated and the mean of inverse is then calculated. 

Figure 3.11 shows the distribution of xy /1=  for four typical deterministic component 

values xμ . When xμ  is near zero, the threshold ε  limits a significant amount of the 

 values. Thus the distribution curve is heavily distorted. On the other hand, when xy /1=
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the mean of x is relatively far from zero, xy /1=  is close to a normal distribution with 

mean of )(1 xμ . 

  

  

Figure 3.11 The distribution of xy /1=  given ( )1),(~ xNx μ  for several values of )(xμ . 

 

Figure 3.12 compares the simulated mean of xy /1=  with the algebraic function 

)(1 xy μ=  for ]10,10[)( −∈xμ . The simulation indicates that if the deterministic 

component is above 2 times higher than the noise variance, the mean of the inverse 

random signal is approximately equal to the inverse of the deterministic component 

regardless of the value of the threshold ε .  However, the value of ε  affects the accuracy 

when the xμ  is close to zero.  
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Figure 3.12 The mean of xxxy r )( −=  given  ( )1),(~ xNx μ  compares to the algebraic 

function  ( ) )()( xxxy r μμ−=  

 

Similarly, Monte Carlo simulation is used to verified the consistency of the function, 
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In addition to the inverse of random signal, another deterministic number is generated 

to simulate the . Figure 3.13 indicates that the random signal means are consistent 

to the algebraic function of the deterministic numbers when the signal to noise ratio 

(SNR) is higher than 4. This gives the conditions for unbiased estimation of the . 

cmddi ,

1x

  

  

Figure 3.13 The mean of  compares to xy /1= )(1 xμ . 

 

Since ,  and  are independent to , the mean of the remaining two 

terms on the right hand side of the equation (3.89) will be approximately equal to the 

)(knω vdn )(kniq )(knid
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algebraic function value of the means if the inverse of  is consistent to the algebraic 

function value of its deterministic component. This concludes that the 

di

RΔ  estimation 

algorithm (3. 89) is unbiased when the deterministic signal is selected to ensure a SNR 

higher than 4. In a similar manner, the unbiased estimation condition can be found for the 

 estimation (3.86). eKΔ

This algorithm is named the dq-solver because it engaged both q and d-axis current 

feedback for parameter estimation. The simulation result of the dq-solver estimation 

algorithm is shown in Figure 3.14. The parameter estimation integration gains were set as 

  (3.44) 
.

,1.0)(,1.0)(
0
1.0

)()( 21 otherwise
kki

kCkC md ≥≥

⎩
⎨
⎧

==
ω

The performance of parameter estimation was not as good as that of the algorithm using 

Gram Schmidt orthonormalization (as shown in Figure 3.13). The main reason was that 

the resistance error RΔ  calculation only involved the tracking error of , and di eKΔ  

calculation used RΔ  results. Because of the operating principle of the BLDC motor, the 

magnitude of  is usually lower than that of . This would make the parameter 

estimation slower and noisier than that of the Gram Schmidt orthonormalization 

algorithm in previous section.  

di qi
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(a) Current tracking results 

 
(b) Parameter estimation results 

Figure 3.14 The qd-solver simulation results: R%50+  and Ke%15−  
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3.7  Conclusion 

Single parameter estimation and multiple parameter estimation for a feedforward 

BLDC motor controller have been proposed in this chapter. Stability of these estimation 

schemes has been proved. The stability proof also indicated that it was possible to 

improve the performance of estimation schemes by tightening the bound of errors. Thus, 

the state transition matrix method and approximate motor speed error feedback were 

proposed to improve the parameter estimation performance. In addition, it was shown 

that the estimation performance could be improved by engaging more data in the 

parameter error calculation. Another improvement for multi-parameter estimation using 

the Gram-Schmidt orthonormalization was proposed to address the data loss in those 

samples discarded for avoiding singularity. Stability of this method was proved. The dq-

axis current iq and id are always calculated in pair. So id can be used for parameter 

estimation too. An estimation algorithm using both iq and id feedback was proposed and 

unbiased estimation condition was shown by Monte Carlo simulation. 
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Chapter 4 RECURSIVE PARAMETER IDENTIFICATION 

 

In Chapter 3, several parameter estimation algorithms were developed for a 

feedforward BLDC control law of equation (3.1). These algorithms were based on the 

same principle of solving parameter errors algebraically from the reference current 

tracking errors. Among the several performance improvement methods investigated, it 

was shown that the better accuracy and faster convergence could be achieved by 

engaging more samples in the parameter error calculation. One of the side effects of 

engaging more data was that the parameter-updating algorithm lagged a few samples 

behind the feedforward controller. In addition, it also increased the random access 

memory (RAM) consumption when implementing the algorithms in a microcontroller. 

Obviously, there exists a hard limit on such explicit historic data usage. To further 

improve the parameter estimation performance, we must explore different mechanisms of 

parameter identification or data history usage, for instance, the recursive algorithms. 

These algorithms define some state variables (such as covariance matrices) to store useful 

information from historic data, and update these states at every sample. Thus, when the 

outputs are calculated in real time from the states, all the past data history are implicitly 

engaged in these calculations. 

The Recursive Least Square (RLS) method (Ljung 2002) and the Extended Kalman 

Filter (EKF) (Burl 1995, Andrews 2001) are two widely used recursive system 

identification algorithms. The RLS algorithm assumes a linear discrete model of the 

subject system, and estimates the coefficients in the linear model by using the redundant 

input and output signal measurement. The EKF assumes independent Gaussian noises 



and disturbances in a nonlinear system, and estimates the states through linearization at 

every sample. Some system parameters can be estimated as augmented states. In this 

chapter, the Recursive Least Square (RLS) and the Extended Kalman Filter (EKF) will be 

investigated for the BLDC motor parameter identification application.  

4.1 Discrete Model of the BLDC Motor Dynamics 

In applications such as the EPAS, the BLDC motor controllers are almost exclusively 

implemented by a digital microcontroller, which requires discrete control algorithms. In 

many references (Ljung 2002, Burl 1995, Andrews 1993), the RLS algorithm and the 

EKF are designed on the discrete model of the plant. Therefore, an approximate discrete 

BLDC motor dynamics model will be derived in this section for the estimation algorithm 

design purpose.  

The continuous time model of the BLDC motor electrical dynamics is restated here as  
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Let  define the state vector  and control input vector 

. Introduce the time constant of the stator coil 
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T
dmeq VKVu ],[ ω−= RL=τ . The state 

space model of the BLDC motor can be obtained as  
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Mathematical solution of the continuous dynamics (4.2) is hard to obtain due to the fact 

that the motor velocity mω  is a function of time. However, mω  is governed by the 

mechanical inertia of the motor shaft, therefore it is reasonable to assume that eω  

changes slowly and can be considered as a constant within the typical sampling interval 

of 1~5 milliseconds. Let 
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e
A , the characteristic equations of (4.2) can be 

found as 
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The state transition matrix at each sampling moment can be obtained by    
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where is the inverse Laplace operator. The state equation (4.2) can be solved as  1−L
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Let )( kTt −=θ , and substitute (4.4) into (4.5), the solution of (4.2) becomes 
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The integration term in (4.6) must be solved so as to obtain the discrete dynamics 

equation. The integration term can be rewritten as , where  ⎥
⎦
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With the assumption that eω  is constant within the kth sampling interval,  and  

in (4.7) can be solved through some mathematical manipulation (see Appendix II for 

details) as 
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] , Substituting (4.8) back into the integration 

term in (4.6), the approximate discrete motor dynamics is obtained as  
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The discrete dynamics equation (4.9) approximates the continuous dynamics in (4.1) 

with the assumption that the control voltage and motor velocity hold constant within each 

sampling interval. Since an accurate discrete solution of (4.1) is not available, equation 

(4.9) will be used as the discrete model of the BLDC motor for system identification 

purpose.   
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4.2 Recursive Least Square Estimation 

Given the approximate discrete dynamics model of (4.9), we will investigate if the 

motor parameters can be identified through the recursive least square (RLS) method in 

this section.  

The Least Square method assumes that the object system conforms a linear discrete 

relationship between the measurement y  and the input  (Ljung 2002) as u

ε+−++−=−++−+ )(...)1()(...)1()( 11 qkubkubpkyakyaky qp , (4.10) 

where the coefficients  are system characteristics constants, qp bbaa ,,,,, 11 KK p  and  

are positive integers, and 

q

ε  is the modeling error. Note that both the measurement y  and 

the input  can be vectors, and the coefficients will be in matrix form in this case. 

Rewrite (4.10) in the form of  

u

ε+= θx )()( kky , (4.11) 

where [ ])(,),1(),(,),1()( qkukupkykyk −−−−= LLx , [ ]Tqp bbaa ,,,,, 11 LL −−=θ . 

The optimal estimation of the coefficient vector θ  minimizes the modeling error ε . A 

typical way to find the optimal estimation of θ  is to define a quadratic cost function of 

the modeling error as 
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Denote  as the optimal estimation of θ  that minimizes the quadratic cost Q . Since Q  

is quadratic,  can be found by setting partial derivative 
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which gives 
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The inverse calculation in (4.14) is computationally expensive and hard to implement in 

real time. Fortunately, there exists a recursive solution to the matrix inverse calculation.  

To simplify the notation, let’s denote [ ]∑
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where . The matrix inverse in (4.15) can be solved by the 

Woolbury Matrix Identity (Golub and Van Loan 1996)  
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Comparing (4.15) and (4.16), let , , 1)( −= nPA T
n 1+= xB I=C , , where 1+= nxD I  is the 

unitary matrix. The inverse matrix at (n+1)th step can be solved recursively as 

[ ] )()(1)()()1( 1

1

111 nnnnn n
T

nn
T

n PxxPxxPPP +

−

+++ +−=+ . (4.17) 

 Substituting (4.17) into the parameter estimation equation (4.14), the parameter 

estimation at (n+1)th step becomes 
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 (4.18) 
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Let  

, (4.19)  [ 1)1()()1(1)1()()1( −
++++=+ TT nnnnnn xPxxPK

the recursive least square (RLS) parameter estimation is given as  

)](ˆ)1()1()[1()(ˆ)1(ˆ nnnnnn θxyKθθ +−+++=+ . (4.20) 

In a BLDC motor, the measurement vector y  consists of the q-axis current  and the 

d-axis current , i.e. . Comparing (4.9) to (4.10), the discrete state 

input vector is selected as 

qi
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dq kikik )](),([)( =y

)]1(),1(),1(),1(),1([)( = −− − − kkVkVkikik mqqdq −ωx . 

Substituting  and  into (4.17), (4.19) and (4.20), the RLS parameter estimation 

algorithm can be implemented for the BLDC motor application. The inverse matrix  

is the state matrix ( ) in the RLS estimation, and it keeps information obtained from 

historic data. The estimated parameters  is a 

)(ky )(kx

)(nP

55×

θ̂ 25×  matrix, and its steady state value is a 

least square estimation of the linear discrete model between  and .  )(ky )(kx

4.3  RLS Simulation Results 

The RLS algorithm is implemented for the BLDC motor application in Simulink®.  

The following motor parameter values were used in the simulation: Ω= 05.0R , 

ANmKe 05.0= , , HL 4101 −×= 3=pN . In the first simulation, the motor was running 

at a constant velocity 100rad/s=mω . The simulation ran at a fixed step length of 2ms. 

Figure 4.1 showed the RLS parameter estimation results. The steady state values of the 

coefficients were shown as legends in these figures. The parameter estimation converged 

quickly (less than 2 seconds). The motor parameter R, Ke and L are not directly shown in 

the estimation results. But the analytical values of the estimated parameters (a1~a5 , 



b1~b5) can be calculated with the given parameter values of  R, Ke and L. 

  
Figure 4.1 RLS estimation simulation results of a1~a5 & b1~b5: constant sradm /100=ω . 

In each plot the steady state value is shown.  
 

Substitute , Ω= 05.0R ANmKe 05.0= , , HL 4101 −×= 3=pN  and 100rad/s=mω  

into (4.8) and (4.9), the coefficient matrices in (4.9) can be calculated as 
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Comparing the steady state simulation results with the analytical solutions, the RLS 

estimation approximated the analytical discrete model (4.9) closely, but there were about 

20%~60% error in the estimation results.  

Figure 4.2 showed the RLS estimation simulation results with random rotor velocity. It 

took longer time (about 7 seconds) for the estimated parameters to converge to their 

steady state values. Since the velocity was not longer constant, the parameter matrices in 

(4.9) could not be solved analytically. However, the RLS algorithm converged to a linear 

approximate of the nonlinear motor dynamics. The steady state values of  

and  implied the current measurements are mostly correlated to their 

previous value.  

93168.01 =a

99908.02 =b

In summary, the RLS parameter estimation algorithm was capable of finding a linear 

approximate of the motor dynamics. The estimated parameters were close to their 

analytical values if the motor was running at speed mode (i.e. motor velocity was 

constant). However, the RLS algorithm would not be very directly helpful if the BLDC 

motor was running at varying velocity, as the linear discrete model assumption was not 

valid. In addition, the motor parameters of interests R, Ke and L are not directly 

accessible in the RLS estimation results. This would be inconvenient to use the RLS 

algorithm with the feedforward motor inverse dynamics controllers.  
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Figure 4.2 RLS estimation simulation results of a1~a5 & b1~b5: variant velocity. 

In each plot the steady state value is shown. 
   

4.4 Extended Kalman Filter 

The Extended Kalman Filter (EKF), as indicated by its name, is an extension of the 

linear Kalman Filter to nonlinear systems. It is a commonly used algorithm for parameter 

estimation problems. Computationally, the EKF has similar steps as that of the RLS 

algorithm. It estimates the covariance matrix recursively in a way similar to how the RLS 

algorithm solves the inverse matrix in (4.17), and then it updates the Kalman gains from 

the covariance matrix, similar to the gain calculation in (4.19). The states are updated 
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from the error between the measurement and the model prediction based on the previous 

step state values. However, the EKF takes advantage of the existing information of the 

nonlinear plant model, and involves the model linearization in the covariance matrix and 

state calculation. As a result, the EKF is usually a good solution for nonlinear system 

estimation including the parameter identification problems. When the EKF is 

implemented for system identification problems, the parameters are often treated as new 

state variables subjected to some stochastic dynamics. The original plant model is 

augmented with the parameters as new state variables. Using the same recursive 

procedure, the parameter can be estimated with the original state variables of the system. 

In this section the EKF will be implemented to the BLDC motor state and parameter 

estimation problems.  

The EKF has a standard implementation procedure (Burl 1995, Andrews 2001). First of 

all, the plant model will be reformulated to include Gaussian actuator perturbation and 

measurement noise. Adding the actuator perturbation  to the approximate BLDC 

motor discrete model  (4.9), the current state equations become 
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 (4.21a) 

Assuming parameters and eK τ  are constants subjected to random perturbation  and 

, the discrete dynamics of the parameters can be modeled as  

3w

4w

)()()1( 3 kTwkKkK ee +=+ , (4.21b) 

)()()1( 4 kTwkk +=+ ττ . (4.21c) 
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Let the augmented state be ( )Tedq Kii τ,,,=x . Equations (4.21a), (4.21b) and (4.21c) 

formulated the nonlinear state dynamics model of the augmented system. For simplicity, 

let us denote the nonlinear state model as  

( )(),(),()1( kkkk wuxfx =+ ) . (4.22) 

 The measurement vector with measurement noise ( )Tvv 21 ,=v  becomes  
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It is usually reasonable to assume that the plant perturbation  and 

measurement noise  are Gaussian and independent: 

( )Twwww 4321 ,,,=w

( Tvv 21 ,=v )

)(Σ)()ww( w
T ppkkE δ=+ ][ , (4.24a) 

)(Σ)()vv( v
T ppkkE δ=+ ][ , (4.24b) 

0][ =)w(kE , (4.24c) 

0][ =)v(kE , (4.24d) 

where  and  are the spectral density matrix 

of the actuation perturbation and measurement noise, and 
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function, and  is the mathematical expectation operation.   ][ )()ww( T pkkE +
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The nonlinear system dynamics model has been formulated in (4.21~24). With the 

nonlinear state model, we can find its linear approximation functions 
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and T is the sampling time.   
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With the linear approximation functions, the a priori covariance matrix is computed 

recursively from the a posteriori covariance matrix at the previous step 

( ) ( ) T
W

T
ee ΓΣΓΦk|kΣΦk|1kΣ )(ˆ)(ˆ)(ˆ)(ˆ kkkk +=+ . (4.28) 

The Kalman gain can be computed as 
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e
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e ΣCk|1kΣCCk|1kΣ1)G(k kkk , (4.29) 

and a posteriori covariance matrix is updated as 

( ) [ ] ( )k|1kΣC1)G(kI1k|1kΣ ee ++−=++ )(ˆ k . (4.30) 

Given the state dynamics model (4.22), we can predict the states at the next step  

( )(),|(ˆ)|1(ˆ kkkkk uxfx =+ )

)

, (4.31) 

and predict the measurement as 

( )|1(ˆ)|1(ˆ kkkk +=+ xgy . (4.32) 

The EKF estimate the state from the measurement by the following equation  

[ ])|1(ˆ)1()|1(ˆ)1|1(ˆ kkkkkkk +−++++=++ yy1)G(kxx . (4.33) 

The discrete EKF consists of the equations (4.28~30) and (4.33). Besides, the 

linearization function  involved in equations (4.28) must be computed at every step. 

Obviously, the computation cost of the linearization function at every step would be a 

)(ˆ kΦ
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challenge for the real time applications. For research purpose, let’s assume that the 

computation power is not a problem.  

The EKF can be implemented to the continuous BLDC motor dynamics model. For 

detail of the continuous EKF, please see Appendix III.  

4.5 EKF Simulation Results  

The EKF estimation algorithm for the BLDC motor application is implemented in 

SIMULINK® for simulation. In simulations, the BLDC motor plant model has the 

following parameter values: Ω= 05.0R , ANmKe 05.0= , , HL 4101 −×= 3=pN . In 

some situations, the effect of parameter error in R  and  may cancel each other. For 

example, positive 

eK

RΔ  and negative eKΔ  may end up with the same control voltage  

calculated with zero parameter errors. It may be harder for the parameter estimation 

algorithms. Therefore, different combinations of initial parameter errors in 

qv

R  and  

were simulated to compare the performance of parameter estimation, as shown in Figure 

4.3~4.7. Due to some stability issue, the simulation sampling interval had to be less than 

or equal to 0.5 millisecond. In the figures, the i

eK

q,meas id,meas were the measured currents, 

which were contaminated by simulated Gaussian noise; the iq and id are the motor plant 

model calculated current, while the iqh and idh are the EKF estimated currents, Rh and Keh 

are the EKF estimated parameter values. Regardless of initial parameter error 

combinations, EKF estimation converges to the actual parameter values within 1 second 

in all simulations. Table 4.1 compares the parameter estimation accuracy of the EKF at 

steady state, given different value of the Gaussian noise power density . vΣ
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Table 4.1 EKF parameter estimation mean and variance for different noise level. 
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) ) )Noise Power  vΣ )ˆ(Rμ  ˆvar(R  ˆ( eKμ  ˆvar( eK  

2 1.637x10-4 2.386 x10-7 1.514x10-4 1.076 x10-6

0.5 1.101 x10-4 1.387 x10-7 -7.753 x10-6 2.707 x10-8

0.1 5.341 x10-5 9.179 x10-8 -1.99 x10-6 1.486 x10-8

 

  
Figure 4.3 EKF estimation simulation: Rh(0)=1.25R, Keh(0)=0.9Ke 

 

 
Figure 4.4 EKF estimation simulation: Rh(0)=1.4R, Keh(0)=1.2Ke 



 

 
Figure 4.5 EKF estimation simulation: Rh(0)=0.8R, Keh(0)=1.2Ke 

 

  
Figure 4.6 EKF estimation simulation: Rh(0)=0.8R, Keh(0)= 0.8Ke 
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Figure 4.7 EKF estimation simulation: Rh(0)=R, Keh(0)= Ke 

 

The EKF parameter identification algorithm demonstrated desirable performance in 

simulations. The estimated parameters converged to the reference value very quickly and 

stayed in a tight bound at steady state. From the performance perspective, the EKF is 

superior to the algorithms developed in Chapter 3. However, the EKF is computational 

expensive due to the linearization computation in real time. It also has stability issues in 

simulation, and no mathematical proof of stability is available.  

4.6 Summary  

In the chapter, two recursive parameter estimation algorithms, the RLS and the EKF, 

were investigated for the BLDC motor parameter estimation. The RLS method, which is 

usually used for linear systems, was shown capable of finding a linear approximate model 

for the nonlinear BLDC motor dynamics. In simulations, when the motor was running at 

constant speed, the estimated parameters were close to their analytical values in the plant. 

But when the motor was running at varying speed, the RLS estimation results were not 

very meaningful for identifying the motor dynamics model. The EKF took advantage of 
 109
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the knowledge of the nonlinear plant model and computed linearization functions for 

state prediction and covariance matrix in real time. As a result, it demonstrated superior 

performance in both parameter and state estimation with fast convergence and decent 

accuracy in BLDC motor application simulations. However, the EKF was 

computationally expensive due to the linearization and the covariance matrix 

computation in real time. In addition, the EKF, which engaged linearization of the 

nonlinear dynamics, might have stability issues in practice. In the BLDC motor 

simulations, the sampling interval had to be set to 0.5 milliseconds so as to avoid 

instability in the simulation. In summary, the EKF algorithm demonstrated highly 

desirable parameter identification performance for the BLDC motor application, but the 

computation cost and the stability issue were barriers for implementing the EKF in 

practice. 
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Chapter 5 MODEL REFERENCE ADAPTIVE CONTROL DESIGN 

 

We have discussed several different parameter estimation methods for the BLDC motor 

application in Chapter 3 and Chapter 4. The EKF algorithm provided most desirable 

performance, but had some issues with computation cost and stability. The algorithms 

developed in Chapter 3 were simpler than the EKF and stable, but their parameter 

estimation performance lagged far behind the EKF. Ideally, we would like to have a 

parameter estimation algorithm with performance of the EKF and simplicity and stability 

of the algorithms in Chapter 3.  

Let’s re-examine the algorithms in Chapter 3 that solved the parameter error 

algebraically from the current errors. Firstly, these algorithms assumed steady state and 

neglected the current derivatives when deriving the parameter error equations. In 

addition, in order to maintain stability, these algorithms discarded some data points that 

might cause singularity in the parameter error calculation, and therefore discarded useful 

information hiding in these data points. If we can make full use of the discarded 

information for parameter estimation, it is highly possible that the performance will be 

improved.  

The model reference adaptive control (MRAC) is a potential solution for the BLDC 

motor control problem with a good balance between computation complexity, stability 

and performance. Given a properly selected reference dynamics model, the MRAC can 

take advantage of the current derivatives in control and parameter estimation. Moreover, 

the MRAC is usually designed by finding the non-positive derivative of a Lyapunov cost 

function. Therefore its global stability is guaranteed, and all data points can be engaged in 



the adaptation law. In this chapter, we will explore the MRAC application to the 

sinusoidal BLDC motors.  

5.1 Model Reference Adaptive Control 

Model reference adaptive control has been a well-developed approach of the adaptive 

control (Ioannou and Sun 1996, Tao 2003). A typical MRAC controller consists of a 

reference model, a control law, and an adaptive mechanism that updates the controller 

parameters by using the feedback error between the reference model and actual plant, as 

shown in Figure 5.1. 

 

 

 

Reference 

Control Law 

Adaptation Law

Plant 
+ 

- 
ym(t) 

u(t) 

θ(t) 

r(t) y(t) 

Figure 5.1 A schematic diagram of a typical MRAC controller 

 

To design a MRAC, we need to find a suitable reference model for the closed loop 

system dynamics, and then we need to find a control law for the plant for achieve the 

primary control objective such as tracking the reference input r(t). The controller may not 

be an ideal match for the plant if the parameters of the plant are unknown. The adaptation 

law will update the parameters in the control law so that the plant output tracks the 
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reference model output. In the next a few subsections, we will follow these steps to 

design a MRAC controller for the BLDC motor application.  

5.1.1 The BLDC motor reference model 

Recall that, as we found in Chapter 2, if the BLDC motor controller matches the plant 

ideally, the BLDC motor actuator will have a closed loop dynamics as that of (2.38). For 

convenience, the closed loop dynamics is restated here as  
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The dynamics model in (5.1) was shown to be desirable for the BLDC actuator in 

Chapter 2. Therefore, it may be an ideal candidate reference model in the MRAC, except 

that the parameters are unknown. Let’s substitute the parameters with their nominal value 

in controller, and rewrite the reference model as 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−

−
=

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

cmdd

cmdq

dm

qm

c

c

dm

qm

i
i

i
i

dt
di
dt

di

,

,

10

01

τ

τ , (5.2) 

where 
c

c
c R

L
=τ  is the nominal time constant and ( )Tdmqm ii , are the reference model state 

current. The reference model actually consists of two independent first order low pass 

filters, which are similar to that of a DC motor. If the closed loop BLDC motor dynamics 

tracks the reference model, the BLDC motor would have similar performance as that of a 

DC motor.  

Let’s compare the motor dynamics model  
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to the reference model in (5.2). The nonlinear term de it)(ω and qe it)(ω , and the back 

EMF term )(tK meω  are not presented in the reference model. To track the reference 

model, the control law must be designed to cancel these terms. In addition, the 

parameters in the motor dynamics model may be different from their nominal values used 

in the reference model. The adaptation law must be designed to identify the motor 

parameter values.  

5.1.2 The control law 

In order to track the reference model, let’s rewrite the motor dynamics model as 
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If the second term on the right hand side of (5.4) were zero, then the actual BLDC 

model would have the same form of the reference model. As the motor parameters are not 

known, their value in the controller will be used instead.  Thus, the control law is 

proposed as  
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where , , and  are the parameter values in the controller.  cR cL ecK

If the controller parameters , , and  match their respective counterparts in the 

motor plant, the controller law (5.5) will be able to drive the closed loop motor dynamics 

cR cL ecK
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to track the reference model perfectly. However, since the parameter values in the plant 

are not known exactly, we need to find some way to estimate their values. 

5.1.3 The adaptation law 

Let’s consider using the feedback error between the reference model and the motor 

plant to estimate the plant parameter values. Define the reference current error vector as 
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We need to find out how the reference current errors are related to the parameter 

differences. Substituting (5.5) into (5.3), and subtracting the resulting equations by the 

reference model (5.2), the reference current error dynamics can be found as  
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 (5.7) 

To simplify the notation in (5.7), we define parameter errors as 
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Substituting the parameter errors back into (5.7), the reference current error dynamics 

model becomes 
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We want the closed loop motor dynamics to track the reference the reference model as 

close as possible. In another word, we want the reference current error to be as low as 

possible in magnitude. In addition, if the parameter values in controller match their 

equivalent in the plant motor, the control law can make the closed loop motor dynamics 

model exactly the same as that of the reference model. We also want the parameter errors 

to be as close to zero as possible. To find the minimal current errors and parameter errors, 

let’s define a Lyapunov candidate function of the reference current errors and parameter 

errors as  
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where 1γ , 2γ , and 3γ  are positive constants. 

Q  is a non-negative quadratic function of the current errors and the parameter errors. 

We can get the minimal current errors and parameter errors by minimizing the value of 

. The minimum of Q  can be achieved by driving its time domain derivative to be 

negative or zero. Differentiating (5.1) with respect to time, we have 

Q

LLeeddqq kkkkkkeeee
dt
dQ &&&

&&
~~1~~1~~1

321 γγγ ττ ++++= . (5.11) 

Substituting the reference current error dynamics (5.7) into (5.11), the derivative of Q  

becomes 
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The first two items on the right hand side of (5.12) are non-positive. If we can make the 

remaining items of (5.12) to be zero, then we can guarantee non-positive time domain 

derivative of the Lyapunov cost functional, which will then approach its minimum 

asymptotically. Re-organize (5.12) as 
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Propose the adaptation laws for the controller parameters as 
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Substitute the adaptation law (5.14) into (5.13), the time domain derivative of the 

Lyapunov cost function becomes non-positive as 

011 22 ≤−−= d
c

q
c

ee
dt
dQ

ττ
.  (5.15) 

This guarantees that the global asymptotic stability of the reference current tracking error 

dynamics model. The reference model is globally stable as it consists of two first order 

linear systems with poles 
cτ

1
−  in the left half plane (LHP). Therefore the MRAC 
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controller proposed in (5.5) and (5.14) guarantees the global asymptotically stability of 

the closed loop BLDC motor dynamics.  

The physical parameter values of the motor can be derived from the adaptation law 

(5.14). Assuming that R ,  and  are constants, and substituting (5.8) into (5.14), we 

have 
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The controller parameter estimators can be found as  
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If the inductance  is assumed to be a constant and L cLL ≈ , the adaptation scheme 

becomes 

( ddqqc
c ieieL
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+−= 1γ ), (5.18) 

mqc
ec eL

dt
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5.2 Simulation Results 

The MRAC controller with the control law of (5.5) and the adaptation law of (5.18~19) 

was implemented in Simulink® and was tested in simulation for the current tracking and 

parameter identification performance. The motor parameter values were as the following: 

, Ω= 05.0R ANmKe 05.0= , , 3hL 4101 −×= =pn . The adaptation gains in (5.18~19) 

were set as  121 == γγ . The simulation sampling interval was set to 2 ms. The controller 

was assumed to have 50% error in R  and 20% error in  initially. Figure 5.2 shows the 

reference current tracking simulation results. The reference current tracking error 

converged to zero within 2 seconds (approximately 1000 steps) as shown in Figure 5.2. 

Figure 5.3 and 5.4 are simulation results of parameter estimation with two typical cases 

of initial parameter errors. In both cases, the estimated controller parameters also 

converged to the their corresponding values within 2 seconds. At steady state, the mean 

and standard deviation of the parameter estimation errors were:  

eK

( ) KeKK ece %0497.0104864.2 5 −=×−=− −μ , 

, ( ) RRRc %35.0107544.1 5 =×=− −μ

( ) 0.0223
2

=− ece KK ,  

( ) 0.0363
2

=− RRc . 
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(a) q-axis current tracking performance 

 
(b) d-axis current tracking performance 

Fig 5.2 MRAC reference current tracking performance in simulation: RRc 5.0)0( = , 

 KeKec 2.1)0( =

 
Fig 5.3 MRAC parameter estimation performance in simulation, case 1: RRc 5.0)0( = , 

 KeKec 2.1)0( =

 120



 
Fig 5.4 MRAC parameter estimation performance in simulation, case 2: RRc 5.0)0( = , 

 KeKec 8.0)0( =

 

5.3 Conclusion 

A model reference adaptive control algorithm has been derived for the BLDC motor 

current control application in this chapter. The actuator dynamics model of equation 

(2.38) was selected as the reference model for the closed loop BLDC motor system. A 

feedback control law of equation (5.7) was proposed to achieve current tracking to the 

reference model outputs using the controller parameter values. To reduce tracking error 

introduced by parameter error between the controller and the plant, a Lyapunov cost 

function (5.10) was defined on the current tracking errors and the parameter errors 

between the plant and the controller. A controller adaptation law was designed by finding 

non-positive time-domain derivative of the quadratic Lyapunov function. The adaptation 

law guaranteed the global asymptotical stability of the MRAC algorithm. Comparing to 
 121



 122

the algorithms developed in Chapter 3, the MRAC algorithm engaged all feedback data 

and derivative of the motor currents for parameter adaptation; therefore it demonstrated 

superior performance in simulations. Both the parameter estimation and the reference 

model current tracking converged quickly, and the steady state current tracking error was 

very low. Comparing to the EKF, the MRAC algorithm was much simpler and thus faster 

and required less computation resource.  



Chapter 6 CLOSED LOOP SIMULATION AND CONTROLLER PERFORMANCE 

EVALUATION  

 

Several different BLDC motor adaptive control algorithms have been developed in 

Chapter 3~5. All these algorithms were validated in the motor bench test simulations 

where the command torque cmdτ  and the motor velocity mω  were assumed to be two 

independent random signals. In real applications, BLDC motors are usually the actuator 

of some outer loop systems; therefore the command torque cmdτ  and the motor velocity 

mω  are partly correlated through the outer loop plant and controller. In this chapter, we 

will evaluate the adaptive control algorithms from the previous chapters in closed loop 

simulations with outer loop controller and plant models. The first closed loop system 

consists of the EPAS plant model together with an assisting torque controller, and the 

second is a motor speed control application with an anti-windup PI controller. 

6.1 EPAS closed loop simulation 

In the motor bench test simulations, the command torque cmdτ  and the motor velocity 

mω , which were the inputs to the motor controller, were assumed to be two independent 

random signals. However, in the application of the closed loop control of a system, mω  

and cmdτ  cannot be completely independent because the plant output mω  is partly affected 

by plant input cmdτ . In order to demonstrate the performance of the adaptive control 

algorithms in a closed loop setting, the example of an electric power assisted steering 

system (EPAS) is considered. 
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6.1.1 EPAS close loop system model 

As shown in Figure 6.1, the closed loop automotive EPAS system consists of an 

electric control unit (ECU), a brushless DC motor, a torque sensor, a steering hand wheel, 

and a set of rack and pinion. The motor torque is transferred to the steering column via a 

worm and worm gear assembly. The torque transducer measures the torque on the 

steering column ( sτ ). The motor velocity mω  is measured by a tachometer. These signals 

along with motor position are collected by the ECU, which generates cmdτ  accordingly 

and calculates the voltages to be applied to the motor.  

 

 

Rack & Pinion Steering Gear 

ECU 

Torque
sensor

Motor 

Hand Wheel 
Input

ωm

V 

τs

Figure 6.1 Schematic diagram of a typical EPAS. 
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The steering system was modeled as a two-mass mechanical system with viscous 

friction (Badawy et al. 1999). It was assumed that the rotor shaft of the BLDC motor was 

rigidly connected to the steering column. A Simulink model of the EPAS was used for 
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the closed loop simulation. In this model, the driver hand-wheel torque input was 

modeled as a Gaussian random signal passed through an anti-aliasing filter, which 

simulated typical human driver frequency response characteristics. In addition, two 

independent Gaussian random signals were implemented in the model to simulate the 

road resistance and other perturbation torque on the steering column. In the simulations, 

the same set of random inputs, including the hand-wheel torque, the road resistance and 

other perturbation torque, were fed into the EPAS plant model for each of the adaptive 

BLDC control algorithms in order to make their current tracking and parameter 

estimation performance comparable. 

The ECU is embedded with the assisting torque controller and the BLDC motor 

controller. The former is required in the EPAS to achieve the desirable assisting torque 

and steering wheel feedback for the driver. The latter will be the adaptive controller 

developed in this research. The assisting torque controller developed by Patankar 

(Patankar 2003) was adopted in the close loop simulations.  

We will compare four type of adaptive BLDC motor controller in the closed loop 

simulations. The extended Kalman filter (EKF) in section 4.4 was selected as the 

benchmark parameter estimation algorithm. The current controller of equation (2.37) was 

chosen as the motor controller to form a closed loop adaptive controller using the EKF, 

and the controller parameters were updated with the EKF estimated values. The Gram-

Schmidt orthonormalization algorithm in section 3.5 showed the best performance among 

the algorithms that solved the parameter errors algebraically from the q axis current 

dynamics alone. We denote this class of algorithms as the q-solver algorithms in the 

simulations. The Gram-Schmidt orthonormalization algorithm was selected as the 



representative for the q-solver algorithms for the performance comparison. The third 

adaptive algorithm included in the evaluation was the one developed in section 3.6 that 

solved the parameter algebraically from both the q and the d axis current dynamics. It is 

named as the qd-solver here. The MRAC algorithm developed in Chapter 5 was the 

fourth algorithm for performance comparison in closed loop simulations. Notice that the 

EKF had to run at simulation step length of 0.5 milliseconds for stability in simulation, 

while the simulation step length was 2 milliseconds for the other three algorithms. The 

EKF was expected to be approximately 4 times faster than other algorithms in term of the 

parameter estimation convergence speed given the same conditions.   

The BLDC motor model of equation (2.38) was used as the motor plant in the closed 

loop simulation. The parameter values in the BLDC motor plant model were assumed to 

be constant as the following: Ω= 05.0R , ANmKe 05.0= , , .  hL 4101 −×= 3=pn

6.1.2 EPAS simulation results and analysis 

In some situations, the effect of parameter error in R  and  may cancel each other. 

For example, positive 

eK

RΔ  and negative eKΔ  may end up with the same control voltage 

 as that of zero parameter errors. In addition, the assisting torque controller may have 

different responses to positive and negative parameter errors. It may be harder for the 

parameter estimation algorithms in some initial parameter errors combinations. 

Therefore, several different combinations of initial controller parameter errors in 

qv

R  and 

 were simulated. For each set of initial parameter errors, the current tracking error and 

parameter estimation results from the four algorithms are overlapped in two figures 

respectively for comparison of the converging speed and steady state parameter 

eK
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estimation error. Figure 6.2 shows the simulation results of  and 

. Figure 6.3 shows the simulation results of  and 

. Figure 6.4 shows the simulation results of  and 

. Figure 6.5 shows the simulation results of  and 

. Table 6.1 compares the steady state mean and standard deviation of 

the current and parameter estimation error. In all simulations, the parameter estimation 

and current tracking are stable and converge to steady state values. Positive initial error in 

 ( ) appears to harder than negative initial error  for both 

current tracking and parameter estimation. The reason was that the positive  would 

result in higher motor control voltages, and therefore higher motor torque than with 

negative  at high motor velocity. Consequently, the assisting torque controller would 

respond more to high motor velocity, and the command torque might be slightly more 

correlated to the motor velocity.  

RR %50)0( +=Δ

ee KK %10)0( +=Δ RR %50)0( +=Δ

ee KK %15)0( −=Δ RR %50)0( −=Δ

ee KK %15)0( −=Δ RR %50)0( +=Δ

ee KK %10)0( +=Δ

eK ee KK %10)0( +=Δ )0(eKΔ

eKΔ

eKΔ

Comparing the current tracking error and parameter estimation results in all 

simulations, the EKF demonstrated the best parameter estimation and the current tracking 

performance among the four algorithms. This is reasonable as the EKF is optimal if the 

system is at an equilibrium state with Gaussian noises. The Kalman gains are updated 

online with the motor states based on the sensitivity of output currents to the parameters 

values. In addition, the EKF is an observer that takes the control signals ( , ) and 

motor states ( , ) as inputs. It is relatively independent to the outer loop controller. The 

sampling step length of 0.5 ms also contributes to the faster convergence of EKF, as the 

other three algorithms were running at 2ms.  

dV qV

di qi
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The MRAC had the lowest standard deviation of the current tracking error at steady 

state. This was due to the fact that the adaptive controller was designed to drive the 

current tracking error to zero. The slightly higher mean of current tracking error 

 in the simulations was because that the MRAC current tracking errors 

were defined as the difference between the reference model outputs and motor currents. 

The reference model dynamics introduced some extra error into the command current 

tracking. Considering the factor of slower sampling speed, the MRAC showed 

comparable convergence speed in parameter estimation as that of the EKF. The fast 

convergence speed resulted from the fact that all data were used for the parameter 

estimation. However, the MRAC showed some steady state parameter estimation error in 

R. In this algorithm, the parameter estimation was just an intermediate means for 

achieving reference current tracking. Thus the estimation computation required rich 

frequency contents of the excitation signals, including ,  and 

cmdqqq iii ,−=Δ

cmdqi , cmddi , mω , to achieve 

ideal parameter estimation. One possible reason was that the outer loop controller was 

designed to provide some certain frequency characteristics for driver hand-wheel 

feedback. Thus the frequency contents of  and cmdqi , mω  were relatively limited.  had 

rich frequency contents as it was set as a Gaussian random signal in the simulations, but 

the magnitude of  was significantly lower than that of  because of the operating 

principle of the BLDC motor.  

cmddi ,

cmddi , cmdqi ,
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(a) Current tracking results 

 
(b) Parameter estimation results 

 

Figure 6.2 Comparison of the adaptive BLDC motor controllers in EPAS closed loop 

simulation:  and RR %50)0( +=Δ ee KK %10)0( +=Δ  
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(a) Current tracking results 

 
(b) Parameter estimation results 

 

Figure 6.3 Comparison of the adaptive BLDC motor controllers in EPAS closed loop 

simulation:  and RR %50)0( +=Δ ee KK %15)0( −=Δ  
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(a) Current tracking results 

 
(b) Parameter estimation results 

Figure 6.4 Comparison of the adaptive BLDC motor controllers in EPAS closed loop 

simulation:  and RR %50)0( −=Δ ee KK %15)0( −=Δ  
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(a) Current tracking results 

 
(b) Parameter estimation results 

 

Figure 6.5 Comparison of the adaptive BLDC motor controllers in EPAS closed loop 

simulation:  and RR %50)0( +=Δ ee KK %10)0( +=Δ  
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Table 6.1 Steady-state performances in EPAS closed loop simulation 

)( KeΔμ  )( RΔμ  std( KeΔ )Case Algorithm std( RΔ ) )( qIΔμ  std( qIΔ )

1 EKF 2.71×10-5 9.6×10-5 -1.23×10-4 2.22×10-4 -0.032 0.590

2 q-solver -2.41×10-4 3.57×10-5 8.06×10-4 3.21×10-4 0.0438 0.743

3 qd-Solver  -8.15×10-6 6.39×10-5 -0.0014 1×10-3 -0.0397 1.344

4 MRAC  2.11×10-6 9.59×10-5 -5.37×10-4 3.23×10-4 -0.173 0.492

 

The qd-solver and the q-solver were based on similar principle of parameter error 

estimation. Their parameter estimation results were slower and smoother than that of the 

EKF and the MRAC. The qd-solver and the q-solver were similar to the MRAC in the 

sense of using the correlation of current error and current for parameter estimation. 

Actually, the qd-solver and the q-solver algorithms could be considered as a special case 

of model reference control in which the reference model would be a unit gain. However, 

in both algorithms, some data points were discarded during the parameter error 

estimation to avoid noise from singularity (especially matrices inversion). This procedure 

helped to maintain stability, but ruled out useful data and therefore reduced parameter 

estimation convergence speed.  

The qd-solver had better estimation performance in Ke than the q-solver regardless of 

initial parameter errors. On the other hand, the qd-solver did not perform as well in the R 

estimation. It showed similar steady state error in R estimation as that of the MRAC.  The 

main reason was that the qd-solver estimated R mainly on the  dynamics and Kdi e on the 

 dynamics with both  and  feedback in every loop, while the q-solver estimated 

both parameters on the  dynamics and needed  measurement from two or more loops. 

qi di qi

qi qi
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The qd-solver had more data points than the q-solver, so it performed better in Ke 

estimation. On the other hand, the magnitude of  was significantly lower than that of 

, which resulted in slightly slower R estimation of the qd-solver. 

di

qi

 Another factor for the algorithms comparison is the computation costs. Among the 

four algorithms, the EKF demands most computing power for two reasons: it requires 

shorter sampling step length to achieve stability of the Extended Kalman Filter; the 

linearization calculation and the sixteen variance states in the EKF needs significantly 

higher amount of computation in each step. The orthonormalization in the q-solver 

requires storage of some intermediate calculation results online for a certain period 

(250ms in the simulation). Therefore, the q-solver algorithm requires most random access 

memory (RAM) in implementation. The approximate inverse motor dynamics and the 

inner product calculation in the q-solver consumed the second highest computation 

power. The MRAC and the qd-solver have the lowest requirements on the computation 

resource, as they need least historic data and their parameter error calculations are 

relatively simpler than the EKF and the q-solver.  

In summary, the EKF provided the most desirable parameter estimation performance in 

the closed loop EPS simulation at the cost of high computation power. Its stability is not 

guaranteed. The q-solver had the slowest parameter estimation convergence speed, but 

the steady state accuracy was close to that of the EKF. Its computation costs were second 

highest due to the orthonormalization and the inverse motor dynamics approximation 

calculation. The qd-solver required less computation resource, but its parameter 

estimation performance in R was the lowest among the four algorithms. The MRAC had 

the second highest parameter estimation convergence speed though the EKF was running 
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at four times faster. It also had the tightest standard deviation in current tracking error. It 

was economic on computation. However, due to the characteristics of the outer loop 

controller, the MRAC showed steady state parameter estimation error, as it was an 

intermediate means to achieve low current tracking error. 

The outer loop controller, in the case the assisting torque controller, appeared to have 

some impact on the performance of the adaptive BLDC motor controllers. From the 

motor controller point of view, the outer loop controller and the EPAS plant together 

formed a feedback loop from the motor output torque/velocity to the command torque. 

Obviously, the performance of the motor controller would subject to the overall system 

feedback. The outer loop controller had some specific frequency response design, and 

narrowed the frequency contents of the excitation signals to the adaptive controllers. As a 

result, the performance of the adaptive controllers reduced slightly when compared to 

those motor bench test simulations. To further study the outer loop controller’s impact on 

the performance of the adaptive motor controllers, a closed loop motor speed control 

application will be investigated in the next section.  

6.2 Closed Loop Simulation Of a Motor Speed Control Application 

We have discussed the performance of the adaptive BLDC motor controllers in the 

EPAS closed loop simulations. The adaptive control algorithms suffered slightly due to 

the specific frequency response of the assisting torque controller. In this section, we will 

see how the adaptive algorithms performed in the closed loop simulations of a typical 

speed control application. In this case, the outer loop speed controller has significantly 

different frequency response than that of the EPAS assisting torque controller. 



In a typical motor angular speed/position control application, the outer loop plant can 

be modeled as a second order motor shaft dynamics as shown in Figure 6.6. The load 

torque on the motor shaft is assumed to be a band-limited Gaussian random signal. To 

make sure the simulation results are comparable, a random load torque time history was 

created offline and then was used in the closed loop simulations of all motor control 

algorithms.   

 

Figure 6.6 The block diagram of the motor shaft dynamics Simulink model. 

 

The outer loop controller is an anti-windup PI controller with a reference speed input, 

as shown in Figure 6.7. For performance comparison purpose, we use the same BLDC 

motor , Ω= 05.0R ANmKe 05.0= , , hL 4101 −×= 3=pn ) in the speed control 

simulations. The closed loop simulation results for the EPAS system showed that the 

initial parameter errors had some effects on the controller performances. Thus, we run the 

closed loop simulation with different combinations of initial parameter errors for each of 
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the adaptive control algorithms. The closed loop simulation results are compared in 

Figure 6.8 ~ 6.11, and the corresponding steady state current tracking and parameter 

estimation results are compared in Table 6. 2. 

 

Figure 6.7 The block diagram of the anti-windup PI controller Simulink model. 

 

Table 6.2 Steady-state performances in speed control closed loop simulation 

)( KeΔμ  )( RΔμ  std( KeΔ ) Case Algorithm std( RΔ ) )( qIΔμ  std( qIΔ ) 

1 EKF 5.25×10-5 10.8×10-5 -3.0×10-4 3.07×10-4 -0.022 0.125 

2 q-solver -6.61×10-5 2.99×10-5 -8.5×10-4 1.50×10-4 -0.015 0.059 

3 qd-solver  1.54×10-4 1.23×10-4 -9.2×10-4 4.31×10-4 0.044 0.300 

4 MRAC  -4.31×10-5 7.88×10-5 2.89×10-4 7.69×10-5 -0.017 0.23 

 

In general, the motor speed control closed loop simulation showed similar results as 

that of the EPAS closed loop simulation. The EKF had the fastest parameter estimation 

convergence and the fastest current tracking. The MRAC was the second fastest in terms 

of parameter estimation and current tracking. The qd-solver showed slightly faster 

parameter convergence than the q-solver, while the q-solver had the tightest standard 
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deviation in parameter estimation errors at steady state. The qd-solver had the highest 

parameter estimation error standard deviation especially in R, which was because of the 

relatively lower magnitude of .  Overall, the MRAC was the best combination of 

parameter estimation and reference current tracking convergence speed, steady state 

tracking error, and computation cost. 

di

However, the speed control closed loop simulation revealed some different dynamics in 

the interaction between the adaptive controller and the outer loop controller. Unlike in the 

EPAS closed loop simulations, none of the adaptive controller showed steady state 

parameter estimation error in the motor speed control simulations. This was due to the 

wider frequency contents of the anti-windup PI controller than that of the assisting torque 

controller in the EPAS system. In addition, the initial parameter errors seemed to have 

more effects on the parameter estimation, especially for the MRAC. Again, this was 

because that the anti-windup PI controller responded differently to the current error 

introduced by the initial parameter error. The reference speed was set to be a constant 

(50rad/s), thus the mω  was positive in the simulation. Re-examining the parameter 

estimation equations (5.18~5.19), the parameter estimation would be mainly determined 

by the current tracking error. When the initial parameter errors )0(RΔ  and  had 

different sign, they cancelled out each other to some extent when calculating the control 

voltages. The outer loop anti-windup PI controller integrated the speed error, thus 

delayed the effect of current error introduced by opposite sign of  and 

)0(eKΔ

)0(RΔ )0(eKΔ . 

The ended up with slower estimation of parameter error, and consequently the current 

tracking was also slower when the )0(RΔ  and the )0(eKΔ  had the same sign. Among the 
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four adaptive control algorithms, the EKF was the least sensitive one to the outer-loop 

controller’s response to the initial parameter errors. This might be due to its observer 

structure and the control voltages were part of its input signals to the parameter 

estimation functions.  

In summary, the motor speed control closed loop simulation showed similar conclusion 

to the EPAS simulation in terms of the adaptive control algorithms comparison. The 

MRAC algorithm appeared to be the best combination of performance and computation 

costs. However, the performance of the MRAC algorithm was slightly affected by the 

outer loop controller’s characteristics. 

6.3 Conclusion 

Four representative adaptive BLDC motor control algorithms from Chapter 3~5, 

namely the EKF, the q-solver, the qd-solver, and the MRAC, were compared in closed 

loop simulation of an EPAS system and a speed control application. Generally, the 

simulation results revealed a trade-off between the performance and algorithm 

complexity (or computation costs). Better performance was obtained at the cost of higher 

complexity of the control algorithm. Moreover, the simulation results indicated that the 

outer loop controller and plant dynamics would reduce the performance of the adaptive 

controllers if the outer loop controller had relatively narrow frequency response or if the 

outer loop system dynamics responded differently to the different parameter error 

combinations.     



 
(a) Current tracking results 

 
(b) Parameter estimation results 

Figure 6.8 Comparison of the adaptive BLDC motor controllers in the motor speed 

control closed loop simulation: RR %50)0( +=Δ  and ee KK %10)0( +=Δ  
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(a) Current tracking results 

 
(b) Parameter estimation results 

Figure 6.9 Comparison of the adaptive BLDC motor controllers in the motor speed 

control closed loop simulation: RR %50)0( +=Δ  and ee KK %15)0( −=Δ  
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(a) Current tracking results 

 
(b) Parameter estimation results 

Figure 6.10 Comparison of the adaptive BLDC motor controllers in the motor speed 

control closed loop simulation: RR %50)0( −=Δ  and ee KK %15)0( −=Δ  
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(a) Current tracking results 

 
(b) Parameter estimation results 

Figure 6.11 Comparison of the adaptive BLDC motor controllers in the motor speed 

control closed loop simulation: RR %50)0( −=Δ  and ee KK %10)0( +=Δ  
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Among the four algorithms, the EKF showed the best parameter estimation 

performance in the closed loop simulations. It was also the least sensitive one to the 

reference signals from the outer loop system. These advantages of the EKF were due to 

the real time linearization of the nonlinear model and the optimal Kalman filtering based 

on the linearized model. On the other hand, the desirable performance of the EKF came 

at the highest computing cost. With the EKF algorithm, the controller needed to compute 

the linearization function and to update a 4x4 covariance matrix for the 4 augmented 

states at every sample. In addition, the stability of the EKF was not guaranteed due to the 

online linearization. In the closed loop simulation, it required about 4 times higher 

sampling frequency than other algorithms did so as to maintain stability.  

The q-solver and the qd-solver were based on the same principle of solving the 

parameter error form the current feedback algebraically. The q-solver showed the slowest 

parameter estimation convergence in the closed loop simulations. Computation of the 

orthonormalization and approximation of the inverse motor dynamics consumed second 

highest computation power and memory. The qd-solver engaged both iq and id for 

parameter error calculation, and therefore had faster estimation than the q-solver. 

Besides, it required less computation resource as it used more data for the estimation. 

However, due to the operation principle of the BLDC motor, the d-axis current is usually 

of significant lower magnitude than the q-axis current. Consequently, the qd-solver had 

the lowest estimation performance in R among the four algorithms.  

The MRAC had second highest fast parameter estimation convergence speed in the 

closed loop simulations. It also had the tightest variation of current tracking error. It was 

economic in terms of computation cost. These benefits were due to that the MRAC took 
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advantage of the motor current dynamics and used all feedback data for estimation and 

current tracking. However, since the parameter estimation in the MRAC was an 

intermediate means to achieve low current tracking error, it was more sensitive to the 

outer loop system dynamics than other algorithms.  

From the user perspective, the command torque (current) tracking is the most important 

criterion for the motor controller selection. The stability of the algorithm plays equally 

important role for practical control implementation. In addition, the algorithm complexity 

and computation costs are also important factors for implementing the control algorithm. 

Considering these factors, the MRAC algorithm appears to be the most promising 

candidate for the BLDC motor actuator.  
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Chapter 7 AN OPERATION SIMULATION MODEL FOR BLDC MOTORS  

  

In Chapter 2, we have showed that the dq-model of a sinusoidal BLDC motor is 

mathematically equivalent to its corresponding stator phase model. Due to its simplicity 

and convenience, the dq-model has been used for the BLDC motor controller 

development. We have also pointed out several supplemental functions are needed to 

practically implement the controllers designed on the dq-model. These supplemental 

functions may be assumed to be ideal when designing the controller, but they have some 

impact on the controller implementation. Care must be taken to address some practical 

issues when implementing a dq-coordinate controller, for example, the rotor angular 

position measurement and the phase control voltage modulation. Traditionally these 

factors can be studied through the trial and error method during prototype development in 

labs. In the EPAS application, due to the high torque requirement and low battery 

voltage, the BLDC motor phase resistance is very low and the peak current can be over 

100 Amp. In this case, a minor error may result in damage of the components such as the 

inverter. Thus the traditional trial and error method may not be an efficient way for 

control prototype development. Validation of control software in the simulation before 

conducting motor tests can significantly reduce the risk of prototype failure. It is often 

desirable to have the capability of simulating these practical implementation issues. In 

this chapter, a detailed Simulink model of a typical BLDC motor will be discussed and 

developed. We will discuss two practical issues of the controller initialization and 

transducer resolution in simulation with this quasi-physical BLDC model. 
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7.1 A Quasi-Physical BLDC Motor Model 

An operating BLDC motor system consists of a PMSM motor, an inverter, an inverter 

switching-logic controller, a motor controller, a motor angular displacement/velocity 

transducer, and motor phase current transducers. A typical BLDC motor system is shown 

in Figure 7.1. In many cases, the inverter switching-logic control algorithm and the motor 

controller are programmed in a microcontroller. The angular displacement transducer can 

be an optical encoder or a resolver. Some BLDC motors are equipped with a set of Hall 

effect sensors, which can replace the motor angular displacement transducer for the 

inverter switching logic control purpose. The inverter can be considered as the actuator of 

the closed loop BLDC motor system. The microcontroller achieves the motor control by 

adjusting the switching timing and duty cycle of the inverter.  

We have discussed the PMSM motor phase model and its dq-coordinate motor 

controller. However, since most BLDC motors are three-phase Y-connected, we will use 

the Line-to-Line motor PMSM motor model so as to be close to real system. In addition,  

a complete simulation model of the BLDC motor system must also include other 

components such as the inverter, the inverter switching logic controller, the rotational 

displacement transducer, the Hall effect sensors, and the phase current sensors. We will 

discuss these components in the following subsections. 



 
Microcontroller 

 
PMSM 
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Figure 7.1 A typical three-phase BLDC motor system block diagram. 

 

7.1.1 The Line-to-Line PMSM model 

For a Y-connected PMSM motor, the neutral point is usually hidden in the motor 

housing and therefore not accessible for the controller. Instead, the inverter controls the 

line-to-line voltages across each pair of the three phases. We will need a line-to-line 

model of the motor instead of the phase model in equation (2.1). Rewrite the phase model 

(2.1 or 2.9) as 

EViiL −+−= R
dt
d  (7.1) 
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where  can be ,  or e . Multiply both sides of (7.1) by , the line-to-

line model is obtained as 
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With line-to-line control voltage vector ( )TVVV 312312 ,,  from the inverter, the line-to-line 

currents  will be solved from (7.4). Using the Kirchhoff first law, the phase 

currents are then calculated from the line-to-line currents as   

( Tiii 312312 ,, )
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The torque generated by the motor can be calculated with 
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The line-to-line PMSM motor model is implemented as a state space model in 

Simulink, as shown in Figure 7.2. 

 

Figure 7.2 The line-to-line PMSM model in Simulink. 

 

7.1.2 The H-bridge PWM inverter model 
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Typically, a three-phase PMSM motor requires three-phase AC control voltages. The 

DC power supply to the BLDC motor cannot directly generate the AC control voltages. It 

is the function of the three-phase H-bridge PWM inverter to generate appropriate AC 

voltages for the PMSM motor. The H-bridge consists of six or more digitally controlled 

power transistors such as hexagonal field effect transistors (HEXFET), as shown in 



Figure 7.3. Usually the power transistor response time is in the order of nano (10-9) 

seconds, which is significantly shorter than a cycle of the PWM signal (usually in 10-5 

seconds). It is reasonable to assume that these trans. They can be simplified as a switch 

controlled by the PWM pulse. If the upper transistor in a branch of the H-bridge is 

switched on, the corresponding phase terminal is connected to the positive terminal of the 

DC power supply. If the lower transistor is switched on, the corresponding phase terminal 

is connected to the negative terminal of the DC power supply. Obviously, the upper 

transistor and the lower transistor in any branch cannot be switched on simultaneously.  

 

 151

 

Figure 7.3 A simplified circuit of the BLDC motor system. 

 

To calculate the line-to-line voltages for the PMSM motor, we define the ground 

reference (zero potential) point as the mid of DC power supply, as shown in Figure 7.3. 

The H-bridge sets the motor stator pole to either Vdc/2 or -Vdc/2, while the line-to-line 

voltage is either Vdc or –Vdc. Note that the potential at the neutral point of the motor (the 

b
Phase 

Phase B

Phase C

G

+Vdc/2 

-Vdc/2 



center of Y connection) changes with the different H-bridge switching configuration, 

therefore the stator phase voltage may be different from Vdc/2. For each branch of the H-

bridge, if the switch control signal is high (1), the corresponding stator phase potential is 

set to Vdc/2; otherwise, it is set to -Vdc/2. The phase pole potential voltages are then used 

to calculate line-to-line voltage among the three phases. The Simulink model block 

diagram of the H-bridge is shown in Figure 7.4. 

 

Figure 7.4 The H-bridge inverter model. 

 

7.1.3 The rotor angular displacement transducer 

The quadrature incremental encoder is a commonly used rotational displacement 

transducer in motion control applications. A typical quadrature incremental encoder can 

be modeled as  

⎟
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2

425.0 cprroundx  (7.7) 
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where x  is the encoder count output, and cpr is the count per resolution.  

The incremental encoder starts counting from zero when the function is enabled. 

Therefore, an independent integrator is used to simulate the relative input angle. Figure 

7.5 shows the Simulink block diagram for the incremental encoder model.  

It is worth mentioning that the incremental encoder only measures a relative 

displacement from the initial position of the rotor. The initial rotor angle is modeled as a 

random number uniformly distributed on the interval of [0, 2π]. We have discussed that 

importance of the initial angle in the coordinate transformation calculations. Therefore, 

when using a relative rotor angular displacement transducer, the motor controller needs a 

strategy to find the zero-angle configuration. 

 

Figure 7.5 The BLDC motor components block diagram. 

 

7.1.4 The Hall effect sensor 

Trapezoidal BLDC motors are usually equipped with a set of three Hall effect sensors 

for the rotor position feedback. Sinusoidal BLDC motors can be operated in the same 

manner as trapezoidal BLDC motors if they are equipped the Hall effect sensors. These 

Hall effect sensors provide the angular position of rotor magnetic field and can be used to 
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synchronize the stator magnetic field to the rotor permanent magnets. Each of the Hall 

sensors can be simplified as following functions: 

others
n

H pii
i
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=
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,1

 

where θ  is the rotor angle,  is the number of permanent magnet pole pairs,  and pn iθ  is 

the relative angle between the reference point and the angular position of the hall sensor. 

iθ  can be obtained from the motor manufacturer specification or from a motor phase test.  

7.1.5 SVPWM 

The Space Vector PWM (SVPWM) is the most widely used inverter switching 

mechanism for the sinusoidal BLDC motors. It achieves the voltage vector control by 

adjusting the timing and duty cycle of the eight switching states of the three-phase H-

bridge inverter. Assuming that stator coils in the three phases are identical, each 

switching state of the H-bridge corresponds to a voltage vector in the three-phase stator 

coil frame. Let’s look at the example of the switching state (1, 0, 0) for the branch (a, b, 

c) of the H-bridge. The upper gate of branch a, the lower gates of branch b and c are turn 

on. Referring to Figure 7.3, the pole of phase A is connected to +Vdc/2 and the poles of 

phase B and C are connected to –Vdc/2. The phase voltage vector will be 

T

dcdcdc VVV ⎟
⎠
⎞

⎜
⎝
⎛ −−

3
1,

3
1,

3
2 . Similarly, the eight basic voltage vectors (v0~v7) for a Y-

connected motor in the three-phase frame are shown in Figure 7.6 and their 

corresponding switch states are shown in Table 7.1. Notice that v0 and v7 are zero vectors. 
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Figure 7.6 The voltage vectors in the space vector modulation. 

 

Table 7.1 The eight basic voltage vectors in the SVPWM 
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Bridge State Motor Phase Voltage ( dcV× ) Line to Line Voltage ( dcV× ) Voltage 

Vectors a b c VAN VBN VCN VAB VBC VCA

v0 0 0 0 0 0 0 0 0 0 

v1 1 0 0 2/3 -1/3 -1/3 1 0 -1 

v2 1 1 0 1/3 1/3 -2/3 0 1 -1 

v3 0 1 0 -1/3 2/3 -1/3 -1 1 0 

v4 0 1 1 -2/3 1/3 1/3 -1 0 1 

v5 0 0 1 -1/3 -1/3 2/3 0 -1 1 

v6 1 0 1 1/3 -2/3 1/3 1 -1 0 

v7 1 1 1 0 0 0 0 0 0 

 

Given a voltage vector in the three-phase frame, we can find a linear combination the 

eight basic voltage vectors to approximate the vector by weighing the duty cycle for each 

inverter state. For example, the vector  shown in Figure 7.6 can be a linear combination 

of ,  and the zero vectors , as 

v

1v 2v 0v 7v
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0,1, ,5k = K  is the sector number corresponding to the I~VI in Figure 7.6. The transistors 

on/off timing can be calculated as 
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where zz fT 1= , and  is the carrier PWM signal frequency.  The six-bridge transistor 

on-off timing calculation is summarized in Table 7.2. Figure 7.7 shows the six 

transistors’ on-off timing in one PWM cycle when the voltage vector in each sector. 

zf
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Table 7.2 Summary of the transistor on-off timing calculation in each sector  

Vector High Switches (S1, S2, S3); Low switches  

S4 = NOT(S1), S5 = NOT(S2), S6 = NOT(S3); 

0 S1= T1+ T2+ T0/2, S2= T2+ T0/2, S3= T0/2 

1 S1= T1+ T0/2, S2= T1+ T2+ T0/2, S3= T0/2 

2 S1= T0/2, S2= T1+ T2+ T0/2, S3= T2+ T0/2 

3 S1= T0/2, S2= T1+ T0/2, S3= T1+ T2+ T0/2 

4 S1= T1+ T0/2, S2= T0/2, S3= T1+ T2+ T0/2 

5 S1= T1+ T2+ T0/2, S2= T0/2, S3= T1+ T0/2 

 

For the simulation purpose, the physical switching process is simplified as a 

comparison between the normalized PWM cycle time to the duty cycle ratio: 
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where Si is the upper arm switch input, tz is the PWM cycle interval, r is the duty cycle 

ranging from 0 to 1. The SVPWM function takes the sector number and the 

corresponding base voltage vector timing (r1, r2) as input, and outputs the H-bridge 

branch on timing signal (S1, S2, S3). It is implemented in Simulink as shown in Figure 

7.8. 

7.1.6 Simulation configuration 

With the components model discussed in the previous subsection, a complete model of 

a sinusoidal BLDC motor system is implemented in Simulink, as shown in Figure 7.9.   
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Figure 7.7 Transistors’ on-off timing in the six sectors  
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Figure 7.8 SVPWM function implementation in Simulink 

To ensure good resolution, the SVPWM function, the inverter and the PMSM motor 

must be running at very high frequency since the actual PWM signal frequency is usually 

10~20kHz. The sampling step for these components was set to 2μs. The motor controller, 

Hall-effect sensors and incremental encoder model was running at 2ms. Therefore, the 

rate-transition and zero-order-hold function have to be used in order to complete the 

closed loop simulation. In the simulation, the same set of motor parameters will be used 

as in the previous chapters: Ω= 05.0R , ANmKe 05.0= , , . hL 4101 −×= 3=pn

7.2 Study of Controller Implementation Issues in Simulation 

With the BLDC motor system model, the controller implementation issue can be 

studied in simulation. For control algorithms developed on the dq-coordinate model, the 

controller needs to convert the command voltage (Vd, Vq) into the three-phase voltages. 

The phase voltages will be converted into a voltage vector in the stator phase frame, and 

a sector number and the base voltage vector timing (r1, r2) will be calculated from 
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equation (7.9) as the final controller output. An example Simulink model of this process 

is shown in Fig 7.10. 

 

 
Figure 7.9 The Simulink model of a closed loop BLDC motor system 

 

7.2.1 Initialization 

In addition to the coordinate transformation and SVPWM encoding, the controller must 

deal with the initial angle problems. If the BLDC motor system is equipped with an 

incremental encoder, the actual rotor angle is unknown when the microcontroller is 

powered up. The controller needs make sure that the angular position measurement is 

consistent with the zero-angle configuration defined in the coordinate transformations. 

One solution is to force the rotor into the zero-angle configuration before normal 
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operation. For example, the controller outputs the base voltage vector  for long enough 

time such that the rotor reaches the equilibrium state where the d axis of the rotor 

magnetic field is aligned to the stator phase 1 axis. This is the exact zero-angle 

configuration that was defined for the coordinate transformations in Chapter 2. The 

settling time depends on the duty cycle of the controller output and damping factor of the 

rotor shafts. It can usually be limited in the order of 0.1s. At the end of the starting 

scheme, the controller switches to the normal operation model, and the incremental 

encoder counter is reset to zero. Thus, in the normal operation mode, the rotor angle 

feedback from the encoder will be consistent with the coordinate transformation 

calculations. This forced-alignment initialization is implemented in Simulink, as shown 

in Fig 7.11. 

1v

 

Figure 7.10 The practical controller model in Simulink 
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Figure 7.11 The starting scheme Simulink model 

 

The simulation of the initialization strategy with the physical motor model validated the 

effectiveness of the above solution for real control implementation. In the simulation, the 

controller commanded an aligning voltage vector in the direction of the basic voltage 

vector  with a magnitude of 0.1V1v dc. The starting mode was set to be 0.5 seconds long. 

In the normal operation mode, the command torque ( cmdτ ) was set as 0.5Nm, and a step 

load torque of 0.4Nm was applied to the rotor shaft at time t = 1s. Figure 7.12 shows 

simulation results of the phase currents, the actual motor dq currents, the rotor velocity 

and angular displacement, the generated torque and the line-to-line voltages. In the 

initialization mode, the aligning voltage drove the rotor from a random initial angle to the 

zero-angle configuration within 0.2 seconds. At t=0.5s, the controller switched to the 

normal operation model, the controller used the angle feedback from the encoder for all 

coordinate transformation calculations. The motor generated the commanded torque 
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steadily, which indicated that the stator magnetic field was synchronized with rotor 

magnetic field.  

 

  
(a) dq-coordinate command voltage (b) phase currents 

 
(c) dq-coordinate current  

 
(d) Rotor dynamics 

 
(e) Rotor speed and angle 

 
(e) Line-to-line voltage (PWM) 

Figure 7.12 The BLDC motor physical model closed loop simulation 
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7.2.2 Incremental encoder resolution 

The quasi-physical BLDC motor model simulation can be use to study some other 

practical issues, for example, the resolution of the incremental encoder (cpr). If the 

incremental encoder is the only angular displacement transducer, its resolution can be an 

important factor to the performance of the BLDC motor actuator. As shown in the 

previous chapters, the BLDC motor controller in the dq-coordinate needs motor velocity 

to calculate the control voltages. In addition, the coordinate transformation functions and 

the SVPWM depend on the rotor angular position feedback to calculate accurate output 

for the motor. The accuracy of the rotor angle feedback has an impact on almost all the 

functions in the motor controller. 

A prototype BLDC motor for the EPAS application is equipped with a low-resolution 

quadrature encoder (36 cpr). Simulation results with such an encoder are shown in Figure 

7.13. In the simulation, the controller switched to normal operation mode at t=0.5s. 

During the next 0.2 seconds, the motor velocity calculation was very noisy, and the phase 

currents were not in proper sinusoidal curve shape. The reason was that the low-

resolution encoder was not able to measure rotor angular displacement less than 2.5 

degree from one sample to the next. This might result in about 21.8rad/s error in motor 

velocity feedback since the motor controller sampling time was 2ms. The coordinate 

transformation calculations were inaccurate and caused slight loss of synchronization 

between the stator and rotor magnetic fields. Therefore the phase currents became noisy 

and ill shaped. In comparison, Figure 7.14 shows simulation results with a high-

resolution encoder (4096 cpr). With the high-resolution rotor angle feedback, motor 

velocity, control voltages and phase currents were smooth and in desirable shape for 



proper operation of the BLDC motor.  Obviously, the 36-CPR encoder could not provide 

enough resolution for smooth BLDC motor operation, especially during the low speed 

operation.  

 
(b) phase currents (a) dq-coordinate command voltage 

 
(c) dq-coordinate current  (d) Rotor speed and angular displacement 

Figure 7.13 The BLDC motor simulation with a low-resolution encoder (cpr=36) 

 

7.3 Limit of the Quasi-Physical BLDC Motor Model 

The quasi-physical BLDC motor model includes model of all necessary components in 

a BLDC motor system, therefore it reveals more practical operation characteristics of the 

BLDC motor. We have shown the benefit of this model in study of initialization and 

incremental encoder resolution for practical BLDC motor applications. Simulation results 
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of this model can also be used for education purpose. It reveals more details of the BLDC 

motor operation than the simpler dq-coordinate model, though the latter is more 

convenient.  

 
(a) dq-coordinate command voltage (b) phase currents 

 
(c) dq-coordinate current  (d) Rotor speed and angular displacement 

Figure 7.14 The BLDC motor simulation with a high-resolution encoder (cpr=4096) 

 

Unfortunately, simulation of the quasi-physical BLDC motor model still cannot replace 

real motor experiments. One disadvantage of the simulation is its simulation speed. Since 

the SVPWM function, the inverter model and the PMSM motor model have to run at very 

short step (2μs), the simulation cannot run at real time. On a PC equipped with a 1.8GHz 

CPU and MATLAB 6.5, it took more than 100 seconds to complete a 2-second 

simulation. In addition, because the PMSM motor model was solved 500,000 times each 
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second, simulation results was relatively sensitive to the selection of solver. In the 

Simulink environment, the ode2 solver gave the closest simulation results to that of the 

dq-coordinate model alone. 

7.4 Summary 

In this chapter, a quasi-physical model was developed for a typical three-phase Y-

connected sinusoidal BLDC motor. This model included the rotor position/speed 

transducers, the inverter, the SVPWM algorithm and etc. A line-to-line PMSM model 

replaced the phase model. Closed loop simulation of the controllers and the physical 

model helped to study the implementation issues of the dq-coordinate controllers such as 

the initial rotor angular position and the incremental encoder resolution.    

The quasi-physical BLDC model is not a real-time model. It was slow in simulation 

because very short sampling step (2μs) was needed to simulate the interaction between 

the inverter and the PMSM motor with good resolution. For similar reason, the 

simulation results were also slightly sensitive to selection of solver. Despite of these 

limits, the quasi-physical model simulation was proved to be a useful tool to validate the 

controller functions that were not discussed in the dq-coordinate controller model, for 

example, the SVPWM and the coordinate transformation functions. With the quasi-

physical model simulation, the risk of equipment damage by the traditional trial and error 

method can be significantly reduced. 
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Chapter 8 CONCLUSION AND FUTURE WORKS 

 

8.1 Conclusion 

The Electrical Power Steering system (EPAS) will be the main stream of future 

automotive power steering system for its advantage of energy efficiency and flexibility. 

The sinusoidal brushless DC motor has been identified as one of the most suitable 

candidate actuator for the EPAS. The long service life, harsh working environment and 

mass production impose motor parameter variation problem for the EPAS actuators. 

Adaptive control is one of the most suitable candidate techniques for the parameter 

variation problem.  

The dq-coordinate model has been widely used for the BLDC motor control and 

dynamics analysis. We started the adaptive control development with derivation of the 

dq-coordinate model for a typical three-phase sinusoidal BLDC motor. The mathematical 

derivation revealed how the rotor angular position (θ) was cancelled in the coordinate 

transformations from the three-phase frame to the dq-coordinate, but the θ was 

indispensable in the implementation of the any controller designed with the dq-coordinate 

model. The derivation also explained the importance of the zero-angle (θ=0) definition. 

Though it was not shown in the dq-coordinate model, the zero-angle configuration 

determined the phase of almost all sinusoidal functions in the coordinate transformations.  

With the dq-coordinate model, several adaptive algorithms were studied for the 

sinusoidal BLDC motor application. The first group of algorithms estimated the motor 

parameters by integrating the motor parameter errors that were solved algebraically with 
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q-axis current feedback from one or more loops. These algorithms were denoted as the q-

solver algorithms. Certain conditions were set on the solved parameter errors to avoid 

noise due to singularity in matrix inversion operations. Stability of the algorithms was 

proved mathematically and improvements were proposed for such algorithms by 

estimating the motor dynamics and rotor velocity sampling delay. In addition, the Gram-

Schmidt orthonormalization process was proposed to improve estimation performance by 

dealing with the correlation between the rotor velocity and command torque. 

The second adaptive algorithm was proposed to estimate the parameter errors by using 

both the q-axis and d-axis current (iq, id) feedback through the same process as that of the 

q-solver algorithms, since iq and id always existed in pair. This algorithm was denoted as 

the qd-solver. Comparing to the q-solver algorithms, the qd-solver was simpler since it 

only required one loop of current feedback to calculate the parameter error. On the other 

hand, the qd-solver required arbitrary d-axis command current so as to get desirable 

estimation performance. The conditions for unbiased estimation of the parameter errors 

were studied through Monte Carlo simulations. These conditions turned out to be similar 

to the conditions in the q-solver algorithms that were set on the solved parameter errors to 

avoid singularity in matrix inversion operations. 

The third parameter estimation algorithm was the extended Kalman filter (EKF). The 

EKF took advantage of the knowledge of the nonlinear plant model. Unlike the previous 

two algorithms that had a fixed gain for integrating the parameter errors, the EKF 

computed linearization of the nonlinear plant model and adjusted the Kalman gains in 

real time. The EKF is close to optimal filtering given steady state motor operation. It 

demonstrated superior performance in both parameter and state estimation with fast 
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convergence and decent accuracy in simulations. However, the computation cost and the 

stability issue were barriers for implementing the EKF in practice. 

The model reference adaptive control (MRAC) was the fourth algorithm studied for the 

BLDC motor parameter variation problem. By taking a reference model for the closed 

loop motor dynamics, the MRAC algorithm utilized the derivative of iq and id for the 

parameter estimation and current tracking. Comparing to the q-solver and the qd-solver, 

the MRAC improved the data efficiency and therefore the convergence speed of 

parameter estimation. The MRAC was designed to maintain non-positive derivative of a 

quadratic cost function of the reference model tracking error and the parameter errors. 

Therefore, the stability of this algorithm was guaranteed. The MRAC was 

computationally simpler and faster than the EKF algorithm.  

For development purpose, all these adaptive control algorithms were validated in motor 

bench test simulations in which the command torque and the motor velocity were 

assumed to be Gaussian random signals and independent to each other. In real 

applications, the command torque and the motor velocity are usually correlated to some 

extent. To evaluate the performance of these algorithms, they were compared in the 

closed loop simulation of an EPAS system and a motor speed control application. In 

general, the closed loop simulation results revealed a trade-off between the performance 

and algorithm complexity (or computation costs). Better performance was obtained at the 

cost of higher complexity of the control algorithm. Moreover, the simulation results 

indicated that the outer loop controller and plant dynamics would reduce the performance 

of the adaptive controllers if the outer loop controller had relatively narrow frequency 
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response or if the outer loop system dynamics responded differently to the different 

parameter error combinations. 

In the closed loop simulations, the EKF showed the best parameter estimation 

performance among the four algorithms. It was also relatively insensitive to the command 

signals from the outer loop systems. These advantages of the EKF were due to the real 

time linearization of the nonlinear model and the optimal Kalman filtering based on the 

linearized model. The desirable performance of the EKF came at the highest computing 

cost. With the EKF algorithm, the controller needed to compute the linearization function 

and to update a 4x4 covariance matrix for the 4 augmented states at every loop. This 

resulted in high requirement on computation resources.  

The q-solver with the Gram-Schmidt orthonormalization showed the slowest parameter 

estimation convergence, but it had almost the tightest steady state parameter estimation 

error bound. The orthonormalization and approximation of the inverse motor dynamics 

consumed second highest computation resource. The qd-solver required less computation 

resource, but its steady state accuracy was the lowest among the four algorithms, 

especially in R. This was due to the fact that the d-axis current was significantly lower 

than the q-axis current in magnitude. The slow parameter estimation of these two 

algorithms was partly because of the neglected current dynamics in parameter error 

computation and the conditions for singularity.   

The MRAC showed the second highest fast parameter estimation convergence speed in 

the closed loop simulation. It also had the tightest variation of current tracking error 

partly because of current tracking was its dominant control objective. However, since the 

parameter estimation was an intermediate means to achieve reference model current 
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tracking, it was relatively sensitive to the outer loop system dynamics. Comparing to the 

EKF and the q-solver with the Gram-Schmidt orthonormalization, the MRAC algorithm 

was simple and required less resource. Overall, the MRAC appeared to be a best 

combination of accuracy and computing complexity among the four algorithms. 

The closed loop simulations also revealed that the outer loop system dynamics 

appeared to have impact on the performance of the adaptive BLDC motor controllers. 

From the motor controller’s point of view, the outer loop controller and the EPAS plant 

together formed a feedback loop from the motor output torque/velocity to the command 

torque. The outer loop system had some specific frequency response due to its design. 

This usually narrowed the frequency contents of the command torque, which was one of 

the excitation signals to the adaptive controllers. As a result, the performance of the 

adaptive controllers reduced slightly when compared to the motor bench test simulations 

where the command torque and velocity were assumed to be random and independent. 

The EKF, with its observer structure, appeared to be less sensitive to the outer loop 

system dynamics. This was because that the EKF took the motor control voltages and 

current measurements as its input signals, and the command torque was not directly 

involved in its estimation process. 

From the user perspective, the command torque or current tracking is the most 

important criterion for the motor controller selection. The stability of the algorithm plays 

equally important role for practical control implementation. In addition, the algorithm 

complexity and computation costs are also important factors for implementing the control 

algorithm. Considering these factors, the MRAC algorithm appears to be the most 

promising control candidate for the BLDC motor actuator in the EPAS application. 
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One of the unique characteristics of the BLDC motor control problem is that the control 

algorithms developed in the dq-coordinate cannot be directly used for real motor control 

application. Coordinate transformations are indispensable between the dq-coordinate 

controller and physical motor system. In addition, the control voltage must be encoded in 

a suitable inverter actuation scheme such as the space vector pulse width modulation. To 

facilitate the BLDC motor control implementation, a quasi-physical BLDC motor model 

was developed. Some practical control implementation issues were studied in simulation, 

including unknown initial angle, and rotor angular displacement feedback resolution. 

Even though the simulation could not run real-time, and the simulation results were 

slightly sensitive to solver, the simulation results proved that it was a useful tool to 

validate the controller functions such as the SVPWM and the coordinate transformations.  

8.2 Future Works 

Steer-by-Wire is one of the potential candidate technologies for future automotive 

steering systems. Comparing to the traditional hydraulic or mechanical steering system, 

the Steer-by-Wire system replaced the hardware link between the steering control 

(steering wheel) and the road wheels with electronically transmitted command signal. On 

the one hand, this technology creates greater flexibility of hardware installation and 

software reconfiguration that enables intelligent driver assistance and vehicle stability 

control. On the other hand, the electronic signal transmission is one of the main issues for 

the Steer-by-Wire in terms of fail safety and the robustness of the electronic control 

system. The sinusoidal BLDC motor is an ideal candidate actuator for the Steer-by-Wire 

systems. Fault tolerance will be a necessity for the BLDC motor control in such as 

system. 
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The BLDC motor operation involves the rotor position/speed transducer, PWM inverter 

that consists of three-phase rectifier and power transistors, and the PMSM. Typical fault 

includes position transducer failure, power transistor failure, and motor stator coil open 

circuit, short to ground, and etc. The parameter estimation algorithm and the EKF can be 

implemented for the fault diagnosis. Statistical study has to be carried out so as to obtain 

the fault detection thresholds. 

Sensorless control has been a hot research and development direction for BLDC 

motors. Sensorless means that the PMSM will be operated without a rotor angular 

position sensor. Usually some certain type of observer is employed for asymptotical 

estimation of the motor speed and angular position. For the trapezoidal BLDC motors, 

BEMF zero crossing detection is also proposed to replace the phase Hall sensors. It is a 

good candidate technology for the fail-safe operation of the BLDC motor in case of 

position sensor fault. The PWM inverter provides not only a effective way for the PMSM 

operation with a DC power supply, it also give some flexibility for the BLDC motor fail-

save operation in case of stator winding fault such as open circuit and inverter bridge 

component failure.  
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Appendix II SOLUTION OF THE INTEGRATION TERMS IN EQUATION (4.6) 
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Write (A2.2) and (A2.3) in matrix form as 
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Appendix III CONTINUOUS EXTENDED KALMAN FILTER FOR BLDC 

MOTORS  

 

A continuous version of the extended Kalman filter for the BLDC motor parameter 

identification problem is derived below.  

The BLDC motor dynamics model can be reformulated with the actuator perturbation 
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Assuming parameters and eK τ  are constants subjected to random perturbation  and 

, the dynamics of the parameters can be modeled as 
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 (A3.2) 

and the measurement with measurement noise ( )Tvv 21 ,=v  becomes 
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It is usually reasonable to assume that the plant perturbation  and 

measurement noise  are Gaussian and independent: 
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where  and  are the spectral density matrix 

of the actuation perturbation and measurement noise, and 
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function, and  is the mathematical expectation operation.   ][ )()ww( T θ+ttE

The linearized model can be obtained as  
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With the linear approximation functions, the a priori covariance matrix is computed 

recursively from the a posteriori covariance matrix at previous step 
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The Kalman gain can be computed as 
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v

T
me ΣCtΣtG −=  (A3.9) 

And the state can be estimated with the measurement as  
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The continuous Extended Kalman Filter consists of the equations (A3.8), (A3.9) and 

(A3.10). 
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