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PREFACE 

This dissertation contains reports and published and submitted articles related to 

development and integration of the GM-MTU parametric combustion model for spark 

ignition engines developed for General Motors.  

In this dissertation, Chapter II and Section V.1 were published in the 2008 Journal of 

Kones, Powertrain & Transportation. Chapter III was presented in the 2008 SAE World 

congress. Chapter IV has been submitted to Combustion Science and Technology, 

Section V.2 has been submitted to Applied Thermal Engineering and Section V.3 is 

planned for submission in Applied Stochastic Models and Data Analysis. Chapter VI was 

a part of the documentation of GM-MTU Predictive Combustion Model delivered to 

General Motors in 2010. Chapter VII contains a report of GM-MTU Stochastic 

Parametric Combustion Model. 
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ABSTRACT 

Ethanol-gasoline fuel blends are increasingly being used in spark ignition (SI) engines 

due to continued growth in renewable fuels as part of a growing renewable portfolio 

standard (RPS) [1]. This leads to the need for a simple and accurate ethanol-gasoline 

blends combustion model that is applicable to one-dimensional engine simulation.  

A parametric combustion model has been developed, integrated into an engine simulation 

tool, and validated using SI engine experimental data. The parametric combustion model 

was built inside a user compound in GT-Power. In this model, selected burn durations 

were computed using correlations as functions of physically based non-dimensional 

groups that have been developed using the experimental engine database over a wide 

range of ethanol-gasoline blends, engine geometries, and operating conditions. A 

coefficient of variance (COV) of gross indicated mean effective pressure (IMEP) 

correlation was also added to the parametric combustion model. This correlation enables 

the cycle combustion variation modeling as a function of engine geometry and operating 

conditions. The computed burn durations were then used to fit single and double Wiebe 

functions. The single-Wiebe parametric combustion compound used the least squares 

method to compute the single-Wiebe parameters, while the double-Wiebe parametric 

combustion compound used an analytical solution to compute the double-Wiebe 

parameters. These compounds were then integrated into the engine model in GT-Power 

through the multi-Wiebe combustion template in which the values of Wiebe parameters 

(single-Wiebe or double-Wiebe) were sensed via RLT-dependence.  

The parametric combustion models were validated by overlaying the simulated pressure 

trace from GT-Power on to experimentally measured pressure traces. A thermodynamic 

engine model was also developed to study the effect of fuel blends, engine geometries 

and operating conditions on both the burn durations and COV of gross IMEP simulation 

results. 
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I. INTRODUCTION 

I.1 BACKGROUND 

An internal combustion (IC) engine is a heat engine in which chemical energy from fuel 

is combusted with the resulting high temperature and pressure gas trapped in the cylinder. 

The resulting expansion of the gases transfers the sensible energy of the working fluid to 

useful mechanical work. A spark ignition (SI) engine is an IC engine that uses a high 

voltage spark for ignition in the combustion chamber, controlling combustion phasing.  

Combustion plays a major role in an SI engine because it provides the energy to do the 

work of the engine which depends on the fuel type and engine operating conditions. 

These contribute to the engine’s efficiency, performance, and emissions [2, 3]. Current 

stringent emissions standards by Environmental Protection Agency (EPA) and Corporate 

Average Fuel Economy (CAFE) standards drive research in SI engines to not only focus 

on emissions but also on fuel consumption and efficiency. However, experimental study 

in engines is time consuming and expensive. Therefore the industry and academia have 

an incentive to find alternatives to experimental testing. One way that the cost of research 

and development can be decreased is to perform more computational simulations in place 

of empirical experiments. Furthermore, with the increase in computer capability, engine 

modeling becomes more attractive and continues to grow rapidly [4].  

To model SI engines, one-dimensional engine simulation is widely used for design, 

development, calibration, and optimization because it is computationally efficient and 

enables the entire engine to be modeled [2, 3]. In general, the one-dimensional engine 

model consists of sub-models of selected processes that can be investigated using more 

detailed modeling approaches (quasi-dimensional or 3-dimensional models) to increase 

the accuracy of the overall engine simulation results.  

Combustion modeling plays a critical part in the overall engine simulation. In one-

dimensional engine simulations, the combustion model provides the burning rate that 

represents the heat release rate (HRR) in the combustion process for a given fuel blends, 

engine geometry, and set of operating conditions. The burning rate can be computed 
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empirically and or derived from physical, detailed coupled turbulent flames, or chemical 

kinetic correlations of combustion processes. Having a proper combustion model will 

enhance understanding of the physical phenomena, including the effects of valve phasing, 

type of fuel, compression ratio, exhaust gas recirculation (EGR), etc., and, thus, enable 

comprehensive design and optimization of the engine and its operation to meet the 

required objectives [2, 3].  

Over the years, many researchers have developed combustion models based on mean or 

median cycle that are applicable to one-dimensional engine simulation by defining the 

burning rates of fuel-air mixtures based on the First Law of Thermodynamics [5-8]. The 

burning rates of the fuel air mixture can also be described as function of engine geometry 

and in-cylinder conditions, fuel air mixture properties and flame speed [9-12]. The 

burning rate is commonly expressed using the mass fraction burned (MFB), a normalized 

integral of burning rate, which has a characteristic S-shaped curve. The Wiebe function is 

the most common function used in SI one-dimensional engine modeling to describe the 

MFB as a function of engine position during the cycle (crank-angle) [2, 3]. The main 

difference in its application is in determining the Wiebe parameters (“m” and ) that 

define the burn combustion duration characteristics [3, 7, 13]. The Wiebe function 

parameters can be determined by fitting the Wiebe function to the MFB profile [14]. 

However, some references [15, 16] preferred to fit the HRR rather than fit the MFB, 

which is the normalized integrated HRR profile.  

Cycle to cycle combustion variation in SI engines is also an important subject that has 

been widely studied because it limits the range of operation, especially under lean and 

highly diluted mixtures and combustion knock conditions [3, 17, 18]. Physical factors 

that lead to cycle to cycle combustion variation in SI engine are the imperfect mixing of 

fuel, air and residual, the location and phasing of spark, the size of the eddy discharged 

from the spark, and the mixture motion near the spark [19, 20]. By reducing the cycle 

variation, the dilution tolerance could be increased to the lean limit, or spark timing could 

be advanced further to achieve goals to reduce the emission and decrease the fuel 

consumption without encountering combustion knock [3]. There is a trade-off in cycle 
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variation and improved efficiency because of reducing heat transfer and pumping work. 

As a result, the best efficiency is typically achieved at the coefficient of variance (COV) 

of gross indicated mean effective pressure (IMEP) limit, not minimum COV [21]. 

The COV of IMEP is commonly used as a metric to quantify the cycle variation limits 

and trends. In the literature, Two correlations of COV of IMEP are found [22, 23]. In the 

first study, a linear regression of COV of IMEP was developed using 146 data point 

covering three different chamber geometries and varying the total exhaust gas 

recirculation (EGR), air-fuel ratio, spark timing, engine speed and fueling level using a 

single-cylinder 0.6 liter engine [22]. In the second study, a non-linear regression of a 

polynomial form for COV of IMEP was developed as a function of engine speed and 

load, equivalence ratio, residual fraction, burn duration of 0-10%, burn duration of 10-

90% and location of 50% mass fraction burn (MFB) using 6000 operating conditions 

collected from 13 different engines from 1.6 to 4.6 liters in displacement [23]. Although 

this correlation was developed using a wider range of data as compare to the first study, 

this regression computed negative COVs of IMEP within the range of data used in the 

correlation. This is mainly caused by the nature of a polynomial functional form, which 

has a combination of positive and negative signs in the equation. 

 

I.2 PROBLEM STATEMENT 

Alcohol-based fuels have been used in many ways for over hundred years now, including 

as a fuel for IC engines replacing the existing gasoline fuel, as a fuel additive to boost the 

octane number replacing the existing petroleum-based and metallic additives, and as a 

fuel for direct conversion of chemical energy into electrical energy in a fuel cell [24]. 

Ethanol is the most common of alcohols that has been widely used as an alternative to 

gasoline, not only because ethanol is a renewable fuel, but also because ethanol is less 

toxic than other alcohol fuels [24].  

In its recent application in SI engines, ethanol is blended with gasoline (10%-85%) to 

displace fossil fuels while at the same time increasing the octane number of the fuel blend 
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[25]. E10 (10% ethanol, 90% gasoline) has been used in the United States to oxygenate 

the fuel for cleaner combustion and lower carbon monoxide and hydrocarbon exhaust 

emissions. Recently, the Environmental Protection Agency granted the use of E15 for 

vehicle 2007 production and newer without necessary engine modifications [1]. 

However, E85 fuel (85% ethanol, 15% gasoline) requires modifications in the engine and 

or engine operating conditions.  

Flexible Fuelled Vehicles (FFVs) provide a solution to the problem of requiring the 

engine to be modified in order to run efficiently with different fuel blends. FFVs have 

adaptable SI engines, which can operate efficiently using fuel blends containing 0 to 85% 

ethanol. These vehicles are designed to have variable fuel delivery system, injection 

duration, spark timing, and etc. to address the changes of engine operating conditions 

with ethanol-gasoline fuel blends. However, the optimal parameters for each of these 

operating conditions have not been determined for all ethanol gasoline blends, 

particularly for blends containing higher proportions of ethanol. 

Fuel consumption is one of major concerns using ethanol blends in SI engine. The fuel 

consumption increases as the ethanol content increases in the fuel blends because ethanol 

has a lower energy content compared to gasoline. In addition, the ethanol is an 

oxygenated fuel which without careful property calculation will lead to enleanment in the 

air-fuel charge, thus lead to combustion stability problems. Engine cold start also 

dominates the ethanol blend fuels issues in the SI engines. However, regardless of these 

issues, ethanol decreases the amount of emissions, and generates less toxic emissions 

compared to petroleum–based fuels. Ethanol’s high octane number reduces the tendency 

of knocking in the SI engines. This enables ethanol to be used in SI engines at a higher 

compression ratio, resulting in a higher thermal efficiency. 

The concerns described above increases the need for a combustion model which 

incorporates the ethanol-gasoline blended fuel’s properties and its combustion 

characteristics to optimize the tolerance of the SI engines to variety of ethanol blend fuels 

and maximize the efficiency and fuel consumption by optimizing the engine operating 

conditions for a wide range of ethanol blends. Integration of the ethanol-gasoline blends 
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combustion model into the one-dimensional engine modeling enables modeling of SI 

engine for design, development, calibration, and optimization purposes, specially for 

FFVs [3, 26].  

This research will cover the development of a parametric combustion model for ethanol-

gasoline blend SI engines, the integration of the parametric combustion model to the one 

dimensional engine model, and the validation by comparing the simulation results with 

the experimental data.  

 

I.3 GOALS AND OBJECTIVES 

Because engines have become more complex with additional degrees of freedom in 

design and operation, including variable valve timing (VVT), variable valve lift (VVL), 

variable compression ratio (VCR), fuel blends, and etc. Development and optimization of 

these engines have become complex multivariable problems. As a result, engine 

simulation has become critical to the engine design, development, calibration, and 

optimization because it reduces time and cost in comparison to experimental studies 

alone. The engine simulation is also used in preliminary studies to find which 

experiments need to be done or to find which variables need to be focused on. The effects 

of these variables on engine performance are often confounded by its complex 

interaction.  Ideally the SI engine should produce emissions as low as possible, generate 

power as high as possible, and consume fuel as low as possible. At the same time it 

should be reliable, durable, and inexpensive. 

The first goal of this research is to develop a physically based parametric combustion 

model for SI engines that includes the effects of ethanol-gasoline blends, engine 

geometries, and engine operating conditions, that is applicable for one-dimensional 

engine simulation tools for prediction of burn rates and cycle combustion variation. The 

second goal is to integrate the parametric combustion model into GT-Power, a one-

dimensional engine simulation tool, to characterize the factors impacting combustion 
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rates and limits, thus, enabling the simulation to be used for improving the performance, 

and efficiency of SI engines.  

The objectives to accomplish these goals are:  

 Develop a method to compute ethanol-gasoline blends burned and unburned 

properties [Chapter II]. 

 Develop methods to analyze and quantify the mean value and stochastic nature of 

the combustion process in SI engines using the experimentally measured in-

cylinder pressure trace [Chapter III]. 

 Develop a set of physically based parameters to characterize the combustion rates 

[Chapter IV]. 

 Develop methods to determine optimal non-dimensional groups of physically 

based parameters and to correlate them to the combustion metrics: 

o Combustion burn duration correlations [Chapter IV] 

o Cycle combustion variation correlation [Chapter VII] 

 Develop methods to compute the Wiebe function parameters: 

o Single-Wiebe function parameters calculation using analytical solution 

and least squares methods [Section V.1] 

o Double-Wiebe function parameters calculation using least squares 

method [Section V.2] 

o Double-Wiebe function parameters calculation using analytical 

solution [Section V.3] 

 Develop methods to validate the parametric combustion model: 

o Single-zone pressure model [Chapter V] 
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o Thermodynamic engine model [Chapter VII] 

 Integrate the parametric combustion model into GT-Power [Chapter VI]. 

 

I.4 METHOD OF SOLUTION 

Figure I-1 shows the process of developing a parametric combustion model for SI 

engines. The process starts from the Development block and continues to the Validation 

block. Both of these blocks are developed in MathWorks. The process then progresses to 

the Integration block which is developed in Gamma Technologies.  

In the Experimental block, over 3700 test points were collected from Michigan Tech 

single cylinder - Cooperative Fuel Research (CFR) and Hydra engines, as well as General 

Motors multi cylinder Ecotec engines over a wide range of operating conditions. The 

detail specification of these engines can be found in Table IX-1 in Section IX.1 

Appendices. Table IX-2 lists the range of operating conditions and number of test points 

for each of the four engines that were used in this research. These engine databases cover 

a wide range of compression ratios from 8:1 to 18.5:1, ethanol blends from 0 to 85%, 

external exhaust gas recirculation (EGR) from 0 to 30%, full sweep of intake and exhaust 

cam resulting variable of residual fraction trapped in the cylinder, full sweep of spark 

timings, engine speeds from 900 rpm to 6600 rpm, and multiple loads.  

In the Development block, selection of methods to analyze and quantify the mean value 

and stochastic nature of the combustion profile using experimentally measured in-

cylinder pressure trace were developed in Chapter III. A single-zone MFB method with 

two unknowns (temperature and mass fraction burn) and a two-zone MFB method with 

five unknowns (burned and unburned temperature, burned and unburned volume, and 

mass fraction burn) were developed based on the first law of thermodynamic and the 

ideal gas law. Both these methods were compared to the apparent heat release method 

which is also derived from the first law of thermodynamics and the ideal gas law. A 

composite fuel concept that was introduced in Chapter II, was incorporated in the 
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calculation in this section to accommodate the effect of fuel blend properties in the 

combustion profile analysis. 

The method to determine the set of non-dimensional physically based Pi-groups and to 

correlate the combustion parameters was discussed in the Development block. A set of 

physically based parameters was selected from the literature using the coefficient 

correlation matrix and the principle component analysis methods. These physically based 

parameters were then grouped, resulting in the Pi-groups: 
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These Pi-groups were then used to determine the combustion characteristics, including 

the burn durations and the coefficient of variation (COV) of gross indicated mean 

effective pressure (IMEP). Chapter IV focused on the development the burn durations 

correlations as a function of non-dimensional Pi-groups. While Chapter VII focused on 

the development of the COV of gross IMEP correlation. Appendices Section IX.3 

presented the burn duration correlations for each of the four engines used in this research. 

Tables IX-3, IX-4, IX-5, IX-6, and IX-7 list the B0010, B1025, B1050, B1075, and 

B1090 correlations respectively, complete with the number of test points used in the 

correlation and the metrics to quantify the goodness of the fitted correlation including the 

R2, root mean square error (RMSE), and Akaike’s information criteria (AIC). Figures IX-

1 and IX-2 show the B0010 and B1075 correlations for each engine used in this research. 

Each engine was found to have its own burn duration characteristics that correlate well 

with the physically based non-dimensional Pi-groups. Combination data taken from the 

GM multi-cylinder LAF engines, the GM multi-cylinder turbo-charged LNF engines, and 

the MTU single-cylinder Hydra engine was found to have a good correlation to the Pi-

groups. The MTU single-cylinder CFR engine data, a representation of an older engine, 

was found to have different combustion characteristics in comparison to the rest of 

engine’s data, used in this research, which represent the newer modern engines. 

To reconstruct a MFB profile from burn durations (B0010, B1025, B1050, B1075, and 

B1090) in the Validation block, methods of calculating the Wiebe function parameters 

were developed, for both single-Wiebe and double-Wiebe functions. An analytical 
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solution, a least squares method, and a combination of both were used to compute the 

single-Wiebe function parameters which has two unknowns and the double-Wiebe 

function parameters which has five unknowns. Section V.1 focused on the single-Wiebe 

function, Section V.2 focused on the double-Wiebe function calculation using the least 

squares method, and Section V.3 focused on the double-Wiebe function calculation using 

the analytical solution. It was found that the double-Wiebe function matches the 

experimental MFB profile better than the single-Wiebe function. 

To reconstruct a pressure trace from MFB profile in the Validation block, a single-zone 

pressure model was developed based on the first law of thermodynamics and the ideal gas 

law in Chapter V. This single-zone pressure model was also used in a thermodynamic 

engine model, developed in Chapter VII. In addition to the single-zone pressure model, 

the thermodynamic engine model also incorporates the single-Wiebe function parameter 

calculation and empirical correlations including the residual fraction correlation as a 

function of valve overlap factor, engine speed, equivalence ratio, intake, and exhaust 

pressure, the burn durations (B0010, B1025, B1050, B1075, and B1090) and COV of 

gross IMEP as a function of non-dimensional Pi-groups. 

In the Integration block, a parametric combustion model was developed in the GT-

Power interface. A user compound was developed to contain the burn durations and COV 

of gross IMEP correlations and the Wiebe function parameters calculation. Two 

parametric combustion models were developed including single-Wiebe and double-

Wiebe parametric combustion models. Validation of the parametric combustion models 

was also performed in the GT-Power using multi-cylinder engine models. Chapter VI 

focused on the development and validation of parametric combustion model in GT-

Power. Once the parametric combustion model is verified and validated, the parametric 

combustion model can be used in the Application block for engine design, engine 

calibration, and engine optimization. 
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Figure I-1 Parametric combustion model development process 
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I.5 METHODS SUMMARY   

Below is the summary of methods that were used in this dissertation.  These methods 

were developed in the Matlab interface, unless mentioned otherwise. 

 Composite fuel concept 

The composite fuel concept can be used to compute the burned and unburned fuel 

blends, not only for ethanol gasoline fuel blends but also for hydrocarbon, 

alcohol, and oxygenated hydrocarbon fuels. This concept is important in 

determining the air-fuel mixture properties to avoid enleanment in the air-fuel 

charge that may lead to cycle combustion variation. 

 Single-zone and two-zone MFB analysis 

The single-zone and two-zone MFB including the effect of heat transfer and 

crevice volume can be used to quantify the combustion characteristics both mean 

value and cycle to cycle basis using the experimentally measured pressure trace. 

The single-zone MFB calculation is a robust data analysis in comparison to the 

two-zone MFB calculation. However for detailed combustion efficiency and in-

cylinder temperature profile, the two-zone MFB calculation including the specific 

heat as a function of temperature, and the inclusion of heat transfer and crevice 

effects should be used since the thermodynamic properties of the burned and 

unburned mixture was more accurately quantified. 

 Non-linear least square fitting method 

The non-linear least square fitting method can be used to correlate the combustion 

metrics (burn durations and COV of IMEP) to the physically based non-

dimensional Pi-groups. This method also could be used to find correlation among 

experimental variables with many different functional forms, including sum-

product, polynomial-product, and power-product functional forms. The power-
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product functional form gives the clearest result of these functional forms because 

it allows significant variables to be identified by observing the correlation. 

 Analytical solutions of single-Wiebe and double-Wiebe functions 

The analytical solutions of single-Wiebe and double-Wiebe functions provide a 

simple straight forward formula to determine the single-Wiebe and double-Wiebe 

parameters which can be used in engine software that have limited computational 

capability.  

 Least squares methods of the single-Wiebe and double-Wiebe functions 

The least squares methods of the single-Wiebe and double-Wiebe functions 

provide more accurate result in determining the single-Wiebe and double-Wiebe 

parameters. Although the least squares method of single-Wiebe function is 

applicable for commonly used engine software, however the complexity of the 

computation in the least squares method applied to the double-Wiebe function 

limits its direct use in engine modeling software. 

 Single-zone pressure model 

The single-zone pressure model can be used to reconstruct pressure trace from a 

given or computed MFB profile. This model allows the combustion modeling 

result to be compared to the experimental pressure data, which enables analysis of 

engine performance, fuel consumption, and efficiency. 

 Thermodynamic engine model  

The thermodynamic engine model incorporates the methods for fitting the Wiebe 

function, reconstructing the pressure trace, and computing MFB, and the 

correlation of residual fraction, burn durations and COV of gross IMEP. The 

thermodynamic engine model can be used to exercise the engine response on 

performance, fuel consumption, and efficiency with multiple inputs of variables 

including engine geometries and operating conditions. This allows a faster 
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computational speed in comparison to commonly used engine software, GT-

Power, which enables sensitivity studies of the variables with respect to the 

performance and efficiency of the engine. This also can be used to generate test 

data for further used in engine modeling including  vehicle simulation and/or 

virtual test engines.  

 GM-MTU single-Wiebe parametric combustion model developed in GT-Power 

interface 

This combustion model can be integrated and used in any engine simulation in 

GT-Power which computes the single-Wiebe function parameters as a function of 

engine geometries and operating conditions through physically based parameters. 

Since the combustion model incorporates the empirical parameters, this allows the 

user to be confident in the single-Wiebe function parameters calculation for the 

range of engine geometries and operating conditions in which the combustion 

model was developed in comparison to arbitrary input of the single-Wiebe 

parameters in GT-Power. 

 GM-MTU double-Wiebe parametric combustion model developed in GT-Power 

interface 

This combustion model can be integrated and used in any engine simulation in 

GT-Power which computes the double-Wiebe function parameters as a function 

of engine geometries and operating conditions through physically based 

parameters. Similarly, since the combustion model incorporates the empirical 

parameters, this allows the user to be confident in the double-Wiebe function 

parameters calculation in the range of engine geometries and operating conditions 

in which the combustion model was developed in comparison to arbitrary input of 

the double-Wiebe parameters in GT-Power. The GM-MTU double-Wiebe 

parametric combustion model provides more accurate results, particularly for 

operating conditions that have a non-symmetrical burn profile. However, it also 

increases the computational complexity. 
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I.6 RESEARCH CONTRIBUTIONS AND SIGNIFICANT FINDINGS  

Below are the main contributions of this research and the significant findings from this 

dissertation. 

 Combustion modeling with predictive capability has been a fascinating subject for 

many years. The combustion model that is applicable to one-dimensional engine 

simulation is used to compute the burn rate which represents the in-cylinder 

pressure and temperature in the combustion chamber. Several empirical burn 

duration correlations, as a function of engine operating conditions, have been 

proposed. In the literature, the computed burn durations from measured pressure 

trace were correlated to the engine operating conditions using combination 

polynomial and product forms [27-29] and the product-power form [30-32].  

In general, the combination of polynomial and product functional forms found in 

the literature have a nested function of polynomial function of particular variable 

and its base condition that might vary for different engines. For example in 

literature [27], the burn duration was defined as a function of a fixed burn 

duration taken from base condition and product of laminar flame speed, spark 

timing, and speed correlations. Each of these correlations (laminar flame speed, 

spark timing, and engine speed correlations) has its own functional form, mainly a 

polynomial functional form. This nested function does not give a clear correlation 

between the variables by looking at the correlation. Additional variables involved 

in the correlation make the correlation more complex [27-29]. However, the 

combination of power and product functional forms found in the literature have 

simpler correlation which allows the correlation among the variables to be 

observed directly from the correlation and minimizes the potential for non-

physical correlation [30-32].  

The burn duration was previously assumed to be a function of cylinder geometry 

and turbulent flame speed which are a function of engine speed and laminar flame 

speed only [11]. The burn duration was also correlated as a function of 
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compression ratio, engine speed, equivalence ratio, and the spark timing [28]. In 

addition to engine speed and the spark timing, the laminar flame speed was also 

included in the burn duration correlation [27]. Derived based on a turbulent 

combustion model for SI engines, the burn duration correlation was fitted to 

parameters including the height of combustion chamber (h), piston bore (B), mean 

piston speed ( pS ), laminar flame speed (SL) and kinematic viscosity ( ) [10, 30, 

31].  

The burn duration from 0 to 10% MFB (B0010) found in the literature [10, 31], 

known as the early flame development period, was derived from the turbulent 

flame propagation. B0010 was defined a function of  pS  to the power of 1/3, 










LS

h
 to the power of 2/3 and a constant that may change for different engines. 

Similarly the burn duration from 10% to 90% MFB (B1090) found in the 

literature, known as the rapid burning period, was also derived from the turbulent 

flame propagation. B1090 was defined a function of 







h
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,  pS  to the power 
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h
 to the power of 2/3 and a constant that may change for different 

engines. The star symbol in this correlation indicates that the corresponding 

property was computed at the location of 50% MFB (CA50). 

Based on this literature study and additional parameter investigations, six main 

parameters were selected and used in this dissertation. These physically based 

parameters include: engine bore (B) and height of the combustion chamber (h) to 

represent the engine dependence, mean piston speed (Sp) and laminar flame speed 

(SL) to represent the flow dependence, and kinematic viscosity of the unburned 

mixture () and the specific internal energy (Q* = (mf /m) QLHV) to represent the 

working gas property dependence.  Additional parameters describe the engine 

parameters: mass fraction burn, residual fraction, spark timing, equivalence ratio, 
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engine speed, load, and valve timing [17, 30, 31]. A non-dimensional analysis 

using Buckingham’s Pi Theorem [33] was performed using the parameters 

defined above, resulting in four Pi-groups 
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linear least squares method was then used to correlate the burn durations with the 

Pi groups with a product-power form. The detailed process of developing the burn 

duration correlation can be found in Chapter IV that focuses on developing the 

burn duration correlation using data obtained from MTU-CFR engine using 

variable compression ratios from 8:1 to 16:1, a full sweep of spark timings and 

EGR from 0 to 30% using five different ethanol-gasoline blends. 

Appendices Section IX.3 presents the burn duration correlations for each of the 

four engines used in this research. Tables IX-3 and IX-7 list the B0010 and B1075 

correlations respectively complete with the number of test points used in the 

correlation and the metrics to quantify the goodness of the fitted correlation 

including the R2 and the root mean square error (RMSE), and the Akaike’s 

information criteria (AIC). The AIC not only quantifies the deviation of the fitted 

correlation from the data but also accounts for the number of parameters used in 

the correlation. The AIC is an important metric to avoid over-parameterization in 

the model fitting process. Figures IX-1 and IX-2 show the B0010 and B1075 

correlations for each engine used in this research. Except for the GM-LAF, all the 

engine data was collected at stoichiometric mixture condition. As a result, the 

exponent for x5 in Table IX-3 was 0 for data collected from GM-LNF, MTU-

Hydra, and MTU-CFR engines. 

In general, the fuel related Pi-groups including Q

SL
2

 and 


pSh
 have a weak effect 

on the B0010 correlation particularly with the newer engines used in this research 

(multi cylinder GM-LAF, multi cylinder turbo charged GM-LNF, single cylinder 

MTU-Hydra engines). However when the single cylinder MTU-CFR engine data 

was used, the correlation showed a significant impact of these fuel related Pi-
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groups in B0010. This MTU-CFR engine represents an older engine design which 

has different combustion characteristics in comparison to the newer engine 

designs used in this research. Figure IX-1, rows 5 and 6 have fitted B0010 

correlation plots using combine data obtained from all the engines and combine 

data obtained from all the newer engines respectively. It is confirmed that the 

MTU-CFR engine data has different characteristics in comparison to the newer 

engines data. 

The following comparing the burn duration correlation developed in this 

dissertation to the existing burn duration correlation [30-32] using 2680 data point 

collected from GM-LAF and MTU-Hydra engines. The existing B0010 were 

obtained by fitting the data to Equation (I-1) to determine the coefficient C1. The 

existing B1075 were obtained by fitting the data to Equation (I-2) to determine 

the coefficient C2.  

     3
2

3
1

1%100 SLhSpC     (I-1) 

       3
2

5000
3

1

50502%7510 CACACACA SLhSphBC     (I-2) 

Figure I-2 shows the B0010 correlation as a function of Pi-groups developed in 

this dissertation. The R2 is 0.91 and the RMSE is 2.28 oCA. Figure I-3 shows the 

existing B0010 correlation using the same data. The R2 is -2.35 and the RMSE is 

13.78 oCA. The negative value of R2 indicates that the existing correlation is 

worse than a horizontal line that goes through the mean value of the B0010 [34]. 

It is clear to see that the two terms in the existing B0010 correlation are not 

enough to describe the B0010 taken from a wide range of geometries and 

operating conditions.  

Figure I-4 shows the B1075 correlation as a function of Pi-groups developed in 

this dissertation. The R2 is 0.89 and the RMSE is 1.40 oCA. Figure I-5 shows the 

existing B1075 correlation applied to the same data. The R2 is -6.31 and the 

RMSE is 11.18 oCA. Similarly, the negative value of R2 indicates that the existing 
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correlation is worse than a horizontal line that goes through the mean value of the 

B1075. This confirms that the existing B1075correlation with three terms is not 

sufficient to define the B1075 taken from engines with a wide range of geometries 

and operating conditions. 

Figure I-2 B0010 correlation as a 

function of Pi-groups (0 ≤ E ≤ 85; 11 ≤ 

CR ≤ 15.5; 1200 ≤ N ≤ 6600; 257 ≤ Net 

IMEP ≤ 1624; 0.98 ≤  ≤ 1.45) 

Figure I-3 Existing B0010 correlation 

(0 ≤ E ≤ 85; 11 ≤ CR ≤ 15.5; 1200 ≤ N 

≤ 6600; 257 ≤ Net IMEP ≤ 1624; 0.98 

≤  ≤ 1.45) 

 

Figure I-4 B0010 correlation as a 

function of Pi-groups (0 ≤ E ≤ 85; 11 ≤ 

CR ≤ 15.5; 1200 ≤ N ≤ 6600; 257 ≤ Net 

IMEP ≤ 1624; 0.98 ≤  ≤ 1.45) 

Figure I-5 Existing B0010 correlation 

(0 ≤ E ≤ 85; 11 ≤ CR ≤ 15.5; 1200 ≤ N 

≤ 6600; 257 ≤ Net IMEP ≤ 1624; 0.98 

≤  ≤ 1.45) 
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 The coefficient of variation (COV) of indicated mean effective pressure (IMEP) is 

commonly used to describe cycle variations. Although the maximum pressure, the 

location of maximum pressure, the maximum rate of pressure rise, the location of 

the maximum pressure rise, the in-cylinder pressure trace over a certain range of 

crank angle, and the burn durations of 0-1%, 0-10%, 0-50% and 0-90% are also 

found in the literature as metrics to quantify the cycle variation limits and trends 

[3]. 

Two correlations of COV of IMEP are found in the literature [22, 23]. In the first 

study, a linear regression of COV of IMEP was developed using 146 data points 

obtained from three different chamber geometries, varying the total exhaust gas 

recirculation (EGR), air-fuel ratio, spark timing, engine speed and fueling level 

using a single-cylinder 0.6 liter displacement engine [22]. Using a wide range of 

engine geometries and operating conditions, The COV of IMEP was found to 

have a non-linear correlation to the engine geometry and operating conditions 

[23].  

In the second study, a non-linear regression of a polynomial form for COV of 

IMEP was developed as a function of engine speed and load, equivalence ratio, 

residual fraction, burn duration of 0-10%, burn duration of 10-90% and location 

of 50% mass fraction burn (MFB) using 6000 conditions collected from 13 

different engines from 1.6 to 4.6 liters in displacement [23]. Although this 

correlation was developed using a wider range of data compared to the first study, 

this regression computed negative COVs of IMEP within the range of data used in 

the correlation. This was mainly caused by the nature of the polynomial 

functional form, which has a combination of positive and negative signs in the 

equation.  

In this dissertation, the COV of gross IMEP is correlated using data taken from 

two engine families over nearly 2900 operating conditions using a product-power 

functional form. The engines data vary from 1200 rpm to 6600 rpm with net 

indicated mean effective pressures ranging from 230 kPa to 1500 kPa, 
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compression ratios ranging from 11:1 to 15.5:1, and equivalence ratios ranging 

from 0.9 to 1.45, using seven different ethanol-gasoline blends. A correlation 

coefficient matrix was used to observe the non-linear power correlation between 

the COV of gross IMEP and the potential informative variables, including the 

burn durations, the COV of burn durations, and non-dimensional Pi-groups that 

was used in the burn duration correlation. 

In comparison to the standard deviation (SD) of gross IMEP, the COV of gross 

IMEP was found to correlate well with the variables. The COV of gross IMEP 

was also found to highly correlate with B1075. Therefore it enables the COV of 

gross IMEP to be estimated only using the B1075. This allows safe operating 

conditions to be determined for engine experimental testing preventing potential 

damage to the engine. This will also allow more effective selection of conditions 

for experimental testing. The detailed process of developing the COV of gross 

IMEP correlation can be found in Chapter VII that focuses on developing the 

COV of gross IMEP correlation using data obtained from GM-LAF and MTU-

Hydra engines on variable of compression ratios, full sweep of spark timing and 

cam phasing, a wide range of engine speeds and loads, and using seven different 

ethanol-gasoline blends. 

The following compares the COV of gross IMEP correlation developed in this 

dissertation to the existing COV of gross IMEP correlation [23] using 2680 data 

points collected from GM-LAF and MTU-Hydra engines. The existing COV of 

gross IMEP were obtained using Equation (I-3) [23].  
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Where: 

RPM   engine speed (revolution per minute / 1000) 

IMEP  engine load (bar) 

    equivalence ratio 

RMF   residual gas fraction  

B0010   burn duration 0-10% MFB 

B1090  burn duration 10% to 90% MFB 

CA50   location of 50% MFB 

 

Figure I-6 shows the COV of gross IMEP correlation as a function of Pi-groups 

developed in this dissertation. The R2 is 0.63 and the RMSE is 0.88%. Figure I-7 

shows the existing COV of gross IMEP correlation using the same data. The R2 is 

-13.56 and the RMSE is 5.49%. Again, the negative value of R2 indicates that the 
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existing correlation is worse than a horizontal line that goes through the mean 

value of the COV of gross IMEP. It is clear that the COV of gross IMEP as a 

function of Pi-groups has better correlation in comparison to the existing COV of 

gross IMEP correlation. Negative values are also observed in the existing COV of 

gross IMEP.  

COV of gross IMEP in this dissertation was also developed as a function of burn 

durations. It was found that the COV of gross IMEP is highly correlated with 

B1075. Figure VII-2a in Chapter VII shows a correlation of COV of gross IMEP 

as a function of B1075. The R2 is 0.7 and the RMSE is 0.79%.  

 

Figure I-6 COV of gross IMEP 

correlation as a function of Pi-groups 

(0 ≤ E ≤ 85; 11 ≤ CR ≤ 15.5; 1200 ≤ N 

≤ 6600; 257 ≤ Net IMEP ≤ 1624; 0.98 

≤  ≤ 1.45) 

Figure I-7 Existing COV of gross IMEP 

correlation (0 ≤ E ≤ 85; 11 ≤ CR ≤ 

15.5; 1200 ≤ N ≤ 6600; 257 ≤ Net 

IMEP ≤ 1624; 0.98 ≤  ≤ 1.45) 

 

I.7 DISSERTATION OUTLINE 

This dissertation is presented based on a number of publications including reports, 

published manuscripts, and manuscripts submitted at the time of writing this dissertation. 
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Each chapter focuses on a different subject and has its own introduction, discussion, and 

conclusion. The first page of each chapter contains summary of that chapter.  

The motivation statement in the introduction in some chapters is similar in some cases. 

For example: Chapter V contains three articles about the Wiebe function parameters 

calculations. The first article focuses on the single-Wiebe function parameters calculation 

using the analytical solution and the least squares method approaches. The second article 

focuses on the double-Wiebe function parameters calculation using the least squares 

method. The last article focuses on the double-Wiebe function parameters calculation 

using the analytical solution which has a simple and straight forward calculation that is 

applicable to the engine simulation tool, GT-Power, which has a limited computational 

capability.  

The chapters in this dissertation are outlined as follow:   

CHAPTER II FUEL BLENDS PROPERTY CALCULATION 

Properties of the fuel-air and combusted gas mixtures play an important role in the mass 

fraction burn and heat release analysis. A composite fuel was introduced to represent 

fuel-blend, including hydrocarbon, alcohol, and oxygenated hydrocarbon fuels. This 

method is robust in calculating fuel blends properties, thus, in calculating the properties 

of burned and unburned mixture application to IC engines, including the air fuel ratio, 

molecular weight, specific heat, viscosity, and lower heating value.  

CHAPTER III MASS FRACTION BURN ANALYSIS 

Mass fraction burn (MFB) calculation tools, including estimation of the heat transfer and 

crevice volume effects, have been developed to analyze the mean value and stochastic 

nature of combustion process using experimentally measured pressure traces. Single-zone 

MFB with two unknowns (temperature and mass fraction burn) and two-zone MFB with 

five unknowns (burned and unburned temperature, burned and unburned volume, and 

mass fraction burn) analyses have been exercised to calculate the MFB and have been 

compared to the apparent heat release method. The single-zone, two-zone and apparent 
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heat release methods can be used to study the MFB profile, however the two-zone model 

should be used if the detail in-cylinder temperature data an or the accurate combustion 

efficiency were needed.  

CHAPTER IV BURN DURATION CORRELATIONS 

A set of physically based parameters has been selected based on the literature study. 

Buckingham’s Pi theorem was used to group these parameters into non-dimensional Pi-

groups. A non-linear least squares method was developed and used to correlate the burn 

duration as a function of the physically based non-dimensional Pi-group parameters using 

a power-product functional form. Using these burn duration correlations, the effect of 

engine geometry variables and operating conditions can be observed. 

CHAPTER V WIEBE FUNCTION PARAMETER ESTIMATION 

Methods to determine the both single-Wiebe and double-Wiebe functions parameters 

have been developed by fitting the Wiebe function to the MFB profile. An analytical 

solution, a least squares method, and a combination of both were used to estimate the 

single-Wiebe function parameters which has two unknowns and the double-Wiebe 

function parameters which has five unknowns. Section V.1 focused on the single-Wiebe 

function parameters estimation using both analytical solution and the least squares 

method. To improve the fit to the experimental MFB profiles, Section V.2 focused on the 

double-Wiebe function parameters estimation using the least squares method. Section V.3 

focused on the analytical solution for the double-Wiebe function parameters using a 

limited burn durations information (B0010, B1025, B1050, B1075, and B1090). 

To measure the fit of the estimated Wiebe function, a single-zone pressure model was 

developed to reconstruct the pressure trace from a given MFB profile. The reconstructed 

pressure trace from the estimated Wiebe function was then compared with the 

experimentally measured pressure trace using metrics including the RMSE, the difference 

in Net IMEP, and the maximum difference in pressure trace. The double-Wiebe function 

fits better to the experimental MFB profile thus its reconstructed pressure trace matches 
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better to the experimentally measured pressure trace in comparison to the single-Wiebe 

function. 

CHAPTER VI COMBUSTION MODEL INTEGRATION 

A user compound was developed in GT-Power to contain the parametric combustion 

model. The user compound was chosen because of its flexibility in GT-Power interface, 

including sharing the compound with other GT-Power users and further modifications in 

the compound. An RLT-dependence was used to connect the predictive combustion 

compound with the multi-Wiebe combustion template in the main engine model. The 

RLT-dependence was chosen because there were no signal ports available in the multi-

Wiebe combustion template at the time this parametric combustion compound being 

built. Even though this parametric combustion compound was built in GT-Suite V6 built-

12, this parametric combustion compound was ready for the GT-Suite V7 which has open 

ports in the multi-Wiebe combustion template, thus enables the direct connection in and 

out the multi-Wiebe template. 

CHAPTER VII CYCLE COMBUSTION VARIATION 

Coefficient of variance (COV) of gross indicated mean effective pressure (IMEP) is 

commonly used to characterize the combustion duration and phasing variation in SI 

engines. A parametric model to predict the COV of gross IMEP in SI engines has been 

developed and integrated into the engine simulation tool GT-Power. A thermodynamic 

engine model has been developed to study the sensitivity of independent variables in the 

correlations, including burn durations and cycle combustion variation correlations. This 

thermodynamic engine model employed a residual fraction correlation as a function of 

overlap factor, engine speed, map and exhaust pressure, compression ratio, and 

equivalence ratio, burn duration and COV of gross IMEP correlations as a function of 

physically based non-dimensional groups. 
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CHAPTER VIII SUMMARY  

A comparison between the single-Wiebe and double-Wiebe parametric combustion 

model were discussed. This chapter also discusses several ways to improve the 

parametric combustion modeling in the future.  

CHAPTER IX APPENDICES 

The appendices contain a compilation of short reports related to the development of the 

parametric combustion model including the engine databases specifications, range of 

operating conditions, comparison of burn duration correlations for each engine datasets, 

and copyright permissions to reprint the published papers.  
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II. FUEL BLENDS PROPERTY CALCULATION 

Properties of the fuel-air and combusted gas mixtures play an important role in the mass 

fraction burn and heat release analysis. A composite fuel was introduced to represent a 

certain fuel blend by assuming an ideal and non-reacting state throughout the mixing 

process. This method is robust in calculating fuel blends properties, including 

hydrocarbon, alcohol, and oxygenated hydrocarbon fuels. Once the fuel mixture 

properties were known, the properties of burned and unburned mixture properties were 

determined for a combustion reaction based on mole fraction and returned results on a 

mass basis for application to IC engine calculations.  

Since the manuscript was written on a mole fraction basis, the following equations can be 

used to exchange the units back and forth between mole fraction, volume fraction and 

mass fraction. Considering two components of fuels, the mole fraction and mass fraction 

of the ethanol in the ethanol-gasoline blends is defined as follow: 
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Where: 

% Vol Ethanol  Fraction volume of ethanol in the ethanol-gasoline blends 

% Mole Ethanol  Fraction mole of ethanol in the ethanol-gasoline blends 

% Mass Ethanol  Fraction mass of ethanol in the ethanol-gasoline blends 

ρ   Density of species (Kg/m3) 

MW    Molecular Weight of species (kg/kmol) 

Subscript E  Ethanol 

Subscript G  Gasoline 
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Abstract 

The Mass Fraction Burn (MFB) and Heat Release Rate (HRR) reflect the amount of fuel 

burned, and the rate of burning throughout the combustion process in an internal 

combustion engine. These parameters play a crucial role in research and development 

endeavors focused on engine efficiency, emissions, and overall operating performance.  

They are computed by analyzing measured pressure data and applying thermodynamic 

principals to determine the energy released during the combustion process. Thus, the 

properties of the fuel-air and combusted gas mixtures play an important role in the 

analysis.  

Engine pressure data were taken from a Spark-Ignition Cooperative Fuels Research 

(CFR) engine operating at a constant load of 330 kPa Net Indicated Mean Effective 

Pressure (Net IMEP) and using five ethanol-gasoline fuel blends: E0 (gasoline), E20, 

E40, E60, and E84.  The fuels were assumed to be in a non-reacting state throughout the 

mixing process. Once the fuel mixture properties were known, the fuel-air and burned 

mixture properties were determined using the fuel-air mass ratio.  The analysis presented 

within this paper details the process by which the fuel, fuel-air, and burned mixture 

properties can be determined. The MFB of five different fuel blends at a chosen operating 

condition was also presented along with the pressure trace, the temperature, and the 

gamma profile at the end of this paper.    

 

Keywords: ethanol-gasoline blend, mass fraction burn, heat release, IC engine, fuel-air 

mixture properties 

 

Introduction 

Properties of species that are involved in engine combustion as a function of temperature 

can be found in JANAF thermochemical data tables [35]. However, the property of the 

mixture of particular species is not readily available. Newhall and Starkman [36] 
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developed the thermodynamic properties charts of burned and unburned mixtures of 

octane and air. Later, Olikara and Borman [37] developed a computer program to 

calculate the properties of products based on equilibrium combustion. Both of these 

works started the calculation based on mole fraction and returned results on a mass basis 

for application to IC engine calculations. Investigation of the thermodynamic properties 

of ethanol and gasoline blends in this research started from the concept of blending the 

fuels and then moved to the concept of mixing between the air, fuels and the products of 

the combustion. This included the calculation of gamma. Gamma is the ratio of the 

constant pressure specific heat to the constant volume specific heat which depends on the 

fuel and air mixture conditions and plays an important role in further analysis of the 

combustion process in IC engines. 

Mass fraction burned as a function of crank angle represents the percentage of fuel 

consumed versus crank angle during the combustion process in an engine cycle. It shows 

that the rate at which the fuel-air mixture burns increases after the spark discharge to a 

maximum about halfway through the burning process and then decreases to zero as the 

combustion process ends. The mass fraction burned curve, which has a characteristic S-

shape, is commonly used to characterize and develop the combustion process. A single-

zone model has been developed and compared with a two-zone model using ethanol-

gasoline fuel blends in a CFR engine [38]. Derived from the energy balance and the ideal 

gas equations, the single-zone model, with two unknowns (temperature and mass fraction 

burn), is proven to correlate well with the two-zone model, particularly in regards to 

combustion phasing. In this work, the mass fraction burn is calculated from experimental 

data using the single-zone model. 

 

Experimental Setup 

A single cylinder CFR engine, (manufactured by the Waukesha Motor Company), was 

used to generate the data used in this research. Several modifications have been 

incorporated to meet the criteria for this research. The experiments were conducted by 
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sweeping ethanol concentration, spark timing and compression ratio at constant engine 

speed and a constant indicated load of 330 kPa Net IMEP. The cylinder pressure data was 

obtained with an AVL GH12D piezoelectric pressure transducer. Data acquisition, 

including the measurement of cylinder pressure and various other critical pressures and 

temperatures, was accomplished using a combination of National Instruments (NI) 

hardware and software. A control system for this CFR engine had been previously 

developed by Naber, et al., [39], with Mototron’s Motohawk rapid engine control 

development environment. Mototron’s Mototune was used as the calibration tool and 

ECU interface. The calibration tool was also used to record engine control parameters 

such as intake manifold pressure, air flow rate, spark timing, fuel injection pressure, 

injection duration, commanded equivalence ratio, etc.  

 

Composite Fuel 

Assuming an ideal, non-reacting mixing process, the formation of one mole of total fuel 

blend is expressed as: 

       


 zethanolzgasolinez OCHOCHEOCHE1  (II-3) 

The indexes of the composite fuel can be obtained as follow: 

     ethanolgasoline EE   1  (II-4) 
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Since gasoline is a refined petroleum product which consists of many hydrocarbons, 

given the molecular weight of 105 and the hydrogen to carbon ratio of 1.87, the averaged 

number of carbon atoms (equal to 7.56) can be calculated. Table II-1 shows the 

composition of gasoline-ethanol mixtures in the (CHOz) form. The , , and z for 
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gasoline and ethanol data are taken from Heywood [3], while the , , and z for gasoline 

ethanol blends are calculated using the composite fuel concept using the given base fuel 

composition.
 
 

 

Table II-1 Composition of gasoline-ethanol blends in the (CHOz) form 

Gasoline E 20 E 40 E 60 E 85 Ethanol 

 7.56 6.44 5.33 4.22 2.83 2.00 

 1.87 1.94 2.04 2.19 2.55 3.00 

z 0.00 0.03 0.07 0.14 0.30 0.50 

 

Combustion Reaction 

Considering complete combustion, the reaction of a single mole of an oxygenated-

hydrocarbon fuel can be expressed as follows: 

     2222222 22222

2 HnCOnOnNnOHnCOnNO
zA

OCH HCOONOHCO

s

z 


 



  (II-7) 

 
z

MWf




00.16008.1011.12 
  (II-8) 

 
4

1


sA  (II-9) 

The reactant and product compositions of one mole of oxygenated-hydrocarbon fuel 

reacted with air is summarized in Table II-5 (appendix). For a fuel-rich mixture, the water 

gas shift reaction constant is assumed to be a function of temperature, and there is no 

oxygen in the products. For a fuel-lean mixture, carbon monoxide and hydrogen are 

assumed not present in the products [3]. The ratio of the number of moles of products to 
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reactants does not vary significantly with respect to the ethanol concentration, as shown 

in Figure II-1. However, the total number of moles of reactants and products decreases 

significantly with higher ethanol content, particularly in the lean condition, as shown in 

Figure II-2. The inflection point that marks the stoichiometric reaction is caused by the 

difference in the rich and lean composition assumptions. 

  

Figure II-1 Ratio of number of moles of  

products to reactants of gasoline-ethanol 

blends as function of equivalence ratio 

based one mole of fuel 

Figure II-2 Number of moles of products 

and reactants of gasoline-ethanol blends 

as function of equivalence ratio based 

one mole of fuel 

 

The number of moles of reactant and product for stoichiometric combustion can be 

expressed: 
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Table II-2 shows the number of moles of reactant and product for stoichiometric 

combustion of the blended fuel in this research. 
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Table II-2 Ratio of number of moles of products to reactants of gasoline-ethanol blends 

at stoichiometric condition 

Gasoline E 20 E 40 E 60 E 85 Ethanol

#moles products 56.46 48.43 40.39 32.36 22.32 16.29 

#moles reactants 53.93 46.20 38.47 30.75 21.09 15.30 

#moles products/#moles reactants   1.05   1.05   1.05   1.05   1.06   1.07 

 

Lower Heating Value 

Using the fuel compositions provided in Table II-1, the molecular weight of the 

composite fuel is: 

  zMW f  00.16008.1011.12   (II-11) 

The lower heating value of the blended fuel mixture on a molar basis is expressed as: 

     ethanolgasolinef LHVELHVELHV  1  (II-12) 

The lower heating value of the blended fuel mixture on a mass basis is expressed as: 

 
f

f

f MW

LHV
LHV   (II-13) 

 

Air Fuel Ratio 

The air fuel ratio to completely burn the blended fuel can be calculated from equation 

below, where the number of moles of oxygen and nitrogen are given in Table II-5: 

 
ff

NNO

MWn

MWnMWn
AFR O




 2222  (II-14) 
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Table II-3 shows the molecular weight, lower heating value and the stoichiometric air 

fuel ratio of the blended fuels in this research. 

 

Table II-3 Molecular weight, the lower heating value and the stoichiometric air fuel ratio 

of gasoline-ethanol mixture using composite fuel calculation 

  Gasoline E 20 E 40 E 60 E 85 Ethanol 

MWf 105.00 93.20 81.40 69.60 54.85 46.00 

LHV (MJ/kg) 43.46 41.83 39.72 36.90 31.66 26.90 

AFR 14.54 13.99 13.28 12.33 10.56   8.96 

 

Molecular Weight - Reactants and Products 

Based on the composite fuel and combustion reaction calculation given in Table II-1 and 

Table II-5, the molecular weight of an oxygenated-hydrocarbon-air reactant mixture is 

calculated as: 

 
u

NNff

u n

MWnMWnMWn
MW OO 2222


  (II-15) 

And the molecular weight of the combustion products mixture is calculated as: 

 
b

HHNNOOOHOHCOCOCOCO

b n

MWnMWnMWnMWnMWnMWn
MW 2222222222


  (II-16) 

 

Figure II-3 shows the unburned molecular weight of gasoline-ethanol blends in mixture 

with air and the burned molecular weight of gasoline-ethanol blends after complete 

combustion. Due to the different assumption for products for rich and lean mixture, the 

molecular weight of the burned mixture has an inflection point at an equivalence ratio 
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equal to one. The effect of ethanol concentration is more pronounced in the burned 

portion than in the unburned portion. Table II-4 shows the unburned and burned 

molecular weight corresponding to the fuel blends used in this work for a stoichiometric 

reaction. 

 

Figure II-3 Molecular weight of unburned and burned of gasoline-ethanol blends – air 

mixture as function of equivalence ratio 

 

Table II-4 Stoichiometric unburned and burned molecular weight of a gasoline-ethanol 

air reaction 

  Gasoline E 20 E 40 E 60 E 85 Ethanol 

MWu 30.25 30.23 30.20 30.16 30.07 29.96 

MWb 28.89 28.84 28.77 28.66 28.41 28.12 

 

Gamma (Specific Heat Ratio) 

The gamma of the fuel mixture can be derived from the constant pressure heat capacity 

data that is widely available for ethanol and gasoline [3]. Similarly, for the unburned and 

burned mixtures, gamma is calculated based on each species. The constant pressure heat 
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capacity of those species can be found in Heywood [3]. The constant pressure specific 

heat capacity for the blended fuel mixture expressed on a molar basis is given by: 

     ethanolgasolinef pCEpCEpC  1  (II-17) 

The constant pressure specific heat capacity of an oxygenated-hydrocarbon-air reactant 

mixture that represents the unburned composition will be: 

 
u

NNff

u n

pCnpCnpCn
pC OO 2222


  (II-18) 

Similarly, the constant pressure specific heat capacity of the combustion products will be: 

 
b
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b n
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pC 2222222222


  (II-19) 

Gamma can be calculated equal to (Cp / (Cp-R)). Figure II-4 shows the unburned gamma 

of a gasoline-ethanol blend – air mixture as a function of temperature, and Figure II-5 

shows the burned gamma assuming ideal combustion. Overall, the gamma decreases as 

the ethanol concentration increases, and as the temperature increases.  

  

Figure II-4 Gamma unburned of 

gasoline-ethanol blend – air mixture as 

a function of temperature 

Figure II-5 Gamma burned of gasoline-

ethanol blend – air mixture as a 

function of temperature 
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Alternatively, the gamma of the burned mixture as a function of burned temperature and 

can be expressed by the following equation that covers stoichiometric combustion for all 

the fuel blends from E0 – E84 that have been used in this research with an error less than 

0.18%. Using this equation simplifies subsequent fraction burned calculations. 

 4329.1
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Mass Fraction Burn Analysis 

Figure II-6a shows the in-cylinder pressure trace in a CFR engine operating at a constant 

load and spark timing, for five different gasoline-ethanol fuel blends. Figure II-6b shows 

the mass fraction burn estimation using a single zone model, with the in-cylinder 

temperature profile and gamma as a function of temperature as inputs to the calculation. 

It is clearly shown that the mass fraction burn curve is a function of the pressure trace. 

The higher the ethanol content in the fuel blend, the higher the heat release rate, and thus 

the shorter the combustion duration. Figure II-6c shows the temperature profile, and 

Figure II-6d shows the gamma profiles starting from the point of ignition. The gamma 

decreases as the temperature increases.  This trend, as well as the rank ordering of the 

different ethanol concentrations is consistent with the results shown in Figure II-5.  
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c. Temperature profile d. Gamma profile 

Figure II-6 Five different gasoline-ethanol blends using single zone mass fraction burn 

model (CFR engine, CR = 8.0:1, spark advanced = 10° BTDC, speed = 900 RPM, load 

= 330 kPa Net IMEP) 

 

Conclusions  

Several equations have been reviewed and introduced that can be used to calculate 

various thermodynamic properties of blends of different fuels, fuel and air mixtures, and 

products of combustion.  Throughout this paper, these equations have been applied to the 

gasoline – ethanol blend ratios used in this research, and the results presented.  Following 

are several conclusions that can be drawn from this work: 

 The composite fuel concept that has been discussed in this paper is a simple and 

robust method for calculating various thermodynamic properties of fuel and fuel-

air blends, as well as products of combustion.  

 The number of moles of products and reactants is a function of both fuel 

composition as well as equivalence ratio. 

 The Molecular Weight of the burned mixture is affected by ethanol concentration 

much more significantly than the molecular weight of the unburned mixture.   

 The Molecular Weight of the burned mixture is a weak function of equivalence 

ratio for mixtures lean of stoichiometric, while it is a strong function of 

equivalence ratio for mixtures rich of stoichiometric. 
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 The gamma of both the unburned and burned mixtures is affected by variables 

such as ethanol concentration, equivalence ratio, and temperature.  Except in the 

burned mixture, rich of stoichiometric, gamma tends to decrease with increasing 

ethanol concentration, and equivalence ratio.  For burned mixtures rich of 

stoichiometric, gamma increases with increasing equivalence ratio. 

 The properties of all species will affect the in-cylinder temperature profile 

calculation.  

 

Nomenclature 

E   mole fraction of ethanol in the ethanol - gasoline mixture.  

  number of carbon atoms in the fuel 

  hydrogen to carbon ratio of the fuel 

z  oxygen to carbon ratio of the fuel 

As  stoichiometric moles of oxygen for hydrocarbon combustion 

 nitrogen to oxygen ratio of the air 

  equivalence ratio 

MWf  molecular weight of the fuel 

n  number of moles  

AFR  air fuel ratio 

LHV lower heating value 

 

Subscripts 

 b burned 

 e ethanol 

 f fuel 

 g gasoline 

 u unburned 

 s stochiometric reaction 
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Appendix 

Table II-5 Gas composition of 1 mole of oxygenated-hydrocarbon fuel combusted with air 
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III. MASS FRACTION BURN ANALYSIS 

Mass fraction burn (MFB) calculation tools have been developed to analyze the 

stochastic nature of the combustion process using measured pressure trace from engines 

for various ethanol-gasoline blend, over different engine geometries and operating 

conditions. One-dimensional single-zone MFB with two unknowns (temperature and 

mass fraction burn) and two-zone with five unknowns (burned and unburned temperature, 

burned and unburned volume, and mass fraction burn) analyses have been exercised to 

calculate the mass fraction burned in an engine operating on ethanol/gasoline-blended 

fuels using the cylinder pressure and volume data. Heat transfer and crevice volume 

effects were included in the both single-zone and two-zone MFB analysis methods. A 

comparison between the two methods was performed starting from the derivation of 

conservation of energy and the method to solve the mass fraction burned rates through 

the results including detailed explanation of the observed differences and trends. The 

apparent heat release method was used as a point of reference in the comparison process.  

It is concluded that if the objective of a heat release analysis is simply to study the shape 

and / or locations on the mass fraction burned curves, then any of the three models can be 

used with reasonable success.  However, if the objective includes accurate calculations of 

combustion efficiency, or the need for detailed in-cylinder temperature data (such as 

when doing further kinetic type modeling), the two zone model, with gamma as a 

function of temperature and gas composition, and with the effects of heat transfer and 

crevices should be employed. 
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Abstract 

One-dimensional single-zone and two-zone analyses have been exercised to calculate the 

mass fraction burned in an engine operating on ethanol/gasoline-blended fuels using the 

cylinder pressure and volume data. The analyses include heat transfer and crevice volume 

effects on the calculated mass fraction burned. A comparison between the two methods is 

performed starting from the derivation of conservation of energy and the method to solve 

the mass fraction burned rates through the results including detailed explanation of the 

observed differences and trends. The apparent heat release method is used as a point of 

reference in the comparison process. Both models are solved using the LU matrix 

factorization and first-order Euler integration. 

Experiments were conducted with a Cooperative Fuels Research (CFR) engine holding 

Net Indicated Mean Effective Pressure (Net IMEP) constant at 330 kPa and fueling at the 

respective stoichiometric condition for the air flow and ethanol fuel blend being tested. 

This study included four ethanol-gasoline fuel blends: E20, E40, E60, E84, and gasoline 

(E0) as a baseline. The results show that all three models consistently produce similar 

mass fraction burned profiles for the five different fuels tested. Furthermore, utilizing the 

gasoline case with gamma as a function of temperature shows that the two-zone model 

indicated 3% higher combustion efficiency compared to the single-zone model and 17% 

                                                 
2 Reprinted with permission from SAE Paper No. 2008-01-0320 © 2008 SAE International.   
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higher than the apparent heat release method. However, the location of the 10%, 50%, 

and 90% mass fraction burn points calculated between the methods are within 1° of each 

other when combustion phasing is near maximum brake torque (MBT).  For both the 

single and two-zone models, the effect of crevice and heat transfer effects appears near 

the end of the combustion process. Without the crevice model, the computed combustion 

efficiency of the single-zone model decreases by 8%. Without both crevice and heat 

transfer models the combustion efficiency decreases by 15% compared to the result of the 

single-zone full model. The combustion efficiency as calculated with the two-zone model 

decrease by 5% without crevice effects and 11% without both crevice and heat transfer 

effects. 

 

Introduction 

An experimental project is in process to characterize the interactions between ethanol 

concentration in ethanol / gasoline fuel mixtures, compression ratio, combustion phasing, 

and dilution.  A critical step in a study such as this is to perform detailed heat release 

analysis to better understand the combustion process.  However, before embarking on this 

task, the authors felt it best to fully investigate the commonly known analytical methods, 

including their ability to indicate changes due to ethanol concentration, as well as their 

sensitivity to the ratio of specific heat capacity of the gases (gamma), and the impact of 

heat transfer and crevice volume effects.  As such, this paper will provide an explanation 

and comparison of select heat release methods, while presenting the resultant effects of 

ethanol concentration, gamma variation, and heat transfer and crevice volume 

dependencies. 

The rate of heat release of the combustion process is strongly influenced by parameters 

such as the engine design, operating conditions, and fuel type. The heat release rate then 

has a significant impact on engine performance, not only in terms of specific output, but 

also in terms of efficiency and emissions. The integrated rate of heat release is often 

represented by the mass fraction burned (MFB). The mass fraction burn as a function of 
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crank angle has a characteristic S-shaped curve which represents the percentage of fuel 

consumed versus crank angle during the combustion portion of an engine cycle. The 

varying slope of this curve shows that the rate at which the fuel-air mixture burns, 

increases after the spark discharge to maximum level approximately halfway through the 

burning process and then decreases to zero as the combustion process ends. The MFB 

curve is commonly used to study and characterize the spark ignition combustion process.  

By analyzing the pressure in the cylinder of the engine (typically measured with a piezo-

electric pressure transducer), it is possible to compute the heat release rate as the fuel 

burns.  Due to the combustion of fuel, the pressure inside the cylinder exceeds that which 

would have resulted from closed volume polytropic compression and expansion (i.e. the 

motored pressure trace). The pressure rise over a given crank angle interval is 

proportional to the mass of fuel burned over that same interval.  This method, commonly 

known as the apparent heat release method, was developed by Rassweiler and Withrow in 

the 1930’s [5]. 

Krieger and Borman [6] developed a method to include both the effects of heat transfer 

and the dissociation of the products of combustion in the calculation of the apparent heat 

release.  This method was also used by Heywood et al. [7] with application to SI engine 

simulation.  In fact, due to its simplicity, this method has been widely used by many 

engine researchers since its initial development.  

Gatowski et al. [8] developed a single-zone heat release model, and later, Chun and 

Heywood [40] improved upon this single-zone model by introducing an accurate way to 

model the ratio of specific heats (gamma). The method averages the gamma computed 

from two separate zones. The same field of study in finding the correct gamma is done by 

Klein and Eriksson [41]. Later Cheung and Heywood [42] concluded that the single-zone 

heat release model is remarkably robust, and any error is most likely from the measured 

pressure and mass flow rate data. 

The development and application of a two-zone heat release model by separating the 

charge into two regions (a burned and unburned region) had been previously discussed by 
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Krieger and Borman [6] and Heywood et al. [7]. As computational resources increased, 

Guezennec and Hamama [43] developed a two-zone model for SI engines that included 

heat transfer effects in the heat release analysis. 

The research discussed within this paper is focused on examining the single-zone and 

two-zone models discussed in [5-8, 40-43] and comparing the results of these two models 

along with the results of the apparent heat release method. The analyses will cover the 

effects of gamma, heat transfer, and crevice volume on the calculated mass fraction 

burned.   

 

Experimental Setup 

A single cylinder CFR engine manufactured by the Waukesha Motor Company was used 

to collect the data used in this research. Table III-1 displays the CFR engine 

specifications. Several modifications have been incorporated. The piston is modified such 

that the engine could be operated over a wider range of compression ratios. Other 

changes include a relocation of the spark plug to top of the combustion chamber, and full 

electronic control of the spark, fueling rate, and throttle. The cylinder pressure data was 

obtained with an AVL GH12D piezoelectric transducer utilizing a PH01 flame arrestor 

mounted in a 2.0 mm diameter X 6.0 mm long passage. Data acquisition, including 

cylinder pressure and various other critical pressures and temperatures, is accomplished 

using a combination of National Instruments (NI) hardware and software. A control 

system for this CFR engine had been previously developed with Mototron’s Motohawk 

rapid engine control development environment (Naber, et al., [39]). Mototron’s Mototune 

was used as the calibration tool and ECU interface. The calibration tool was also used to 

record engine control parameters such as intake manifold pressure, air flow rate, spark 

timing, fuel injection pressure, injection duration, equivalence ratio, etc.  
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Table III-1 CFR engine specifications 

Compression Ratio 4.5-17.5 

Bore (cm) 8.26 

Stroke (cm) 11.43 

Displacement Volume (cm3) 611.2 

Intake Valve Opening (IVO) 10o ATDC 

Intake Valve Closing (IVC) 34o ABDC 

Exhaust Valve Opening (EVO) 40o BBDC 

Exhaust Valve Closing (EVC) 15o ATDC 

Maximum Speed (rpm) 900 

 

The experiments were conducted by sweeping combustion phasing, ethanol 

concentration, and compression ratio at constant engine speed and indicated load. At each 

value of ethanol concentration and compression ratio, combustion phasing (via spark 

timing) was swept in 2° increments from a 50% mass fraction burned location (CA50) of 

~30° ATDC to the point of heavy audible knock, or until the combustion phasing was 

clearly advanced beyond MBT, whichever came first. During this sweep, the point of 

borderline audible knock (if applicable) was noted in the data. At each set point the 

throttle was adjusted to maintain 330 kPa NET IMEP, the fueling was adjusted to achieve 

a stoichiometric equivalence ratio and 300 consecutive engine cycles were recorded. 

Averaging the pressure of each engine cycle was done based on the fact that statistically, 
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the average of N measurements is more reliable, and the engine itself responds to mean 

values of air and fuel flow (Lancaster, et al. [44]). 

 

Calculation Methodology 

Apparent Heat Release Method 

As previously stated, the Apparent Heat Release Method relies upon the fact that the 

pressure rise above that due to compression and expansion over a given crank angle 

interval is proportional to the mass of fuel burned over that same interval. By assuming 

an ideal gas, the energy balance can be simplified to calculate the heat release from the 

system. This equation as a function of gamma is known as the apparent heat release, as 

expressed Equation (III-1). Gamma is the ratio of the constant pressure specific heat to 

the constant volume specific heat.  

 dpVdVp
Apparent

dQ
1

1

1 








 (III-1) 

 

Single-Zone Heat Release Model 

Within the context of this paper, the single-zone model has the following initial 

conditions and assumptions: 

1. Derivation is done based on thermodynamic principles of conservation of mass and 

energy. 

2. The Woshni formulation [3] is used for the heat transfer coefficient. 

3. A single aggregate volume is used to approximate the crevice volume. 

4. The averaged pressure trace is taken from experimental data. 
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5. Thermodynamic properties and constants of the burned and unburned mixture are the 

same for both models. 

6. Temperature is assumed to be uniform for all exposed cylinder surfaces. 

7. Initial conditions are taken from the cylinder conditions at the time of spark.  

8. Geometrical data corresponds to the modified CFR engine (see Table III-1). 

The single-zone model that has been examined in this study is nearly the same as the 

apparent heat release model, except for the method of solving the equations. The apparent 

heat release calculation is derived by substituting the temperature from the ideal gas 

equation into the energy equation, calculating the heat release rate, and integrating to get 

the mass fraction burned. However, the single-zone mass fraction burned calculation 

solves both equations simultaneously to get the mass fraction burned profile and the in-

cylinder temperature profile. The energy balance for the single-zone model is given as 

follows: 
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Two-Zone Heat Release Model 

The initial conditions and assumptions for the two-zone model are the same as those 

listed for the single-zone model, except that the initial temperature of burned fraction is 

equal to the adiabatic flame temperature of the fuel.  However, while the single-zone 

model has two unknowns which requires 2 equations (xb, T), the two-zone model requires 

5 equations to solve for its five unknowns (xb, Tu, Tb, Vu, Vb) simultaneously. In terms of 

the thermodynamic analysis of spark ignition engine combustion, it is commonly 

assumed that the more equations involved, the more accurate the analysis will be (Chun 

and Heywood [40]). However, more equations mean more complex calculations and 
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more computational time is required. The energy balance for the two-zone model is given 

as follows: 
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It should also be mentioned that throughout the remainder of this paper, for all of the 

analysis models, it is assumed the combustion process follows the description given by 

Heywood [3]. A brief summary of that description follows. 

 The first stage, known as the early flame development period, starts with spark 

discharge which initiates the combustion process and continues to the point where 

10% of the charge has burned.  

 The second stage is the rapid burning period. In this stage, the major portion of the 

charge burns as the flame propagates to the combustion chamber walls and the 

cylinder pressure steadily rises above the value it would have been in the absence of 

combustion. This period, corresponding to 10-90% mass fraction burned, represents 

the bulk of the combustion process, thus, is sometimes referred to as the bulk burn 

period. 

 The final stage is the flame termination period, where the flame extinguishes on the 

combustion chamber surfaces. This period mostly reflects the heat transfer losses to 

the combustion chamber walls. The pressure decreases as the cylinder expands during 

this period. 

Once the heat release data has been computed (regardless of which model is being used), 

the combustion efficiency can be calculated.  The combustion efficiency is often used to 

determine the completeness of the combustion process. Combustion efficiency is the ratio 
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of the total heat release in the combustion chamber to the energy available from the fuel. 

The combustion efficiency was calculated from the following equation: 
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Combustion efficiency is often determined by exhaust gas analysis [3]. However, 

emissions were not measured in this study. The comparison of the combustion 

efficiencies based upon the different models will provide insight to the effects of the 

investigated parameters have. 

 

Results & Discussions 

Effect of Ethanol Concentration 

Since the experimental portion of this work included a sweep of ethanol concentration, 

one of the first variables to be examined was the effect of ethanol concentration on the 

indicated heat release results.  This was done to determine the different models sensitivity 

and impact on the combustion rates and MFB profiles as the ethanol fuel concentration 

was changed.  The three different models, the apparent heat release (Equation III-1), 

single-zone (Equation III-2), and two-zone (Equation III-3) were used to investigate the 

effect of various ethanol-gasoline blends on the mass fraction burned profiles.  Holding 

gamma constant and equal to 1.3, with no heat transfer or crevice effects, the three 

models produced similar mass fraction burned profiles. Figure III-1 shows both the mass 

fraction burned profile and the rates of the mass fraction burned of the various fuel blends 

with the three different models with constant gamma.  

Although not apparent in Figure III-1 (a) and (b), the results of the three models are 

plotted for each fuel. The results are so closely matched that they are nearly overlaid. 

This can be seen in Figure III-1 (c) where the axis limits have been adjusted to see the 
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mass fraction burn rates for gasoline (E0) around its peak rate at 15°. Table III-2 

summarizes three important combustion metrics from the MFB curves: (i) 0-10% MFB, 

(ii) location of 50% MFB and (iii) 10-90% MFB for the three models for each of the 

ethanol fuel blends. The maximum difference of the combustion phasing among the three 

models observation was 0.1°. Figure III-1 and Table III-2 show that the MFB results are 

very similar for all three methods. In addition, the observed effects and trends of the 

ethanol concentration in the fuel were not affected by the model. 

(a). Mass Fraction Burn Profiles (b). Mass Fraction Burn Rate Profiles 

 

(c). Mass Fraction Burn Rate Profiles 

Figure III-1 Combustion phasing profiles calculated with the 3 models with constant 

gamma (CR = 8.0:1, spark advanced = 10° BTDC, speed = 900 RPM, load = 330 kPa 

Net IMEP) 
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Table III-2 The combustion phasing of different ethanol concentration fuels calculated 

with the 3 models with constant gamma (CR = 8.0:1, spark advanced = 10° BTDC, speed 

= 900 RPM, load = 330 kPa Net IMEP) 

 
Single-Zone 

Model 
(=1.3) 

Two - Zone 
Model 
(=1.3) 

Apparent Heat 
Release 
(=1.3) 

Duration of 0-10% MFB 
(° CA) 

E0 12.1 12.2 12.3
E20 11.8 11.8 11.9
E40 11.7 11.7 11.8
E60 11.6 11.6 11.7
E84 11.2 11.2 11.3 

Location of 50% MFB 
(° CA) 

E0 12.4 12.4 12.5
E20 11.6 11.6 11.7
E40 11.2 11.2 11.3
E60 11.1 11.1 11.2
E84 10.9 10.9 10.9 

Duration of 10-90% 
MFB 

(° CA) 

E0 18.1 18.1 18.0
E20 17.0 17.0 17.0
E40 16.8 16.9 16.8
E60 16.7 16.7 16.7
E84 16.9 16.9 16.8 

 

Effect of Gamma 

Given the result above that each of the three models is equally capable of identifying 

changes in combustion due to ethanol concentrations, the discussion of the impact of 

gamma and heat transfer and crevice volume models on the MFB curves will be based on 

gasoline data.  

When performing a heat release analysis, finding the appropriate gamma becomes an 

important factor. In the early development of heat release analysis, many researchers 

studied a method to define an appropriate gamma that accurately represented the 

combustion process. The motivation was to avoid the complications of the two-zone 

model, and thus enable high levels of accuracy with the single-zone model. Chun and 

Heywood [40] used the average of the gamma calculated from the burned and unburned 

zone. Gatowski et al. [8] formulated a gamma with a linear function of cylinder 
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temperature. Heywood [3] then provided gamma as a function of the temperature of the 

combusted gases.  

In this part of the study, gamma is computed as a function of temperature and gas 

composition during the combustion process (see appendix C). Figure III-2 shows the 

gamma profiles of the gasoline-air mixture and combustion products that have been used 

in the calculations presented afterward. As expected, gamma decreases as the combustion 

progresses as a result of increases in temperature. Using the single-zone model, the single 

curve of gamma decreases until it reaches a minimum at approximately 20° after which 

the increasing volume reduces the temperature as the piston travel down to the BDC. The 

two separated curves of gamma when using the two-zone model are also shown in Figure 

III-2. The burned gamma increases initially (black circle) as the temperature in the 

burned gases adjust from the initial assumed temperature of the adiabatic constant 

pressure temperature above the unburned gas temperature. Then as the burned and 

unburned gases are compressed from the continuing combustion processes the gammas 

decrease until expansion begins to reduce the gas temperatures similar to the single zone 

model. 

 

 

Figure III-2 A comparison of the gamma profile of gasoline (CR = 8.0:1, spark advanced 

= 10° BTDC, speed = 900 RPM, load = 330 kPa Net IMEP) 
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Figure III-3 presents the mass fraction burned profile and the mass fraction burned rates 

calculated with the three different methods. The first two methods, utilize the single-zone 

and the two-zone model with gamma calculated as a function of the temperature and 

composition of the exhaust gas. In this case, the exhaust composition is based on the 

stoichiometric reaction assuming ideal and complete reaction products. The third method 

is the apparent heat release method utilizing a constant gamma of 1.3. As shown in 

Figure III-3, each model has a similar trend which indicates that each model predicts 

similar combustion phasing.  

Table III-3 summarizes the combustion phasing, combustion durations, and computed 

combustion efficiencies of gasoline calculated using the three models. The combustion 

efficiency resulting from both the single and two-zone models computed when using 

gamma as a function of gas temperatures is higher than that predicted using a constant 

gamma of 1.3 in each of the models respectively. The combustion efficiency of the two-

zone model is 8% higher than the single-zone model under non MBT conditions 

(advanced or retarded). On average, over the range of compression ratios, spark advance 

and ethanol concentrations tested the two-zone model results in a computed combustion 

efficiency that is 3% higher than the single-zone model, and 17% higher than the 

apparent heat release model. It is important to recall, however, that although gamma has a 

significant effect on the combustion efficiency as computed with the various analysis 

models, the combustion phasing of each model did not varied more than 1°. 

 



57 

(a). Mass fraction burn profiles (b). Mass fraction burn rate profiles 

Figure III-3 Combustion phasing for gasoline calculated with the 3 models (CR = 8.0:1, 

spark advanced = 10° BTDC, speed = 900 RPM, load = 330 kPa Net IMEP) 

 

Table III-3 Combustion phasing of gasoline calculated with the 3 models (CR = 8.0:1, 

spark advanced = 10° BTDC, speed = 900 RPM, load = 330 kPa Net IMEP) 

 

Single-Zone 

Model 

(=f(T)) 

Two - Zone  

Model 

(=f(T)) 

Apparent Heat 

Release 

(=1.3) 

0-10% MFB (° CA) 13.1 12.3 12.3 

50% MFB (° CA) 13.4 12.7 12.5 

10-90% MFB (° CA) 17.8 18.4 18.0 

Comb. Efficiency (%) 90.8 94.3 78.5 
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Effect of Heat Transfer And Crevice Volume 

The same set of data is post processed by considering that some part of the heat is 

transferred to the cylinder wall and some part of mass is trapped and escapes combustion 

in the crevice volume. Figure III-4 shows the MFB and the MFB rate profiles of the 

single-zone model with and without the crevice and heat transfer effects included. The 

combustion phasing for this case is shown in  

(a). Mass fraction burn profiles (b). Mass fraction burn rate profiles 

Figure III-4 A comparison of the single-zone mass fraction burned calculated with and 

without the crevice and heat transfer effects (CR = 8.0:1, spark advanced = 10° BTDC, 

speed = 900 RPM, load = 330 kPa Net IMEP) 

 

Table III-4. Similarly, Figure III-5 shows the mass fraction burned and the mass fraction 

burned rate profile of the two-zone model with and without the crevice and heat transfer 

effects. Table III-5 summarizes the effect of crevice and heat transfer on the combustion 

phasing parameters of two-zone model. 

Without crevice and heat transfer effects in the model, the useful energy will be lower 

and combustion efficiency will be significantly decreased. Using the single-zone model 

as shown in  
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(a). Mass fraction burn profiles (b). Mass fraction burn rate profiles 

Figure III-4 A comparison of the single-zone mass fraction burned calculated with and 

without the crevice and heat transfer effects (CR = 8.0:1, spark advanced = 10° BTDC, 

speed = 900 RPM, load = 330 kPa Net IMEP) 

 

Table III-4, without the crevice model the combustion efficiency decreases 8% and 15% 

without both the crevice and heat transfer in the models. For the two-zone model, as 

shown in Table III-5, without the crevice model only, the combustion efficiency 

decreases by 5%, and without both the crevice and heat transfer models the combustion 

efficiency decreases by 11% from the two-zone full model calculation.  

In both the single-zone and two-zone models, the burn rate is faster during the first half 

of the combustion event because of not including the crevice and heat transfer effect. 

This is mainly the effect of shorter combustion duration and lower heat release from the 

combustion process. Although the inclusion of crevice and heat transfer models have 

large impacts on the computed combustion efficiency, the combustion phasing and 

duration is impacted by less than 1° crank angle.  

 

 



60 

(a). Mass fraction burn profiles (b). Mass fraction burn rate profiles 

Figure III-4 A comparison of the single-zone mass fraction burned calculated with and 

without the crevice and heat transfer effects (CR = 8.0:1, spark advanced = 10° BTDC, 

speed = 900 RPM, load = 330 kPa Net IMEP) 

 

Table III-4 A comparison of the single-zone mass fraction burned calculated with and 

without the crevice and heat transfer effect (CR = 8.0:1, spark advanced = 10° BTDC, 

speed = 900 RPM, load = 330 kPa Net IMEP) 

 

With Crevice and 

Heat Transfer 

Effect 

With only Heat 

Transfer Effect 

Without Crevice 

and Heat Transfer 

Effect 

0-10% MFB (° CA) 13.1 12.8 12.6 

50% MFB (° CA) 13.4 13.0 12.7 

10-90% MFB (° CA) 17.8 17.9 17.5 

Comb. Efficiency (%) 90.8 81.2 75.9 
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(a). Mass fraction burn profiles (b). Mass fraction burn rate profiles 

Figure III-5 A comparison of the two-zone mass fraction burned calculated with and 

without the crevice and heat transfer effects (CR = 8.0:1, spark advanced = 10° BTDC, 

speed = 900 RPM, load = 330 kPa Net IMEP) 

 

Table III-5 A comparison of the two-zone mass fraction burned calculated with or 

without the crevice and heat transfer effect (CR = 8.0:1, spark advanced = 10° BTDC, 

speed = 900 RPM, load = 330 kPa Net IMEP) 

 

With Crevice and 

Heat Transfer 

Effect 

With only Heat 

Transfer Effect 

Without Crevice 

and Heat Transfer 

Effect 

0-10% MFB (° CA) 12.3 11.9 11.8 

50% MFB (° CA) 12.7 12.3 12.0 

10-90% MFB (° CA) 18.4 18.4 18.1 

Comb. Efficiency (%) 94.3 85.5 80.6 
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Effect of Individual Cycle Calculations 

In order to show the cycle to cycle variation and for comparison of the average pressure-

based mass fraction burn result to the individual cycle results, the mass fraction burn 

calculation is computed on an individual cycle basis. For this, the single-zone model with 

gamma constant and equal to 1.3 with the models for heat transfer and crevice volume 

turned off is used. The results for the individual cycle are then fit to a normal distribution 

and the probability distributions (PDFs) determined. Figure III-6 shows the PDFs of the 

resulting normal distributions for the 0-10% MFB, the 50% MFB location and the 10-

90% MFB for various ethanol fuel blends for a spark advance of 0° BTDC. This data is 

similar to that provided in Table III-2 except that for Table III-2 the data is at a spark 

advance of 10° BTDC. Also shown for each distribution in Figure III-6 is a circle which 

is placed at the crank angle location of the mass fraction burn parameter as calculated 

based upon the averaged pressure signal using the same model. 

First examining these figures for the effect of ethanol concentration, it is seen that as the 

ethanol concentration is increased, the 0-10% mass fraction burn reduces, the CA50 

location advances, and the 10-90% mass fraction burn duration decreases. These results 

are again similar to those observed for the 10° spark advance. One other factor that can 

be observed in these plots is that the distributions for the gasoline (E0) data are wider 

with lower peaks, indicating more cycle to cycle variation.  

Next, if we compare the peaks of the distributions from the cycle to cycle data we see 

they are well aligned with the circles from the pressure averaged data. This comparison is 

made in Table III-6.  In the Table the mean and the median of the individual cycle data is 

given along with the result from the average pressure data for the three combustion 

metrics. Comparing the mean and the median of the data, it is seen that they are in close 

agreement with some cases with 0.1 to 0.2° higher means than medians. This would 

indicate a very small positive skewness of the distributions. 

Finally comparing the mean of the individual cycle to the average pressure data, it is seen 

that the combustion metrics are within 0.2° of each other. This is in agreement with the 
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recommendation given by given by Lancaster, et al. [44] with respect to using the cycle 

averaged cylinder pressure for analysis. 

 

Figure III-6 Normal distribution of the combustion phasing calculated using the single-

zone mass fraction burned with constant gamma of 1.3 (spark timing at TDC, speed = 

900 RPM, load = 330 kPa Net IMEP) 

 

Table III-6 The combustion phasing of different ethanol concentration fuels calculated 

with the single-zone model with constant gamma (CR = 8.0:1, spark advanced at TDC, 

speed = 900 RPM, load = 330 kPa Net IMEP) 

 
Mean of 

Individual 
Cycle 

Median of 
Individual 

Cycle 

Averaged 
Pressure Trace 

Duration of 0-10% MFB 
(° CA) 

E0 12.7 12.6 12.6
E20 12.0 12.0 11.9
E40 12.0 11.9 11.9
E60 11.6 11.6 11.5
E84 11.0 11.0 10.9 

Location of 50% MFB 
(° CA) 

E0 24.3 24.2 24.1
E20 22.8 22.7 22.7
E40 22.6 22.4 22.5
E60 21.9 21.7 21.7
E84 21.4 21.4 21.3 

Duration of 10-90% 
MFB 

(° CA) 

E0 20.6 20.7 20.7
E20 19.3 19.3 19.4
E40 19.5 19.4 19.6
E60 18.9 18.8 18.9
E84 19.0 19.0 19.1 
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Summary & Conclusions 

Comparisons have been made between single-zone, two-zone, and apparent heat release 

methods of calculating the mass fraction burned using the cylinder pressure and volume 

data.  The models are examined with respect to ethanol concentration in the fuel, the 

sensitivity of the results with respect to gamma, and the heat transfer and crevice volume 

effects.  As a result, the following conclusions are made: 

1. The results of the single-zone, two-zone, and apparent heat release combustion 

analysis models are all equally affected by changes in the ethanol concentration in the 

fuel. 

2. Combustion metrics such as specific burn locations and durations are relatively 

insensitive to the type of model used, and model inputs including gamma, and the 

inclusion of heat transfer and crevice effects. 

3. Combustion efficiency is significantly affected by the type of model used, and model 

inputs including gamma, and the inclusion of heat transfer and crevice models. 

4. The change in computed results with the inclusion of heat transfer and crevice 

volume effects is approximately the same for both the single-zone and two-zone 

models. 

5. Differences between the cycle to cycle means and the cycle averaged pressure result 

for the combustion metrics examined were small. This is likely a result of the fact that 

the cycle to cycle data examined in this study are not highly skewed. If individual 

cycle results showed non-normal distribution characteristics including skewness, 

further investigations are recommended. 

Based on these points, it is concluded that if the objective of a heat release analysis is 

simply to study the shape and / or locations on the mass fraction burned curves, then any 

of the three models can be used with reasonable success.  However, if the objective 

includes accurate calculations of combustion efficiency, or the need for detailed in-

cylinder temperature data (such as when doing further kinetic type modeling), the two 
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zone model, with gamma a function of temperature and gas composition, and with the 

effects of heat transfer and crevices should be employed. 

 

Nomenclature 

 A combustion chamber surface area 

 B piston bore 

 Cv specific heat at constant volume 

 E ethanol percentage 

 h enthalpy 

 h  average heat transfer coefficient 

 L stroke 

 M molecular weight 

 m mass of the charge 

 N engine speed 

 p pressure 

 Q heat 

 R ratio of connecting rod to crank radius 

 R  universal gas constant 

 T temperature 

 V volume 

 x mass fraction  

y mole fraction 

 F
A  air fuel ratio 

  molar air 

  molar H/C ratio 

 gamma or ratio of specific heat  

  fuel air equivalence ratio 

  crank angle 
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  density 

 molar N/O ratio 

 Subscripts 

 a air 

 b burned 

 c charge 

 ch chemical 

 cr crevice 

 d displacement 

 e ethanol 

 f fuel 

 g gasoline 

 ht heat transfer 

 u unburned 

 LHV lower heating value 

 m motored condition 

 r reference state 

 s stochiometric reaction 

 w  wall 
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Appendices  

A) SINGLE-ZONE MODEL 

The single-zone mass fraction burned model applies only one zone for all the mixture in 

the cylinder. The single-zone calculations are based upon the following assumptions: 

1. Closed system analysis is employed within the limits from intake valve closing to 

exhaust valve opening. 

2. The cylinder pressure at a given crank angle is uniform throughout the entire 

combustion chamber. 

3. Instantaneous burning of fuel in heat addition calculations. 

4. All mixtures are homogeneous, both air and fuel in the unburned mixture and 

combustion products in the burned mixture. 
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5. The initial conditions of temperature are calculated based on the ideal gas law from 

the measured pressure trace, volume and mass that was trapped in the combustion 

chamber. The mass of air is measured using an LFE (Laminar Flow Element), the 

mass of fuel is calculated using the measured air-fuel ratio, and the residual mass is 

assumed to be 10% of the total mass trapped in the combustion chamber based on 

discussion in Fox, et al. [45] 

6. The heat transfer coefficient between the charge and the wall is predicted using the 

Woshni equation. The heat transfer contact area is assumed to be equal to the total 

surface area of combustion chamber. 

7. The crevice volume is assumed to be 2% of the clearance volume and has a 

temperature equal to the wall temperature and a pressure the same as the cylinder 

pressure. 

8. The wall temperature is 400K and constant for the combustion process. 

The mass conservation in the cylinder during the combustion process is:  

 crc mmm   (III-5) 

Assuming that crevice mass is very small compared to the cylinder mass, the crevice 

mass is constant with respect to crank angle. 

 0 cdmdm  (III-6) 

During the combustion process, the charge mass is modeled in two regions. The 

unburned mass is the mass of unburned charge, which is reduced during the combustion 

process while the burned mass increases. 

 ubc mmm   (III-7) 

The mass fraction burned is defined as a ratio of the burned mass to the charge mass in 

cylinder. The derivative of burned and unburned mass is given as, respectively: 
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 bcb dxmdm   (III-8) 

 bcu dxmdm   (III-9) 

Assuming the cylinder pressure of the unburned and burned zone are the same, and the 

working fluid as an ideal gas, the equation of state is then defined as: 

 T
M

R
mVp   (III-10) 

In derivative form, assuming constant molecular weight, the equation of state of the 

unburned and burned zone is expressed as: 

 dVpdpVdT
M

R
mc   (III-11) 

Considering a closed system as shown in Figure III-7, the energy release from 

combustion is equal to the change in internal energy, the work that acts upon the piston, 

the crevice effects and the heat transfer loss to the walls of the combustion chamber. The 

energy conservation is: 

  crcr hdmWdUQ   (III-12) 

 

Figure III-7 Schematic system in cylinder 
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The internal energy can be express as: 

 dTCvmdU c  (III-13) 

The work is defined as: 

 dVpW   (III-14) 

The heat transfer to the system consists of the heat release from combustion of the fuel 

and heat lost to the surrounding wall. 

 htch QQQ    (III-15) 

The energy release from combustion is calculated from: 

   














 b

c
LHVch dx

F
A

m
QdQ

1
 (III-16) 

The heat transfer is modeled only between the working fluid to the cylinder walls in a 

convection manner. The heat transfer formulation is given by: 

  wht TThAdQ   (III-17) 

The heat transfer coefficient using the Woschni formulation (Heywood, [3]) is: 

  
8.0

55.08.02.0 00324.056.426.3 







 

m
rr

rd pp
Vp

TV
NLTpBh  (III-18) 

The combustion chamber surface area is simulated from the total surface area.  

      




  2

1
22 sincos1

2


RR
LB

AAA headcylheadpiston
 (III-19) 

The crevice volume in the engine includes the gap above the top ring between the 

cylinder and piston, the area around the spark plug, the small gap between the cylinder 
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block and the head, etc. In order to simplify the equation, the crevice volume is assumed 

to be a single aggregate volume where the gas inside has the same pressure as the 

cylinder pressure, and the gas temperature in the crevice is assumed to be the same as the 

wall temperature since the crevice walls are colder than the combustion chamber. 

Gatowski et al. [8] notes that normally the crevice volume is 1-2% of the clearance 

volume. The crevice effect is modeled using the formulation below: 

 
w

cr
cr

TM
R

Vp
m   (III-20) 

 

The energy conservation can be express as: 

     dp

w
TM

R
cr

Vh

w
TThAdVpdTCv

c
m

b
dx

F
A

c
m

LHV
Q















 1
 (III-21) 

The mass fraction burned of single-zone model is a result of solving Equations III-11 and 

III-21 simultaneously. 

 

B) TWO-ZONE MODEL 

The basis of the two-zone model is to set apart the combustion chamber into two regions, 

a burned and unburned portion based on the mass fraction burned scale. Both regions are 

separated by a thin layer of flame front. The same assumptions as the single-zone are 

taken for the two-zone mass fraction burned analysis, with addition of the following: 

1. No heat transfer occurs across the flame front 

2. Each zone has a separate heat transfer coefficient which is predicted using the 

Woshni equation and has a separate contact area which is calculated based on the 

instantaneous mass fraction burned 
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The derivative of burned and unburned mass is given previously in the single-zone model 

derivation. 

Similarly, the volume in cylinder during the combustion process consists of burned 

volume, unburned volume and crevice volume. The crevice volume is constant with 

respect to crank angle, while the burned and unburned volume is changing during the 

combustion process. 

Determining the volume of burned gases and the shape of the flame front surrounding the 

burned volume are the most difficult challenges of the two-zone model, and were 

discussed by Krieger and Borman [6]. Assuming a round shape for the flame front solves 

the calculation of the contact heat transfer area from both the burned and unburned region 

to the walls. Furthermore, the nature of premixed flame propagation in SI engines allows 

the effect of heat transfer over the flame front to be ignored. In these models, the burned 

and unburned volume is taken as separate variables. 

 dVdVdV bu   (III-22) 

Assuming the working fluid is an ideal gas, the cylinder pressure of the unburned and 

burned zone are the same, and the unburned and burned molecular weight is constant, the 

equation of state for the unburned and burned zone in derivative form is: 

   dpVdVpdT
M

R
mxdxT

M

R
m uuu

u

u
cbbu

u

u
c  1  (III-23) 

 dpVdVpdT
M

R
mxdxT

M

R
m bbb

b

b
cbbb

b

b
c   (III-24) 

Considering a closed system, the derivation of energy conservation is given during the 

previous single-zone model discussion. The energy conservation can be express as: 
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
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 (III-25) 

Similarly, as shown in Figure III-8, the energy conservation for the unburned zone can be 

express as: 

    wuuuuuubcbu
u

u
c TThAdVpdTCvxmdxTM

Rm  1  (III-26) 

 

Figure III-8 Schematic system of the unburned zone 

The mass fraction burned of two-zone model is a result of solving Equations III-22, III-

23, III-24, III-25 and III-26 simultaneously. 

 

C) COMBUSTION STOICHIOMETRY 

The following derivation is done in order to calculate the gamma as a function of the 

burned gas temperature and composition.  

It is sufficiently accurate to regard the mole fraction of oxygen and the mole fraction of 

nitrogen in dry atmospheric air as 0.2095 and 0.7905, respectively. Considering only six 
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species (CO2, H2O, N2, O2, CO, H2) in the combustion products, the chemical reaction for 

burning one mole of hydrocarbon fuel can be written as: 

   2222222 22222
HnCOnOnNnOHnCOnNOCH HCOONOHCO

s  



  (III-27) 

 
4

1
 s  (III-28) 

For 1 (lean and stoichiometric mixtures), CO and H2 at the exhaust can be neglected. 

1
2
COn  

 12
2

 sOHn   









 1

1
2 

sOn  


 s

Nn 
2  

For alcohol or alcohol-hydrocarbon blends, the reactant mixture is: 

  22
2 NO

z
OCH

s

z 



 


  (III-29) 

Rearranging the reactant per mole of hydrocarbon: 

 22
2

2
2 N

z
O

zz
CH

ss












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














 








  (III-30) 

The alcohol-hydrocarbon fuel combustion products calculation is the same as the 

hydrocarbon fuel calculations as follows: 
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    (III-31) 

 


 









s

z

2
1  (III-32) 

  















12

2

s

z  (III-33) 

Based on the stoichiometric reaction, the specific heat of each species in the product can 

be predicted. The specific heat as a function of temperature for each species is given in 

Heywood [3]. The following Table III-7 summarizes the coefficients that being used in 

this current research. 

 

D) THERMODYNAMIC PROPERTIES 

Ethanol and gasoline are mixed based on percent volume. Assuming the gasoline is C8H18 

and the ethanol is C2H5OH, the amount of carbon, hydrogen and oxygen atoms in the fuel 

mixtures, respectively are:   gge E  882  ,   gge E  18186  , and  Ee . 

The molecular weight of the fuel blend is: 

        16008.11818601.12882 EEEM eggeggef    (III-34) 

The molecular weight of the unburned gas is given by: 

 ffaau MyMyM   (III-35) 

Where: 

 

 s

fy
773.4

1

1




 (III-36) 

 fa yy  1  (III-37) 
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Finally, the molecular weight of the burned gas is expressed by: 

 
2222222222 HHCOCOOONNOHOHCOCOb MyMyMyMyMyMyM   (III-38) 

The following Table lists the physical properties of ethanol and gasoline. 

 

Table III-7 Specific heat coefficients [3] 

T = 300-1000K 

Cp_CO2=(0.44608E1+0.30982E-2*T-0.12393E-  5*T2+0.22741E-9*T3-0.15526E-13*T4) 

Cp_H2O=(0.27168E1+0.29451E-2*T-0.80224E-6*T2+0.10227E-9*T3-0.48472E-14*T4) 

Cp_CO=(0.29841E1+0.14891E-2*T-0.57900E-6*T2+0.10365E-9*T3-0.69354E-14*T4) 

Cp_H2=(0.31002E1+0.51119E-3*T+0.52644E-7*T2-0.34910E-10*T3+0.36945E-14*T4) 

Cp_N2=(0.28963E1+0.15155E-2*T-0.57235E-6*T2+0.99807E-10*T3-0.65224E-14*T4) 

Cp_O2=(0.36220E1+0.73618E-3*T-0.19652E-6*T2+0.36202E-10*T3-0.28946E-14*T4) 

T = 1000-5000K 

Cp_CO2=(0.24008E1+0.87351E-2*T-0.66071E-5*T2+0.20022E-8*T3+0.63274E-15*T4) 

Cp_H2O=(0.40701E1-0.11084E-2*T+0.41521E-5*T2-0.29637E-8*T3+0.80702E-12*T4) 

Cp_CO=(0.37101E1-0.16191E-2*T+0.36924E-5*T2-0.20320E-8*T3+0.23953E-12*T4) 

Cp_H2=(0.30574E1+0.26765E-2*T-0.58099E-5*T2+0.55210E-8*T3-0.18123E-11*T4) 

Cp_N2=(0.36748E1-0.12082E-2*T+0.23240E-5*T2-0.63218E-9*T3-0.22577E-12*T4) 

Cp_O2=(0.36256E1-0.18782E-3*T+0.70555E-5*T2-0.67635E-8*T3+0.21556E-11*T4) 

Fuels 

Cp(gasoline)=(-22.501+227.99*(T/1000)-

177.26*(T/1000)2+56.048*(T/1000)3+0.4845/((T/1000)2)) 

Cp(ethanol)=(6.990+39.741*(T/1000)-11.926*(T/1000)2) 
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Table III-8 Physical properties of ethanol and gasoline (Bromberg, et al. [25]) 

 Gasoline Ethanol 

Density (kg/m3) 720 790 

Cp (J/kg.K) 2420 2470 

Thermal Conductivity (W/m.K) 0.147 0.182 

Viscosity (kg/m.s) 0.00054 0.0012 

Molecular Weight (kg/kmol) ~97 41 

Latent Heat (kJ/kg) 306 855 

Boiling Temperature (K) 339 351 

Lower Heating Value (MJ/kg) 44 26.9 

Octane Number (ON) 87-95 115 
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IV. BURN DURATION CORRELATIONS 

Based on the existing literature, several parameters that correlate to the combustion 

process have been proposed. Dimensional analysis was used to group these physically 

based parameters into non-dimensional groups.  Burn duration correlations were then 

developed using these non-dimensional groups. A non-linear least squares method was 

used to correlate the burn duration with the physically based parameters. In this paper, the 

experimental data taken from cooperative fuel research (CFR) engine covers various 

compression ratios, spark timings, and exhaust gas recirculation levels using five 

different gasoline-ethanol blends.  

It is concluded that the burn duration correlations were in a good agreement with the burn 

duration computed from experimental data, which within 1o crank angle for both early 

burn and bulk burn correlations. Furthermore, these correlations can be use to observe the 

effect of engine geometry variables and operating conditions, thus reduce the 

experimental cost.  
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Abstract 

Ethanol-gasoline fuel blends are increasingly being used in spark ignition engines due to 

continued growth in renewable fuels. This leads to the need for a simple and accurate 

combustion model for ethanol-gasoline blends that is applicable to zero-dimensional 

engine modeling for design, simulation, and optimization purposes. In this research, 

experiments with various compression ratios, spark timings, and exhaust gas recirculation 

levels using five different gasoline-ethanol blends were conducted on a cooperative fuel 

research engine operating at a constant load of 330 kPa net mean effective pressure and at 

a constant speed of 900 RPM. A single zone mass fraction burn model was used to 

analyze burn durations determined from the experimentally measured in-cylinder 

pressure.  

Based on the existing literature, several parameters that correlate to the combustion 

process have been proposed. With these as guidelines, dimensional analysis was used to 

group these physically based parameters into non-dimensional groups.  Burn duration 

correlations were then developed using these non-dimensional groups. A non-linear least 

squares method was used to correlate the burn duration with the physically based 

parameters. The coefficient of correlation and the root mean square error of burn duration 

were used as metrics to quantify the error of the correlations for burn durations in 

comparison to those computed from the experimental measurements.  

 

Keywords: Spark Ignition Engine, Ethanol, Combustion Modeling, Burn Durations, 

Parametric Study 
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Introduction 

Ethanol has been used as an alternative to petroleum for quite some time [24]. However, 

in its recent application, ethanol is blended with gasoline to displace fossil fuels while at 

the same time its increases the fuel blends resistance to engine knock [25]. Since the 

ethanol contains less energy per unit mass and volume than gasoline, the challenge is to 

design an engine that takes advantage of the high octane number of ethanol and reduces 

the fuel consumption penalty. This leads to the need for a simple and accurate 

combustion model for ethanol-gasoline blended fuels that is applicable to one-

dimensional engine modeling for design, simulation, and optimization purposes [2, 3, 

26].  

One-dimensional engine modeling is widely used for design, development, calibration, 

and optimization of spark ignition (SI) engines because it is computationally efficient and 

enables modeling of the engine as a system including the dynamics of the flows [3]. In 

general, the one-dimensional model consists of sub-models of selected processes that can 

be analyzed using more detailed modeling approaches, e.g. quasi-dimensional or 3-

dimensional models to increase the accuracy of the overall modeling results. Specifically, 

modeling combustion plays a critical role in the overall engine simulation. This 

combustion sub-model provides the burning rate that represents the heat release rate in 

the combustion process for a given geometry and engine operating condition. The 

burning rate can be determined empirically or derived from physical and chemical kinetic 

correlations of the combustion process. Having a proper combustion model will enhance 

understanding of the physical phenomena including the effects of valve phasing, type of 

fuel, compression ratio, exhaust gas recirculation (EGR), etc [2, 3].  

This paper will focus on parametric study of burn duration including analysis of the burn 

durations and development of the burn duration correlations using experimentally 

measured pressure trace of Cooperative Fuel Research (CFR) engine over the range of 

ethanol blends from E0-E84 and combustion phasing sweeps with variable compression 

ratios and EGR percentages.  
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Experimental Design 

The cylinder pressure data presented in this paper were obtained from a single cylinder 

CFR engine, which has been modified to meet the criteria for this research [38, 46]. A 

custom piston was used which allows the engine to be operated over a higher range of 

compression ratios from 4.5:1 to 17.5:1. The location of the spark plug on the top of the 

combustion chamber improved flame propagation and better emulated the modern SI 

engine combustion chamber geometry. An AVL GH12D piezoelectric pressure 

transducer and an AVL PH01 flame arrestor used to sense the in-cylinder pressure. 

Cylinder pressure data acquisition and preliminary analysis (such as for data quality 

checks) was performed with a DSP ACAP system [47]. Other high speed and low speed 

data, including fuel and airflow rates and various other critical pressures and 

temperatures, were measured and acquired using a combination of National Instruments 

(NI) hardware and software. A fully electronic control system for this CFR engine has 

been developed with Mototron’s Motohawk rapid prototyping engine control 

development environment [39]. A full electronic control system including spark, fuel 

injection, and throttle was added. Mototron’s Mototune was used as the calibration tool 

interfaced to the engine control unit (ECU). The calibration tool was also used to record 

engine control parameters including intake manifold pressure, throttle position, air flow 

rate, commanded spark timing, fuel injection pressure, commanded injection duration, 

equivalence ratio, and EGR level.  

The experiments were conducted by sweeping combustion phasing via spark timing, 

ethanol concentration, EGR rate, and compression ratio at a constant engine speed of 900 

rpm and a constant load of 330 kPa NMEP3 while maintaining a stoichiometric 

equivalence ratio. Combustion phasing was swept in 2° increments from a highly 

retarded location of 50% MFB (CA50) of approximately 4° after top dead center (TDC) 

to the point of heavy audible knock or until the combustion phasing was clearly advanced 

beyond maximum brake torque (MBT). During this sweep, the point of borderline 

audible knock (if applicable) was noted in the data. Three hundred consecutive engine 
                                                 
3 The Net Mean Effective Pressure refers to the IMEP computed over the 720 operating cycle (high 
pressure loop plus pumping loop). 
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cycles were recorded at each test set-point and the cycle averaged data was used to 

compute MFB profile [38].  

 

Experimental Results  

The mass fraction burn represents the percentage of fuel consumed versus crank-angle 

during the combustion portion of an engine cycle and is obtained by analyzing the in-

cylinder pressure. The MFB curve is commonly used to study and characterize the spark-

ignition combustion process. This curve is strongly influenced by a number of parameters 

including the engine design, operating conditions, and fuel type and has a significant 

impact on engine performance including efficiency and emissions.  

An apparent heat release analysis method is one of many techniques used to calculate the 

MFB from in-cylinder pressure data [5, 6]. A comparison among the single-zone [8, 40-

42], two-zone [6, 7, 43], and the apparent heat release models was performed, and it 

showed that the apparent heat release method was found to be in good agreement with the 

single-zone and two-zone models, particularly with respect to combustion phasing [38]. 

The apparent heat release method is derived from the balance of energy in the 

combustion chamber by assuming the products and reactants behave as an ideal gas, the 

mass is constant, and both the products and reactants have a constant molecular weight 

during the combustion process. The energy balance is given below: 
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where, QLHV is the heat release, mc is mass of charge, xdil is residual fraction, AFRs is 

stoichiometric air fuel ratio,  is equivalence ratio,  is the ratio of the constant pressure 

specific heat to the constant volume specific heat, p is the in-cylinder pressure, and V is 

the volume of combustion chamber. 
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Figure IV-1a shows the 0-10% MFB duration and Figure IV-1b shows the 10-75% MFB 

duration of five different fuel blends at a compression ratio of 8:1, speed of 900 RPM, 

and load of 330 kPa NMEP as a function of spark timing. All the data presented in this 

paper is in the range of normal combustion, which was quantified using a Coefficient of 

Variance (COV) of IMEP from 0-5%, and a 95 percentile peak knock pressure (PP95) 

[18] from 0-50 kPa. Figure IV-1a and Figure IV-1b show that the higher the ethanol 

concentration the faster the combustion process. This is indicated by the shorter early 

flame development period and the bulk burn duration. The early development period has 

a minimum duration at a spark timing of top dead center (TDC), which corresponds to the 

maximum compression height of the combustion chamber, and thus a higher temperature 

and laminar flame speed. Generally, the early development period increases as the spark 

is advanced. However, the bulk burn duration decreases as the spark is advanced toward 

TDC. These trends result from the in-cylinder temperature during the different phases of 

the combustion process.  When the spark occurs near TDC, the in-cylinder temperature is 

high due to the compression heating, which in turn increases the reaction rates and 

decreases the 0-10% burn duration.  Advancing the spark beyond TDC results in a 0-10% 

burn event that occurs at lower temperatures, and thus takes longer, however, in this 

advanced case, the bulk burn occurs nearer the high temperature TDC phase, and thus has 

higher reaction rates and a faster burn.  If the spark would have been advanced even 

farther, the bulk burn would have shown a reversing trend as well.  In fact, it is possible 

to see in Figure IV-1b a slight increase starting in the bulk burn duration at the most 

advanced spark timings. In these experiments spark could not be advanced any farther 

due to auto-ignition (knock) limitations. 

The knock limit of gasoline with respect to spark advance increases as the ethanol 

concentration increases. At a compression ratio of 8:1, the Knock Limited Spark Advance 

(KLSA) using gasoline is limited at 18oBTDC (indicated by the arrow in Figure IV-1a 

and Figure IV-1b).  However, the KLSA is increased to 30oBTDC as the ethanol 

concentration increased to 84% by volume. 
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(a) (b) 

Figure IV-1 Effect of spark timing on the early development and bulk burn period 

(CR=8:1; EGR=0; Speed=900 RPM; Load=330kPa NMEP) 

 

Figure IV-2a shows the 0-10% MFB duration and Figure IV-2b shows the 10-75% MFB 

duration of five different fuels for spark timing around TDC, a constant speed of 900 

RPM, and a constant load of 330 kPa NMEP as a function of compression ratio. The burn 

duration becomes shorter as the compression ratio increases. The reason for this trend is 

the same as the effect of combustion phasing discussed above. The higher compression 

ratios caused a higher density of charge and higher temperatures and pressure during the 

combustion process and thus higher reaction rates and faster burns.  

Also in Figure IV-2a and Figure IV-2b, the effect of ethanol concentration is clearly 

shown at low compression ratios (CR = 8:1 and CR = 10:1) where it was possible to 

collect data on all fuel blends without auto-ignition. Once again it is clear that the higher 

the ethanol content the faster the combustion process.  The Knock Limited Compression 

Ratio (KLCR) is also evident in Figure IV-2a and Figure IV-2b.  Here it is shown that at 

these operating conditions, the KLCR of gasoline is 10:1 (as marked by the arrow in 

Figure IV-2a and Figure IV-2b), whereas fuels with an ethanol concentration greater than 

E40 can reach at least a compression ratio of 16:1.  Data were not collected at 

compression ratios greater than 16:1 for this research.  
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(a) (b) 

Figure IV-2 Effect of compression ratio on the early development and bulk burn period (-

1<SA<1; EGR=0; Speed=900 RPM; Load=330kPa NMEP) 

 

The effect of EGR on the 0-10% MFB and 10-75% MFB durations at near MBT spark 

timing for E84% is presented in Figure IV-3a and Figure IV-3b. As the EGR increases, 

the burn duration increases and therefore the spark timing to achieve MBT advances. The 

solid line in Figure IV-3 represents the trend line of the MBT timing at a compression 

ratio of 8:1 and the dashed line represents the MBT timing at a compression ratio of 10:1. 

As discussed previously, by increasing the compression ratio, the temperature in the 

combustion chamber increases resulting in a shorter burn duration.  This trend is also 

shown in Figure IV-3a when comparing the solid and dashed trendlines.  

Another trend that is evident in Figure IV-3a and Figure IV-3b is the effect of increased 

dilution on burn duration. Here it is shown that as the EGR rate is increased, both early 

and bulk burn durations increase. This is a result of the diluent absorbing the heat of 

combustion and slowing down the reaction rates. Thus enables to operate a lean and 

stable combustion at higher compression ratio to achieve higher thermal efficiency. 
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(a) (b) 

Figure IV-3 Effect of EGR on the early flame development and bulk burn period (SA=3 

Spark Timing ± 2o MBT; Speed=900 RPM; Load=330kPa NMEP) 

 

Parametric Study 

Combustion model with predictive capability has been a fascinating subject for many 

years. The combustion model is used to compute the burn rate which represents the in-

cylinder pressure and temperature in the combustion chamber. Several empirical burn 

duration correlations as a function of engine operating condition have been proposed. The 

computed burn duration from measured pressure trace were correlated to the engine 

operating conditions in forms including polynomial [11], combination polynomial and 

product form [27-29], product-power form [30-32], etc.  

Burn duration was assumed as function of cylinder geometry and turbulent flame speed 

which solely as a function of engine speed and laminar flame speed [11]. Burn duration 

was also observed as a function of compression ratio, engine speed, equivalence ratio, 

and the spark timing [28]. In addition to engine speed and the spark timing, the laminar 

flame speed was included in the burn duration correlation [27]. Derived based on a 

turbulent combustion model for SI engines the burn duration correlation was fitted to 
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parameter including the height of combustion chamber, piston bore, mean piston speed, 

laminar flame speed and kinematic viscosity [10, 30, 31].  

In this paper, there are six main parameters have been selected including: engine bore 

(B), height of the combustion chamber (h), mean piston speed (Sp), laminar flame speed 

(SL), specific internal energy (Q* = (mf /m) QLHV), and kinematic viscosity of the 

unburned mixture ().  Additional parameters describe the engine parameters: mass 

fraction burn, residual fraction, spark timing, equivalence ratio, engine speed, load, and 

valve timing [17, 30, 31]. Among those physically based parameters, bore, equivalence 

ratio and mean piston speed were constant in this research, but height of combustion 

chamber, laminar flame speed, specific internal energy and kinematic viscosity varied as 

a result of varying the compression ratio, spark timing and fuel properties in the testing. 

A non-dimensional analysis using Buckingham’s Pi Theorem [33] was performed using 

the parameters defined above to represent the burn duration. The five non-dimensional 

groups resulting from the seven variables are expressed in functional relationship in 

Equation (IV-2). A non-linear least squares method is then used to correlate the burn 

duration with the Pi groups with given product-power form. The Pi groups are: 
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Laminar Flame Speed Calculation 

Numerous empirical models have been developed to predict the laminar flame speed of a 

given fuel in the combustion chamber as a function of pressure, unburned gas 

temperature, fuel-air equivalence ratio, and residual fraction. Annand [12] summarized 

and compared the empirical laminar flame speed correlations and recommended the 

correlation developed by Metgalchi and Keck [48], which was developed for propane-air 

mixtures without dilution. The same relation was used by Gulder [49, 50] to correlate 



89 

measurements of laminar flame speed of alternative fuels, including ethanol and ethanol-

gasoline blends. The laminar flame speed estimation used in this work is given as: 
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     2326.035.0 075.148.4exp4658.007.01   ESlo  (IV-4) 

where Slo is laminar flame speed at the reference conditions, To is the reference 

temperature of 298K, po is reference pressure of 1 bar, and , , Z, W, ,  are constant 

values. 

Table IV-1 shows the constants for the laminar flame speed calculation for ethanol-

gasoline blended fuels taken from by Gulder [49, 51].  

 

Table IV-1 Values of  and  for isooctane-ethanol blends [49, 51] 

  

1 1 

46.023.056.1 E     EE 17.0122.0     EE 17.0122.0 

 

Kinematic Viscosity Calculation 

The kinematic viscosity of the unburned mixture at the ignition point is calculated by 

dividing the dynamic viscosity by the density of the unburned mixture. Dynamic 

viscosity (μ) of ethanol, gasoline, and air are given by Turns [52]. The dynamic viscosity 
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of the gas mixture is then calculated based on the constituent viscosities using the 

formula of Wilke [53]: 

   















i j ijj

ii
u x

x




  (IV-5) 

 
2

1

2
4

1
2

1

122

1







 






























j

i

i

j

j

i

ij

MW
MW

MW
MW




  (IV-6) 

where MW is the molecular weight, x is the mass fraction, and subscript i and j represent 

the species. 

 

Height of Combustion Chamber Calculation 

The height of the combustion chamber (h) at the ignition point is the height of the 

clearance volume plus the distance (s) of the piston from the head at TDC. Considering 

the wrist pin offset (X), the distance between the crank axis and the piston pin axis is 

given as: 

    sin2sincos 222222 XaaXlaXals   (IV-7) 

where l is the connecting rod length, a is the crank radius, and X is the wrist pin offset. 

 

Burn Duration Correlation 

As previously noted, the experimental matrix used in this research included sweeps of 

compression ratio, ethanol concentration, spark timing, and dilution level.  Collectively, 

these variables account for the effect of the laminar flame speed, the kinematic viscosity, 
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and the depth of the combustion chamber on the early burned duration.   Figure IV-4 

shows the results of the experimental data points plotted with an  x-axis of 0-10% MFB 

duration determined from the measured cylinder pressure and a y-axis of  0-10% MFB 

duration computed from Equation (IV-8) below. The COV of NMEP of the data used in 

the correlation is varied from 0 to 5 and the PP95 from 0 to 50 kPa. The marker type 

represents the fuel type and the color code represents the percentage of EGR. The 

average error of the model compared to the engine data is less than 1o crank angle.  
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Figure IV-4 Burn duration 0-10% MFB 

correlation of CFR engine data over wide 

range variable compression ratio, spark 

timing sweep, and EGR sweep using five 

different ethanol blends at a constant load 

of 330 kPa NMEP and constant engine 

speed of 900 RPM 

Figure IV-5 Burn duration 10-75% MFB 

correlation of CFR engine data over wide 

range variable compression ratio, spark 

timing sweep, and EGR sweep using five 

different ethanol blends at a constant load 

of 330 kPa NMEP and constant engine 

speed of 900 RPM 
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Figure IV-5 shows the bulk burn duration correlation for 10-75% MFB.  Similarly the x-

axis is the computed 10-75% MFB duration from the measured cylinder pressure and the 

y-axis is computed from Equation (IV-9) below. The average error compared to the 

engine data is less than 1o crank angle.  
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Validation of Burn Duration Correlations  

An estimated response surfaces as a result of modeling exercise can be generated using 

the correlations in Equation (IV-8) and Equation (IV-9) over the range of ethanol 

concentration from 0-100, compression ratio from 8-16, spark advance from 0-30, and 

EGR rate from 0-30. This effort filled the gap between the experimental testing points. 

Figure IV-6 and Figure IV-7 show the surface plot and projection of the early burn period 

and bulk burn respectively, as functions of ethanol concentration and EGR rate at a 

compression ratio of 10:1 and CA50 from 8-11oCA near MBT. The black crosses 

represent the experiment data points. The early burn period increases approximately 

173% as the EGR rate increases from 0 to 30% and approximately 8% as the ethanol 

concentration decreases from E85 to E0. The bulk burn period increases approximately 

37% as the EGR rate increases and approximately 4% as the ethanol concentration 

decreases. It is also shown that the experiment data agree well with the data calculated 

from the burn duration correlations. The subplot shows the error between the model and 

the experiment data. The maximum errors are 1.9oCA and 0.9oCA for B0010 and B1075, 

respectively, which use E84 at 25% EGR.  

Figure IV-8 and Figure IV-9 show the surface plot and its projection to the x-y plane of 

the early burn and bulk burn period as a function of compression ratio and ethanol 

concentration generated from the burn duration correlations on Equations (IV-8) and 

Equation (IV-9). The early burn duration increases 54% as the compression ratio 



93 

decreases from 16:1 to 8:1 and approximately 9% as the ethanol concentration decreases 

from E85 to E0. However, the bulk burn duration increases approximately 30% as the 

compression ratio increases and 5% as ethanol concentration decreases. The maximum 

error for B0010 is 0.8oCA and is 1.9oCA for B1075. 

The effects of compression ratio and EGR rate on the early burn and bulk burn duration 

are shown in the Figure IV-10 and Figure IV-11, respectively. A simulation for E84 

within range of CA50 from 8-11oCA shows that on average the early burn duration 

increases approximately 56% as the compression ratio decreases from 16:1 to 8:1 and 

approximately 150% as the EGR increases from 0 to 30%. It also shows that the bulk 

burn duration increases approximately 25% as the compression ratio increases and 33% 

as the EGR rate increases. These results agreed with the results shown in Figure IV-3b. 

The maximum error for B0010 is 1.9oCA and is 1.9oCA for B1075. 

 

 

Figure IV-6 Surface plot and projection to the x-y plane of early burn period at 

compression ratio 10 within range of CA50 from 8-11 as function of ethanol 

concentration and EGR rate 
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Figure IV-7 Surface plot and projection to the x-y plane of early burn period at 

compression ratio 10 within range of CA50 from 8-11 as function of ethanol 

concentration and EGR rate 

 

 

Figure IV-8 Surface plot and projection to the x-y plane of early burn period at EGR rate 

of 0 within range of CA50 from 8-11 as function of ethanol concentration and 

compression ratio 
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Figure IV-9 Surface plot and projection to the x-y plane of early burn period at EGR rate 

of 0 within range of CA50 from 8-11 as function of ethanol concentration and 

compression ratio 

 

 

Figure IV-10 Surface plot and projection to the x-y plane of early burn period of E84 

within range of CA50 from 8-11 as function of EGR rate and compression ratio 
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Figure IV-11 Surface plot and projection to the x-y plane of early burn period of E84 

within range of CA50 from 8-11 as function of EGR rate and compression ratio 

 

Summary and Conclusions 

Expression for burn durations were developed using non-dimensional analysis of four Pi-

groups and the least squares fitting method. These correlations cover fuels including 

gasoline, ethanol and ethanol-gasoline blends, and combustion phasing by sweeping the 

spark timing, compression ratio, and charge dilution via percentage of EGR for CFR 

engine.  

Several conclusions can be drawn. First, when compared to the burn duration computed 

from the experimental data, the RMSE of those correlations are within 1o crank angle for 

both early burn and bulk burn correlations. Second, using the correlations (Equations IV-

8 and IV-9), the effect of engine geometry variables and operating conditions can be 

observed, thus reduce the experimental cost. In order to have burn duration correlations 

for wider speed and load range, similar procedure should be repeated using wider range 

of speed and load experimental data. Burn duration correlations were developed by 

authors using proprietary dataset under a much wider conditions including engine speeds 

from 1000 RPM to 6000 RPM, NMEP range from 220 kPa to 1500 kPa, and equivalence 
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ratios from 0.8 to 1.45. It is confirmed that the physically based non-dimensional pi-

groups were highly correlated to the burn duration.  

Furthermore using this burn duration correlations, the mass fraction burn profile can also 

be reconstructed using a standard Wiebe function, and thus the pressure trace can be 

estimated to validate these burn duration correlations. This work will be discussed in the 

second paper which will enclose the combustion modeling for flex-fuel vehicles. 
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Nomenclature 

a  Crank radius  

AFR   Air Fuel Ratio 

B  Bore 

C,,   Constant 

cr  Compression ratio 

E   Ethanol concentration 

h  Depth of the combustion chamber at time of ignition 

l   Connecting rod length 

MW   Molecular weight 
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p  pressure 

QLHV  Lower heating value 

SL  Laminar flame speed 

Sp  Mean piston speed 

T   Temperature 

t   time 

V  Volume 

X   Wrist pin offset 

x  Mass fraction  

   Equivalence ratio 

    Ratio of specific heat 

   Dynamic viscosity 

  Kinematic viscosity  

    Crank angle 

 

Subscript  

b   Burn, bulk burn period 

c  Charge 

d   Early development period  

dil   Dilution 

i         Calculated at ignition point 

i,j  Species 

o  Calculated at reference point 

s   Stoichiometric 

u  Unburn 
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V. WIEBE FUNCTION PARAMETER ESTIMATION 

V.1 SINGLE-WIEBE FUNCTION PARAMETER ESTIMATION 

One approach commonly used in engine combustion simulation modeling is to estimate 

the mass fraction burned as a function of engine position using the Wiebe function [3]. 

Methods to determine the Wiebe function parameters have been developed by fitting the 

Wiebe function to the MFB profile. In this paper, a number of possible methods were 

used to determine the Wiebe function (single-Wiebe function) parameters, five promising 

methods using a combination of least square method and direct algebraic solution. It is 

also found that the “a” in the Wiebe function is directly related to the combustion 

duration (b) and is not an independent parameter. An “amplitude correction factor” “b” 

was added in the Wiebe function to incorporate the fact that the Wiebe mass fraction burn 

never actually reaches one. In this paper, the Wiebe function fitting method using the 

least squares method on the independent variables (“m”, “b”, ) gave the best fit to the 

MFB profile. 
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Abstract 

The Mass Fraction Burn (MFB) and Heat Release Rate (HRR) reflect the amount of fuel 

burned and the rate of burning throughout the combustion process in an internal 

combustion engine. These parameters play a crucial role in research and development 

endeavors focused on engine efficiency, emissions, and overall operating performance. 

Analytically in a Spark-Ignition (SI) engine, these parameters are often modeled with the 

Wiebe function, a well known mass fraction burn formulation, which is a function of “a” 

(efficiency parameter), “m” (form factor), crank angle, and the duration of combustion. 

This function is a simple but powerful correlation model that is well suited for zero and 

one dimensional engine cycle simulations.  

In this work, the Wiebe function parameters are determined over a range of fuel 

compositions and compression ratios by fitting the Wiebe function curve to the 

experimentally obtained MFB data from a single-zone HRR analysis. The Wiebe function 

parameters are determined using a curve fitting model by finding the minimum of a 

scalar function of several variables. This functionality has been built into the single-zone 

mass fraction burned model. Experiments with five ethanol-gasoline fuel blends: E0 

(gasoline), E20, E40, E60, and E84 were conducted on a SI Cooperative Fuels Research 

(CFR) engine while holding a constant load of 330 kPa Net Indicated Mean Effective 

Pressure (Net IMEP). There were five methods introduced to fit the Wiebe function 

parameters, which utilized a combination of least square method and direct algebraic 

solution. This paper details the process used to determine the Wiebe function parameters, 

and compare the results obtained using these methods for the ethanol-gasoline mixture 

concentrations. 

 

Keywords: ethanol-gasoline blend, mass fraction burn, IC engine, Wiebe function 
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Introduction 

 

Single-Zone Model 

Rassweiler and Withrow [5] developed an approximation of the mass fraction burned by 

calculating the ratio of the difference between the measured pressure and the polytropic 

pressure to the total fuel energy. This method, known also as a single-zone heat release 

method, utilizes the in-cylinder pressure data to calculate the total heat release from the 

combustion of an air-fuel mixture in the combustion chamber, as the pressure rise over a 

given crank angle interval is proportional to the mass of fuel burned over that same 

interval. Heywood et al. [7] suggests the use of this method for SI engine simulation. 

Gatowski et al. [8] developed a single-zone heat release model including the crevice 

model, and later, Chun and Heywood [40] improved upon the single-zone model by 

introducing an accurate way to model the ratio of the specific heats (gamma). The 

method averages the gamma computed from two separate zones representing the burned 

and unburned masses. In the same field of study, Klein and Eriksson [41] discussed 

several ways to predict the value of gamma. Later Cheung and Heywood [42] concluded 

that the single-zone heat release model is remarkably robust, and any error most likely 

results from measurement errors in the pressure and mass flow rate data. 

Previously a single-zone model was developed for comparison with the two-zone model 

using ethanol-gasoline fuel blends in a CFR engine [38]. Derived from the energy 

balance and the ideal gas equation, the single-zone model with two unknowns 

(temperature and mass fraction burn) has been proven to be as accurate as the two-zone 

model determination of combustion phasing. In this work, the mass fraction burn is 

calculated from experimental data using the single-zone model. 
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Wiebe Function 

One approach used in engine simulation modeling is to estimate the mass fraction burned 

as a function of engine position using the Wiebe function [3]. The Wiebe function is 

expressed as: 
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The Wiebe function curve has a characteristic S-shaped curve and is commonly used to 

characterize the combustion process. The mass fraction burned profile grows from zero, 

where zero mass fraction burn indicates the start of combustion, and then tends 

exponentially to one indicating the end of combustion. The difference between those two 

ends is known as the duration of combustion.  Although the Wiebe function simple and 

robust in specifying the combustion process, there are inherent issues.  These issues, 

along with a proposed solution, will be discussed in the remainder of this paper. 

 

Experimental Setup 

Cylinder pressure data for this research was taken from a single cylinder CFR engine 

manufactured by the Waukesha Motor Company. Several modifications had been made 

prior to this research. The modifications included relocating the sparkplug closer to the 

geometric center of the combustion chamber, and fabricating a custom piston which 

allows the compression ratio to be adjusted from 4.5:1 to 17.5:1, as opposed as the 4:1 to 

10:1 with the original piston.  The experiments were conducted by sweeping ethanol 

concentration, spark timing, and compression ratio at constant engine speed and 

a constant indicated load of 330 kPa Net IMEP. The cylinder pressure data was obtained 

with an AVL GH12D piezoelectric transducer. Data acquisition, including the 

measurement of cylinder pressure and various other critical pressures and temperatures, is 

accomplished using a combination of National Instruments (NI) hardware and software. 

A control system for this CFR engine had been previously developed with Mototron’s 



104 

Motohawk rapid engine control development environment [39]. Mototron’s Mototune 

was used as the calibration tool and ECU interface. The calibration tool was also used to 

record engine control parameters such as intake manifold pressure, air flow rate, spark 

timing, fuel injection pressure, injection duration, equivalence ratio, etc. 

 

Wiebe Function Fitting Methods 

In looking closely at Equation (V-1), it is possible to see that the mass fraction burned 

never actually reaches one, but rather approaches a value of one as the exponential term 

asymptotically approaches zero. At a given crank angle such that equal to burn duration, 

the mass fraction burn is less than one, by factor of “exponential (-a)”. To account for 

this, the authors have introduced an “amplitude correction factor” “b” in the Wiebe 

function. Adding the amplitude correction factor, the modified Wiebe function is 

expressed as follows:  
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The effect of the amplitude correction factor “b” will be discussed later along with the 

brief description of each method.  

Given the formulation in Equation (V-2), the three major parameters in the Wiebe 

function are, the combustion duration (), the start of combustion (o), and the form 

factor (m). The “a” in the Wiebe function is directly related to the combustion duration 

and is not an independent parameter. For example, by defining the combustion duration 

as the 0% to 90% mass fraction burn duration (0-90 MFB), “a” has a  fixed value of 

2.3026. For a combustion duration corresponding to 0-99.9% MFB, “a” is 6.9078.  For 

a combustion duration defined as the 0-90% MFB duration, the Wiebe function can then 

be written as: 
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In this study, a number of possible methods were used to determine Wiebe function 

parameters by fitting theWiebe function curve to the experimental data, and a summary 

of the five most promising methods are discuss here. The following is a brief discussion 

of each method. 

 

Method 1 

Using the least squares method, the Wiebe function is fitted to the mass fraction burn data 

with four independent variables (0-90%, o, m, and b). This method gives the best fit, as 

a comparison of the combustion phasing of the engine data and the Wiebe fitted curve 

shows a difference of less than 0.2o crank angle for all fuel blends tested at the given 

operating condition. However, the start of the combustion (o) is advanced by 

approximately 10 to 20 degrees before the actual spark timing. Figure V-1 shows the 

mass fraction burn curve overlaid with the Wiebe fitted curve for this method with 

gasoline and a spark advance of 10° BTDC. The blue line represents the MFB of the 

experimental data, the green line represents the Wiebe fitted curve treating the “b” as 

independent variable, and the red line represents the Wiebe fitted curve with “b” fixed 

equal to one. The two subplots at the right hand side of Figure V-1 shows the cross plots 

between the location of 0, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100% 

MFB as computed from experimental data, and the location of the same point as 

determined with the fitted Wiebe function. Further validation was performed by using the 

fitted Wiebe function to estimate the heat release, and with that information, compute the 

cylinder pressure during combustion. This computed cylinder pressure was then 

superimposed on the measured cylinder pressure, and the Net IMEP was calculated. The 

maximum difference in phasing, the difference in Net IMEP, and the Sum of Squared 

Error (SSE) of the MFB are given at the bottom of each subplot.  
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Method 2 

Method 2 addresses the issue identified by method 1 (start of combustion advanced 

beyond the point of ignition) by fixing the start of combustion at the point of ignition.  

With the start of combustion fixed, the least squares method is again used to predict the 

remaining independent variables, in this case 0-90%, m, and b. Including “b” as an 

additional variable in the least square method improved the results, as shown in Figure 

V-2. The maximum difference in the combustion phasing (0-90%) between the model 

and the experimental data in this case does not exceed 1o crank angle. The Net IMEP of 

the modeled data was within 0.02% of the Net IMEP as determined from the 

experimental data. 

 
 CA = 10.47;  Net IMEP 
= 0.06%; SSE = 0.01 

 
 CA = 23.19;  Net IMEP 
= 0.24%; SSE = 0.03 

Figure V-1The mass fraction burn and the Wiebe fitted curve using Method 1 (Gasoline, 

CR = 8.0:1, spark advanced = 10° BTDC, speed = 900 RPM, load = 330 kPa Net 

IMEP). 
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 CA = 0.67;  Net IMEP = 
0.02%; SSE = 0.03 

 
 CA = 1.21;  Net IMEP = 
0.2%; SSE = 0.10 

Figure V-2 The mass fraction burn and the Wiebe fitted curve using the Method 2 

(Gasoline, CR = 8.0:1, spark advanced = 10° BTDC, speed = 900 RPM, load = 330 kPa 

Net IMEP). 

 

Method 3 

By fixing the start of combustion at the spark ignition and the duration of the combustion 

as the difference between the location of 90% MFB and the spark timing, the “m” and the 

“b” of the Wiebe function were once again determined using the least squares method. In 

this method, including the “b” term did not significantly change the results, as shown in 

Figure V-3. The modeled combustion phasing is slightly lower in the early phase (less 

than 1.5o) and slightly higher during the second half of the combustion compared to the 

experimental data. Even though the modeled Net IMEP did not change significantly, SSE 

of this method is higher than the other methods (approximately 0.3).  
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 CA = 1.53;  Net IMEP = 
0.0%; SSE = 0.14 

 
 CA = 1.59;  Net IMEP = 
0.12%; SSE = 0.14 

Figure V-3 The mass fraction burn and the Wiebe fitted curve using the method 3 

(Gasoline, CR = 8.0:1, spark advanced = 10° BTDC, speed = 900 RPM, load = 330 kPa 

Net IMEP). 

 

Method 4 

This method is similar to Method 3. However, in this method, CA50 is used as a point of 

reference to define the duration of combustion using the analytical relation of “m” and 

“o” as follows:  
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Figure V-4 shows the Method 4 results, which by adding the “b” parameter on the least 

square method, refines the Wiebe fitted curve. The difference in the combustion phasing 
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is approximately 0.5o crank angle. The SSE for this method is twice as much as for 

Method 2, but it is approximately one-third of the SSE obtained for Method 3. 

 
 CA = 0.85;  Net IMEP = 
0.03%; SSE = 0.05 

 
 CA = 1.57;  Net IMEP = 
0.52%; SSE = 0.14 

Figure V-4 The mass fraction burn and the Wiebe fitted curve using the method 4 

(Gasoline, CR = 8.0:1, spark advanced = 10° BTDC, speed = 900 RPM, load = 330 kPa 

Net IMEP). 

 

Method 5 

This method fit the mass fraction burn to the Wiebe function by defining the “m” as a 

function of two given points of reference. The Wiebe parameter “m” derived based on 

CA10 and CA90 is written as follow: 
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Figure V-5 shows the results obtained with this method by defining the “m” as a function 

of CA10 and CA90. The results obtained using this combined algebraic and least square 

method are not in a good agreement with the mass fraction burn engine data. The solution 

improves by using “b” as the parameter determined using the least square method and 

then algebraically to determine “m”. 

 

 
 CA = 0.83;  Net IMEP 
= 0.03%; SSE = 0.05 

 
 CA = 1.67;  Net IMEP 
= 0.8%; SSE = 0.2 

Figure V-5 The mass fraction burn and the Wiebe fitted curve using the method 5 

(Gasoline, CR = 8.0:1, spark advanced = 10° BTDC, speed = 900 RPM, load = 330 kPa 

Net IMEP) 

  
Conclusion 

Five methods to fit the Wiebe function in the mass fraction burn profile have been 

discussed in this paper. Table V-1 (appendix) presents a summary of the Wiebe function 

parameters obtained using the five methods that are briefly explain above for all the 

gasoline-ethanol blend data. Excluding Method 1, Method 2 using the least square 

method with 3 parameters (b, m, ca90) produces the best fit to the original mass fraction 
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burn data followed by method 4 which have fixed “o”, and “50”, method 3 which have 

fixed “o” and “90”, and method 5 which algebraically solves for “m” using the “o” and 

“90”.  

The conclusions from this work: 

 Introducing the “b”  parameter improved the fit in nearly all cases.  

 The Net IMEP alone is not sufficient indicator of the fit produced by the model. 

The main reason for this is that the area under the mass fraction burn curve can 

remain the same even though the path is different. The addition of the SSE 

provides an addition important metric on how well the MFB curve fits the data. 

 Method 2, using three parameters (b, m, ca90) of the Wiebe function, resulted in 

the best fit for this operating condition while matching the 0-90%.  

 

Nomenclature 

a  the efficiency parameter of the Wiebe function 

b the amplitude correction factor of the Wiebe function 

m  the form factor of the Wiebe function 

x  the mass fraction burned 

 the crank angle 

  the combustion duration 

CA the location of crank angle 

Subscripts 

 b burned 

 o start of combustion 
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Appendix 
Table V-1 The Wiebe function parameters using 5 different methods of five different ethanol concentration 

fuels (CR = 8.0:1, spark advanced = 10° BTDC, speed = 900 RPM, load = 330 kPa Net IMEP) 

Wiebe Fitted 
Params. 

MFB 
of 

Engine 
Data 

Method 1 Method 2 Method 3 Method 4 Method 5 

LSM 
(b, m, 
ca0, 

ca90) 

LSM 
(m, 
ca0, 

ca90) 

LSM 
(b, m, 
ca90) 

LSM 
(m, 

ca90) 
LSM 
(b, m) 

LSM 
(m) 

LSM 
(b, m) 
& 0-

90% = 
f(ca50) 

LSM 
(m) & 
0-90%  

= 
f(ca50) 

m 
constant 
(ca10, 
ca90) 

m 
consta

nt 
(ca10, 
ca90) 
b=1 

E0 

a - 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 

m - 4.29 6.73 2.43 2.75 2.94 2.96 2.57 2.84 2.56 2.56 

0 -10.00 -20.47 -33.19 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 

0-90% 30.23 42.04 53.61 33.10 30.90 30.23 30.23 31.86 31.10 30.23 31.90 

b - 1.04 1.00 1.08 1.00 0.99 1.00 1.04 1.00 1.04 1.00 

SSE - 0.01 0.03 0.03 0.10 0.14 0.14 0.05 0.14 0.05 0.20 

Net IMEP (%) - -0.06 -0.24 0.02 -0.20 0.00 0.12 0.03 -0.52 0.03 -0.80 

Max  Diff - 10.47 23.19 0.67 1.21 1.53 1.59 0.85 1.57 0.83 1.67 

E20 

a - 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 

m - 5.41 9.00 2.57 2.95 3.15 3.19 2.74 3.05 2.70 2.70 

0 -10.00 -24.80 -42.53 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 

0-90% 28.82 44.79 61.51 31.77 29.47 28.82 28.82 30.41 29.67 28.82 30.51 

b - 1.04 1.00 1.10 1.00 0.99 1.00 1.04 1.00 1.05 1.00 

SSE - 0.01 0.02 0.03 0.11 0.15 0.15 0.05 0.15 0.06 0.22 

Net IMEP (%) - -0.07 -0.21 0.02 -0.18 0.00 0.13 0.03 -0.49 0.03 -0.77 

Max  Diff - 14.80 32.53 0.90 1.48 1.80 1.86 1.12 1.85 1.03 1.69 

E40 

a - 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 

m - 4.75 7.15 2.59 2.90 3.08 3.10 2.72 2.99 2.69 2.69 

0 -10.00 -21.18 -32.70 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 

0-90% 28.53 40.73 51.36 30.91 29.08 28.53 28.53 29.90 29.25 28.53 29.96 

b - 1.03 1.00 1.08 1.00 0.99 1.00 1.04 1.00 1.04 1.00 

SSE - 0.01 0.02 0.03 0.08 0.11 0.11 0.04 0.11 0.04 0.17 

Net IMEP (%) - -0.05 -0.18 0.02 -0.17 0.00 0.09 0.03 -0.42 0.03 -0.67 

Max  Diff - 11.18 22.70 0.79 1.27 1.54 1.58 0.94 1.57 0.89 1.43 

E60 

a - 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 

m - 4.79 7.60 2.57 2.91 3.10 3.13 2.72 3.00 2.70 2.70 

0 -10.00 -21.36 -34.81 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 

0-90% 28.26 40.77 53.23 30.88 28.86 28.26 28.26 29.71 29.04 28.26 29.76 

b - 1.04 1.00 1.09 1.00 0.99 1.00 1.04 1.00 1.04 1.00 

SSE - 0.01 0.02 0.03 0.09 0.12 0.13 0.04 0.12 0.04 0.18 

Net IMEP (%) - -0.05 -0.19 0.02 -0.17 0.00 0.12 0.03 -0.43 0.03 -0.68 

Max  Diff - 11.36 24.81 0.74 1.26 1.55 1.61 0.93 1.58 0.89 1.50 

E84 

a - 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30 

m - 5.05 8.51 2.46 2.84 3.04 3.08 2.65 2.94 2.60 2.60 

0 -10.00 -23.38 -40.20 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 -10.00 

0-90% 28.03 42.65 58.38 31.09 28.68 28.03 28.03 29.60 28.87 28.03 29.71 

b - 1.04 1.00 1.10 1.00 0.99 1.00 1.04 1.00 1.04 1.00 

SSE - 0.01 0.02 0.03 0.11 0.15 0.15 0.06 0.15 0.06 0.22 

Net IMEP (%) - -0.07 -0.22 0.03 -0.17 0.01 0.13 0.03 -0.45 0.04 -0.73 

Max  Diff - 13.38 30.20 0.93 1.51 1.82 1.89 1.16 1.86 1.07 1.68 
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V.2 DOUBLE-WIEBE FUNCTION PARAMETER ESTIMATION USING 

LEAST SQUARES METHOD 

In this paper, the double-Wiebe function parameters were calculated using a least squares 

method by fitting MFB location as determines from analysis of measured cylinder 

pressure to the double-Wiebe functions. Multiple points from the experimental based 

MFB location were used to fit the single and double-Wiebe functions to observe the 

minimum number of data points required to estimate the Wiebe parameters. The 

conventional single-Wiebe function has two parameters, while the double-Wiebe function 

has five parameters including two parameters for each Wiebe function and a weighting 

parameter. A single-zone pressure model was developed to reconstruct the pressure trace 

from a given MFB profile in order to validate the estimated Wiebe parameters. This 

model is developed by reversing the single-zone MFB model. Once the pressure trace is 

recovered, the reconstructed pressure trace compared with the experimentally measured 

cylinder pressure trace over the range of ethanol blends from E0-E84 and combustion 

phasing sweeps with variable compression ratios and EGR percentages.  

It is found that the double-Wiebe function model fit better to the experimental MFB 

profiles than the single-Wiebe function model. 
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Abstract 

Phasing and duration are two of the most important aspects of combustion in Spark 

Ignition (SI) engines and impacts efficiency, emissions, and overall engine performance. 

These aspects of combustion can be represented by the mass fraction burn (MFB) profile. 

Being able to accurately model the MFB profile leads to the ability to model the 

combustion process and, thus, properly model the overall engine in 1D engine simulation 

tools. 

The Wiebe function is widely used in engine simulation to estimate the MFB profile as a 

function of crankshaft position [3]. In this work, for the purpose of validating a sub-

process, the Wiebe function parameters were calculated using an analytical solution and a 

least squares method by fitting MFB locations as determined from analysis of measured 

cylinder pressure to both single and double-Wiebe functions. To determine the accuracy 

of the respective Wiebe function, a single-zone pressure model was applied to reconstruct 

the pressure trace. Once the pressure trace is recovered, the reconstructed pressure trace 

is then compared with the experimentally measured cylinder pressure trace. Results 

showed that the double-Wiebe function model fit better than the single-Wiebe function 

model. The root mean square error (RMSE) of reconstructed pressure trace using the 

double-Wiebe estimation is 7.9 kPa. In comparison, the RMSEs of reconstructed pressure 

traces using the single-Wiebe analytical solution and single-Wiebe least squares methods 

were 70.0 kPa and 75.9 kPa, respectively demonstrating a significant improvement.   

 

Keyword: Spark Ignition Engine, Combustion Modeling, Burn Durations, Ethanol, 

Wiebe Function   
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Introduction 

With computer capability continuing to increase, engine simulation has become an 

important part of the design and calibration phase of the development cycle for SI 

engines [2]. Due to its simplicity, 1D engine simulation is widely used for the design, 

development, calibration, and optimization of the engine. The 1D simulation tool is 

computationally efficient and enables dynamic modeling of the entire engine as a system 

including the dynamics of the flow [3]. The combustion sub-model plays a critical role in 

the overall engine simulation as it provides the burning rate, which represents the 

combustion process for a given engine geometry and set of  operating conditions [2].  

The Wiebe function is widely used in internal combustion engine applications to describe 

the fraction of mass burned in the combustion chamber during the combustion process [7, 

54]. This function has a characteristic S-shaped curve, which grows from zero indicating 

the start of combustion and tends exponentially to one indicating the end of combustion. 

Due to its simplicity, this function is used instead of the complicated turbulent reacting 

flame front calculation to predict the rate of combustion [2, 3, 7], and is often used in SI 

engine modeling to describe the MFB as a function of engine position (crank-angle) 

during the cycle [3, 7, 27, 54, 55]. 

Reconstruction of the MFB by fitting a given MFB location to the Wiebe function 

became a critical step in the combustion model which can be used in an engine model for 

both design and operation optimization. In this paper, a least square method was 

developed to compute the double-Wiebe function parameters. A comprehensive analysis 

of the single-Wiebe and double-Wiebe fitted methods were performed and compared to 

the experimentally measured engine data over wide range of compression ratios, exhaust 

gas recirculation (EGR) and five different ethanol blends using a Cooperative Fuel 

Research engine. 
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Experimental Design 

The engine data presented in this work was obtained from a single cylinder CFR engine 

that was modified to meet the criteria for this research [38, 46]. A custom piston was 

developed which allows engine operation over the range of compression ratios from 4.5:1 

to 17.5:1. The location of the spark plug was moved to the top of the combustion 

chamber to improve flame propagation and to better emulate a modern SI engine 

combustion chamber geometry. An AVL GH12D piezoelectric pressure transducer was 

installed with an AVL PH01 flame arrestor to sense the in-cylinder pressure. Cylinder 

pressure data acquisition and on-line analysis (such as for data quality checks) was 

performed with a DSP ACAP system [47]. Other high speed and low speed data, 

including fuel and airflow rates and other critical pressures and temperatures, were 

measured and acquired using a combination of National Instruments  hardware and 

software. An electronic control system for this engine was developed with Mototron’s 

Motohawk rapid prototyping engine control development environment [39]. This enabled 

a full electronic control system including spark, fuel injection, and throttle. Mototron’s 

Mototune was used as the calibration tool and engine control unit (ECU) interface. The 

calibration tool was also used to record engine parameters including intake manifold 

pressure, throttle position, air flow rate, commanded spark timing, fuel injection pressure, 

commanded injection duration, equivalence ratio, and exhaust gas recirculation (EGR) 

level.  

Table V-2 lists the variables and the range associated with each that were examined in 

these experiments. The experiments were conducted by sweeping combustion phasing via 

spark timing and varying ethanol concentration, EGR rate, and compression ratio at a 

constant engine speed of 900 rpm and a constant load of 330 kPa NMEP5 while 

maintaining a stoichiometric equivalence ratio. Combustion phasing was swept in 2° 

crank-angle (CA) increments from a location of 50% MFB (CA50) of approximately 30° 

ATDC to the point of heavy audible knock or until the combustion phasing was clearly 

advanced beyond maximum brake torque (MBT), whichever came first. During this 
                                                 
5 The Net Mean Effective Pressure refers to the IMEP computed over the 720CA operating cycle (high 
pressure loop, plus the pumping loop). 
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sweep the point of borderline audible knock, if applicable, was noted in the data. Three 

hundred consecutive engine cycles were recorded at each test set-point and the cycle 

averaged data was used to compute the MFB profile [38].  

 

Table V-2 List of variables 

Variable Value 

Fuel Blends6 E0, E20, E40, E60, E84 

Compression Ratio 8, 10, 12, 14, 16  

Spark Timing From 4o ATDC in 2° increments (To Knock Limit)

EGR Rate (%) 0, 10, 20, 25, 30 (or COV Limit) 

 

Wiebe Function Estimation 

The Wiebe function is expressed as: 
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Where: 

a  Efficiency parameter  

m   Shape factor 

xb  Mass fraction burn 

    Crank angle in degrees 
                                                 
6 E84 = 84 % ethanol by volume 



119 

o    Start of combustion 

    Combustion duration 

 

In this function, o indicates the start of combustion; however, because of delays in flame 

kernel development, the location of first detectable combustion of does not always match 

the spark timing. However, o is widely accepted as the spark discharge. Therefore the 

main difference observed in Wiebe function application is in determining the Wiebe 

parameters (“m”, “a”, and ) that define the burn rate characteristic [3, 7, 13]. In terms 

of the combustion duration, the 90% MFB is used as the end of combustion and 0, 1%, 

5% or 10% MFB is used as the start of combustion. It is also widely known that “a” and 

“m” are adjustable parameters and the common values used for SI engine simulation are 

equal to 5 and 2, respectively [3, 7]. However, this set of constants results in a large 

estimation error especially for high dilution operating conditions and in combustion 

knock applications [13, 55]. 

Previously, several methods to determine the Wiebe function parameters have been 

developed by fitting the Wiebe function to the MFB profile using a combination of the 

least squares method and direct algebraic solution [56]. From this it is observed that the 

“a” is not an independent variable, but rather directly related to the combustion duration 

() [27, 56]. In this work,  is introduced as an efficiency parameter to represent both 

the “a” and , thus simplifying the formulation of the Wiebe function.  
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    1
1

ma  (V-8) 
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A simple analytical solution of the Wiebe function parameters (“m” and ) given at 

least two MFB locations is obtained by rearranging terms and taking the natural log twice 

of Equation (V-7): 

           bo xmm  1lnlnln1ln1   (V-9) 

This clearly shows that “m+1” is the slope of the plot of ln(-ln(1-xb)) versus ln(-o) with 

the intercept on the y-axis and the x-axis is (-(m+1) ln()) and ln(). Figure V-6 shows 

the plot of ln(-ln(1-xb)) versus ln(-o) using the experimental data using gasoline at a 

compression ratio of 8:1, zero EGR, and the spark swept from 4o to 12o BTDC. The circle 

symbols from left to right indicate the location of 5%, 10%, 25%, 50%, 75% and 90% 

MFB. The estimated values of m̂  and ̂  from the linear correlation are: 
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where subscripts 1 and 2 refer to the data points 1 and 2, respectively. 

Alternatively, a least squares method can be used to estimate the “ m̂ ” and ̂  as follows: 
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Figure V-6 Log plot of MFB profile (CFR; E0; CR=8:1; SA=5-13; EGR=0; Speed=900 

RPM; Load=330kPa NMEP) 

 

These formulas for estimating the Wiebe function parameters are simple and 

straightforward to apply. Another method to estimate “a” and “m” is a graphical 

approach, by plotting the ln(-ln(1-xb)) against ln(-o) which is essentially the same as the 

analytical solution method, as shown in Figure V-6. When the plot is a straight line, this 

means that the data set is adequately described using the single-Wiebe function. 

However, when the plot is not a straight line, it indicates a second Wiebe function is 

needed to match the engine data.  

The double-Wiebe function has been used in HCCI [57, 58] and in knocking cases for SI 

engines [55], because the double-Wiebe function provides a better match to the 

experimental data compared to the standard Wiebe function for these non-symmetric 

combustion profiles. The double-Wiebe function parameters are estimated using a non-

linear least squares method. In this work, estimation of the parameters for the double-

Wiebe function is studied and developed for cases with only a limited number of data 

points from the MFB profile. Seven locations of MFB (0, 10%, 25%, 50%, 75%, 90%, 

and 99%) are used in the fitting processes. These data points are selected because they are 
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spread well across the MFB profile, are often used in combustion analysis and can be 

obtained from the recorded combustion analysis.  

Existing literature describes several ways to combine more than one Wiebe function [59-

61]. These applications are widely used in mechanical failure and reliability analysis. The 

double-Wiebe function has two efficiency and two shape parameters as well as a 

weighting factor (p) as shown in Equation (V-14). This weighting factor reflects the 

influence of each Wiebe function on the overall MFB profile. The least squares method is 

used to estimate these parameters, which were obtained by finding the minimum RMSE 

over a given set of data points that satisfied the double-Wiebe equation. A fixed set of 

initial values are given to start the estimation. Location of 10%, 25%, 50%, 75%, and 

90% MFB are then calculated and compared to the location of 10%, 25%, 50%, 75%, and 

90% MFB from experimental data. Figure V-7 shows the flow chart describing the 

process of estimating the double-Wiebe function parameters. 
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Figure V-7 Flow chart of double-Wiebe function parameters estimation 
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Results  

The MFB which represents the percentage of fuel consumed versus crank-angle during 

the combustion portion of an engine cycle is obtained by analyzing the experimentally 

measured in-cylinder pressure, which is typically measured using a piezo-electric 

pressure transducer [44, 62]. This curve is commonly used to characterize the combustion 

process in SI engines. In this study, the MFB is compute using a single-zone MFB 

analysis method which is derived from the balance of energy in the combustion chamber 

by assuming the products and reactants behave as an ideal gas, the mass is constant, and 

both the products and reactants have a constant and equal molecular weight during the 

combustion process. A single-zone MFB model, along with a two-zone model, was 

developed by this research team and compared with a traditional apparent heat release 

model [38]. The single-zone model with two unknowns (temperature and mass fraction 

burn) and the two-zone model with five unknowns (burned and unburned temperature, 

burned and unburned volume, and mass fraction burn) is shown to correlate well with the 

apparent heat release model, particularly in regards to combustion phasing [38]. Due to 

its simplicity and good correlations, the single-zone MFB model was used to compute 

burn rate in this research. 

Figure V-8 shows the engine MFB profile on the primary y-axis and the rate of MFB 

profile on the secondary y-axis for the CFR engine data at a compression ratio 8:1, spark 

advance at 6oBTDC, zero EGR, a constant speed of 900 RPM and a constant load of 330 

kPa NMEP using an 84% ethanol blend. This MFB profile is normalized to its maximum 

value of 0.7. This means that 30% of the energy is lost through heat transfer, blow-by and 

crevice effects. The red cross symbols in Figure V-8 represent the location of 0, 10%, 

25%, 50%, 75%, 90% and 100% MFB, which are used in the Wiebe function analysis.  
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Figure V-8 MFB and rate of MFB profile (CFR; E84; CR=8:1; SA=6; EGR=0; 

Speed=900 RPM; Load=330kPa NMEP) 

 

Figure V-9 shows the comparison between the engine data and the Wiebe function profile 

with parameters calculated using the analytical approach using the MFB value at the 

CA10 and CA90 locations. It is shown that the fitted Wiebe function failed to follow the 

engine data in the range of CA25 to CA75. This deviation impacts the rate profile causing 

an advance in the peak pressure and lowering the value of peak pressure. 

Similarly in Figure V-10, the Wiebe function with the parameters estimated using the 

least squares method (LSM) for the same engine data using seven MFB values (0, 10%, 

25%, 50%, 75%, 90% and 100%) in the fitting process. Compared to the analytical 

method, the LSM method also does not match the engine profile exactly. This is mainly 

due to the non-symmetrical nature of the MFB profile. Similar to the previous discussion, 

this deviation leads to shifting the rate of the Wiebe fitted MFB profile and furthermore 

shifting the reconstructed pressure trace. 
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Figure V-9 Single-Wiebe function with 

parameters estimated using analytical 

solution (CFR; E84; CR=8:1; SA=6; 

EGR=0; Speed=900 RPM; Load=330kPa 

NMEP) 

Figure V-10 Single-Wiebe function with 

parameters estimated using least squares 

method (CFR; E84; CR=8:1; SA=6; 

EGR=0; Speed=900 RPM; Load=330kPa 

NMEP) 

 

To improve the estimation of non-symmetrical cases, which are prevalent in the 

borderline knock or stability limit situations, the double-Wiebe function estimation is 

developed. This option is reasonable because the rate of combustion is continuously 

changing. For example, in the case above, due to the nature of the engine, the rate of 

combustion in the first half is slightly different than the rate of combustion in the second 

half. This difference is mainly caused by geometrical factors and the flame propagation 

with the small height-to-diameter ratio at high compression ratios in the CFR engine as 

well as the quenching effect on the flame as it travels close to the cylinder wall.  

Figure V-11 shows that the double-Wiebe function model with the parameters estimated 

using the least squares method agrees well with the experiment MFB profile. Figure V-12 

shows a similar comparison using the rate of MFB profile. 
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Figure V-11 Double-Wiebe function with 

parameters estimated using least squares 

method (CFR; E84; CR=8:1; SA=6; 

EGR=0; Speed=900 RPM; Load=330kPa 

NMEP) 

Figure V-12 Double-Wiebe function with 

parameters estimated using least squares 

method (CFR; E84; CR=8:1; SA=6; 

EGR=0; Speed=900 RPM; Load=330kPa 

NMEP) 

 

Validation Process  

Validation was performed using the fitted Wiebe function to estimate the heat release, 

and using that information, compute the cylinder pressure during combustion. For this 

purpose, a single-zone pressure model was developed by inverting the single-zone MFB 

analysis. Derived from the ideal gas equation and the energy balance, the single-zone 

pressure model is expressed in matrix form as: 
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Using the equation above, the unknown pressure and temperature are solved using LU 

matrix factorization given the MFB profile. There are number of terms estimated 

including heat transfer coefficient, residual fraction, combustion efficiency, wall 

temperature and crevice volume [38]. Once the pressure trace is recovered, the accuracy 

of the reconstructed pressure trace can be determined by a comparison with the measured 

cylinder pressure trace of the engine data. The maximum difference in phasing, the 

difference in NMEP, and the RMSE are used as metrics to quantify the Wiebe function 

fitting methods discussed in this paper. 

Figure V-13 and Figure V-14 show the MFB and MFB rate respectively based on the 

engine data and three Wiebe functions obtained with parameters estimated using the 

analytical solution and least squares method for both single and double-Wiebe functions. 

The estimation is based on seven MFB locations (0, 10%, 25%, 50%, 75%, 90% and 

99%), except for the analytical solution for the single-Wiebe function that uses only the 

values at 10% and 90% of MFB. It is shown that the double-Wiebe function matches the 

trend of the experimentally obtained MFB and MFB rate profiles better than the single-

Wiebe or analytical solution. 

 

Figure V-13 Comparison of three curve fits 

of the engine MFB profile (CFR; E84; 

CR=8:1; SA=6; EGR=0; Speed=900 

RPM; Load=330kPa NMEP) 

Figure V-14 Comparison of three curve fits 

of the engine MFB rate profile (CFR; E84; 

CR=8:1; SA=6; EGR=0; Speed=900 

RPM; Load=330kPa NMEP) 
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Figure V-15 shows the reconstructed pressure trace using three different curve fits along 

with the inverted MFB profile obtained from the measured cylinder pressure and the 

actual cylinder pressure trace. The first blue line is the reconstructed pressure trace 

calculated using the engine MFB profile, and is thus a validation of the single-zone 

pressure model that is given in Equation (V-15). The second green line is reconstructed 

pressure trace calculated using the single-Wiebe function with the parameters estimated 

using the analytical solution. The parameters in the third red line are estimated using the 

least squares method, and the fourth turquoise line is computed using a double-Wiebe 

function with the parameters estimated using the least squares method. It is shown that 

the reconstructed pressure trace obtained using the double-Wiebe function is overlaid on 

top of the engine pressure trace.  

Table V-3 shows the evaluation metrics for the reconstructed pressure traces for the CFR 

engine data using an 84% ethanol blend at a compression ratio of 8:1, spark advance of 6o 

BTDC, zero EGR, at a constant speed of 900 RPM and constant load of 330 kPa NMEP. 

The pressure model RMSE is approximately 1.6 kPa, the error in the double-Wiebe 

estimation is 7.9 kPa, and the error in the linear and LSM estimations are 70.0 kPa and 

75.9 kPa, respectively. In terms of the  NMEP, the double-Wiebe is approximately 0.4 

kPa lower than the experimental data, while the single-Wiebe applications estimate is 

about 4 kPa lower than the experimental data. As shown in the Table V-3, the maximum 

pressure difference between the models and the measured pressure trace shows the same 

trends.  

Table V-4 shows the histograms of 745 CFR data points and the 5th and 95th percentile of 

the metrics used for the reconstructed pressure trace. These data cover different ethanol 

blends with sweeps of spark timing, compression ratio, and EGR rate at a constant engine 

speed of 900 RPM and a constant indicated load of 330 kPa NMEP. The 5th percentile 

error of  NMEP of the double-Wiebe function model approximation as compared to the 

engine data is less than 1 kPa, while the 5th percentile error using the single-Wiebe 

function is 3 kPa. The 95th percentile of RMSE for the double-Wiebe function 

approximation is 44 kPa, while for the single-Wiebe function approximations are greater 
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than 100kPa. Similarly the 5th percentile of maximum  pressure for the double-Wiebe 

approximation is half of the error obtained using the single-Wiebe function. 

 

Figure V-15 Comparison of four curve fits to the engine pressure trace (CFR; E84; 

CR=8:1; SA=6; EGR=0; Speed=900 RPM; Load=330kPa NMEP) 

 

Table V-3 Evaluation metrics of the reconstructed pressure traces using 4 different curve 

fits 
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Table V-4 The 5th and 95th percentile of the metrics used for the reconstructed pressure 

trace using 4 different curve fits 

Experiment MFB 

Profile 

Single-Wiebe 

Function Model 

with Linear 
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Summary and Conclusions 

The single-zone pressure model to reconstruct the pressure trace from MFB profile has 

been developed and validated. The double-Wiebe function parameters estimation method 

which used a non-linear least squares method has been developed and compared with the 

single-Wiebe function parameters estimation method includes the analytical solution and 

least squares method. 

The double-Wiebe function approximation, which involves five parameters, i.e. 1, 2, 

m1, m2, and p, the weighting parameter, fits better than any of the other approximations 

investigated. This method has shown similar result with proprietary dataset under a much 

wider conditions including engine speeds from 1000 RPM to 6000 RPM, NMEP range 

from 220 kPa to 1500 kPa, and equivalence ratios from 0.8 to 1.45. This double-Wiebe 

function parameters estimation method then can be applied in a predictive combustion 

model which determines the MFB profile from given set of MFB location. The double-

Wiebe function parameters may also be used to characterize the combustion process by 

observing the weighting factor which weighs each Wiebe function with respect to overall 

MFB profile.  

Based on this study, several recommendations for the application of the double-Wiebe 

function parameter estimations are: 

 Use seven locations of 0, 10%, 25%, 50%, 75%, 90% and 99% of MFB 

 Considering that only a limited number of data points are used, it is necessary 

to set the range of p, the weighting parameter, between 0.25 to 0.75 for 

successful implementation of the approximation 

 The combination of the RMSE and the NMEP are sufficient indicators of the 

model fit to the engine data 
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Nomenclature 

 Wiebe Function 

AS   Analytical Solution 

a,   Efficiency parameter  

LS   Least Squares Method 

m   Shape factor 

p  Weighted factor 

xb  Mass fraction burn 

o    Start of combustion 

    Combustion duration 

    Crank angle 

 

Single-Zone Pressure Model 

A    Combustion chamber surface area  

AFR   Air Fuel Ratio 
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 Cv  Specific heat at constant volume 

 h  Enthalpy 

 h   Average heat transfer coefficient 

 M  Molecular weight 

 mc  Mass of the charge 

 p  Pressure 

 QLHV  Lower heating value 

 R   Universal gas constant 

 T  Temperature 

 V  Volume 

x  Mass fraction  

Subscript  

b   Burn 

cr  Crevice 

dil   Dilution 

w   Wall 
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V.3 DOUBLE-WIEBE FUNCTION PARAMETER ESTIMATION USING 

ANALYTICAL SOLUTION 

In many cases the rate of combustion changes with respect to the crank angle, and a 

single Wiebe function does not sufficiently represent the MFB profile. To better match 

the experimental MFB profile, a double-Wiebe function has been used particularly in 

cases that have a non-symmetric characteristic in the combustion profile. In this paper, 

the step-by-step estimation of the double-Wiebe parameter is studied and developed for 

cases with a limited number of data points to represent the MFB profile using an 

analytical solution. This analytical solution method is a simple, robust and straight 

forward method to compute the double-Wiebe parameters, thus enabling direct 

application in the one-dimensional engine simulation tool that normally has 

computational limitations. 
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Abstract 

The mass fraction burn (MFB) profile represents the fraction of mass burned in the 

combustion chamber as a function of crank angle. The MFB profile is the key 

characteristic in spark ignition engines linking combustion rates to an important indicator 

of efficiency, emissions and overall engine performance. The Wiebe function is a 

function form fits the characteristics S-curve that is used to represent the MFB profile as 

a function of crankshaft position and is widely used in engine simulation. In many cases 

as the rate of combustion changes with crank angle, a single Wiebe function does not 

sufficiently represent the MFB profile. To obtain better agreement with the experimental 

MFB profile, a double-Wiebe function can be used, particularly in cases that have a non-

symmetric combustion profile.  

In comparison to the single-Wiebe function that has two parameters, the double-Wiebe 

function has five parameters, including two sets of single-Wiebe parameters and a 

mixture parameter that defines the weight of each Wiebe function in the MFB profile. In 

this paper, the estimation of the double-Wiebe parameter is studied and developed for 

cases with a limited number of data points that represent the MFB profile using a unique 

analytical solution. This method provides a robust and computationally efficient method 

for application in 1D engine simulation tools.  

 

Keyword: Double-Wiebe Function, Combustion Modeling, Burn Durations, Ethanol, 

Spark Ignition Engine   
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Introduction 

A heat release analysis is performed to gain better understanding of the combustion 

process in a spark ignition (SI) engine. This analysis is conducted by examining the in-

cylinder pressure trace that is typically measured with a piezo-electric pressure transducer 

in response to engine geometry, operating conditions and combustion process. The mass 

fraction burn (MFB) profile, a characteristic S-shaped curve, represents the cumulative 

heat release during the combustion process. The derivative of this curve represents the 

rate at which the mass burns, starts at zero and increases after the spark discharge to a 

maximum level approximately halfway through the burning process and then decreases to 

zero as the combustion process ends. The slope of the first half of this curve is not 

necessary the same as the slope of the second half, particularly under high dilution and 

knocking combustion conditions, which have a characteristic non-symmetric combustion 

rate.  

Considering the importance of the MFB profile to the analysis and simulation of SI 

engines, it is critical to accurately model the MFB profile. An accurate MFB profiles 

enables modeling of the combustion process and effective simulation of the overall 

engine for design, calibration and optimization purposes. 

 

Experimental Design 

The experimental data used for this research was obtained using the Michigan Tech Port 

Fuel Injected Cooperative Fuel Research (CFR) engine with variable compression ratio 

of 8:1 to16:1 [46] and a single cylinder Direct Injection-SI Hydra engine with a modern 

combustion chamber including variable compression ratio of 11:1 to 18.5:1 and variable 

valve timing (VVT) to control the residual fraction in the combustion chamber [21]. Both 

of these engines have been used in the ethanol-gasoline blend research [21, 38, 46]. Each 

engine has an AVL GH12D piezoelectric pressure transducer installed with an AVL 

PH01 flame arrestor to sense the in-cylinder pressure. Cylinder pressure data acquisition 

was accomplished using a DSP ACAP system [63]. Three hundred consecutive engine 
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cycles were recorded for every test point. Other high speed and low speed data, including 

fuel and airflow rates and various other critical pressures and temperatures, were 

measured and acquired using a combination of National Instruments (NI) hardware and 

software. A fully electronic control system was developed with Mototron’s Motohawk 

rapid prototyping engine control development environment [21, 39]. Mototron’s 

Mototune was used as the calibration tool and engine control unit (ECU) interface. The 

calibration tool was also used to record engine control parameters including intake 

manifold pressure, throttle position, air flow rate, commanded spark timing, fuel injection 

pressure, commanded injection duration, equivalence ratio, intake and exhaust cam 

phasing, and exhaust gas recirculation (EGR) level.  

 

Wiebe Function 

The Wiebe function is widely used in internal combustion engine applications to describe 

the fraction of mass burned in the combustion chamber during the combustion process 

[7]. This function starts at zero, indicating the start of combustion, and tends 

exponentially to one, indicating the end of combustion. Due to its simplicity, this function 

is used instead of the complicated turbulent reacting flame front calculation to predict the 

rate of combustion [2, 3, 7], and is often used in SI engine modeling to describe the MFB 

as a function of engine position (crank-angle) during the cycle [3, 7, 27, 54, 55]. 

The Wiebe function is expressed as: 
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(V-16) 

Where: 

a  Efficiency parameter  

m   Shape factor 



139 

xb  Mass fraction burn 

    Crank angle 

o    Start of combustion 

    Combustion duration 

Previously, several methods to determine the Wiebe function parameters have been 

developed by fitting the Wiebe function to the MFB profile using a combination of the 

least squares method and direct algebraic solution [56]. It was observed that the 

efficiency parameter, “a” is not an independent variable, but is directly related to the 

combustion duration () [27, 56]. In this work,  is introduced as an efficiency 

parameter to represent both the “a” and , thus simplifying the formulation of the 

Wiebe function.  
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    1
1

ma  (V-18) 

 

Considering the “m+1” as , the Wiebe function has a similar form to the Weibull 

formula, a cumulative distribution function that has two parameters that are widely used 

in reliability, failure and lifetime data analysis [64]. The Weibull distribution is expressed 

as: 

   1 exp
t

F t



      

   
 (V-19) 

Where  is the scale parameter,  is the shape factor and  is the location parameter. The 

location parameter  is known (in this case, the spark timing that indicates the start of 
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combustion o in SI engine). Calculation of the Weibull parameters had been studied 

using linear and non-linear regressions [65], a graphical approach [66], and a weighted 

least squares method [67]. Wiebe function terms will be used toward the discussion in 

this paper. 

A simple analytical solution of the Wiebe function parameters is obtained by rearranging 

terms and taking the natural log twice of Equation (V-17) twice: 

           bo xmm  1lnlnln1ln1   (V-20) 

Equation (V-20) shows that “m+1” is the slope of the plot of ln(-ln(1-xb)) versus ln(-o) 

with the intercept on the y-axis and the x-axis is (-(m+1) ln()) and ln(). The analytical 

solution of “m” and  from the linearized-equation are: 
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 (V-22) 

Where subscript 1 and 2 refer to the data points 1 and 2, respectively. 

 

Double-Wiebe Function 

The double-Wiebe function has been used in HCCI [57, 58] and in knocking cases for SI 

on single-Wiebe function for these non-symmetric combustion profiles. The double-

Wiebe function parameters are estimated by fitting the MFB to the Wiebe function. The 

least squares method has been developed to compute these parameters, which were 

obtained by finding the minimum root mean square error (RMSE) over a given set of data 

points that satisfied the double-Wiebe equation [68]. However, in this work, estimation of 
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the parameters for the double-Wiebe function is developed using an analytical solution 

given a limited number of data points from the MFB profile.  

Several methods to combine more than one Weibull function have been proposed [61, 69-

71]. The mixture Weibull distribution parameters were obtained using a graphical 

approach [60, 72]. These applications are widely used in mechanical failure and 

reliability analysis.  

In this paper, the double-Wiebe function was combined resulting two efficiency (1 and 

1) and two shape parameters (m1 and m2) and a weighting factor (p) as shown in 

Equation (V-23). This weighting factor reflects the influence of each Wiebe function on 

the overall MFB profile.  
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 (V-23) 

 

Analytical Solution Approach 

Two general types of combustion characteristics can be identified by observing five 

location of MFB (10%, 25%, 50%, 75%, and 90%). The first type has a slower burn in 

the first half of the combustion period as compared to the second half of the combustion 

period, while the second type has a faster burn in the first half as compared to the second 

half of the combustion period.  Figure V-16a shows a profile of MFB observed in the 

CFR engine (ethanol content of 85 %volume (E85), compression ratio (CR) = 8, spark 

advance (SA) = 10 oCA before top dead center (BTDC), EGR=10, intake cam center line 

(ICCL) = 112 oCA before gas exchange top dead center (BGETDC) and exhaust cam 

center line (ECCL) = 87.5 after gas exchange top dead center (AGETDC), speed at 900 

RPM and net indicated mean effective pressure (NMEP) of 330 kPa). This exhibits a 

slower burning rate in the first half of the combustion period. Figure V-16b shows a MFB 

profile that has a faster burning rate in the first half as compared to the second half of the 
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combustion period. This was observed in the Hydra engine (E85, CR = 11, SA = 42.5 
oCA BTDC, EGR = 0, ICCL = 110 oCA BGETDC and ECCL = 88 oCA AGETDC, speed 

at 1300 RPM and NMEP = 330 kPa). The red-crosses in both figures represent the 

locations of 10%, 25%, 50%, 75%, and 90% of MFB. These cases will be used as 

examples to demonstrate the analytical solution of the double-Wiebe function parameters 

estimation. 

 

 

(a) 

 

(b) 

Figure V-16 Combustion characteristics of two different engines 

 

Given these locations, which correspond to five different MFB percentages, the Wiebe 

parameters can be estimated using Equations (V-21) and (V-22). This method is similar 

to plotting the ln(-ln(1-xb)) versus ln(-o). Figure V-8a and Figure V-8b show the plots 

of ln(-ln(1-xb)) versus ln(-o) of the five locations of MFB profile taken from the CFR 

and Hydra engines, respectively. Projection to the y-axis represents the MFB, and 

projection to the x-axis represents the burn duration at given MFB location. The slope of 

the line between any two points represents the “m+1” of Wiebe parameters. 
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(a) 

 

(b) 

Figure V-17 Plot of ln(-ln(1-xb)) versus ln(-o) 

 

The double-Wiebe parameter estimation process begins by assuming that there are two 

separate populations among the five MFB locations. The locations of 10% and 25% MFB 

describe the first population, which represents the first half of combustion period, and the 

location of 75% and 90% MFB describe the second population, which represents the 

second half of the combustion period. Figure V-9a and Figure V-9b show the same log 

plot for the CFR and Hydra engines, respectively. The green line represents the slope of 

the first population which represent the “m1+1” of the first Wiebe function, and the red 

line represents the slope of the second population, which represent the “m2+1” of the 

second Wiebe function. It is clearly shown that the engines have different combustion 

characteristics and the single-Wiebe function will not accurately represent the 

combustion processes. Figure V-19a and Figure V-19b show the profiles of both Wiebe 

functions for CFR and Hydra engines, respectively. 
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(a) 

 

(b) 

Figure V-18 Log plot of ln(-ln(1-xb)) versus ln(-o) 

 

 

(a) 

 

(b) 

Figure V-19 Profile of both Wiebe function 

 

Projection to the y-axis of the intersection of these two lines provides a good initial value 

for “p” the mixture parameter for the double-Wiebe function. From Figure V-9a and 

Figure V-9b, the “p” mixture parameters of the CFR and Hydra engines are 0.50 and 

0.52, respectively. The estimated “p” mixture parameter can be expressed analytically as: 
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Using the estimated “p” mixture parameter given by equation (V-24), the double-Wiebe 

function can be simplified as: 
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Given a set of the first Wiebe function parameters, the second set of Wiebe function 

parameters can be easily determined using the following equation: 
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Figure V-20a and Figure V-20b show the plot of ln(-ln(1-xb)) versus ln(-o). The black 

line shows the double-Wiebe slope, which is a combination of the slopes of the first 

Wiebe function (green line) and the slope of the second Wiebe function (red line). The 

black line passes through the blue-dots, which represent the 10%, 25%, 50%, 75%, and 

90% MFB locations. 
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(a) 

 

(b) 

Figure V-20 Log plot of ln(-ln(1-xb)) versus ln(-o) 

 

Figure V-21a and Figure V-21b show the reconstructed MFB profiles using the double-

Wiebe function estimation overlaid on the calculated MFB profiles from the 

experimentally measured pressure trace. It is shown that the double-Wiebe function with 

the parameters listed on the Figure matches the experimental MFB profile.  

 

 

(a) 

 

(b) 

Figure V-21 Mass fraction burn profile 
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Figure V-22a and Figure V-22b show the rate of MFB calculated using the double-Wiebe 

function approximation with the rate of MFB calculated from the measured pressure 

trace. 

  

 

(a) 

 

(b) 

Figure V-22 Mass fraction burn rate profile 

 

Validation of Analytical Solution for Double-Wiebe Function  

Validation was performed using the fitted Wiebe function to estimate the heat release, 

and from that the cylinder pressure computes during combustion. For this purpose a 

single-zone pressure model was developed by inverting the single-zone MFB analysis, 

which is derived from the ideal gas equation and the energy balance [68]. A single-Wiebe 

function estimation using a least squares method is compared to the double-Wiebe 

function parameters estimation using the analytical solution described above.  

Figure V-23a and Figure V-23b show the MFB profile using the single-Wiebe function 

and double-Wiebe function compared to the experimental MFB profile. In both cases the 

double-Wiebe function provides a better estimation than the single-Wiebe function. This 

results in a more accurate reconstructed pressure profile. Figure V-24a and Figure V-24b 

show the reconstructed pressure traces obtained using the single-Wiebe and double-
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Wiebe function along with the experimentally measured pressure trace. Table V-5 shows 

the metrics calculated from the reconstructed pressure traces using the single-Wiebe and 

double-Wiebe functions with respect to the experimentally measured pressure trace for 

both cases which is chosen from two different engines. It is shown that the double-Wiebe 

function, which uses a simple analytical solution to estimate its parameters gives better 

results than the single-Wiebe function, which has parameters estimated using the least 

squares method. 

 

 

(a) 

 

(b) 

Figure V-23 Mass fraction burn profile 

 

 

(a) 

 

(b) 

Figure V-24 Pressure trace 
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Table V-5 Evaluation metrics of the reconstructed pressure traces using single-Wiebe 

and double-Wiebe functions 

 CFR Engine Hydra Engine 

Single-Wiebe 

Function 

(LSM) 

Double-Wiebe 

Function  

(AS) 

Single-Wiebe 

Function 

(LSM) 

Double-Wiebe 

Function 

 (AS) 

RMSE (kPa) 35.7 8.4 46.9 26.5 

 NMEP (kPa) -1.3 0 0 -0.4 

 Max Pressure (kPa) -76.8 20 134.6 87.1 

 

 

Summary and Conclusions 

A step-by step analytical solution to compute the five double-Wiebe function parameters 

has been discussed. Using the single-zone pressure model that was developed and 

validated by the author, the double-Wiebe function is shown to be more accurate than the 

single-Wiebe function which uses the least squares method to estimate two of its 

parameters. 

The analytical approach requires carefully selected initial values of the MFB to 

accurately reconstruct the pressure trace. By assuming that the locations of 10% and 25% 

MFB to represent the first Wiebe function and the locations of 75% and 90% MFB to 

represent the second Wiebe function, the double-Wiebe function can be simplified to a 

single-Wiebe function formula, which can be solved using a simple analytical solution. 
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VI. COMBUSTION MODEL INTEGRATION 

There are several ways to develop and integrate the combustion model in GT-Power.  In 

this report, a user compound was developed to accommodate the parametric predictive 

combustion model, which contains calculation of the Wiebe function parameters as a 

function of engine geometry and operating conditions. An RLT-dependence was used to 

connect the predictive combustion compound with the multi-Wiebe combustion template 

in the main engine model. The RLT-dependence was chosen because there were no signal 

ports available in the multi-Wiebe combustion template at the time this parametric 

combustion compound was being developed. Even though this parametric combustion 

compound was built in GT-Suite V6 built-12, this parametric combustion compound was 

ready for the GT-Suite V7 which has open ports in the multi-Wiebe combustion template, 

thus enables the direct connection in and out the multi-Wiebe template. Details of the 

parametric combustion models, both single-Wiebe and double-Wiebe parametric 

combustion models and their comparison can be found in reference [73]. 
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INTEGRATION OF PARAMETRIC COMBUSTION MODEL OF 

ETHANOL-GASOLINE BLENDS OVER VARIABLE COMPRESSION 

RATIOS AND VARIABLE CAM TIMING IN A SPARK IGNITION 

ENGINE MODEL 

 

Abstract 

The need to increase the performance of a spark ignition engine, include increasing 

efficiency and reducing the amount of toxic exhaust gas by using an environmental 

friendly fuel, has become a major objective in engine research and development. With 

computer capability continuing to increase, engine simulation has become a significant 

step in the design and calibration phase of engine development. The combustion process 

plays an important role in internal combustion engines, and  thus the combustion model 

in the overall engine simulation, as it provides the burning rate, which represents the 

combustion process for a given engine geometry and set of  operating condition.  

A parametric combustion model has been developed, integrated and validated to the SI 

engine model. This model employed empirical burn duration correlations over a wide 

range of operating conditions, ethanol-gasoline blends, and engine geometry. This model 

also included the double-Wiebe function parameters calculated using a simple analytical 

solution. The parametric combustion model, which was built into a user-compound, was 

then integrated to the engine model in GT-Power through a multi-Wiebe combustion 

template.  The double-Wiebe parameters computed in the parametric combustion model 

were transferred via RLT-dependent. This parametric combustion model was then 

validated by overlaying the pressure trace from the engine simulation result to the 

experimentally measured pressure trace.  

 

Keyword: Double-Wiebe Function, Combustion Modeling, Ethanol, Spark Ignition 

Engine 
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Introduction 

One-dimensional engine simulation is widely used for the design, development, 

calibration, and optimization of the engine. This simulation tool is computationally robust 

and efficient and enables dynamic modeling of the entire engine as a system including the 

dynamics of the flow [2, 3]. The combustion sub-model in the overall engine simulation 

provides the burning rate that represents the combustion process. The burning rate can be 

determined empirically or derived from physical and chemical kinetic correlations of the 

combustion process. Having a proper combustion model will enhance understanding of 

the physical phenomena including the effects of valve phasing, type of fuel, compression 

ratio, exhaust gas recirculation (EGR), etc. 

GT-Power [54] was used in this research because it was widely known in industry as a 

simulation tool to calibrate and optimize the engine. In this paper, the development and 

integration of a combustion model is discussed.  

 

Parametric Combustion Model Development 

A parametric combustion model has been developed by employing the empirically 

determined burn durations over a wide range of engine geometries and operating 

conditions. The empirical burn duration correlations for this predictive combustion model 

were developed using experimentally measured pressure traces over a wide range of 

compression ratios, residual fractions, spark timings, equivalence ratios, and engine 

speeds and loads. Prior to developing the correlation, five physically based parameters 

have been selected from the literature: engine bore (B), height of the combustion chamber 

(h), mean piston speed (Sp), laminar flame speed (SL), and kinematic viscosity of the 

unburned mixture ().  A non-dimensional analysis using Buckingham’s Pi Theorem was 

performed using those physically based parameters. A non-linear least squares method 

was then used to correlate the burn duration with the Pi groups in a product-power form. 

Figure VI-1 shows the development process of the parametric combustion model. The 
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complete procedures used to develop the empirical burn duration correlation were 

discussed previously by the author [74].  

 

Figure VI-1 Parametric combustion model development process 

 

The parametric combustion model was built in a user-compound within GT-Power. This 

model computed the double-Wiebe function parameters based on the burn durations, 

which computed using the burn duration correlations as a function of non-dimensional pi-

groups. The double-Wiebe function was used in this parametric combustion model 

because it was found that the double-Wiebe function was a better representative of MFB 

profile, especially for profiles with non-symmetric characteristics, as compared to the 

conventional single-Wiebe function [68]. The double-Wiebe function consists of two 

single-Wiebe functions and a mixture parameter to weigh the double-Wiebe function, 

thus having five parameters. Several methods to estimate the double-Wiebe function 

parameters have been previously observed. An analytical solution was selected to be used 

in the predictive combustion model, due to its robustness and straight forward algebraic 
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calculation. Also the analytical solution can estimated the double-Wiebe function 

parameters using very limited data: the 0-10%, 10-25%, 10-75%, and 10-90% burn 

durations [75].  

Figure VI-2 shows a diagram of the parametric combustion model using the double-

Wiebe function. In-cylinder pressure and temperature, piston position, and crank angle 

were read from the main engine model. The physically based parameters for every cycle 

iterations were calculated based on the pressure trace, temperature at that cycle iteration. 

These values were then used to calculate the burn durations and compute the double-

Wiebe function parameters (“p”, “m1”, “m2”, “Δθ1”, and “Δθ2”), which were used in the 

next cycle of the iteration. The location of 50% MFB (CA50), which defines the anchor 

of the Wiebe function, was obtained directly from the main engine model and 

transformed into CA501 and CA502. The CA501 and CA502 represent the anchor of the 

first and the second Wiebe function, respectively. The double-Wiebe parameters were 

estimated using the analytical method. 

A routine to estimate the single-Wiebe parameters was also included in the double-Wiebe 

predictive combustion compound. This routine, shown by the blue dash line, was very 

important in calculating and balancing the CA50 transformation. The single-Wiebe 

parameters were estimated using the least squares method. 

 

Figure VI-2 Parametric combustion model integration process 
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Integration Parametric Combustion Model  

There are several templates that could be used to integrate the parametric combustion 

model to the engine model. Since the Wiebe function was used in defining the 

combustion profile, an SI Wiebe template or a Multi-Wiebe template might be used in the 

integration. The multi-Wiebe combustion template was used to accommodate the double-

Wiebe parameters input in the double-Wiebe parametric combustion model. Since a 

direct connection was not available to the multi-Wiebe template, an RLT-dependence 

was set to link the parametric combustion model to the main engine model. The downside 

to this setup was a one iteration delay because the RLT-dependence delivered the Wiebe 

parameters that were computed in the previous cycle to the engine model.  

 

Results  

A full sweep of the intake cam center line (ICCL) and the exhaust cam center line 

(ECCL) experiments were conducted using E0, E50 and E85 fuel blends in the Ecotec 

Hydra engine at General Motors engine laboratory [76]. This dataset was used in the 

validation of the parametric combustion model by overlaying the experimental data over 

the GT-Power simulation result. Figure VI-3 shows the full sweep ICCL and ECCL with 

respect to the residual fraction that was trapped in the cylinder at 1300 RPM, 330 kPa 

using E85 blend. The surface plot represents the GT-Power simulation results and the 

black “X” represents the experimental data. The wider the valve overlap the higher 

fraction of residual trapped in the cylinder. The residual fraction varied from 10% to 40% 

at the widest valve overlap.  
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Figure VI-3 Residual fraction trapped in cylinder as function of ICCL and ECCL 

 

Figure VI-4 shows the overlay plot of pressure trace from experimental and simulation 

result at 3 different ICCL and ECCL configuration in the SI engine at 1300 rpm, 330 

NMEP using E85. It is shown that the double-Wiebe predictive combustion model 

provides the Wiebe function parameters that match the experimental data. 

 



158 

Figure VI-4 Overlay plot of experimentally measured pressure trace with simulation 

result 
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Summary and Conclusions 

A mean value based double-Wiebe predictive combustion model has been developed in a 

user compound, integrated and validated to the SI engine model in GT-Power. It is shown 

that the double-Wiebe predictive combustion model is able to utilize the information 

from the previous cycle to compute the Wiebe function parameters that match the 

experimental data. 
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VII. CYCLE COMBUSTION VARIATION 

A parametric correlation of coefficient of variance (COV) of gross indicated mean 

effective pressure (IMEP) has been developed using proprietary datasets. These datasets 

cover a wide range of engine speed and load conditions, variable compression ratios, 

variable valve timings, and various ethanol blends. Five correlations of COV of gross 

IMEP were presented in the discussion as a function of burn durations, standard deviation 

of burn durations, and/or non-dimensional Pi-groups. It was found that the COV of gross 

IMEP is highly correlated to the duration of 10%-75% mass fraction burn (B1075). 

A thermodynamic engine model was developed and used to study the effect of engine 

operating conditions on the burn durations and COV of gross IMEP. In addition to the 

COV of gross IMEP correlation developed in this paper, the thermodynamic engine 

model also used residual fraction and burn duration correlations. While the residual 

fraction correlation was developed as a function of overlap factor, engine speed, map and 

exhaust pressure, compression ratio, and equivalence ratio, the burn duration correlations 

were developed as a function of physically based non-dimensional groups. 
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PARAMETRIC STOCHASTIC COMBUSTION MODELING FOR ETHANOL-

GASOLINE FUELLED SPARK IGNITION ENGINES 

 

Abstract  

Cycle to cycle combustion variation in spark ignition (SI) engines is an important subject 

that has been widely studied because it limits the range of engine operation. Many studies 

have been done to observe the causes of cycle variation in the combustion process that 

leads to the cycle variation in the engine output performance. This cycle to cycle 

variation can be observed and characterized from the experimentally measured in-

cylinder pressure traces. The cycle variation can be parametrically modeled with respect 

to the engine geometries and operating conditions.  

Multiple correlations of COV of gross IMEP have been developed as a function of burn 

durations, standard deviation of burn durations, and physically based non-dimensional Pi-

groups. The COV of gross IMEP is found to have a strong correlation to the duration of 

10-75% mass fraction burn (B1075), and thus the COV of gross IMEP could be described 

solely as a function of B1075. 

 

Introduction  

Even under constant engine operating conditions, the combustion processes in the 

cylinder of SI engines can vary from cycle to cycle causing changes in the pressure 

development. This cycle to cycle combustion variation in SI engines limits the range of 

engine operation, especially under lean and highly diluted mixtures resulting in 

combustion instability, misfire and combustion knock conditions as determined by many 

investigators [3, 17-20, 77-79].  

The main physical factors that lead to cycle to cycle variation in SI engines are 

incomplete mixing of fuel, air and residuals, the size of the eddy discharged from the 
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spark [19, 20, 77], as well as charge motion and turbulence level in the combustion 

chamber [3, 78].  

The coefficient of variation (COV) of both indicated mean effective pressure (IMEP) and 

maximum pressure are commonly used to indicate the cycle variations. Although the 

location of maximum pressure, the maximum rate of pressure rise, the location of the 

maximum pressure rise, the in-cylinder pressure trace over a certain range of crank angle, 

and the burn durations of 0-1%, 0-10%, 0-50% and 0-90% are also found in the literature 

as metrics to quantify the cycle variation limits and trends [3]. 

Two correlations of COV of IMEP are found in the literature [22, 23]. In the first study, a 

linear regression of COV of IMEP was developed using three different chamber 

geometries and varying the total exhaust gas recirculation (EGR), air-fuel ratio, spark 

timing, engine speed and fueling level using a single-cylinder engine [22]. Using a wide 

range of engine geometries and operating conditions, it was found that the COV of IMEP 

has a non-linear correlation to the engine geometry and operating conditions [23].  

In the second study, a non-linear regression of a polynomial form for COV of IMEP was 

developed as a function of engine speed and load, equivalence ratio, residual fraction, 

burn duration of 0-10%, burn duration of 10-90% and location of 50% mass fraction burn 

(MFB) using 6000 conditions collected from 13 different engines from 1.6 to 4.6 liters in 

displacement [23]. Although this correlation was developed using a wider range of data 

as compare to the first study, this regression computed negative COVs of IMEP within 

the range of data used in the correlation. This is mainly caused by the nature of a 

polynomial functional form, which has a combination of positive and negative signs in 

the equation. 

In this work, the COV of gross IMEP is correlated using data taken from two engine 

families over nearly 2900 operating conditions using a product-power functional form. 

The cycle to cycle basis of gross IMEP were calculated by taking the integral of the in-

cylinder pressure on a cycle to cycle basis per unit volume over the period from intake 

valve close (IVC) to exhaust valve open (EVO). The COV of gross IMEP was then 
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computed by taking the ratio of the standard deviation (SD) of gross IMEP to the mean 

value of gross IMEP, as shown in the following equations: 

 

EVO

IVC

d

p dV
gross IMEP

V
   (VII-1) 

 100 %
S D of gross IMEP

COV of gross IMEP
gross IMEP

  (VII-2) 

Where:  

 EVO exhaust valve open (oCA) 

 IVC  intake valve close (oCA) 

p  in-cylinder pressure trace (Pa) 

 V in-cylinder volume (m3) 

 Vd displacement volume (m3) 

 

Experimental Dataset 

Two thousand test points from a multi-cylinder engine with a 2.4 liter displacement over 

a wide range of speeds and loads, a full sweep of cam timing, spark timing and various 

fuel blends were obtained from General Motors. This proprietary datasets cover engine 

speeds from 1200 rpm to 6600 rpm, a Net Indicated Mean Effective Pressures (NIMEP) 

range from 230 kPa to 1500 kPa, and equivalence ratios from 0.9 to 1.45 [76]. Additional 

datasets, with nearly 900 test points, were also collected using Michigan Tech’s single-

cylinder direct injection-spark ignition Hydra engine with a 0.5 liter displacement, 

variable compression ratio, and variable valve timing over a wide range of speeds and 

loads, and various ethanol blends [21]. This datasets covers five ethanol blends, 

compression ratios from 11:1 to 15.5:1, engine speeds from 1300-3400 rpm, NIMEPs 

from 200-900 kPa at stoichiometric mixture condition.  
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Physically Based Non-Dimensional Pi-Groups 

A parametric non-dimensional set of burn duration correlations has been previously 

developed using a single cylinder Cooperative Fuel Research (CFR) engine over a wide 

range of compression ratios, EGR, spark timing, and ethanol-gasoline blends [74]. A 

similar study was also done on proprietary datasets using multiple engines over a wide 

range of engine speeds and loads, variable cam phaser position, multiple compression 

ratios, and ethanol-gasoline blends [73].  

In those previous studies, six physically based parameters have been selected based on 

references [3, 10, 30, 31], including: engine bore (B), height of the combustion chamber 

(h), mean piston speed (Sp), laminar flame speed (SL), specific internal energy (Q* = (mf 

/m) QLHV), and kinematic viscosity of the unburned mixture ().  These parameters were 

used to describe the engine parameters of: mass fraction burn, dilution, spark timing, 

equivalence ratio, engine speed, engine load, and valve timing [3, 11, 27, 28].  

A non-dimensional analysis using Buckingham’s Pi Theorem [33] was performed 

yielding non-dimensional groups expressed as:  

 









  

 pL

L

p Sh

B

h

Q

S

S

S
f ,,,

2

 (VII-3) 

It was found that these non-dimensional Pi-groups correlate to the burn durations [73, 

74].  

 

Coefficient Correlation Analysis 

A coefficient correlation matrix was usually used to observe the linear correlation 

between the variables. However, by taking the natural log of each variable, the coefficient 

correlation matrix could be used to observe a non-linear power correlation between the 

variables. A matrix of 2680-by-24 consists of 2680 experimental test points and twenty 
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four of variables including the COV of gross IMEP, standard deviation of gross IMEP, 

gross IMEP, Pi-groups, burn durations, and the COV of burn durations.  

Figure VII-1 shows the natural log based correlation matrix. The dark red colors 

represent a strong positive log-based linear correlation, while the dark blue colors 

represent a strong negative log-based linear correlation. The white color represents no 

log-based linear correlation between the variables as seen in the Figure VII-1. Table 

VII-1 lists the correlation coefficient for COV and standard deviation of gross IMEP from 

the highest to the lowest correlation regardless of the sign of the correlation coefficient 

(+,-), which defines the direction of the correlation either positive or negative. 

A strong negative non-linear correlations is observed between the COV of gross IMEP 

and 
ph S

  
and . A weak negative non-linear correlation is shown between the COV of 

gross IMEP and 
p

L

S

S
, as shown in Figure VII-1 and Table VII-1. A weak positive 

correlation is observed between the COV of gross IMEP and 
2

LS

Q . A strong positive 

non-linear correlation is observed between COV of gross IMEP and 
B

h
, 

B

hS , the burn 

durations, and the COV of the burn durations. It is shown in Table VII-1 that 
B

h
 has a 

stronger correlation to the COV of gross IMEP than 
B

hS . This implies that the location of 

start of combustion has a stronger one-to-one correlation to the location of 50% MFB. 

It is also observed from the Figure VII-1 that there is a strong positive correlation among 

the burn durations (B0010, B1025, B1050, B1075, and B1090). This strong dependency 

is also reflected in the COV of the burn durations, except for the COV of B0010, which 

has a weaker dependency to the burn duration. The correlation coefficient matrix between 

the burn durations and the COV of gross IMEP revealed a weaker correlation coefficient 

to B0010 and B1090 in comparison to the correlation coefficient to B1025, B1050, and 
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B1075. The B0010 in this paper was defined as a period between the location of 10% 

MFB and the spark timing, which is widely accepted as the location of 0% MFB. 

Figure VII-1 and Table VII-1 also show the correlation coefficients between the standard 

deviation of gross IMEP to the Pi-groups, burn durations and the COV of burn durations. 

It is shown that the correlation coefficient between the standard deviation of gross IMEP 

to the variables were less than 0.5, which implies that there is no dominant variable, thus, 

it will not correlate well to the selected variables. 

 

 

Figure VII-1 Correlation matrix of the correlation coefficient (R) between COV, standard 

deviation of gross IMEP, burn durations and the selected non-dimensional pi-groups (0 ≤ 

E ≤ 85; 11 ≤ CR ≤ 15.5; 1200 ≤ N ≤ 6600; 257 ≤ Net IMEP ≤ 1624; 0.98 ≤  ≤ 1.45) 

Correlation Matrix (Natural Log based)

 

 

C
O

V
 o

f G
IM

E
P

S
D

 o
f G

IM
E

P
G

IM
E

P
(S p

/S L
s

)
(S Ls

2
/Q

* )
(h

/B
)

(h s
/B

) 
(h s

 S p
/  s

)
B

00
10

B
10

25
B

10
50

B
10

75
B

10
90

S
D

 o
f B

00
10

S
D

 o
f B

10
25

S
D

 o
f B

10
50

S
D

 o
f B

10
75

S
D

 o
f D

10
90

C
O

V
 o

f B
00

10

C
O

V
 o

f B
10

25

C
O

V
 o

f B
10

50

C
O

V
 o

f B
10

75

C
O

V
 o

f B
10

90

COV of B1090
COV of B1075
COV of B1050
COV of B1025
COV of B0010

SD of D1090
SD of B1075
SD of B1050
SD of B1025
SD of B0010

B1090
B1075
B1050
B1025
B0010

(h
s
 S

p
/

s
)


(h

s
/B)

(h/B)
(S

Ls
2 /Q*)

(S
p
/S

Ls
)

GIMEP
SD of GIMEP

COV of GIMEP
C

or
re

la
tio

n
 C

oe
ff

ic
ie

n
ts

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1



167 

Table VII-1 Correlation coefficient between COV and standard deviation of gross IMEP  

Parameter 

Correlation 

Coefficient to 

COV of GIMEP 

 

Parameter 

Correlation 

Coefficient to SD 

of GIMEP 

COV of GIMEP 1.00  SD of GIMEP 1.00 

SD of B1050 0.86  COV of GIMEP 0.50 

SD of B1075 0.86  (hs/B) 0.42 

COV of B1075 0.84  COV of B0010 0.38 

COV of B1050 0.83  GIMEP 0.32 

SD of B1025 0.82  (hs Sp/s) 0.30 

B1075 0.81  COV of B1025 0.28 

B1050 0.81  SD of B0010 0.26 

B1025 0.77  COV of B1050 0.23 

SD of B1090 0.75  SD of B1025 0.22 

COV of B1025 0.75  B1090 0.22 

COV of B1090 0.75   0.20 

SD of B0010 0.67  SD of B1050 0.20 

GIMEP -0.66  B1075 0.19 

(h/B) 0.65  SD of B1075 0.17 

B0010 0.62  COV of B1075 0.17 

B1090 0.62  SD of B1090 0.16 

 -0.57  B1050 0.15 

(hs Sp/s) -0.56  (Sp/SLs) 0.14 

SD of GIMEP 0.50  B1025 0.13 

(hs/B) 0.37  COV of B1090 0.11 

COV of B0010 0.35  (h/B) -0.08 

(Sp/SLs) -0.22  (SLs
2/Q*) 0.05 

(SLs
2/Q*) 0.04  B0010 0.02 
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COV of Gross IMEP Correlation 

A non-linear least squares method was used to correlate the cycle variation metric, COV 

of gross IMEP, to the burn durations. Figure VII-2(a) shows the COV of gross IMEP 

correlation as a function B1075. Figure VII-2(b) shows the same correlation of COV of 

gross IMEP as a function B1075 with an additional 235 test points in pink that were not 

used in the correlation because of an appearance of misfire and miss-pegging in the data. 

The marker symbol represents the fuel blends and the color code represents the gross 

IMEP in kPa. The correlation is given in the upper-left corner of the figure along with the 

information of the coefficient of correlation (R2), the root mean square error (RMSE), the 

Akaike’s information criterion (AIC) [80] and the number of experimental data points 

(sample) used in the correlation.  

Figure VII-2(a) shows that the COV of gross IMEP increases as the B1075 increases; 

shown as a positive exponent (2.77) of B1075 in the equation given in Figure VII-2. 

Table VII-2 lists the variables and the exponent of the respective variables and the 

metrics to quantify the fitness of the correlation including R2, RMSE, and AIC. The 

equation in Table VII-2 follows the product-power formulation as follows: 

    1 2
1 2 ...

Exponent Exponent
COV of gross IMEP C Variable Variable  (VII-4) 

 

COV of gross IMEP as a function of B1075 is expressed as: 

  2.77
0.0006 1075COV of gross IMEP B  (VII-5) 

 

The strong correlation of B1075 to the COV of gross IMEP as observed before in the 

correlation matrix, shown in Figure VII-1, also reflects in the exponent of B1075. The 

RMSE of the fitted correlation is 0.79% from the COV of gross IMEP. The R2, 

representing the fitness of the regression, is 0.70. 
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(a) (b) 

Figure VII-2 COV of gross IMEP correlation as a function of B1075 (0 ≤ E ≤ 85; 11 ≤ 

CR ≤ 15.5; 1200 ≤ N ≤ 6600; 257 ≤ Net IMEP ≤ 1624; 0.98 ≤  ≤ 1.45) 

 

Figure VII-3 shows the COV of gross IMEP correlation as a function of B0010.  It is 

shown that the COV of gross IMEP correlation did not correlate well with the 

experimentally calculated COV of gross IMEP particularly at the low load cases, as also 

shown in Table VII-2 in the second column. The B0010 did not correlate to the COV of 

gross IMEP as well as the B1075. 

The COV of gross IMEP also was correlated to burn durations (B0010, B1025, B1050, 

B1075, and B1090). There is no significant effect of B0010 and B1090 on the COV of 

gross IMEP in the presence of the B1025, B1050, and B1075 in the correlation as shown 

in Table VII-2 in the third column. A strong correlation of B1075 to the COV of gross 

IMEP is also observed as reflected in the exponent of B1075. Although the additional 

variables were added in the correlation, the fitness of the COV of gross IMEP correlation 

did not improve as much as it was expected. The RMSE is 0.78%, and the R2 is 0.71. 

Additional variables, including the standard deviation of burn durations, were also added 

into the correlation for COV of gross IMEP. The COV of gross IMEP correlation 

improves as shown in Figure VII-4 and in Table VII-3 in the first column. Figure VII-4 

shows fitted correlation of COV of gross IMEP. The RMSE of the fitted correlation is 

0.60% from the COV of gross IMEP, and the R2 is 0.82. There is no significant effect of 
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standard deviation of B0010, standard deviation of B1025, standard deviation of B1050, 

and standard deviation of B1090 to the COV of gross IMEP correlation in the presence of 

the B1075 and standard deviation of B1075. 

Figure VII-3 COV of gross IMEP 

correlation as a function of B0010 (0 ≤ E ≤ 

85; 11 ≤ CR ≤ 15.5; 1200 ≤ N ≤ 6600; 257 

≤ Net IMEP ≤ 1624; 0.98 ≤  ≤ 1.45) 

Figure VII-4 COV of gross IMEP 

correlation as a function of B1075 and SD 

of B1075 (0 ≤ E ≤ 85; 11 ≤ CR ≤ 15.5; 

1200 ≤ N ≤ 6600; 257 ≤ Net IMEP ≤ 1624; 

0.98 ≤  ≤ 1.45) 

 

Table VII-2 COV of gross IMEP correlations (0 ≤ E ≤ 85; 11 ≤ CR ≤ 15.5; 1200 ≤ N ≤ 

6600; 257 ≤ Net IMEP ≤ 1624; 0.98 ≤  ≤ 1.45; # of samples = 2680) 

COV of gross IMEP = 
f(B1075) 

COV of gross IMEP = 
f(B0010) 

COV of gross IMEP = 
f(B1025, B1050, B1075) 

C = 0.0006 C = 0.03 C = 0.0006 

Variable: Exponent Variable: Exponent Variable: Exponent 

B1075 2.77 B0010 1.36 B0010 0 

    B1025 0.40 

    B1050 0.56 

    B1075 2.04 

    B1090 0 

R2 0.70 R2 0.37 R2 0.71 

RMSE 0.79 RMSE 1.1 RMSE 0.78 

AIC -1248 AIC 695 AIC -1359 
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The correlation of COV of gross IMEP solely as a function of standard deviation of 

B1075 is given in Figure VII-5. It is observed that the value of the COV of gross IMEP is 

nearly the same as the standard deviation of B1075, as shown in Table VII-3 in the 

second column, showing the interchangeable capability of the standard deviation of 

B1075 to quantify the cycle combustion variation.  

The COV of gross IMEP was also fitted to the B1075 and Pi-groups, as shown in Figure 

VII-6. The B1075 dominated the fitted correlation of COV of gross IMEP as it was 

observed in Figure VII-2 and in Table VII-3 in the third column. The RMSE is 0.8% 

from the COV of gross IMEP, and the R2 is 0.72.  

Figure VII-5 COV of gross IMEP 

correlation as a function of standard 

deviation of B1075 (0 ≤ E ≤ 85; 11 ≤ CR ≤ 

15.5; 1200 ≤ N ≤ 6600; 257 ≤ Net IMEP ≤ 

1624; 0.98 ≤  ≤ 1.45) 

Figure VII-6 COV of gross IMEP 

correlation as a function of B1075 and Pi-

groups (0 ≤ E ≤ 85; 11 ≤ CR ≤ 15.5; 1200 

≤ N ≤ 6600; 257 ≤ Net IMEP ≤ 1624; 0.98 

≤  ≤ 1.45) 

 

Correlation of the standard deviation of B1075 as a function of Pi-groups is shown in 

Figure VII-7 and Table VII-4 in the first column. The RMSE of the standard deviation of 

the B1075 fitted correlation is 0.5 oCA, and the R2 is 0.84. The correlation error increases 

as the standard deviation of B1075 increases. Figure VII-8 and Table VII-4 in the second 

column show the B1075 correlation as a function of the physically based non-

dimensional Pi-groups. The RMSE is 1.4 oCA, and the R2 is 0.89. 
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Figure VII-7 Standard deviation of B1075 

correlation as a function of Pi-groups (0 ≤ 

E ≤ 85; 11 ≤ CR ≤ 15.5; 1200 ≤ N ≤ 6600; 

257 ≤ Net IMEP ≤ 1624; 0.98 ≤  ≤ 1.45) 

Figure VII-8 B1075 correlation as a 

function of Pi-groups (0 ≤ E ≤ 85; 11 ≤ CR 

≤ 15.5; 1200 ≤ N ≤ 6600; 257 ≤ Net IMEP 

≤ 1624; 0.98 ≤  ≤ 1.45) 

 

Table VII-3 COV of gross IMEP correlations (0 ≤ E ≤ 85; 11 ≤ CR ≤ 15.5; 1200 ≤ N ≤ 

6600; 257 ≤ Net IMEP ≤ 1624; 0.98 ≤  ≤ 1.45; # of samples = 2680) 

COV of gross IMEP = 
f(B1075, SD of B1075) 

COV of gross IMEP = f(SD 
of B1075) 

COV of gross IMEP = f(Pi-
groups, B1075) 

C = 0.28 C = 0.94 C = 0.012 

Variable: Exponent Variable: Exponent Variable: Exponent 

B1075 0.44 SD of B1075 1.06 (Sp/SLs) 0 

SD of B0010 0   (SLs
2/Q*) 0 

SD of B1025 0   (h/B) 0 

SD of B1050 0   (hs/B) 0.63 

SD of B1075 0.93    0 

SD of B1090 0   (hs Sp/s) -0.1 
    B1075 2.51 

R2 0.82 R2 0.82 R2 0.72 

RMSE 0.6 RMSE 0.6 RMSE 0.8 

AIC -2650 AIC -2593 AIC -1478 
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Table VII-4 Standard deviation of B1075 and B1075 correlations (0 ≤ E ≤ 85; 11 ≤ CR ≤ 

15.5; 1200 ≤ N ≤ 6600; 257 ≤ Net IMEP ≤ 1624; 0.98 ≤  ≤ 1.45; # of samples = 2680) 

Standard deviation of 
B1075 = f(Pi-groups, 

B1075) 
B1075 = f(Pi-groups) 

C = 0.05 C = 493.09 

Variable: Exponent Variable: Exponent 

(Sp/SLs) 0 (Sp/SLs) 0.16 

(SLs
2/Q*) 0 (SLs

2/Q*) 0.08 

(h/B) 0.47 (h/B) 0.61 

(hs/B) 0 (hs/B) 0.86 

 -0.02  -0.52 

(hs Sp/s) -0.08 (hs Sp/s) -0.06 

B1075 1.80   

R2 0.84 R2 0.89 

RMSE 0.5 RMSE 1.4 

AIC -3553 AIC 1795 

 

Combustion Phasing and Cycle Variation Exercise  

To study the effect of engine geometry and operating conditions on the combustion 

process, a thermodynamic-based engine model was developed based on ideal gas and 

thermodynamic laws. Figure VII-9 shows the diagram of the thermodynamic engine 

model. There are two sub-routines in this thermodynamics engine model. The first sub-

routine applied a residual fraction correlation as a function of overlap factor, engine 

speed, intake pressure, exhaust pressure, compression ratio, and equivalence ratio. This 

residual fraction correlation has been validated to the GT-Power residual fraction 

calculation at operating condition of 1300 rpm and 330 kPa [73]. Assumption of zero 

residual fraction was chosen to start the calculation of temperature and pressure at the 

intake valve close (IVC), which were used to compute the residual fraction for the next 

iteration using the residual fraction correlation. The calculation converged when the 

residual fraction at iteration “i+1” was less than 0.5% compared to the residual fraction 



174 

at iteration “i”. This procedure was used to determine the intake pressure (map pressure) 

and intake temperature to determine the motored pressure and temperature trace. 

The second sub-routine applied the burn duration correlations as a function of the 

physically based non-dimensional Pi-groups. A set of Wiebe function parameters (m and 

B1090) were given for the first iteration. Once the pressure trace was reconstructed using 

the single-zone pressure model, the physically based Pi-groups were computed, then the 

burn durations as a function of Pi-groups. The Wiebe parameters for the next iteration 

were then computed using the calculated burn durations. The calculation converged when 

the Wiebe parameter “m” and B1090 at iteration “i+1” compared to the “m” and B1090 

at iteration “i” were less than 0.1 and 0.5 oCA, respectively. The COV of gross IMEP 

correlation was also included in this routine. This routine was used to determine the firing 

pressure trace, the combustion profile, and the COV of gross IMEP. 

 

Figure VII-9 Thermodynamic engine model routines in Matlab  
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The estimated response surfaces resulting from the modeling exercise were generated 

over the range of ethanol concentrations from 0-85, compression ratios, a full sweep of 

cam timing, engine speed, and load sweeps. Figure VII-10 shows the burn duration 

modeling results using the thermodynamic engine model as a function of engine speed 

and air per cylinder (APC), which represents the engine load. At the stoichiometric fuel-

air mixture condition, fixed compression ratio (CR) = 12:1, location of 50% MFB 

(CA50) = 10oCA after top dead center (ATDC), intake cam center line (ICCL) = 100oCA 

gas exchange (GE)-ATDC, exhaust cam center line (ECCL) = 95oCA GE-before top dead 

center (BTDC) using gasoline (E = 0), an increase in engine speed, resulting an increase 

in the burn durations for both B0010 and B1075. A similar trend was noted in the 

references [10, 27, 28, 31]. Figure VII-10 shows that the burn durations decrease as the 

load increases, as also found in the reference [23]. 

Figure VII-11 shows the modeling results of COV of gross IMEP. The COV of gross 

IMEP slightly increases as the engine speed increase, as found in reference [23], which 

showed that the COV of IMEP increased from 0.8% to 1.1% as the engine speed 

increased from 1000-3000 RPM at constant engine load of 400 kPa IMEP. The COV of 

gross IMEP increases as the engine load decreases, as found in the reference [23], which 

showed the COV of IMEP increased from 1-1.5% when IMEP decreased from 800 kPa to 

250 kPa, and increased 5% when IMEP decreased to 200 kPa at a constant engine speed 

of 1500 RPM. The effect of the engine load on the COV of gross IMEP is greater than 

the engine speed. 

Figure VII-12 shows the data range matrix as a function of engine speed and load that is 

used in the correlations, including COV of gross IMEP and burn duration correlations. 

The color code represents the number of test points in the respective operating conditions, 

which is also printed in the Figure VII-12. It is shown that the data covers a wide range of 

engine load at 1000 and 2000 RPM, but not in the rest of the modeling exercise range.  
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(a) (b) 

Figure VII-10 Burn duration modeling results as a function of engine speed and load 

(E=0; CR=12; CA50=10oCA-ATDC; ICCL=100oCA-GE-ATDC; ECCL=95oCA-GE-

BTDC) 

 

Figure VII-11 COV of gross IMEP 

modeling result as a function of engine 

speed and load (E=0; CR=12; 

CA50=10oCA-ATDC; ICCL=100oCA-GE-

ATDC; ECCL=95oCA-GE-BTDC) 

Figure VII-12 Data range matrix used in 

the correlation (0 ≤ E ≤ 85; 11 ≤ CR ≤ 

15.5; 1200 ≤ N ≤ 6600; 257 ≤ Net IMEP ≤ 

1624; 0.98 ≤  ≤ 1.45) 
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Figure VII-13 shows the modeling results of burn duration as a function of ethanol 

content and total residual fraction trapped in the cylinder at stoichiometric fuel-air 

mixture conditions, CR = 12:1, CA50 = 10oCA ATDC, engine speed = 2000 RPM, APC 

= 300 mg, which corresponds to 790 – 870 kPa of gross IMEP. The residual fraction 

sweep was generated by sweeping the ICCL and ECCL.  

It is observed from Figure VII-13 that as the total residual fraction increases, the burn 

durations of both B0010 and B1075 increase, which is as expected and was also found in 

the references [10, 27]. As the ethanol content decreases the burn durations increase, as 

also found in the references [10, 28, 31, 38, 46, 74].  

Figure VII-14 shows the COV of gross IMEP correlation. It is shown that the COV of 

gross IMEP calculated using the COV of gross IMEP correlation decreases as the ethanol 

content increases. It is also shown that the COV of gross IMEP increases as the residual 

fraction increases. A similar trend was found in the reference [23], in which the COV of 

IMEP increased from 1-7% as the EGR increased from 0-25% at an engine speed of 1500 

RPM and load of 400 kPa IMEP.  

The data range matrix as a function of ethanol blend and total dilution is shown in Figure 

VII-15. It is shown a well spread data of ethanol blends and ICCL and ECCL sweeps. 

(a) (b)  

Figure VII-13 Burn duration modeling result as a function of ethanol content and total 

residual fraction (CR=12; CA50=10oCA-ATDC; APC =300 mg, 2000 RPM) 
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Figure VII-14 COV of gross IMEP 

modeling result as a function of ethanol 

content and total residual fraction 

(CR=12; CA50=10oCA-ATDC; APC =300 

mg, 2000 RPM) 

Figure VII-15 Data range matrix used in 

the correlation (0 ≤ E ≤ 85; 11 ≤ CR ≤ 

15.5; 1200 ≤ N ≤ 6600; 257 ≤ Net IMEP ≤ 

1624; 0.98 ≤  ≤ 1.45) 

 

Figure VII-16 shows the modeling result of the burn duration as a function of 

compression ratio and location of 50% MFB at a stoichiometric fuel-air mixture 

condition, engine speed = 2000 RPM, APC = 300 mg, ICCL = 100oCA GE-ATDC, 

ECCL = 95oCA GE-BTDC using gasoline (E = 0). It is shown that the burn durations of 

0-10% MFB and 10-75% MFB increase as the compression ratio decreases [28, 31, 74]. 

The burn durations of 0-10% and 10-75% MFB also increase as the CA50 increases.  

Figure VII-17 shows the COV of gross IMEP as a function of compression ratio and 

CA50. The COV of gross IMEP increases as the CA50 increases. A similar trend was 

found from the CFR experimental data as the COV of gross IMEP increases from 0.5-

1.5% when the CA50 increases from 5-25 oCA-ATDC at 300 kPa Net IMEP, 900 RPM, 

using E85, compression ratio 8:1, and zero EGR. Figure VII-17 also shows that the COV 

of gross IMEP increases as the compression ratio decreases. Although there is no 

significant effect of compression ratio on the COV of gross IMEP shown in the CFR 

experimental data, however, the Hydra experimental data shows that the COV of gross 
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Figure VII-18 shows the data range matrix as a function of compression ratio and CA50 

that are used in the correlations. A small number of high compression ratio (CR > 13) 

data points were found used in the correlation. 

(a) (b) 

Figure VII-16 Burn duration modeling result as a function of compression ratio and 

location of 50% MFB (E=0; ICCL=100oCA-GE-ATDC; ECCL=95oCA-GE-BTDC; APC 

=300 mg, 2000 RPM) 

Figure VII-17 COV of gross IMEP 

modeling result as a function of 

compression ratio and location of 50% 

MFB (E=0; ICCL=100oCA-GE-ATDC; 

ECCL=95oCA-GE-BTDC; APC =300 mg, 

2000 RPM) 

Figure VII-18 Data range matrix used in 

the correlation (0 ≤ E ≤ 85; 11 ≤ CR ≤ 

15.5; 1200 ≤ N ≤ 6600; 257 ≤ Net IMEP ≤ 

1624; 0.98 ≤  ≤ 1.45) 
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Summary and Conclusions 

As compared to the gross IMEP, the standard deviation of gross IMEP has a weaker 

effect on the COV of gross IMEP. It was shown in Table VII-1 that the correlation 

coefficient between the COV of gross IMEP and gross IMEP is -0.66, while the 

correlation coefficient between the COV of gross IMEP and SD of gross IMEP is 0.50. In 

the high gross IMEP cases, the COV of gross IMEP was still considerably low even 

though the standard deviation of gross IMEP was considerably high.   

The COV of gross IMEP was correlated to the burn durations, standard deviation of burn 

durations and the physically based Pi-groups using a product-power form. Six 

correlations of COV of gross IMEP was presented above in Table VII-2 and Table VII-3. 

B1075 showed a strong correlation to the COV of gross IMEP, either as the only variable 

in the correlation or in the presence of other variables, including burn duration, standard 

deviation of burn duration, and physically based non-dimensional Pi-groups. It was also 

found that the COV of gross IMEP is highly correlated to the standard deviation of burn 

duration, particularly B1075, which represents the fast burning period in the cylinder.  

A thermodynamic-based engine model was developed, enabling reconstruction of the 

combustion phasing and cycle variation as functions of engine geometry and operating 

conditions using the residual fraction, burn durations, and COV of gross IMEP 

correlations. This model used the residual fraction, burn durations (B0010, B1025, 

B1050, B1075, and B1090), and the COV of gross IMEP correlations. The modeling 

exercise results showed the trend of the COV of gross IMEP decreased as the engine load 

increased, the engine speed slightly decreased, the ethanol content increased, the residual 

fraction decreased, the CA50 near MBT location, and the compression ratio increased. 
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VIII. SUMMARY  

VIII.1 CONCLUSIONS 

A composite fuel concept has been introduced and used to compute the properties of 

burned and unburned mixture of fuel-air and residual trapped in the combustion chamber. 

Equation II-3 showed the molar based balance in the composite fuel concepts which 

applicable for mixture of hydrocarbon, alcohol, and oxygenated hydrocarbon fuels. 

Although the Equation II-3 showed a mixture of two types of fuel, however the same 

concept could also applied to mixture with more than two types of fuel. This 

characteristic made the composite fuel concept robust in calculating the fuel blends 

properties including the air fuel ratio, molecular weight, specific heat, viscosity, and 

lower heating value [Chapter II]. 

Methods to analyze the mean value and cycle to cycle combustion metrics from 

experimentally measured pressure traces, including single-zone mass fraction burn 

(MFB) and two-zone MFB calculations have been developed and compared to the 

apparent heat release analysis. The single-zone MFB calculation was solving the first law 

of thermodynamic in Equation III-21 which included the heat transfer and crevice volume 

effects, and the ideal gas law in Equation III-11 simultaneously. The two-zone MFB 

calculation which assumed there was a thin boundary separating the burned and unburned 

mixture was solving the Equations III-22, III-23, III-24, III-25, and III-26 simultaneously. 

For the purpose of combustion phasing analysis, the single-zone MFB calculation with 

two unknowns (temperature and MFB) is found robust in the data analysis compare to the 

two-zone MFB calculation with five unknowns (burned and unburned temperature, 

burned and unburned volume and MFB). However for detailed combustion efficiency and 

in-cylinder temperature profile, the two-zone MFB calculation including the specific heat 

as a function of temperature, and the inclusion of heat transfer and crevice effects should 

be used because in the two-zone MFB model, the thermodynamic properties of the 

burned and unburned mixture was more accurately quantified [Chapter III]. 
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Six parameters has been selected based on the literature study including: engine bore (B), 

height of the combustion chamber (h), mean piston speed (Sp), laminar flame speed (SL), 

specific internal energy (Q* = (mf /m) QLHV), and kinematic viscosity of the unburned 

mixture ().  These parameters represented the engine dependent (B and h), the flow 

dependent (Sp and SL), and the fuel dependent (Q* and ). These parameters also 

described the engine parameters: mass fraction burn, residual fraction, spark timing, 

equivalence ratio, engine speed, load, and valve timing. A Buckingham’s Pi theorem was 

performed using these physically based parameters. A non-linear least squares method to 

correlate the combustion phasing metrics (B0010, B1025, B1050, B1075, and B1090) to 

the non-dimensional Pi-groups in a product-power form has been developed. It was found 

that the burn duration correlations were in a good agreement with the burn durations 

computed from experimental data. These correlations were then used to study the effect 

of engine geometry and operating conditions to the burn durations [Chapter IV].  

Methods to fit the combustion metrics (B0010, B1025, B1050, B1075, B1090) to the 

Wiebe function including single-Wiebe and double-Wiebe functions using analytical 

solution, least square method and combination of both methods have been developed. 

Section V.1 discussed several analytical solutions and a least square method to compute 

the single-Wiebe function parameters (m and ). It was found that the efficiency 

parameter of Wiebe function (a) is not an independent parameter but directly related to 

the combustion duration (). 

Section V.2 focused on determining the double-Wiebe function parameters using a least 

square method. A routine in Matlab was wrote and used to found the double-Wiebe 

parameters (m1, m2, p, 1, and 2) given a random value of double-Wiebe parameters 

to start the calculation as shown in the flow chart in Figure V-7. The double-Wiebe 

function matched better to the experimental MFB profile particularly for the non-

symmetrical MFB profile which usually found in knocking cases for SI engines. A 

single-zone pressure model was also developed to reconstruct the pressure trace given the 

MFB profile information, thus the validation in pressure trace level could be performed in 

addition to the validation in the MFB level. The single-zone pressure model was derived 
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from the ideal gas and energy balance equation as shown in Equation V-15. Once the 

pressure trace reconstructed from the estimated Wiebe function, it was then compared 

with the experimentally measured pressure trace using metrics including the RMSE, the 

difference in Net IMEP, and the maximum difference in pressure trace. The double-

Wiebe function fits better to the experimental MFB profile thus its reconstructed pressure 

trace matches better to the experimentally measured pressure trace in comparison to the 

single-Wiebe function. 

Section V.3 discussed a step-by-step analytical solution in computing the double-Wiebe 

function parameters. By grouping CA10 and CA25 to compute the first Wiebe function 

parameters, and CA75 and CA90 to compute the second Wiebe function parameters, a 

good estimation of the mixture parameter (p) could be computed analytically using 

Equation V-24. Once the “p” was found, the double-Wiebe function can be simplified 

and solve as a two separated single-Wiebe function. The double-Wiebe function fitted the 

experimental data better than the single-Wiebe function [Chapter V]. 

Parametric correlation of coefficient of variance (COV) of gross indicated mean effective 

pressure (IMEP) has been developed using multiple engines with a wide range operating 

conditions. Similar method to correlate the burn duration in Chapter IV was used to 

correlate the cycle combustion variation to the burn durations and non-dimensional Pi-

groups. It is found that the COV of gross IMEP was highly correlated to the B1075. A 

thermodynamic engine model has been developed to study the sensitivity of independent 

variables in the correlations, including burn durations and cycle combustion variation 

correlations. This thermodynamic engine model employed a residual fraction correlation 

as a function of overlap factor, engine speed, map and exhaust pressure, compression 

ratio, and equivalence ratio, burn duration and COV of gross IMEP correlations as a 

function of physically based non-dimensional groups. Figure VII-9 showed the 

calculation chart in the thermodynamic engine model which has two sub-routines 

including loop to compute the map pressure thus enable to compute the motored pressure 

trace, and loop to compute the MFB profile thus enable to reconstruct the firing pressure 

trace [Chapter VII].  
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Two types of parametric combustion models have been developed and integrated to GT-

Power, an engine simulation tool by Gamma Technology. A single-Wiebe parametric 

combustion model used the single-Wiebe function which has two parameters (“m”,  

“10-90%”). A double-Wiebe parametric combustion model used not only single-Wiebe 

function but also double-Wiebe function which has five parameters (”p”, “m1”, “m2”, 

“10-90% (1)”, “10-90% (2)”). The single-Wiebe function was used in the double-Wiebe 

parametric combustion model to adjust the anchor of each Wiebe function (“CA501”, 

“CA502”) with respect to the anchor of MFB profile (“CA50”).  

A user compound was developed in GT-Power to contain the parametric combustion 

model. The user compound was chosen because of its flexibility in GT-Power interface, 

including sharing the compound with other GT-Power users and further modifications in 

the compound. An RLT-dependence was used to connect the predictive combustion 

compound with the multi-Wiebe combustion template in the main engine model. The 

RLT-dependence was chosen because there were no signal ports available in the multi-

Wiebe combustion template at the time this parametric combustion compound being 

built. Even though this parametric combustion compound was built in GT-Suite V6 built-

12, this parametric combustion compound was ready for the GT-Suite V7 which has open 

ports in the multi-Wiebe combustion template, thus enables the direct connection in and 

out the multi-Wiebe template [Chapter VI]. 

Table VIII-1 compares the single-Wiebe and the double-Wiebe parametric combustion 

model. Single-Wiebe parametric combustion model employed the burn duration 

correlations and the least square method to compute the single-Wiebe function 

parameters. This single-Wiebe model is robust, particularly for case which has a 

symmetrical burn rate profile. This single-Wiebe model also includes the B0002 

correlation as a function of B0010 which enables user to anchor the Wiebe function at 

any location in the MFB profile including the spark timing location. 

Double-Wiebe parametric combustion model application was for case which has a non-

symmetrical burn rate. This double-Wiebe model employed the burn duration 

correlations and the analytical solution to compute the double-Wiebe function 
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parameters. The analytical solution was used instead of the least squares method because 

of the limitation of GT-Power computational capability. The analytical solution required 

a maximum value of weighting factor, “p”, less than one, and a CA50 adjustment to 

synchronize the anchor location for each Wiebe function. Because of the complexity of 

the double-Wiebe parameters calculation, this double-Wiebe parametric combustion 

model could only be anchored at CA50.  

 

Table VIII-1 Comparison between the single-Wiebe and double-Wiebe predictive 

combustion model  
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VIII.2 RECOMMENDATIONS  

To improve the double-Wiebe parametric combustion model, the least square method 

could be used to compute the double-Wiebe parameters but its required additional 

software, Simulink, for the combustion model calculation, thus required the GT-Power 

and Simulink coupling.  

Since the thermodynamic engine model was employed empirical correlations, it could be 

used not only to study the sensitivity of engine geometry and operating conditions to the 

engine performance, but also to generate extended engine database that could be used in 

the vehicle simulation and or in the virtual engine testing. Additionally, including the 

duration from spark timing to 2% or 10% of MFB (BSA01 or BSA10) correlations 

allowed the thermodynamic engine model to estimate the location of spark timing for 

given engine geometry and operating conditions. 
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IX. APPENDICES 

IX.1 ENGINE SPECIFICATIONS 

Table IX-1 shows the four engines specifications that have been used in this research.  

  

Table IX-1 Engine specifications  

Engine Production Name GM-LAF MTU-Hydra MTU-CFR GM-LNF 

Number of Cylinder 4 1 1 4 

Compression Ratio 11.9 11-18.5 4.5 – 17.5 9.3 

Bore (mm) 88 86 82.6 86 

Stroke (mm) 98 94.6 114.3 86 

Connecting Rod Length (mm) 143.8 152.5 254 145.5 

Wrist Pin Offset (mm) 0.8 0 0 0.8 

Displacement Volume (cm3) 596 550 612 500 

Turbo Charged No No No Yes 

Dual Independence Cam 
Phaser 

Yes Yes No Yes 
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IX.2 ENGINE DATABASES 

Table IX-2 shows the range of engine operating conditions from the four engines that 

have been used in this research.  

  

Table IX-2 Engine databases  

Engine Production 
Name 

GM-LAF MTU-Hydra MTU-CFR GM-LNF 

Compression Ratio 11.9 11, 12.5, 14, 
15.5, 17, 

18.5 

8, 10, 12, 14, 
16 

9.3 

Ethanol Blend (%) 0, 25, 50, 75, 
85 

0, 10, 20, 50, 
85 

0, 20, 40, 60, 
84 

0 

External EGR (%) NA NA 0, 10, 15, 20, 
25, 30 

NA 

Internal EGR (%) Full Phaser 
Sweep 

Full Phaser 
Sweep 

NA NA 

Engine Speed (rpm) 1200-6600 1300-3400 900 1200, 2000, 
4000 

Spark Advance (oCA) MBT and 
Full Timing 

Sweep 

MBT and 
Full Timing 

Sweep 

Full Timing 
Sweep 

MBT and 
Full Timing 

Sweep 

Number of Dataset 2020 895 724 71 
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IX.3 BURN DURATION CORRELATIONS  

Burn duration correlations were expressed as follow: 

  
1 642 32

5@ 000

x xxx x
xCAp pL

L

hS h SS h
x

S Q B B
 



                          
 (IX-1) 

Table IX-3 shows the constants for B0010 correlations and the metrics to quantify the fit.  

  

Table IX-3 B0010 correlations 

 GM-LAF MTU-Hydra
MTU-
CFR GM-LNF 

GM-LAF  

MTU-Hydra 

MTU-CFR 

GM-LNF  

GM-LAF 

MTU-Hydra 

GM-LNF 

x0 1023.56 231.62 1.3 1752.03 42.97 512.82 

x1 0.18 0.02 -3.23 0.11 0.33 0.23 

x2 0.09 -0.06 -1.74 -0.05 0.14 0.09 

x3 1.1 1.07 0.9 0.83 1.04 1.03 

x4 0.7 0.58 0.12 0.55 -0.76 0.53 

x5 -0.41 0 0 0 -0.11 -0.39 

x6 -0.05 0.11 0.76 -0.19 -0.1 -0.04 

R2 0.95 0.78 0.95 0.99 0.82 0.89 

RMSE 1.61 2.77 0.9 0.92 3.26 2.29 

AIC 1819.14 1397.21 -110.91 0.69 7477.84 4280.04 

#sample 1901 681 574 71 3156 2582 
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Figure IX-1 shows the B0010 correlations. 
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Figure IX-1 B0010 correlations  
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Table IX-4 shows the constants for B1025 correlations and the metrics to quantify the fit.  

  

Table IX-4 B1025 correlations 

 GM-LAF MTU-Hydra
MTU-
CFR GM-LNF 

GM-LAF  

MTU-Hydra 

MTU-CFR 

GM-LNF  

GM-LAF 

MTU-Hydra 

GM-LNF 

x0 109.97 2.97 1.2 210.21 25.56 98.8 

x1 0.14 0.21 0.96 0.04 0.23 0.07 

x2 0.06 0.13 0.36 -0.11 0.09 0.05 

x3 0.48 0.17 -0.46 -0.03 0.23 0.5 

x4 0.94 -0.65 0.39 0.67 0.04 0.78 

x5 -0.4 0 0 0 -0.53 -0.41 

x6 -0.03 -0.07 0.07 -0.24 -0.15 -0.04 

R2 0.85 0.24 0.89 0.97 0.5 0.73 

RMSE 0.32 0.68 0.31 0.35 0.77 0.59 

AIC -4297.21 -516.07 -1342.67 -137.19 -1622.06 -2723.29 

#sample 1901 681 574 71 3156 2582 
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Table IX-5 shows the constants for B1050 correlations and the metrics to quantify the fit.  

  

Table IX-5 B1050 correlations 

 GM-LAF MTU-Hydra
MTU-
CFR GM-LNF 

GM-LAF  

MTU-Hydra 

MTU-CFR 

GM-LNF  

GM-LAF 

MTU-Hydra 

GM-LNF 

x0 255.41 37.35 3.61 731.59 69.92 280.37 

x1 0.18 0.17 1.57 0.11 0.3 0.1 

x2 0.07 0.08 0.64 -0.13 0.1 0.06 

x3 0.48 0.33 -0.79 -0.1 0.15 0.55 

x4 0.92 -0.02 0.49 0.64 0.1 0.84 

x5 -0.48 0 0 0 -0.73 -0.44 

x6 -0.05 -0.08 -0.07 -0.32 -0.18 -0.05 

R2 0.89 0.32 0.92 0.96 0.54 0.82 

RMSE 0.62 1.21 0.69 0.94 1.63 1.02 

AIC -1776.43 270.2 -421.11 3 3081.38 107.96 

#sample 1901 681 574 71 3156 2582 
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Table IX-6 shows the constants for B1075 correlations and the metrics to quantify the fit.  

  

Table IX-6 B1075 correlations 

 GM-LAF MTU-Hydra
MTU-
CFR GM-LNF 

GM-LAF  

MTU-Hydra 

MTU-CFR 

GM-LNF  

GM-LAF 

MTU-Hydra 

GM-LNF 

x0 354.07 206.5 5.59 1837.18 100.16 445.99 

x1 0.24 0.12 2.25 0.15 0.36 0.16 

x2 0.09 0.04 0.97 -0.14 0.13 0.07 

x3 0.49 0.54 -0.93 -0.12 0.19 0.61 

x4 0.82 0.47 0.56 0.62 0.04 0.82 

x5 -0.62 0 0 0 -0.8 -0.49 

x6 -0.07 -0.06 -0.15 -0.39 -0.19 -0.05 

R2 0.89 0.63 0.91 0.94 0.57 0.87 

RMSE 1.09 1.58 1.17 1.85 2.52 1.38 

AIC 344.83 637.35 187.55 99.37 5843.15 1658.41 

#sample 1901 681 574 71 3156 2582 
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Figure IX-2 shows the B1075 correlations. 
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Figure IX-2 B1075 correlations  
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Table IX-7 shows the constants for B1090 correlations and the metrics to quantify the fit.  

  

Table IX-7 B1090 correlations 

 GM-LAF MTU-Hydra
MTU-
CFR GM-LNF 

GM-LAF  

MTU-Hydra 

MTU-CFR 

GM-LNF  

GM-LAF 

MTU-Hydra 

GM-LNF 

x0 150.65 530.25 5.57 3324.81 42.58 146.97 

x1 0.23 0.11 2.19 0.18 0.38 0.2 

x2 0.1 0.02 0.93 -0.14 0.15 0.09 

x3 0.48 0.68 -0.99 -0.09 0.26 0.56 

x4 0.44 0.75 0.62 0.58 -0.24 0.44 

x5 -1.02 0 0 0 -1.02 -0.89 

x6 -0.01 -0.03 -0.12 -0.42 -0.1 0.01 

R2 0.57 0.71 0.9 0.91 0.48 0.59 

RMSE 4.26 2.33 1.61 3.07 4.54 3.91 

AIC 5521.67 1165.27 559.14 171.16 9563.01 7053.44 

#sample 1901 681 574 71 3156 2582 
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0320, 2008. 
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