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Abstract 

Sensorized implants with embedded wireless, passive temperature sensors were 

developed for early detection of implant-associated infections. The operation principle of 

the sensor is based on the hypothesis that infections can lead to an increase in local 

temperature prior to the rise of body temperature. The sensor was an inductive capacitive 

(LC) circuit that has been used for monitoring of different parameters wirelessly, often in 

difficult to access environments. The sensor was fabricated on to an interference screw, 

which is used for tendon and ligament reconstruction surgeries. In this project, a sensorized 

interference screw was designed and fabricated by accommodating an LC sensor. Different 

designs of sensors and detection coils were made and tested for optimal performance. 

Infection at the site of an orthopedic implant is a serious challenge in the field of 

orthopedic surgery. These infections can lead to adverse health and economic burdens for 

the patients. The rate of failure of implants due to infections was around 2% to 2.4% during 

2001-2009 period and rising. The treatment cost for orthopedic-associated infections has 

increased to 566 million USD in 2009 and is projected to 1.62 billion USD by 2020. Several 

techniques are used to evaluate infections, including X-rays radiography, bone scans, and 

lab blood tests, but primarily it is based on swelling and increased pain at the site of 

infection. Several studies have shown relations between temperature and infections, they 

focused on surface tissue layers and to our knowledge, there have been few similar studies 

in deeper layers. The goal of this project is to develop a device that can operate within 

deeper tissues. 
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1 Introduction  

1.1 Surgical Site Infections  

Surgical Site Infections (SSI’s) are infections induced by pathogens at the site of a 

surgery. SSIs adversely impact the patient in the postoperative period, augmenting 

treatments and delaying recovery [1] which predispose patient comfort and economic 

expenditure negatively. US Centers for Disease Control and Prevention (CDC) classifies 

SSI into 3 different types [2]: 

i. Superficial Incisional SSI: Infections to the subcutaneous tissue at the site 

of incision for the surgery. 

ii. Deep Soft Tissue SSI: Infections of fascia and muscle tissue at the site 

iii. Organ/space SSI: Infection to body tissue other than subcutaneous and 

muscle tissue. 

SSIs show common symptoms like redness, delay in healing, fever, pain, 

tenderness, or swelling. Internally, pus is formed as a part of the immune response. Pus is 

a collection of dead granulocytes along with bacteria and tissue debris. Pus can collect 

within or in between tissue layers to form abscess, and this occurs mostly in organ/space 

SSIs. The abscess is revealed only during re-opening of the wound site or using specialized 

X-ray imaging. Organ/space SSIs are more common for orthopedic implants since the 

tissue is already immunologically compromised with the introduction of a foreign body. 

According to CDC data for 2002 [3] SSI contribute to 20% of all Hospital Associated 

Infections (HAI). Early detection is the key in reducing complication that may arise due to 

the infection. There are studies showing correlation between infection in surgeries and the 
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local temperature at the implant site [4-8]. This project focuses on producing a sensor 

system to monitor temperature at the site of an orthopedic implant based on the hypothesis 

that infection at the site of implant causes an increase in local temperature 

 

1.2 Infections Related to Orthopedic Surgeries 

Orthopedic surgeries contribute a lot to the above-mentioned SSI statistics due to 

the substantial number of sports injuries and accidents which almost always lead to 

orthopedic surgeries. Even though the rate of infections related to orthopedic surgeries 

remain low, the actual number of cases of orthopedic SSIs are increasing due to the rise in 

the number of orthopedic surgeries. A survey from 2001-2009 has concluded that the 

infection rates for hip and knee replacements ranged from 2.0% to 2.4%, and the infection 

rate continues to increase over time [9]. The economic expense related to the infections 

remain high due to the need of infection related treatments, revision surgeries, re-

hospitalizations and prolonged hospital stays. During the period 2001-2009, the annual cost 

for treating knee and hip replacement infections increased from $320 million to $566 

million, and is projected to increase to $1.62 billion by 2020 [9]. Other surveys have also 

shown similar results, indicating the implant-associated infection to increase at rates at 

around 1-2% [10]. 

 

1.2.1 Pathology of Infection 

Infection related to orthopedic surgeries mainly involving implants have been 

studied in detail in recent years. This has given important insights into pathogenesis of 
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infection, and improved diagnostic and treatment methods. Sendi et al., [11] classifies 

orthopedic infections based on inoculation, 

i. Exogenous infections: This type of infections usually occur during the early 

postoperative period when pathogens enter the site directly during the 

surgery. 

ii. Hematogenous infections: The infections that occur due to pathogens from 

blood and it may manifest as early as right after the surgery or in later stages 

than the exogenous infections, and even show up years after the actual 

surgery. 

Zimmer et al., [12] classifies infections according to the time at which they occurs 

as: early, delayed and late. Early infections occur within 2 months of the surgery and these 

are mostly exogenous. Delayed infections can occur up to 2 years after the surgery. These 

infections can be either exogenous or hematogenous. Late infections are those which 

diagnosed after 2 year of the surgery and are mostly hematogenous when there are no 

initially diagnosed infections.  

The infection causing pathogen are mostly bacteria such as Staphylococcus aureus, 

Escherichia coli and Propionibacterium acnes. Among the microorganisms, the most 

common are coagulase-negative Staphylococci (30-43%), S. aureus (12-23%), 

Streptococci (9-10%), Enterococci (3-7%), gram negative Bacilli (3-6%) and anaerobes 

(2-4%). In addition, 10-11% infections were found to be polymicrobial infections [13, 14]. 

The mechanism of infection is explained by a biofilm formation, which consists of 

surface adhering bacteria and extracellular matrix produced by them. There are several 
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different factors that contribute towards the progression of infection, including 

microorganisms’ resistance to host response and impaired host response. Biofilms adhering 

to the implant surface have microcolonies of one or more species of microorganisms. They 

can proliferate into colonies with considerably larger numbers, thus increasing their 

chances to be resistant to host response. This resistance is accounted by the quorum-sensing 

system that regulates the production and release of various virulence factors [15]. Similar 

biofilms are also observed in dental plaques and endocarditis. Impaired host response is 

another important factor in orthopedic implant infections. Frustrated phagocytosis, a 

functional defect in granulocytes (White Blood Cells responsible for inflammatory 

response) leads to degranulation, impaired ingestion, and super peroxide production. Also, 

biofilms trigger massive host response which causes more tissue damage near the site of 

infection. Biofilms produce chronic inflammations, which have shown to cause mutations 

in the microorganism. There are also chances of induction of antibiotic resistance due to 

this mutation even though most mutations can reduce the microorganism’s proliferation 

[16]. 

 

1.2.2 Diagnosis of Infections 

Initial diagnosis of the implant-related infection is similar to other bacterial 

infections, which is based on symptoms like pain, redness, and swelling at the site of the 

implant. Medical diagnostic methods include C-reactive protein (CRP) test, which account 

for the inflammation in the body. Since the CRP levels are high in the blood for up to 14 

days post-surgery, a lower CRP can be used to rule out infections, while a persistent high 
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value in routine test can only suggest a possibility of infections [17]. Since CRP is 

measured from blood, an infection elsewhere in the body can also relate to high CRP 

values. Radiography is used for imaging the site of orthopedic implant. It can be used to 

diagnose bone loss and implant loosening. Furthermore, MRI is usually not preferred for 

certain implants due to metallic artifacts. Ultrasound is used for imaging inflammation 

related swelling near the site and can also be used as evidence guide for carrying out 

aspirations to collect samples for histology and microbiology, which can then yield better 

results than the other diagnostic methods [18]. 

It should be noted that while there are a wide variety of techniques for diagnosis of 

infections, there is still a lack of decisive and sensitive method for diagnosis at early stages 

of infection. Although aspirations are sensitive and specific, they are only performed in a 

case where there is considerable evidence of infections from imaging methods, externally 

visible swelling and redness or extreme patient discomfort. 

 

1.2.3 Treatment of Infection in Orthopedic Surgeries  

Treatment of infections require a combination of different techniques and the 

patient conditions and comorbidities. Most treatment methods involve antibiotics along 

with surgical interventions [19]. For some patients with several other comorbidities, 

surgeries are typically not carried out and the infections are treated conservatively with 

antibiotics alone. Otherwise, surgical interventions including joint removals, revision 

surgeries, amputations to name a few, are executed in different infection progression 

stages. 
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1.3 Ligament Reconstruction Surgeries 

A major portion of orthopedics related injuries and surgeries are contributed by 

ligament injuries. Patients with ligament injuries are mostly young athletes with ligament 

tears in lower proximity joints such as knees and ankles [20, 21] related to contact sports 

such as football, rugby, basketball. 

 

1.3.1 Tendon and Ligament 

Tendon and ligament are soft collagenous connective tissues which functionally 

connect and support muscles and bones. Ligaments connect bones to bones and tendons 

connect muscles to bones (tendons also attach muscles to other organs as in the case of 

eyeballs). They play a major role in the musculoskeletal system, facilitating relative motion 

of bones and muscles. Both tendon and ligament have a similar hierarchical structure. The 

mechanical properties of tendons and ligaments are similar to that collagen, which 

constitutes about 86% dry weight in tendons and is just slightly lesser percentage in 

ligaments [22]. The ligament tears can be explained by mechanical events [23, 24]. For 

example, without considering viscoelastic properties of ligaments, tendons and ligaments 

exhibit a non-linear elastic behavior. There are three regions in the stress strain graph of 

ligaments: toe region, linear region, and, yield and fracture region. The ligaments usually 

work in the toe region and sometimes in between toe and linear region of the stress strain 

graph. Since the ligaments are considered elastic, the deformation in this regions is 

reversible. When stress increase beyond the linear region there is yield and fracture region. 
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Once yielding occurs, it is not reversible and leads to fractures. Effects of loading with time 

can be explained by the viscoelastic behavior of ligaments. Creeping is another mechanical 

event that can explain the fracture of ligaments [25]. Creep is defined as the elongation 

under a constant load. With increase in time, this elongation can eventually lead to fracture. 

These basic mechanically events can be used to explain sports injuries due to over use and 

strain of the joint. Major tendon and ligament injuries are observed in Achilles tendon, 

knee ligament tears and rotator cuff injuries [26-28]. 

 

1.3.2 Ligament and Injuries 

The terms ligaments and tendons are both alternately used due to their similarities 

in structure and function but the biochemical ratio and functions are different. Ligament 

are more metabolically active than tendons. Ligaments are mostly found in joints, where 

they are attached to two different bones across a joint to facilitate relative motions between 

joints. They also act as position sensor in joints [29, 30] and provide stability to joints. 

Ligaments are the focus in this project since there is high number of ligament 

injuries and related reconstruction surgeries, and interference screw are mostly used in 

ligament surgeries. The system can be replicated for use in tendons as well with small 

dimensional and design variations. Furthermore, ligaments tears in knee injury contribute 

a major portion to orthopedic injuries and often require surgical intervention. A majority 

of these injuries are sports related. Mechanically these injuries have been classified on the 

basis of the mechanism of injury [31]. 

• Contact or direct trauma 
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• Dynamic loading 

• Repetitive overuse 

• Structural vulnerability 

• Poor flexibility 

• Muscle imbalance and 

• Rapid growth 

Mechanical loading characteristics such as magnitude, location, direction, duration, 

frequency, variability, and rate of loading defines the principal of sport related injuries 

[32]. 

 

1.3.3 Healing 

Healing is a slow process, especially when it comes to ligament injuries. There are 

several factors that determine the time required to heal, such as the extent of ligament tear, 

and the position of ligament. For example, Medial Collateral Ligament (MCL) in the knee 

heals much faster than the Anterior Cruciate Ligament (ACL) [33]. ACL is exposed to joint 

fluids in the knee, and the tear causes the ends to be in contact with the fluid which does 

not favor healing. Even after the natural healing process the tissue does not regain it natural 

mechanical properties for a long time. The general biological response after a ligament 

injury can be divided into three phases [34]: 

• Bleeding and inflammation 

• Active repair of rupture and  

• Remodeling 
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During the initial period, and right after the injury proper care should be taken to 

reduce bleeding and edema. This decreases the chance of scar tissue from being 

hypertrophic, stiff and painful. 

During the repair phase, movement should be restricted at least in the initial 3 weeks 

after the injury as this was found to affect the orientation of collagen fibrils after healing. 

After this period, motion will help to increase the strength in ligament. Repair phase is 

marked by collagen synthesis which peaks at 3 weeks [35]. 

The remodeling phase can be from anytime between 6 weeks after injury to up to 1 

year. The scar tissue that has already formed matures into normal tissue. The phase is 

marked by increased levels of collagen and normal water content. In a long term study by 

Ng (1996) et al., [36], it was found that a goat ACL was able to recover most of its tensile 

strength in 1 year. After 3 years, the strength even surpassed that of normal ACL tissue. 

However, the mechanical properties like Young’s Modulus did not return to normal even 

after 3 years. 

 

1.4 Knee Ligaments 

Human knee is one of the most important joints in human body. There are two 

articulations in knee: the tibiofemoral joint and patellofemoral joint. It is the largest joint 

in the body, connecting the thigh to leg. Knee joint is a type of modified hinge joint, which 

allows extension and flexion with very limited internal and external rotation. The knee joint 

constitutes of 3 functional compartments [37]: 
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• Patellofemoral Articulation, formed by the patellar grove in front of the 

femur and the patella which slides through the grove. 

• Medial Tibiofemoral Articulation.  

• Lateral Tibiofemoral Articulation, both connecting the tibia and femur in 

between which synovial fluid is encapsulated inside the synovial 

membrane. 

The ligaments of the knee are classified into two on the basis of their position: 

intracapsular which lie within the joint itself, and extracapsular which towards the outer 

surface of the joint. 

i. Intracapsular ligaments: These ligaments control most of the knee 

movements. It is made up of two ligaments; the Anterior Cruciate Ligament 

(ACL) which connects the lateral condyle of femur to the anterior 

intercondylar area, and the Posterior Cruciate Ligament (PCL) which 

connects medial condyle of femur to the posterior intercondylar area.  

ii. Extracapsular ligaments: It is made up of two ligaments on the medial and 

lateral side of the knee. Medial Collateral Ligament (MCL) connects the 

femur and tibia on the medial side and Lateral Collateral Ligament (LCL) 

connects femur to fibula. 

Ligament injuries or tear occur when the knee sustains irregular motion or direct 

force impact on the ligaments. For example, twisting and bending of knee often lead to torn 

ACL, direct force impact causes PCL tear, and LCL and MCL tears are usually caused by 

lateral or medial bending forces. 
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1.4.1 Ligament Reconstruction 

Ligament reconstruction surgeries are only carried out in case of total ligament 

rupture. Partial ruptures are often treated with a combination of rest and exercise. This 

constrain in surgery is due to the high risks of reconstruction failure. Reconstruction can 

cause infections, graft rejection or improper rehabilitation. In a study conducted in 1999 

[38], it was found that 20-25% of ACL and 60% of PCL reconstruction surgeries are not 

successful. Similar failure rates for ACL surgeries were noted in study published in 2011 

[39].  

 
Figure 1.1 Illustration of interference screw placement for MCL reconstruction. 

(a) The posterior view shows screws through the medial epicondyle and (b) medial view 

showing the ligament graft stretching over the joint  

 

(a) (b) 
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The first ACL graft was reported by Hey Groves [40]. Majority of the 

reconstructions are done in young patients, who are usually athletes, and people with 

chronic knee instabilities. Allografts (grafts of tendon or ligament form others, usually 

cadavers) or autografts (graft is taken from other parts of the patient body) are usually used 

for reconstruction. Commonly used grafts are bone patellar tendon autograft, allograft and 

semitendinosus autograft. The grafts are fixed with the help of different anchoring 

techniques like interference screws, anchors or combination of two or more techniques. 

Reconstruction surgeries are carried out with great care. Surgeries are not carried 

out in inflammatory phase, which is typically 3-4 weeks after the ligament tear, due to the 

high risk of arthrofibrosis. Inflammatory condition also slows down healing and graft 

remodeling [41]. Surgeon’s precision and type of graft determine the success of 

reconstruction surgery. Graft remodeling is a long process and it can take years for the graft 

to attain normal mechanical strength of ligament. 

 

1.5 Infections and temperature 

Temperature has been associated with wound healing and infection for a long time. 

And there have been several studies showing infection related temperature rise. These 

studies have used surface temperature at the site of implantation as measure to identify 

infection. Although the mechanism behind infection and temperature change is not fully 

understood, studies have shown that temperature measurement specificity in identifying 

infections [4-6, 8, 42].  
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Possible physiological interactions that can cause changes in temperature included 

the immune response and bacterial proliferation. The immune response triggers different 

physiological reactions such as localized inflammation, oedema, hematoma and callus 

formation. As a part of the pro-inflammatory response, increased blood flow to the region 

contributes to a high concentration of heat at the site. The metabolic activity of the bacteria 

can also contribute to increasing temperature. With or without infections, temperature also 

changes after surgeries. Experiments based on a bone defect model in goats has been shown 

that there can be an initial drop in temperature at the site of a surgery attributed to damaged 

blood vessels [43]. Therefore, to use temperature to diagnose infections, further studies 

need to be done to better understand temperature variation and regulating factors. 

 

1.5.1 State of the Art 

Several studies were conducted to understand how temperature varies at the site of 

infection. There have been several studies on the basis of thermographic imaging, using 

infrared thermometers to monitor infections on the surface and deep layers of tissue. With 

recent advances in technology, cheaper and more efficient thermographic and tele-

thermographic imaging is now possible. Studies have shown effective use of thermography 

in septic knee prosthesis, healing in knee and hip prosthesis and several different infection 

diagnostics [4-6, 43, 44]. 

Thermography as explained by Romano et al., (2011) [45] had a good specificity 

and sensitivity. But the thermographic study was done on patient already having joint pain 

at the site of surgery, which suggests that the infection should be significant enough to be 
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detected on the outer tissue layers. Therefore, although this experiment only shows 

correlation between temperature and infections, it provides the basis of our hypothesis to 

use temperature at the site of implant for early diagnosis of infections. We hypothesize that 

if a temperature sensor is placed directly at the implant site, it will be possible to detect it 

even before thermographic detection is possible. 

A study by Epari et al., [43] shows temperature measurements in sheep during 4 

post-operative days. The study shows that initially the temperature was lower than the 

normal body temperature in tibia osteotomy. The temperature reached to the normal body 

temperature in 4 days. Epari et al., also points out in the study about the lack of sensor 

system that can effectively make long duration monitoring because the study used catheter 

type sensors. The disadvantages pointed out in the work include: 

• The environment in which the catheter is placed may not relate directly to 

the environment around the fracture because the inclusion of blood from the 

fracture may have triggered blood flow and hematoma around the sensors. 

• Using a sensor can also affect the healing process and long term study was 

not possible. 

 

1.5.2 Temperature Sensor 

The most important part of any temperature sensor is achieving a good thermal 

coupling with the object being measured. Thermal coupling can be achieved by transfer of 

thermal energy between the object and the sensor. The sensor converts this thermal energy 

into an electrical signal. Heating up and cooling down the sensor involves transfer of 
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thermal energy, which can induce errors in measurements [46]. Infrared thermometers use 

radiation for thermal energy transfer. This non-contact type temperature measurement can 

introduce variability and error induced by the operator and environmental factors. A 

catheter type sensors also have similar limitations like limited access to the site and error 

induced due to presence of catheter at the site [43]. A sensorized implant can reduce these 

errors by measuring the temperature around an implant since the energy transfer is due to 

conduction and not by any external factor. An ideal sensor for this application should have 

the following features: 

• Size: Small size to reduce error due to thermal energy transfer and enabling 

easy integration to currently available orthopedic devices. 

• Wireless: Sensor system should be wireless to minimize infection that can 

be related to wires or catheters placed internally or externally in the body. 

• Passive: An internally perpetual system is ideal for long term monitoring. 

The sensor should not have any power supply placed inside the body, as it 

should be externally powered or capable of energy harvesting. 

 

1.6 Wireless and Passive Temperature Sensor 

A new sensor was developed to monitor infections in orthopedic implants to help 

predict the start of infections. The sensor can lead to better understanding of the relation 

between temperature and infection and the mechanism behind it. Even though infections 

and temperature rise are usually correlated, there are very little studies done in this field. 

Majority of the studies focus on infections and ulcers near to the skin [4, 7, 42]. We would 
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like to pursue a similar approach on deeper tissue layers by using a wireless system. The 

fact that infections can arise for up to 2 years after surgery is a great deal of concern [12], 

and the wireless temperature sensor system may provide a solution for this challenge. A 

passive system which does not need power or that can be powered externally will help to 

achieve long term studies even after several years. This project focuses on producing a 

device that can act as a research tool, and in turn can be commercialized to be an actual 

product. 

In this project, temperature sensors were embedded in interference bone screws. 

These bone screws are widely used in ligament and tendon reconstruction surgeries, and 

associated to a large number of orthopedic surgeries. The small size of the inductive-

capacitive resonant circuit sensor is ideal for this applications because the interference 

screws are small in size themselves. Being wireless and passive, the sensor does not 

interfere in the implantation process. Also, the sensor will not interface with the body 

during or after the implantation. 

 

1.6.1 LC Sensor 

LC sensors or Inductive-Capacitive Resonant Circuit Sensors are tank circuits with 

a specific resonant frequency that is determined by the inductance and capacitance in the 

circuit [47-51]. They are wireless and passive sensors which are powered externally 

through an excitation/detection coil. They can change their resonant characteristics such as 

resonant frequency and quality factor depending on the inductance, capacitance and 
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resistance values in the circuit. LC sensors come with different designs. For this sensor, 

the main components are:  

• Inductive winding: It is responsible for the inductive coupling between the 

sensor and the detection coil, which allows wireless transmission of sensor 

information to an external device. 

• Capacitor: It regulates the resonant frequency of the sensor. 

• Thermistor: This is the sensing element for this sensor design, responsible 

for transduction of temperature. The temperature change causes the 

resistance of the thermistor to vary. This resistance change is measured as a 

change in the quality factor of the sensor. 

The sensor is interrogated by suppling an alternating voltage to the detection coil. 

The alternating voltage induces a magnetic field and the magnetic field in turn produces a 

voltage in the sensors inductive coil. This is the magnetic coupling between the sensor and 

the coil. The sensor is interrogated at different frequencies. At the resonant condition of 

the sensor, the total impedance of the LC circuit reduces to its resistance. In an ideal LC 

circuit without resistive loss the impedance should be zero. However, for this sensor 

design, the impedance in the sensor is a function thermistor resistance. When the sensor 

couples with the coil, the impedance of the sensor is inversely reflected in the impedance 

of the coil. This means that at resonance, the measured impedance at the detection coil is 

at its peak, and an increase in the resistance of the sensor decreases the magnitude of the 

measured impedance. Since the resistance of the sensor depends on the temperature, 

impedance measurement of the coil can thus be used to measure temperature. 
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The LC sensor and passive RFID (Radio Frequency Identification) [49, 52-55] 

sensors are based on the same principle of electromagnetic induction. RFID is being used 

widely in consumer products as wireless tag [55]. However, RFIDs are susceptible to 

component failure and limited range [55]. The inclusion of miniature circuit also increases 

fabrication cost. The main advantage of LC sensors over RFID is the ease of fabrication 

and low cost. Passive RFID sensors need to have AC to DC converters on board the sensors. 

The factors determining the resolution of sensor also depends on the onboard components 

of the RFID circuit. There are fewer components in LC sensors as compared to RFID 

sensors. 

Ong et al., [52] demonstrated the use of LC based sensor in monitoring growth of 

bacteria. In the study, bacteria growth was measured using a planar LC circuit with 

interdigital capacitor and planar inductive coils. The permittivity of the capacitor was used 

as a measure of bacterial growth. The planar LC sensor was placed below a culture of 

bacteria. As bacteria proliferated in a culture, the permittivity experienced by the 

interdigital capacitors in the sensor increased. Ong et al., [52] also demonstrated the use of 

similar planar sensors for monitoring temperature, humidity and pressure. Several other 

printed resonant circuits have been developed to measure parameters such as strain, pH 

and relative humidity [49]. A planar LC circuit is difficult to be manufactured into small 

size and without affecting the sensor’s performance. However, the same electronic circuit 

can be replicated using a solenoid inductor and a surface mount capacitor to match the 

shape and size of interference screw. Ong et al., [50] sensor work on the basis of 

capacitance change, which in turn varies the resonant frequency. In this senor, the changing 
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parameter is the resistance in the LC circuit, which is measured in terms of the quality 

factor of the resonant curve. This was studied in an initial bench top model shown in Figure 

1.2. 

 

Figure 1.2 Initial bench test. 

(a) Initial test model and (b) test results showing the linear variation of quality factor in 

terms of changes in temperature. 
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2 Theory and Design 

2.1 Bone screw 

Interference bone screws are used for fixing tendons and ligaments [56, 57]. These 

screws were chosen for the study due to the high incidence of tendon and ligament injuries 

in recent years [9]. Currently, these reconstruction surgeries are conducted using different 

materials including stainless steel, titanium and non-metal polymers such as PEEK, PLA 

and PGA, with mixture of BCP (Biphasic calcium phosphate, which contains b-TCP and 

HA). The polymer screw was selected instead of metals in the project to reduce 

electromagnetic shielding effect caused by metallic objects around the sensor. The design 

was based upon a commercially available bone screw from Arthrex® (Tenodesis Screw, 

BioComposite, 8 mm × 12 mm - AR-1680BC). Interference screws are manufactured by 

several other companies including Smith & Nephew, Zimmer and Stryker. These screws 

basically differ in their thread pitch, screw driver types, dimensions and polymer material, 

depending on the intended site of application. Arthrex interference screw was used because 

of the ease to design and prototype, and also its popularity. 
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Figure 2.1 Illustration of the designed sensor. 

Cross sectional view of the sensorized screw implanted is shown, the sensor inductive 

winding is represented screws broken view. 

 

 

The sensorized bone screw was consisted of 2 parts: 

i. Bone screw thread: It is the outermost shell of the bone screw and it 

consists of a threaded exterior and a hexagonal hollow interior. The exterior 

threading is step tapered to allow for maximum insertion torque when fixing 

the bone screw. The hexagonal cutout is in two stages with one much wider 

than the other. The wider portion is towards the top of the screw and extends 

down till the cutout does not interfere with the tapering thread. The 

hexagonal cutout drops to a smaller dimension below the larger one. 

ii. Temperature sensor: This part houses the LC temperature sensor circuit 

comprised of the inductive winding, capacitor and the thermistor. The 

inductive winding is made on a cylindrical shaft with an internal hexagonal 

cutout. The temperature sensor has a hexagonal top and base which 
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corresponds to the hexagonal cutout in the bone screw thread. This allows 

the sensor portion to be placed inside the screw portion securely. The 

smaller hexagon allows the screw to be driven with a corresponding 

hexagonal screw driver. 

The hexagonal cutout in the sensor aligns with the smaller hexagonal cutout in the 

screw thread. This allows the screw to be attached to the head of screw driver which has 

the corresponding hexagonal head. Usually, the screw drivers are custom designed for both 

open and laparoscopic surgeries. Screw drivers also have assistive accessories to maintain 

high precision. The bone screw thread and temperature sensor parts can be put together and 

fixed using a biocompatible adhesive (Loctite Hysol® medical adhesives or Masterbond 

EP42HT-2Med epoxy) which confer to ISO 10993 biocompatibility standards. The current 

model used for test was not biocompatible as the model was a 3D printed prototype. 

The screw was designed using SOLIDWORKS®, a 3D CAD design software. 

Different dimensions of the screw were designed and 3D-printed using Lulzbot® Mini for 

initial prototyping and study. The printing material used was black PLA filament. This 

initial prototype is not actually meant for implant in an animal or human body. The print 

material used is not biocompatible. In order to produce a biocompatible model, 

biocompatible 3D filament should be used or other prototyping techniques such as mold 

casting should be used. 
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Figure 2.2 Interference screws. 

(a) Designed interference screw 12 mm × 8 mm, (b) referred model of Arthrex 

Tendonosis biocomposite screw 12 mm × 8 mm (c) designed interference18 mm × 12mm 

and (d) bone screw thread and temperature sensor part with the copper winding coil. 

CAD models of the design (e, f). The hexagonal cut outs can be observed in the figures 

(c, e and f) 

 

 

 

(a) (b) 

(c) (d) 

(e) (f) 
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Table 2.1 Different interference screw sizes designed and their corresponding sensors 

(max. length × max. diameter). 

 

Screw dimensions 

(max. height × max. diameter)  

Sensor dimensions 

(max. height × max. diameter) 

28 mm × 12 mm 18 mm × 5 mm 

18 mm × 12 mm 14 mm × 5 mm 

12 mm × 8 mm 8 mm × 3 mm 

 

The length and diameter of the sensor shaft depends on the overall length and 

diameter of the screw. Designs can be varied to adjust for different pitches and sizes. The 

current interference screw model can be used for ligament reconstructions in knee 

ligaments such as ACL, PCL, LCL and MCL. 

 

2.2 LC Temperature Sensor 

Several circuit designs were made for the LC circuit with different values of 

inductance and capacitance. The resonant frequencies of these designs vary between 15 

MHz to 30 MHz. The circuit consists of an inductor, a capacitor, and a thermistor in series 

as shown in Figure 2.2. The thermistor here acts as a transducer. It causes the total 

resistance in the circuit to vary as the thermistor resistance 𝑅𝑡 depending on the 

temperature. 
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Figure 2.3 Typical serial LCR circuit. 

Rt represents the thermistor resistance and r represents the circuit resistance this includes 

the resistance of the copper coil and any resistance during the soldering of the circuit. 

 

The circuit in Figure 2.2 represents a Series Resonant Circuit, with inductance 𝐿, 

capacitance 𝐶, thermistor resistance 𝑅𝑡 and circuit resistance 𝑟. The impedance of the 

circuit ZS is given by the equation 

 

 𝑍𝑆(𝑗𝜔) = 𝑟 + 𝑅𝑡 + 𝑗(𝑋𝐿− 𝑋𝐶) (2.1) 

 

where inductive reactance 𝑋𝐿 is expressed as 

 

 

𝑋𝐿 = 2𝜋𝑓0𝐿 (2.2) 

 

and the capacitive reactance 𝑋𝐶 is 

 

 

𝑋𝐶 =
1

2𝜋𝑓0𝐶
 (2.3) 
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At the resonant frequency, ZS is minimum in Equation (2.1). As the capacitive and 

inductive reactance cancel each other out, 𝑋𝐶 = 𝑋𝐿 (Equation (2.2) and Equation (2.3)). 

The resonant frequency can be computed by 

 

 
𝑓0 =

1

2𝜋√𝐿𝐶
 

(2.4) 

 

The half power frequency bandwidth BW (-3dB) is determined by 

 

 
𝐵𝑊 =

𝑟 + 𝑅𝑡

2𝜋𝐿
 

 

(2.5) 

The quality factor Q (Q factor), defined as the ratio of the energy stored in the 

system per one cycle to the energy dissipated in the system per one cycle, is also given by 

the ratio of resonant frequency to the half power bandwidth. 

 

 
𝑄 =  

𝑓0

𝐵
 

 

(2.6) 

From Equations. (2.4), (2.5) and (2.6), at resonance 
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𝑄 =  
1

𝑟 + 𝑅𝑡
 √

𝐿

𝐶
 

 

(2.7) 

In a circuit (sensor), L and C are constant and the resistance in the circuit is 

contributed mainly by the resistance of the inductive wire windings. The circuit resistance 

r remains small and constant. The Q factor thus only depends on the resistance of the 

thermistor 𝑅𝑡. In the sensor, we use a NTC thermistor with a small resistance value. The 

thermistor value was kept constant at 22 Ω with different capacitor values and inductance. 

It should also be noted that the temperature change can cause changes in inductance and 

capacitance, which may cause small shift in resonant frequency and Q factor, but it is 

negligibly small for the relatively small operating temperature of 30 - 40 ºC. The inductor 

is the coil made by winding magnet copper wire over the cylindrical shaft of the 

temperature senor. The inductance value (in H) for the windings was calculated using the 

following equation for solenoid inductance. 

 

 
𝐿 =

𝑟2× 𝑁2

9×𝑟 + 10×𝑙
 

 

(2.8) 

Where r is the radius of the winding, N is the number of turns and l is the length of windings 

(in m). Similarly, when there are multilayer windings,  

 

 
𝐿 =

0.8 × 𝑟2 × 𝑁2

6×𝑟 + 9×𝑙 + 10×𝑑
 

(2.9) 
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Where d is the depth of the coil windings in m. 

The sensors inductor was first made, followed by calculating the inductance. 

Commonly available capacitor values, ranged in between 1 – 10 pF, was then connected in 

series to the inductor. With the limited capacitance values, it was not possible to maintain 

a single resonant frequency for all the fabricated sensor. However, the resonant frequencies 

were maintained in the range of 15 MHz and 30 MHz. In the experiment, it was found that 

the resonant frequency does not contribute to Q factor, which is taken as the measure of 

temperature. The capacitor and thermistor used are surface mounts of the size 0603 (1.6 

mm  0.8 mm). The capacitor and thermistor was arranged by stacking one up on the other, 

separated by a thin film insulator and then soldering one end to each other and the other 

two ends to the inductor (see Figure 2.4). 

 

Figure 2.4 Layout of SMD thermistor and Capacitor 
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2.2.1 Thermistor 

Thermistors are resistors which change their resistance value according to the 

ambient temperature. Negative temperature coefficient (NTC) thermistors were used in the 

project. In NTC thermistors the resistance decreases as temperature [46]. The Q factor of 

the sensor is inversely proportional to the resistance in the LC circuit (Equation (2.8)). As 

the resistance of the NTC thermistor drops with the increase in temperature, the Q factor 

of the resonance increases. The relationship between temperature and resistance of the 

thermistor for a narrow range is almost linear.  

 

 ∆𝑅𝑡 = 𝑘 ∆𝑇 

 

(2.10) 

where k is the proportionality constant which is negative in case of NTC thermistor 

(resistance decreases as temperature increases). 

Thermistor usually have a linear relation between temperature and resistance, but 

this only holds true for a small temperature range. In case of wide temperature range, higher 

order approximations are required for calibrating the resistance and temperature. In this 

application, the measurement range is very small (30 – 40 ºC). Therefore, the relation 

between temperature and Q factor can be considered linear from Equations (2.8) and (2.7). 

Self-heating effect of thermistor is another important factor to be considered. The 

total applied power from the coil is <10 dBm. This power rating is similar to another 

wireless implantable sensor, CardioMEMSTM HF System (St. Jude Medical), which also 

has a transmitting power of 10 dBm or less. Furthermore, the active time of this sensor is 
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expected to be relatively short, with at most about 5 minute per 6 hours (assuming 

collecting a temperature data point 4 times per day). Therefore, we do not expect the 

wireless interrogation will contribute considerable heating to body tissue to cause damages. 

 

2.2.2 Detection Coil 

As mentioned earlier, the sensor works on the basis of inductive coupling between 

the sensor and the detecting coil [53]. The sensor is also interrogated with the help of the 

same detection coil connected to an impedance analyzer. The impedance analyzer detects 

the impedance of the sensor using S11 parameter, which is the input reflection coefficient 

of the scattering parameter. The input reflection is the ratio of applied signal to Port 1 to 

the reflected signal back on Port 1 of the impedance analyzer [48]. 

 

 
𝑆11 =

𝑉𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑒𝑑 

𝑉𝑎𝑝𝑝𝑙𝑖𝑒𝑑 
 

(2.11) 

 

This is also equivalent to the reflection coefficient Γ, 

 

 
Γ =

𝑉𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑒𝑑 

𝑉𝑎𝑝𝑝𝑙𝑖𝑒𝑑 
=  

𝑍𝐿 −  𝑍𝑆

𝑍𝐿 +  𝑍𝑆
 

(2.12) 
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Where ZS and ZL are source and load impedances, respectively. Since the coil and sensor 

are coupled, the impedance of the coil is also influenced by the sensor. The relation 

between the impedances of the coil and the sensor was derived by Ong et al., [52] as 

 

 
𝑍𝑇 =  𝑍𝐶 + 

𝜔2𝑀2

𝑍𝑆
 

(2.13) 

 

Where ZT is, the total impedance measured across the terminal of the coil, ZC is the coil 

impedance, ZT is the sensor impedance, and M is the mutual inductance coupling between 

the sensor and the coil. During a measurement, the impedance of the coil was measured 

prior to placing the sensor. All sensor measurements were subtracted to the coil impedance 

to obtain the pure sensor impedance, which is the second term in the right-hand side of 

Equation (2.13). 

The impedance analysis of the LC sensor is carried out by applying a time varying 

voltage to the detection coil. This produces a magnetic flux as stated by Ampere’s Law 

[58] 

 
𝐵∅ =  

𝜇0𝐼

4𝜋𝑎
 (cos 𝛼1 − cos 𝛼2) (2.14) 

 

Where I is the current, a distance from the center of the wire and 𝜇0 the permeability of 

free space in the detection coil. This is also consistent with Biot-Savart’s Law [58] , which 



32 

 

 

 

defines the magnetic field at any point induce by a current carrying conductor. The 

magnetic field at any point is given by 

 

 
𝐵𝑧 =  

𝜇0𝐼𝑁𝑎2

2(𝑎2 + 𝑟2)3/2
 (2.15) 

 

Where N is the number of turn, a is the radius of the coil, and r is the distance from the 

center of the coil. The magnetic field determined by this equation falls off with r-3 from 

center of the coil to the point. This distance is the main limiting factor for detection of the 

sensor since the magnetic field and the inductance coupling decrease with distance. 

 

 

Figure 2.5 Detection coil with 40mm radius. 

 

A portion of this field in Eq. (2.15) induces a voltage in the sensor coil, as defined 

by Faraday’s Law of induction [58]. Maximum voltage can be induced by increasing the 

magnetic field, which can be achieved by varying different parameters such as by 

increasing I, N, a or reducing r. Applied current is determined by the power supplied to 

detection coil which cannot be increased beyond a specific limit because this causes the 
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detection coil to heat up. The number of turns also cannot be increased as more windings 

cause increase noise susceptibility. The optimum coil diameter was calculated to be around 

40 mm from Eq. (2.15) for a distance of 30 mm, measured from the center of the detection 

coil to the center of the sensor (Figure 2.6). 

 
Figure 2.6 Magnetic field variation with size of coil (30 mm, 40 mm and 65 mm) at 30 

mm 

 

 

The induced voltage in the sensor also gives rise to an opposing magnetic field. The 

opposing magnetic field causes a voltage drop in the detection coil. The impedance 

analyzer detects the total impedance of the detection coil, which is the sum of coil 

impedance and the impedance induced due to the sensor. The sensor can then be 

characterized by checking the frequency response around the resonant frequency. Sensor 

characterization is done monitoring two parameters the quality factor and the error% 

corresponding to temperature and quality of the signal. 
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2.3 Q factor 

As calculated in Section 2.3 (Equation (2.7)), quality factor is determined from the 

frequency response. The Q factor as shown in the figure was calculated from the raw 

frequency response data using a Matlab code. The Matlab code checks the peak impedance 

to determine the resonant frequency and then determines the half power point (-3dB) to 

determine the Bandwidth. The Q factor was then calculated from the resonant frequency 

and bandwidth. Polynomial fitting was used to reduce the effects of noise component in 

determining the peak and bandwidth. Figure below demonstrates the noise and the 

calculated Q factor and Error %. 

 

 
Figure 2.7 Frequency response plot for sensor 0mm from of 30mm detection coil 
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Figure 2.8 Frequency response plot for sensor 20 mm from of 65 mm detection coil 

 
Figure 2.9 Bandwidth, resonant frequency and noise for a typical frequency response. 

The bandwidth and resonant frequency is used calculate Q factor (blue) and maximum 

measured noise from which the Error% is calculated. 
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2.4 Error % 

Error % is used to represent the quantitative measure of noise (Figure 2.9), it is 

defined here as the percent of standard deviation in the frequency response to the peak 

response. 

 

 
𝐸𝑟𝑟𝑜𝑟 % =

𝑆𝑡𝑎𝑛𝑑𝑒𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓𝑚𝑎𝑥. 𝑛𝑜𝑖𝑠𝑒

𝑀𝑎𝑥. 𝑖𝑚𝑝𝑒𝑑𝑒𝑛𝑐𝑒 𝑎𝑡 𝑟𝑒𝑠𝑜𝑛𝑎𝑛𝑡 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦
×100 

(2.16) 

 

It effectively determines the amount of noise and the variability in the calculated 

resonant frequency and Q factor. It was observed that the best signal response had Error % 

of less than 1%, Q factor could be efficiently determined for up to 30%. But an Error % of 

less than 10% percent is considered efficient for this study. 
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3 Experiment and Results 

Experiments were conducted in 3 phases. Initial test was performed to optimize the 

detection coil to determine the role of coil diameter, distance of separation between the 

sensor and the detection coil, wire diameter, number of windings of the detection coil and 

power supplied to the detection coil. Next, the sensor design was varied to determine the 

best sensor. Upon determining the best coil and sensor, the performance of the sensor was 

evaluated in terms of sensitivity. Repeatability, and the relative positioning of the sensor 

from the detection coil. 

As described in the previous Section 1.6.1, a network analyzer was used to measure 

the impedance of the sensor with a detection coil. The Network/Spectrum analyzer, Agilent 

4396B, was used to determine the impedance of the sensor by measuring the S11 response 

of the detection coil. The network analyzer was connected to a PC via GPIB (General 

Purpose Interface Bus) connection. The network analyzer was remotely controlled using a 

custom Visual Basic program, which recorded the frequency response in S11 mode for a 

specified frequency range, depending on the resonant frequency of the sensor used. The 

sensor impedance was determined by subtracting the measured frequency response of the 

coil with the sensor to the measurement of the coil’s impedance without the sensor. The 

raw data was further analyzed in Matlab to obtain the Q factor and Error %. 

The data was averaged in the impedance analyzer at a factor of 150. And the data 

was collected in a 10 MHz window around the resonance frequency of the sensor with 400 

data points. 
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3.1 Detection Coil Optimization  

3.1.1 Distance between Sensor and Detection Coil 

The range of detection is a major concern for this study. The distance was selected 

as 30 mm, which is a conservative measure of interference screws placement in Medial 

Collateral Ligament (MCL) reconstruction surgery. A similar distance is observed for 

Lateral Collateral Ligament (LCL) reconstructions as well. In many cases the same 

distance can be used for Anterior Cruciate Ligament (ACL) reconstructions. In the case of 

Posterior Cruciate Ligament (PCL) reconstruction, the detection distance may vary due to 

muscle and fat tissues of thigh and leg. The inductive coupling reduces with distance 

according to Equation (2.15). 

  

 
Figure 3.1 Sensor response for change in distance of separation of sensor and coil and 

diameter of coil. 

40 mm diameter has the lowest Error % than the rest. 
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Figure 3.1 shows that the 40 mm coil produce the best response when monitored 

from a distance of 30mm. This observation is consistent with the theory described in 

Equation (2.15). For an increase in the separation distance between the sensor and detection 

coil, the coil diameter should be increased to maintain a maximum coupling (thus 

maximum signal). Figure 3.2 shows the response of a sensor when monitored by coils of 

different diameters at 0 mm separation. It can be observed that the 30 mm coil is only 

marginally better than the 40 mm coil, which shows that smaller coils are better for sensors 

implanted near the skin. Nevertheless, 40 mm coil can be used efficiently from 0 mm to 30 

mm distance. 

 

Figure 3.2 Sensor response for change in coil diameter at 0 mm separation.  

 

Larger coils can be used for deeper sensor placement measurements, but to maintain 

the good sensor response the power must be compensated enough. Figure 3.2 also shows 

that the Q factor remains relatively constant throughout the test and the distinguishing 
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factor of performance is Error %. During this test power was kept constant at 5 dBm and 

all the coils had 2 turns with a 24 AWG wire size. 

 

2.1.1 Coil Wire Diameter 

The experiment was carried out to determine how the diameter of the wire effects 

the sensor response. In this experiment, the number of turns was kept constant as 2 and the 

power was at 5 dBm and the sensor was placed at 20 mm away from the detection coil. 

Three different gauges of wire were used in the experiment: 28 AWG, 24 AWG and 18 

AWG. The results from Figure 3.3 shows a considerable increase in performance in terms 

of Error %, but it is only observed as we go from 28 AWG to 24 AWG. The same is not 

observed from 24 AWG to 18 AWG wire. 

 
Figure 3.3 Sensor response for different diameters of the wire. 
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The observations in Figure 3.3 can be explained by considering the resistance of 

the magnet wire. The amount of current flowing through the wire depends on the resistance 

of the wire as the impedance analyzer produces a voltage signal across the detection coil. 

The resistance of different wire gauges is given in Table 3.1 Wire gauge and resistance.. 

The resistance difference between 18 AWG and 24 AWG is ~0.06 Ω per meter. Similarly, 

the difference in resistance between 18 AWG and 16 AWG is ~0.004 Ω per meter. Since 

the resistance change between 18 – 16 AWG is an order of magnitude smaller than the 

change between 18 – 24 AWG, there was no significant performance improvement for 16 

AWG wire over 18 AWG wire. 

 

Table 3.1 Wire gauge and resistance. 

 

Wire size (AWG) Dia. in (mm) Resistance per 1000 

ft. 

18 1.024 6.39 

20 0.813 10.1 

22 0.643 16.2 

24 0.511 25.7 

26 0.404 41.0 

28 0.320 65.3 

 

2.1.2 Number of Windings in the Coil 

According to Equation (2.15), the magnetic field produced by the coil should 

increases with the increasing number of windings in the coil. During initial bench tests with 
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4 or more turn coils, it was observed that the quality of signal was very low (high Error %) 

and it was difficult to calculate the Q factor from the data. The same was also observed in 

the single turn wound coil, which was not able to induce enough voltage at 20 mm height 

to produce a response. 

 

 
Figure 3.4 Sensor response with different number of windings. 

Error % is higher in 3-turn coil than in 2 turn coil. 

 

This test was conducted using 2 and 3 turn detection coils. The separation distance 

of the coil was kept constant at 20 mm and measurement was taken with 40 mm diameter 

coil of 24 AWG. Figure 3.4 demonstrates a clear increase in Error %. This Error % increase 

can be attributed to ambient noise picked up by the coil with more number of turns.
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2.1.3 Power  

According to Equation (2.15), the increase in current causes the magnetic field to 

increase. In the network analyzer, the power of the output signal can be increased to 

produces higher current in the detection coil. This will produce higher magnetic field and 

better sensor performance Figure 3.5. The increased current can also cause power to be 

dissipated as heat by heating up the detection coil. The power should be maintained low 

enough to reduce this heating effect. In the experiment the maximum power applied was 

10 dBm. The unit of power used here is dBm (decibel-milliwatt). It is defined as the 

measure of power ratio of signal to one milliwatt in decibel units. It is the typical unit of 

power in the case of radio frequency and microwave signals. 

 
Figure 3.5 Sensor response with change in power applied to the detection coil. 

Sensor response increases with applied power. 
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In this experiment, 3 different values of power were applied 2 dBm, 5 dBm and 10 

dBm. The distance of separation was kept constant at 20 mm. A 2-turn coil of diameter 40 

mm and wire of gauge 18AWG was used. 

 

2.1.4 Result 

The detection coil performance was characterized based on the coil diameter, 

separation distance, number of coil windings, diameter of the wires used and power applied 

to the coil. The optimum diameter of the coil is dependent on the equation of magnetic 

field Equation (2.15). When the distance of separation of the coil and sensor was 30 mm, 

the calculated optimum coil diameter was 40 mm. The experiments verified the 

performance of the 40 mm coil as compared to 30 mm and 65 mm coils. Equation (2.15) 

also determines the magnetic field with respect to the number of windings. The magnetic 

field increases proportionally to the square of the number of turns, however, in the 

experiment it was determined that the maximum number of turns that could be used was 3. 

This was due to the increase in noise in the acquired data for coils with 4 or more windings. 

It was also noted that the 2-turn coil had lesser Error % than 3-turn coil, so 2 turns are 

considered optimum for the detection coil. The diameter of the wire determines the 

resistance of the wire. As the diameter of the wire increases, the resistance decreases. 

Therefore, higher diameter wires are better suited for the detection coil, however, in 

experiments the performance did not increase proportionally with decrease in wire gauge 

(increase in diameter). This is due to the fact that the resistance change in lower wire gauge 

is constant. For example, the resistance difference between 18 AWG and 24 AWG is ~0.06 
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Ω per meter. Similarly, the difference in resistance between 18 AWG and 16 AWG is 

~0.004 Ω per meter. Hence, 18 AWG is considered optimum wire gauge for coil design. 

In the final test, an increase in power allowed better coupling by producing more current 

in the coil. The optimized design of the detection coil for a distance of separation of 30 mm 

is a 40 mm diameter coil with 2 turns of 18 AWG magnet wire used at a power rating of 

10 dBm. 

 

3.2 Sensor Optimization 

3.2.1 Different Sensors 

The main parameter of focus in the sensor optimization study was the inductive 

winding of the sensor. The inductance can be calculated form Equations (2.7) and (2.8). 

An increase in number of turns in the inductor produces better inductive coupling between 

the sensor and detection coil. Considering Equation (2.7), the Q factor varies with the 

inductance L and capacitance C. Q factor is proportional to the square root of the ratio of 

inductance Land capacitance C. The thermistor used in all the designs was 22 Ω. Similar 

to the detection coil optimization, different windings were studied for same temperature 

sensor model (14 mm × 5 mm). The gauge of the wire and number of turns varied the 

response of the coil. In the experiment, two sensors with different number of turns and wire 

diameters were compared to a reference design. As shown in Table 3.2, Sensor ‘a’ was 

considered as the reference sensor, Sensor ‘c’ had double the number of turns as compared 

to Sensor ‘a’ and Sensor ‘b’ had more than twice the wire diameter. 
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Table 3.2 Different sensor designs tested  

Sensor 
Number of 

turns 

L/C ratio 

(H/F) 

Wire 

diameter 

(AWG) 

Resistance 

of the coil 

(Ω) 

Q factor (at room 

temperature 23ºC) 

a 38 0.356×106 36 1.628 33.649 

b 38 1.1×106 28 0.254 45.425 

c 80 7.53×106 36 3.419 49.941 

 

The experimental results show that both increase in wire diameter and number of 

windings increase the Q factor. This demonstrated by the higher Q factors produced by 

Senor ‘b’ and ‘c’ when compared to Sensor ‘a’ while the Error % remained relatively 

stable. The limiting factor in the sensor performance is the size of the screw which 

determines the dimensions of the inductance of the coil, a wider sensor can produce a 

higher inductance and inductive coupling according to Equation (2.7). The capacitor values 

can be varied to control the resonant frequency of the sensor. 
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Figure 3.6 Response of different sensor designs. 

 

3.3 Relative Position Sensors and Detection Coil 

The relative position of the sensor and the angle was measured to evaluate how 

these parameters impact the sensor performance. In case of an implanted sensor, the 

relative position and angle cannot be determined after implantation. There needs to be a 

high window of tolerance for the relative positioning of the sensor response. 

Figure 3.7 and Figure 3.8 demonstrate how the relative positioning of the sensor 

impacts the sensor response. In the case of relative position of the sensor with the detection 

coil, the sensor response remained the same in terms of Error % and Q factor when the 

sensor was within the detection coil’s inner loop. The response dropped considerably at 20 

mm form the center of the coil, which was right above the 40 mm diameter detection coil 

and no response was detected beyond the 20 mm distance.  
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Figure 3.7 Sensor response with change in perpendicular distance between the cylindrical 

axes of the sensor and detection coil. 

 

 
Figure 3.8 Sensor response with change in angle between cylindrical axes of the sensor 

and detection coil. 
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In the case of relative angle measured between the axes perpendicular to the plane 

of the detection coil windings and the sensor coil windings, there is relatively higher Error 

% beyond the 40º. The sensor response was detectable till 60º with Error % less than 10. 

It is assumed that in medial collateral ligament and lateral collateral ligament 

reconstruction surgery, the angle should not be more than 30º perpendicular to the medial 

epicondyle. The angle of insertion of screw with respect to the plain of insertion (lateral 

condyle) is higher in ACL reconstruction. This angle makes it possible to interrogate the 

sensor from the same position as in MCL or LCL reconstruction. 

 

3.4 Sensor Performance 

Sensor performance was characterized by using the optimized detection coil and 

sensor designs. The sensor response with respect to temperature was measured to determine 

its sensitivity and stability of the sensor. A LM35 sensor was used to independently 

measure the temperature. It is a precision integrated-circuit temperature sensor developed 

by Texas Instruments [59]. Initial bench test had shown that the temperature tests had errors 

due to excitation delay between the thermistor in the sensor and the LM35. In order to 

overcome this response delay, all the temperature readings of the sensor were normalized 

to that of 22 Ω thermistor. The data obtained between the thermistor resistance and the 

sensor’s Q factor is as shown in Figure 3.9. The temperature characteristics as shown in 

Figure 3.10 was determined by calibrating thermistor resistance to temperature for LM35 

in a static temperature test. 
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The temperature test was conducted by placing the sensor and the detection coil 

inside an enclosed chamber. The chamber was supplied with heated air from a heater to 

increase the temperature. The temperature of the air and the air flow were controlled from 

the heater. The temperature was then monitored over several cycles of heating and cooling. 

The temperature range for sensitivity test was between 30 ºC and 40 ºC, and the same for 

repeatability test was 35 ºC and 45 ºC. The resistance of the thermistor and the output of 

the LM 35 was measure using a high precision Keithley 2001 multimeter.

 

3.4.1 Sensitivity 

The results in Figure 3.9 show the linearity of thermistor resistance and Q factor 

with respect to temperature change. The Q factor vs temperature plot (Figure 3.10) was 

obtained from the calibration of thermistor resistance and the temperature reading from 

LM35. As mentioned in Section (2.2.1), over short temperature ranges the thermistor 

response was linear. This result was observed in the Q factor vs temperature plot and the 

thermistor resistance calibration data.  
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Figure 3.9 Q factor versus Thermistor resistance 

 

 
Figure 3.10 Q factor versus Temperature,  

 

The sensitivity of the sensor was 0.3218 (Q factor) per ºC, calculated from Figure 

3.10. The resolution of temperature depends on the characteristics of the detection system 
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used. Although currently used detection system is functional, it is too costly and bulky for 

commercial applications. 

 

3.4.2 Repeatability 

Repeatability test was conducted for continues heating and cooling cycles. The Q 

factor and temperature was plotted against time. The temperature was varied between 35 

ºC and 40 ºC. Figure 3.11 shows the stability of the sensor response for the repeatability 

test Repeatability test can be considered as a measure for accuracy and precision of the 

system. The accuracy of the sensor is between -0.44741 ºC and -2.07255 ºC and the 

precision is between ± 0.40160 ºC and ± 0.73252 ºC.  

 
 

Figure 3.11 Repeatability test of the sensor at 35 ºC and 40 ºC. 
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3.5 Results 

The results from the sensor performance show that sensitivity of the sensor is 

0.3218 per ºC, and by using a high precision detection system small temperature variation 

can be detected. In the study by Romano et al., [44], it was shown that a value of 0.9 ºC or 

less is sensitive enough to detect infection in the case of thermographic imaging. The 

resolution of the detection system should be at least half of this value, preferably 1/10th. 

 
Figure 3.12 Temperature measured by sensor versus true temperature measured 

by the thermistor. 

 

The temperature measurements shown in Figure 3.13 were collected when 

temperature was being increased or decreased. Since the measurements were not taken after 

the temperature was stable, an error was expected due to the small difference in heat 

transfer rates between the LC sensor and the LM35 temperature sensor. The error is 

reflected in the small offset of the linear calibration curve in the figure (the red line in 
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Figure 3.12 is supposed to cross the lower left corner of the graph, but instead it has a 0.4 

C offset in the y-axis). This error is not expected when this technology is applied clinically. 

Since in practice, a single temperature measurement will be collected by averaging multiple 

measurements over a time period, any transients in temperature will be overcome by the 

averaging. Furthermore, we do not expect the body temperature to experience a high rate 

of temperature change (in the benchtop experiment, temperature change can be as high as 

2 C/min, but the temperature at the surgery site should be fairly stable within minutes), 

thus we do not expect the error in Figure 3.12 to play a significant role when the sensor is 

implemented. 

The Relative Error (in %) (Equation (3.17)) in temperature measurement of the 

sensor was -0.0132% ± 2.3559% from Figure 3.12 using the formulae  

 

 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐸𝑟𝑟𝑜𝑟 %

=
𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 − 𝑇𝑟𝑢𝑒 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒

𝑇𝑟𝑢𝑒 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒
×100% 

(3.17) 

There are several factors that can affect the error in the temperature measurement. 

Reducing such error can help improve the accuracy and precision of the sensor. Most 

important source of error for the sensor is from the experimental errors. There are several 

factors that can produce experimental errors such as errors due to the excitation delays 

between different measurements (resistance measurement and impedance measurement) 

and errors in calibration of the thermistor resistance and temperature. In thermistor 
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resistance calibration, the sensor (LM35) [59] used has an accuracy of ±0.1 ºC. Higher 

precision integrated-circuit temperature sensor (like LMT70 precision of ±0.05 ºC) [60] 

can be used to improve the calibration. The temperature also influences the inductance and 

capacitance. Ong et al., [52] developed a planar LC temperature sensor. In the planar LC 

temperature sensor, the temperature rise causes variation in the inductance and capacitance. 

The measure of resonant frequency shift corresponded to temperature. The temperature 

dependence of resonant frequency is small (~1 KHz per ºC), but further studies need to be 

conducted to study whether this frequency shift will affect the accuracy of sensor. Self-

heating is another important phenomenon that can cause error in temperature 

measurements. The study does not quantify self-heating effect of the thermistor [46]. 

Characterizing the thermistor self-heating when powered wirelessly will also help to reduce 

the error. Designing a different detection system with 2 different coils, for excitation and 

detection, can increase the detection range and sensor response. 

 

3.6 Sensor performance in actual tissue 

All experiments were conducted in air - both the coil and sensor were not immersed 

or embedded in a medium that simulating the actual tissue. To confirm that the performance 

of the sensor is consistent when it is embedded inside body tissue, the response of the 

sensor was measured again when a medical grade ballistic gelatin (from Clear Ballistics) 

was used to separate the sensor and the coil. Marchal et al., in 1989 [61] showed that gelatin 

based phantoms can mimic the dielectric properties of tissue. According to Figure 3.13, 
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there is no considerable difference between the Q factor test done in air and with gelatin in 

between the sensor and detection coil. 

This result indicates that the sensor should perform similarly when the sensorized 

screw is implanted in the human body. It has to note that the reason that the sensor signal 

did not experience significant decrease was due to the relatively low frequency of this 

sensor, which was less than 30 MHz. At higher frequencies, such as 300 MHz and above, 

electromagnetic radiation absorption is higher in tissue. This can result in weaker sensor 

performance in range of 300 MHz – 3 GHz. 

 

Figure 3.13 Difference in sensor performance with materials. 

The measurement was done at 30 mm separation between the coil and sensor, with 

gelatin or air as the separating medium. 
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4 Conclusion 

In recent years, wireless sensor technology has advanced with the introduction 

cheap efficient fabrication technologies. RFID tags are being used widely to monitor 

different consumer goods. A similar technology called near field communication (NFC) is 

being used by in smartphones for different application including cashless payments. Such 

remote query systems enable easier and faster detection than wired connections. The aim 

of this project is to develop a wireless system, similar to the abovementioned technologies 

but passive, on an orthopedic implant with an incorporated temperature sensor to monitor 

the infections at the site of implantation. In this project, a temperature sensor was 

embedded into an interference screw. This temperature sensor can be used for detecting 

the infection at the site of screw implantation. This is based on the hypothesis that infection 

can cause local temperature rise around the implanted screw. In this project, several 

experiments were conducted to optimize the design for use in knee ligament reconstruction 

(MCL and LCL). A detection coil was also designed and optimized for this specific 

application. During the testing of coil, it was noted that the coil diameter depended on the 

depth of sensor. The diameter can be computed for Equation (2.15). The experiment was 

also able to demonstrate how coil wire gauge, number of windings and power effect the 

sensor response. 

A major advantage of this sensor is its improvement for patient comfort. This sensor 

can allow short term monitoring in the hospital, as well as and long term monitoring at 

home considering the fact that the infections can occur up to 2 years after the surgery. For 

the latter application, the detection device can be made small and portable enough to be 
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used by the patient. Unlike catheter type sensors, this system is not invasive and does not 

increase the risk of infection or implant failure. Similarly, there is no additional intrusive 

procedure introduce by the system that may cause patient discomfort. With this technology, 

the patient can still move around, and undergo rehabilitation and therapy with the sensor is 

implanted. 

The factors influencing the performance were also identified and investigated. The 

induction winding of the sensor plays an important role in the performance of the sensor. 

Higher number of windings and wider diameter wires produce better coupling between the 

sensor and the detection coil. The sensor performance was also analyzed for different 

spatial positions relative to the detection coil. 

The sensors temperature sensitivity was calculated to be around 0.322 per ºC. A 

relative error of -0.0132% ± 2.36% was calculated form the calibrated temperature 

readings. It was shown in a clinical trial by Romano et al., [44] that 0.9 ºC of differential 

temperature measurement on the skin surface shows an infection at the site of a surgery. 

The current detection system is costly and bulky for commercial application. Hence, a 

cheaper and smaller detection system needs to be designed. The resolution of such a 

detection system needs to be low enough to monitor temperatures as low as 0.05 ºC. 

The temperature sensor can produce more accurate and precise measurements by 

quantifying different source of errors. More characterization needs to be carried out to 

study the self-heating effects in the thermistor when it is being wirelessly powered. 

Temperature dependent resonant frequency shift is another phenomenon observed in the 
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sensor. Studies need to be done to characterize this frequency shift and the error introduced 

by it. 

HP Schwan et al., in 1971 [61][62] has shown that localized heating can be 

produced due to the electromagnetic radiations. This heating effect is mostly dependent on 

the frequency of electromagnetic wave applied on the tissue. Microwave frequencies (300 

MHz – 300 GHz) produce considerably higher heating in tissue than lower frequency radio 

waves (300 MHz – 3 kHz). Since the frequency range of sensor detection is 15 – 30 MHz, 

the detection coil does not produce considerably high level of heating. Prolonged exposure 

at lower frequency also may cause heating. In this experiment, heating effects are minimum 

due to the fact that only short time (~2 s) exposure of radiations are needed for measuring 

the temperature of the sensor. The data can be interrogated within a period of 5 minutes 

(with multiple signal bursts of ~2 s) for data averaging to reduce error. This helps to reduce 

the effective radiation exposure of the tissue and alleviate any heating due to radiation at 

the site of implant. It also should be noted that continuous monitoring is not required since 

a maximum of 4 measurements are only required in a day. During interrogation, although 

electrical current induced in the sensor may cause the thermistor to heat up, the heating is 

not expected to be significant due to the low power and short interrogation time. 
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