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Abstract 
 

Osteoarthritis (OA) is a debilitating disease that is becoming more 

prevalent in today’s society.  OA affects approximately 28 million adults in the 

United States alone and when present in the knee joint, usually leads to a total 

knee replacement. Numerous studies have been conducted to determine 

possible methods to halt the initiation of OA, but the structural integrity of the 

menisci has been shown have a direct effect on the progression of OA. Menisci 

are two C-shaped structures that are attached to the tibial plateau and aid in 

facilitating proper load transmission within the knee. The meniscal cross-section 

is wedge-like to fit the contour of the femoral condyles and help attenuate 

stresses on the tibial plateau. While meniscal tears are common, only the outer 

1/3 of the meniscus is vascularized and has the capacity to heal, hence tears of 

the inner 2/3rds are generally treated via meniscectomy, leading to OA.  To help 

combat this OA epidemic, an effective biomimetric meniscal replacement is 

needed. Numerous mechanical and biochemical studies have been conducted 

on the human meniscus, but very little is known about the mechanical properties 

on the nano-scale and how meniscal constituents are distributed in the meniscal 

cross-section. The regional (anterior, central and posterior) nano-mechanical 

properties of the meniscal superficial layers (both tibial and femoral contacting) 

and meniscal deep zone were investigated via nanoindentation to examine the 

regional inhomogeneity of both the lateral and medial menisci. Additionally, these 

results were compared to quantitative histological values to better formulate a 

structure-function relationship on the nano-scale. These data will prove 
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imperative for further advancements of a tissue engineered meniscal 

replacement 
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Chapter 1 - Introduction 
 

 

Meniscus Overview 
 

The knee joint is important for ambulation as it encapsulates many soft 

tissues to allow for daily functional activities. There are four major ligaments 

within the knee joint (Anterior cruciate ligament- ACL, Posterior cruciate ligament 

- PCL, Medial Collateral Ligament - MCL and Lateral Collateral Ligament - LCL) 

and each of them act to restrain abnormal motion during common dynamic 

activities. Articular cartilage covers the proximal end of the tibial plateau and the 

distal end of the femoral condyles to provide smooth joint articulation, with two 

menisci located between the tibia and femur (Figure 1.1). Menisci are semi-lunar, 

with a concave contour on the femoral contacting surface (proximal) and a 

relatively flat contour on the tibial contacting surface (distal). Menisci are 

fibrocartilaginous structures that provide fundamental load distribution and 

support within the knee joint aiding to attenuate stresses at the tibiofemoral site 

(Walker and Erkman 1975; Shrive et al. 1978; Messner and Gao 1998; Donahue 

et al. 2002). The menisci are C-shaped to wrap around the architecture of the 

femoral condyle, and this unique shape allows the menisci to transmit axial 

stresses (i.e. ‘body force’) into hoop or radial stresses.  

It has been shown that menisci may carry up to 70% of the total 

compressive load acting on the knee (Walker and Erkman 1975; Seedhom 1976; 

Ahmed and Burke 1983). While the majority of the meniscal forces are distributed 
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circumferentially, the menisci are also exposed to compressive and shear 

stresses. Menisci help to mitigate stresses on the tibial plateau to preserve the 

underlying articular cartilage, thereby promoting osteoarthritis (OA) prevention 

(Walker and Erkman 1975; Messner and Gao 1998; Roos et al. 1998; Neuman et 

al. 2008; Neuman et al. 2009). With increasing prevalence of OA, it is essential to 

collect all  relevant knowledge of the menisci, to use for meniscal replacements 

(Rattner et al. 2010).   

 

Figure 1.1: Schematic of human knee showing both lateral and medial menisci lying on 
tibial plateau. From El Dorado Physical Therapy with permission. 
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Clinical Review of Meniscus 
 

In the United States alone, meniscal tears represent the most common 

intra-articular knee injury, with annual amount of reported meniscal lesions being 

66 per 100,000 people, with greater than 90% of reports resulting in 

meniscectomies (Baker et al. 1985; Hede et al. 1990a; Hede et al. 1990b; 

Rattner et al. 2010; Salata et al. 2010). Currently, surgical meniscal repair is 

ineffective, mainly due to the lack of necessary blood flow in the meniscal body, 

where only the outer 1/3 of the meniscus is considered vascularized (Arnoczky et 

al. 1990; Messner and Gao 1998; Brindle et al. 2001; Greis et al. 2002; S. B. 

Adams, Jr. et al. 2005; Hoben and Athanasiou 2006). The majority of meniscal 

tears occur in the inner, avascular 2/3rds of the meniscus; hence, these tears do 

not heal well and are usually treated with a partial meniscectomies (Henning et 

al. 1990; Tenuta and Arciero 1994; Messner and Gao 1998). A partial 

meniscectomy surgically resects the torn tissue, which in turn reduces the 

amount of meniscal tissue, and the ability of the remaining meniscus to attenuate 

stresses. This procedure inevitably reduces meniscal function and is an avenue 

for further complications. Additionally, it has been shown that the medial posterior 

region of the meniscus has the highest frequency of tear occurrence (Helms et 

al. 1998; Choi et al. 2008; De Smet et al. 2009). Interestingly, meniscal contact 

pressure studies suggest the medial posterior region experiences the largest 

stresses, relative to the other meniscal regions (Muriuki et al. 2011). Thus, it is 

possible that meniscal properties and loading are not homogeneous throughout 

the tissue and may affect the propagation of tissue damage.  
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Tissue engineered meniscal replacement efforts have been ongoing for 

years, with numerous questions being answered, but currently no structure can 

mimic the native, functioning menisci (Marsano et al. 2006; Kon et al. 2008; 

Makris et al. 2011). The ideal meniscal construct must excel in three main 

categories to properly function: mechanics (mechanical properties, geometry, 

anisotropy, etc.), bioactivity (cell phenotype, ECM synthesis, immunogenicity, 

etc.) and logistics (supply, material processability, sterilization, etc) (Makris et al. 

2011). Currently there are four distinct routes to tissue engineering a meniscal 

replacement, with the four classes being: synthetic polymer, hydrogel, Extra 

Cellular Matrix (ECM) components, and tissue-derived materials (Greis et al. 

2002; van Tienen et al. 2009; Rattner et al. 2010; Makris et al. 2011). Each of 

these classes have their pros and cons, with the tissue-derived scaffold having 

the best bioactivity, but the worst logistics, and the synthetic and ECM scaffolds 

having the best mechanics. To optimize a tissue engineering meniscal 

replacement, the native meniscus must be analyzed to fully understand the 

mechanics and how they apply to the bioactivity. 
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Meniscus Ultra-structure 
 

Menisci contain interstitial fluid, which accounts for 70% of the total weight 

and helps to support the menisci in compression (D.C. Fithian et al. 1989; 

McDevitt and Webber 1990). Interstitial fluid consists of a water solvent that 

contains salts, amino acids, sugars and other nutrients for the soft tissues within 

the knee, with many of these interstitial fluid constituents having a positive 

charge (net fluid charge is neutral). The remainder of the tissue is made up 

primarily of collagen fibrils and proteoglycans; with an array of other 

glycoproteins and chondrocytes.  

Type I collagen accounts for approximately 90% of the meniscal collagen 

content, but Type II, III, V and VI collagen are also present and are mostly 

contained within the surface layers (Figure 1.2) (Eyre and Wu 1983; Aspden et 

al. 1985; Petersen and Tillmann 1998). Type I collagen fibril bundles have a 

diameter of approximately 10-200 µm, and are composed of 35 nm fibrils 

(Aspden et al. 1985; D.C. Fithian et al. 1989; Petersen and Tillmann 1998). Not 

all collagen fibers are circumferentially aligned within the meniscal body, as a 

tight network mesh of randomized collagen fibrils contacts the tibial plateau and 

femoral condyles, known as the meniscal superficial layer (Figure 1.2) (100-200 

µm thick) (Petersen and Tillmann 1998; X. Li et al. 2007). The superficial layer of 

articular cartilage has been shown to be significantly important for both flow-

dependent and –independent mechanisms, and meniscal superficial layers 

(proximal – tibial contacting and distal – femoral contacting) are thought to be 
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similar and crucial for the articular cartilage contacting interface (Beaupre et al. 

1986; Setton et al. 1993). Furthermore, previous meniscal superficial zone 

studies have shown the layer to be structurally homogeneous, using digital image 

correlation and unconfined compression (Lai and Levenston 2010). ‘Radial tie’ 

fibers are also contained within the meniscus and run from the inner meniscal 

apex to the outer edge (Beaupre et al. 1986; Petersen and Tillmann 1998; 

Rattner et al. 2010). Radial fiber bundles are thought to be crucial for supporting 

the meniscus during shear stresses (Rattner et al. 2010; Abraham et al. 2011). 

Collagen fibrils are predominately oriented in the direction of the largest tensile 

forces, and the multiple levels of fibril orientations help maintain the intrinsic 

structural integrity of the meniscus (Petersen and Tillmann 1998). 

 

Figure 1.2: Meniscal cross-section showing hierarchal structure of collagen fibril 
orientations. #1 is referencing the meniscal proximal and distal superficial layers, #2 is in 
reference to the meniscal lamellar layer and #3 designates the deep zone 
circumferentially aligned collagen fibrils. Arrowheads represent the location of a few 
radial collage fibrils that are interwoven in the circular fibril bundles. Arrows represent the 
loose connective tissue from the joint capsule. From  (Petersen and Tillmann 1998) with 
kind permission from Springer Science and Business Media. 
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As the meniscus is interposed between the femur and tibia, our upright 

posture imposes a compressive load on the tissue. This compressive load is 

supported by the interaction of varying meniscal constituents, namely 

proteoglycans and interstitial fluid (Walker and Erkman 1975; Shrive et al. 1978; 

McDevitt and Webber 1990; Messner and Gao 1998). Proteoglycans (PG) 

contain a core link protein with one or more individually attached 

glycosaminoglycans (GAG) (Figure 1.3). While a complete PG chain is 

suspected to be approximately 1200 nm in length, this length can vary based on 

attached individual GAGs (McNicol and Roughley 1980; Roughley et al. 1981; M. 

E. Adams and Ho 1987)  Menisci are known to produce a ‘cartilage-like’ PG in an 

attempt to counteract compressive loads, which is very similar to articular 

cartilage. However, AC has been shown to have 8 times as much PG content as 

the meniscus (McDevitt 1973; McNicol and Roughley 1980; Roughley et al. 

1981). PG resist compressive loads via at least 2 different mechanism. First, 

GAG chains are inherently negatively charged (Figure 1.3) in the physiological 

environment and produce a swelling pressure (Donnan osmotic pressure) due to 

the repulsion charges (Lu et al. 2009). Along with the negative charges aiding to 

support the menisci in compression, the negatively charged GAGs attract the 

positively charged ions within the interstitial fluid, causing GAG-rich areas to 

retain fluid (McNicol and Roughley 1980; M. E. Adams et al. 1986). Individual 

GAG chains are hypothesized to have individual functional characteristics, with 

research showing areas that are more fibrous contain greater amounts of 

dermatan sulfate and areas that are more hyalinized contain more chondroitin 
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sulphates. Meniscal horn attachments, which seem to be ligamentous in nature, 

primarily act in tension and are very fibrous; containing greater amounts of 

dermatan sulfate when compared to the meniscal body, which contains a greater 

amount of chondroitin sulfate (Table 1.1) (M. E. Adams and Muir 1981; Roughley 

et al. 1981; M. E. Adams et al. 1986; M. E. Adams and Ho 1987; McDevitt and 

Webber 1990; Roughley and White 1992; Sanchez-Adams et al. 2011).  

 

 

Figure 1.3: Schematic of individual proteoglycan molecule showing different 
glycosaminoglycan side chains (i.e. Chondroitin Sulfate) attached to hyaluronic acid. 
Adapted from (Hess and Herman 1986) 

 
Previous studies have investigated how non-collagenous protein (NCP’s) 

content is altered within the meniscus during degradation or aging (Ingman et al. 

1974; Ghosh et al. 1975; Ghosh and Taylor 1987). In the human meniscus, 

NCP’s are essentially PG’s, and the ratio of collagenous proteins (CPs) to NCPs 
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is shown to decrease  after age 70, which is believed to lead to a reduction in 

tensile strength and impair the meniscus ability to withstand normal stress 

(Ingman et al. 1974). However, others have shown an increased amount of 

hyaluronic acid retention with an increased age, which possibly indicates an 

overall increase in proteoglycan content with age (Ghosh et al. 1975; McNicol 

and Roughley 1980). Individual glycosaminoglycans attach to hyaluronic acid 

chains (Figure 1.3), therefore, an increased amount of hyaluronic acid may lead 

to an increased amount of PG content. These studies will help to understand 

possible measures that need to be taken into account when tissue engineering 

meniscal replacements. 

 

Proteoglycan content has been shown to be relatively uniform throughout 

the human meniscus (D.C. Fithian et al. 1989), yet regional variations in meniscal 

stiffness have been shown throughout the anterior, central and posterior regions 

(D. C. Fithian et al. 1990; Sweigart et al. 2004; Chia and Hull 2008). Sanchez et 

al. examined the inner, middle, and outer regions (radial direction) of bovine 

meniscus to correlate GAG presence to meniscus mechanics using unconfined-

compression and tension by testing samples with and without GAG depletion 

(Table 1.1). Inner and middle regions, where sulfated GAGs are more abundant, 

showed significant changes in viscosity and modulus of relaxation between GAG 

depleted specimens and the unaltered native meniscus, indicating the 

importance of GAG in supporting compressive loads in these regions (Sanchez-

Adams et al. 2011). Inner region tensile properties were found to increase 
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following GAG depletion (Table B.1 in Appendix B); likely suggesting that GAG 

content can have an indirect role in determining tensile properties which are 

typically driven by collagen content. Others have hypothesized that GAG cross-

linking tendencies may affect meniscal tensile properties (Nakano et al. 1986; 

Sanchez-Adams et al. 2011).  

Despite previous research investigating overall GAG content in the human 

meniscus, it is still unknown how the GAG content varies regionally within the 

meniscus. Moreover, there is no published research showing how GAG content 

is localized in a meniscal cross-section and if that localization has regional 

variability. Glycosaminoglycans have been shown to have a very important role 

in meniscus mechanics and thus, given the aptitude for tearing in certain regions 

of the meniscus, regional GAG/PG coverage would be important to characterize. 



 
 

Table 1.1 
Review of previous research on glycosaminoglycans and proteoglycan content with meniscus. Supplementary biochemical 

studies on menisci are included in Appendix B. 

Meniscal Glycosaminoglycans/Proteoglycan Properties   
  

    
 
  GAG content (μ mole hexosamine/g tissue) 

Study Analysi
s 

# of 
samples 

Meniscus 
Location   Regions 

Studied Hyaluronate Chondroitin 
Sulfate 

Dermatan 
Sulfate 

Keratan 
Sulfate Total 

(Adams, 
et al., 
1987) 

Histolog
y 4 

Medial 

  Body  1.8 ± 0.33 7.18 ± 1.79 1.62 ± 0.53 1.58 ± 0.43 12.18 

     
Horn 

Anterior 1.21 ± 0.29 2.68 ± 1.43 1.59 ± 0.52 0.53 ±.0.47 5.96 

  
 Human Posterior 1.56 ±0.63 4.71 ± 1.07 1.5 ± 0.96 1.12 ± 0.49 8.89 

  
    Periphery 1.14 ± 0.40 0.57 ± 0.48 1.11 ± 0.59 0.05 ± 0.13 2.87 

  
  

Lateral 

  Body  0.93 ± 0.25 4.38 ± 0.62 2.28 ± 0.55 1.35 ± 0.36 8.94 
  

  Horn 
Anterior 1.56 ± 0.96 2.26 ± 0.97 1.74 ± 0.79 0.34 ± 0.24 5.9 

  
  

Posterior 1.32 ± 0.48 2.16 ± 1.75 2.05 ± 0.59 0.38 ± 0.45 5.91 
  

  
  Periphery 0.79 ± 0.25 0.39 ± 0.19 0.81 ± 0.33 0.04 ± 0.08 2.03 

Study Analysi
s 

# of 
samples 

Meniscus 
Location   Regions 

Studied Water (%) 
Proteoglycan 
(dry weight 

%) 

Collagen 
(dry weight 

%)    

(D.C. 
Fithian et 
al. 1989) 

Histolog
y 4 

Lateral   
Anterior 75.02 ± 2.14 2.40 ± 0.67 93.0 ±24.1    

  
 Human Central 72.99 ± 2.40 2.23 ± 0.74 85.8 ± 13.0    

  
  Posterior 73.99 ± 2.44 2.33 ± 0.60 98.8 ± 20.2    

  
  Medial   

Anterior 72.12 ± 9.73 2.97 ± 1.34 85.8 ± 23.4    
  

  
Central 76.77 ± 2.68 2.74 ± 0.90 90.4 ± 22.1    

  
  

Posterior 74.88 ± 7.32 2.58 ± 1.10 90.4 ± 23.4    

26 
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Meniscus Mechanics 
 

Numerous mechanical tests have been conducted to observe the material 

properties of the menisci in all directions and in three distinct regions (anterior, 

central and posterior) (Table 1.2 & Figure 2.1). Tensile tests on the menisci have 

been conducted using ~1 mm wide coupon samples from meniscal body with the 

collagen fibers oriented parallel to the direction of loading (D.C. Fithian et al. 

1989; Tissakht and Ahmed 1995; Sanchez-Adams et al. 2011). Tensile testing 

along the collagen fibril direction has shown the posterior region be the stiffest, 

with an elastic moduli value of 294.1 ± 90.4 MPa (D.C. Fithian et al. 1989). 

However, when testing meniscal samples in the radial direction, the anterior 

region had the largest elastic moduli with value of 48.47 ± 25.7  MPa (Table 1.2) 

(Tissakht and Ahmed 1995). Comparing tensile testing values in the 

circumferential and radial directions, it can be seen the meniscal body is very 

anisotropic in nature, making it necessary to further characterize the meniscus 

mechanics in compression. 

To date, compressive based testing has only examined the mechanical 

properties of menisci on the micro-scale and larger, with compression values 

being multiple orders of magnitude smaller than tensile values. Compressive 

properties of menisci have previously been quantified on both the meniscal 

surface and in the deep zone (Joshi et al. 1995; Sweigart et al. 2004; X. Li et al. 

2007; Chia and Hull 2008; Lai and Levenston 2010). Compression moduli values 

are dependent on the test conditions, which may be reflected in the values. One 
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study using unconfined compression of the deep zone, resulted in aggregate 

moduli values an order of magnitude smaller (~0.02 MPa) than that of a micro-

indentation study (~0.2 MPa) (Table 1.2) (Sweigart et al. 2004; Chia and Hull 

2008). Unconfined and confined compression have been used as tools for 

gathering mechanical properties of biological materials for many years and 

usually involves cylindrical or cubic specimens with a diameter of approximately 

3 mm (Joshi et al. 1995; Chia and Hull 2008; Lai and Levenston 2010; Sanchez-

Adams et al. 2011). Comparing unconfined compression results to confined 

compression results, it can be seen that the steady-state modulus from confined 

compression is approximately an order of magnitude larger than unconfined 

(Table 1.2) (Joshi et al. 1995; Chia and Hull 2008).  With compression based 

testing, there are many factors that can influence the test results, such as the 

size of the indenter or platen, the porosity of the indenter tip, and radial 

confinement of the test sample.  

Indentation has also been used as a compression based tool to gather 

mechanical properties of biological tissue, but to date, only macro- and micro-

indentation have been utilized for meniscal tissue (Sweigart et al. 2004; X. Li et 

al. 2007; Sandmann et al. 2009).  Sweigart et al. conducted a micro-indentation 

study to analyze regionally the superficial layers of the medial meniscus. This 

study showed no mechanical difference between the proximal and distal 

surfaces, but a significant difference in the anterior region for steady-state 

modulus, when compared to the central and posterior regions (Table 1.2) 

(Sweigart et al. 2004). Although this micro-indentation test was conducted on the 
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two meniscal superficial zones, the underlying deep zone fibers were possibly 

engaged due to the indentation depth of approximately 50 μm and a macro-scale 

indenter. Additionally, this study used a flat punch, which could possibly apply an 

uneven surface pressure to meniscal samples as the surface contour is known to 

be very inconsistent (Sweigart et al. 2004). A spherical indenter tip should be 

used to ensure a consistent contact area, regardless of surface contour. 

Indentation tests are becoming more popular among biological materials, as they 

offer accurate resolution and the possibility to capture the mechanical 

characteristics of a whole specimen surface via numerous indents. However, to 

date, the human meniscus has not been indented on the nano-scale to better 

understand meniscal mechanics and how they relate to the local meniscal 

constituent inhomogeneity.  

Nanoindentation provides a physiologically relevant testing procedure to 

determine the viscoelastic material properties of the meniscus on the scale of the 

meniscal constituents and has been shown to be applicable for mechanical 

testing of hydrated cartilage-like tissues (Ebenstein et al. 2004; Ebenstein and 

Pruitt 2006). Mechanical testing on the nano-scale has been shown to detect 

changes in articular cartilage function associated with degradation, while the 

micro-scale could not detect these disparities (Stolz et al. 2004). Average 

confined/unconfined compression testing is suspected to determine how a group 

of constituents (i.e. proteoglycans and collagen) from the bulk meniscal body 

react to support compressive loading (4,000,000 μm2 contact area) (Chia and 

Hull 2008).  The results of these previous studies will be compared with those of 
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nanoindentation (~9,000 μm2 contact area), with a smaller tip size and greater 

spatial resolution, to conclude how a smaller group of meniscal constituents react 

on the local scale to similar compressive loading situations. 

Even with all the previous research conducted on meniscal surfaces and 

deep zone, results show large variation when comparing test parameters, making 

it worthwhile to characterize the meniscus on the nano-scale to see how results 

compare. With tissue engineered meniscal replacements relying on scaffolds to 

mimic the intrinsic material properties of the normal meniscus, meniscus 

mechanics must be studied at all depths and scales to understand its 

inhomogeneity and anisotropy. To date, there are no studies that investigate the 

regional material properties of the meniscal superficial regions (both proximal 

and distal) and the meniscal deep zone on the nano-scale. Previous studies have 

attempted to isolate the superficial regions on the micro-scale, but the use of a 

macro-sized flat punch and 50 μm indentation depths , may result in inaccurate 

results of the meniscal superficial layer (Sweigart et al. 2004). The articular 

cartilage superficial layer, comparable to that of the meniscus, has been shown 

to be very important to the structure and plays a important role for the 

viscoelastic mechanism of cartilage (Setton et al. 1993), Data from the nano-

scale can also be used to compare healthy and degenerative menisci as it has 

been shown that mechanical changes due to OA can be detected on the nano-

scale, but not the micro-scale (Stolz et al. 2004; Stolz et al. 2009).



 

 
 

Table 1.2 
 Review of previous mechanical testing conducted on the meniscus, concentration on studies that examined regional 

inhomogeneity. Supplementary mechanical studies on menisci are included in Appendix B. 

Compression/Indentation  
       Reported Material Property 

Study Type of test # of 
samples 

Meniscus 
Location 

Surfaces 
Studied 

Regions 
Studied 

Aggregate 
Modulus 

±SD (MPa) 

Permeability 
±SD (10⁻¹⁵ 
m⁴ N⁻¹ s⁻¹) 

Shear 
Modulus 

±SD (MPa) 
  

Sweigart 
et al. Indentation 9 

Medial 

Proximal 

Anterior 0.15 ± 
0.03 1.84 ± 0.64 0.08 ± 0.01   

 *  Significantly different than 
anterior region for 
respective material 
property(p<0.05) 

 

Central 0.10 ± 
0.03* 1.54 ± 0.71 0.05 ± 0.01*   

Posterior 0.11 ± 
0.02* 2.74 ± 2.49 0.05 ± 0.01*   

Distal 

Anterior 0.16 ± 
0.05 1.71 ± 0.48 0.08 ± 0.02   

Central 0.11 ± 
0.04* 1.54 ± 0.49 0.06 ± 0.02*   

Posterior 0.09 ± 
0.03* 1.32 ± 0.61 0.05 ± 0.01*   

                    

Study Type of test # of 
samples 

Meniscus 
Location 

Surfaces 
Studied 

Regions 
Studied 

Young’s 
Modulus 

(MPa) 

Yield 
Strength 

(MPa) 
Indentation 
Depth (μm)   

Li et al. Indentation NA NA NA NA 1.30 0.08 55.00   
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Study Type of test # of 
samples 

Meniscus 
Location 

Surfaces 
Studied 

Regions 
Studied 

Aggregate 
Modulus 

±SD (MPa) 

Permeability 
±SD (10⁻¹⁵ 
m⁴ N⁻¹ s⁻¹)    

Joshi et 
al. 

Confined 
Compression 5 Medial Distal Posterior 0.22 ± 

0.07 2.00 ± 0.04    

                    

Study Type of test # of 
samples 

Meniscus 
Location 

Regions 
Studied % Strain Treatment 

Coefficient 
of Viscosity 
(μ) (MPa*s) 

Modulus of 
Relaxation 
(Er) (MPa) 

Instantaneous(El) 
(MPa) 

Sanchez-
Adams et 

al 

Unconfined 
Compression 

Bovine, 
n=? 

Medial 

Outer 

10% 
Control 0.20 0.0056 0.13 

    CABC 0.10 # 0.0055 0.13 

 
 CABC = GAG depletion 

Control = normal meniscus 
 

       # Significantly difference than 
Control for representative % 
strain and region  (p<0.05) 

  
  
  

20% 
Control 0.60 0.0059 0.39 

CABC 0.23 # 0.0054 0.40 

Middle 

10% 
Control 0.60 0.0140 0.45 

CABC 0.25 # 0.0095 # 0.35 

20% 
Control 2.20 0.0210 2.20 

CABC 0.90 # 0.0130 # 1.65 

Inner 

10% 
Control 0.20 0.010 1.12 

CABC 0.13 # 0.0060 # 0.08 

    20% Control 0.60 0.0080 0.31 

    CABC 0.23 # 0.0038 # 0.15 
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Table 1.2, continued 
 
 



 

 
 

    
 
 
               

Study Type of test # of 
samples 

Meniscus 
Location 

Surfaces 
Studied 

Regions 
Studied 

Equilibrium Compressive Moduli ±SD 
(MPa) 

Chia et 
al. 

Unconfined 
Compression 10  3% Strain 6% Strain 9% 

Strain 12% Strain 

  
  
  

       ^ Significantly different  than the 
posterior region (p<0.05) 

   
  

Medial Deep Zone 

Anterior 0.037 ± 
0.034 0.052 ± 0.047 0.073 ± 

0.078 0.14 ± 0.17 

Central  0.023 ± 
0.015 0.030 ± 0.023 0.046 ± 

0.029 0.080 ± 0.078 

Posterior 0.025 ± 
0.047 0.012 ± 0.0058 0.037 ± 

0.052 0.033 ± 0.046 

  Physiological Loading Compressive 
Moduli ±SD (kPa) 

Anterior 0.14± 0.22 0.28 ± 0.44 0.57 ± 
0.88 1.13 ± 1.64^ 

Central  0.064 ± 
0.056 0.13 ± 0.14 0.30 ± 

0.37 0.67 ± 0.80 

    Posterior 0.041 ± 
0.061 0.084 ± 0.16 0.184 ± 

0.38 0.36 ± 0.74 
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Table 1.2, continued 
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Research Aims and Hypotheses 
 
 
Hypothesis 1: It is hypothesized that the proximal and distal meniscal surfaces 
will have no regional differences as previous structural studies suggest a very 
homogenous superficial layer 
 
Aim 1: Hypothesis 1 will be accomplished via nanoindentation of the three 
distinct regions (anterior, central and posterior) of the lateral and medial menisci, 
on both the proximal and distal surfaces  
 
Hypothesis 2: It is hypothesized that the posterior region of deep zone menisci 
will have a smaller elastic modulus when compared to the anterior and central 
regions due to the increased tear frequency and contact pressures in the 
posterior region.  
 
Aim 2: Hypothesis 2 will be accomplished by nano-indenting the three distinct 
regions of human menisci in the deep zone of the menisci and comparing the 
results to GAG presence 
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Chapter 2 - Nanoindentation of Human Meniscal Surfaces1 
 

Abstract 

 
Menisci are crescent shaped fibrocartilaginous structures which support 

load distribution of the knee. The menisci are specifically designed to fit the 

contour of the femoral condyles, aiding to disperse the stresses on the tibial 

plateau and in turn safeguarding the underlying articular cartilage. The 

importance of the meniscal superficial layer has not been fully revealed and it is 

suspected that this layer plays a pivotal role for meniscal function. In this study, 

both femoral (proximal) and tibial (distal) contacting meniscal surfaces were 

mechanically examined on the nano-level among three distinct regions (anterior, 

central and posterior) of the lateral and medial menisci. Nanoindentation testing 

showed no significant differences among regions, surfaces or anatomical 

locations, possibly elucidating the homogeneity of the meniscal superficial zone 

structure. Nano-mechanical modulus values were approximately an order of 

magnitude greater than micro-scale testing derived modulus values. These 

findings validate the structural homogeneity of the meniscal superficial zone, 

showing that material properties are statistically similar regardless of meniscal 

surface and region. Understanding the mechanical behavior of meniscal surfaces 

is imperative to properly design an effective meniscal replacement. 

                                                 
1 The material contained in this chapter has been submitted for publication to the Journal of 
Biomechanics 
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Introduction 

 
Human knee menisci are semi-lunar shaped fibrocartilaginous structures 

that provide support, load distribution, and lubrication within the joint, ultimately 

aiding to attenuate stresses at the tibiofemoral site (Walker and Erkman 1975; 

Shrive et al. 1978; Messner and Gao 1998).  The structural integrity of the 

menisci has been shown to be instrumental in conserving the underlying articular 

cartilage (AC) thereby slowing the progression of osteoarthritis (OA) (Andriacchi 

et al. 2004). Menisci transmit approximately 70% of the load through the knee by 

supporting hoop/circumferential stresses as well as axial stresses (Walker and 

Erkman 1975; Seedhom 1976; Ahmed and Burke 1983).  

Meniscal composition is inhomogeneous and biphasic, consisting of 

varying types of collagen fibrils and proteoglycans within the solid matrix of the 

meniscal body (Roughley et al. 1981; McDevitt and Webber 1990; Petersen and 

Tillmann 1998), and 70 % interstitial fluid (D.C. Fithian et al. 1989; Brindle et al. 

2001). Type I collagen fibrils are predominately circumferentially oriented within 

the menisci, however additional varying collagen fiber orientation layers help 

maintain the intrinsic structure of the meniscus (Aspden et al. 1985; McDevitt and 

Webber 1990; Petersen and Tillmann 1998). The superficial layer (tibial and 

femoral AC contacting surfaces), of the meniscus is approximately 100-200 μm 

thick (Ling and Levenston 2012) and is composed of a tight meshwork of 

randomly oriented collagen fibrils, which are 10 μm or greater in diameter (Figure 

2.1). This network of taut, ‘mat-like’ collagen fibrils is believed to be similar to that 
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of the AC tangential fiber layer (Aspden et al. 1985; Setton et al. 1993; Petersen 

and Tillmann 1998). It has previously been shown that both flow-dependent and -

independent viscoelastic mechanisms rely on the strength of the cartilage 

superficial zone (Setton et al. 1993). Moreover, recent investigations of the 

meniscal superficial layer suggest a stiffer superficial layer in meniscus 

compared to cartilage, with meniscal samples showing constant strains through 

the superficial layer to the deep layer (Lai and Levenston 2010). Others have 

suggested that the contacting meniscal superficial layer may serve a major role 

to uphold meniscal integrity (Walker and Erkman 1975; Newman et al. 1989; 

Andriacchi et al. 2004). 
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Figure 2.1: Schematic of human menisci showing where three regions are located and 
how indentation direction was normal to both the proximal and distal meniscal surface. 
Relative meniscal constituents compared in indenter tip size and depth are shown, all to 
scale with cross-section of meniscus rotated to show normal indentation direction. 
Dashed lines represent specimen cutting. Testing setup with meniscal sample in acrylic 
well puck, filled with saline solution, shows indentation direction normal to the specimen 
surface. 

 
 
 

Previous mechanical testing on human menisci has been performed on the 

macro-level, either using fiber aligned coupon samples for tension tests or 

meniscal disc samples for confined/unconfined compression (Whipple et al. 

1985; D. C. Fithian et al. 1990; Tissakht and Ahmed 1995; Chia and Hull 2008). It 

is unknown if this macro-scale testing can isolate the superficial zone behavior to 

determine a structure-function relationship at a local level. Nanoindentation 
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provides a physiologically relevant testing procedure to determine the 

viscoelastic material properties of the meniscus on the scale of the meniscal 

constituents and has been shown to be applicable for mechanical testing of 

cartilage-like hydrated tissues (Ebenstein et al. 2004; Ebenstein and Pruitt 2006).  

Studying cartilage material properties on the nanometer scale, rather than the 

micrometer scale has been shown to be effective in detecting mechanical 

variations due to collagen fiber orientations and proteoglycan changes (Stolz et 

al. 2004).  

To date, human menisci have not been characterized on the nano-scale. 

Sweigart et al. examined regional (anterior, central and posterior) differences in 

the proximal and distal medial meniscal surfaces at the micro-scale (Sweigart et 

al. 2004). They reported no differences in proximal versus distal layer, but 

significant differences did exist in material properties among regions (Sweigart et 

al. 2004). Given the importance of the superficial zone and previous 

investigations on the structure of this zone in the human meniscus, the objective 

of this study was to quantify and compare the viscoelastic nano-mechanical 

properties of human menisci on both the proximal (femoral contacting) and distal 

(tibial contacting) surface. While it has been shown that there are significant 

regional differences when testing meniscal surfaces on the micro-level, it is 

hypothesized that the proximal and distal meniscal surfaces will have no regional 

differences as previous structural studies suggest a homogenous superficial 

layer (Petersen and Tillmann 1998; Lai and Levenston 2010; Ling and Levenston 

2012). To isolate the superficial zone nanoindentation will be used on both the 



 

40 
 

proximal and distal surfaces of the anterior, central and posterior regions of 

lateral and medial human menisci.  Nanoindentation will provide an improved 

understanding of the mechanical behavior at the nano-scale and thus given 

additional insight into the behavior and role of this superficial zone.  

 

Materials and Methods 

 

Specimen Preparation: 
 

Eight healthy cadaveric knees (7 males, 1 female, ages 50-77, avg. age 

59) (NDRI, Philadelphia, PA) were procured (Office of Research Integrity and 

Compliance approval #M0145), wrapped in 0.9% saline solution soaked gauze 

and frozen at -20°C until the time of dissection. Both lateral and medial menisci 

were refrigeration thawed and then cut at the meniscal attachment site, and 

trisected into anterior, central and posterior regions for regional comparisons 

(Figure 2.1) (Whipple et al. 1985; D. C. Fithian et al. 1990; Tissakht and Ahmed 

1995; Sweigart et al. 2004; Chia and Hull 2008). Once each meniscus had been 

trisected, 2 mm wide sections were cut through the cross-section from each 

region; one sample for proximal mechanical testing and one for distal mechanical 

testing. Samples were trimmed so that they could be placed under the 

nanoindenter tip such that indentation was perpendicular to the surface (Figure 

2.1). Nitrocellulose was applied to the face opposite of indentation followed by 

double-stick tape to facilitate adhesion between the sample and the well puck. 
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Saline solution was filled into the well to keep the specimen fully hydrated 

throughout the test.  

 

Testing Procedure: 
 

Nanoindentation was performed at room temperature on both proximal 

and distal meniscal surfaces using a Nano Indenter (Agilent Technologies, Santa 

Clara, CA) with a 300μm diameter spherical ruby tip (Agilent Nano 

Measurements, Indianapolis, IN). Fifteen indents were performed on each 

meniscal sample, spatially randomizing indent locations, normal to the surface 

(Figure 2.1). Indents were spaced at least 250 μm apart to avoid effects from 

subsequent indents (Ebenstein et al. 2004). Creep nanoindentation was 

performed using a trapezoidal loading sequence with a 5 second rise time and 1 

mN hold for 70 seconds. These testing parameters were chosen based on 

preliminary testing results and to limit surface penetration to approximately 10 

μm.  

Resultant displacement-time data (Figure 2.2), was curve-fit, using Matlab 

Optimization toolbox (Mathworks, Natick, MA), to determine both instantaneous 

and steady-state material properties. Shear and elastic modulus were calculated 

for all three regions, on both proximal and distal meniscal surfaces using a 

viscoelastic model developed by Oyen et al. (Oyen 2005; Oyen and Cook 2009). 

This analysis was based on the assumption that Poisson’s ratio of the human 

meniscus is 0.38 (Hu et al. 2001).  Furthermore, a ‘time-dependency’ material 

property was calculated by taking the ratio between steady-state and 
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instantaneous elastic modulus. Material property values from each indent were 

calculated and then averaged to gain an overall average material property value 

from each sample to encompass the meniscal surface. 

 

Statistical Analysis: 
 

A three-way Analysis of Variance (ANOVA) was performed to determine 

differences in material properties (shear and elastic moduli) among meniscal 

surface (proximal/distal), anatomical location (medial/lateral) and meniscal region 

(anterior/central/posterior), for both instantaneous and steady-state moduli. A 

post-hoc statistical power analysis was conducted. 

 

Results 

 
Nano-indents produced a displacement-time curve with a linear region 

during ramp loading followed by a horizontally asymptotic curve during the held 

load (Figure 2.2), indicative of steady-state behavior. The average indenter 

contact radius was 53.61 ± 3.53 μm, as the displacement into the meniscal 

surface was approximately 10µm for each indent (Figure 2.1).  
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Figure 2.2: Representative displacement-time creep curve from nanoindentation on 
meniscal surfaces. Dots represent data points, solid line is the curve fit for the 
viscoelastic model used in this analysis. 
 

All meniscal samples, regardless of contacting surface, region or anatomical 

location, exhibited statistically similar behavioral mechanics, when nano-indented 

(Figure 3.3). Variation among individual indents was less than 5% of the overall 

average material property value for each specimen, indicating the homogeneity 

among individual indents on each meniscal sample. The statistical power 

analysis revealed a power of 95%, given an expected difference from the 

calculated material property value was 25%. The anterior and posterior regions 

showed a decrease in steady-state elastic modulus on the distal surface when 

moving from lateral to medial and an increase when between the later on the 

proximal surface. Additionally, instantaneous shear and elastic moduli do not 

demonstrate any noticeable trends and all surfaces and regions appear to be 

very comparable (Figure 2.3 A & B). 
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Figure 2.3: A. Average steady-state elastic modulus- B. Average instantaneous 
elastic modulus- C. Average Time Dependency- values from nanoindentation 
conducted on both proximal and distal meniscal surfaces. Error bars represent 
standard error. 
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When grouping meniscal surfaces (proximal and distal) together, it can be 

seen that the elastic moduli (steady-state and instantaneous) was greater in the 

medial meniscus for both anterior (medial steady-state = 1.63 ± 0.09 & medial 

instantaneous = 4.12 ± 0.42 MPa vs. lateral steady-state = 1.52 ± 0.12 & lateral 

instantaneous = 3.59 ± 0.43 MPa) and central (medial steady-state = 1.67 ± 0.13 

& medial instantaneous = 3.70 ± 0.33 MPa vs. lateral steady-state = 1.62 ± 0.09 

& lateral instantaneous = 3.43 ± 0.20 MPa) regions, but the opposite trend is true 

for the posterior region (medial steady-state = 1.47 ± 0.07 & medial 

instantaneous = 3.17 ± 0.18 MPa vs. lateral steady-state = 1.69 ± 0.12 & lateral 

instantaneous = 4.06 ± 0.37 MPa), whereas the lateral meniscus displays a 

larger elastic moduli than the medial. This same trend occurs when evaluating 

the time dependency values (meniscal surfaces averaged). Despite interesting 

trends, the time dependency values displayed no statistically significant 

differences between regions, anatomical locations or meniscal surface (Figure 

2.3C).  

When only examining meniscal regions, the anterior (3.86 ± 0.30 MPa) and 

central (3.56 ± 0.19 MPa) region displayed the largest and smallest 

instantaneous elastic modulus, respectively. The opposite was true for the 

steady-state elastic modulus, as the central region (1.65 ± 0.07 MPa) had the 

largest value and the anterior region (1.58 ± 0.08 MPa) was the smallest.  
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The three-way blocked ANOVA revealed no significant differences for steady-

state and instantaneous material property values between meniscal regions, 

surface or anatomical locations. 

 

Discussion 

 
While other studies have investigated the compressive properties of 

mammalian menisci (Joshi et al. 1995; Sweigart et al. 2004; X. Li et al. 2007; 

Chia and Hull 2008), this is first study to nanoindent both human meniscal 

surfaces and regionally analyze the three distinct regions (anterior, central and 

posterior). Literature has shown that freezing and thawing for 1 cycle had no 

impact on the biochemical or material property values of meniscus or cartilage 

(X. Li et al. 2007; Lewis et al. 2008; Szarko et al. 2010). Nanoindentation was 

used rather than other compression-based methods (micro-indentation, confined 

compression, etc.) for both the increased spatial resolution and the aspiration of 

illustrating single meniscal surface material properties rather than gathering 

material properties from bulk constituents. A spherical nanoindentation tip was 

used to ensure consistent contact area (Oyen 2005) given the uneven meniscal 

surface contour.  Also, nanoindentation was utilized to isolate the meniscal 

superficial layer by only penetrating approximately 10 microns into the specimen 

surface, whereas the superficial layer is suspected to be 100-200 microns thick 

(Petersen and Tillmann 1998; Ling and Levenston 2012).. 
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The results from this study indicate there are no significant nano-

mechanical differences among meniscal regions, surfaces or anatomical 

locations. It is very important to note that the proximal and distal meniscal 

surfaces both behave similarly, as the fluid interaction with the tibial and femoral 

articular cartilage is crucial for decreasing friction and allowing for proper joint 

articulation. The material property similarities may be expected, given the 

collagen fiber orientation at the meniscal superficial layer is a random fibril mesh, 

but with fibrils coplanar to the surface (Aspden et al. 1985; Petersen and 

Tillmann 1998). Additionally, meniscal composition within the superficial layer, 

other than a collagen fiber network, is not well characterized, and it is known that 

other meniscal constituents, i.e. proteoglycans, have a direct correlation with 

mechanical strength and viscosity in compression (Sanchez-Adams et al. 2011). 

Further investigation of meniscal composition in the superficial zone may help 

form a better understanding of the structure-function relationship at the 

superficial zone. 

 

Li et al. conducted a very similar indentation study on mini-pig menisci, 

using a 500 μm diameter conospherical tip and using a peak indentation load of 

10 mN. Although anatomical location, region or surface was not specified, 

Young’s modulus values were reported to be approximately 1.3 MPa, the same 

order of magnitude of results shown  in the current study (X. Li et al. 2007). Other 

studies have also analyzed the human meniscus to gather regional mechanical 

properties (compressive and tensile); however, these tests were completed on a 



 

48 
 

micro-scale or greater (Table 2.1) (Whipple et al. 1985; D.C. Fithian et al. 1989; 

Joshi et al. 1995; Tissakht and Ahmed 1995; Sweigart et al. 2004; Chia and Hull 

2008). Evaluating the meniscus on a larger scale (micro-indentation, confined 

compression, etc.), may result in mechanical properties that represent the bulk 

constituents of the menisci, rather than using small-scale investigations (nano-

indenting) to isolate specific features.  

Other compression based studies, focusing on the medial meniscus and 

also conducted at room temperature, have shown the meniscus to be weakest in 

the posterior region (Table 2.1), possibly elucidating why the majority of meniscal 

tears occur in the posterior meniscus (Singson et al. 1991; Helms et al. 1998; 

Brody et al. 2006; Choi et al. 2008; Ahn et al. 2009; De Smet et al. 2009; 

Lykissas et al. 2010).  These macro-scale test results are approximately an order 

of magnitude smaller than what is seen here from nanoindentation. This 

discrepancy is possibly due to engagement of specific meniscal constituents, 

rather than bulk material, or differences in test modalities. By limiting surface 

penetration to approximately 10 μm, only the tightly woven superficial collagen is 

engaged rather than spatially averaging between the structurally unique 

superficial and deep zones. The ramifications of this testing indicate that the 

surface layer is specifically adapted at supporting compressive loading and 

perhaps pivotal for allowing fluid movement while maintaining basic function. 

Also, cartilage superficial zone has been shown to be crucial for fluid flow (Setton 

et al. 1993) and each different test may influence the varying fluid flow patterns of 

the meniscus. Nanoindentation, with a rigid tip, may cause the solid and fluid 
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phases of the meniscal surface to behave differently than when compressed with 

a 1-2 mm porous platen (Joshi et al. 1995; Sweigart et al. 2004), as contact 

areas are altered, and fluid movement through meniscal canals differ for fluid 

evacuation (Bird and Sweet 1988).   

Table 2.1 
Material property comparison among varying compression based mechanical tests 

on the meniscus 

    Steady-State Modulus ±SD (MPa) 

Meniscus 
Location 

Regions 
Studied 

Nanoindentation 
(current study) 

Micro-
indentation 
(Sweigart 

et al. 2004)  

Unconfined 
Compression  

(Chia and 
Hull 2008) 

Confined 
Compression 
(Joshi et al. 

1995) 

Medial 

Anterior 1.63 ±0.10 0.16 ± 0.04 0.14 ± 0.17 NA 

Central 1.67 ± 0.13 0.11 ± 0.04 0.080 ± 0.078 NA 

Posterior 1.47 ± 0.07 0.10 ± 0.03 0.033 ± 0.046 0.22 ± 0.07 

 

 When comparing varying compression based testing methods for articular 

cartilage, it can be seen that the same relationship for macro- and nano-scale 

testing applies for the meniscus as for articular cartilage (Table 2.2). Unconfined 

and confined compression based methods, both utilizing larger platens for 

compression, exhibit nearly order of magnitude smaller values than 

nanoindentation type tests. This further affirms the close comparison between 

articular cartilage and meniscus fibrocartilage. 
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Table 2.2 
Material property comparison among varying compression based mechanical 

tests on articular cartilage 

Type of Study Study 
Steady-State 
Modulus ±SD 

(MPa) 

Nanoindentation  
(Franke et al. 2007) 2.25 ± 0.25 

(Thambyah et al. 2006) 3.64 ± 1.23 
(X. Li et al. 2007) 2.80 ± 0.45 

Unconfined 
Compression 

(DiSilvestro et al. 2001a; 
DiSilvestro et al. 2001b) 0.55 ± 0.11 

Confined Compression 
(C. Y. Huang et al. 2005) 0.15 ± 0.05 

(Setton et al. 1993) 0.54 ±  0.25 
 

These material properties on the nano-scale coupled with other larger 

scale tensile, compressive and shear properties of the meniscus (D.C. Fithian et 

al. 1989; Sweigart et al. 2004; Chia and Hull 2008) will help accurately model the 

meniscus for the ultimate goal of creating an effective meniscal replacement that 

can mimic the native human menisci (Donahue et al. 2002; Maes and Haut 

Donahue 2006; Hauch et al. 2009; Abraham et al. 2011). As this is the first study 

to regionally isolate and compare meniscal surfaces, it is essential to chronicle 

the fact that the meniscal surface layer has been shown to be structurally 

homogenous, and now this has been validated by showing the material 

properties of the meniscal superficial zone do not vary among regions or 

contacting surface. It has been shown that there is an order of magnitude 

difference between meniscal surface material property values when examined on 

the nano-scale compared to the micro-scale. This discrepancy may prove vital 

when attempting to recreate human meniscal replacements. Additionally, these 
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data are imperative to thoroughly understand regional menisci interaction with 

articular cartilage contacting surfaces in relation to the meniscus mechanics and 

constituents on the nano-scale.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

52 
 

Chapter 3 – Regional Comparisons of Nano-mechanical and 
Histological Human Deep Zone Meniscus2  
 

Abstract 
 

Menisci are two semi-lunar shaped fibrocartilaginous structures that 

provide fundamental load distribution and support within the knee joint aiding to 

attenuate stresses at the tibiofemoral site. The menisci are C-shaped to wrap 

around the contour of the femoral condyle, and this unique shape allows the 

menisci to transmit axial stresses (i.e. ‘body force’) into hoop or radial stresses. 

The menisci are composed of an aggregate of glycosaminoglycans (GAGs) 

supporting bulk compression and Type I collagen fibrils upholding tension. It has 

been shown that the meniscal superficial layers are functionally homogeneous 

throughout the three distinct regions (anterior, central and posterior) on the nano-

scale, but the deep zone of the meniscus has yet to be mechanically 

characterized on the nano-scale. Furthermore, the distribution and intensity of 

GAG throughout the meniscal cross-section has not been examined. This study 

investigated the nano-mechanical properties, via nanoindentation, of the human 

deep zone meniscus among three regions of the lateral and medial menisci and 

compared these results to quantitative histological results to develop a structure-

function relationship.  Nano-mechanical results on the deep zone of the 

meniscus showed the medial posterior region to be significantly different than the 

central region for both instantaneous elastic modulus and time dependency; with 

all steady-state elastic modulus values showing no statistical differences. 
                                                 
2 The material contained in this chapter will be submitted for publication in a biomechanical 
journal 
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Histological results revealed that the GAG content is not present until at least 

~600 μm from the meniscal surface and that the lateral anterior region had a 

significantly greater GAG intensity fraction than that of the posterior region. 

Understanding the role and distribution of GAG within the human meniscus and 

how they affect the material properties of the meniscus will aid in the design of 

tissue engineered meniscal replacements. 

 
 

Introduction 
 

Human menisci are two crescent shaped fibrocartilaginous structures that 

serve numerous functions within the knee; aiding in load transmission and 

providing a frictionless joint congruity between the tibia and femur (Walker and 

Erkman 1975; Shrive et al. 1978; Messner and Gao 1998).  The menisci are 

specifically designed to fit around the architecture of the femoral condyles and 

disperse stresses on the tibial plateau, thereby safeguarding the underlying 

articular cartilage and preventing Osteoarthritis (OA) (Roos et al. 1998; 

Andriacchi et al. 2004; Neuman et al. 2008; Neuman et al. 2009). Menisci diffuse 

approximately 70% of the load in the knee as hoop/circumferential stresses, but 

compressive and shear forces are also present due to the dynamic nature of the 

knee joint (Walker and Erkman 1975; Seedhom 1976; Ahmed and Burke 1983). 

To uphold meniscal structural integrity under this complex loading environment, 

meniscal composition is inhomogeneous, with multiple solid constituents and 

interstitial fluid (D.C. Fithian et al. 1989; McDevitt and Webber 1990). As the 

incidence of OA continues to rise in today’s society, and clinical treatment for 



 

54 
 

meniscal injuries is only effective in the vascular zone, a better understanding of 

meniscal structure-function will likely aid development of tissue engineered 

meniscal replacements (Rattner et al. 2010).  

Type I collagen fibers have been shown to be predominately circumferentially 

aligned within the deep zone of the menisci (> 200 μm deep from superficial 

layers) and bolster meniscal strength in tension.  Proteoglycans and interstitial 

fluid provide a supportive matrix to supplement the menisci under compressive 

loads (Roughley et al. 1981; McDevitt and Webber 1990; Petersen and Tillmann 

1998; Sanchez-Adams et al. 2011). Meniscal structure and function has been 

shown to be both depth and circumferentially inhomogeneous, as there are 

multiple hierarchal levels of collagen fibril orientations within the menisci (Aspden 

et al. 1985; D.C. Fithian et al. 1989; Petersen and Tillmann 1998; Sweigart et al. 

2004; Chia and Hull 2008). However, less is known about the depth dependent 

distribution of proteoglycans within human menisci, and to date only one study 

has documented regional sulfated GAG content, showing no regional differences 

(D.C. Fithian et al. 1989). Water-affine sulfated glycosaminoglycans (GAGs), a 

proteoglycan side-chain, contribute to supporting the menisci in compression due 

to their inherent negative charges (McNicol and Roughley 1980; Roughley et al. 

1981; Lu et al. 2009). Recently, it has been shown that the depletion of sulfated 

GAG has a significant effect on the biphasic mechanical behavior of the bovine 

meniscus, further clarifying the structure-function relationship of GAG in the 

meniscus (Sanchez-Adams et al. 2011).  
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Mechanical testing has investigated the regional inhomogeneity of the human 

menisci and significant differences have been identified among the three distinct 

regions of the lateral and medial menisci when tested in tension, compression 

and shear (Figure 3.1) (D.C. Fithian et al. 1989; Tissakht and Ahmed 1995; 

Sweigart et al. 2004; Chia and Hull 2008; Abraham et al. 2011). The deep zone 

of human medial meniscus has been shown to vary significantly between 

regions, with the posterior region having a significantly smaller compressive 

modulus (at physiological loading rate) than the anterior region (Chia and Hull 

2008). The meniscal surface has previously been studied on the nano- and 

micro-scale, both utilizing a creep-indentation test (Sweigart et al. 2004; Moyer et 

al. 2012). The nanoindentation study, which had an indentation depth of 

approximately 10 µm, yielded no significant differences among regions or 

meniscal surfaces, while the micro-indentation study, with an indentation depth of 

50 μm, resulted in anterior region being statistically greater than the central and 

posterior regions for the medial meniscus when comparing aggregate moduli. 

The steady-state elastic modulus from nanoindentation (Moyer et al. 2012) was 

also an order of magnitude greater than that of the microindentation study 

(Sweigart et al. 2004). As the nanoindentation study isolated the superficial layer 

of the meniscus, the micro-indentation study may have engaged the superficial 

and deep zone conjunction within the meniscus; therefore, it is necessary to 

isolate the deep zone on the nano-scale to investigate regional meniscal 

properties. 
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To date, previous studies on the mechanical properties of meniscal tissue 

have been conducted on the macro- or micro-scale (D.C. Fithian et al. 1989; 

Joshi et al. 1995; Tissakht and Ahmed 1995; Sweigart et al. 2004; Chia and Hull 

2008; Sanchez-Adams et al. 2011), whereas nano-scale material properties of 

articular cartilage have been shown to be effective in detecting stiffness 

disparities due to collagen fiber orientations and proteoglycan changes (Stolz et 

al. 2004). Nanoindentation can be utilized to better understand meniscus 

mechanics and how they relate meniscal constituent inhomogeneity on a relevant 

scale. This indentation technique has been shown to be successful at capturing 

local material properties of hydrated biological materials and the size-scale is on 

the level of meniscal constituents (Ebenstein et al. 2004; Ebenstein and Pruitt 

2006). 

 

Figure 3.1: Schematic of human menisci showing where three regions are located 
and what testing slices resembled.  Enlarged meniscal cross-section is shown. Two 
2-3 mm slices were taken from each region for mechanical testing and histology 
analysis. Both analyses were conducted in the middle meniscus (inner, middle and 
outer meniscus labeled) section and nanoindentation was normal to the deep zone 
meniscus cut surface.  Dashed lines represent specimen cutting.  
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A complete proteoglycan chain is suspected to be approximately 1.2 µm in 

length, while most Type I collagen fibril bundles have a diameter > 10 µm, and 

are composed of 35 nm diameter fibrils (Aspden et al. 1985; Carney and Muir 

1988; McDevitt and Webber 1990; Petersen and Tillmann 1998). Therefore, the 

objective of this study was to quantify and compare the viscoelastic nano-

mechanical properties of the human meniscus in the deep zone and compare the 

mechanical results to quantitative histological GAG measures to formulate an 

accurate structure-function relationship at the nano-scale, where the contact area 

of indentation will be approximately 9000 µm2. To accomplish this, 

nanoindentation of the anterior, central and posterior regions of the lateral and 

medial human meniscus will be completed. Nanoindentation will provide an 

improved understanding of the mechanical behavior at the nano-scale and will 

lead to advancements in tissue engineering of meniscal replacements.  
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Materials and Methods 
 

Specimen preparation: 
 

Eight human male non-arthritic knees (ages 50-65, avg. age 58) (NDRI, 

Philadelphia, PA), were procured (Office of Research Integrity and Compliance 

approval #M0145), the lateral and medial menisci were harvested, placed in a 

0.9% saline solution and frozen at -20°C until the time of testing. It has previously 

been proven that meniscus and cartilage do not have significantly different 

material properties following a freeze-thaw cycle, and histology corroborated this 

by showing biochemical content did not significantly change following freeze-

thaw (X. Li et al. 2007; Lewis et al. 2008; Szarko et al. 2010). Each meniscus 

was refrigeration thawed and then trisected into anterior, central and posterior 

sections for regional material testing and two adjacent 2-3 mm wide cross-

sectional slices were cut from each region, one for mechanical testing and the 

other for a histological analysis (Figure 3.1). For the histological samples, India 

ink was applied to the proximal surface for designation during imaging.  Two 

rectangular sections were then cut out of the meniscal cross-sections, one from 

the proximal surface (femoral contacting) and another from the distal surface 

(tibial contacting) to expose the deep zone of the meniscus, each 2 mm deep 

from the meniscal surface (Figure 3.1). Samples were trimmed on non-testing 

face, to ensure nanoindentation was conducted normal to the meniscal deep 

zone. Nitrocellulose was applied to the face opposite of indentation (either 

proximal or distal meniscal superficial layer) followed by double-stick tape to 

facilitate adhesion between the sample and the well puck (Figure 3.1). Saline 
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solution was filled in around the well to keep the specimen fully hydrated 

throughout the test. 

Meniscal cross-sections from each region (for the histological analysis) 

were processed for paraffin embedding, to then undergo a histological analysis 

for GAG distribution. Meniscal cross-sections were labeled with region and 

anatomical location, dehydrated in formalin and concentrations of ethanol then 

embedded in paraffin (Villegas et al. 2008). Once samples were processed with 

paraffin, 6 μm thick sections were sliced using a microtome (Shandon AS325, 

Thermo Electron Corop., Waltham, MA) and stained to identify GAG content. 

Specimens were first stained in Weigert’s iron hematoxylin working solution for 

10 minutes, followed by a 10 minute water rinse. Samples were then stained 

using Fast Green FCF solution for 5 minutes with a 10 second rinse of 1.0% 

acetic acid rinse following. Lastly, each sample was stained with 0.1% Safranin-

O for 10 minutes and cleared using 95% and 100% ethanol and Xylene 

(Rosenberg 1971; Clark 1973; Kiviranta et al. 1985).  

 

Mechanical Testing Procedure: 
 
 

Nanoindentation was performed at room temperature on the deep zone of 

the meniscus, on both samples (proximal – deep and distal – deep) from each 

region with, using a nanoindenter (Agilent Technologies, Santa Clara, CA) with a 

300μm diameter spherical ruby tip (Agilent Nano Measurements, Indianapolis, 

IN). Ten spatially randomized indents were performed on each meniscal sample, 
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ensuring each indent was normal to the surface (Figure 3.1). Indents were 

spaced at least 250 μm apart to avoid possible residual effects from prior indents 

(Ebenstein et al. 2004). Creep nanoindentation was performed using a 

trapezoidal loading sequence with a 5 second rise time and 1 mN hold for 90 

seconds. These testing parameters were chosen based on preliminary testing 

results.  

Resultant displacement-time data was curve-fit, using the matlab 

optimization toolbox (Mathworks, Natick, MA), to determine both instantaneous 

and steady-state material properties. Shear and elastic modulus were calculated 

for all three regions, on both deep-proximal and deep-distal meniscal surfaces 

using a viscoelastic model developed by Oyen et al. (Oyen 2005; Oyen and Cook 

2009). This analysis was based on the assumption that Poisson’s ratio of the 

human meniscus is 0.38 (Hu et al. 2001).  Furthermore, a ‘time-dependency’ 

material property was calculated by taking the ratio between steady-state and 

instantaneous elastic modulus, which helped to describe the viscosity of each 

sample. Material property values from each indent were calculated and then 

averaged to gain an overall average material property value from each sample to 

encompass the meniscal surface.  
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Histological Analysis: 
 
 
 Histological slides of meniscal cross-sections were analyzed to measure 

three relative quantitative properties: 1. the average distance from the meniscal 

surface to the initiation of staining for GAG content (Figure 3.2A), 2. the ratio of 

the GAG cross-sectional area to the meniscal cross-sectional area for the 

meniscus (Figure 3.2B) and 3. the binding intensity fraction of GAG within the 

meniscal cross-section. Before measurements analyses 1 & 2 were 

accomplished, images had a color threshold applied using Image J (Abramoff et 

al. 2004)  to signify where GAG content was present. Average thickness of the 

meniscal surface – to – GAG was performed using commercial software 

(BIOQUANT Image Analysis Corporation, Nashville, TN) with sectioned lines 

drawn along the meniscus articulating surface and where GAG was present 

(Figure 3.2A).  

The ratio of GAG to meniscal cross-section area was performed using 

Image J (Abramoff et al. 2004). A region of interest (ROI) was first drawn around 

a section of the meniscal cross-section to encompass the area from meniscal 

proximal surface to distal surface and the area was calculated. A second ROI 

only surrounding the GAG content was then measured (Figure 3.2B). The ratio of 

meniscal GAG content area to meniscal cross-sectional area was then 

determined.  
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Figure 3.2: Representative histology images that have had a color threshold applied 
to show location of GAG content with A) showing outline of meniscal surface region 
without GAG content and B) showing the outline of meniscal cross-sectional area 
ROI and GAG cross-sectional area ROI. Figure 2A was used to calculate the 
average distance from meniscal surface to the presence of GAG and Figure 2B was 
used to calculate the ratio of meniscal GAG to cross-sectional area. 

 

The binding intensity of the GAG stain was measured by selecting a ROI 

around a portion of the inner meniscal GAG content. Image J (Abramoff et al. 

2004)  was used to measure the intensity values of red (R), green (G) and blue 

(B), with values from 0 to 255 assigned. The proportion of red color (GAG stain) 

was of interest, and using the equation r = R / (R2 + G2 + B2)1/2, the intensity 

fraction of red (r) with respect to the other primary colors was quantified (Q. 

Huang et al. 2002; Villegas et al. 2008).  

 

Statistical Analysis: 
 
 

One way Analysis of Variance (ANOVA) was performed to determine 

differences among meniscal regions for quantitative values from nanoindentation 

and histological analyses. When significant results were identified by ANOVA, a 

post-hoc Student’s two-tailed t-test was conducted to compare individual regional 
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values amongst one another. Additionally, material properties from 

nanoindentation, GAG fraction intensity and GAG/meniscal area ratio values 

were all analyzed for significant differences using a Student’s two tailed t-test to 

determine significant differences between same regions in the lateral and medial 

menisci.  Quantitative histological values measuring the distance from meniscal 

surface to GAG content were statistically analyzed with the Student’s two tailed t-

test to compare proximal and distal surface values for respective regions and 

anatomical locations (p < 0.05). 

 

Results 
 

Individual nano-indents resulted in a displacement-time curve with a typical 

linear region during the ramp loading phase, followed by a horizontally 

asymptotic curve during the held load, indicative of steady-state behavior. 

Steady-state was defined when a change in displacement was < 0.01%. The 

average time to steady-state behavior was measured to be approximately 67.5 

seconds. In a previous study conducted on the superficial zone of the human 

meniscus, under the same conditions, the average time to steady state was 

recorded to be 57.6 seconds (Moyer et al. 2012).   

No significant difference was seen between deep zone nanoindentation 

results from proximal or distal cut samples, so values from the two samples were 

averaged together. This was expected, as the deep zone is thought to be 

consistent and not vary spatially from the proximal side to the distal side. 
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Variation among the numerous indents on each sample was less than 4% of the 

respective material property value, indicating homogeneity among individual 

indents on the deep zone middle menisci. The average indenter contact radius 

was 56.15 ± 2.58 μm, as the displacement into the meniscal surface was 

approximately 11µm for each indent. 
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Figure 3.3: A. Average steady-state elastic modulus- B. Average instantaneous 
elastic modulus- C. Average Time Dependency- values from nanoindentation 
conducted on the deep zone of human meniscal samples * represents a significant 
difference between the connecting lines for regions. Error bars represent standard 
error. 
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The regional (anterior vs. central vs. posterior) results from nanoindentation 

on the deep zone meniscus showed no significant differences for the lateral 

meniscus for the  any of the material properties, whereas the medial-central 

meniscal region was significantly different than posterior region for both the 

instantaneous and time-dependency material properties (Figure 3.3A & C). There 

were no significant differences between respective lateral or medial regions for 

steady-state elastic modulus (Figure 3.3B). The posterior region of the medial 

menisci had the largest instantaneous elastic modulus and the nearly the 

smallest steady-state elastic modulus (Figure 3.3A & B), suggestive of the largest 

amount of relaxation (Figure 3.3C). It is worth noting that the instantaneous 

elastic modulus values and time dependency values seem to have an opposite 

trend, with the central regions having low instantaneous modulus values and 

large time dependency values, where the anterior and posterior regions tended 

to have larger instantaneous moduli values and low time dependency values 

(Figure 3.3A & C). 

 

Table 3.1 
Table showing the mean ± standard error values of GAG 
fraction intensity measured from histological images of 

regional meniscal cross-sections. * represents a significant 
difference from the lateral - posterior region 

 GAG fraction Intensity 

 Anterior Central Posterior 
Lateral 0.64 ± 0.011 * 0.65 ± 0.027 0.60 ± 0.019 
Medial 0.61 ± 0.021 0.63 ± 0.026 0.60 ± 0.017 
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Generally speaking, visible inspection displayed that GAG stain was weak 

along the proximal and distal meniscal surfaces (Figure 3.4). The central region 

for both the lateral and medial menisci had the largest GAG fraction intensity 

values when compared to the anterior and posterior regions (Table 3.1). No 

significant differences among all regions and anatomical locations were seen for 

the ratio of GAG area –to- meniscal area (Table 3.2).  

The distance from meniscal surface to the initiation of GAG staining ranged 

from approximately 500 to 1500 μm, with the medial meniscus having greater 

distance values than the lateral region (Figure 3.5). Only the lateral posterior 

region displayed a significant difference between the two meniscal surfaces 

(607.67 ± 37.78 μm on the distal surface compared to 826.11 ± 82.88 μm on the 

proximal surface). Distal surface posterior values were significantly different 

between lateral and medial menisci, while proximal surface values were 

significantly different between the anterior and posterior regions for the lateral 

menisci (Figure 3.5). Additionally, it can be seen that the medial menisci 

displayed a much higher variability throughout all regions when compared to the 

lateral menisci for both proximal and distal values (Figure 3.5). 
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Figure 3.4: Image showing a stained medial anterior specimen. Red stain = GAG  
 

 
Figure 3.5: Average distance from meniscal surface to GAG presence values for both 
proximal and distal surfaces of the anterior, central and posterior regions from lateral 
and medial menisci. ▼ represents a significant difference between proximal and distal 
surface values; # represents a significant difference between the connecting lines for 
regions within respective anatomical locations and * represents a significant difference 
between the connecting lines between anatomical locations within respective regions. 
Error bars represent standard error. 
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Table 3.2 
Table showing the mean ± standard error values of 
Ratio of GAG - to - Meniscal Area measured from 
thresheld histological images of regional meniscal 

cross-sections. 

 Ratio of GAG - to - Meniscal Area 

 Anterior Central Posterior 
Lateral 0.60 ± 0.042 0.58 ± 0.087 0.50 ± 0.053 

Medial 0.50 ± 0.058 0.46± 0.085 0.45 ± 0.087 
 

 

Discussion 
 
 

This is the first study to examine the deep zone of the human meniscus on 

the nano-scale. Nanoindentation proved to be a viable option to gather local 

mechanical properties from the deep zone of human menisci and results were 

repetitive for each proximal-side and distal-side meniscal deep zone sample. 

Material property results from this study are approximately two orders of 

magnitude larger than another compressive based study, also conducted at room 

temperature (1.5 MPa vs. 0.03 MPa) (Chia and Hull 2008). Despite these 

differences in properties between previous macro-scale meniscal tissue testing 

and the current nano-scale meniscal testing, properties measured in this study 

(Figure 3.3) are on the same order of magnitude as previous nanoindentation 

results for both articular cartilage and meniscus, with similar testing parameters 

and environments (Thambyah et al. 2006; Franke et al. 2007; X. Li et al. 2007; 

Moyer et al. 2012). Interestingly, the previous nano-scale meniscal data is on the 
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superficial zone (Moyer et al. 2012). Thus, it is surprising that the material 

properties are similar given that the deep zone and superficial layer have very 

different collagen fiber orientations and GAG content. It is important to note 

though, significant regional variations existed for the deep zone, whereas no 

statistical differences were present regionally for surface zone measurements. 

For both the superficial and deep zones, steady-state moduli are approximately 

1.51 ± 0.04 and instantaneous moduli are 3.50 ± 0.12 (Moyer et al. 2012). This 

surprising result warrants further investigation as to the structures that are 

engaged during nanoindentation.  

Results from this study indicate that there are significant regional 

differences in the material properties of the human meniscus in the deep zone. 

The central region of the meniscus has proven to be significantly different than 

the posterior region for both the instantaneous elastic modulus and time 

dependency on the medial meniscus, but not for steady-state elastic modulus 

(Figure 3.3A - C). In the current study, the medial-posterior region had the lowest 

time dependency value (Figure 3.3C), in agreement with a previous indentation 

study showing the medial posterior region to have a lower aggregate modulus 

compared to the anterior region (Sweigart et al. 2004). In contrast to our current 

study, an unconfined compression study on cubic shaped human meniscal 

samples by Chia et al., 2008 showed the medial anterior region to have a 

statistically greater instantaneous elastic modulus when compared to the 

posterior region. Clinically, the medial posterior region is torn most frequently 

(Singson et al. 1991; Helms et al. 1998; Brody et al. 2006; Choi et al. 2008; Ahn 
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et al. 2009; De Smet et al. 2009; Lykissas et al. 2010). The relationship between 

lower indentation modulus and increased tear frequency is interesting and may 

provide insight into meniscal injury mechanics.  

Given that mechanical properties of musculoskeletal tissues are often 

times linked to morphology and biochemical composition, nano-mechanical 

results can be compared to biochemical studies to elucidate structure-function 

characteristics of the human meniscus.  Only one other study has reported 

regional sulfated GAG values, although no regional variations in sulfated GAG 

were reported; however, the study did not isolate GAG from the deep zone, but 

rather the entire cross-section (D.C. Fithian et al. 1989). Thus, our study is 

unique in that GAG intensity was measured for deep zones of each region of the 

meniscus main body (anterior, central and posterior). Comparing the current 

nano-mechanical data to our histological measurements of GAG, results showed 

an inverse relationship between the instantaneous elastic modulus (Figure 3.3C) 

and GAG fraction intensity (Table 3.1).  Of all six regions studied, the medial 

posterior region had a lower GAG intensity measurement, but a high 

instantaneous elastic modulus. Thus, as discussed earlier, it would again appear 

as if GAG intensity within the meniscus does not contributed to nano-scale 

compressive properties as was indicated when comparing superficial versus 

deep zone properties. To further support the discontinuity between GAG and 

nano-scale indentation modulus, the medial posterior region had the lowest 

GAG-to-meniscal area (Table 3.2). It is interesting to note that while articular 

cartilage is known to have roughly 8 times as much proteoglycan content as the 
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meniscus, the nano-scale indentation moduli are very similar (McDevitt 1973; 

McNicol and Roughley 1980; M. E. Adams and Muir 1981; Herwig et al. 1984). 

Previous nanoindentation studies on articular cartilage reported steady-state 

elastic modulus values of approximately 2.90 ± 0.40 MPa, while it has been 

shown here that the steady-state elastic modulus for meniscus (superficial and 

deep) is 1.51 ± 0.04 MPa (C. Li et al. 2006; Thambyah et al. 2006; Franke et al. 

2007; Moyer et al. 2012)  While on the macro-level proteoglycan and water are 

typically thought to control the instantaneous and equilibrium modulus, it would 

appear that indentation at a smaller scale does not directly relate to PG levels, or 

at least sulfated GAG intensities.  

While previous studies have quantified total sulfated GAG content for the 

anterior/central/posterior regions on the meniscus (D.C. Fithian et al. 1989), this 

is the first study to our knowledge which presents relative quantitative GAG 

fraction intensity results of the deep zone, and quantify the thickness of the 

superficial zone that is essentially void of GAG. The central deep region 

displayed the highest GAG fraction intensity values for both lateral and medial 

menisci, although not significant, whereas the lateral anterior region displays a 

significant difference from the lateral posterior region (Table 3.1). While our data 

shows a significant difference between the lateral anterior and posterior regions 

for GAG fraction intensity, and the previous study (D.C. Fithian et al. 1989) does 

not, it may be that the current study isolated the deep zone. Our data also shows 

a significant difference in thickness of the GAG superficial zone between the 
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anterior and posterior regions of the lateral meniscus. Neither this study nor the 

previous reported statistical variations in sulfated GAG for the medial meniscus.  

It can be seen that GAG presence is not seen until approximately 600 μm 

from the meniscal surface (Figure 3.5) and only encompasses approximately 

50% of the meniscus area (Table 3.2). This discovery suggests that GAG within 

the meniscus does not have the same depth dependency as collagen fibrils. The 

meniscal superficial layer, a taut network of collagen fibrils oriented parallel to 

meniscal surface is suspected to be approximately 100-200 μm throughout each 

meniscal region (Petersen and Tillmann 1998; Ling and Levenston 2012). GAG 

content has been shown to be localized in a circumscribed area, 600 μm deep 

into the meniscus, possibly demonstrating macro-scale compressive resistance 

is dependent on the deep zone meniscal constituents. 

Sulfated GAG and interstitial fluid are known to support the menisci in 

compression, by holding in fluid and using negative charges to create a resisting 

pressure (Roughley et al. 1981; Lu et al. 2009; Sanchez-Adams et al. 2011). The 

current study shows that the bulk of GAG is concentrated in the deep zone of the 

meniscal cross-section. Taken together with the GAG-less superficial zone, this 

may explain why nanoindentation testing required a longer time to achieve a 

steady-state condition as compared to the GAG-less meniscal surface (Moyer et 

al. 2012). The GAG-less meniscal surface will likely not retain as much interstitial 

fluid as the GAG-rich deep zone, giving the meniscal superficial layer less 

resistance to a compressive force and quicker to reach equilibrium. 
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Both histological and mechanical results from this work will prove 

imperative to better form a structure-function relationship on the nano-scale and 

effectively tissue engineer meniscal replacements. Showing how the nano-

mechanical properties of the meniscus regionally vary will help understand the 

circumferential and radial inhomogeneity of the human menisci and lead to 

advancements in meniscal replacement design. Lastly, results from this study 

coupled with nanoindentation on meniscal superficial layers will also be used to 

better understand the depth inhomogeneity of the meniscus (Moyer et al. 2012). 
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Chapter 4 – Significance of Research and Future Directions 
 
 

Significance of Research 
 
 
 

In today’s hectic environment, humans are constantly moving, relying on 

their knees to provide them with the necessary stability and comfort for daily 

activities. Osteoarthritis (OA) is a crippling joint disease which deteriorates the 

articular cartilage and subchondral bone, ultimately limiting mobility and causing 

severe discomfort (Andriacchi et al. 2004; Neuman et al. 2008; Neuman et al. 

2009). This disease is estimated to affect approximately 28 million adults in the 

United States alone, with numbers continually on the rise. It is common in the 

human knee joint and if left untreated, can lead to a total knee replacement 

(TKR), thus further studies are needed to control this disease, whereby limiting 

the need for TKR. It has been shown articular cartilage preservation is most 

important for stopping the initiation of OA. 

Articular cartilage protection in the human knee joint is contingent on the 

structural integrity of the menisci. The menisci are fibrocartilaginous structures 

which are crucial for proper load distribution in the knee. The menisci are 

specifically designed to fit the contour of the femoral condyles, aiding to disperse 

the stresses on the tibial plateau and in turn safeguarding the underlying articular 

cartilage. Additionally, the circumferentially and depth inhomogeneity of the 
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menisci has yet to be characterized on the nano-level to better understand the 

how meniscal constituents contribute to meniscus mechanics.  

In the United States alone, meniscal tears are responsible for the greatest 

amount of intra-articular knee injuries, with annual amount of reported meniscal 

fissures being 66 per 100,000 people, with greater than 90% of reports resulting 

in some form of meniscus surgical procedure (Baker et al. 1985; Hede et al. 

1990a; Hede et al. 1990b; Rattner et al. 2010; Salata et al. 2010). Currently, 

surgical meniscal repair is deemed ineffective, as only the outer 1/3 of the 

meniscal body is considered vascularized (Arnoczky et al. 1990; Messner and 

Gao 1998; Brindle et al. 2001; Greis et al. 2002; S. B. Adams, Jr. et al. 2005; 

Hoben and Athanasiou 2006). Due to the smaller area and higher stress 

concentrations, the majority of meniscal tears occur in the inner, avascular 2/3rds 

of the meniscus; hence, these tears do not heal well and are usually treated with 

a partial meniscectomies (Henning et al. 1990; Tenuta and Arciero 1994; 

Messner and Gao 1998). Clinical treatment of meniscal tears usually involves 

partial meniscectomies, where a portion of the injured meniscus is removed, and 

limiting meniscal functionality. 

Given current state of clinical meniscal injury treatment, there is a strong 

need for improved meniscal replacements. A greater understanding of the 

mechanical properties on the nano-level of the menisci will lead to advanced 

meniscal replacement design and further OA prevention. Research has shown 

that the mechanical properties of meniscal fibrocartilage greatly vary when it is 

compressed on different size-scales, making it necessary to better understand 
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the meniscus mechanics all size-scales, especially the local nano-scale. 

Moreover, meniscal constituent, collagen fibrils and proteoglycans, are measured 

on the nano-scale; therefore direct structure-function comparisons can be made 

to better understand the inhomogeneous nature of the meniscus and how it 

functions. Tissue engineering will greatly benefit with a better understanding of 

the meniscus mechanics on the nano-scale and how the mechanics are 

influenced by specific meniscal constituents, specifically how GAG contribute to 

nano-scale compression. 

Tissue engineered meniscal replacements are a promising route to 

suppress OA, however, a better interpretation of meniscal microstructure 

composition is required to construct these scaffolds. As proteoglycans and 

interstitial fluid are suspected to reinforce the menisci in compression, it is 

possible that individual glycosaminoglycans chains have a direct effect on the 

meniscal structure during compression. Furthermore, a better grasp of the how 

nano-structural components, such as glycosaminoglycans, relate to meniscal 

functionality, is required to better formulate a structure-function relationship. 

To effectively create a biomimetric meniscal replacement that will properly 

function, a structure function relationship on all size-scale is necessary. Results 

from these nano-scale studies on the human deep zone and superficial layer of 

the meniscus are essential for meniscal replacement design. To properly design 

or tissue engineering a meniscal replacement, it is necessary to know how 

individual constituents function to support the structure on all levels. These 

studies demonstrate how the meniscal superficial layers and deep zone nano-
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scale material properties directly compare quantitative values corresponding to 

GAG content. Comparing the regional mechanical and histological-GAG values 

of the meniscus will prove essential, possibly leading to advancements in 

meniscal replacements. This data will better explain the regional and depth 

inhomogeneity of the human meniscus on the nano-scale. 

   The meniscal superficial layer has been show to be very important and 

its homogeneous network of coplanar collagen fibrils may aid in protecting the 

structural integrity of the meniscus (Setton et al. 1993; Petersen and Tillmann 

1998; Ling and Levenston 2012). Nanoindentation results on the meniscal 

superficial layer shows that the meniscal superficial layers (both proximal and 

distal) are functionally homogeneous (no statistical difference) throughout all 

meniscal regions and anatomical locations. Showing the meniscal superficial 

layer has a homogeneous structure-function relationship through each meniscal 

surface and region will lead to advancements in tissue engineered meniscal 

replacements. However, it is necessary to compare mechanical results to 

histological images of meniscal cross-sections to better understand the results. 

Histology images of meniscus showed the bulk concentration of GAG 

localized in the middle of the cross-section, at least 600 μm away from either the 

proximal or distal superficial layer. This bulk concentration of GAG possibly 

alludes to the fact that the central zone of the meniscal cross-section is crucial for 

retaining interstitial fluid, supporting the meniscus in compression. This is 

validated after nanoindentation results show that the deep zone meniscus 

required a longer time to reach a steady-state displacement, when compared to 
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the GAG-less superficial region (both with the same loading parameters). Nano-

mechanical results from the deep zone meniscus did identify significant 

differences among regions, showing the medial central region to be statistically 

different then the posterior region for instantaneous elastic modulus and time 

dependency, while the steady-state elastic modulus displayed no significant 

differences. This regional variation further corroborates the thought that the 

medial posterior meniscus is significantly different and requires further 

investigation. 

As previously mentioned, this is the first time any of this meniscal nano-

scale information has been reported and these data will prove to be a novel 

contribution for the continuous improvement of meniscal replacements. It has 

been shown here that the nano-scale compressive properties of both the 

meniscal superficial layers and deep zone are on the same order of magnitude, 

yet the deep zone of the meniscus is shown to be GAG-rich, while the meniscal 

superficial layer is GAG-less. This is very interesting, as it has always been 

suspected that GAG is the main contributor to supporting the meniscus in 

compression (Sanchez-Adams et al. 2011). These data may show that GAG is 

engaged during bulk compressive loading and has a minimal affect during nano-

scale loading situations. It was shown that GAG-rich meniscus deep zone 

reached a steady-state displacement (via nanoindentation) after approximately 

67 seconds, while the GAG-less meniscal superficial layer only took 

approximately 55 seconds. This may be attributed to deep-zone GAG retaining 

interstitial fluid, allowing the meniscal deep zone to sustain a compressive load 



 

80 
 

for a longer time until all the fluid was evacuated. This leads us to believe that 

meniscal compressive resistance on the nano-scale is structurally driven by 

collagen fibril bundles and interstitial water. Furthermore, as the role of fluid flow 

and its support of meniscus functionality are understood, it is presumed that 

collagen fibrils contribute most to the GAG-depleted surface layer mechanics. 

These data, combined with other research conducted on the human meniscus, 

will be used to mimic the native human menisci to someday create a successful 

meniscal replacement to help combat Osteoarthritis. 
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Future Research 
 

Future applicable research should investigate the nano-mechanical 

properties of the meniscal cross-sections (nanoindenting normal to a transverse 

meniscal slice) and compare results directly to histological images. Instead of 

nano-indenting on meniscal surfaces or deep zone layers (as done in Chapter 2 

& 3); indentation should be conducted directly on the cross-section to show 

possibly radial variation (inner to outer) of the meniscus mechanics and 

constituents. Additionally, if using matched face specimens, it could be possible 

to directly indent where there is a high concentration of GAG to show how if the 

higher concentration affects the mechanical results on the nano-scale; as 

previous research has shown that GAG have a minimal contribution on the nano-

scale. Furthermore, digestion of GAG and/or collagen could directly show what 

meniscal constituent is supporting the extra-cellular matrix on the nano-scale. 

These analyses will really show an unequivocal structure-function relationship for 

an enhanced meniscal replacement design.  

To date, it has been shown that GAGs directly affect meniscal strength 

and viscosity in bulk compression, but individual GAGs, such as dermatan sulfate 

or chondroitin sulfate, have not been investigate to show their function in 

mechanical strength. Using immuno-histology or other biochemical techniques, 

individual GAG chains could be identified and compared results to 

nanoindentation. These structure-function analyses could also greatly improve 

tissue engineering efforts for meniscal replacements. 
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Appendix A: Standard Operating Procedure 
 
 

Nanoindenting/Preparation Meniscal Tissue 
 
 
Item  Location 
 Samples Embedded in Acrylic 
Pucks 

 Prepared in 1004 with Desired 
Specimen 

 Portable Hard Drive 
 Top-Right Drawer in Center Desk (Rm 
1004) 

 Indenter Tip of Choice  Spherical Indenter Tip (Rm 1004) 
 Nail Polish-Sally Hansen Insta-dry 
(320-   Blue)  Flammables Cabinet (Rm 1004) 
 Double Sided Tape  Top Drawer in Small Filing Cabinet 

(Rm 1004)  Scissors 

 Personal Notebook 
 Usually in The Top of The Large Filing 
Cabinet (Rm 1004) 

 Keys to The SB 005 Nanoindenter 
Lab 

 Hanging Near The Fire Extinguisher 
(Rm 1004) 

 0.9% Saline Solution - 10ml 
Syringe 

 Bottom Right Cabinet of Histology 
Bench (Rm 1004) 

 Well Tray (2x3)  Cabinet in Room 1006 
 Scalpel  Dissection Table (Rm 1004) 

 Moyer SOP 
 Purple SOP Binder Near Door in Room 
1004 

 Tweezers 
 Tan Cabinet (Sub-Basement 
Nanoindenter room)  Indenter Tip Changing Tool 

 Ethyl Alcohol 190 Proof 

 Sonic Bath 
 On The Table Farthest From The Door 
(SB 005) 

 Puck Holder 
 In Nanoindenter (Sub-Basement 
Nanoindenter Room) 

 Nanoindenter with Computer  Sub-Basement Nanoindenter Room 

 Kim Wipes 
 On The Table Farthest From The Door 
(SB 005) 
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Throughout whole procedure: When nanoindenting, the main thing to remember 
is to keep the specimens hydrated with 0.9 % saline as much as possible. If the 
specimens do not stay hydrated their material properties will change i.e. they 
won’t be representative of what the test is testing for. Below are the steps 
followed when nanoindenting the deep zone of the human meniscus.  
Note: This procedure is for previously prepared meniscal samples; meaning the 
human meniscus has been harvested, sectioned for regional testing and labeled 
as they have been previously tested on the superficial zone.  

1) Thaw specimens 
a. Put a well tray of specimens (from freezer) in the refrigerator for a 

day before testing 

2) Lay 1st column from well tray out on a drop cloth. (Figure A.1) 
a. Use gloves and tweezers  
b. Label drop cloth with specimen ID in a coordinate system you can 

remember (Figure A.1b) 

 
Figure A.1: a) Top view of properly labeled well tray b) Iso view of the 
drop cloth correctly labeled 

 

c. Size the specimen so that the surface is flat with the well-puck. 
(Figure A.2) 

i. Includes tape + nail polish thickness 

Well tray 
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d. Use a scalpel to resize as needed 
i. Remember to cut material off the side you are NOT 

indenting on 
E.g. In the case of deep zone testing, material was cut off 
the non-surface side. This allowed the surface to remain 
intact for later testing. Due to have thick the well tray is there 
were no concerns that the test was leaving the deep zone. 

 
Figure A.2: a) iso view of a specimen that is too high b) a side of a specimen that sticks 
out too much. Since the puck in the picture did not contain tape or nail polish, the 
specimen would stick out even more. 

 
3) Put nail polish on the opposite side you are testing 

a. We used Sally Hansen insta-dry nail polish (320 Cobolt Blue), 
located in the flammables cabinet.  

b. Use a conservative amount just so the specimen can stick to tape 
(creates a barrier between sample and tape to stick). (Figure A.3) 

c. Give it 10 minutes to dry (the more time the better) 
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Figure A.3: Specimen painted with nail polish on the surface opposite to the surface 
being indented. 

  
 

4) While the nail polish is drying, cut a circle from double sided tape and 
place it in the puck. (Figure A.4) 

 
Figure A.4: Well-puck with double sided tape cut and inserted into it. 

 

 
5) The next step is to bring everything to the nanoindenter is the sub-

basement, Room S005 
a. Tape, scissors, nail polish, specimens in well tray with a small 

bubble of saline (Figure A.5), tweezers, notebook, pencil, saline, 
lab keys, a flash drive, and the well-puck.   
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Figure A.5: Specimens ready for transport to the sub-basement lab 

 
 

6) Once you’re in the lab, log into the computer and sign in on the paper log 
a. If someone else was running a test and their test is complete, 

export all of their data to excel. Any questions regarding how to run 
the nanoindenter should be directed to Moyer’s SOP for the 
nanoindenter 
 

7) “Load sample tray” to get the tray out 
a. Take other person’s samples out if needed 

 
8) Clean tip if needed 

a. You know if the tip needs to be cleaned when you are calibrating. If 
the calibration dots are not distinct, then the tip needs to be 
cleaned. This can also be visually inspected. Always make sure 
pins are inserted if cleaning tip! 

b. Clean tip by removing the tip (referrer to SOP) and rinsing it in a 
sonic bath filled with 190 proof ethyl alcohol for a minute or two. 
(Insert: Top then Bottom) 
 

9) Load puck with no specimens on it into the tray 
a. The best way to do this is place the tray upside down on the table, 

place the puck in the hole, and tighten the allen wrench. This 
ensures the puck and tray are flush. 

i. If the tray and puck are not flush, the indenter could 
crash on the puck. THIS IS VERY BAD. 
 

10) Remove the backing from the tape 
11) Dry specimen nail polish surface with a kim wipe 

a. Do this by just setting the kim wipe on the table and gently rolling 
the specimen over the wipe. 
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12) Place the specimen on the tape 
a. Record the location of where you put what specimen in your 

notebook 
i. You can run more than 1 specimen per puck, if they fit 

b. Once the specimen is located lightly push down (generally with just 
the weight of the allen wrench) on the specimen to secure it 

c. Place 1 small drop of saline on each specimen 
 

13) Place tray back into nanoindenter 
 

14) Check the table height of the indenter 
 

15) Initialize the indenter 
 

16) Calibrate the machine 
a. Moyer SOP 

 
17) Setup the test in Testworks 

a. See Moyer’s SOP for the nanoindenter 
 

18) Fill the puck with saline 
 

19) Check the table height of the indenter 
 

20) Start the test 
21) Once the test is complete, export the data to excel for the successful runs 

 
22) Take the puck out of the tray (“Load sample tray”) 

 
23) Shutdown the machine 

a. Load the tray back into the machine 
b. Initialize the machine 
c. Put pins in after initialization 

i. Top then Bottom 
d. Record on many indents were successful in the log 

 
24) Now place the specimens back in to the well tray (rehydrate!) 

 
25) Go back upstairs for data analysis 

 
26) Run program Nanoripper to make all excel files .csv files  

 
27) Run program CurveFitGuiV2 

a. Make sure figure file is in the same folder 
b. Add batch process 
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c. Select one of the .csv files created 
d. Under process: 

i. NI Creep 
ii. Function Order = 2 
iii. Indenter tip radius = 150 [nanometers] 
iv. Additional argument: .38 [obtained from literature] 
v. Changed 3rd lower to 10. i.e. Lower = [0 0 0 0 0] Upper = [inf 

inf 10 inf inf] 
vi. Hit “Process” 

 
28) Next type xx=cell2mat(Results.Coeff’) into the Matlab command prompt 

 
29) Copy the first four columns of xx in the workspace to the last four columns 

of the data in the material properties excel file 
a. These are the coefficients 

 
30) Fill in the first 5 columns of the material properties excel file with the 

information about the specimen test
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Nanoindenting 
 
 
Equipment Needed: 

1. Tweezers 
2. Indenter tip changer tool 
3. Embedded specimen pucks 
4. Puck holder 
5. Equipment in Nanoindenter room 

Steps for Setup/Testing: 
1. Insert sample and calibration pucks into holder 

a. Place holder with rails on glass 
b. Slide pucks into respective holes, face down 
c. Apply pressure and tighten set screws 

2. Turn isolation table on by toggling black switch On below nanoindenter 
case door 

3. Put holder into nanoindenter slot 
a. If isolation table reads High/Low 

i. Rotate handle inside machine below table CCW (moves 
table down) 

ii. Rotate handle inside machine below table CW (moves table 
up)  

b. Rotate handle until indicator light reads OK 
4. Power on MTS Nanoindenter (white box) 
5. Power on computer and screen 
6. On computer, open Test Works 4 

a. Most of the remaining steps will be conducted within the Test 
Works program 

b. Italics indicate steps not done using the program 
7. Open Method 

a. KN Hauch > XP Load, Disp, Time 
b. Unless reference holes are need, chose this pre-set method 
c. OK 

8. Take out locking pins and set on isolation table (first bottom, then top pin) 
a. Load Disp should = 0.000 

9. Right-click the Test screen 
a. Click Initialize 

i. This step will set the machine up (Home, position, etc.) 
10. If lights in the lower-right are blinking red 
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a. Get Adam 
b. Steps will need to be taken to correct 

 
11. The following steps are used to Change the Tip (if needed) 
12. Click Tip (from Menu Bar) 

a. Click Change Indenter Tip 
B. REPLACE LOCKING PINS (FIRST THE TOP, THEN BOTTOM 

PIN) 
13. Use Indenter tip changer tool to remove current tip head and replace new 

tip 
a. Be very careful! 

14. Take pins back out! 
a. Head may drop (that’s OK) 

15. Click Tip > Select new indenter tip 
16. Conduct Microscope to Calibration 

a. Right-click the Test Screen > Mode > Microscope 
b. Move Microscope to Calibration Puck 
c. Right-click point > Move to Target 

17. Right-click the Test Screen > Nano Video Handset View 
18. Turn machine light on 
19. Use Focus Tools (below Test Screen) to focus and find clean area on 

calibration pad 
20. Right-click the Test Screen > Microscope to Indenter Calibration 

a. Click Next (10X) 
b. Right-click Test Screen > Remove Backlash 
c. Click Next (Indent 5 times) 
d. Light can be turned off during calibration 

21. Once finished with calibration 
a. Click crosshair to the middle of the 5 indents 
b. Click Finish 

22. Right-click the Test Screen > Go back to Nano Handset 
23. Move point back to specimen of interest 

a. Use the Move to Target command 
24. Enable Nano Video Handset 
25. Move around specimen area and use Focus tools to find clean area to 

indent 
26. Click Batch Mode Icon on top icon tool bar 

a. Batch control must be used when KN Hauch Method is enabled 
27. Clear Batch samples in right window pane 

a. Right-click samples in pane to remove 
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28. Click the Define tab in the Test screen 
a. You will now set up the parameters for the testing procedure 

29. Click the Next button  until the Sample Name is requested 
30. A new Sample Name may need to be used for each new indent 

a. Cannot just perform one test using a grid of indents 
b. Click Next once Sample Name is specified 

 
31. Delta X and Delta Y 

a. These two values are the distances that the indenter will move 
away from the current indention location to find the surface 

b. -25.00 μm is fine for both values 
32. Allowable Drift 

a. This is the allowable amount of thermal drift in the system 
i. This is can be set smaller when machine has been on for 

awhile 
33. Find surface at Test Location 

a. Distance: 1000 nm 
b. Surface Sensitivity: 10 % change in load/disp curve is needed to 

indicate surface contact 
c. Velocity: slower the better = 5 nm/s is as low as you can go 
d. To store: 1000 nm (match distance) 
e. Click Next 

34. Now you can enter your specific settings for your nanoindent test 
a. Want to conduct tests to get a linear displacement vs. time curve 

35. Set Peak Hold, Rise Time and Hold Time 
a. Each of these parameters will need to be set for your material 
b. May need to play around with them to get a proper creep curve 

36. Add Test Points 
a. Add test to this location will add indent test to where crosshairs 

are located 
37. Click the Test tab 
38. Can hydrate tissue (Be careful) 
39. Turn light off 
40. Shut case door 
41. Click Play (Green Triangle) 
42. When test complete 

a. Review results 
43. Open Sample > choose sample 

a. Can only see one sample at a time 
44. Click Excel Output button 
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a. To retrieve Excel file 
i. My computer > D drive > Samples > Pick name > Date > 

Find test
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Paraffin embedding 
 
 
PARAFFIN EMBEDDING (SOFT TISSUE) 
TIME: 75 MINUTES 
 
Equipment/Supplies: 
 

Item Amount Location 
1:10 Formalin NA Fume Hood 
Acid-Free EDTA (Optional) Various Various 
Tissue Tek Cassettes # of 

Specimens 
Histology Lower Cabinet 
(Rm 1004 West Wall) 

Tap Water NA Faucet  
Paraplast Paraffin 
Embedding Media 

NA Histology Lower Cabinet 
(Rm 1004 West Wall) 

Mason Jar 3 Histology Lower Cabinet 
(Rm 1004 West Wall) 

Forceps/Tweezers 1 Pair Dissection Bench 
Stainless steel embedding 
mold 

# of 
Specimens 

Histology Lower Cabinet 
(Rm 1004 West Wall) 

Ethanol: 80%, 95% & 100% NA Flammables Cabinet 
Xylene NA Flammables Cabinet 
Ice NA Refrigerator 
dH20 NA dH20 Jug/Tank 

 
Fixation 

 
1. Place each sample in a Tissue-Tek cassette (top and bottom 

together). Label each cassette with lead pencil. Samples can be 
kept in the cassettes throughout the whole preservation series 
(fixation through paraffin embedding). 

 

 

2. Place the samples in 10% Neutral Buffered Formalin (NBF). The 
NBF volume to tissue ratio should be about 10:1 for proper fixation. 
A large container can be used to simultaneously fix all specimens 
OR individual containers can be used. 

 

48 Hours 

3. Rinse the samples in dH20. 
 

10 minutes 
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DEHYDRATION/PREPARATION: 
 

1. Dehydrate in the following series of solutions. Keep all 
Tupperware covered to prevent alcohol evaporation: 

 

i. 70 % Ethanol 45 min 
ii. 80 % Ethanol 45 min 
iii. 2 x 95 % Ethanol 45 min each 

(90 total) 
iv. 2 x 100 % Ethanol 45 min each 

(90 total) 
2. Immerse the sample in Xylene 45 min 
3. Drain the Xylene and immerse the sample in fresh Xylene. 

DO NOT DUMP THE XYLENE DOWN THE DRAIN. Pour it 
into a labeled (Used Xylene) empty bottle so that it can be 
disposed later as a hazardous waste. 

 

45 min 

4. Drain the Xylene and immerse the sample in fresh Xylene 45 min 
5. Remove tissue from the Xylene and place the tissue in a ½ 

pint mason jar 
 

6. Cover the sample in melted paraffin and place the Mason 
jar in the incubator set at 60°C. 

Overnight 

7. Switch the cassette to a fresh Mason jar with melted 
paraffin in it. Place the sample in the incubator 

1 Hour 

8. Repeat step 7 with another fresh change of paraffin. The 
samples can be left in the incubator longer than 1 hour, if 
needed 

1 Hour+ 

 
PARAFFIN EMBEDDING 
 

1. Melt the paraffin on a hot plate in a beaker. 
2. Warm the mold on the hot plate before adding paraffin to it. Pour enough 

hot paraffin into the mold to cover the bottom of it. 
3. Remove the sample from the Mason jar with tweezers. Dump the melted 

paraffin in the Mason jar into a trash bag. 
4. Remove the sample from the cassette. Throw away the lid, but save the 

cassette bottom. Place the sample in the mold with the cut face down. 
Pour enough hot paraffin over the sample to cover it. 

5. Place the closed end of the cassette bottom on the top of the paraffin. 
6. Pour hot paraffin over the cassette. 
7. Leave the sample on ice until the paraffin hardens (or place in freezer) ~ 

20 minutes 
8. Cut along each side of the cassette using the scalpel to remove the 

embedded sample from the mold, leaving it attached to the cassette. The 
cassette will serve as the holder for the microtome (and label)
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Poly – l – lysine slide coating 
 
 
SLIDE SUBBING (POLY-L-LYSINE) PROTOCOL (Brunelle 
and Nicholson 2007) 
 
 
TIME: 75 MINUTES 
 
“The following protocol was adapted from (Brunelle and Nicholson 2007) and an 
open source protocol” 
 

Equipment/Supplies: 
Item Amount Location 

Slide Rack w/ handle NA 
Histology Lower 

Cabinet (Rm 1004 
West Wall) 

Glass Dishes 5 
Histology Lower 

Cabinet (Rm 1004 
West Wall) 

Glass Slides NA  

Poly-l-lysine 100 mL Acids Cabinet (Rm 
1004 West Wall) 

NAOH NA Acids Cabinet (Rm 
1004 West Wall) 

95% Ethanol NA Flammables Cabinet 

Shaker Table 1 
Histology Lower 

Cabinet (Rm 1004 
West Wall) 

 
1. Prepare NAOH-ethanol solution 

 
• Dissolve NAOH in ddH2O (if you using tablets) 70g/280mL 175g/700mL

 200g/800mL 
• Stir until completely dissolved 
• Add 95% ethanol    420mL  1050mL 

 1200mL 
• Stir until completely mixed 
• If solution remains cloudy, add water until clear 

 
2. Place slides in metal slide racks (30 slides/rack). Do not use defective 

slides. 
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3. Soak slides in the NaOH:EtOH:ddH2O solution for 2 hours with gentle 
rotation (using shaker table) 

4. Rinse extensively with dH2O 
 
• Rinse each unit (slide/rack/container) vigorously with dH2O for 5 

minutes 
• Place slide racks in large clean glass container and tilt the container 

slightly for constant water flow 
• Wash under running tap water for 30 minutes 
• Do not allow the slides to dry at any time 

It is critical to remove all traces of NaOH:EtOH 
5. Prepare poly-l-lysine solution in plastic container 

 
• Mix 3 solutions together in 1 large plastic container and then split into 3 

smaller plastic containers 
o 100mL tissue culture PBS 
o 800mL dH2O  
o 100mL poly-l-lysine 

6. Soak the slides in the lysine solution for 45 minutes with gentle rotation. 
Be sure to use a plastic containers, as poly-l-lysine adheres to glass 

Poly-l-lysine solution may be reused. Keep the other slide filled racks in dH2O, 
while the first 3 are being coated. 

7. After the lysine coating, rinse the slides by gently plunging up and down in 
2 different changes of dH2O. Spin dry 5’ at 600 rpm or place in incubator 
(on slide drying rack) at 50°C. Place drop clothes under to pick up spilling. 
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Microtome Slicing 
 
 
Equipment/Supplies: 

Item Amount Location 
Paraffin Microtome NA Forestry Bldg. 155A 
Paraffin Embedded 

Samples NA  

dH20  dH20 Tank/Jug 
Poly-l-lysine Coated Slides  Slide Holder 

Thermometer 1 Histology Bench Cabinet 
(Rm 1004 West Wall) 

Hot Plate 1 Forestry Bldg. 155A 

Histology Blades NA Histology Bench Cabinet 
(Rm 1004 West Wall) 

Small paint brushes NA Histology Bench Cabinet 
(Rm 1004 West Wall) 

 
1. Slide coarse adjustment of microtome back  
2. Place cassette into holder  
3. Place blade into the microtome and lock into place 
4. Set desired cutting depth on the microtome and slide the blade up to the 

cassette, bringing it close but not touching, and lock that into place 
5. Start cranking the cutting wheel, and the cassette will move forward your 

desired cutting depth after each rotation 
6. Once the microtome starts cutting, examine the sliced section and make 

sure you have a complete cross section (You may need to let the 
microtome make a few slices before you get a good section). Sliced 
section at this point will be rolled up 

7. Place the samples in warm dH2O (40-45 ºC)and allow the rolled up 
samples to loosen and unroll 

8. Scoop out unrolled sections and place on slide. Make 3 slides with 3 
sliced sections per slide for each sample being tested 

• When preparing the slides, place proximal end of meniscus down 
on each slide. This will help for orientation when examining the 
samples under the microscope. 

9. Allow slides to air dry for 30 minutes 
10. Placed dried slides into the incubator at 45-50 ºC and let sit overnight. 

This will ensure that the paraffin sections adhere to the slide. (Do not 
exceed 50 ºC, as this may cause sections to crack) 
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Deparaffinization 
 
 
Equipment/Supplies: 

Item Amount Location 

Slide Holder w/ Handle NA Histology Bench Drawer (Rm 
1004 West Wall) 

Tupperware 6 Histology Bench Drawer (Rm 
1004 West Wall) 

Tap Water  Faucet 

Ethanol: 70%, 95% & 100% As much as 
necessary Flammables Cabinet 

Xylene As much as 
necessary Flammables Cabinet 

 
 
No matter what animal tissue you are sectioning, deparaffinization will work by doing the 
following: 
 

1. 5 minutes in Histology grade Xylene 
2. 5 minutes in another bucket of Histology grade Xylene 
3. 5minutes in another bucket of Histology grade Xylene 

 
Now that the paraffin is off the slide, you need to take the excess Xylene off the slide.  
You do the following: 

 
4. 5 minute in Absolute ETOH 
5. 5 minutes in 95% ETOH 
6. 5 minutes in 70% ETOH 
7. Wash with water for 5 minutes. 

 
 
You can now stain the tissue as necessary.  
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Safranin-O and Fast Green Staining 
 
“The following protocol was adapted using protocols from an IHCworld web page 
and was created based on previous peer-reviewed work (Camplejohn and Allard 
1988; Kahveci et al. 2000; Tran et al. 2000): 
 
 
Equipment/Supplies: 

Item Amount Location 

Slide Holder w/ Handle NA Histology Bench Drawer 
(Rm 1004 West Wall) 

Tupperware 1 Histology Bench Drawer 
(Rm 1004 West Wall) 

dH20  dH20 Tank/Jug 
Tap Water  Faucet 

Weigerts Iron Hematoxylin 
Working Solution (50:50 

Parts A & B) 
See Recipe 

Histology Bench 
Cabinet (Rm 1004 West 

Wall) 

Fast Green FCF Solution See Recipe Acids Storage Cabinet 
(Rm 1004 West Wall) 

1%Acetic Acid Solution See Recipe Acids Storage Cabinet 
(Rm 1004 West Wall) 

0.1% Safranin O Solution See Recipe 
 

Acids Storage Cabinet 
(Rm 1004 West Wall) 

Ethanol: 80%, 95% & 100%  Flammables Cabinet 
Xylene  Flammables Cabinet 

 
Prepared Solutions 

• Weigerts A 
1. Dissolve 5g Hematoxylin in 500mL 95% Ethanol 

• Weigerts B 
1. Dissolve 5.8g Ferric Choloride in 20mL dH20 to yield 29% Ferric 

Chloride Solution 
2. Mix Ferric Chloride Solution with 475mL dH20 and 5mL 

concentrated HCL 
• Fast Green FCF Solution 

1. Dissolve 0.1g fast green FCFR in 1000mL dH20 
• 1% Acetic Acid Solution 

1. Mix 10mL glacial acetic acid with 990mL dH20 
• 0.1% Safranin O Solution 

1. Dissolve 1g Safranin O in 1000mL dH20 
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Methods 

1. Place the slides in the slide holder. 
2. Stain with Weigert’s iron hematoxylin working solution for 10 minutes 
3. Wash in running tap water for 10 minutes 
4. Stain with fast green (FCF) solution for 5 minutes 
5. Rinse quickly with 1% acetic acid solution for no more than 10 – 15 

seconds 
6. Stain in 0.1% safranin O solution for 10 minutes 
7. Dehydrate and clear with 95% ethanol, absolute ethanol and xylene, using 

2 changes each, for 2 minutes each 

 
Results 
-GAGs: red 
-Nuclei: black 
-Cytoplasm: gray-green 
-Cartilage, mucin, mast cell granules: orange-red 
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Histological Image Analysis 
 
*Assuming all images have been acquired and a complete meniscal cross-
section can be seen (both surfaces) * 
Threshold Images 

1. Open Image J Image Program 
2. Open a desired image using File > Open 
3. With the image appearing on the screen, click Image > Adjust > Color 

Threshold 
4. Move the top selection bar for ‘Hue’ to a value of 170 
5. Move the top selection box for ‘Saturation’ to a value of 75 
6. The ‘Brightness’ bars do not need to be touched. 
7. These settings will define where GAG is located so surface 

measurements can be taken. 
 

8. Figure A.7 shows how image color will change after the color threshold 
has been applied. 

 

 
Figure A.6: Images on left are original histology images. Right 
images are respective histology images after a threshold has been 
applied. 

 



 

111 
 

 
Measuring Average Meniscal Surface (no GAG) thickness 
 

9. The BIOQUANT program will be used to measure the average thickness 
of the meniscal surface (that does not contain GAG). 

a. The lower--right scale bar will be used for calibration 
10. Lines will be drawn (in BIOQUANT) to outline one meniscal surface 

(proximal or distal) and then another line will be drawn along the GAG 
tide-line (Figure A.3). 

11. BIOQUANT will then be used and the average thickness will be measured 
12. This average thickness will be recorded for each subsequent image. 

 
Figure A.7: Image with applied threshold and outlines drawn to 
measure average thickness of non-GAG meniscal surface. 

 
 
 
 
 
 
Measuring ratio of GAG cross-sectional area to Meniscus CSA 

13. Using Image J again, select the ‘Polygon Selection’ tool  
14. Select a ‘Region of Interest (ROI)’ of the whole meniscal cross-section 

(Figure A.5) 
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a. First double click to start with a line and then click at each corner, 
on the last connecting corner, click the right-mouse button 

b. Try to not include any folded regions 

 
Figure A.8: Histology image with ‘outer ROI’ highlighted 

 
15. With the correct outer ROI drawn, click “Ctrl + M” to measure the area of 

that region 
16. Then press “Ctrl + D” to draw that region on the image 
17. Now following the same steps as above to draw another inner ROI, 

surrounding the GAG content (Figure A.6) 
a. MAKE SURE YOU OVERLAY THE OUTER ROI HORIZONTAL 

LINES SO ONLY THE NON-GAG CONTENT IS NOT INCLUDED 
FROM THE OUTER ROI 
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Figure A.9: Histology image with ‘inner ROI’ highlighted. Making 
sure to overlay ‘outer ROI’ lines 

18. Both ROIs should be similar to Figure A.7, with the shaded and cross-
hatched region being the GAG region and all cross-hatched being the total 
meniscal cross-sectional area 

19. With the correct inner ROI drawn, click “Ctrl + M” to measure the area of 
that region 

 

 
Figure A.10: Image with both inner and outer ROI selected to show 
intersection 
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20. A Results Box should be available with area values for both ROIs 

 
 
21. For the example in Figure A.7, the GAG-to-meniscus cross section would 

be: 

591065
788249

= 0.75 
22. Repeat this for each image 

 
GAG Intensity Measurement 
 

**These next steps for “GAG Intensity Measurements” can be done 
whenever, the threshold images do not need to be used, just the original 
histology images.** 
 

23. Open an original histology image using Image J just as described in step 
#2 

24. Using the Polygon Selection’ tool (Figure A.4), select a ROI surround just 
a portion of red-stained GAG 

a. Try to not include any folds, but surround as much GAG as possible 
25. With the ROI surrounding GAG selected, Click Analyze > Color Histogram 
26. This will give you a ‘Results’ and ‘Histogram’ Box  
27. Record the Red, Green and Blue values for each image 
28. Using the three (RGB) color values, place into Equation 1 

 

 𝐺𝐴𝐺 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 =
𝑅

(𝑅2 +  𝐺2 +  𝐵2)1/2                   𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1 

29. The GAG Intensity will be recorded for each image slice. 

 
 



 

 
 

 

Appendix B: Supplementary Material, Raw Data and Matlab Code 

Meniscus Bio-chemical Review 
 

Table B.1 
Review of previous research on glycosaminoglycans and proteoglycan content with meniscus 

 

Study Analysis # of 
samples 

Meniscus 
Location   Regions 

Studied Hyaluronate Chondroitin 
Sulfate 

(Adams, 
et al., 
1987) 

Histology 4 
Medial   

Body  1.6 14.32 

  
 Canine "Mixture" 1.44 10.27 

  
  % Change -10.2 -28.3 

  
  Lateral   

Body  1.49 14.37 
  

  
"Mixture" 1.44 10.1 

  
  

% Change -5.6 -39.5 

Study Analysis # of 
samples 

Meniscus 
Location 

Regions 
Studied 

Water 
Content (% 
of wet wt.) 

Uronic 
acid 

(μg/mg 
dry wt.) 

Hexosamin
e (μg/mg 
dry wt.)   

(Adams, 
et al., 
1981) 

Histology 5 
Lateral 

Central 63.1 ± 1.2  20.0 ± 3.2 17.6 ± 2.2   

A + P = Anterior + 
Posterior 

Canine A + P 63.8 ± 0.9 18.2 ± 3.5 16.0 ± 3.2   

 Medial 
Central 62.8 ± 1.4 10.2 ± 2.0 7.7 ± 1.9   

 
A + P 63.5 ± 1.4 15.3 ± 3.0 12.5 ± 2.6   
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          Composition (% of chondroitinase-digestible 
GAG)  

Study Analysis # of 
samples 

Meniscus 
Location 

Regions 
Studied 

Chondroitin 6-
Sulfate 

Chondroitin 
4-Sulfate Chondroitin Dermatan 

Sulfate 
ΔDi-4S/ΔDi-

6S molar 
ratio 

(Adams, 
et al., 
1981) 

Histology 5 
Lateral 

Central 60.9 ± 3.5 26.2 ± 3.7 8.8 ± 1.7 4.1 ± 4.1 0.43 

A + P = Anterior + 
Posterior 

Canine A + P 62.0 ± 3.9 25.4 ± 3.8 9.8 ± 0.38 2.8 13.9 0.41 

 Medial 
Central 55.6 ± 2.5 25.3 ± 4.4 13.3 ±3.2 5.8 ± 3.9 0.46 

 
A + P 59.4 ± 2.4 27.1 ± 2.9 10.7 ± 2.0 3.0 ± 2.5 0.46 

          
          Hyaluronic Acid    

Study 
Analysis # of 

samples 
Meniscus 
Location 

Regions 
Studied 

μg/mg dry 
wt. 

% of total uronic 
acid    

(Adams, 
et al., 
1981) 

Histology 5 
Lateral 

Central 2.4 ± 0.5 6.0 ± 1.4    

A + P = Anterior + 
Posterior 

Canine A + P 2.6 ± 0.6 7.0 ± 1.4    

 Medial 
Central 1.4 ± 0.3 6.0 ± 1.8    

 
A + P 2.2 ± 0.5 6.9 ± 1.1    
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Table B.1, continued 
 
 



 

 
 

 

Meniscus Mechanics Review 
 
 
 

Table B.2 
Supplementary review of previous mechanical testing conducted on menisci 

 

Study Type of 
test 

# of 
sample

s 
Meniscus 
Location Surfaces Studied Regions Studied Stiffness 

(N/mm) 
Residual Force 

(N) 
Indentation 
Depth (mm) 

Sandmann 
et al. Indentation 5 Medial & 

Lateral Distal NA 11.6-31.1 1.0-3.0 1.25 

                  

Study Type of test # of 
samples 

Meniscus 
Location 

Surfaces 
Studied 

Regions 
Studied 

Elastic Modulus 
±SD (MPa)   

Fithian et al. Uniaxial tension 56 

Lateral Deep Zone 

Anterior 159.1 ± 47.4   
    Central 228.8 ± 51.4   
    Posterior 294.1 ± 90.4   
    

Medial Deep Zone 

Anterior 159.6 ± 26.2   
    Central 228.8 ± 51.4   
    Posterior 294.1 ± 90.4   

 

 
 
  

 
 
 
 
 

     

117 



 

 
 

Study Type of test # of 
samples 

Testing 
Orientation 

Meniscus 
Location 

Regions 
Studied Elastic Modulus ±SD (MPa) 

Tissakht et 
al.  Uniaxial tension 31    Surface/Zone (Proximodistal Direction) 

       Proximal Middle Distal 

    

Radial 

Lateral 

Anterior 10 .00 ± 4.29 4.07 ± 1.86 13.01 ± 8.76 

    Central 14.17 ± 5.88 10.14 ± 4.65 13.24 ± 6.96 

    Posterior 14.62  ± 9.62 4.21 ± 1.26 21.24 ± 21.24 

    
Medial 

Anterior 6.75 ± 5.15 3.59 ± 1.43 9.50 ± 6.35 

    Central 9.31 ± 7.46 5.60 ± 2.23 16.51 ± 9.00 
    Posterior 13.53 ± 8.44 2.03 ± 0.54 22.62 ± 7.18 
    

Circumferential 

Lateral 
Anterior 124.58 ± 39.51 88.01 ± 31.7 112.23 ± 29.77 

    Central 91.37 ± 23.04 67.68 ± 10.70 151.80 ± 44.78 
    Posterior 143.24  ±55.04 95.80± 46.83 130.24 ± 32.65 
    Medial 

Anterior 106.21± 47.53 79.86 ± 24.90 87.61± 10.12 
    Central 77.95 ± 25.09 57.97 ± 19.82 94.54 ± 19.48 
      Posterior 82.36 ± 22.23 80.72 ± 23.95 80.35 ± 27.16 

Study Type of test # of 
samples 

Meniscus 
Location 

Regions 
Studied Treatment 

Young's 
Modulus (Er) 

(MPa) 

Ultimate 
Tensile 

Strength (UTS) 
(MPa) 

Toughness 
(J/m3) 

Sanchez-
Adams et al Uniaxial Tension Bovine, 

n=? 

Medial 

Outer Control 95.00 40.00 19.00 

  
 CABC = GAG depletion 

Control = normal meniscus 
       # represents a significant difference 

between CABC and Control for 
representative % strain and region  
(p<0.05) 

  

CABC 110.00 45.00 20.00 

Middle Control 105.00 44.00 17.00 
CABC 140.00 50.00 16.00 

Inner 

Control 90.00  31.00 9.00 

CABC 135.00 # 46.00 # 16.00 # 
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Table B.2, continued 
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Nanoindentation Results – Deep Zone vs. Superficial layer  

 

 
 

Table B.3 
Comparison of nanoindentation results (Instantaneous Elastic Modulus) for deep zone 
and superficial layer of human meniscus. Superficial layer results included averaged 

proximal and distal surface values 
 

  Instantaneous Elastic Modulus [MPa] 

  Anterior Central Posterior 

  Deep Surface Deep Surface Deep Surface 

Lateral 3.43 ± 0.30 3.60 ± 0.43 3.22 ± 0.33 3.43 ± 0.20 3.64± 0.28 4.06 ± 0.37 

Medial 3.21± 0.37 4.12 ± 0.43 2.73 ± 0.21 3.70 ± 0.33 3.67 ± 0.41 3.17 ± 0.18 

 
Table B.4 

Comparison of nanoindentation results (Steady-State Elastic Modulus) for deep zone 
and superficial layer of human meniscus. Superficial layer results included averaged 

proximal and distal surface values 
 

  Steady-State Elastic Modulus [MPa] 

  Anterior Central Posterior 

  Deep Surface Deep Surface Deep Surface 
Lateral 1.48 ± 009 1.52 ± 0.12 1.46 ± 0.13 1.63 ± 0.09 1.55 ± 0.09 1.69 ± 0.12 
Medial 1.40 ± 0.08 1.63 ± 0.09 1.30 ± 0.07 1.67 ± 0.13 1.33 ± 0.09 1.47 ± 0.07 
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Three-way Blocked ANOVA Matlab Code 
 
 
%%Program to run a three-way blocked ANOVA (blocked by specimen) to compare 
%%statistical differences amount meniscal regions, surfaces and anatomical locations 
  
clc 
close all 
clear all 
  
[FileName,PathName,FilterIndex] = uigetfile({'*.xls';'*.*'}); 
file = fullfile(PathName,FileName); 
  
%actually import the file 
[NUMERIC,TXT,RAW] = xlsxread(file); 
%% 
  
%Identify the Region for each Data Point 
Region = zeros(size(NUMERIC,1),1); 
  
Region(find(strcmp(TXT(:,1), 'Anterior')==1)-1) = 1; 
Region(find(strcmp(TXT(:,1), 'Central')==1)-1) = 2; 
Region(find(strcmp(TXT(:,1), 'Posterior')==1)-1) = 3; 
  
  
Location = zeros(size(NUMERIC,1),1); 
  
Location(find(strcmp(TXT(:,2), 'Medial')==1)-1) = 1; 
Location(find(strcmp(TXT(:,2), 'Lateral')==1)-1) = 2; 
  
Surface = zeros(size(NUMERIC,1),1); 
  
Surface(find(strcmp(TXT(:,3), 'Proximal')==1)-1) = 1; 
Surface(find(strcmp(TXT(:,3), 'Distal')==1)-1) = 2; 
  
Specimen = NUMERIC(:,1); 
  
%% 
G_Inst = NUMERIC(:,2); 
G_SS = NUMERIC(:,3); 
E_Inst = NUMERIC(:,4); 
E_SS = NUMERIC(:,5); 
  
  
  
%% threeway ANOVA 
[p3,a,stats3] = anovan(E_Inst,{TXT(2:end,1) 
TXT(2:end,2)},'varnames',{'Region','Location','Surface'}); 
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% [p3,a,stats3] = anovan(E_SS,{TXT(2:end,1) TXT(2:end,2) 
TXT(2:end,3)},'varnames',{'Region','Location','Surface'}); 
  
  
  
  
 [cseas,mseas] = multcompare(stats3,'dimension',2); 
%  [cep,mep] = multcompare(stats3,'dimension',3); 
 [c_region,m_region] = multcompare(stats3); 
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Raw Data 
 
 
Table B.5: Raw data averages for each deep-zone meniscus nanoindentation 

Specimen Meniscal 
Region 

Anatomical 
Location 

Instant. 
Shear 

Modulus 
(MPa) 

Steady-State 
Shear 

Modulus 
(MPa) 

Instant. 
Elastic 

Modulus 
(MPa) 

Steady-
State 

Elastic 
Modulus 

(MPa) 

3257 Anterior Lateral 1.189 0.536 3.281 1.479 

3257 Central Lateral 0.976 0.451 2.695 1.245 

3257 Posterior Lateral 1.189 0.522 3.281 1.441 

3257 Anterior Medial 1.288 0.567 3.555 1.566 

3257 Central Medial 0.937 0.459 2.587 1.266 

3257 Posterior Medial 1.115 0.499 3.077 1.377 

3265 Anterior Lateral 1.256 0.533 3.465 1.471 

3265 Posterior Lateral 1.221 0.503 3.369 1.387 

3265 Anterior Medial 1.280 0.565 3.532 1.558 

3265 Posterior Medial 2.064 0.400 5.696 1.104 

3341 Anterior Lateral 0.820 0.425 2.262 1.174 

3341 Central Lateral 0.973 0.514 2.685 1.419 

3341 Posterior Lateral 1.707 0.694 4.712 1.916 

3341 Anterior Medial 0.757 0.417 2.090 1.152 

3341 Central Medial 0.946 0.467 2.612 1.288 

3341 Posterior Medial 1.073 0.336 2.961 0.928 

3345 Anterior Lateral 0.850 0.399 2.347 1.101 

3345 Central Lateral 0.895 0.421 2.470 1.163 

3345 Posterior Lateral 0.956 0.451 2.638 1.246 

3345 Anterior Medial 0.824 0.411 2.275 1.134 

3345 Central Medial 1.207 0.555 3.331 1.533 

3345 Posterior Medial 1.014 0.488 2.799 1.348 

61723 Anterior Lateral 1.487 0.602 4.104 1.661 

61723 Central Lateral 1.656 0.743 4.569 2.051 

61723 Posterior Lateral 1.280 0.636 3.532 1.755 

61723 Anterior Medial 1.034 0.513 2.854 1.415 
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61723 Central Medial 1.200 0.521 3.312 1.438 

61723 Posterior Medial 0.976 0.460 2.693 1.269 

61756 Anterior Lateral 1.541 0.619 4.254 1.708 

61756 Central Lateral 1.352 0.522 3.733 1.440 

61756 Posterior Lateral 1.182 0.548 3.262 1.511 

61756 Anterior Medial 1.231 0.507 3.397 1.400 

61756 Central Medial 0.746 0.369 2.060 1.017 

61756 Posterior Medial 1.901 0.582 5.248 1.605 

61809 Anterior Lateral 1.169 0.522 3.225 1.440 

61809 Posterior Lateral 1.807 0.665 4.988 1.836 

61809 Anterior Medial 0.939 0.448 2.592 1.237 

61809 Posterior Medial 1.277 0.639 3.526 1.763 

61848 Anterior Lateral 1.636 0.661 4.515 1.824 

61848 Central Lateral 1.141 0.520 3.148 1.435 

61848 Posterior Lateral 1.198 0.465 3.308 1.283 

61848 Anterior Medial 1.941 0.631 5.358 1.742 

61848 Central Medial 0.886 0.446 2.447 1.230 

61848 Posterior Medial 1.214 0.446 3.352 1.230 

 
 
Table B.6: Raw data averages for each meniscal surface nanoindentation 

Specimen Meniscal 
Region 

Anatomical 
Location 

Meniscal 
Surface 

Instant. 
Shear 

Modulus 
(MPa) 

Steady-
State 
Shear 

Modulus 
(MPa) 

Instant. 
Elastic 

Modulus 
(MPa) 

Steady-
State 

Elastic 
Modulus 

(MPa) 

3257 Anterior Lateral Distal 2.486 0.906 6.861 2.500 

3257 Anterior Lateral Proximal 1.594 0.661 4.399 1.828 

3257 Anterior Medial Distal 1.242 0.556 3.429 1.534 

3257 Anterior Medial Proximal 0.993 0.481 2.741 1.309 

3265 Anterior Lateral Proximal 0.910 0.515 2.437 1.627 

3265 Anterior Medial Distal 1.625 0.585 4.484 1.615 

3265 Anterior Medial Proximal 1.364 0.615 3.766 1.696 

3341 Anterior Lateral Distal 0.835 0.383 2.304 1.057 

3341 Anterior Lateral Proximal 0.575 0.319 1.586 0.881 

3341 Anterior Medial Distal 1.190 0.561 3.283 1.548 

Table B.5, continued 
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3341 Anterior Medial Proximal 1.571 0.679 4.337 1.875 

3345 Anterior Lateral Distal 1.640 0.639 4.527 1.764 

3345 Anterior Lateral Proximal 1.067 0.451 2.944 1.245 

3345 Anterior Medial Distal 1.195 0.434 3.298 1.197 

3345 Anterior Medial Proximal 2.094 0.729 5.780 2.012 

61723 Anterior Lateral Distal 2.381 0.784 6.568 2.164 

61723 Anterior Lateral Proximal 1.049 0.476 2.895 1.312 

61723 Anterior Medial Distal 3.025 0.974 8.349 2.687 

61723 Anterior Medial Proximal 2.680 0.727 7.396 2.007 

61756 Anterior Lateral Distal 1.882 0.691 5.194 1.908 

61756 Anterior Lateral Proximal 1.599 0.633 4.412 1.746 

61756 Anterior Medial Distal 0.884 0.457 2.441 1.260 

61756 Anterior Medial Proximal 1.401 0.502 3.867 1.385 

61809 Anterior Lateral Distal 1.115 0.488 3.077 1.346 

61809 Anterior Lateral Proximal 1.062 0.477 2.931 1.317 

61809 Anterior Medial Distal 0.874 0.450 2.411 1.242 

61809 Anterior Medial Proximal 1.154 0.553 3.185 1.527 

61848 Anterior Lateral Distal 0.629 0.369 1.737 1.017 

61848 Anterior Lateral Proximal 0.735 0.405 2.029 1.119 

61848 Anterior Medial Proximal 1.410 0.630 3.892 1.749 

61848 Anterior Medial Distal 1.191 0.513 3.247 1.414 

3257 Central Lateral Distal 1.694 0.652 4.707 1.799 

3257 Central Lateral Proximal 1.183 0.579 3.266 1.597 

3257 Central Medial Distal 1.142 0.478 3.151 1.318 

3257 Central Medial Proximal 1.025 0.477 2.829 1.316 

3265 Central Lateral Distal 0.911 0.470 2.515 1.297 

3265 Central Lateral Proximal 1.014 0.518 2.799 1.429 

3265 Central Medial Distal 1.223 0.532 3.676 1.468 

3265 Central Medial Proximal 1.668 0.644 4.605 1.779 

3341 Central Lateral Distal 1.228 0.591 3.389 1.631 

3341 Central Lateral Proximal 1.149 0.517 3.170 1.426 

3341 Central Medial Distal 1.787 0.826 4.640 2.280 

Table B.6, continued 
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3341 Central Medial Proximal 1.195 0.614 3.298 1.695 

3345 Central Lateral Proximal 1.238 0.529 3.418 1.460 

3345 Central Lateral Distal 1.622 0.800 4.478 2.207 

3345 Central Medial Distal 2.280 0.920 6.291 2.539 

3345 Central Medial Proximal 0.780 0.380 2.153 1.048 

61723 Central Lateral Distal 1.602 0.810 4.422 2.234 

61723 Central Lateral Proximal 1.715 0.848 4.735 2.341 

61723 Central Medial Distal 1.711 0.769 4.723 2.122 

61723 Central Medial Proximal 1.969 0.849 5.436 2.344 

61756 Central Lateral Distal 0.858 0.444 2.367 1.226 

61756 Central Lateral Proximal 0.942 0.488 2.600 1.346 

61756 Central Medial Distal 0.858 0.444 2.367 1.226 

61809 Central Lateral Distal 1.271 0.534 3.507 1.479 

61809 Central Lateral Proximal 1.402 0.654 3.869 1.806 

61809 Central Medial Proximal 1.092 0.518 3.020 1.429 

61848 Central Lateral Distal 0.877 0.460 2.422 1.269 

61848 Central Lateral Proximal 1.182 0.524 3.261 1.447 

61848 Central Medial Proximal 1.068 0.510 2.947 1.408 

61848 Central Medial Distal 0.964 0.513 2.661 1.416 

3257 Posterior Lateral Distal 1.427 0.612 3.938 1.690 

3257 Posterior Lateral Proximal 1.195 0.540 3.298 1.490 

3257 Posterior Medial Distal 0.542 0.313 1.496 0.863 

3257 Posterior Medial Proximal 1.432 0.654 3.952 1.805 

3265 Posterior Lateral Distal 1.797 0.781 4.961 2.155 

3265 Posterior Lateral Proximal 1.260 0.539 3.478 1.487 

3265 Posterior Medial Distal 1.060 0.500 2.926 1.379 

3265 Posterior Medial Proximal 0.973 0.478 2.685 1.321 

3341 Posterior Lateral Distal 1.192 0.516 3.290 1.424 

3341 Posterior Lateral Proximal 1.004 0.506 2.770 1.397 

3341 Posterior Medial Proximal 1.385 0.697 3.824 1.924 

3345 Posterior Lateral Distal 2.739 0.864 7.558 2.385 

3345 Posterior Lateral Proximal 1.130 0.517 3.120 1.427 

Table B.6, continued 
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3345 Posterior Medial Distal 1.006 0.496 2.775 1.368 

3345 Posterior Medial Proximal 1.327 0.585 3.661 1.615 

61723 Posterior Lateral Distal 2.596 1.076 7.164 2.969 

61723 Posterior Lateral Proximal 1.804 0.712 4.979 1.964 

61723 Posterior Medial Distal 1.224 0.569 3.378 1.571 

61723 Posterior Medial Proximal 1.258 0.505 3.471 1.394 

61756 Posterior Lateral Distal 1.032 0.487 2.849 1.345 

61756 Posterior Lateral Proximal 1.382 0.552 3.815 1.524 

61756 Posterior Medial Distal 1.070 0.467 2.954 1.290 

61809 Posterior Lateral Distal 1.368 0.519 3.776 1.432 

61809 Posterior Lateral Proximal 1.506 0.616 4.157 1.701 

61809 Posterior Medial Distal 1.222 0.548 3.372 1.513 

61809 Posterior Medial Proximal 1.364 0.607 3.765 1.677 

61848 Posterior Lateral Distal 1.091 0.478 3.011 1.319 

61848 Posterior Lateral Proximal 1.005 0.489 2.774 1.351 

61848 Posterior Medial Distal 1.075 0.490 2.966 1.353 

 
 
Table B.7: Raw data from quantitative histological analysis measuring GAG fraction 
Intensity 

Specimen  Anatomical 
Location 

Meniscal 
Region 

GAG 
Intensity 
Fraction 

3257 Lateral Anterior 0.659 

3257 Lateral Central 0.640 

3257 Lateral Posterior 0.655 

3257 Medial  Anterior 0.572 

3257 Medial Central 0.651 

3257 Medial Posterior 0.593 

3341 Lateral Anterior 0.649 

3341 Lateral Central 0.734 

3341 Lateral Posterior 0.623 

Table B.6, continued 
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3341 Medial Anterior 0.579 

3341 Medial Posterior 0.605 

3341 Medial Central 0.586 

3345 Lateral Anterior 0.634 

3345 Lateral Central 0.604 

3345 Lateral Posterior 0.574 

3345 Medial Anterior 0.660 

3345 Medial Central 0.723 

3345 Medial Posterior 0.666 

61756 Lateral Anterior 0.604 

61756 Lateral Central 0.581 

61756 Lateral Posterior 0.555 

61756 Medial Anterior 0.582 

61756 Medial Central 0.587 

61756 Medial Posterior 0.563 

61848 Lateral Anterior 0.663 

61848 Lateral Central 0.668 

61848 Lateral Posterior 0.587 

61848 Medial Anterior 0.653 

61848 Medial Central 0.618 

61848 Medial Posterior 0.590 

 
 
Table B.8: Raw data from quantitative histological analysis measuring distance from 
meniscal surface to GAG content 

Specimen Location Region Average Superficial Thickness 

   Proximal Distal 

3257 Lateral Anterior 400.36 481.33 

3257 Medial Anterior 1010.32 708.00 

3257 Lateral Central 736.00 813.85 

3257 Medial Central 701.82 1393.95 

3257 Lateral Posterior 786.24 702.21 

3257 Medial Posterior 781.70 576.41 

Table B.7, continued 
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3341 Lateral Anterior 813.13 964.31 

3341 Medial Anterior 1284.51 890.97 

3341 Lateral Central 574.26 805.56 

3341 Medial Central 1021.43 1181.28 

3341 Lateral Posterior 865.61 642.72 

3341 Medial Posterior 1242.00 1619.78 

3345 Lateral Anterior 741.86 684.50 

3345 Medial Anterior 517.57 501.07 

3345 Lateral Central 713.58 816.23 

3345 Medial Central 693.26 1222.35 

3345 Lateral Posterior 541.64 529.51 

3345 Medial Posterior 512.93 1302.62 

61756 Lateral Anterior 751.48 805.67 

61756 Medial Anterior 807.84 1093.68 

61756 Lateral Central 932.64 820.26 

61756 Medial Central 1252.52 1263.76 

61756 Lateral Posterior 888.71 506.31 

61756 Medial Posterior 1751.02 959.87 

61848 Lateral Anterior 508.35 708.94 

61848 Medial Anterior 881.16 726.64 

61848 Lateral Central 855.74 599.41 

61848 Medial Central 813.07 391.02 

61848 Lateral Posterior 1048.34 655.94 

61848 Medial Posterior 883.64 757.16 

 
 
 
 
 
 
 
 

Table B.8, continued 
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Table B.9: Raw data from quantitative histological analysis measuring ratio of GAG area 
to meniscal cross-sectional area  

Specimen Anatomical 
Location 

Meniscal 
Region 

GAG-to-
Meniscal Area 

Ratio 

3257 Lateral Anterior 0.680 

3341 Lateral Anterior 0.527 

3345 Lateral Anterior 0.614 

61756 Lateral Anterior 0.478 

61848 Lateral Anterior 0.690 

3341 Medial Anterior 0.364 

3345 Medial Anterior 0.715 

61756 Medial Anterior 0.482 

61848 Medial Anterior 0.466 

3257 Medial  Anterior 0.456 

3257 Lateral Central 0.500 

3341 Lateral Central 0.838 

3345 Lateral Central 0.564 

61756 Lateral Central 0.313 

61848 Lateral Central 0.672 

3257 Medial Central 0.563 

3341 Medial Central 0.285 

3345 Medial Central 0.555 

61756 Medial Central 0.238 

61848 Medial Central 0.673 

3257 Lateral Posterior 0.540 

3341 Lateral Posterior 0.477 

3345 Lateral Posterior 0.299 

61756 Lateral Posterior 0.585 

61848 Lateral Posterior 0.576 

3257 Medial Posterior 0.434 

3341 Medial Posterior 0.445 

3345 Medial Posterior 0.720 
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61756 Medial Posterior 0.176 

61848 Medial Posterior 0.485 

 

Table B.9, continued 
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