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Abstract

This study focuses on a specific engine, i.e., a dual-spool, separate-flow

turbofan engine with an Interstage Turbine Burner (ITB). This conventional

turbofan engine has been modified to include a secondary isobaric burner, i.e.,

ITB, in a transition duct between the high-pressure turbine and the low-pressure

turbine. The preliminary design phase for this modified engine starts with the

aerothermodynamics cycle analysis is consisting of parametric (i.e., on-design)

and performance (i.e., off-design) cycle analyses.

In parametric analysis, the modified engine performance parameters are

evaluated and compared with baseline engine in terms of design limitation

(maximum turbine inlet temperature), flight conditions (such as flight Mach

condition, ambient temperature and pressure), and design choices (such as

compressor pressure ratio, fan pressure ratio, fan bypass ratio etc.). A turbine

cooling model is also included to account for the effect of cooling air on engine

performance. The results from the on-design analysis confirmed the advantage

of using ITB, i.e., higher specific thrust with small increases in thrust specific

fuel consumption, less cooling air, and less NOx production, provided that the

main burner exit temperature and ITB exit temperature are properly specified.

It is also important to identify the critical ITB temperature, beyond which the

ITB is turned off and has no advantage at all.

With the encouraging results from parametric cycle analysis, a detailed per-

i



formance cycle analysis of the identical engine is also conducted for steady-state

engine performance prediction. The results from off-design cycle analysis show

that the ITB engine at full throttle setting has enhanced performance over

baseline engine. Furthermore, ITB engine operating at partial throttle settings

will exhibit higher thrust at lower specific fuel consumption and improved

thermal efficiency over the baseline engine. A mission analysis is also presented

to predict the fuel consumptions in certain mission phases.

Excel macrocode, Visual Basic for Application, and Excel neuron cells are

combined to facilitate Excel software to perform these cycle analyses. These

user-friendly programs compute and plot the data sequentially without forcing

users to open other types of post-processing programs.
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Ẇout Power W
x *Horizontal direction (+ equals to the right) m
Y *Mass fraction
z Geo-potential altitude km
z *Vertical direction (+ equals up) m

GREEK SYMBOLS

α Fan bypass ratio
α *Thermal diffusivity m2/s
β Bleed air mass fraction
∆t *time step size s
γ Specific heat ratio
ε Cooling air mass fraction
ηmH Mechanical efficiency for high-pressure spool
ηmL Mechanical efficiency for low-pressure spool
ηo Overall efficiency
ηp Propulsive efficiency
ηth Thermal efficiency
λ *Evaporation constant m2/s
µ *Viscosity m2/s
π Total pressure ratio

xvii



ρ *Density kg/m3

ρF,288.6K *Density of fuel droplet at 288.6K kg/m3

τ Total temperature ratio
τλ Total enthalpy ratio
θ0 Ratio of free-stream total temperature to SLS

temperature (standard day)

SUBSCRIPTS

0 Ambient condition

A *Air

b Main burner

c Properties upstream of main burner, engine core, or compressor

cH High-pressure compressor

cL Low-pressure compressor

d Diffuser

e exhaust state

F *Fuel

f Fan or fuel

Fv *Fuel vapor

g *Mixture of gaseous phase

i Layer of atmosphere

itb Properties downstream of ITB or ITB

m Coolant mixer

max Maximum

mix Mixture of combustion products with air

n Nozzle

nf Fan nozzle

prod Combustion products

R Reference values

Rspec Military specification

r Ram effect

r *Reference condition

s *Droplet surface

st *Steady-state condition

std Standard properties

t Properties between main burner exit and ITB, stagnation properties,
or turbine

tH High-pressure turbine

tL Low-pressure turbine

xviii



DIMENSIONLESS NUMBERS

BM *Mass transfer indicator of evaporation rate due to mass transfer
BT *Heat transfer indicator of evaporation rate due to heat transfer

to droplet from surrounding gas
CD *Drag coefficient drag / dynamic force ratio
Le *Lewis drag / dynamic force ratio
M Mach flow / sound speed ratio
Nu Nusselt total / conductive heat transfer ratio
Pr *Prandtl momentum / thermal diffusion ratio
Re *Reynolds inertia / viscous force ratio

ABBREVIATIONS

AFRL Air Force Research Laboratory
APR Aerospace Recommended Practice
CD Convergent-Divergent (nozzle)
CFD Computational Fluid Dynamics
CPR Compressor Pressure Ratio
CSH Constant Specific Heat
CTB Continuous Turbine Burner
CTT Constant Temperature Turbine
FBR Fan Bypass Ratio
FPR Fan Pressure Ratio
FTP Full Throttle Performance
HP High-pressure
HPC High-pressure Compressor
HPCPR High-pressure Compressor Pressure Ratio
HPT High-pressure Turbine
IHPTET Integrated High Performance Turbine Engine Technology
ITB High-pressure Compressor
LP Low-pressure
LPC Low-pressure Compressor
LPT High-pressure Turbine
MFP Mass Flow Parameter
MIB Multiple Interstage Burners
MSH Modified Specific Heat
NAE U.S. National Academy of Engineering
NCT Near Constant Temperature
PTP Partial Throttle Performance

xix



SCC Sequential Combustion Cycle
SI International System of Units
SLS Sea Level Static
ST Specific Thrust
TB Turbine Burner
TSFC Installed Thrust Specific Fuel Consumption
UCC Ultra Compact Combustor

xx



Chapter 1

Introduction

1.1 Background

Human’s dream of flying over the sky was achieved with the first successful

flight of the Wright brothers in December 1903. The success was then followed

by a magnificent development of human-controlled, powered heavier-than-air

aircraft throughout the twentieth century.

In the period from 1909 to 1940, the aircraft was powered by the pro-

peller/reciprocating engine propulsion system. However, this engine system

reached their performance limit at the end of World War II and gradually

became obsolete after the near-simultaneous invention of jet engines by Whittle

in England and von Ohain in Germany in early 1940 [15].

Initially, the jet engine was developed solely for military use. Following

a great deal of advancement in gas turbine technology, the first civil airplane

appeared in the early 1950s. Throughout the remaining half of the 20th century,

without any doubt, the jet engine has truly revolutionized both military and

civil aviations. Until today, the gas turbine form of the jet engine is still the

engine of choice for airplanes.
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In fact, U.S. National Academy of Engineering (NAE) selected Whittle

and von Ohain, the independent inventors of the jet engine, as the recipients

of the prestigious 1991 Charles Stark Draper Prize. The NAE citation to them

read: ”Their work, the turbojet engine, was completed too late to affect the

outcome of the war, but it arrived in time to revolutionize the postwar world of

transportation, medicine, and defense. Their work has revolutionized the world’s

transportation system, thus boosting the world’s economy and improving the

relationship between nations.” [37]

In the sector of civil aviation, the worldwide boom in air travel since the

past decade created an increasing market need for jumbo aircrafts, which can

occupy more passengers and cargos. An engine with high propulsion power but

low fuel consumption and maintenance cost is therefore highly desirable. On the

other hand, the U.S. government strove to enhance military propulsion capability

by initiating a national program in 1987, e.g., IHPTET (Integrated High Perfor-

mance Turbine Engine Technology), which formed a coordinated effort between

government, industry, and academia. These teams are producing revolution-

ary advancements in turbine engine technologies due to the synergistic effect

of combining improved aerothermodynamics, innovative structural designs, and

advanced material developments [17].

1.1.1 Jet Engine

The jet engine belongs to one type of gas turbines and is used to generate a

high-speed jet for propulsive purposes. It accelerates and discharges a high-speed

moving jet of fluid to generate thrust in accordance with Newton’s Third Law

of Motion. The examples of a gas turbine being used for aircraft propulsion

applications include turboprops, turbojets, turbofans, and ramjets.

Generally, a gas turbine consists of an upstream compressor coupled to a

downstream turbine, and a burner (also called combustor) in-between, as shown

2



in Figure 1.1. These three components comprise the ‘heart’ of a gas turbine,

namely, gas generator, in most common air-breathing propulsion engines.

Figure 1.1: Schematic diagram of a gas generator

1.1.2 Brayton Cycle

The idea behind the gas generator is to convert the intake air, mixed with

the fuel, into a high pressure and high temperature gas. The operation of a gas

generator can be described thermodynamically by the Brayton cycle, in which the

intake air is compressed isentropically (process 2-3 ), burned at constant pressure

inside the burner (process 3-4 ), expanded isentropically over the turbine (process

4-5 ), and finally exhausted back to the starting pressure, as shown in Figure 1.2.

Depending on the applications of the gas turbine, the energy provided is ex-

tracted and used for different applications. A turbojet engine can be constructed

by adding an inlet and an exhaust nozzle to a gas generator. The exhaust nozzle

converts the internal energy of the hot gas into kinetic energy or thrust. The

work extracted by the turbine is to drive the compressor, or to provide auxiliary

power. In addition, part of the work extracted by the turbine is also used to drive

a fan for a turbofan, or a propeller for a turboprop.
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Figure 1.2: T-s diagram of an ideal Brayton cycle

1.1.3 Turbofan Engine

The turbofan engine, a modern variation of the basic gas turbine engine,

has gained popularity in most new jet-powered aircrafts, including military and

civilian types. For instances, civil-typed turbofans include General Electric GE90

(Figure 1.3), Rolls Royce Trent 500, Pratt & Whitney PW4000 (Figure 1.4), and

CFM International CFM-56 series engines. Meanwhile, military-typed turbofans

include Rolls-Royce/Turbomeca Adour engines, General Electric GE F110, Pratt

& Whitney F119-PW-100, and Eurojet EJ200.

Basically, the turbofan is a turbojet engine with an addition of a fan. The fan

causes more air to bypass the engine core and exit at higher speeds, resulting in

greater thrust, lower specific fuel consumption and reduced noise level. Usually,

the fan and low-pressure compressor are connected on the same shaft to a low-

pressure turbine. A turbofan with this type of arrangement is called a two-spool

turbofan engine. Since the bypass air does not mix with the engine core stream

at the nozzle, the turbofan engine in this study is of the separate-exhaust type.
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Figure 1.3: General Electric GE90 turbofan [33]

Figure 1.4: Pratt & Whitney PW4000 turbofan [33]
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1.2 Reheat Cycle

The reheat cycle is an effective and widely-used method of increasing thrust

quickly. It is only employed by military supersonic aircrafts, with the exception

of the Concorde supersonic airliner [15].

The specific output of a Brayton cycle can be increased through a reheating

process, where the expanded gas from each expansion process is reheated before

the next expansion process in a turbine. The individual expansions may occur

either in separate turbine machines or in different stages of a multistage machine

[57]. Theoretically, one can employ an infinite number of reheat stages, leading

to an isothermal expansion. Figure 1.5 illustrates an ideal Brayton cycle with a

reheat process. Some research on reheat cycle that have recently been done are

found in some literature and will be presented in Chapter 2.

Figure 1.5: T-s diagram of an ideal Brayton cycle with reheat process

1.2.1 Interstage Turbine Burner (ITB)

Throughout aero-vehicle evolution, scientists and engineers have attempted

to improve engine efficiency, to make it smaller, lighter, and yet more powerful.
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One of the proposed solutions to achieve these goals is the introduction of the

Interstage Turbine Burner (ITB), one of the reheat cycle applications, into the

engines.

Most commercial turbofan engines have a transition duct between the

high-pressure turbine (HPT) and the low-pressure turbine (LPT). The ITB

considered in this study is the placement of flame-holders inside the transition

duct, thus becoming a secondary combustor. By doing so, only slight modifica-

tion needs to be done to the existing system, without adding much size, weight,

and complexity to the current engine systems. Possible modifications include a

separate fuel injection system for the ITB, tougher materials for the LPT inlet

guide vanes, and the associated control systems.

Referring to T-s diagram in Figure 1.5, the high temperature and high pres-

sure mixture, as a result of the first heat addition process in the main burner

(process 3-4 ), will undergo the first expansion process in the HPT (process 4-3’ ).

It is then followed by secondary combustion in the ITB (process 3’-4’ ). Simi-

lar to the main burner, combustion inside ITB is ideally an isobaric or constant

pressure heat addition process. The pressure loss across the ITB is estimated to

have a value of between 2 to 4 percent of total pressure at ITB inlet. Lastly, the

reheated high-energy mixture will undergo second expansion process across the

LPT (process 4’-5’ ).

1.2.2 Advantages of ITB

The major advantages associated with the use of the ITB are an increase in

thrust and potential reduction in NOx emission, as illustrated in Figure 1.6. In

Figure 1.6a, the inlet temperature of the HPT remains unchanged. As the fluid

undergoes secondary combustion, a higher specific thrust is produced, as depicted

in the shaded area. Figure 1.6b shows the case in which the peak temperature in-

side the main combustor is decreased; therefore, potentially reducing the amount
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of thermal NOx production. Furthermore, by lowering the temperature of the

main combustor, less cooling air is required for cooling the HPT blades. The loss

in thrust due to a lower peak engine temperature (area A) can be compensated

by secondary combustion in the ITB (area B).

Figure 1.6: (a) Increased thrust,and (b) NOx reduction
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1.3 Aerothermodynamic Cycle Analysis

Since the introduction of the turbofan in the 1960s, much research effort

is put into the development of state-of-art engine components based on the

traditional turbofan cycles. However, it is a great necessity to start focusing on

innovative cycles, which promise better performance and efficiency. Although

the developmental cost may be higher, the improvement in performance should

pay off in the long run. As a result, the investigation of the ITB cycle should

start from the very beginning of a gas turbine design cycle, as shown in Figure 1.7.

Typically, the design procedure for a gas turbine always starts with the

aerothermodynamic cycle analysis. It is then followed by aerodynamics study

and mechanical design of turbomachinery. These three steps are often iterative

until the requirements for the engine specification in mind are fulfilled. In

general, aerothermodynamic cycle analysis consists of two continuous, but

distinct steps, i.e., parametric and performance cycle analyses.

In order to identify the performance gain of a turbofan with an ITB, it

is essential to start with parametric design cycle analysis (commonly known

as on-design analysis). Then, a performance cycle analysis (also known as

off-design analysis) is performed to understand how it performs at conditions

other than those for which it was designed.

There are some tools available that can perform such analysis, such as

Mattingly’s AEDsys software suite and some cycle analysis codes developed

by engine manufacturers. However, many programs with such capabilities

are difficult to obtain the right to use because they are usually proprietary

products, which are developed and used in-house only. A program, like the

AEDsys developed by Mattingly, Heiser, and Pratt [34], is robust, user-friendly,

and free to use with examples presented in their textbook ; but, this pro-
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gram is designed with specified engine configurations in mind. In addition,

modifying the program will be impossible because the source code is not available.

For that reason, one of the objectives of this study is to develop two programs

to perform parametric and performance cycle analyses, respectively, for the ITB

engine cycle.

1.4 Chapter Outline

In next chapter, literature regarding the works that have been done on uti-

lizing reheat cycle and closely-related fields is presented. The details of the para-

metric and performance cycle analyses are then presented in Chapter 4 and 5,

respectively. All the results associated with cycle analyses are presented and

discussed in Chapter 6. The summary of the findings and recommendations for

future work are presented in Chapter 7. In addition, several appendices are pro-

vided for conciseness where needed and other contribution in the gas turbine

research community.
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Figure 1.7: Typical gas turbine design procedure
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Chapter 2

Literature Review

In fact, the idea of reheating an expanded gas within a turbine is not new.

It is now popular in power generation industry, where they utilize the reheaters

(within the turbine stages) along with the intercoolers (within the compressor

stages) for boosting the specific power output of the industrial gas turbines. A

lot of research efforts have been put into the application of the reheat process in

the ground-based power generation systems. To name a few, they are Glassman

A.J. [11], Rice I.G. [42], Tekeya et al. [50], El-Masri [9], and Crane R. I. [8].

However, the application of reheaters within a turbine in aircraft gas turbine

engine is rare because of its limitation of the size and weight.

Generally, the type of reheater used in an aircraft engine is called the

afterburner. Afterburning, as the name implies, involves burning additional

fuel and further increases the kinetic energy of the gases leaving the turbine.

Typically, military jet engines utilize an afterburner for augmenting thrust.

Figure 2.1 shows the T-s diagram for a simple jet engine with afterburning

process up to 1900K. Due to the penalty of very high fuel consumption, an

afterburner usually operates in short duration and is used only when large

amount of thrust is needed for some critical mission phases.
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Figure 2.1: T-s diagram of a jet engine with afterburning

2.1 Cycle Analyses on Aircraft Engines

In an attempt to increase thrust-to-weight ratio and to widen the range

of aircraft engine operation, Sirignano et al. conceived the concept of Turbine

Burner (TB) in 1997 [47]. This concept was conceived to remedy the efficiency

decrease due to the use of afterburner. Additional fuel was now burned in

the turbine at a higher gas pressure, where the flow absorbs heat while doing

work to the rotor at the same time. Ideally, it maintains constant stagnation

temperature in the turbine expansion process, as shown in Figure 2.2. By doing

so, the isothermal heat addition resembles those of a Carnot cycle, which is

known as the most efficient cycle.

For the purpose of proof of concept, they used rather simplified assump-

tions, such as calorically perfect gas, constant gas properties, ideal component

efficiencies, and no turbine cooling. Assuming a single-spool turbojet engine,

their initial findings showed that the benefits of using TB increase with higher

flight Mach number, i.e., about 20% increase in specific thrust with only about

10% increase of thrust specific fuel consumption over a non-afterburning Brayton
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Figure 2.2: T-s diagram of a jet engine with turbine burner

cycle. Later, they found that the TB gave even greater performance gain with

increasing compression ratios rather than increasing flight Mach number. At

the high compression ratios, the TB engine configuration produces almost equal

specific thrust as those produced by conventional afterburner configuration,

without the penalty of high fuel consumption rate associated with typical

afterburner design[48].

In 2001, Liu and Sirignano extended the study by introducing a variant

of turbine-burner, i.e., ITB [32]. The details of component efficiencies and

the method of analysis were identical to those listed in [48], except that they

included a single-shaft, separate-exhaust turbofan engine.

In the ITB, the turbine stators or nozzles were converted into the combus-

tors. Obviously, the ITB was less technically challenging compared with the

TB, in which combustion took place in the turbine rotor. To achieve isothermal

heat addition, an ‘infinite’ number of discrete ITBs (denoted by M-ITB), each

with an isentropic expansion followed by an isobaric heat addition, were used

to approach a continuous turbine burner (CTB) cycle, as shown in Figure 2.3.
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Their results showed that the engine performance increased as the number of

ITBs increased.

Retaining the benefits found in their early work, they continued to present

the distinct advantage of the TB engine over the conventional engine. A TB

engine benefited from a larger bypass fan and a higher turbine inlet temperature.

Furthermore, they emphasized the importance of finding an optimized power

distribution of turbine segments in a multiple-ITB design for a better thermal

efficiency.

Figure 2.3: CTB and M-ITB cycles [32]

Another concept similar to the ITB worth mentioning is the Sequential

Combustion Cycle (SCC). Basically, SCC means that a second combustion after

the HPT is used to reheat the gas before the final expansion at the LPT. In fact,

ABB Power Generation has successfully designed a new family of industrial gas

turbine (e.g., ABB GT26) based on the SCC concept for the power generation

[45] (Figure 2.4) and has been marketing the products for some times. With this
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success, Vogeler proposed to apply the SCC concept to the high bypass ratio

jet engine [53]. Vogeler asserted that the proposed SCC would allow increased

thrust without pushing technology on the materials and turbine cooling system.

In his analysis, the variable specific heat due to the compression, heat addition

and expansion processes were taken care of by locally correcting these values

from a gas table. Vogeler performed few analyses on two types of turbofan

engine configurations, i.e., single-spool and twin-spool. A constant level of

technology is applied in all the case studies.

According to his findings, the author emphasized the advantage of SCC on

the single-spool engine over the twin-spool engine. The reason given was that

the expansion of most of the high pressure and high temperature gas already

took place in the HPT. The low pressure ratio across LPT did not allow an

effective use of this energy in the fan. As a result, it requires that the overall

engine pressure ratio must be considerably higher than the conventional engine

with the same level of heat addition. It was necessary to offer enough pressure

drop in the second combustor to utilize a high fuel input and transfer this energy

with a good efficiency to the spool.

Andriana et al. [2] also investigated the performance gain of a turbojet

engine with a so-called Constant Temperature Turbine (CTT) cycle. The

CTT cycle was exactly the same as the Near Constant Temperature (NCT)

cycle proposed by Liu and Sirignano [32]. Their analysis was somewhat less

thorough compared with Sirignano et al.[48] and they did not compare the

performance gain of CTT engine with any base engine. Nevertheless, they

outlined the off-design analysis of their cycle by deriving a simple model.

The model was derived by assuming that the flows at the turbine inlet and

at the exhaust nozzle are choked. It yielded an expression for the compres-

sor pressure ratio as a function of the engine inlet conditions, turbine inlet

temperature, and the area ratio between the exhaust nozzle and the turbine inlet.
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2.2 Cycle Analyses on Ground-based Engines

With the success of the SCC concept by ABB, it is still worthwhile to

know other researchers’ works of applying the ITB cycle to the land-based gas

turbines. Among them include Sirignano and Liu [48] and Chen et al. [4].

Figure 2.4: Comparison of SCC (GT26) and conventional (GT13E2) gas turbines
[45]

Chen et al. investigated the engine performance with multiple interstage

burners (MIB), similar to M-ITB cycle as first proposed in [32]. The authors

included various turbine cooling-flow schemes and the variable specific heats

into the analysis for more accurate prediction of the gas turbine engine per-

formance. Their findings confirmed the significant improvement through the

use of MIB for the land-based power production systems. Interestingly, it

was found that two MIBs yield the near maximum thermal efficiency, while

only one or more than two MIBs would start to deteriorate the thermal efficiency.
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2.3 Experiments on ITB

From the preceding reviews, much analytical effort has been put into

studying the potential gain of the TB or its similar concepts. Meanwhile, some

researchers at Air Force Research Laboratory (AFRL) are pilot-testing an innova-

tive combustor, called Ultra-Compact Combustor (UCC) experimentally [56; 49].

They claimed that UCC has the potential to be used as a main burner or as an

ITB that does not impact engine thrust-to-weight, pollutant emissions, or overall

system performance. The UCC design integrates the compressor and turbine fea-

tures, which will enable a shorter and potentially less complex gas turbine engine.

In the UCC concept, a cavity runs around the outer circumference of the

extended turbine inlet guide vanes, as shown in Figure 2.5. Aligned with this

cavity, within each vane, will be a radial cavity. This design allows burning

rich in the circumferential cavity, and allowing much of the required combustion

residence time to take place in the circumferential direction of engine, rather

than the axial as is done in the conventional burners. They estimated the UCC

concept would eliminate many existing engine components, leading to a 66%

shorter in length than that of a conventional combustion system, as shown in

Figure 2.6.

The experimental results demonstrated its advantage of having higher heat

release rate by a factor of two and a shorter flame length by 50% compared

to the conventional combustor designs. The success of this technology could

translate to a significantly reduced engine length and weight, resulting in a

higher power density machine.

The UCC design is based on the earlier experiments on combustion with

high g-loading by Lewis [24]. In his experiments, Lewis observed that the role of

centrifugal forces on enhancing the flame spreading speed to a value beyond that
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of a turbulent flame. The centrifugal forces were established up to 104 g and the

observed flame speeds were about four times that of a conventional turbulent

flame speed. To explain this phenomenon, he proposed the bubble-transport

theory, which stated that the “bubbles” or eddies moving ahead of the flame front

due to the centripetal acceleration helped enhance turbulence, and subsequently

spread the flames.

Figure 2.5: UCC showing circumferential cavity and turbine [56]
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Figure 2.6: Cutaway comparison of a conventional gas turbine engine (bottom)
and a gas turbine engine with UCC features [56]
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2.4 Numerical Analyses

For a better understanding of the phenomena of burning fuel inside a

harsh environment, for instance, the turbine rotor, several researchers also

performed numerical analysis on the ITB. They aimed to determine whether

such combustion scheme is feasible.

Siow and Yang [46] presented the computational result of the combusting

flow field inside a simplified ITB. ITB, located between LPT and HPT, was

subject to different inflow velocities, flame-holder sizes and shapes. The results

demonstrated that the flow and combustion stability depended strongly on

Reynolds number. The author asserted that acoustic waves must be taken into

consideration when designing an ITB.

Concurrent with the experimental effort at AFRL by Zelina’s group [56],

Mawid [35] carried out the three-dimensional computational fluid dynamics

(CFD) computations to guide the ITB experiments. They claimed that it was

very important to identify the key design parameters for the best performance

and to optimize the ITB design configurations. The results presented that the

intense combustion occurs inside the circumferential cavity (Figure 2.5). It is

also noted that the radial vane cavity was very useful in transporting the hot

combustion products into the circumferential cavity to mix with the main airflow.

Recently, Hendricks et al. [13] performed CFD study on a sequential two-

stage power generation combustion system, which was similar to GT24/GT26

industrial gas turbines. In their study, the two-stage combustor was termed as

an ITB. The simulation was performed within a single computational domain,

with a full coupling between the two combustors and the rotating HPT.

Computational results showed the interaction of the combustor flow and the
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HPT stages. They observed the non-uniformity of the flow as it entered the HPT

flow field as well as the downstream as it entered the mixing and fueling zone

of the second stage combustor. In addition, the simulation demonstrated the

importance of including the rotating HPT blades in the computation, because

this resulted in a direct computation of the combustion within the first turbine

stage, and an accurate simulation of the flow in the second combustion stage.

The direct computation of hot streaks through the rotating HPT stage led to an

improved understanding of the aerodynamic relationship between the primary

and secondary combustors, and the turbomachinery.

This two-stage combustor was designed to provide a stable, lean burning,

and low temperature alternative to the single-stage combustors. A lower

HPT inlet temperature translated directly to an improvement in the blade life

durability and the reduction in pollutant emissions.

2.5 Turbine Burner and ITB Concepts

As one can notice above, the concept of the reheat process appears in

different names in literature, such as the CTB, CTT cycle, NCT cycle, SCC,

and ITB, which is quite confusing sometimes. CTB, CTT and NCT cycles are

somewhat similar to TB concept, which is to maintain an isothermal combustion

inside the turbine passages for a maximum thermal efficiency. On the contrary,

the SCC and ITB concepts employ a separate secondary combustor after the first

expansion process at HPT stage or machine. In fact, the SCC and ITB concepts

mentioned here are equivalent to 1-ITB as presented in Liu and Sirignano [32]

and Chen et al. [4].

Obviously, an ITB is a somewhat different concept from a TB. As stated in

the preceding chapter, ITB is an isobaric or constant pressure combustor between
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two turbine stages, not inside turbine stages. Unlike the TB, the combustion in

an ITB does not occur in the turbine rotors, so no work is extracted from the

combusting flow. In other words, the combustion and the work extraction are

decoupled in the analysis. Nevertheless, both concepts belong to the category of

the reheat process and are expected to give similar trends of engine performance

gain, with ITB having a less thermal efficiency and complexity.

2.6 Summary

In this chapter, the results from these researchers presented the worthiness

of designing ITB. Nevertheless, there are several questions arising from these

results. First of foremost, the turbine cooling flow is not modeled in the cycle

analysis on an aircraft engine. It is found that the turbine inlet temperature

used in their analysis (i.e., 1600K) is higher than the current turbine material

limit (i.e., 1370K [55]). Therefore, it is reasonable to model the turbine cooling

flow in the cycle analysis. Without accounting for the cooling flow effect, any

performance gain associated with ITB may be overestimated.

Most studies on the ITB are only limited to the parametric cycle analysis.

Few researchers did conduct the performance analysis, but in a relatively

simple and generic manners. In order to address the potential advantages and

disadvantages of ITB, it is definitely a great necessity to develop an accurate

performance analysis code, which is one of the important parts of this work.

2.7 Research Overview

As clearly seen in Figure 1.7, the present doctoral work is part of a broader

effort in designing innovative gas turbine engine with a modified power cycle.
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More specifically, the present study is aimed at performing aerothermodynamic

cycle analysis of a conventional turbofan engine with an ITB. Through this

one-dimensional modeling and analysis, the emphasis is on accessing and

revealing both its potentials and drawbacks of adding an ITB on the engine

performance.

The research that have been carried out can be outlined as follows:

1. Review of the past and current research effort on the ITB or closely-related

concepts to fully understand their feasibilities and limitations applicable to

a typical turbofan engine.

2. A detailed approach for modeling each engine component in parametric

cycle analysis, including the approximate turbine cooling model.

3. Formulation of equations for a steady-state performance cycle analysis of

an ITB engine and its solution procedures.

4. Development of programs that perform a complete aerothermodynamic cy-

cle analysis. These programs should be easy to use and widely accessible.
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Chapter 3

Analytical Tools

3.1 Aircraft Engine Performance Parameters

In describing the performance of a turbofan with ITB, it is helpful to define

three important air-breathing engine performance parameters that are useful in

aircraft propulsion. They are thrust, fuel consumption, and engine efficiencies.

Each of these parameters is briefly discussed here and the detailed derivations of

each term will be shown in both cycle analyses.

3.1.1 Thrust

Thrust is the force used to sustain a flight (thrust = drag), to accelerate

a flight (thrust > drag),or to decelerate a flight (thrust < drag). Referring to

Figure 3.1, we can apply momentum balance to the control surface. Uninstalled

thrust (F) of a jet engine (single inlet and single exhaust) is given by

F =
(ṁ0 + ṁfuel)Ve − ṁ0V0

gc

+ (Pe − P0)Ae (3.1)

where ṁ0, ṁfuel are mass flow rates of air and fuel, respectively,

V0, Ve are velocities at the inlet and exit, respectively,

P0, Pe are pressures at the inlet and exit, respectively.

gc is the Newton’s constant (= 32.3 lb/ft2 for English unit, or = 1 for SI unit).
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Ae is the cross-sectional area at the exit.

Ideally, the hot gas is expanded to the ambient pressure, which gives Pe = P0.

Equation 3.1 then becomes

F =
(ṁ0 + ṁfuel)Ve − ṁ0V0

gc

(3.2)

The uninstalled thrust, as described above, depends on the engine alone and

is independent of the nacelle. Including nacelle will give the installed thrust (T ),

as given by

T = F −Dinlet −Dnoz (3.3)

where Dinlet and Dnoz are the drag forces from the inlet and the nozzle, respectively.

Obviously, installed thrust T is less than the uninstalled thrust F because

some useful forces have to be used to overcome the nacelle drags.

Figure 3.1: Momentum fluxes and pressure forces difference on an aircraft propul-
sion system

3.1.2 Thrust Specific Fuel Consumptions

Other than thrust, we would also like to know how significant the thrust

increases compared to the amount of fuel injected. Then, thrust specific fuel
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consumptions is the rate of fuel use by the propulsion system per unit of thrust

produced. The uninstalled thrust specific fuel consumption (S) and the installed

thrust specific fuel consumption (TSFC) are given by

S =
ṁfuel

F
(3.4)

TSFC =
ṁfuel

T
(3.5)

3.1.3 Engine Efficiencies

The following performance parameters will also be useful, namely, thermal

efficiency, propulsive efficiency, and overall efficiency.

Thermal Efficiency (ηth)

The thermal efficiency is defined as the net rate of the kinetic energy gain

out of the engine Ẇout divided by the rate of thermal energy available from the

fuel Q̇in.

ηth =
Ẇout

Q̇in

(3.6)

Propulsive Efficiency (ηp)

The propulsive efficiency defines the ratio of the aircraft power (thrust T ×

flight velocity V0) to the power out of the engine Ẇout. In other words, it measures

how effectively the engine power Ẇout is used to propel the aircraft.

ηp =
TV0

Ẇout

(3.7)

Overall Efficiency (ηo)

An overall performance of a propulsion system is given by the product of

thermal and propulsive efficiencies.
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ηo = ηthηp (3.8)

3.2 Engine Cycle and Station Numbering

The goal of this research is aimed at examining the potential of using

an ITB in a turbofan engine at both subsonic and supersonic flight regimes.

Currently, a conventional dual-spool, separate-exhaust turbofan engine is chosen

as the baseline engine. The complete schematic diagram of this selected engine

cycle is shown in Figure 3.2.

Figure 3.2: Schematic diagram of a turbofan engine with ITB

Figure 3.2 generally illustrate the configuration of a turbofan engine and the

station numbering for each component. The station numbers of each component

location is in accordance with Aerospace Recommended Practice (APR) 755A

[10] and will be used throughout the analysis in this research, including the

performance cycle analysis.
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Table 3.1: Definition for each station number

Station Location
0 Far upstream or freestream condition
1 Inlet or diffuser entry
2 Inlet or diffuser exit, fan entry, and low-pressure compressor entry
2.5 Low-pressure compressor exit

High-pressure compressor entry
3 High-pressure compressor exit
3.1 Main burner entry
4 Main burner exit

High-pressure turbine first nozzle guide vane entry
4.1 Coolant mixer entry
4.4 High-pressure turbine first nozzle guide vane exit

ITB entry
4.5 ITB exit

Low-pressure turbine entry
5 Low-pressure turbine exit
7 Core exhaust nozzle entry
8 Core exhaust nozzle throat
9 Core exhaust nozzle exit
13 Fan exit
17 Fan exhaust nozzle entry
18 Fan exhaust nozzle throat
19 Fan exhaust nozzle exit
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3.3 Gas Model

In this analysis, it is assumed that the working fluids, i.e., the air and

combustion products, are modeled as perfect gases in their thermodynamic

equilibrium.

Generally, specific heat at constant pressure (cp) for air is function of

temperature. Also, cp and specific heat ratio (γ) for most typical hydrocarbons

and air combustion products are functions of temperature and the fuel-air ratios

[33]. Therefore, it is necessary to model the variation of cp and γ across engine

components where the changes are significant, for instance, downstream of

burner.

Throughout the analysis, the variation of gas properties with temperature

is approximated by assuming constant gas properties, such as cp, γ, and gas

constant (R), at three different sections across the engine core:

• Section 1: components upstream of main burner (i.e., before station 4)

• Section 2: components between station 4 and 4.4

• Section 3: components downstream of ITB (i.e., station 4.5)

The computations of these properties are included into subroutine EN-

THALPY. All equations used to calculate these properties are presented in Ap-

pendix C.

3.4 Notations for Compressible Flow

In the compressible flow system like in the gas turbine engine system,

for example, three independent intensive properties are required to fix the

thermodynamic state of the gas when it is in motion. At any given point in

the compressible flow field, it is achieved by specifying the speed of the gas and
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any two independent properties such as pressure and temperature. However,

specifying speed in one-dimensional flow is not always convenient or useful [33].

Consequently, most flow properties used in compressible flow analysis

are dependant upon the speed of gas. Any two of these properties, namely,

stagnation temperature, stagnation pressure, or Mach number, are adequate to

fix a state of a moving gas.

In order to better manipulate the cycle analysis results, it is very important

to thoroughly comprehend the physical meanings of some useful quantity

notations for compressible flow that are about to be defined below.

First of all, stagnation enthalpy or total enthalpy (ht) is defined as the en-

thalpy obtained when a steady flowing fluid is brought to rest in the absence

of any heat or work interactions. Applying First Law of Thermodynamics to a

steady flowing gas gives total enthalpy:

ht = h +
V 2

2
(3.9)

where V is the flow velocity.

For calorically perfect gas (i.e., constant cp), the above equation can be

written for stagnation temperature or total temperature (Tt) as

Tt = T +
V 2

2Cp

(3.10)

where T is the static temperature.

Stagnation pressure or total pressure (Pt) is defined as the pressure reached

when a steady flowing gas is brought to rest adiabatically and irreversibly. Using

the isentropic relation, total pressure is given by
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Pt = P

(
Tt

T

)γ/(γ−1)

(3.11)

Assuming that the gas is a perfect gas, note that the speed of sound (a) is a

function of the thermodynamic properties of the gas [3]:

a =
√

γgcRT (3.12)

Using this relation for the speed of sound, it yields another important pa-

rameter, i.e., Mach number :

M2 =
V

γgcRT
(3.13)

Note that the Mach number depends on the state of the flowing gas.

With this expression, one can obtain two useful relations that relate total

temperature and total pressure to Mach number, such as

Pt = P
(
1 +

γ − 1

2
M2

) γ
γ−1

(3.14)

Tt = T
(
1 +

γ − 1

2
M2

)
(3.15)

The ratio of total pressures (π) and temperatures (τ) across each component

are used extensively in cycle analyses. They are identified by a subscript, as

shown in Table 3.2.

For instance, compressor total pressure ratio and total temperature ratio are

denoted πc and τc, respectively.
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Table 3.2: Subscript definition for total property ratios (referring to station num-
bers in Figure 3.3)

Subscript Component Station
b Main burner 3.1 → 4
cH High-pressure compressor 2.5 → 3
cL Low-pressure compressor 2 → 2.5
d Inlet or diffuser 0 → 2
f Fan 2 → 13
itb ITB 4.4 → 4.5
m1 Coolant mixer 1 4.1 → 4.2
m2 Coolant mixer 2 4.3 → 4.4
n Core exhaust nozzle 7 → 9
nf Fan exhaust nozzle 17 → 19
tH High-pressure turbine 4 → 4.4
tL Low-pressure turbine 4.5 → 5

Figure 3.3: Engine layout with cooling air flow
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3.5 Mass Flow Rates

Figure 3.3 presents an engine layout with the cooling airflow paths. Readers

are able to visualize several air and fuel flow paths within the engine such as

(1) the extraction of bleed air and cooling air from the compressor exit, (2) the

mixing of cooling air into main stream, and (3) the mixing of injected fuel with

air. Since those mass flow rates have major importance in the modeling of engine

cycle analysis, it has to be very careful in defining each term. The symbol ṁ is

used for the mass flow rate with a subscript to denote the type as follows:

Mass ratios:

Fan bypass ratio:

α =
ṁf

ṁc

(3.16)

Bleed air mass fraction:

β =
ṁba

ṁc

(3.17)

Cooling air mass fraction:

ε1 =
ṁc1

ṁc

(3.18)

ε2 =
ṁc2

ṁc

(3.19)

Burner fuel-air ratio:

fb =
ṁb

ṁ3.1

(3.20)

ITB fuel-air ratio:

fitb =
ṁitb

ṁ4.4

(3.21)
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Mass flow rate at each station:

ṁ0 = ṁc + ṁf (3.22)

ṁ3.1 = ṁc (1− β − ε1 − ε2) (3.23)

ṁ4 = ṁ3.1 + ṁb

= ṁc (1− β − ε1 − ε2) (1 + fb) (3.24)

ṁ4.1 = ṁ4 (3.25)

ṁ4.2 = ṁ4 + ṁc1

= ṁc [(1− β − ε1 − ε2) (1 + fb) + ε1] (3.26)

ṁ4.3 = ṁ4.2 (3.27)

ṁ4.4 = ṁ4.3 + ṁc2

= ṁc [(1− β − ε1 − ε2) (1 + fb) + ε1 + ε2] (3.28)

ṁ4.5 = ṁ4.4 + ṁitb

= ṁc [(1− β − ε1 − ε2) (1 + fb) + ε1 + ε2] (1 + fitb) (3.29)

ṁ9 = ṁ4.5 (3.30)
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3.6 Component Efficiencies

3.6.1 Rotating Machineries

For rotating machinery components such as compressor and turbine, the

losses or real effects are usually denoted by means of efficiencies. The polytropic

efficiency (e) is used to relate the stage total pressure ratio (π) to total tempera-

ture ratio (τ) because it represents a level of technology rather than the behavior

of a given component [34]. For instance, polytropic efficiency for a compressor is

defined as [33]:

ηc =
ideal work for compression for a differential pressure change

actual work for compression for a differential pressure change
(3.31)

With the assumption of constant ec, we can obtain the relation between τc

and πc as follow:

τc = π(γ−1)/γec
c (3.32)

On the other hand, the behavior of a component is represented by isentropic

efficiency (η), which is used in performance cycle analysis. The compressor isen-

tropic efficiency is defined as follows [33]:

ηc =
ideal work of compression for given πc

actual work of compression for given πc

=
π

(γ−1)/γ
c − 1

π
(γ−1)/γec
c − 1

(3.33)

Going through similar procedure as the compressor, we obtain turbine isen-

tropic efficiency (ηt), turbine polytropic efficiency (et), and the relation between

τt and πt as follows:
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ηt =
actual work of compression for given πt

ideal work of compression for given πt

(3.34)

ηt =
1− π

(γ−1)/γet

t

1− π
(γ−1)/γ
t

(3.35)

τt = π
(γ−1)et/γ
t (3.36)

3.6.2 Combustion components

Combustion efficiency is defined as the ratio of the actual thermal energy

rise to the maximum possible thermal energy rise [34]. In this study, combustion

efficiencies for main burner (ηb) and ITB (ηitb) are set as input parameters.

3.6.3 Power transmission components

Mechanical efficiency is defined as the ratio of mechanical energy output to

the mechanical energy input. It is usually used to account for any losses due

to bearing friction, seal drag, windage etc while transmitting mechanical power

by means of shafts. These terms, i.e., ηmL and ηmH , represent the mechanical

efficiencies for low-pressure and high-pressure spool, respectively.
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Chapter 4

Parametric Cycle Analysis of a

Turbofan Engine with ITB

4.1 Introduction

In the previous chapter, the need for an analytical tool to accurately

estimate the engine performance of a dual-spool turbofan with ITB has been

identified. In this chapter, the design parameters, assumptions, and modeling

approaches incorporated in the parametric cycle analysis program are presented

and discussed.

As clearly shown in Figure 1.7, engine design starts with the parametric

cycle analysis, followed by the performance cycle analysis, which is presented in

the Chapter 5. These two analyses are done by treating each stream entering

engine as the one-dimensional flow of a perfect gas. As the working fluids (such

as air and products of combustion) flow across the engine, their thermodynamic

properties change, which also characterize the behaviors of each engine compo-

nent.

The objective of parametric cycle analysis is to estimate the performance

parameters (primarily specific thrust and thrust specific fuel consumption)
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in terms of design limitation (maximum turbine inlet temperature), flight

conditions (such as flight Mach condition, ambient temperature and pressure),

and design choices [such as compressor pressure ratio (CPR), fan pressure ratio

(FPR), fan bypass ratio (FBR) etc.] [34]. In other words, it determines how the

engine performance varies with changes in design limits, flight conditions, and

design choices.

Since geometry is not included in the parametric study, one can easily

specify engine component characteristics over a desired operating range for a

particular application. Performance results are then used to search for possible

operating range for each engine component for an optimum design choice.

By doing so, however, the resulting plots of specific thrust (one of primary

performance parameters) versus, say, fan bypass ratio are not representing the

behavior of a specific engine. Each point on such plots denotes a different engine

configuration or a so-called design-point engine. Therefore, parametric analysis

is sometimes called design-point analysis, or on-design analysis.

At the end of the parametric analysis, one should be able to identify the

possible range and the combinations of each design choice that promise to give

the best performance at each flight condition.

4.2 Assumptions

The following assumptions are summarized:

1. The working fluid is air and products of combustion, which behaves as

perfect gases.

2. Perfect gas upstream of main burner (station 4) with constant properties

γc, Rc, cpc.

3. Perfect gas between station 4 and 4.5 with constant properties γt, Rt, cpt.
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4. Perfect gas downstream of inter-stage burner (station 4.5) with constant

properties γitb, Ritb, cpitb.

5. All components are adiabatic.

6. The efficiencies of the high-pressure compressor (HPC), low-pressure com-

pressor (LPC), fan, HPT, and LPT are described through the use of poly-

tropic efficiencies, i.e., ecH , ecL, ef , etH , and etL, respectively.

4.2.1 Turbine Cooling

For better performance prediction, a turbine cooling model is incorporated

into the engine analysis. The approximate turbine cooling model was first

presented in Oates [39]. A portion of the cooling air drawn off at the HPC exit

(station 3) is used to cool the HPT stator (ε1) and the remainder (ε2) to cool

HPT rotor. It is assumed that the mixing of two cooling air with the mainstream

occurs after the first stator and the last rotor. The cooling airflows are modeled

as being fully mixed in coolant mixer 1 and coolant mixer 2, respectively, and

there is no total pressure losses. In order to reduce the further performance

loss due to cooling air, it is assumed that there is no cooling air required for LPT.

Figure 4.1 shows the correlation curves for the amount of cooling air required

for each stator and rotor, as given in Walsh and Fletcher [54]. All curves are based

upon the HPT stator outlet temperature (Tt4.1). For an aircraft engine, the state-

of-the-art maximum allowable turbine blade temperature (by year 2000) is 1370K

[55]. Therefore, it is reasonable to use the high-tech cooling curve and to assume

that the cooling is only required when the turbine inlet temperature exceeds

1300K. Accordingly, the equations for the high-tech cooling curves of the stator

and rotor, respectively, are shown below:

ε1 = 0.0167Tt4.1 − 19.97(%) (4.1)
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ε2 = 0.0343Tt4.1 − 46.362(%) (4.2)

Figure 4.1: Correlation curves of cooling air percentage (stator and rotor) vs.
stator outlet temperature (Tt4.1) [54]

4.3 Engine Component Performance

4.3.1 Free Stream

In order to employ total (or stagnation) property ratios, it is necessary to

define the total/static temperature (τr) and pressure ratios (πr) of the free stream

according to section 3.4 as follows:

τr =
Tt0

T0

= 1 +
γc − 1

2
M2

0 (4.3)

πr =
Pt0

P0

=

(
1 +

γc − 1

2
M2

0

)γc/(γc−1)

(4.4)

The ambient condition is first specified by users in term of altitude (h).
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Then, the ambient temperature T0 and pressure P0 are determined from the US

Standard Atmosphere 1976 data [34] according to the calculation procedures as

shown in Appendix B.

4.3.2 Inlet and Diffuser

The primary function of the inlet or diffuser is to bring the incoming air

required by the engine from freestream conditions to the conditions required at

the entrance of fan and compressor with minimum total losses. The high-speed

(subsonic or supersonic) incoming flow needs to undergo diffusion process in

a divergent duct, leading to a reduction in flow velocity and a rise in static

pressure. Typically, uniform flow of air at Mach number of 0.5 is the best

possible entry condition for fan and compressor [33].

The inlet total pressure is defined as the product of the ram pressure ratio

(πr) and the diffuser pressure ratio (πd). Pressure losses occur due to the friction

within the inlet wall. Consequently, πd is always less than one. In the cycle

analysis, πd is normally assumed to be constant in subsonic inlets, which is equal

to πdmax (i.e., the total pressure ratio due to friction). In supersonic flight, the

pressure losses cause shock waves which produce greater pressure losses. There-

fore, the following relationship is employed to account for the variation of πd with

flight Mach number:

πd = πdmaxηRspec (4.5)

According to the Military Specification 5008B [36], the following relations is

obtained for ηRspec:
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ηRspec =


1 for M0 ≤ 1

1− 0.075(M0 − 1)1.35 for 1 < M0 < 5

800
M4

0 +935
for M0 > 5

(4.6)

After passing through the inlet and diffuser, the air stream entering the

turbofan engine will flow through the engine core and the fan separately. The

engine core components in sequence are LPC, HPC, main burner, HPT, ITB,

LPT, and core exhaust nozzle. Meanwhile, surrounding the core engine is the fan

assembly, which include fan, fan duct and fan exhaust nozzle.

4.3.3 Low-pressure and High-pressure Compressors

Commonly, axial-flow compressor is the type of compressor used in today’s

turbofan engine. It consists of a series of stages, each stage comprising a

row of rotor blades followed by a row of stator blades. The working fluid is

initially accelerated by the rotor blades, and then decelerated in the stator blade

passages. Consequently, the primary function of this arrangement is to convert

the kinetic energy transferred from the rotor to an increase in pressure of the

gas stream while absorbing minimum shaft power possible.

In parametric cycle analysis, the terms πcL and πcH denote the total

pressure ratios across the LPC and HPC, respectively. In fact, they are the

design parameters and their values are specified by users. However, the value

of LPC pressure ratio is not always equal to the user-defined value πcL. In a

turbofan engine, LPC is located immediately downstream of the fan. Therefore,

whenever the specified πcL is smaller than πf , the following condition is applied

instead: πcL = πf .

The component efficiencies for these compressors have been discussed and

presented in Section 3.6. The total temperature ratios across LPC and HPC are
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related to their total pressure ratios through constant polytropic efficiencies (ecH

and ecL), as given by

τcH = π
(γc−1)/(γcecH)
cH (4.7)

τcL = π
(γc−1)/(γcecL)
cL (4.8)

4.3.4 Main burner and ITB

Ideally, both main burner and ITB go through an isobaric (constant

pressure) combustion process. Consequently, both components are described by

a similar set of equations in the program.

The term τλ is defined and used in terms of design limitations such as

maximum allowable turbine inlet total temperature. It denotes a ratio of total

enthalpy of the burner exit to the ambient enthalpy:

Main burner

τλ−b =
(cpTt)burner exit

(cpT )0,ambient

(4.9)

ITB

τλ−itb =
(cpTt)ITB exit

(cpT )0,ambient

(4.10)

The combustion efficiencies for main burner (ηb) and ITB are introduced

early in Section 3.6. As far as the chemistry model is concerned, all combustions

are assumed to be almost complete. And fortunately, most current burners

possess combustion efficiency in excess of 99%. Even the new-concept Ultra-

Compact Combustor (UCC) at AFRL operates at 95-99% combustion efficiency

over a wide range of operating conditions [56]. So, this approximation should
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not affect the accuracy of results too much.

The following procedures are shown to determine the fuel-air ratio for main

burner (fb) and ITB (fitb):

Main burner:

Apply First Law of Thermodynamics and ideal gas relation to the main

burner:

ṁ3.1cpcTt3.1 + ṁbηbhPR−b = ṁ4cptTt4 (4.11)

Rearranging gives:

cpcTt3.1 + fbηbhPR−b = (1 + fb)cptTt4 (4.12)

Multiplying the above equation with 1
CpcT0

, and solving for fb:

fb =
τλ−b − τrτdτcLτcH

ηbhPR/(cpcT0)− τλ−b

(4.13)

ITB:

Similarly, apply First Law of Thermodynamics and ideal gas relation to the

ITB:

ṁ4.4cptTt4.4 + ṁitbηitbhPR−itb = ṁ4.5cpitbTt4.5 (4.14)

Rearranging the above equation gives:

cptTt4.4 + fitbηitbhPR−itb = (1 + fitb)cpitbTt4.5 (4.15)
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Multiplying the above equation with 1
cpcT0

, and solving for fitb gives:

fitb =
τλ−itb − τλ−bτm1τm1τtH

ηitbhPR/(cpcT0)− τλ−itb

(4.16)

For details on how these two expressions for fuel-air ratio are integrated into the

program, please refer to Appendix C.

4.3.5 Turbine Coolant Mixer

It is assumed that the total pressure loss due to the mixing process in the

first coolant mixer (station 4.1 to 4.2) is negligible. Then, applying first law

energy balance to first coolant mixer yields:

ṁ4cptTt4 + ṁc1cpcTt3 = ṁ4.1cptTt4.1 (4.17)

Rearranging above equation gives

τm1 =
(1− β − ε1 − ε2)(1 + fb) + ε1τrτdτc/τλ−b

(1− β − ε1 − ε2)(1 + fb) + ε1

(4.18)

Likewise, applying first law energy balance to second coolant mixer (station

4.3 to 4.4) yields:

ṁ4.3cptTt4.3 + ṁc2cpcTt3 = ṁ4.4cptTt4.4 (4.19)

Rearranging above equation gives

τm2 =
(1− β − ε1 − ε2)(1 + fb) + ε1 + ε2τrτdτc/(τλ−bτm1τtH)

(1− β − ε1 − ε2)(1 + fb) + ε1 + ε2

(4.20)
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4.3.6 High-pressure Turbine

A turbine comprises a row of nozzle guide vanes (or stators) followed by a

row of rotor blades mounted on rotating discs. Turbine has most likely fewer

stages compared to the compressor. In contrast to compressor, turbine extracts

power from the high pressure and high temperature gas stream. The extracted

power is used to drive compressors and fan in this dual-spool turbofan engine

through two shafts.

In high-pressure spool, HPT and HPC are connected by a single shaft and

the power extracted by the HPT will be completely consumed by the HPC:

ẆcH = ẆtH (4.21)

Applying First Law of Thermodynamics and ideal gas relation to the above

relation yields:

ṁccpt(Tt3 − Tt2.5) = ṁ4.1cptηmH(Tt4.1 − Tt4.3) (4.22)

Multiplying the above equation with 1
cpcT0

gives

(τcH − 1) =
[
(1− β − ε1 − ε2)(1 + fb) + ε1

] cptTt4

cpcTt3.1

τm1τcHηmH(1− τtH) (4.23)

Solving for τtH gives

τtH = 1− (τcH − 1)τcLτr[
(1− β − ε1 − ε2)(1 + fb) + ε1

]
τλ−bτm1ηmH

(4.24)
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If there is no bleed air and no turbine cooling, the above equation becomes:

τtH = 1− (τcH − 1)τcLτr

(1 + fb)τλ−bηmH

(4.25)

The component efficiency for a turbine has been discussed and presented in

Section 3.6. The total pressure ratio across the HPT (πtH) is related to its total

temperature ratio (τtH) through the constant polytropic efficiency (etH), as given

by

πtH = τ
γt/[(γt−1)etH ]
tH (4.26)

According to the relationships derived in Section 3.6, the high-pressure tur-

bine isentropic efficiency can be written as

ηtH =
1− τtH

1− τ
1/etH

tH

(4.27)

4.3.7 Low-pressure Turbine

Similarly, LPC, fan and LPT are connected through another shaft in a low-

pressure spool. It is assumed that all power extracted by the LPT will be used

to drive both LPC and fan.

ẆcL + Ẇf = ẆtL (4.28)

Again, applying First Law of Thermodynamics and ideal gas relation to the

above relation yields

ṁccpc(Tt2.5 − Tt2) + ṁfcpc(Tt13 − Tt2) = ṁ4.5cpitbηmL(Tt4.5 − Tt5) (4.29)
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Multiplying the above equation with 1
cpcTt2

gives

(τcL − 1) + α(τf − 1) =
[
(1− β − ε1 − ε2)(1 + fb) + ε1 + ε2

]cpt

cpc

Tt4.5

Tt4.4

τm1τtHτm2
Tt4

Tt3.1

τcHτcL(1− τtL)ηmL (4.30)

Solving for τtL gives

τtL = 1− [(τcL − 1) + α(τf − 1)]τr

[(1− β − ε1 − ε2)(1 + fb) + ε1 + ε2](1 + fitb)τλ−itbηmL

(4.31)

If there is no bleed air and no turbine cooling, the above equation becomes:

τtL = 1− [(τcL − 1) + α(τf − 1)]τr

(1 + fb)(1 + fitb)τλ−itbηmL

(4.32)

The total pressure ratio across the LPT (πtL) is related to its total temper-

ature ratio (τtL) through the constant polytropic efficiency (etL), as given by

πtL = τ
γitb/[(γitb−1)etL]
tL (4.33)

The LPT isentropic efficiency is written as

ηtL =
1− τtL

1− τ
1/etL

tL

(4.34)
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4.3.8 Exhaust Nozzles

Exhaust nozzle is used to increase the velocity of the exhaust gas stream

through an expansion process before discharging air to the ambient. The most

important factor that affects the expansion process is the pressure ratio across

the nozzle. When the exit pressure (Pe) is equal to the ambient pressure (P0),

a complete expansion occurs, and thus maximum thrust is obtained. There

are two types of nozzles in this analysis, i.e., convergent-divergent nozzle and

convergent only nozzle.

For the convergent-divergent nozzle, the flow is always assumed to be choked

at the throat, where the cross-sectional area of the nozzle duct is at minimum.

Convergent-divergent nozzle

Core Exhaust Nozzle

The exit Mach number M9 is the most important parameter in describing the

core exhaust nozzle’s behavior. One can determine M9 from the total pressure

and Mach number relation as shown earlier in section 3.4:

Pt9 = P9

(
1 +

γitb − 1

2
M2

9

) γitb
γitb−1

(4.35)

Rearranging the above equation gives an expression for M9:

M9 =

√
2

γitb − 1

[(Pt9

P9

)(γitb−1)/γitb

− 1
]

(4.36)

where
Pt9

P9

=
P0

P9

πrπdπcLπcHπbπtHπitbπtLπn (4.37)

if M9 > 1, then M8 = 1, else M8 = M9. (4.38)
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The loss due to the expansion process is reflected in the value of total

pressure ratio across core nozzle πn. Assuming the core nozzle is adiabatic, the

total temperature ratio τn is therefore equal to unity.

Fan Exhaust Nozzle

Similar to core exhaust nozzle, the exit Mach number M19 is the most im-

portant parameter of the fan exhaust nozzle. Again, one can determine M19 from

the total pressure and Mach number relation:

Pt19 = P19

(
1 +

γc − 1

2
M2

19

) γc
γc−1

(4.39)

Rearranging the above equation gives an expression for M19:

M19 =

√
2

γc − 1

[(Pt19

P19

)(γc−1)/γc

− 1
]

(4.40)

where
Pt19

P19

=
P0

P19

πrπdπfπnf (4.41)

if M19 > 1, then M18 = 1, else M18 = M19. (4.42)

The total pressure ratio across fan exhaust nozzle πnf is used to account

for any loss due to the expansion process through the nozzle. Assuming the fan

nozzle is adiabatic, the total temperature ratio τnf is always equal to unity.

Convergent nozzle

As for convergent only nozzle, it has a fixed throat area. The flow

across the throat area will choke when the exhaust total pressure/ambient
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static pressure ratio (Pte/P0) is equal to or larger than (γ+1
2

)γ/(γ−1). Then,

the exit Mach number is equal to one (i.e., the sonic speed). On the other

hand, when the flow is unchoked, i.e., Pte

P0
< (γ+1

2
)γ/(γ−1), the exit pressure

is equal to the ambient pressure (Pe = P0), and the exit Mach number is subsonic.

4.4 Overall Performance

Cycle analysis is applied to both the engine core stream and fan bypass

stream separately as listed below.

4.4.1 Fan Bypass Stream

Fan is usually attached to the first stage of low-pressure compressor in a

turbofan engine. It has a lower pressure ratio compared to core compressors.

At the downstream of the fan, the flow is immediately split into the cold (or

bypass), and the hot (or core) stream.

As the name cold implies, there is no combustion taking place in the fan

duct. Therefore, the fan bypass stream has the same gas properties (cpc, γc, Rc)

as the engine core stream up to the main burner.

Uninstalled thrust of fan stream, Ff , is given by

Ff =
ṁf

gc

(
V19 − V0

)
−

(
P19 − P0

)
A19 (4.43)

Expanding and rearranging the above equation gives

Ff

ṁf

=
a0

gc

[
V19

a0

−M0 +
T19/T0

V19/a0

1

γc

(
1− P0

P19

)]
(4.44)
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where (
V19

a0

)2

=
a2

19M
2
19

a2
0

=
T19

T0

M2
19 (4.45)

T19

T0

=
Tt19/T0

Tt19/T19

=
Tt19/T0(

Pt19/P19

)(γc−1)/γc
(4.46)

Tt19

T0

= τrτfτnf (4.47)

4.4.2 Engine Core Stream

The uninstalled thrust of core stream, Fc, is given by

Fc =
1

gc

(ṁ9V9 − ṁ0V0) + (P9 − P0)A9 (4.48)

Expanding and rearranging the above equation gives:

Fc

ṁc

=
a0

gc

{[
(1− β − ε1 − ε2)(1 + fb) + ε1 + ε2

]
(1 + fitb)

V9

a0

−M0

+
[
(1− β − ε1 − ε2)(1 + fb) + ε1 + ε2

]
(1 + fitb)

Ritb

Rc

T9/T0

V9/a0

1

γc

(
1− P0

P9

)}
(4.49)

where (
V9

a0

)2

= M2
9

γitb

γc

Ritb

Rc

T9

T0

(4.50)

T9

T0

=
Tt9/T0

Tt9/T9

=
Tt9/T0

(Pt9/P9)(γitb−1)/γitb
(4.51)

Tt9

T0

=
cpc

cpitb

τλ−bτtLτn (4.52)
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If there is no bleed air and no turbine cooling, equation 4.49 then becomes

Fc

ṁc

=
a0

gc

{[
(1 + fb)(1 + fitb)

V9

a0

−M0

]
+ (1 + fb)(1 + fitb)

Rt

Rc

T9/T0

V9/a0

1

γc

(
1− P0

P9

)}
(4.53)

Aircraft Performance Parameters

The specific thrust (ST ) or total uninstalled thrust per unit mass flow rate

intake is given by:

F

ṁ0

=
Fc + Ff

ṁc + ṁf

=

Fc

ṁc
+ α

Ff

ṁf

1 + α
(4.54)

The thrust specific fuel consumption (S) is given by

S =
ṁb + ṁitb

F
(4.55)

Expanding equation 4.55 yields

S =
(1− β − ε1 − ε2)fb + [(1− β − ε1 − ε2)(1 + fb) + ε1 + ε2]fitb

Fc

ṁc
+ α

Ff

ṁf

(4.56)

The power out of a turbofan engine with an ITB is given by

Ẇout =
1

2gc

[
(ṁ9V

2
9 − ṁcV

2
0 ) + ṁf (V

2
19 − V 2

0 )

]
(4.57)

Rearranging the above equation gives:

Ẇout

ṁc

=
1

2gc

{{[
(1−β−ε1−ε2)(1+fb)+ε1+ε2

]
V 2

9 −V 2
0

}
+α

(
V 2

19−V 2
0

)}
(4.58)

The rate of thermal energy released from the main burner and ITB can be
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written as

Q̇in = ṁbhPR−bηb + ṁitbhPR−itbηitb (4.59)

Rearranging equation 4.59 gives:

Q̇in

ṁc

= (1−β−ε1−ε2)fbhPR−bηb +
[
(1−β−ε1−ε2)(1+fb)+ε1 +ε2

]
fitbhPR−itbηitb

(4.60)

The thermal efficiency can be written as:

ηth =
Ẇout

ṁc

Q̇in

ṁc

(4.61)

Meanwhile, propulsive efficiency can be written as

ηp =
( Fc

ṁc
+ α

Ff

ṁf
)V0

Ẇout

ṁc

(4.62)

Unlike the ground-based gas turbine, the aircraft gas turbine is mounted on

a moving vehicle. Therefore, the overall efficiency is a product of the thermal

and propulsive efficiencies.

ηO = ηth × ηp (4.63)

4.5 Computer Code

The Visual Basic Application program, Excel macrocode, and Excel neuron

cells are used to facilitate a widely-used Excel software to plot the engine per-

formance versus several engine design parameters and limitation. This on-design

cycle analysis program computes and plots the data sequentially without forcing

users to open other types of plotting programs. An user’s manual on how to use

the program and its troubleshooting are included in the Appendix G.
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4.5.1 Code Validation

This on-design cycle analysis code is developed for evaluating the effect of

adding an ITB as a secondary combustor on a conventional turbofan engine.

The development of this kind of new engine is still in its preliminary design

phase. Consequently, the experimental data is not available for the purpose of

code validation.

Despite the lack of real field data, the predicted result of a conventional

turbofan engine using this Excel code was compared to the ONX program

(i.e., a parametric cycle analysis program), which is an integrated part of the

AEDsys suite co-developed by Mattingly, Heiser and Pratt [34]. The AEDsys

software has been developed and refined over a period of more than 20 years,

and has become a formidable capability.

The performance of a conventional two-spool, separate-exhaust turbofan

engine versus flight Mach number (M0) is computed using both ONX program

and Excel code. As clearly shown in Figures 4.2a through 4.2c, the comparison

of the engine performance was found to be consistent.

AEDsys suite requires user to input constant values for cp while the Excel

code calculates cp as a function of temperature at each particular section. It is

believed that this difference causes a slightly downward shift on the performance

curves as shown in Figures 4.2.
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Figure 4.2: Comparison of the computed turbofan engine performance (without
ITB) versus M0 at an altitude of 10km, πf = 2.0, πc = 28.48, πcL = 2.0, Tt4 =
1500K, and α = 4.0.
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Chapter 5

Performance Cycle Analysis of a

Turbofan Engine with ITB

The performance of a selected reference point of a turbofan engine is desired

at any flight conditions, throttle settings, and nozzle settings. A parametric

cycle analysis has been performed for the reference-point engine using the

method presented in previous chapter to give the so-called reference conditions

(subscript R) for the engine (F/ṁ0R, SR etc), for each engine component (πfR,

τfR, etc), and for the flight conditions (M0R, P0R and T0R).

To better understand the methodology of studying the performance cycle

analysis problem, it is instructive to review how the parametric analysis proceeds

again. For example, in the parametric cycle analysis problem as provided in

Chapter 4, there are 11 independent equations for solving the values of the 11

dependent component parametric variables (e.g., τf , τcL, τcH , fb, τtH , πtH , τtL,

πtL, fitb, M9, and M19). These 11 equations are solved for the given values of

the independent quantities consisting of flight conditions (i.e., M0 and T0) and

design choices (i.e., πf , πcL, πc, and α). With values of these 11 component

variables in hand, the engine reference point performance in terms of F/ṁ0, S,

ηp, and ηth are readily found.
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Similarly, to find the off-design engine performance, the operational perfor-

mance values of the 18 dependent variables listed in Table 5.1 must be determined

and then, in turn, related by 18 independent equations to obtain a solution for

each component performance variable. Since performance analysis is an indirect

problem as opposed to the direct problem of parametric analysis, the solution of

the 18 performance equations is not as straightforward as in the parametric case.

Regardless of the difficulty in solving the equations, once the values of the 18

dependent variables in Table 5.1 are known, the engine performance in terms of

F/ṁ0, S, ηp, and ηth follows immediately. In the “Constant or Known” column

of Table 5.1, πb, πitb, πnf , and πn are assumed to remain constant, and τd, τn,

and τnf are assumed equal to one.

Table 5.1: Engine performance variables

Component Independent Constant Dependant
Variable or Known Variable

Engine M0,T0,P0 ṁ0,α
Diffuser πf = f(M0)
Fan ηf πf ,τf

LPC ηcL πcL,τcL

HPC ηcH πcH ,τcH

Main Burner Tt4 πb fb

HPT ηtH ,M4 πtH ,τtH

ITB Tt4.5 πitb fitb

LPT n ηtL,M4.5 πtL,τtL

A4.5 = f(τitb, n)
Fan exhaust nozzle πfn M18,M19

Core exhaust nozzle m πn M8,M9

A8 = f(τitb, m)
Total number 7 18

5.1 Assumptions

In addition to the assumptions summarized in the parametric analysis in

Chapter 4, the following assumptions are employed in the performance analysis:
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1. The flow area is constant at station 4, i.e., main burner exit or HPT en-

trance.

2. The flow is choked at the HPT entrance nozzles (station 4), at the LPT

entrance nozzles (station 4.5), and at the throat of the exhaust nozzles

(stations 8 and 18). Since the exhaust nozzles may unchoke at low throttle

settings and influence the fan operating line, the cases of the unchoked

exhaust nozzles (stations 8 and 18) are also included in this analysis.

3. The component efficiencies (ηf , ηcL, ηcH , ηtH , ηtL, ηb, ηitb, ηmH , and ηmL)

are constant.

4. The total pressure ratios (πdmax, πb, πitb, πn, and πnf ) remains the same as

the values in the parametric analysis.

5. The variation in fuel-air ratios (fb and fitb) are ignored when compared to

unity.

6. The exit areas (A9 and A19) of the exhaust nozzles are adjustable so that

the corresponding pressure ratios (P9/P0 and P19/P0) can be set to prede-

termined values.

7. The area at each engine station is constant. However the areas of stations

4.5 and 8 change with the ITB setting to follow a specified function of τitb.

8. The diffuser total pressure ratio is given by πd = πd maxηRspec where πd max

is the total pressure ratio due to friction and ηRspec is the total pressure

recovery for the shocking system given by MIL-E-5008B [36].

5.2 Modeling Approaches

The station numbers and notations for the compressible flow remain the

same as in the parametric analysis. Two techniques are frequently used in the
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analysis to follow. The first is called the referencing [34], and the second is the

Mass Flow Parameter.

5.2.1 Referencing

The functional relations for the engine cycle analysis are based on the ap-

plication of mass, energy, momentum, and entropy considerations to the one-

dimensional steady flow of a perfect gas at an engine reference or off-design steady

state operating point. Thus, if, at any off-design point,

f(τ, π) = constant (5.1)

represents a relationship between the two performance variables τ and π at a

steady state operating point, then the constant can be evaluated at the

reference point, so that

f(τ, π) = f(τR, πR) = constant (5.2)

since f(τ, π) applies to both on-design and off-design points. Basically, this

technique replaces the constants with reference point values and prove to be

very efficient in the performance analysis. For example, please refer to Eq.(5.10).

5.2.2 Mass Flow Parameter

The Mass Flow Parameter (MFP) is mainly based on the law of conservation

of mass. It combines mass flow per unit area with the perfect gas law, Mach

number, sound speed, and equations for total temperature and pressure. The

resulting expression is

MFP (M) =
ṁ
√

Tt

PtA
= M

√
γ

R

(
1 +

γ − 1

2
M2

)
(5.3)
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When the other four quantities and the calorically perfect gas constants (γ

and R) are known at that station, the MFP may be used to find any single

flow quantity. The MFP is often used, for example, to determine the flow area

required to choke a given flow (i.e., at M =1). When the mass flow is conserved

between them, the MFP becomes very important such that it develops valuable

relationships between the flow properties at two different stations.

5.3 Modeling of Engine Components

In off-design analysis, it is necessary to predict the performance of indi-

vidual component. There are two classes of predicting individual component

performance [39]. First, the actual component characteristics can be obtained

from the component hardware performance data, which give a better estimate.

However, the actual component hardware is not yet available in this preliminary

engine design phase. Instead, simple models of component behaviors are used in

terms of their operating conditions.

5.3.1 Turbine

High-pressure Turbine

For our engine model, the mass flow entering the HPT equals that entering

the main burner plus the fuel added in the main burner. Applying mass balance

yields

ṁ4 = ṁ3.1 + ṁitb = ṁc(1− β − ε1 − ε2)(1 + fb) (5.4)

Likewise, the mass flow entering the LPT equals that entering the HPT plus

the fuel added in the ITB. Thus
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ṁ4.5 = ṁ4.4 + ṁitb = ṁc[(1− β − ε1 − ε2)(1 + fb) + ε1 + ε2](1 + fitb) (5.5)

Writing these using the MFP and the flow properties at stations 4 and 4.5 gives

ṁ4 =
Pt4√
Tt4

A4MFP (M4) = ṁc(1− β − ε1 − ε2)(1 + fb) (5.6)

and

ṁ4.5 =
Pt4.5√
Tt4.5

A4.5MFP (M4.5) = ṁc[(1−β−ε1−ε2)(1+fb)+ε1+ε2](1+fitb (5.7)

Solving each of these two expressions for ṁ3 and equating them yields

Pt4√
Tt4

A4MFP (M4)

(1− β − ε1 − ε2)(1 + fb)
=

Pt4.5√
Tt4.5

A4.5MFP (M4.5)

[(1− β − ε1 − ε2)(1 + fb) + ε1 + ε2](1 + fitb)
(5.8)

which can be rewritten in terms of ratios as follows

Pt4.4

Pt4

√
Tt4√
Tt4.5

A4.5 = A4
MFP (M4)

MFP (M4.5)

[(1− β − ε1 − ε2)(1 + fb) + ε1 + ε2](1 + fitb)

(1− β − ε1 − ε2)(1 + fb)

Pt4.4

Pt4.5

(5.9)

The right-hand side of the above equation is considered a constant since

because of the following assumption: the flow is choked at stations 4 and 4.5,

the flow areas at station 4 is constant, variations in fuel-air ratios (fb and fitb)
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are ignored when compared to unity, and that the total pressure ratio of the ITB

does not change. Using the referencing technique, we have

Pt4.4

Pt4

√
Tt4√
Tt4.5

A4.5 =

(
Pt4.4

Pt4

√
Tt4√
Tt4.5

A4.5

)
R

(5.10)

which can be rewritten in terms of component total pressure and total tempera-

ture ratios as

πtH =

√
τtHτitb√

τtHRτitbR

A4.5R

A4.5

πtHR (5.11)

This gives one relationship between the HPT’s total pressure and total tem-

perature ratios to meet mass conservation as a function of the ITB’s total tem-

perature ratio. A second equation between πtH and τtH comes from the HPT

efficiency equation or

τtH = 1− ηtH

{
1− π

(γt−1)/γt

tH

}
(5.12)

For reference values of πtH , τtH , A4.5, and τitb, and the corresponding value

of ηtH , Eqs.(5.11) and (5.12) yield the high-pressure turbine’s operating point

(τtH , πtH) for a given value of τitb and A4.5 as sketched in Figure 5.1. The

operating point is the intersection of Eqs.(5.11) and (5.12).

One relationship for A4.5/A4.5R is to assume that it is related to the total

temperature ratio of the ITB (τitb) raised to the power n or

A4.5

A4.5R

=
( τitb

τitbR

)n
(5.13)

For the case where A4.5

A4.5R
=

√
τitb

τitbR
, then the solution to Eqs.(5.11) and
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(5.12) is πtH = πtHR and τtH = τtHR.

Figure 5.1: Variation in the HPT operating conditions with increasing
√

τitb/A4.5

Low-Pressure Turbine

The mass flow rates at station 4.5 equals that at station 8. Writing the mass

conservation at stations 4.5 and 8 using the MFP and gives

Pt4.5√
Tt4.5

A4.5MFP (M4.5) =
Pt8√
Tt8

A8MFP (M8) (5.14)

This can be rewritten as

πtL√
τtL

=
A4.5

πnA8

MFP (M4.5)

MFP (M8)
(5.15)

Noting that πn and M4.5(= 1) are assumed constant, then the above equation

can be rewritten using referencing technique as
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πtL = πtLR

√
τtL

τtLR

A8R

A8

A4.5

A4.5R

MFP (M8R)

MFP(M8)
(5.16)

This gives one relationship between the LPT’s total pressure and total tem-

perature ratios to meet mass conservation as a function of the core exhaust nozzle

throat area (A8/A8R). A second equation between πtL and τtL comes from the

LPT efficiency equation or

τtL = 1− ηtL

{
1− π

(γitb−1)/γitb

tL

}
(5.17)

The operating condition (τtL,πtL) of the LPT can be determined using

Eqs.(5.16) and (5.17) along with the exhaust Mach number M8 and specified func-

tional relationships for the low pressure turbine nozzle throat area (A4.5/A4.5R)

and the core exhaust nozzle throat area (A8/A8R). One relationship for (A8/A8R)

is to assume that it is related to the total temperature ratio of the ITB τitb raised

to the power m or

A8

A8R

=
( τitb

τitbR

)m

(5.18)

With this functional relationship, the engine’s LPT performance will

vary the same as the turbofan without the ITB, when the ITB is turned off.

For reference values of πtL, τtL, τitb, and the corresponding value of ηtL, Eq.

(5.16) and (5.17) yield the LPT’s operating point (τtL,πtL) for a given value

of A8R

A8

A4.5

A4.5R

MFP (M8R)
MFP (M8)

as sketched in Figure 5.2. The operating point is the

intersection of Eqs.(5.16) and (5.17). For the case where A8

A8R
= A4.5

A4.5R
and

M8 = M8R, then the solution to Eqs.(5.16) and (5.17) is πtL = πtLR and

τtL = τtLR.
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Figure 5.2: Variation in the LPT operating conditions with increasing
A8R

A8

A4.5

A4.5R

MFP (M8R)
MFP (M8)

5.3.2 Fan Bypass Ratio

An expression for the engine bypass ratio (α) follows directly from its defi-

nition written in terms of the properties at stations 4 and 18.

α =
ṁf

ṁc

(5.19)

where

ṁf =
Pt18A18√

Tt18

MFP (M18) =
P0πrπdπfπnfA18√

Tt13

MFP (M18) (5.20)

and

ṁ4 = ṁc(1 + fb) =
Pt4A4√

Tt4

MFP (M4) =
P0πrπdπcLπcHπbA4√

Tt4

MFP (M4) (5.21)
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Thus, the engine bypass ratio can be written as

α =
(1 + fb)

πcLπcHπb/(πfπnf )

√
Tt4

Tt13

MFP (M18)

MFP (M4)

A18

A4

(5.22)

Since (1 + fb), πb, πnf , A18, A4, and M4 (=1) are assumed constant and

equal to their reference values, the bypass ratio can be rewritten using referencing

technique as

α = αR
πcLRπcHR/πfR

πcLπcH/πf

√
Tt4/Tt4R

τrτf/(τrRτfR)

MFP (M18)

MFP (M18R)
(5.23)

5.3.3 Fan and Low-pressure Compressor

The performance equation for the total temperature ratio of the fan follows

directly from the power balance of the low-pressure spool. Equating the power

received by the fan and LPC to that delivered by the LPT gives

ṁfcpc(Tt13 − Tt2) + ṁccpc(Tt2.5 − Tt2) = ηmLṁ4.5cpitb(Tt4.5 − Tt5) (5.24)

or

ṁccpcTt2

[
α(τf − 1) + (τcL − 1)

]
=ηmLṁc[(1− β − ε1 − ε2)(1 + fb) + ε1 + ε2]

(1 + fitb)cpitbTt4.5(1− τtL) (5.25)

Then dividing by ṁccpcTt2, gives

α(τf −1)+(τcL−1) = ηmL[(1−β−ε1−ε2)(1+fb)+ε1 +ε2](1+fitb)
τλ−itb

τr

(1−τtL)

(5.26)

Because the LPC and the fan are on the same shaft, it is reasonable to
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approximate that the total enthalpy rise of LPC is proportional to that of the

fan. In other words, for a calorically perfect gas, the temperature rise of the LPC

is therefore proportional to that of the fan [33; 34] and thus

ht2.5 − ht2

ht13 − ht2

=
τcL − 1

τf − 1
(5.27)

The use of referencing thus gives

τcL − 1

τf − 1
=

(
τcL − 1

τf − 1

)
R

(5.28)

Solving Eq.(5.27) for (τcL−1), substituting it into Eq.(5.26), and then solving

for the fan total temperature ratio (τf ), gives

τf = 1 + (τfR − 1)ηmL
τλ−itb

τr

{
(1− τtL)[(1− β − ε1 − ε2)(1 + fb) + ε1 + ε2](1 + fitb)

τcLR − 1 + α(τfR − 1)

}
(5.29)

Using the fan efficiency, the fan total pressure ratio is given by

πf =
{

1 + ηf (τf − 1)
}γc/(γc−1)

(5.30)

The LPC total temperature ratio follows from Eq.(5.27) and thus

τcL = 1 + (τf − 1)
τcLR − 1

τfR − 1
(5.31)

Using the LPC efficiency, the LPC total pressure ratio is expressed as

πcL =
{

1 + ηcL(τcL − 1)
}γc/(γc−1)

(5.32)
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5.3.4 High-pressure Compressor

The performance equation for the total temperature ratio of the HPC follows

directly from the power balance of the high-pressure spool. Solving Eq.(4.24) for

the total temperature ratio of the HPC (τcH) gives

τcH = 1 + ηmH [(1− β − ε1 − ε2)(1 + fb) + ε1]
τλ−b(1− τtH)

τrτcL

(5.33)

Using the HPC efficiency, the HPC total pressure ratio is given by

πcH =
{

1 + ηcH(τcH − 1)
}γc/(γc−1)

(5.34)

5.3.5 Exhaust Nozzle

The definitions for exhaust nozzles in the performance cycle analysis are

similar to those in parametric cycle analysis. Thus, they share the same

equations as clearly shown in Section 4.3.8.

The equation for the area ratio of the core exhaust nozzle follows from the

mass conservation between stations 8 and 9, and the use of the MFP, giving

A9

A8

=
1

πn

MFP (M8)

MFP (M9)
(5.35)

On the other hand, the equation for the area ratio of the fan exhaust nozzle

follows from the mass conservation between stations 18 and 19, and the use of

the mass flow parameter, giving

A19

A18

=
1

πnf

MFP (M18)

MFP (M19)
(5.36)
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5.3.6 Engine Mass Flow Rate

An expression for the overall engine mass flow rate (ṁ0) follows by the use

of the mass flow parameter at station 4, giving

ṁ0 = ṁ0R
1 + α

1 + αR

P0πrπdπcLπcH

P0RπrRπdRπcLRπcHR

√
Tt4R

Tt4

(5.37)

5.3.7 Combustor and ITB

The fuel-to-air ratios for the main burner (fb) and the ITB (fitb) are deter-

mined by the user’s choice. There are two models of the gas properties available

in this analysis, i.e., Constant Specific Heat (CSH) model and the Modified Spe-

cific Heat (MSH) model. Both models include the products of combustion in

the estimation of heat capacity (cp). For the details, please refer to Appendix C.

5.4 Computer Code

Based on a similar code architecture with the parametric cycle code, the

performance cycle code is written in combination between spreadsheet neuron

cells, visual basic application, and Excel macro code. Again, this off-design cycle

analysis program possesses all the features found in the on-design cycle code,

one of which is that the code computes and plots the data sequentially without

forcing users to open other types of plotting programs. An user’s manual on how

to use the program and its troubleshooting are included in the Appendix H.

5.4.1 Code Validation

Due to the lack of the real engine data, it is useful to compare this result by

the Excel code to those by the AEDsys program, also an integrated part of the

AEDsys suite, which includes constraint analysis, aircraft system performance,

mission analysis of aircraft system, and engine performance. [34]
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The performance of a conventional two-spool, separate-exhaust turbofan en-

gine versus flight Mach number (M0) is computed using both AEDsys program

and Excel code. As clearly shown in Figures 5.3 through 5.4, the comparison of

the full throttle performance was again found to be consistent.
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Figure 5.3: Comparison of the computed turbofan engine full throttle perfor-
mance (without ITB) versus M0 at an altitude of 10km, M0R = 0.9, πfR = 2.0,
πcR = 28.48, πcLR = 2.0, Tt4R = 1500K, αR = 4.0, and ṁ0R =118 kg/s (Part 1).
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Figure 5.4: Comparison of the computed turbofan engine full throttle perfor-
mance (without ITB) versus M0 at an altitude of 10km, M0R = 0.9, πfR = 2.0,
πcR = 28.48, πcLR = 2.0, Tt4R = 1500K, αR = 4.0, and ṁ0R =118 kg/s (Part 2).
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Chapter 6

Results and Discussions

6.1 Results from On-design Cycle analysis

This section presents the results computed using the on-design Excel code.

The validation of this code can be found in Section 4.5.1 while the user guideline

is given in Appendix G.

First of all, the effect of turbine cooling on the engine performance will

be investigated first followed by the variation of flight Mach number. Then,

one design limitation (HPT inlet temperature) and three engine design choices,

namely (1) CPR, (2) FPR, and (3) FBR, are studied in their subsonic (M0 > 1)

and supersonic (M0 > 1) flight regimes, respectively. All these design parameters

are then used to obtain the system performance parameters of ST, S, ηth, ηp and

ηo.

Engine Configuration

Engine configurations used in these computations include a baseline engine

(i.e., a conventional turbofan engine without an ITB) and ITB engines with dif-

ferent values of LPT inlet temperature (i.e., Tt4.5 or ITB exit temperature). The
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maximum value of Tt4.5 is 1300K so that no cooling air is required for the LPT.

Meanwhile, the engine specifications for the simulation of each design choices are

summarized in Appendix J.

Other design parameters, such as component efficiencies, combustor efficien-

cies, mechanical efficiencies, and pressure drop/increase across various compo-

nents, are user-defined input parameters. These design parameters are identical

for each computation in this section and is listed in Table J.1.

6.1.1 Effect of Turbine Cooling

Figure 6.1 shows the performance comparison for the base turbofan engine

with and without turbine cooling at flight Mach number of 0.0 to 2.0. Specific

thrust (ST) of the uncooled base engine is overestimated by around 16 percent

at subsonic flight (M0 = 0.9) and 28 percent at supersonic flight (M0 = 1.5).

Therefore, a turbine-cooling model is required to account for the effect of turbine

cooling on the engine performance.

6.1.2 Effect of Flight Mach Number

High FBR

Figures 6.2a through 6.2f demonstrate the performance comparisons be-

tween a baseline turbofan engine and three different ITB engines of high FBR

at flight Mach number of 0.0 to 2.0. For each engine, the compressor pressure

ratio (CPR), fan pressure ratio (FPR), and FBR are fixed at 28.48, 1.3, and

4.0, respectively, with a maximum allowable Tt4 of 1600K. All types of engines

exhibit a decrease in ST and an increase in S as flight Mach number increases.

Clearly, the ITB engine with Tt4.5 of 1300K (the highest Tt4.5 among all

other ITB engines) performs better than the baseline engine at both subsonic

and supersonic flights. There is a rise in both ST and thermal efficiency without

any increase in S. Nevertheless, the overall efficiency is not improved much due

76



77



Figure 6.1: Performance comparison of turbofan engines versus M0 at an altitude
of 10km, πf = 1.3, πc = 28.48, Tt4 = 1800K, and α = 4.0.

to the decrease in the propulsive efficiency.

ITB engines with lower values of Tt4.5 (i.e., 1150K) are beneficial at super-

sonic flight only (e.g., M0 > 1.3 in this case). On the contrary, an ITB engine with

the lowest value of Tt4.5 (i.e., 1000K) gains no improvement at all. One reason is

that this ITB engine is operating at Tt4 (i.e., 1600K) greater than the Tci (i.e.,

1319K at M0 of 0.85). (Note: Please refer to section 6.1.3 for the definition of

Tci.) The effect of flight Mach number on Tci is considered negligible because Tci

only increases slightly with increasing flight Mach number (data not shown here).

One may argue to use a higher value for Tt4.5. However, at higher Tt4.5,

especially when it is greater than the blade material limit, turbine cooling is

required for LPT. This is unfavorable because more air would be extracted from

LPC to cool down LPT, which may offset any advantage of having higher Tt4.5.

Therefore, in order to avoid cooling LPT, the maximum Tt4.5 will be the turbine

blade material limit (i.e., 1300K in this study).

While having a better thermal efficiency than the baseline engine, ITB en-

gine seems to suffer a decrease in propulsive efficiency. One can explain this by

referring to equation (4.57) for the power out of the engine and equation (4.62)
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for the propulsive efficiency. For each ITB engine, data showed that the rate

of increase of the propulsive power (i.e., the numerator of the ηP equation) is

lower than the rate of increase of the kinetic energy gain out of the engine (i.e.,

the denominator of the ηP equation), leading to a decreasing trend of propulsive

efficiency. Further investigation shows that the cause of this phenomenon is due

to the very high core exhaust velocity, which is not efficiently transferred into

useful propulsive force in the first place. Most of the energy is wasted as jet

kinetic energy. Meanwhile, according to Vogeler [53], he found that most of the

gas expansion already took place in the HPT, thus the low pressure ratio across

LPT did not allow an effective use of the additional energy from ITB in the fan.

Low FBR

The performance comparisons between the baseline turbofan engine and

three different ITB engines of low FBR are shown in figures 6.3a through 6.3f. For

each engine, the CPR, FPR, and FBR are fixed at 28.48, 2.5, and 0.5, respectively.

Clearly, all three low-FBR ITB engines yields similar performance trends as

the high-FBR ITB engines. As for the ITB engine with T4.5 of 1300K, it has

a better specific fuel consumption (e.g., average 3%) than the baseline engine

as well as the high-FBR ITB engine (e.g., average 1%). This gives ITB better

performance at supersonic flight than at subsonic flight.
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Figure 6.2: Performance comparison of turbofan engines versus M0 at an altitude
of 10km, Tt4 = 1600K, πf = 1.3, πc = 28.48, πcL = 1.387, and α = 4.0.
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Figure 6.3: Performance comparison of turbofan engines versus M0 at an altitude
of 10km, Tt4 = 1600K, πf = 2.5, πc = 28.48, πcL = 1.387, and α = 0.5.
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6.1.3 Effect of HPT Inlet Temperature

Subsonic Flight

Figures 6.4a through 6.4f compare the engine performances of the baseline

engine with three different ITB engines for varying HPT inlet temperatures

(Tt4) from 1000K to 2000K at M0 of 0.85 (i.e., subsonic flight). For each engine,

CPR, FPR, and FBR are fixed at 28.48, 1.3, and 4.0, respectively. In Liu and

Sirignano [32], it is clearly shown that the TB engines benefits from higher Tt4 at

both subsonic and supersonic flights. Similarly, in this case, as the value of Tt4

increases, all ITB engines exhibit an increase in both ST and thermal efficiency,

accompanied by a decrease in S.

Data shows that whenever the gain in ST is greater than the loss due to

extra fuel consumption in ITB, it leads to a better thermal efficiency. Clearly,

ITB engines always generate higher ST and gain better thermal efficiency than

the baseline engine. Nevertheless, this is not the case when Tt4 is lower than

Tt4.5, in which a large portion of fuel is now burned in the ITB (i.e., a relatively

lower pressure environment compared to the main burner); therefore, thermal

efficiency will drop and be equivalent to that of the baseline engine. The thermal

efficiency curves in the region of lower HPT inlet temperature (i.e., Tt4 lower

than 1300K) clearly reflect this phenomenon.

Critical ITB Temperature (Tci)

However, it is also noticed that for all ITB engines, each ST and thermal

efficiency curve will drop and merge with the base engine curve after reaching a

maximum point at some values of Tt4. These maximum points in the ST curves

and thermal efficiency curves correspond to the minimum points in S curves. We

refer to these values of Tt4 as “critical ITB temperatures” (Tci), beyond which the

ITB will be turned off, resulting in a discontinuity on each performance curve.
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Figure 6.4: Performance comparison of turbofan engines versus Tt4 at an altitude
of 10km, M0 = 0.85, πf = 1.3, πc = 28.48, πcL = 1.387, and α = 4.0.
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One can explain this by looking at Eq. (4.16) for the computation of the ITB

fuel-air ratio. It is possible to yield a negative value of fitb when the total enthalpy

ratio after the expansion across HPT (τλ−bτm1τm2τtH) is greater than the ITB exit

total enthalpy ratio (τλ−itb) as shown below.

τλ−itb − τλ−bτm1τm2τtH < 0 (6.1)

At such a condition, no further energy addition is allowed in ITB. Even

worse, a negative value of fitb means that energy needs to be extracted from

ITB, which is considered a counteraction of adding ITB, and it is not desirable.

Unfortunately, this also tells us that the ITB engines at Tt4 higher than Tci will

not benefit from the advantages of ITB, unless Tt4.5 is further increased. For

instance, a base engine with Tt4 of 1600K will only benefit from adding ITB

if Tt4.5 is set to 1300K (see Figure 6.4) because its corresponding value of Tci

(i.e., 1713K as shown in Figure 6.5) is greater than Tt4 of 1600K. Therefore, it

is always desirable to seek a higher Tci in the engine design process in order to

utilize the advantage of ITB. An example is in Liu and Sirignano’s study [48],

where T06 (equivalent to Tt4.5 in this paper) is specified at 1900K, much higher

than T04 (equivalent to Tt4) of 1500K. This explains why Tci is never seen in their

analysis. As mentioned previously, one concern of turbine cooling is the reduc-

tion in engine performance. Having a high value of Tt4.5 (i.e., 1900K), turbine

cooling is also required for the LPT, which may offset the advantage of using ITB.

To predict Tci, the Eq.(6.1) is rewritten as shown in Eq.(6.2) below.

τλ−bτm1τm2τtH = τλ−itb (6.2)

where τm1 and τm2 are mainly functions of τλ−b.

The value of Tt4 that satisfies Eq.(6.2) is referred as Tci. Eq.(6.2) is solved

by an iterative procedure and the result is shown in Figure 6.5. It is found that
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the higher the value of Tt4.5, the higher the value of Tci. This is because a higher

Tt4.5 allows more heat addition in ITB.

Figure 6.5: Variation of critical ITB temperature (Tci) with Tt4.5 at M0 = 0.85,
πf = 1.3, πc = 28.48, and α = 4.0.

Supersonic Flight

At the supersonic flight, the CPR, FPR, and FBR of each engine are fixed

at 28.48, 3.0, and 0.5, respectively. The performance comparisons between the

baseline turbofan engine and three different ITB engines at M0 of 1.2 are shown

in figures 6.6a through 6.6f.

Comparing Figure 6.4 to figure 6.6, it is clear that ITB engines at both

subsonic and supersonic flight regimes have a very similar performance trends.

Despite the similarity, ITB engine at supersonic flight has a better thermal

efficiency (e.g, about 10% gain in each case) than at subsonic flight (e.g., up to

7% gain) because the fuel is burned in a higher pressure environment due to the

ram effect at the engine inlet.

Unfortunately, at both subsonic and supersonic flights, the ITB engine is
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only better only when the engine operates at a range of Tt4 close to the value of

Tci. According to figures 6.4e and 6.6e , the overall efficiencies are better at the

Tt4 range close to Tci.

6.1.4 Effect of Compressor Pressure Ratio

Subsonic Flight

Figures 6.7a through 6.7f compare the engine performances of the baseline

engine with three different ITB engines for varying CPR at a subsonic speed

(M0 = 0.85) with Tt4 of 1600K. The FPR and FBR are fixed at 1.3 and 4.0,

respectively. As CPR increases, the baseline engine exhibits a decrease in ST

and S with an almost constant level of thermal efficiency. The ITB engine with

Tt4.5 of 1000K behaves just like a baseline engine because Tt4 exceeds Tci, where

ITB is turned off.

One would expect to see that ITB engine with T4.5 of 1300K gains an im-

provement in ST and thermal efficiency. However, it does not perform as well as

one may thought, especially at the CPR higher than 30. As the CPR goes beyond

30, the decreasing propulsive efficiency has counteracted the overall performance

of the ITB engine. On the other hand, ITB engine with a moderate value of Tt4.5,

i.e., 1150K in this case, performs surprisingly well at CPR higher than 40 and

above. These facts tell us that a higher value of Tt4.5 does not necessarily mean

that the engine will perform better.

Supersonic Flight

Holding all parameters constant, now consider the military turbofan engines

with a higher FPR of 3.0 (multi-stage fan) and a low FBR of 0.5. Figure 6.8a

through 6.8f shows the performance comparison for these types of engines at M0

= 1.2. Because of the similar trends of performance, most of what have been

observed and discussed in the subsonic flight conditions can be equally applied
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Figure 6.6: Performance comparison of turbofan engines versus Tt4 at an altitude
of 10km, M0 of 1.2, πf = 3.0, πc = 28.48, πcL = 1.387, and α = 0.5.
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to the supersonic flight conditions.

For a baseline engine, higher CPR limits the heat addition in the main

burner due to the higher inlet temperature of the compressed air. The situation

is even worse at the supersonic flight when the ram effect introduces at least

a pressure rise of 2 times higher than the ambient pressure, which raises

further the inlet temperature of the main burner. The consequence is the

decreasing trend of thermal efficiency as shown in Figure 6.8c. The good news

is that ITB remedies this problem by allowing a secondary heat addition at a

pressure relatively higher than the pressure of an afterburner at some military

engines. Also, ITB engines produce more ST at the same amount of fuel

consumption as shown in Figure 6.8f. In fact, unlike in the subsonic flight, the

ITB engine with Tt4.5 of 1300K not only possesses a much better thermal effi-

ciency, but also yields an improved overall efficiency. In other words, ITB can be

a potential improvement to the military supersonic turbofan engine performance.
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Figure 6.7: Performance comparison of turbofan engines versus compressor pres-
sure ratio at an altitude of 10km, M0 = 0.85, πf = 1.3, πcL = 1.387, α = 0.5,
and Tt4 = 1600K.
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Figure 6.8: Performance comparison of turbofan engines versus compressor pres-
sure ratio at an altitude of 10km, M0 = 1.2, πf = 3.0, πcL = 1.387, α = 0.5, and
Tt4 = 1600K.
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6.1.5 Effect of Fan Pressure Ratio

Subsonic Flight

Increasing FPR is a way to supply more energy to the bypass flow. In

Saravanamuttoo et al. [45], military aircrafts may have two- or three-stages fan

with FPR as high as 4.0 whereas civil aircrafts will always use a single-stage fan

with FPR of about 1.5 to 1.8.

Figures 6.9a through 6.9f compare the engine performances of the baseline

engine with three different ITB engines for varying FPR at a subsonic speed

(M0 = 0.85) with Tt4 of 1600K. The CPR and FBR are fixed at 28.48 and 4.0,

respectively.

As shown in Figure 6.9a, the value of ST of the baseline engine increases

initially and starts decreasing at FPR equal to 2.5. It is because more work is

extracted from LPT to fan in order to attain the higher FPR. The lower energy

at the LPT exhaust stream also leads to a decrease in the average exit velocity

of the engine core stream. Beyond that point, the decrease in engine core exit

velocity is more than the increase in the fan exit velocity, thus lowering the

total thrust level. This also explains the decreasing trend of the thermal efficiency.

Nevertheless, the secondary heat addition in ITB supplies enough energy to

LPT in order to drive the larger fan. Furthermore, the overall efficiency of ITB

engine (with Tt4.5 of 1300K) at higher FPR is clearly seen when the value of S

is lower than that of the baseline engine at FPR beyond 1.7. In addition, unlike

the case with the increasing Mach number and CPR, Figures 6.9a and 6.9b also

show us that there is an optimum value of FPR for the case being studied, which

will maximize ST and minimize S.
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Supersonic Flight

For supersonic flight, the performance trend is qualitatively similar to those

of the subsonic flight mentioned above, i.e., a better overall performance of the

ITB engine over the baseline engine, as shown in Figure 6.10.
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Figure 6.9: Performance comparison of turbofan engines versus fan pressure ratio
at an altitude of 10km, M0 = 0.85, πc = 28.48, πcL = 1.387, α = 4.0, and Tt4 =
1600K.
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Figure 6.10: Performance comparison of turbofan engines versus fan pressure
ratio at an altitude of 10km, M0 = 1.2, πc = 28.48, πcL = 1.387, α = 0.5, and
Tt4 = 1600K.
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6.1.6 Effect of Fan Bypass Ratio

Subsonic Flight

Figure 6.11a through 6.11f show the performance comparisons for varying

FBR at M0 of 0.85. Clearly, as the FBR increases, the characteristics of the

baseline engine are the decreasing trends of ST, S and thermal efficiency. The

ST is decreasing because the total air flow rate is increasing as a result of the

increasing BPR. Despite the decreasing trend, it is widely known that the higher

FBR tends to improves the propulsive efficiency, which makes up for the reduction

in thermal efficiency [49], and thus the better overall efficiency. With an addition

of ITB, the engine characteristics remains the same with an improvement in ST

and thermal efficiency.

Supersonic Flight

The performance comparisons for varying FBR at supersonic speed (M0

of 1.2) are shown in Figure 6.12a through 6.12f. The baseline engine ceases

to produce thrust at FBR beyond 3.8 (moderate FBR). However, adding ITB

to the engine will not only widen its operation range up to high FBR (close

to 5.0), but also gain more than 12% increase in ST accompanied by a more

than 4% decrease in S as FBR increases. It may be unfeasible to operate a

supersonic engine at moderate or high FBR. Nevertheless, the advance in turbine

technology (increased Tt4) will soon allow using a fan with FBR larger than

those traditionally used in supersonic turbofan engines (FBR = 0.5 or less) while

maintaining a reasonably small frontal area [41].
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Figure 6.11: Performance comparison of turbofan engines versus fan bypass ratio
at an altitude of 10km, M0 = 0.85, πc = 28.48, πcL = 1.387, πf = 1.3, and Tt4 =
1600K.
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Figure 6.12: Performance comparison of turbofan engines versus fan bypass ratio
at an altitude of 10km, M0 = 1.2, πc = 28.48, πcL = 1.387, πf = 3.0, and Tt4 =
1600K.
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6.1.7 Advantages of Operation of Main Burner and ITB

Together

An important target in the engine design with ITB is the reduced amount

of thermal NOx. One way to achieve this is to lower the peak temperature inside

the burner. We first consider three engines in the following discussion: engine A

(i.e., a baseline engine with Tt4 set to 1300K), engine B (i.e., a baseline engine

with Tt4 set to 1600K), and engine C (i.e., basically engine A with an addition

of ITB, where Tt4.5 is set to 1300K). The engine of target among these three

is the engine C, which is compared to its baseline engine (i.e., engine A) and

another baseline engine with a higher peak engine temperature (i.e., engine B).

Figures 6.13a through 6.13c demonstrate the performance comparisons of these

three engines for flight Mach number of 0 to 2.

In the previous discussions, it becomes clear that as the fluid undergoes

a secondary combustion, a higher ST results with an improvement in thermal

efficiency. Therefore, it is expected to see engine C having better ST and

improved thermal efficiency than its baseline engine (engine A). On the other

hand, despite having a lower efficiency than engine B due to a lower peak

temperature (i.e., 1300K) inside the burners, engine C has advantages over

engine B. Its advantages include higher ST and no turbine cooling required in

HPT. Small amounts of cooling air may be required if a low-technology blade

material is used, or if higher values of Tt4 and Tt4.5 are specified.

In addition to the advantages mentioned above, engine C is also said to pro-

duce a lesser amount of thermal NOx due to the lower peak temperatures inside

the burners. To verify this, a simple NOx model is derived and implemented into

the existing code. All details of the NOx modeling can be found in Appendix C.

The comparison of NOx emission from each engine is depicted in Figure 6.14. For

comparison, each EINOx is normalized by dividing EINOx by its corresponding
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ST. One can clearly see that engine C produce very slightly NOx more than its

baseline engine (engine A) due to the additional burning inside the ITB. Never-

theless, engine C produce much lesser NOx than engine B while producing higher

ST. This finding addresses the feasibility of reducing the peak engine temperature

(i.e., from 1600K to 1300K) without sacrificing the power output, while definitely

reducing the NOx emission.
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Figure 6.13: Performances of three turbofan engines versus M0, πf = 1.3, πc =
28.48, and α = 4.0.
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Figure 6.14: NOx emission of three turbofan engines versus M0, πf = 1.3, πc =
28.48, and α = 4.0.

6.2 Results from Off-design Cycle Analysis

Engine Configuration

Two sets of reference-point engine data at sea level static (SLS) condition

are selected, i.e., case A and B, as provided in Table 6.1. For each case, a

conventional engine is considered as a baseline engine while a similar engine

operating with an addition of ITB is termed as ITB engine. In addition, the

component performance parameters, listed in Table J.1, are kept the same for

both cases.

For full throttle operation, the maximum inlet HPT total temperature (Tt4

or main burner exit total temperature) and the LPT inlet total temperature

(Tt4.5 or ITB exit total temperature) are set to the values as listed in Table 6.1.

For partial throttle operation, the minimum thrust is set to 20 percent of the

maximum thrust.
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Table 6.1: Design-point engine reference data

Description Input value

Reference Conditions Case A Case B
Flight Mach number (M0R) 1.2 0.9
Altitude (hR) SLS SLS
Main burner exit total temperature (Tt4R, K) 1500 1500
ITB exit temperature (Tt4.5R, K) 1300 1300
Compressor pressure ratio (πcR) 25 28.48
Fan pressure ratio (πfR) 2.43 2.0
Fan bypass ratio (αR) 0.73 4.0
Mass flow rate (ṁ0R, kg/s) 118 550

6.2.1 Full Throttle Performance

Low FBR

Figures 6.15a through 6.15c present the uninstalled performance of the

turbofan engines with a low FBR of 0.73 operating at full throttle settings for

case A. These figures show the variations of thrust (F ), S, and efficiencies with

flight Mach number (M0). The solid lines represent ITB engine performance

while the dashed lines represent baseline engine performance.

In Figure 6.15a, the ITB engine exhibits an increase in thrust over the base-

line engine as M0 increases. Because of more fuel injected into ITB in addition to

the main burner, ITB engines do have slightly higher fuel consumption than the

baseline engine. Nevertheless, adding ITB is still beneficial because the improve-

ment in thermal efficiency (Fig. 6.15c) reflects that the gain in thrust offsets the

slight increase in S.

In Figures. 6.15a and 6.15c, both thrust and thermal efficiency curves

exhibits a slope change at M0 of about 1.2. The engine control system takes

place at that operating point in order to limit the main burner exit temperature

from exceeding the maximum inlet turbine temperature limit.
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High FBR

Figures 6.16a through 6.16c present the uninstalled performance of the tur-

bofan engines with a high FBR of 4.0 operating at full throttle settings for case

B. It is found that both engines have similar performance trends over the flight

spectrum as in case A, except that the ITB engine has almost the same level of

specific fuel consumption compared with the baseline engine. Another thing to

notice is that the overall efficiencies of both engines start to deteriorate at very

high Mach number.
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Figure 6.15: Full-throttle performance comparison of turbofan engines (case A)
versus M0 at an altitude of 10km, πfR = 2.43, πcR = 25, Tt4R = 1500K, Tt4.5R =
1300K, ṁ0R = 118 kg/s, and α = 0.73.
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Figure 6.16: Full-throttle performance comparison of turbofan engines (case B)
versus M0 at an altitude of 10km, πfR = 2, πcR = 28.48, Tt4R = 1500K, Tt4.5R =
1300K, ṁ0R = 550 kg/s, and α = 4.0.
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6.2.2 Partial Throttle Performance

Figures 6.17 (case A) and 6.18 (case B) show the ‘S versus F’ and ‘ηth

versus F ’ curves at partial throttle settings for two different values of M0 at

an altitude of 10km. Case A represents the engines with a low FBR whereas

case B represents the engines with a high FBR. As seen clearly in Figs. 6.17a

and 6.18a, the partial throttle performance curves for ITB engines preserve the

classical hook shape that is known as throttle hook in the propulsion community.

As the throttle is reduced (i.e., the thrust is decreased) until the ITB is turned

off (which appears as a discontinuity in each curve), it results in a change in

slope from a linear curve to a spline. This change is accompanied by an abrupt

increase in S and a drop in thrust.

According to Figs. 6.17a and 6.18a, it is clearly noticed that adding ITB fur-

ther extends the engine operational range by producing higher thrust levels than

that of the baseline engine. Within these higher thrust curves, the fuel consump-

tion increases linearly with increasing thrust until it reaches a local maximum

point, which represents the full throttle operation. Depending on the engine

configuration and flight conditions, this maximum point may or may not have

a S value higher than the S value of a baseline engine at its full throttle operation.

For example, the local maximum points for the case-A ITB engine with

M0 of 0.9 and 1.2 (Fig.6.17a) have always higher S levels than that of baseline

engine. This is shown in Figure 6.15a, where the case-A ITB engine’s full

throttle operations at both levels of M0 yield a very high fuel consumption.

Nevertheless, Figure 6.18a shows that the case-B ITB engine operating at

full throttle condition exhibits relatively lower S values at two different M0’s

compared to case A. Therefore, for some applications, for instance, the engine

with a low FBR like in case A, it might be better to operate the ITB engine at
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partial throttle settings (i.e., lower Tt4.5) to avoid burning extra fuel while still

achieving modest thrust augmentation. This will certainly provide fuel saving

to many aircraft engines, which normally run at partial throttle settings during

cruise operations at high altitude.

As shown in Figures. 6.17b-c and 6.18b-c, the thermal efficiency of ITB

engine is greatly improved over the baseline engine when ITB is on. However, its

variation within the extended operational range is relatively small. This finding

confirms the advantage of running the engine at partial load condition rather

than at full load condition.

6.2.3 Mission Analysis

A systematic mission study of the fuel consumption is performed to reveal

the advantage of saving fuel by adding ITB. However, at this preliminary design

phase, the engine manufacturer’s published data is often unavailable; therefore,

the off-design engine model like this one can be used to give a preliminary

estimate of fuel consumption in each mission phase [34]. A 5% installation loss

is accounted to give the mission analysis fuel consumption.

For the following mission study, only case A is considered. For simplicity,

only critical mission phases and segments are selected. Each selected mission

leg is judged to be critical because it has a high fuel consumption and is an

extreme operating condition [34]. In each mission leg, the ITB engine is operat-

ing at partial throttle settings to avoid burning extra fuel as previously discussed.

Table 6.2 contains a summary of the mission performance of ITB engine

(case A) as compared to baseline engine in term of fuel consumption. Each

aircraft has an initial take-off weight of 24,000 lbf. It is found that ITB engine

uses less fuel in all phases. Particularly, the fuel consumption in the Warm-up

(1-2) phase is significantly less. This calculation also shows that ITB engine

120



Figure 6.17: Partial-throttle performance of turbofan engine (case A) at an alti-
tude of 10km, πfR = 2.43, πcR = 25, Tt4R = 1500K, Tt4.5R = 1300K, ṁ0R = 118
kg/s, and α = 0.73.
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Figure 6.18: Partial-throttle performance of turbofan engine (case B) at altitude
of 10km, πfR = 2, πcR = 28.48, Tt4R = 1500K, Tt4.5R = 1300K, ṁ0R = 550 kg/s,
and α = 4.0.
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consumes about 2.3% less fuel for all those selected critical mission legs, which

assure the fuel efficiency of an ITB engine over the baseline engine. According

to an article published in “Aerospace Engineering” magazine [1], it stated that

the Continental Airlines currently flies 18 Boeing 777-200 aircrafts. If the airline

could reduce the fuel consumption on that relatively small fleet of aircraft by as

little as 2% per year, it would save $27 million dollar annually. So, 2.3% fuel

saved translates to a great savings in term of the operating cost.

To get an even better fuel consumption, one may want to return to the

on-design cycle analysis and choose other reference-point engines for further in-

vestigation.

Table 6.2: Summary of results for mission analysis (24,000 lbf of take-off weight)

Baseline ITB
Mission phases and segments M0 Alt Fuel used Fuel used Fuel saved Fuel

(kft) (lbf) (lbf) (lbf) saved(%)
1-2 A - Warm up 0.0 2 578 491 88 15.1
2-3 E - Climb/acceleration 0.875 23 480 473 7 1.4
3-4 Subsonic cruise climb 0.8 42 505 501 9 1.7
5-6 Combat air patrol 0.697 30 705 700 5 0.7
6-7 F - Acceleration 1.09 30 221 223 -2 -0.8
6-7 G - Supersonic penetration 1.5 30 1819 1787 31 1.7
7-8 I - 1.6M/5g turn 1.6 30 426 416 9 2.2
7-8 J - 0.9M/5g turn 0.9 30 294 290 4 1.2
7-8 K - Acceleration 1.2 30 211 209 3 1.3
8-9 Escape dash 1.5 30 531 523 8 1.5

10-11 Subsonic cruise climb 0.9 48 457 452 5 1.1
12-13 Loiter 0.378 10 608 612 -3 -0.6

Total 6836 6677 158 2.3
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Chapter 7

Conclusions and

Recommendations

7.1 Conclusions

This work presented in this dissertation is consisted of two main parts, each

concerning the development of a detailed mathematical modeling to perform

the parametric and performance cycle analyses, respectively. The method of

analysis and the findings are first presented on each section, followed by the

recommendations for future development.

7.1.1 Parametric Cycle Analysis

The initial task consisted of reviewing the past and current research effort

on an innovative concept of introducing a secondary isobaric burner into a

conventional turbofan engine, and performing a parametric cycle analysis for

this modified engine. In the parametric cycle analysis, the primary purpose

is to examine the variations of specific engine performance at a flight condi-

tion with changes in design parameters, including design variables for engine

components. Then, it is possible to narrow down the desirable range for each de-
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sign parameter, such as the CPR, FPR, FBR, and main burner exit temperature.

The findings from the past research effort indicate the worthiness of

developing ITB. However, the simplified assumptions and the absence of turbine

cooling model in past researches could be over-predicting the performance gain

due to the addition of ITB. Therefore, a much more detailed modeling of each

engine component, including the turbine cooling model, were developed and

presented in chapter 4.

Preliminary results show that the significance of including a turbine

cooling model into each computation, especially those with very high HPT

inlet temperature. Consequently, turbine cooling is essential for predicting

the engine performance. During the analysis of the results, a constraint in

the ITB design leads to a discovery of an important quantity, namely “critical

ITB temperature” (Tci). By definition, for a specified value of Tt4.5, the value

of Tci is, in fact, the maximum allowable Tt4, beyond which the ITB has

no advantage at all. In other words, whenever designing a turbofan engine

with an ITB, it must always satisfy this condition: Tt4 < Tci. Therefore, it

is always desirable to seek for a higher Tci in order to utilize the advantage of ITB.

As M0 increases, ITB engine performs better than the beseline engine

at both subsonic and supersonic flights. Both ST and thermal efficiency are

improved without any increase in S. At supersonic speed, the ITB engine

performs even better with lesser fuel consumption. A similar conclusion can

be drawn as the value of Tt4 increases, i.e., ITB engine at supersonic flight has

much improvement in thermal efficiency. Unfortunately, the overall performance

of the ITB engine is only better than the baseline engine when operating at a

range of Tt4 close to Tci.

Throughout the analysis, it is generally accepted that a high value of Tt4.5 up
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to the turbine blade limit will give the best overall performance. However, this is

not the case when the engine compression is very high (about 40 and above) at

the subsonic flight. On the contrary, at the supersonic flight, ITB can be a poten-

tial improvement to the military low-FBR turbofan engine. In addition, adding

ITB also widen the supersonic operation range from moderate FBR to high FBR.

Preliminary calculations also confirmed the advantage of ITB in producing

lesser amount of NOx emission due to the lower peak engine temperature while

maintaining same level of ST. In general, the performance comparison of the

ITB engine versus the baseline engine confirmed the advantage of using ITB,

i.e., higher ST, improved thermal efficiency, less cooling air, and less NOx

production, provided that the values of Tt4 and Tt4.5 are properly specified.

Despite many advantages of using ITB for better engine performance, there

are also challenges needed to be resolved. Specific hardware design challenges are

the design and integration of a second combustor, including all associated cooling

and control requirements, which need to be overcome.

7.1.2 Performance Cycle Analysis

Typically, the performance cycle analysis differs significantly from the

parametric cycle analysis. Once the design choice is made in the parametric

cycle analysis, it gives a design-point or reference engine for a particular

application. The performance cycle analysis is then performed to estimate how

this specific design-point engine will behave at conditions other than those for

which it was designed. Furthermore, the performance of several design-point

engines can be compared to find the most promising engine that has the best

balanced performance over the entire flight envelope.

In chapter 5, a performance cycle analysis of a separate-flow and two-spool

turbofan with ITB has been presented. The mathematical modeling of each
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engine component (e.g., compressors, burners, turbines and exhaust nozzles), in

terms of its operating condition has been systematically described.

As expected, the results showed that the ITB engine at full throttle settings

has an enhanced performance over baseline engine. Utilizing a high FBR would

further reduce its fuel-burn penalty because ITB engine at high FBR has almost

the same level of specific fuel consumption compared with the baseline engine.

At the partial throttle settings, adding ITB further extends the engine

operational range by producing higher thrust levels than that of the baseline

engine. Within these higher thrust curves, the fuel consumption increases

linearly with increasing thrust until it reaches their full throttle settings. On

the other hand, ITB engine at partial throttle settings achieves a modest thrust

augmentation without any fuel-burn penalty as observed in most full throttle

settings. This advantage greatly provide fuel saving to many aircraft engines,

which normally run at partial load during the cruise operations at high altitude.

A systematic mission study of the fuel consumption is performed to reveal

the advantage of saving fuel by adding ITB. ITB engine uses less fuel in each

critical mission phase. On an average, the calculation shows that ITB engine

consumes about 2.6% less fuel for all those selected critical mission legs, which

assures the ITB engine’s advantage of saving fuel over the baseline engine.

7.2 Recommendations

Although the program developed in this work is considered a fairly complete

and fully functional design tool for the research on ITB, it is possible to identify

four main directions for future work. All these suggestions are recommended so

that the program could be enhanced for increased usefulness.
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7.2.1 Increased Flexibility of the Program

The two Excel programs, i.e., for parametric and performance cycle analysis,

respectively, have been written with a specific engine configuration in mind,

i.e., namely an unmixed two-spool turbofan with separate fan and core stream

nozzles. Applications of an ITB may not be limited to a given configuration. In

fact, the addition of an ITB may foster unique engine configurations that can

better leverage the increased specific thrust. As a result, an increased flexibility

of engine configuration would be a desirable feature.

One example would be the mixed turbofan that in most cases employ a

forced mixer at the mixing plane, where the fan and the core streams merge

together. To accomplish this capability, some branching of the source code can

be done to allow for a different set of equations, like adding another independent

fan bypass ratio along with a dependent for the mixing plane static pressure

balance and some mixed nozzle performance calculations. Parameters such

as thermal mixing and pressure losses in the mixer can also be included to

characterize the mixer performance.

In the findings of Liu and Sirignano [32] and Chen et al. [4], they both

found out the superior advantage of operating two ITBs, instead of one ITB. To

further investigate the potential of the 2-ITB engine, it may require a three-spool

arrangement type of turbofan, such as the family of high-bypass and triple-spool

Rolls-Royce Trent engines. Therefore, it will be an enhanced feature if this kind

of three-spool engine configuration is incorporated into the program.

7.2.2 Multi-stage Turbine and Cooling Model

In this research, the HPT and LPT are both modeled as single-stage turbine

for simplicity. Accordingly, the turbine cooling scheme is modeled as two injec-

tions at the entrances of the first stator and rotor separately. While this method
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provides certain level of accuracy for most engines, the simple assumption may

not be valid when designing a multi-stage turbine. In a multi-stage turbine, the

increased power could be used to drive more engine compressions.

In order to accurately predict the behavior of the multi-stage turbine in

future work, the requirement for a more detailed modeling of cooling model at

each turbine stage is also a must. This would likely be a branch in the code that

is tied to the modeling of alternate multi-stage turbine. For example, Kesser

[19] has successfully adopted a perfect mixer cooling flow model in his work of

analyzing a basic chemically recuperated gas turbine power plant.

7.2.3 Design Choice Optimization

As reader observed the curve of ‘S versus FPR’ at a subsonic flight (Figure

6.9), there is an optimum value of the FPR that leads to minimum thrust specific

fuel consumption. For a given set of prescribed variables (e.g., πc, πf , Tt4, M0),

one can locate the minimum S by taking the partial derivative of S with respect to

the FPR. Similar techniques can be applied to other design choices, for instance,

the FBR at supersonic flight (Figure 6.12). Although this kind of task looks

simple, however, it is in fact a tedious mathematical formulation problem, which

requires a sound mathematical background in the field of design optimization. A

good example can be found in chapter 7 of Mattingly‘s textbook [33].

7.2.4 Separate Modeling of Fan Hub and Tip

In this research, the fan was treated on an overall basis for both bypass and

core stream flows. On a close coupled fan configuration, like most of the fighter

aircraft engines, fan performance is broken down so that the hub and tip perfor-

mance can be characterized independently. Therefore, having this capability to

treat the fan hub and tip separately in the future code development would be a

useful feature too.
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Appendix A

Summary of Papers

A Complete Parametric Cycle Analysis of a Turbofan with Interstage
Turbine Burner (AIAA-2003-0685)[25]

Today’s modern aircraft is based on air-breathing jet propulsion systems,
which use moving fluids as substances to transform energy carried by the fluids
into power. Throughout aero-vehicle evolution, improvements have been made
to the engine efficiency and pollutants reduction. This study focuses on a para-
metric cycle analysis of a dual-spool, separate-flow turbofan engine with an ITB.
The ITB considered in this paper is a relatively new concept in modern jet engine
propulsion. The ITB serves as a secondary combustor and is located between the
high- and the low-pressure turbine, i.e., the transition duct. The objective of
this study is to use design parameters, such as flight Mach number, compressor
pressure ratio, fan pressure ratio, fan bypass ratio, linear relation between high-
and low-pressure turbines, and high-pressure turbine inlet temperature to obtain
engine performance parameters, such as specific thrust and thrust specific fuel
consumption. Results of this study can provide guidance in identifying the per-
formance characteristics of various engine components, which can then be used
to develop, analyze, integrate, and optimize the system performance of turbofan
engines with an ITB.

Performance Cycle Analysis of a Two-spool Separate-exhaust Turbofan
with Interstage Turbine Burner (AIAA-2004-3311)[26]

This paper presents the performance cycle analysis of a dual-spool, separate-
exhaust turbofan engine, with an Interstage Turbine Burner serving as a sec-
ondary combustor. A performance analysis of this engine has been conducted for
steady-state engine performance prediction. A code is written and is capable of
predicting engine performances (i.e. thrust and thrust specific fuel consumption)
at varying flight conditions and throttle settings. Two design point engines were
studied to reveal trends in performance at full and partial throttle operations.
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An Interactive Microsoft Excel program for Tracking A Single Evapo-
rating Droplet in Crossflow (NASA/TM-2004-212910)[27]

Droplet interaction with a high temperature gaseous crossflow is important
because of its wide application in systems involving two phase mixing such as in
combustion requiring quick mixing of fuel and air. The focus of this work is to
investigate dispersion of a two-dimensional evaporating spray into a crossflow.

An interactive Microsoft Excel program for tracking a single droplet in
crossflow that has previously been developed was modified to include droplet
evaporation computation. In addition to the high velocity airflow, the injected
droplets are also subjected to increased combustor temperature and pressure
that affect their motion in the flow field. Six ordinary differential equations
(namely the time rate of change of x, z, ud, wd, D, and Ts) are then solved by
4th-order Runge-Kutta method using Microsoft Excel software.

Visual Basic programming and Excel macrocode are used to calculate the
data and plot the droplet’s motion in the flow field. This program computes
and plots the data sequentially without forcing the user to open other types of
plotting programs. A user’s manual on how to use the program is included.

Parametric Cycle Analysis of a Turbofan with Interstage Turbine
Burner[28]

The objective of this study is to use engine design parameters, such as high-
pressure and low-pressure turbine inlet temperatures to obtain engine perfor-
mance parameters, e.g., specific thrust and thrust specific fuel consumption. A
turbine cooling model is also included. Results confirm the advantages of ITB,
i.e., higher ST, less cooling air, and possibly less NOx production, provided that
the main burner exit temperature and ITB exit temperature are properly speci-
fied.

A Parametric (On-Design) Cycle Analysis for a Separate-Exhaust
Turbofan Engine with Interstage Turbine Burner (NASA/TM-2005-
213658)[29]

The objective of this study is to use design parameters, such as flight
Mach number, compressor pressure ratio, fan pressure ratio, fan bypass ratio,
and high-pressure turbine inlet temperature to obtain engine performance
parameters, such as specific thrust and thrust specific fuel consumption. Results
of this study can provide guidance in identifying the performance characteristics
of various engine components, which can then be used to develop, analyze,
integrate, and optimize the system performance of turbofan engines with an ITB.

Visual Basic program, Excel macrocode, and Excel neuron code are used to
facilitate Excel software to plot engine performance versus engine design param-
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eters. This program computes and plots the data sequentially without forcing
users to open other types of plotting programs. A user’s manual on how to use the
program is also included in this report. Furthermore, this stand-alone program
is written in conjunction with an off-design program which is an extension of this
study. The computed result of a selected design-point engine will be exported to
an engine reference data file that is required in off-design calculation.

Performance (Off-Design) Cycle Analysis for a Turbofan Engine with
Interstage Turbine Burner (NASA/TM-2005-213659)[30]

A detailed off-design performance analysis of ITB engines is written in Excel
macrocode with Visual Basic Application to calculate engine performances over
the entire operating envelope. Several design-point engine cases are pre-selected
using a parametric cycle analysis code developed previously in Excel, for off-
design analysis. The off-design code calculates engine performances (i.e. thrust
and thrust-specific-fuel-consumption) at various flight conditions and throttle
settings.

Performance Cycle Analysis of Turbofan Engine with Interstage Tur-
bine Burner[31]

This paper presents the performance cycle analysis of a dual-spool, separate-
exhaust turbofan engine, with an Interstage Turbine Burner serving as a sec-
ondary combustor. The ITB, which is located at the transition duct between the
high- and the low-pressure turbines, is a relatively new concept for increasing
specific thrust and lowering pollutant emissions in modern jet engine propulsion.
A performance analysis of this engine has been conducted for steady-state engine
performance prediction. A code is written and is capable of predicting engine
performances (i.e., thrust and thrust specific fuel consumption) at varying flight
conditions and throttle settings. Two design-point engines were studied to reveal
trends in performance at both full and partial throttle operations. A mission
analysis is also presented to assure the advantage of saving fuel by adding ITB.
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Appendix B

U.S. Standard Atmosphere 1976

B.1 Introduction

The US Standard Atmosphere 1976 is an average, piece-wise continuous

function for density, pressure and temperature profiles of the earth’s standard

atmosphere. The standard atmosphere is mathematically defined in seven layers

from sea level to 84.852km. It is a function of geo-potential altitude, which is

represented by

z =
h ·Rearth

h + Rearth

(B.1)

where h is the geometric altitude (unit:km) and Rearth is the radius of the earth

(=6356.66km).

The table B.1 summarizes the values of several parameters at each of the

defined levels.

B.2 Temperature

The variation of temperature, T (z), with geo-potential altitude is expressed

by a continuous and piecewise linear relation. If Lapse rate is non-zero (LRstd,i 6=
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0),

T (z) = Tstd,i + LRstd,i · (z − zstd,i) (B.2)

Table B.1: Values of several parameters at each defined levels of the earth’s
atmosphere.

Lower Upper Lapse Standard Standard
Layer Name Geopotential Geopotential rate Pressure, Temperature,
(i) Altitude (zstd,i) Altitude (LRstd,i) (Pstd,i) (Tstd,i)

Unit km km K/km Pa K
1 Troposphere 0 11 -6.5 101325 288.15
2 Stratosphere 11 20 0.0 22632.06 216.65
3 - 20 32 +1.0 5474.89 216.65
4 - 32 47 +2.8 868.02 228.65
5 - 47 51 0.0 110.91 270.65
6 Mesosphere 51 71 -2.8 66.94 270.65
7 - 71 84.852 -2.0 3.96 214.65

If Lapse rate is zero (LRstd,i = 0),

T (z) = Tstd,i (B.3)

B.3 Pressure

The pressure, P (z), is also a continuous piecewise function of geo-potential

altitude. If Lapse rate

P (z) = Pstd,i

(Tstd(z)

Tstd,i

)(
−1000·g0·W0
R∗·LRstd,i

)
(B.4)

If Lapse rate is zero (LRstd,i = 0),
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P (z) = Pstd,i · exp
(−1000 · g0 ·W0 · (z − zstd,i)

R∗ · Tstd,i

)
(B.5)

where g is the acceleration of gravity (= 9.80665 m/s2), R∗ is the gas constant

for air (= 8314.32 J/kmol −K), W0 is the molecular weight of air (= 28.9644

kg/kmol).
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Appendix C

Combustion Fuel Burn Model

C.1 Combustion Fuel Burn Models

Two models are being used to calculate the amount of fuel burned in the

main burner and the ITB in terms of the fuel-air ratio. [34]:

1. Constant Specific Heat (CSH ) model

The air and combustion gases at inlet and exit of each component are

modeled as “calorically perfect gases” with constant specific heats. The

values of the specific heats are different at inlet and exit of two combustors

(main burner and ITB)

2. Modified Specific Heat (MSH ) model

All engines properties are calculated using CSH model except the fuel used.

In this model, the inlet total temperature (i.e., Tt3 and Tt4.4) of combus-

tors are calculated using CSH model while the exit total temperatures (Tt4

and Tt4.5) are directly obtained from the user inputs. Nevertheless, the

total enthalpies (ht3, ht4, ht4.4, and ht4.5) will be calculated directly from

the Variable Specific Heat (VSH ) model (p.116 of [34]). Therefore, the

improvement on enthalpy calculation gives better estimates of fuel used.
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C.2 ENTHALPY Subroutine

The following ENTHALPY subroutine is based on pages 105-106 of [33] and

used in the MSH model to calculate the enthalpy (h) at engine stations 3, 4, 4.4,

and 4.5.

ENTHALPY(option,T,f,h,cp,γ)

Inputs: T and f

Outputs: h, or (cp and γ)

The equations for calculating these outputs are shown below:

hair =
[
href + A0T +

A1

2
T 2 +

A2

3
T 3 +

A3

4
T 4 +

A4

5
T 5 +

A5

6
T 6 +

A6

7
T 7 +

A7

8
T 8

]
air

(C.1)

hprod =
[
href +A0T +

A1

2
T 2 +

A2

3
T 3 +

A3

4
T 4 +

A4

5
T 5 +

A5

6
T 6 +

A6

7
T 7 +

A7

8
T 8

]
prod

(C.2)

hmix =
hair + f · hprod

1 + f
(C.3)

where the constants A0 etc. are given in Table C.1.

The equations needed to calculate the fuel-air ratios of the main burner (fb)

and the ITB (fitb) are listed below for both the CSH and MSH models.

Main burner

If (CSH) then (Eq.4.13)

fb =
τλ−b − τrτdτcLτcH

ηbhPR/(cpcT0)− τλ−b

(C.4)

Else

Tt3 = T0τrτcLτcH (C.5)

138



Table C.1: Constants for air and combustion products used in subroutine EN-
THALPY(option, T, f, h, Cp, γ).

Constant Air alone Combustion products of air and (CH2)n fuels
A0 2.5020051× 10−1 7.3816638× 10−1

A1 −5.1536879× 10−5 1.2258630× 10−5

A2 6.5519486× 10−8 −1.3771902× 10−8

A3 −6.7178376× 10−12 9.9686793× 10−12

A4 −1.5128259× 10−14 −4.2051104× 10−14

A5 7.6215767× 10−18 1.0212913× 10−18

A6 −1.4526770× 10−21 −1.3335668× 10−21

A7 1.0115540× 10−25 7.2678710× 10−25

href −1.7558886 Btu/lbm 30.58153 Btu/lbm

ENTHALPY(0, Tt3, 0, ht3, 0, 0)

Set initial value of fuel/air ratio at station 4 equal to f4i.

3 ENTHALPY(0, Tt4, f4i, ht4, 0, 0)

fb =
ht4 − ht3

ηbhPR − ht4

(C.6)

If |fb − f4i| > 0.0001, then f4i = fb and go to 3; else continue.

Endif

Interstage Turbine Burner

If (CSH) then (Eq.4.16)

fitb =
τλ−itb − τλ−bτm1τm1τtH

ηitbhPR/(cpcT0)− τλ−itb

(C.7)

Else

Tt4.4 = Tt4τtH (C.8)

ENTHALPY(0, Tt4.4, fb, ht4.4, 0, 0)

Set initial value of fuel/air ratio at station 4.4 equal to f4.5i.

4 ENTHALPY(0, Tt4.5, f4.5i, ht4.5, 0, 0)

fitb =
ht4.5 − ht4.4

ηitbhPR − ht4.5

(C.9)
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If |fb + fitb − f4.5i| > 0.0001, then f4.5i = fb + fitb and go to 4; else continue.

Endif

If fitb=0 then γitb = γt, cpitb = cpt, and Ritb = Rt.

C.3 Products of Equilibrium Combustion

An additional subroutine is included to give the values of molar fractions

for each equilibrium combustion product. These computed equilibrium products

of combustion for a fuel composed of C, H, O, and N atoms are required as the

inputs for the prediction of NOx in the post-flame zone.

C.3.1 Olikara and Borman model

The solution procedure for the calculation of equilibrium combustion is based

on the approach first developed by Olikara and Borman [40]. Their code, writ-

ten in FORTRAN language, solves a global fuel oxidation reaction involving 13

species, including the hydrocarbon fuel (i.e., CnHmOlNk), O2, N2, H, O, N , OH,

CO, NO, CO2, H2O, and Ar:

x13

[
CnHmOlNk +

n + m/4− l/2

φ

(
O2 + 3.7274N2 + 0.0444Ar

)]
−→ x1H + x2O + x3N

+ x4H2 + x5OH + x6CO + x7NO + x8O2 + x9H2O + x10CO2 + x11N2 + x12Ar

(C.10)

For simplicity, the mole fraction of inert gas Ar, x12, is always set to 0

during the computation.

In addition, the code also invokes the following 7 equilibrium reactions:

1

2
H2 
 H (C.11)
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1

2
O2 
 O (C.12)

1

2
N2 
 N (C.13)

1

2
H2 +

1

2
O2 
 OH (C.14)

1

2
O2 +

1

2
N2 
 NO (C.15)

H2 +
1

2
O2 
 H2O (C.16)

CO +
1

2
O2 
 CO2 (C.17)

The equilibrium constants are curved fitted from data in JANAF thermo-

chemical table [18]. For a much more complete description of Olikara and Bor-

man’s model and its example calculations, please refer to [40].

C.3.2 Adaptation to Gas Turbine Combustor and its lim-

itations

Although this code was developed specifically for automotive internal

combustion engine simulations, it can also be used for gas turbine combustor

simulations provided the pressure and temperature inside the combustor and the

chemical formulation for kerosene or Jet-A are properly specified. In this study,

either kerosene or Jet-A is used as a fuel and both formulations are specified as

C12H23 [20], where n = 12, m = 23, l = 0, and k = 0.

Reader needs to be aware of the limitations for this model. One of them is

that the products of combustion are assumed to be ideal gases. This assumption

is not valid at extremely high pressures, similar to those encountered inside a gas

turbine combustor. Secondly, due to the short residence time, it is impossible for

the combustion products to attain equilibrium. Despite all these limitations, it

is at least an ideal way to calculate the mole fractions of combustion products,
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which are required as the inputs in the prediction of NOx formation.

C.4 NOx model

In order to provide more information to assess the effect of adding ITB on

the engine performance, it is important to provide information on the pollutant

emissions, particularly the NOx emission in this study. As a result, a separate

subroutine has been embedded into the combustion submodel to predict NOx

production.

C.4.1 Oxides of Nitrogen mechanisms

Of the oxides of nitrogen (NOx) generated by gas turbine combustor, NO

occupies more than 90% of the NOx [43]. Therefore, only the production of NO

is modeled. In the combustion of fuels that contain no nitrogen, NO is formed

by three chemical mechanisms that involve nitrogen in the air: (1) the thermal

or Zeldovich mechanism, (2) the prompt or Fenimore mechanism, and (3) the

N2O-intermediate mechanism [51].

The prompt mechanism is of no interest in this study because it is only im-

portant in low-temperature fuel-rich zone [21]. Meanwhile, the N2O-intermediate

mechanism is only important in lean premixed combustion and is not well de-

veloped yet [51]. Consequently, it is reasonable to neglect the prompt and N2O-

intermediate mechanisms. Only the fairly well established Zeldovich chain mech-

anism or simply the thermal mechanism is applied to predict the NO formation.

This assumption is valid for most traditional combustors.

C.4.2 Extended Zeldovich Mechanism

The amount of thermal NO produced is computed using the extended Zel-

dovich mechanism is shown as follows [51]:
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N2 + O 
 NO + N (C.18)

O2 + N 
 NO + O (C.19)

OH + N 
 NO + H (C.20)

The rate coefficients for equations eqs. (C.18) to (C.20) (unit: m3/kmol−s)

are [12]

kf1 = 1.8 · 1011exp[−38370/T ] (C.21)

kf2 = 1.8 · 107Texp[−4680/T ] (C.22)

kf3 = 7.1 · 1010exp[−450/T ] (C.23)

kb1 = 3.8 · 1010exp[−425/T ] (C.24)

kb2 = 3.8 · 106Texp[−20820/T ] (C.25)

kb3 = 1.7 · 1011exp[−24560/T ] (C.26)

This formation rate of NO (unit: kmol/m3 − s) can be expressed as

d[NO]

dt
= kf1[O][N2] + kf2[N ][O2] + kf3[N ][OH] − kb1[N ][NO]

− kb2[O][NO] − kb3[H][NO] (C.27)

where [NO] denotes the molar concentration (unit: kmol/m3).

C.4.3 Assumptions and Limitations

In general, the NO mechanism above can be decoupled from the fuel ox-

idation computation because the NO formation becomes significant only after

the fuel oxidation is complete. Despite the fact that the residence time is short,

approximately 1 to 3 msec [44], it is assumed here that the N2, O2, O, H, and

OH concentrations are at their equilibrium values and N atom is in steady state.

This assumption greatly simplifies the computation of NO formation.
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C.4.4 Solution Procedure

The following shows a systematic solution procedure for the computation of

emission index for NO, EINO (unit: g/kg):

1. Compute the mole fractions of these species, χi, including N2, O2, O, H,

and OH from the equilibrium combustion [from section C.3].

2. Determine the total number of mole of combustion products (np) using

‘Equation of State’:

PV = npRT =⇒ np

V
=

P

RT
(C.28)

Then, convert the mole fraction of each species to molar concentration:

[speciesi] = χi ×
np

V
(C.29)

3. Evaluate the rate coefficients from eqs. (C.21) to (C.26).

4. Solve the ordinary differential equation (C.27) using Runge Kutta method

[38]:

Assume the concentrations of N2, O2, O, H, OH, and N are at their equi-

librium values and stay constant, eq. (C.27) can be expressed as

d[NO]

dt
= Cf − Cb[NO] = f([NO]) (C.30)

where Cf = kf1[O][N2] + kf2[N ][O2] + kf3[N ][OH]

Cb = kb1[N ]− kb2[O]− kb3[H]

Through the Runge Kutta numerical method, the solution is thus

[NO]n+1 = [NO]n +
1

6

(
no1 + 2no2 + 2no3 + no4

)
(C.31)
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where

no1 = ∆t · f([NO]n)

no2 = ∆t · f([NO]n +
no1

2
)

no3 = ∆t · f([NO]n +
no2

2
)

no4 = ∆t · f([NO]n + no3) (C.32)

C.4.5 Comparison to Empirical NOx Correlations

Lefebvre [22] did an excellent job in correlating a great amount of experi-

mental data of NOx measurement, which cover a wide range of fuel types from

JP4 to DF2. The predicted NOx data using the correlation equation (C.33)

shown below has an excellent agreement with the experimental data for almost

all combustors. Therefore, it is reasonable to compare our predicted NOx data

to Lefebvre’s data calculated using his empirical equation:

[NOx] =
9× 10−8P 1.25

3 Vcexp(0.01Tst)

ṁcTpz

[unit :
g

kg
] (C.33)

where Vc is the total combustion volume (m3),

Tst is the stoichiometric flame temperature,

Tpz represents the relationship T3 + ∆Tpz,

∆Tps is the temperature rise due to combustion corresponding to T3,

ṁc is the air mass flow rate.

Again, reader should be aware of the purpose of the simple NOx model,

which is to give us a qualitative assessment of the effect of adding an ITB on

the engine performance. Accordingly, emphasis has been put into predicting the

trends in NOx emission, not into calculating an accurate quantitative value of

the emission. Then, reader should not be surprised to observe the discrepancy

between the simple Zeldovich model and Lefebvre’s model as shown in Figure C.1.
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Figure C.1: Comparison of Predicted NOx Data between the simple Zeldovich
model and Lefebvre’s empirical model

According to Figure C.1, the predicted trends by both models obviously

follow a logical behavior, where NOx level increases as the combustor temperature

increases.
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Appendix D

Summary of Equations for

Parametric Cycle Analysis

Appendix D summarizes the complete parametric (or on-design) cycle anal-

ysis equations for the separate-exhaust, two-spool turbofan engine with an ITB

and turbine cooling. The equations shown below follows the order of the solution

in the computer code. This solution procedure requires no iteration.

D.1 Inputs

Flight parameters: M0, h, T0, P0

Design choices: πc, πcL, πf , α

P0/P9, P0/P19 (for convergent-divergent nozzle only)

Design limitations: Tt4, Tt4.5

Aircraft system parameter: β

Component figures of merit: πdmax, πb, πitb, πn, πnf

ecH , ecL, etL, etH , ef

ηb, ηitb, ηmH , ηmL

Fuel heating value: hPR
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D.2 Outputs

Overall performance: F/ṁ0, S, ηth, ηP , ηO, V9/a0, V19/a0

Component behavior: fo, fb, fitb, τλ−b, τλ−itb

M8, M9, M18, M19, ε1, ε2

τtH , τtL, τcH , τcL, τf , πtH , πtL, πcH , πcL, πf

ηtH , ηtL, ηcH , ηcL, ηf

D.3 Equations

Rc = γc−1
γc

cpc

Rt = γt−1
γt

cpt

a0 =
√

γcRcgcT0

V0 = M0a0

Diffuser

τr = 1 + γc−1
2

M2
0

πr = τ
γc/(γc−1)
r

ηRspec =


1 for M0 ≤ 1

1− 0.075(M0 − 1)1.35 for 1 < M0 < 5

800
M4

0 +935
for M0 > 5

πd = πdmaxηRspec

τλ−b = cptTt4

cpcT0

Compressors and Fan

τcH = π
(γc−1)/(γcecH)
cH

τcL = π
(γc−1)/(γcecL)
cL

τf = π
(γc−1)/(γcef )

f

τc = τcLτcH
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τb = Tt4

T0τrτc

ηcH =
τ

ecH
cH −1

τcH−1

ηcL =
τ

ecL
cL −1

τcL−1

ηf =
τ

ef
f −1

τf−1

Main Burner

If (CSH) model then fb = τλ−b−τrτcLτcH

ηbhPR/(cpcT0)−τλ−b

Else

Tt3 = T0τrτcLτcH

ENTHALPY(0,Tt3,0,ht3,0,0)

Set initial values of fuel/air ratio at station 4, f4i = τλ−b−τrτcLτcH

ηbhPR/(cpcT0)−τλ−b

3

ENTHALPY(0,Tt4,f4i,ht4,0,0) fb = ht4−ht3

ηbhPR−ht4

If (|fb − f4i| > 0.0001), then f4i = fb and goto 3; Else continue.

Endif

High-Pressure Turbine

COOLING(Tt4,τc,τλ−b,β,ε1,ε2)

τm1 = (1−β−ε1−ε2)(1+fb)+ε1τrτdτc/τλ−b

(1−β−ε1−ε2)(1+fb)+ε1

τtH = 1− (τcH−1)τcLτr[
(1−β−ε1−ε2)(1+fb)+ε1

]
τλ−bτm1ηmH

πtH = τ
γt/[(γt−1)etH ]
tH

τm2 = (1−β−ε1−ε2)(1+fb)+ε1+ε2τrτdτc/(τλ−bτm1τtH)

(1−β−ε1−ε2)(1+fb)+ε1+ε2

Inter-stage Turbine Burner

τλ−itb =
cpitbTt4.5

cpcT0

If (ITBoff) or (τλ−itb ≤ τλ−bτtHτm1τm2) then

Tt4.5 = Tt4τm1τtHτm2

fitb = 0

τitb = 1
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πitb = 1

Goto 5

Endif

If (CSH) then fitb = τλ−itb−τλ−bτtHτm1τm2

ηitbhPR/(cpcT0)−τλ−itb

Else

Tt4.4 = Tt4τtHτm1τm2

ENTHALPY(0,Tt4.5,fb,ht4.4,0,0)

Set initial values of fuel/air ratio at station 4.4,

f4.5i = τλ−itb−τλ−bτtHτm1τm2

ηitbhPR/(cpcT0)−τλ−itb

4

ENTHALPY(0,Tt4.5,f4.5i,ht4.5,0,0) fitb = ht4.5−ht4.4

ηitbhPR−ht4.5

If (|fb + fitb − f4.5i| > 0.0001), then f4.5i = fb + fitb and goto 4; Else

continue.

Endif

5

τitb = Tt4.5

T0τrτcτbτtHτm1τm2

Ritb = γitb−1
γitb

cpitb

Low-Pressure Turbine

τtL = 1− [(τcL−1)+α(τf−1)]τr

[(1−β−ε1−ε2)(1+fb)+ε1+ε2](1+fitb)τλ−itbηmL

πtL = τ
γitb/[(γitb−1)etL]
tL

ηtH = 1−τtH

1−τ
1/etH
tH

ηtL = 1−τtL

1−τ
1/etL
tL

Core Exhaust Stream

Convergent nozzle:

Pt9

P0
= πrπdπcLπcHπbπtHπitbπtLπn

If [Pt9

P0
≥

(
γitb+1

2

)γitb/(γitb−1)
] then

M9 = 1
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Pt9

P9
=

(
γitb+1

2

)γitb/(γitb−1)

P0

P9
= Pt9/P9

Pt9/P0

Else

P0

P9
= 1

Pt9

P9
= Pt9

P0

M9 =

√
2

γitb−1

[(
Pt9

P9

)(γitb−1)/γitb

− 1
]

Endif

Convergent-Divergent nozzle:

Pt9

P9
= P0

P9
πrπdπcLπcHπbπtHπitbπtLπn

M9 =

√
2

γitb−1

[(
Pt9

P9

)(γitb−1)/γitb

− 1
]

If (M9 ≥1) then M8=1; Else M8=M9.

Tt9

T0
= Tt4.5τtL

T0

T9

T0
= Tt9/T0

(Pt9/P9)(γitb−1)/γitb

V9

a0
= M9

√
γitbRitbT9

γcRcT0

Fan Bypass Stream

Convergent nozzle:

Pt19

P0
= τrτdτfτnf

If [Pt19

P0
≥

(
γc+1

2

)γc/(γc−1)
] then

M19 = 1

Pt19

P19
=

(
γc+1

2

)γc/(γc−1)

P0

P19
= Pt19/P19

Pt19/P0

Else

P0

P19
= 1

Pt19

P19
= Pt19

P0

M19 =

√
2

γc−1

[(
Pt19

P19

)(γc−1)/γc

− 1
]

Endif
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Convergent-Divergent nozzle:

Pt19

P19
= P0

P19
τrτdτfτnf

M19 =

√
2

γc−1

[(
Pt19

P19

)(γc−1)/γc − 1
]

If (M19 ≥1) then M18=1; Else M18=M19.

Tt19

T0
= τfτf

T19

T0
= Tt19/T0

(Pt19/P19)(γc−1)/γc

V19

a0
= M19

√
T19

T0

Aircraft Performance Parameters

Fc

ṁc

=
a0

gc

{[
(1− β − ε1 − ε2)(1 + fb) + ε1 + ε2

]
(1 + fitb)

V9

a0

−M0+

[
(1− β − ε1 − ε2)(1 + fb) + ε1 + ε2

]
(1 + fitb)

Ritb

Rc

T9/T0

V9/a0

1

γc

(
1− P0

P9

)}

Ff

ṁf
= a0

gc

[
V19

a0
−M0 + T19/T0

V19/a0

1
γc

(
1− P0

P19

)]
F
ṁ0

=
Fc
ṁc

+α
Ff
ṁf

1+α

S = (1−β−ε1−ε2)fb+[(1−β−ε1−ε2)(1+fb)+ε1+ε2]fitb

Fc
ṁc

+α
Ff
ṁf

Ẇout

ṁc
= 1

2gc

{{[
(1− β − ε1 − ε2)(1 + fb) + ε1 + ε2

]
V 2

9 − V 2
0

}
+ α

(
V 2

19 − V 2
0

)}
Q̇in

ṁc
= (1−β− ε1− ε2)fbhPR−bηb +

[
(1−β− ε1− ε2)(1+fb)+ ε1 + ε2

]
fitbhPR−itbηitb

ηTH = Ẇout/ṁc

Q̇in/ṁc

ηP = F/ṁ0(1+α)V0

Ẇout/ṁc

ηO = ηTHηP
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Appendix E

Summary of Equations for

Performance Cycle Analysis

Appendix E summarizes the complete performance (or off-design) cycle anal-

ysis equations for the separate-exhaust, two-spool turbofan engine with an ITB

and turbine cooling. The inputs, outputs and equations shown below follows

the order of the solution in the computer code. This solution procedure for the

off-design analysis are not as straight forward as that of the on-design analysis.

It requires iterations for πtH and τf as depicted in Figure I.11.

E.1 Inputs

Performance choices:

Flight parameters: M0, h, T0, P0

Throttle settings: Tt4, Tt4.5

Design constants:

π: πdmax, πb, πitb, πn, πnf

η: ηtH , ηtL, ηcH , ηcL, ηf , ηmH , ηmL

Others: β, hPR

P0/P9, P0/P19 (for convergent-divergent nozzle only)

Reference Condition:
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Flight parameters: M0R, hR, T0R, P0R

Throttle settings: Tt4R, Tt4.5R

Component behaviors: τtHR, τtLR, τcHR, τcLR, τfR

πtHR, πtLR, πcHR, πcLR, πfR

M8R, M18R, fbR, fitbR

Others: FR, SR, ṁ0R, ηthR, ηPR, ηOR, αR, τm1R, τm2R

Engine control limits: Tt4max, Tt4.5max, πcHmax, πfmax

Tt3max, Pt3max, %NL, %NH

E.2 Outputs

Overall performance: F , S, ηth, ηP , ηO, ṁ0, α

Component behaviors: τtH , τtL, τcH , τcL, τf , πtH , πtL, πcH , πcL, πf

fo, fb, fitb, τλ−b, τλ−itb, M8, M9, M18, M19

τm1, τm2, A4.5/A4.5R, A8/A8R, A9/A8, A19/A18

M8, M9, M18, M19, ε1, ε2

E.3 Equations

USATMOS76(alt,altR)

If (SI) then Tref = 288.6K; Else Tref = 516.67oR

ENTHALPY(1,T0,0,0,cpc,γc) Rc = γc−1
γc

cpc

Reference Conditions

τrR = 1 + γc−1
2

M2
0R

πrR = τ
γc/(γc−1)
rR

ηRspecR =

 1 for M0R ≤ 1

1− 0.075(M0R − 1)1.35 for 1 < M0R < 5
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πdR = πdmaxηRspecR

MFP (M18R) = M18R

√
γcgc

Rc
(1 + γc−1

2
M2

18R)
γc+1

2(1−γc)

θ0R = τrR
T0R

Tref

τitbR = Tt4.5R

Tt4RτtHRτm1Rτm2R

Set initial values:

ṁ0 = ṁ0R, fb = fbr, fitb = fitbR, πtH = πtHR, τtH = τtHR,

πtL = πtLR, τtL = τtLR, πf = πfR, τf = τfR, πcH = πcHR, τcH = τcHR,

πcL = πcLR, τcL = τcLR, τm1 = τm1R, τm2 = τm2R.

τλ−b = cptTt4

cpcT0

Preliminary Computations

τr = 1 + γc−1
2

M2
0

πr = τ
γc/(γc−1)
r

ηRspec =

 1 for M0 ≤ 1

1− 0.075(M0 − 1)1.35 for 1 < M0 < 5
πd = πdmaxηRspec

a0 =
√

γcRcgcT0

MFP (M0) = M0

√
γcgc

Rc
(1 + γc−1

2
M2

0 )
γc+1

2(1−γc)

Tt0 = T0τr

Pt0 = P0τ
γc/(γc−1)
r

Control Limits

θ0 = τr
T0

Tref

If (θ0 ≥ θ0R) then Tt4 = Tt4max; Else Tt4 = Tt4max(
θ0

θ0R
).

If (ITBon) then

If (θ0 ≥ θ0R) then Tt4.5 = Tt4.5max; Else Tt4.5 = Tt4.5max(
θ0

θ0R
).

Endif

12

ENTHALPY(1,Tt4,fb,0,cpt,γt)
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Rt = γt−1
γt

cpt

1

ENTHALPY(1,Tt4.5,fitb,0,cpitb,γitb)

Ritb = γitb−1
γitbcpitb

τλ−itb =
cpitbTt4.5

cpcT0

If
(
τλ−itb ≤ τλ−bτtH

)
then REINITIAL(1).

If (ITBon) then

τitb = Tt4.5

Tt4τtHτm1τm2

Else

τitb = 1

τitbR = 1

τλ−itb = cptTt4

cpcT0
τtH

Tt4.5 = Tt4τtH

ENTHALPY(1,Tt4.5,0,0,cpitb,γitb)

Ritb = γitb−1
γitbcpitb

Endif

A4.5

A4.5R
= ( τitb

τitbR
)n

A8

A8R
= ( τitb

τitbR
)m

High-Pressure Turbine

COOLING(Tt4,τc,τλ−b,β,ε1,ε2)

τm1 = (1−β−ε1−ε2)(1+fb)+ε1τrτdτc/τλ−b

(1−β−ε1−ε2)(1+fb)+ε1

τtH = 1− ηtH{1− π
(γt−1)/γt

tH }

πtHN =
√

τtHτitbτm1τm2√
τtHRτitbRτm1Rτm2R

A4.5R

A4.5
πtHR

Is |πtHN − πtH | ≤ 0.00001? If so, then continue. If not, set πtH = πtHN and

return to 1.

τm2 = (1−β−ε1−ε2)(1+fb)+ε1+ε2τrτdτc/(τλ−bτm1τm2)

(1−β−ε1−ε2)(1+fb)+ε1+ε2
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High-Pressure Compressor

2

τcH = 1 + ηmH [(1− β − ε1 − ε2)(1 + fb) + ε1]
τλ−b(1−τtH)τm1

τrτcL

πcH = {1 + ηcH(τcH − 1)}γc/(γc−1)

If [Abs(πcH − πcHmax > 0.001)] then ENGCONTROL(πcH,Tt4) and goto 12.

Main Burner

If (CSH) then

fb = τλ−b−τrτcLτcH

ηbhPR/h0−τλ−b

Else

Tt3 = T0τrτcLτcH

ENTHALPY(0,Tt3,0,ht3,0,0)

Set initial value of fuel/air ratio at station 4, f4i = τλ−b−τrτcLτcH

ηbhPR/h0−τλ−b

3

ENTHALPY(0,Tt4,f4i,ht4,0,0)

fb = ht4−ht3

ηbhPR−ht4

If (|fb − f4i| > 0.0001), then f4i = fb and goto 3; Else continue.

Endif

11

Interstage Turbine Burner

If (ITBoff) then fitb = 0, γitb = γt, cpitb = cpt, Ritb = Rt, and goto 5.

If (CSH) then fitb = τλ−itb−τλ−bτtHτm1τm2

ηitbhPR/h0−τλ−itb

Else

Tt4.4 = Tt4τtHτm1τm2

ENTHALPY(0,Tt4.5,fb,ht4.4,0,0)

Set initial value of fuel/air ratio at station 4.4, f4.5i = τλ−itb−τλ−bτtHτm1τm2

ηitbhPR/h0−τλ−itb

4

ENTHALPY(0,Tt4.5,f4.5i,ht4.5,0,0)
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fitb = ht4.5−ht4.4

ηitbhPR−ht4.5

If (|fb + fitb − f4.5i| > 0.0001), then f4.5i = fb + fitb and goto 4; Else

continue.

EndIf

MFP (M8R) = M8R

√
γitbgc

Ritb
(1 + γitb−1

2
M2

8R)
γitb+1

2(1−γitb)

5

Fan and Low-Pressure Compressor Pressure Ratios

πf =
{
1 + ηf (τf − 1)

}γc/(γc−1)

πcL =
{
1 + ηcL(τcL − 1)

}γc/(γc−1)

Core Exhaust Stream

For convergent nozzle:

Pt9

P0
= πrπdπcLπcHπbπtHπitbπtLπn

If [Pt9

P0
≥

(
γitb+1

2

)γitb/(γitb−1)
] then

M9 = 1

Pt9

P9
=

(
γitb+1

2

)γitb/(γitb−1)

P0

P9
= Pt9/P9

Pt9/P0

Else

P0

P9
= 1

Pt9

P9
= Pt9

P0

M9 =

√
2

γitb−1

[(
Pt9

P9

)(γitb−1)/γitb

− 1
]

Endif

For convergent-divergent nozzle:

Pt9

P9
= P0

P9
πrπdπcLπcHπbπtHπitbπtLπn

M9 =

√
2

γitb−1

[(
Pt9

P9

)(γitb−1)/γitb

− 1
]

If (M9 ≥1) then M8=1 Else M8=M9.
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For both:

MFP (M8) = M8

√
γitbgc

Ritb
(1 + γitb−1

2
M2

8 )
γitb+1

2(1−γitb)

MFP (M9) = M9

√
γitbgc

Ritb
(1 + γitb−1

2
M2

9 )
γitb+1

2(1−γitb)

A9

A8
= MFP (M8)

πnMFP (M9)

Fan Bypass Stream

For convergent nozzle:

Pt19

P0
= τrτdτfτnf

if [Pt19

P0
≥

(
γc+1

2

)γc/(γc−1)
] then

M19 = 1

Pt19

P19
=

(
γc+1

2

)γc/(γc−1)

P0

P19
= Pt19/P19

Pt19/P0

Else

P0

P19
= 1

Pt19

P19
= Pt19

P0

M19 =

√
2

γc−1

[(
Pt19

P19

)(γc−1)/γc

− 1
]

Endif

For convergent-divergent nozzle:

Pt19

P19
= P0

P19
τrτdτfτnf

M19 =

√
2

γc−1

[(
Pt19

P19

)(γc−1)/γc − 1
]

For both:

MFP (M18) = M18

√
γcgc

Rc
(1 + γc−1

2
M2

18)
γc+1

2(1−γc)

MFP (M19) = M19

√
γcgc

Rc
(1 + γc−1

2
M2

19)
γc+1

2(1−γc)

A19

A18
= MFP (M18)

πnf MFP (M19)
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Fan Bypass Ratio

α = αR
πcLRπcHR/πfR

πcLπcH/πf

√
Tt4/Tt4R

τrτf /(τrRτfR)
MFP (M18)

MFP (M18R)

Fan and Low-Pressure Compressor Temperature Ratios

τfN = 1 + (τfR − 1)ηmL
τλ−itb

τr

{
(1−τtL)[(1−β−ε1−ε2)(1+fb)+ε1+ε2](1+fitb)

τcLR−1+α(τfR−1)

}
τcL = 1 + (τfN − 1) τcLR−1

τfR−1

Low-Pressure Turbine

τtL = 1− ηtL

{
1− π

(γitb−1)/γitb

tL

}
πtL = πtLR

√
τtL

τtLR

A8R

A8

A4.5

A4.5R

MFP (M8R)
MFP (M8)

Is |τfN − τf | ≤ 0.0001? If so, then continue. If not, set τf = τfN and return to 2.

Engine Mass Flow (ṁ0)

ṁ0 = ṁ0R
1+α

1+αR

P0πrπdπcLπcH

P0RπrRπdRπcLRπcHR

√
Tt4R

Tt4

Engine Controls

If (ITBon) and (πfmax > 0) then ENGCONTROL(πf ,Tt4.5) and goto 11.

If (ITBoff) and (πfmax > 0) then ENGCONTROL(πf ,Tt4) and goto 12.

If (πcHmax > 0) then ENGCONTROL(πcH ,Tt4) and goto 12.

If (Pt3max > 0) then ENGCONTROL(Pt3,Tt4) and goto 12.

If (Tt3max > 0) then ENGCONTROL(Tt3,Tt4) and goto 12.

If (ITBon) and (%NLmax > 0) then ENGCONTROL(%NL,Tt4.5) and goto 11.

If (ITBoff) and (%NLmax > 0) then ENGCONTROL(%NL,Tt4) and goto 12.

If (%NHmax > 0) then ENGCONTROL(%NH ,Tt4) and goto 12.

[Note: Please refer to Section F.5.4 for more description in

ENGCONTROL(Q,Tt).]
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Overall Engine Performance

T9

T0
= Tt4.5τtL/T0

(Pt9/P9)(γitb−1)/γitb

T19

T0
=

τrτf

(Pt19/P19)(γc−1)/γc

Tt19

T0
= τfτf

a9 =
√

γitbRitbgcT9

a19 =
√

γcRcgcT19

V9 = M9a9

V19 = M19a19

fb,ovr = (1− β − ε1 − ε2)fb

fitb,ovr = [(1− β − ε1 − ε2)(1 + fb) + ε1 + ε2]fitb

f0 = fb,ovr + fitb,ovr

Fc

ṁc

=
a0

gc

{[
(1− β − ε1 − ε2)(1 + fb) + ε1 + ε2

]
(1 + fitb)

V9

a0

−M0+

[
(1− β − ε1 − ε2)(1 + fb) + ε1 + ε2

]
(1 + fitb)

Ritb

Rc

T9/T0

V9/a0

1

γc

(
1− P0

P9

)}

Ff

ṁf
= a0

gc

[
V19

a0
−M0 + T19/T0

V19/a0

1
γc

(
1− P0

P19

)]
F
ṁ0

=
Fc
ṁc

+α
Ff
ṁf

1+α

F = ṁ0

(
F
ṁ0

)
S = f0

F/ṁ0(1+α)

Ẇout

ṁc
= 1

2gc

{{[
(1− β − ε1 − ε2)(1 + fb) + ε1 + ε2

]
V 2

9 − V 2
0

}
+ α

(
V 2

19 − V 2
0

)}
Q̇in

ṁc
= (1−β− ε1− ε2)fbhPR−bηb +

[
(1−β− ε1− ε2)(1+fb)+ ε1 + ε2

]
fitbhPR−itbηitb

ηP = F/ṁ0(1+α)V0

Ẇout/ṁc

ηTH = Ẇout/ṁc

Q̇in/ṁc

ηO = ηTHηP

A0 = ṁ0
√

Tt0

Pt0MFP (M0)

%NL = 100
√

T0τr(τf−1)

T0RτrR(τfR−1)
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%NH = 100
√

T0τrτcL(τcH−1)
T0RτrRτcLR(τcHR−1)
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Appendix F

Engine Control Limit System

F.1 Introduction

Normally, the designers of an aircraft gas turbine engine need to consider

the engine control system so that the newly-designed or improved gas turbine

engine operates well within its flight envelope. For example, the throttle setting

needs to be controlled so that the burner exit temperature will never exceed

the turbine blade maximum temperature. Another example is that fan or

compressor surges or stalls should not occur during the operation.

Therefore, engine’s control system plays a significant role in this engine

performance cycle analysis because of the several advantages: (1) maintain

stable airflow, internal pressures and temperatures, and rotor speeds within safe

operating limits; (2) avoid significant speed, pressure or temperature variation,

and stalls or surges [34]. In addition, it also demonstrates how an aircraft engine

behaves away from their reference or on-design conditions.

The engine’s control system in this study is specifically designed for a

separate-flow, dual-spool, uncooled turbofan engine with ITB. Moreover, the

development of the equations is based on the foundational materials found in

[33] and [34].
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F.2 Variables of Engine Control System

F.2.1 Dimensionaless Freestream Total Temperature

Due to its significant influence on overall behavior of the turbofan engine, a

dimensionless form of the freestream total temperature is defined, i.e. the ratio

of the freestream total temperature to the sea-level static (SLS) temperature of

the standard atmosphere, as shown below [34]:

θ0 =
Tt0

Tref

=
T0

{
1 + γc−1

2
M2

0

}
Tref

= τr
T0

Tref

(F.1)

(Note: Tref = Tstd)

This property is called theta 0 (θ0) and is used to combine two parameters,

i.e., altitude (T0) and flight condition (M0) into a single parameter. Therefore,

every point in the flight envelope has a specific value of θ0.

In addition, θ0 has the following properties:

1. θ0 = 1 at sea level static conditions;

2. θ0 can be greater or less than 1.0;

3. θ0 depends only on Mach number between 36.5kft and 65kft (11.12km and

19.81km).

For a reference-point engine, another property, i.e., theta 0R (θ0R) is defined

and can be determined in a similar way:

θ0R =
Tt0R

Tref

=
T0R

{
1 + γc−1

2
M2

0R

}
Tref

= τrR
T0R

Tref

(F.2)
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F.2.2 Theta Break

Normally, the change in shape of the performance curve occurs at simulta-

neous maximum of πc and Tt4. In Figure F.1, it is clear that the control logic

must switch from limiting πc to limiting Tt4 at this point of maximum πc and Tt4.

This unique point is known as the theta break (θ0break).

F.3 Types of Control Limits

In this study, only three types of engine control limits will be considered, i.e.,

turbine blade maximum temperature, compressor limitations, and engine speeds.

F.3.1 Material Limitation

It is known that an increase in permissible turbine inlet temperature will lead

to a reduced specific fuel consumption and increased specific thrust. Although the

current advanced technology in material allows higher inlet turbine temperature,

it is still essential to limit Tt4 or T4.5 for safety purpose.

F.3.2 Compressor Pressure Ratio

Three limits, namely, πcmax, Pt3max and Tt3max, are selected to stabilize the

internal behavior of the compressors and avoid compressor surges or stalls.

F.3.3 Engine Speed

As shown in section 5.2.7 of [34], the change in total enthalpy across a com-

pressor or a fan is proportional to the rotational speed N squared for a calorically

perfert gas.

Low-Pressure Spool

For a LPC, it can be expressed as follow:
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ht2.5 − ht2 = K1N
2
LP (F.3)

Using the referencing technique, equation (F.3)it can be rewritten as:

NLP

NLPR

=

√
ht2.5 − ht2

ht2.5R − ht2R

=

√
ht2(τcL − 1)

ht2R(τcLR − 1)

=

√
ht0(τcL − 1)

ht0R(τcLR − 1)
∼=

√
Tt0(τcL − 1)

Tt0R(τcLR − 1)

=

√
θ0(τcL − 1)

θ0R(τcLR − 1)
(F.4)

Since the LPC and the fan are on the same shaft, the enthalpy rise across

the LPC will be proportional to the enthalpy rise across the fan during normal

operation [34].

τcL − 1

τf − 1
=

τcLR − 1

τfR − 1
(F.5)

Then, equation (F.4) can be rewritten as

NLP

NLPR

=

√
θ0(τf − 1)

θ0R(τfR − 1)
(F.6)

High-Pressure Spool

For a HPC, it is in the similar form:

ht3 − ht2.5 = K1N
2
HP (F.7)

Using the referencing technique, eqn. (F.7) can be rewritten as:
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NHP

NHPR

=

√
ht3 − ht2.5

ht3R − ht2.5R

=

√
ht2.5(τcH − 1)

ht2.5R(τcHR − 1)

=

√
ht0τcL(τcH − 1)

ht0RτcLR(τcHR − 1)
∼=

√
Tt0τcL(τcH − 1)

Tt0RτcLR(τcHR − 1)

=

√
θ0τcL(τcH − 1)

θ0RτcLR(τcLR − 1)
(F.8)

F.4 Relationship between Tt4, Tt4.5 and πc

F.4.1 High-Pressure Compressor

From a power balance between HPT and HPC, one will obtain the perfor-

mance equation for the total temperature ratio of the HPC as:

τcH = 1 + ηmH [(1− β − ε1 − ε2)(1 + fb) + ε1]
τλ−b(1− τtH)

τrτcL

(F.9)

Using HPC efficiency, the HPC total pressure is given by:

πcH =
{
1 + ηcH(τcH − 1)

}γc/(γc−1)
(F.10)

From equation (7) in [28],

τλ−b =
cptTt4

cpcT0

(F.11)

Rearranging equation (F.1), one obtains

τr = θ0
Tref

T0

(F.12)

Substitute these two equations into (F.9) yields

τcH = 1 + ηmH [(1− β − ε1 − ε2)(1 + fb) + ε1](1− τtH)
cptTt4

cpcT0

( T0

Trefθ0

) 1

τcL

(F.13)
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It is assumed that choking occurs at station 4. Consequently, for a cooled

turbine with constant specific heats in this study, the value of τtH will remain

constant. (pp.144 of [34]). In addition, fb is negligible when compared to unity.

Then, let

C0 = ηmH [(1− β − ε1 − ε2)(1 + fb) + ε1](1− τtH)
(cpt

cpc

)( 1

Tref

)
(F.14)

and eq.(F.13) becomes

τcH = 1 + C0
Tt4

θ0

1

τcL

(F.15)

Substituting (F.15) into (F.10) gives

πcH =
{
1 + C1

Tt4

θ0

1

τcL

}γc/(γc−1)
(F.16)

where

C1 = C0ηcH (F.17)

Compared to equation (D.3) of [34] (pp.525), πcH is not only a function of

throttle setting (Tt4) and flight conditions (θ0), but also a function of τcL:

πcH = f
(Tt4

θ0

, τcL

)
(F.18)

F.4.2 Low-Pressure Compressor

From a power balance between LPC, fan and LPT, one will obtain the per-

formance equation for the total temperature ratio of the LPT:

α(τf −1)+(τcL−1) = ηmL[(1−β−ε1−ε2)(1+fb)+ε1 +ε2](1+fitb)
τλ−itb

τr

(1−τtL)

(F.19)
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Substituting equation (F.5) into (F.19), it yields:

τf = 1+(τfR−1)ηmL
τλ−itb

τr

{(1− τtL)[(1− β − ε1 − ε2)(1 + fb) + ε1 + ε2](1 + fitb)

τcLR − 1 + α(τfR − 1)

}
(F.20)

The LPC total temperature ratio follows from equation (F.5):

τcL = 1 + (τf − 1)
τcLR − 1

τfR − 1
(F.21)

Using LPC efficiency, the LPC total pressure ratio is given by:

πcL =
{
1 + ηcL(τcL − 1)

}γc/(γc−1)
(F.22)

From equation (9) of [28],

τλ−itb =
cpitbTt4.5

cpcT0

(F.23)

Substituting equation (F.23) into Equation (F.20) yields

τf =1 + (τfR − 1)ηmL
cpitbTt4.5

cpcT0

( T0

Trefθ0

)
{(1− τtL)[(1− β − ε1 − ε2)(1 + fb) + ε1 + ε2](1 + fitb)

τcLR − 1 + α(τfR − 1)

}
(F.24)

Similar to the assumption in HPT, the flow is choked at station 4.5.

Therefore, the value of τtL will remain constant. In addition, fb and fitb are

negligible when compared to unity.

Unfortunately, α is not a constant but a function of (πcL, πcH , πf , M18). Let

C2 = (τfR− 1)ηmL
cpitb

cpc

( 1

Tref

)
(1− τtL)[(1− β− ε1− ε2)(1 + fb) + ε1 + ε2](1 + fitb)

(F.25)
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Then,

τf = 1 + C2
Tt4.5

θ0

{ 1

τcLR − 1 + α(τfR − 1)

}
(F.26)

Substituting (F.26) into (F.21) yields

τcL = 1 + C3
Tt4.5

θ0

{ 1

τcLR − 1 + α(τfR − 1)

}
(F.27)

where

C3 = ηmL
cpitb

cpc

( 1

Tref

)
(1− τtL)[(1−β− ε1− ε2)(1+ fb)+ ε1 + ε2](1+ fitb)(τcLR− 1)

(F.28)

Substituting (F.27) into (F.22) yields

πcL =
[
1 + C4

Tt4.5

θ0

( 1

τcLR − 1 + α(τfR − 1)

)]γc/(γc−1)
(F.29)

where

C4 = ηcLC3 (F.30)

Again, when compared to equation (D.3) of [34], πcL is not only a function

of throttle setting (Tt4) and flight conditions (θ0), but also a function of α:

πcL = f
(Tt4.5

θ0

, α
)

(F.31)

F.5 Limiting Procedures

F.5.1 Reference Conditions

The values of Tt4max and Tt4.5max (control-limit variables) for a turbofan

engine are always equal to or smaller than the values of Tt4R and Tt4.5R at its

reference-point (or on-design) conditions.
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F.5.2 Limiting Tt4 and Tt4.5

As shown in Figure F.1, as θ0 is decreased to the left of the theta break,

or θ0break, Tt4 must be reduced in order to protect the compressor from poor

operation. By doing so, the term Tt4

θ0
must remains constant.

A simple limiting procedure as shown below is included into the code in

order to limit Tt4 values so that it is always equal to or less than Tt4max.

θ0 = τr
T0

Tref

(F.32)

If (θ0 ≥ θ0R) then

Tt4 = Tt4max (F.33)

Else

Tt4 = Tt4max
θ0

θ0R

(F.34)

When ITB is considered, a separate limiting procedure is required to limit

Tt4.5 values so that it is equal to or less than Tt4.5max.

If (θ0 ≥ θ0R) then

Tt4.5 = Tt4.5max (F.35)

Else

Tt4.5 = Tt4.5max
θ0

θ0R

(F.36)

F.5.3 Limiting πf and πcH

For a two-spool turbofan engine with ITB, there are two engine fuel flows.

The fuel flow to the main burner directly influences the speed of the HP spool

and the HPC pressure ratio. The fuel flow to the ITB directly influences the

speed of the LP spool, the fan pressure ratio, and LPC pressure ratios.
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Figure F.1: CPR as a function of δ0 and Tt4 for a compressor with a reference
point of πc = πcmax = 20, Tt4 = Tt4max = 3300 ◦R (1833K), and δ0 = 1.1. [34]

In Full Throttle Performance (FTP), when HPC pressure ratio is greater

than its given maximum, the actual engine control will reduce the required fuel

flow to the main burner in real time until the given limit is reached. In this

study, the code does not calculate the reduction in fuel flow directly. Instead,

the code will reduce the values of Tt4 (main burner) or Tt4.5 (ITB) to a lower value.

Therefore, two control limits have been selected in FTP, i.e., fan pressure

ratio, πfmax, for the LP spool, and HPC pressure ratio (HPCPR), πcHmax, for

the HP spool. Based on this, two throttle control loops have been added to the

code as shown in Table F.1.

When the FPR is greater than its limit, πfmax (case 1), the control loop

will reduce Tt4.5 (i.e.,reduce fuel flow to the ITB). When the HPCPR is greater

than its limit, πcHmax (case 2), the control loop will reduce Tt4 (reduce fuel flow
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to the main burner).

If ITB is on, the control loops for FPR and HPCPR are sequential, i.e.,

FPR limit control goes first, followed by HPCPR limit control.

If the ITB is off and the FPR is still greater than its limit, πfmax (case

3), the control loop will reduce Tt4 (reduce fuel flow to the main burner). This

reduction in Tt4 will reduce both FPR and HPC. Similarly, this reduction in

Tt4 applies to a case where the FPR is still exceeding πfmax even when Tt4.5 is

reduced until the ITB is turned off (i.e., case 1 shifted to 3).

Table F.1: The Logic sequence of reducing temperature (reducing fuel flow to the
burners)

Reduce Tt4.5 when Reduce Tt4 when
Case πf ≥ πfmax πcH ≥ πcHmax πf ≥ πfmax πcH ≥ πcHmax

ITB on 1 - - 2
ITB off - - 3 4

F.5.4 Numerical Method for Reducing Temperature

In this study, the adjustment of throttle settings is done by simply reducing

the value of exit temperature of each burner. It is assumed that the fuel flow to

each burner is directly proportional to the specified exit burner temperature.

While the control variable is exceeding its maximum allowable limit, the

engine control subroutine will automatically reduce the corresponding exit burner

temperature as a mean of reducing the fuel flow to the engine. Let the Q be the

control variable, Tt be the exit burner temperature and n be the current iteration,

The following expressions show a step-by-step numerical algorithm for reducing

the temperature:
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∆Qn = Qn−1 −Qn

∆T n
t = T n−1

t − T n
t

Qn−1 = Qn

T n−1
t = T n

t

∆T n+1
t = (Qn −Qmax)

∆T n
t

∆Qn
(F.37)

if
(
abs(∆T n+1

t ) > 100
)

then ∆T n+1
t =

∆T n+1
t

abs(∆T n+1
t )

× 100

T n+1
t = T n

t −∆T n+1
t

Obviously, the maximum reduction in Tt at once is currently set to 100.

In addition, Table F.2 gives a summary of all the control variables and its

location in the code. Except for Tt4 and Tt4.5, all other control variables (i.e.,

πf , πcH , Pt3, Tt3, %NL, and %NH) utilize the algorithm described above for the

reduction of Tt. The reduction mechanism for the control variables Tt4 and Tt4.5

have already been introduced in Section F.5.2.

Table F.2: Summary of the engine control variables Q and its location in the
code.

Limit Control Variable Q Subroutine
1 Tt4 ctrlimit
2 Tt4.5 ctrlimit
3 πf itbperf2
4 πcH itbperf2
5 Pt3 itbperf2
6 Tt3 itbperf2
7 %NL itbperf2
8 %NH itbperf2
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Appendix G

User Guide to the Parametric

Cycle Analysis Code

The Excel program is written in combination between spreadsheet neuron

cells, visual basic, and macrocode. These three combinations provide user-

friendly software that compilation and preprocessing are no longer necessary.

The input is to well-labeled Excel cells. Most of the values are pre-specified and

an example case is displayed. It is good practice to save this case by another

name before modifying the spread sheet in order to retrieve the starting case.

User obtains result plots right a way just by clicking some simple buttons.

G.1 Definitions

First of all, it is necessary for users to understand some icons that appear in

the Excel sheets, for example, the ‘Input’ sheet as shown in Figure G.1. Table

G.1 shown in next page lists down all the icons along with their descriptions.
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G.2 Program outline

The program mainly comprises seven types of sheets, namely ‘CoverPage’,

‘Instructions’, ‘Input’, plot sheets, data sheets, ‘Singlept’, and ‘Station’.

Meanwhile, the main code structure is shown in Figure I.1 in Appendix I.

G.2.1 ‘CoverPage’ sheet

The ‘CoverPage’ sheet contains the information of authors of this program.

Any questions regarding the program can be addressed to the corresponding

author through email or by phone.

Table G.1: Different kinds of tools and indicators in cycle analysis codes

Name Appearance Descriptions

Combo box
User change options through selecting
the items in the pull down menu

Button
Clicking any button will execute
the macrocode associated with it

User Input
This is where users input the
values for variables

Indicator 1
The values here change with
altitude. DO NOT modify.

Indicator 2
All input values are read and shown
here. DO NOT modify.

Indicator 3
This is where reference engine data
are displayed. Users can modify if
necessary. (only in off-design code)

G.2.2 ‘Instructions’ sheet

First time users are strongly recommended to read this sheet before running

the program. Since there are always possibilities of getting error computations

such as division by zero, square root of a negative quantity, or over floating, and

under floating number, the program is written such that it will not crash if those

errors are encountered during the computation. It will instead tell the user where

176



the computation encounters those errors. In this section, you will find the de-

tails of how to run the program and how to fix a problem if something goes wrong.

This sheet also explains several assumptions made in the equations so that

the users aware of some cases in the equations that have been idealized to simplify

the problems.

G.2.3 ‘Input’ sheet

This sheet is where most of the inputs are specified. The program will check

input values in this sheet to make sure that all the inputs are specified. It will

tell the users if there are inputs that have not been specified.

Figure G.1: A snapshot of ‘Input’ sheet in on-design cycle analysis code

There are four Combo Boxes in the ‘Input’ sheet (Combo Box is a list box

that displays a list of values and lets the users select one of the value in the
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list), namely ITB, Unit, Fuel Burn Model, and Choose a Plot, as shown in

Figure G.1. You need first to specify the option in these combo boxes, such as

ITB, Unit and Fuel Burn Model, before moving on to combo box Choose a

Plot.

Combo Box Unit lets you specify the unit system. Currently, the program

can handle two unit systems, i.e., British gravitational units (English) and

International system of units (SI).

Combo Box ITB lets you turn ON and OFF the ITB. This feature provides

a flexibility to choose two types of engine and they are engine with ITB-ON and

engine with ITB-OFF. With this feature, you will be able to see how the engine

performance behaves with ITB-ON and with ITB-OFF.

Combo Box Fuel Burn Model let user choose two models for the compu-

tation of the fuel-air-ratio inside the burner, i.e., Constant Specific Heat (CSH)

model and the Modified Specific Heat (MSH) model.

Once all the input values and the options in combo box ITB, Unit, and Fuel

Burn Model are specified, you can specify an option in combo box Choose a

Plot. This combo box provides several options to choose from, and they are:

1. Vs Compressor Pressure Ratio

2. Vs Flight Condition Mach Number

3. Vs Fan Pressure Ratio

4. Vs ByPass Ratio

5. Vs Main Burner Exit Temperature

In each option, it performs multiple calculations at different values of only
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one corresponding design variable. Once you select one of them, you will be

directed to the relevant plot sheet.

G.2.4 Plot sheets

Please refer to section G.3 Multi-point Calculations for detailed infor-

mation.

G.2.5 Data sheets

Please refer to section G.3 Multi-point Calculations for detailed infor-

mation.

G.2.6 ‘Singlept’ sheet

Please refer to section G.4 Single-point Calculation for detailed informa-

tion.

G.2.7 ‘Station’ sheet

Please refer to section G.5 Engine Station for detailed information.

G.3 Multiple-point calculations

The following discussion describes the instructions on how to run the pro-

gram for each option available in combo box Choose a Plot in ‘Input’ sheet.

Each option shares the similar code structure as shown in Figure I.2 in Appendix

I.

G.3.1 “Vs Compressor Pressure Ratio”

When this option is chosen, users will be directed to a plot sheet, namely

‘ST VS PIc’, as shown in Figure G.2. This sheet is used to plot engine
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performances (e.g., specific thrust or thrust specific fuel consumption) and other

properties (e.g., overall efficiency, nozzle jet velocity ratios, overall efficiency,

fuel-air ratio, ITB inlet velocity and temperature rise across ITB) versus

compressor pressure ratio (πc) with different bypass ratio (α). In order to

execute the code properly, users are required to follow those circled number 1

through 3 sequentially as shown in Figure G.2.

Figure G.2: A snapshot of “Vs Compressor Pressure Ratio” plot sheet in on-
design cycle analysis code

First of all, user needs to specify the values for three input parameters (i.e.,

πcL, πf , and M0) as well as the lower and upper bound limit for “Compressor

pressure ratio” (πc) and the increment (∆πc) (Figure G.3). For instance, the

lower and upper bound limit are 12 and 40, respectively, whereas the increment

is 1.

What follows is to compute the values for HPC pressure ratio (πcH). By
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Figure G.3: Input parameters in “Vs Compressor Pressure Ratio” plot sheet in
on-design cycle analysis code

Figure G.4: Tabular data for compressor pressure ratio

Figure G.5: Pull-down menu for specifying fan bypass ratios (α)
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clicking the Generate button, a tabular data for the compressor (including πcL,

πcH , and πc) will be listed as shown in Figure G.4. The cyan cell to the right of

πc indicates the total number of iteration for πc. The smaller the value for ∆πc,

the larger the total number of πc; and, therefore, more calculation at different

values of πc.

Thirdly, users are free to choose the number of bypass ratio (α) by selecting

options from the pull down menu as shown in Figure G.5. If it is more than 3

αs, users are required to manually input any number greater than 3 by selecting

‘User-Defined’ option.

At this point, users are ready to run the code and generate the plots, simply

by clicking Calculate button. All computed data will be tabulated in seven

separate data sheets, namely, ‘DataSTPIc’, ‘DataSFPIc’, ‘OverallPIc’,

‘NVCorePIc’, ‘NVFanPIc’, ‘VitbPIc’, and ‘dTrisePIc’.

Users are advised not to modify or change values in any of these data

sheets. Clearing data as well as plots can be done by clicking Clear data &

plot button (Figure G.5).

To return to Input sheet for other runs with different design parameters,

users simply click on ‘Input’ sheet button next to Calculate button.

G.3.2 “Vs Flight Condition Mach Number”

When users choose this option, the program hides the plot sheets

and data sheets from the previous use and shows a associated plot sheet

(i.e., ‘ST VS Mo’) and seven associated data sheets (i.e., ‘DataSTMo’,

‘DataSFMo’, ‘OverallMo’, ‘NVCoreMo’, ‘NVFanMo’, ‘VitbMo’, and

‘dTriseMo’.) Users will then be directed from ‘Input’ sheet to ‘ST VS Mo’

sheet in a second. Similarly, this sheet is used to plot engine performances (e.g.,
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specific thrust or thrust specific fuel consumption) and other properties (e.g.,

overall efficiency, nozzle jet velocity ratios, overall efficiency, fuel-air ratio, ITB

inlet velocity, and temperature rise across ITB) versus flight Mach number (M0)

with different bypass ratio.

Similar to the instructions for compressor pressure ratio, user first needs to

specify the values for three input parameters (i.e., πcL, πf , and πc) as well as the

range of M0 and the increment (∆M0).

Secondly, users are free to choose the number of α by selecting options from

the pull down menu. At this point, users are ready to run the code and gener-

ate the plots, by simply clicking Calculate button. All computed data will be

tabulated in all seven separate sheets just mentioned above.

G.3.3 “Vs Fan Pressure Ratio”

Similar to flight Mach number, this option opens a plot sheet (i.e.,

‘ST VS PIf ’) and seven data sheets (i.e., ‘DataSTPIf ’, ‘DataSFPIf ’,

‘OverallPIf ’, ‘NVCorePIf ’, ‘NVFanPIf ’, ‘VitbPIf ’, and ‘dTrisePIf ’). It

plots engine performances (e.g., specific thrust or thrust specific fuel consump-

tion) and other variables (e.g., overall efficiency, nozzle jet velocity ratios, overall

efficiency, ITB inlet velocity, and temperature rise across ITB) versus fan pres-

sure ratio (πf ) with different bypass ratio. The instructions to run the program

in this sheet are similar to those for flight Condition Mach number. (please refer

to Section G.3.2)

G.3.4 “Vs ByPass Ratio”

This option opens a plot sheet (i.e., ‘ST VS Alp’) and seven data

sheets (i.e., ‘DataSTAlp’, ‘DataSFAlp’, ‘OverallAlp’, ‘NVCoreAlp’,

‘NVFanAlp’, ‘VitbAlp’, and ‘dTriseAlp’). It plots engine performances (e.g.,
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specific thrust or thrust specific fuel consumption) and other variables (e.g., over-

all efficiency, nozzle jet velocity ratios, overall efficiency, ITB inlet velocity, and

temperature rise across ITB) versus different bypass ratio (α) with different fan

total pressure ratios. The instructions to run the program in this sheet are anal-

ogous to those described above. The only difference is that selection of α is

replaced by πf .

G.3.5 “Vs Main Burner Exit Temperature”

This option opens a plot sheet (i.e., ‘ST VS Tt4’) and seven data sheets

(i.e., ‘DataSTt4’, ‘DataSFTt4’, ‘OverallTt4’, ‘NVCoreTt4’, ‘NVFanTt4’,

‘VitbTt4’, and ‘dTriseTt4’). It plots engine performances (e.g., specific thrust

or thrust specific fuel consumption) and other variables (e.g., overall efficiency,

nozzle jet velocity ratios, overall efficiency, ITB inlet velocity, and temperature

rise across ITB) versus main burn exit temperature (Tt4) with different flight

Mach number. The instructions to run the program in this sheet are similar to

those for flight Condition Mach number. (See Section G.3.2)

G.3.6 Summary

In summary, you need to do the followings to run the program:

1. Go to the ‘Input’ sheet

2. Specify the Unit system (SI or English)

3. Specify the ITB switch. Is the computation for engine with ITB-ON or

for engine with ITB-OFF?

4. Specify the Fuel Burn Model system (CSH or MSH)

5. Enter all the input parameters indicated in green cells (do not modify or

change the value indicated in cyan).
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6. Specify Choose a Plot. You will be directed to a new sheet depending on

the selection.

In sheet ‘ST VS PIc’ (Compressor Pressure Ratio),

1. Specify number of bypass ratio (α).

2. Specify all input parameters in green cells.

3. Click Generate to generate HPC total pressure ratio.

4. Click Calculate to compute and plot the results.

5. Repeat the above steps for different input parameters. To return to ‘Input’

sheet, simply click Input sheet button.

In sheet ‘ST VS Mo’ (Flight Condition Mach Number),

1. Specify number of bypass bypass ratio (α).

2. Specify all input parameters in green cells.

3. Click Calculate button.

4. Repeat the above steps for different input parameters. To return to ‘Input’

sheet, simply click Input sheet button.

In sheet ‘ST VS PIf ’ (Fan Pressure Ratio),

1. Specify number of bypass ratio (α).

2. Specify all input parameters in green cells.

3. Click Calculate to compute and plot the results.

4. Repeat the above steps for different input parameters. To return to ‘Input’

sheet, simply click Input sheet button.

In sheet ‘ST VS Alp’ (ByPass Ratio),
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1. Specify number of fan total pressure ratio (πf ).

2. Specify all input parameters in green cells.

3. Click Calculate.

4. Repeat the above steps for different input parameters. To return to ‘Input’

sheet, simply click Input sheet button.

In sheet ‘ST VS Tt4’ (Main Burner Exit Temperature),

1. Specify number of flight Mach number (M0).

2. Specify all input parameters in green cells.

3. Click Calculate button.

4. Repeat the above steps for different input parameters. To return to ‘Input’

sheet, simply click Input sheet button.

G.4 Single Point Calculation

All instructions described in previous section are termed as the multi-point

calculations at different values of only one design parameter (e.g., πc, πf , M0, α,

or Tt4) The computed results show how the performance of a family of engines

was determined by engine design choices and flight Mach number.

Once the most promising engine is selected by users (i.e., all engine com-

ponents are fixed, e.g., πc, πf , altitude, α etc), single point calculation is then

run to get the engine performance at this particular operating conditions. These

output data represents the selected engine’s design-point or reference-point

condition. In order to predict the engine performance at off-design conditions,

these outputs are then used as the reference conditions in an off-design code.

This step is important because different reference conditions (i.e., different
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Figure G.6: On-design single point calculation sheet

engines) will give different performance over the whole flight spectrum.

For user’s reference, the flow chart of this computation is shown in Figure

I.3 in Appendix I.

G.4.1 Exporting Reference Engine Data

For convenience, authors include ‘Input/Output files’ feature in this code.

The output data from this on-design code can be exported to be a reference

engine data file, which is required in off-design calculation. As a result, users do

not need to manually re-input the reference conditions in off-design code, which

is a time-consuming process. The detailed outputs of this reference-point engine

data format is shown in Figure G.7.

Users are to follow the step 1 to 13 to generate a reference engine data file:
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Figure G.7: List of variables in the reference engine data file for use in off-design
code.
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1. Select ‘Input’ sheet (as shown in Figure G.1).

2. Input the engine characteristics in ‘Input’ sheet.

3. Select ‘SinglePt’ sheet (as shown in Figure G.6).

4. Input values of independent variables (i.e., M0, α, altitude, πc, and throttle

settings) in green cells.

5. Click on Perform calculation button to calculate the selected engine

performance at a design point.

6. Both the input values from ‘Input’ sheet and the solution will be shown in

light-blue cells.

7. Click on Export reference engine data button to export these reference

engine data to a text file.

8. A window dialog box will appear and request for specifying the path and

filename.

9. Check for existing drive path or/and specify filename.

10. All reference data and engine characteristics of a specific design-point engine

are successfully exported.

11. Repeat step 1 to 10 for different engines.

G.5 Engine Station Data

The last sheet in the program is the ‘Station’ sheet. This sheet displays

the engine station flow properties (i.e., temperature and pressure) in forms of

a table (Figure G.8) and charts (Figure G.9) based on the user input Mach

number data at certain stations.
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Most of the input parameters are from the ‘Input’ sheet. Additional inputs

are also needed, such as those listed in “Inputs” column (i.e., to the left of the

engine station data table) and Mach numbers at some engine stations (Figure

G.8). To click the Update Station Data button will update the flow properties

at each engine station. Please refer to Figure I.4 in Appendix I for the code

structure of this sheet.

Figure G.8: On-design engine station data calculation sheet
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Figure G.9: Examples of temperature and pressure versus engine stations
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G.6 Discussions

A typical value for local Mach number at the ITB entrance is selected to be

0.3. This value (M4.4 = 0.3) is then used to compute ITB inlet velocity (v4.4),

on which one of the factors ITB design was based. In fact, each plot sheet will

show the change of ITB inlet velocity with the corresponding design parameter,

for example, v4.4 versus M0 in “ST VS Mo” sheet.

At ITB-OFF condition, a plot of “Temperature Rise across ITB” in each

plot sheet (e.g., ‘ST VS PIc’, ‘ST VS Mo’, ‘ST VS PIf ’, and ‘ST VS Alp’)

will be cleared out. It is because the ITB-OFF engine acts as if it is a turbofan

engine without any increase across ITB.

G.7 Troubleshooting

This program has been debugged several times. Therefore, whenever you

encounter computation errors due to either zero division or square root of a

negative quantity, you will be notified by a pop up window indicating where the

computation problem is. It will tell you on which equation that the computational

error is encountered. If you have any comments or bug problems you encounter in

the program, you can report them to us for further improvement. Details about

the contact number can be found in the ‘CoverPage’ sheet of the program.

G.7.1 Out of Range

In multiple-point calculation, users may always see these pop-up windows as

shown in Figs. G.10a and G.10b. There are two possibilities of having this error

or warning messages:

1. The input values are incorrect. For instance, the main burner exit tempera-

ture (Tt4) may be too small for an engine to produce enough thrust. Please

double check all input values and try again.
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2. During the multiple-point computation, the design variable may be out

of range. It will happen, especially for these design variables such as flight

Mach number, fan pressure ratio and bypass ratio. For instance, the specific

thrust of an engine is approaching zero as the flight Mach number is 3. If

the upper limit of flight Mach number is set to be greater than 3 (e.g., 5),

the code will not be able to proceed at Mach number higher than 3 and

thus give these warning messages.

Figure G.10: Pop-up windows showing warning or error messages: (a) Equations
where the error occurs; (b) The current values of design variables while error is
encountered.

G.7.2 Plotting errors

It is also predicted that the plotting macro can encounter some problems in

the future if the users do not fully understand the program. Therefore, authors

have set up a way in order to fix the problem. In case the plot starts giving prob-

lem, you need to do the followings (this apply to all plot sheets: ‘ST VS PIc’,

‘ST VS Mo’, ‘ST VS PIf ’, ‘ST VS Alp’, and ‘ST VS Tt4’):

1. Go to the plot sheet (e.g., ‘ST VS Mo’).

2. Go to cell D5.
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3. Note that you will not be able to click on that cell because it is lying on

the back of the plot chart. You may want to use arrow button from your

keyboard in order to move to cell D5.

4. In that cell, you will see “SUCCESS”. Change the character to “FAIL”.

5. Clear the series in the chart plot by clicking right mouse button on the

chart plot.

6. In right mouse button menu list, choose Source Data.

7. In ‘Source Data’ windows, pick Series tab and remove all the series.

Users are not expected to understand macro code in the program. However

the part that takes care the computation can be found in Module1 Sub Itb().

To open Excel Visual Basic windows, users need to press Alt + F11. Any

modification can be made in subroutine Itb(). Do not add new variables into the

program.
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Appendix H

User Guide to the Performance

Cycle Analysis Code

Similar to parametric cycle code, the performance cycle code is written in

combination between spreadsheet neuron cells, visual basic, and macro code.

Most of the values are pre-specified and an example case is displayed. It is a

good practice to save this case by another name before modifying the spread

sheet in order to retrieve the starting case.

The program mainly comprises of three sections, namely, ‘Input’, ‘Full

Throttle Performance’, and ‘Partial Throttle Performance’. The Excel

spreadsheets associated with each section are listed in the Table H.1 as shown

below:

H.1 Definitions

All the icons that appear in the Excel sheets have been defined in Table G.1

and will not be repeated here.

195



H.2 User Inputs

H.2.1 ‘CoverPage’ sheet

The ‘CoverPage’ sheet contains the information about the authors of this

program. Any questions regarding the program can be addressed to the corre-

sponding author through the email or phone.

H.2.2 ‘Instructions’ sheet

First-time users are strongly recommended to read this sheet before running

the program.

In this sheet, you will find details of how to run the program. This sheet also

explains several assumptions made in the equations so that the users are aware

of some cases in the equations that have been idealized to simplify the problems.

Table H.1: List of Excel spreadsheets in off-design cycle code

No. Section Function Excel spreadsheets

1. Input
Introduction Coverpage, Instruction
Data Input Input

2.
Full Throttle
Performance

Control Control FTP, SinglePt FTP

Data Output
D FTP, D FvsM0, D SvsM0,
D picHvsM0, D Tt4vsM0,
D mdot0, D pif, D alp, D Tt4p5.

3.
Partial
Throttle
Performance

Control Control PTP

Data Output D PTP

H.2.3 ‘Input’ sheet

This sheet is where most of the inputs are specified. All cells in ‘dark green’

color (Indicator 1 as defined in Table G.1) need to be filled in with input values,

except those cells in ‘hotpink’ color (Indicator 2 as defined in Table G.1), where

the built-in values are set. The program will check all the inputs value in this
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sheet to make sure that the inputs are specified correctly. Window dialog boxes

will pop up and notice the user if there are input values that are not specified or

zero input values are found.

Once the design choice of a specific reference-point engine has been made

from a parametric cycle analysis, the input values for the so-called Reference

Conditions (i.e., the flight condition, throttle settings, engine component etc)

and the ‘Design Constants’ are readily obtained. By clicking the Import

data from ITB on-design code button, the code will automatically load

the reference engine data file at a specified path and filename. All reference

engine data will be displayed at all ‘burlywood’ cells (Indicator 3 as defined

in Table G.1). Some reference data are hidden at the back of the turbofan’s

schematic diagram. Detail of each variable’s cell position is listed in Table J.6.

These hidden data is read when the user to run an ITB-off case with an ITB-on

reference-engine data. In addition, some data will be used to compare with

the test engine data in single-point calculation. Besides importing reference

engine data file, user can choose to manually input each input value, which is a

time-consuming process.

There are four combo boxes in the ‘Input’ sheet (Combo Box is a list

box that displays a list of values and lets the users select one of the value

in the list), namely Unit System, ITB Switch, Fuel Burn Model, and

Perform Computation in as shown in Figure H.1. You need first to specify

the value in combo box Unit System, combo box ITB Switch, and combo box

Fuel Burn Model before moving on to combo box Perform Computation in.

Combo box Unit System lets you specify the input and output unit system.

Currently, the program can handle two units systems, namely, English and SI

units. Combo box ITB Switch lets user to turn ON or OFF the ITB. This

feature provides a flexibility to choose two types of engine and they are the engine
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with ITB-ON and with ITB-OFF. With this feature, you will be able to see how

much engine performance you can get with ITB-ON and with ITB-OFF. Combo

Box Fuel Burn Model lets user to choose two models for the computation of the

fuel-air-ratio inside the burners, i.e., Constant Specific Heat (CSH) model and the

Modified Specific Heat (MSH) model. For the details, please refer to Appendix C.

Figure H.1: A view output of ‘Input’ sheet in off-design cycle analysis code

Once all the inputs values are specified and all combo box values on Unit

System, ITB Switch, and Fuel Burn Model are specified, user can specify a

value in combo box Perform Computation in. This combo box provides three

option lists to choose from, and they are:

1. Full Throttle Performance (FTP): Multiple-point

2. Full Throttle Performance (FTP): Single-point

3. Partial Throttle Performance (PTP)
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Once you select either one of them, you will be directed to some new sheets.

The macro code associated with this combo box will open a relevant control

sheet, and some hidden data sheets depending on the selection you make.

The following sections describe the instruction of how to run the program

for each different option.

H.3 Full Throttle Performance over M0 and Al-

titude (FTP)

H.3.1 Multiple-point Calculations (‘Control FTP’sheet)

When this option is chosen, the program opens several sheets, namely, one

control sheet (i.e., either ‘Control FTP’), and nine data sheets (i.e. ‘D FTP’,

‘D FvsM0’, ‘D SvsM0’, ‘D picHvsM0’, ‘D Tt4vsM0’, ‘D mdot0’, ‘D pif’, ‘D alp’,

and ‘D Tt4p5’).

In ‘Control FTP’ sheet, user expects to see a sheet as shown in Figure

H.2. Before the computation, user needs to complete two input parameters, i.e.,

flight parameters and altitude, as indicated in ‘dark green’ cells. [NOTE: In

this code, there is only one design variable, namely, flight Mach number. Other

iteration variables, such as ambient conditions (T0 and P0), altitude (h), total

exit temperature of main burner or ITB etc, may be added to the code with

minor code modification in the future.]

To specify a range for flight Mach number (M0), user needs to input the

values for the lower limit, upper limit, and an increment of M0. If input lower

limit of M0 is zero, the code will internally change it from zero to 0.01.

Click the Altitude (h) combo box to select number of plots for different
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Figure H.2: Screenshot of Full-Throttle Performance: Multi-point calculations

altitudes. Selected number of cells will be created adjacent to the Altitude

(h) combo box. Once all the ‘dark green’ cells are filled, it is ready to run the

program and generate the plots, simply by clicking Calculate button. Data

computed will be stored in nine data sheets.

Clicking the Clear data & plot button will clear up all the computed

solutions in data sheets as well as the eight plots in ‘Control FTP’ sheet.

H.3.2 Single-point Calculations (‘SinglePt FTP’sheet)

When this option is chosen, the program opens one control sheet (i.e.,

‘SinglePt FTP’). This option allows the user to predict the off-design perfor-

mance of the selected engine at a fixed M0 and a specified altitude. As indicated

in Figure H.3, user just needs to specify a single value for each M0 and altitude.

Then, simply clicking the Calculate button will run the code. All the input
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values from ‘Input’ sheet and the solutions will be displayed in the same sheet.

Figure H.3: Screenshot of Full-Throttle Performance: Single-point calculations

H.4 Partial Throttle Performance (PTP)

When this option is chosen, the program will open two sheets, namely, a

control sheet (i.e., ‘Control PTP’), and a data sheet (i.e., ‘D PTP’).

In ‘Control PTP’ sheet as shown in Figure H.4, user needs to specify four

input parameters, i.e., Altitude, Min % thrust, flight parameters, and increment

of temperature reduction, as indicated in ‘dark green’ cells.

Click the Flight parameters (M0) combo box to select number of plots

for different M0. Specified number of cells will be created and displayed adjacent

to the Flight parameters (M0) combo box. Once all the ‘dark green’ cells are
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Figure H.4: Screenshot of Partial-Throttle Performance

filled, it is ready to run the program and generate the plot.

Simply pressing the Calculate button, the code will calculate the engine

performance from 100% down to minimum thrust entered in ‘Min % thrust’

cell. The minimum value of ‘Min % thrust’ is internally preset to be 10%. If any

value lower than 10% is found, user will be noticed and asked to re-enter the value.

Other than setting a Min % thrust, user may select to enter a lowest

allowable exit temperature of the main burner, Tt4. The default value of Tt4 is

1620◦R (or 900K).
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H.5 Discussions

H.5.1 Storing Data

Whenever storing the output data, user can do the followings:

1. Always keep an original file of the Excel code.

2. Save the file with a new filename.

3. From the menu bar, Select File→Save As and name the file, e.g., offdesign-

031704.xls.

4. Click Save button to confirm saving.

H.5.2 Troubleshooting

This program has been debugged several times. Therefore whenever you

encounter computation errors due to either zero division or square root of a

negative quantity, you will be notified through a pop up window indicating where

the computation problem is. If you have any comments or bug problems you

encounter in the program, you can report them to us for further improvement.

Detail about the contact number can be found in the ‘CoverPage’ sheet of the

program.

In multiple-point calculation, users may always see some of some pop-up

windows telling users of the errors or warnings. There are three possibilities of

having these errors or warning messages:

1. During the multiple-point computation, the design variable may be out of

the range. It will happen, especially when the design variable such as flight

Mach number is out of the range. For instance, the thrust of an engine is

approaching zero as the flight Mach number is 5.1. If the upper limit of

flight Mach number is set to be greater than 5.1 (e.g., 6), the code will not

be able to proceed and thus give the warning messages.
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2. The iteration is not converging for some engine configurations at the spec-

ified flight Mach number and altitude.

3. The input values are incorrect. For instance, the main burner exit tempera-

ture (Tt4) may be too small for an engine to produce enough thrust. Please

double check all input values and try again.

H.6 Summary

In summary, user needs to do the followings to run the program:

1. Go to the “Input” sheet.

2. Specify the Unit System (SI or English?)

3. Specify the ITB Switch. (Is the computation for engine with ITB-ON or

for engine with ITB-OFF?)

4. Specify the Fuel Burn Model. (CSH or MSH model?)

5. Import Reference Conditions data from on-design code.

6. Enter all the input parameters indicated in ‘dark green’ cells (do not modify

or change the value indicated in ‘hotpink’ cells).

7. Specify Perform Computation in. User will be directed to a new control

sheet depending on the selection.

If you select “Full Throttle Performance (FTP): Multiple-point”, do the

followings in ‘Control FTP’ sheet:

1. Specify a range for flight Mach number (M0).

2. Specify number of altitude (new ‘dark green’ cells will be created).

3. Specify all input parameters indicated in ‘dark green’.
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4. Click Calculate button to compute and plot the results.

5. Repeat the above steps for different input parameters.

6. Go to the ‘Input’ sheet if you want to change some engine input parameters.

If you select “Full Throttle Performance (FTP): Single-point”, do the

followings in ‘SinglePt FTP’ sheet:

1. Enter a value in flight Mach number (M0) cell.

2. Enter a value in Altitude (h) cell.

3. Click Calculate button to compute and display the results.

If you select “Partial Throttle Performance (PTP)”, do the followings:

1. Specify a value for altitude (h).

2. Enter a value in Min % thrust cell.

3. Specify number of flight Mach number (new ‘dark green’ cells will be cre-

ated).

4. Specify all input parameters indicated in ‘dark green’.

5. Click Calculate button to compute and plot the result.

6. Repeat the above steps for different input parameters.

7. Go to the ‘Input’ sheet if you want to change some engine input parameters.
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Appendix I

Flowchart of Code Structure

I.1 Parametric Cycle Analysis

Figure I.1: Flow-chart of the main structure for ITB on-design Excel code.

[Remarks: *DLV - Do Loop Variables; **FLV - For Loop Vari-

ables.]
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Figure I.2: Flow-chart of the iterative solution scheme for on-design multiple-
point calculation.
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Figure I.3: Flow-chart of the iterative solution scheme for on-design single-point
calculation.
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Figure I.4: Flow-chart of the solution scheme for ITB on-design single point
calculation.
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Figure I.5: Flow-chart of the solution scheme for the central ITB computation
(Part 1) in on-design code.
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Figure I.6: Flow-chart of the solution scheme for the central ITB computation
(Part 2) in on-design code.
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I.2 Performance Cycle Analysis

Figure I.7: Flow-chart of the main structure for ITB off-design Excel code.
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Figure I.8: Flow-chart of the iterative solution scheme for FTP in off-design code.
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Figure I.9: Flow-chart of the iterative solution scheme for PTP in off-design code.
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Figure I.10: Flow-chart of the iterative solution scheme for the subroutine itbperf2
(i.e., central ITB computation) in off-design code.
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Figure I.11: Flow-chart of the engine control limits in off-design code.
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Appendix J

Summary of Input Data for Each

Computation

Table J.1: Turbofan engine configuration in the parametric cycle analysis.

Description Input value
Polytropic efficiencies

Fan ef 0.93
HPC ecH 0.9085
HPT etH 0.8999
LPC ecL 0.8738
LPT etL 0.9204

Total pressure ratios
Inlet πdmax 0.99
Main burner πb 0.96
ITB πitb 0.96
Nozzle πn 0.99
Fan nozzle πnf 0.98

Component efficiencies
Main burner ηb 0.98
ITB ηitb 0.98
High-pressure spool ηmH 0.92
Low-pressure spool ηmL 0.93
Fuel low heating value hPR 42798.4 kJ/kg
Bleed air fraction β 1%

Options
Turbine cooling ON
Fuel model CSH
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Table J.2: Input data for the result comparison between the Excel codes and
AEDsys suite in Chapter 4 and 5.

Design variable M0

Regime high FBR
Flight Condition

M0 0.9
h (km) 10

Operating Conditions
πcL 2.0
πc 28.48
πf 2.0

Tt4 (K) 1500
α 4.0

ṁ0 (kg/s) 118
Options
Nozzle Convergent

Turbine cooling ON
Fuel model CSH

ITB OFF
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Table J.3: Input data for the parametric cycle analysis in Chapter 6 (Part 1).

Design variable M0 M0 Turbine Cooling
Regime low FBR high FBR

Flight Condition
h (km) 10 10 10

Operating Conditions
πcL 1.387 1.387 1.387
πc 28.48 28.48 28.48
πf 2.5 1.3 1.3

Tt4 (K) 1600 1600 1800
Tt4.5 1300 1300 1300
α 0.5 4.0 4.0

Nozzle CD Convergent Convergent

Table J.4: Input data for the parametric cycle analysis in Chapter 6 (Part 2).

Design variable Tt4 Tt4 CPR CPR
Regime subsonic supersonic subsonic supersonic

Flight Condition
M0 0.85 1.2 0.85 1.2

h(km) 10 10 10 10
Operating Conditions

πcL 1.387 1.387 1.387 1.387
πc 28.48 28.48 - -
πf 1.3 3.0 1.3 3.0

Tt4(K) - - 1600 1600
Tt4.5 1300 1300 1300 1300
α 4.0 0.5 4.0 0.5

Nozzle CD Convergent CD Convergent
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Table J.5: Input data for the parametric cycle analysis in Chapter 6 (Part 3).

Design variable FPR FPR FBR FBR
Regime subsonic supersonic subsonic supersonic

Flight Condition
M0 0.85 1.2 0.85 1.2

h(km) 10 10 10 10
Operating Conditions

πcL 1.387 1.387 1.387 1.387
πc 28.48 28.48 - -
πf - - 1.3 3.0

Tt4(K) 1600 1600 1600 1600
Tt4.5 1300 1300 1300 1300
α 4.0 0.5 - -

Nozzle CD Convergent CD Convergent

Table J.6: Hidden data on ‘Input’ sheet of the off-design cycle analysis Excel
code.

ITB OFF Single-point ITB ON
condition ITB ON/OFF condition

Column → 13 14 15 16 17
Row ↓ 26 Thrust πtL ON/OFF ηth fitb

27 S τtL ε1 ηp πitb

28 ηth ηtL ε2 ηo

29 ηp fitb

30 ηo πitb

31 M8
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Appendix K

Other Contribution: Tracking a

Single Evaporating Drop in a

Crossflow

Besides developed the cycle analysis codes, the author also developed an

Excel code for tracking a single evaporating drop in a crossflow. The details of

the Excel code and its user guide can be found in [27]. The following sections

a general approach to model the behavior of the drop in a crossflow and the

numerical method for the computation.

K.1 Introduction

A liquid spray injected into a gaseous crossflow with high temperature is

important because of its wide application in systems involving two phase mixing.

It is therefore important to be able to compute this flow to optimize the mixing

strategy.

An existing Excel program [52] has previously been developed for tracking

a single droplet in crossflow computation. This work is focused on producing a

quick computational method for determining spray penetration with evaporation.
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With this spreadsheet, one can investigate the dispersion of an air0blast atomized

spray jet into a high temperature crossflow. During the transverse injection of a

spray into high velocity flow, the droplets (carried along in the gaseous stream of

co-flowing air) are not only subjected to forces due to the crossflow motion, but

also to increases in the combustor temperature and pressure (Figure K.1).

K.2 Droplet Trajectories and Velocities

The trajectories of the droplets can be tracked by applying a Langrangian-

based analysis to the droplets. The momentum equations for a droplet can be

obtained by equating the droplet motion to:

1. the viscosity and pressure-related drag forces.

2. the pressure gradient and viscous forces related to the fluid surrounding the

droplet.

3. the inertia of the virtual mass, which is induced when the particle acceler-

ation affects the fluid mass acceleration.

Figure K.1: Airblast-Atomized Fuel Spray Injected Into a Crossflow of Air [23]

Droplet trajectory and velocity with respect to time can be calculated based

on these principles along with the following assumptions:

1. The droplet is spherical.
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2. No droplet breakup occurs.

3. Vaporization is not considered yet and will be presented in Section K.3.

4. Lift, virtual mass, and Basset forces which takes into account the accelera-

tion history of the droplet, are neglected.

5. Chemical reaction is not included.

These assumptions reduce the droplet momentum equation to include only

the effects of the drag and body forces. The general momentum equations

for a single droplet injected along the positive x-direction, transversely into a

downward-flowing air stream in the positive z-direction, as shown in Figure K.2,

is described by

~Fd = ~Fdrag + ~Fbody (K.1)

where the net force ~Fd that drives the droplet motion is balanced by the drag force

opposing its motion, and the field forces acting on the droplet. The aerodynamic

drag force is given by

~Fdrag = −1

2
ρA

~UR

∣∣∣~UR

∣∣∣ AdCD (K.2)

where ρA is the air density, and Ad and CD, the projected area and the drag

coefficient of the droplet, respectively. The relative velocity between the droplet

and the crossflow has a magnitude of UR (Figure K.2).

The body force, resulting from an equivalent volume of air that buoys the

droplet, includes the gravitational and buoyancy forces. It is given by

~Fbody = (ρd − ρA) Vd ~g0 (K.3)
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Figure K.2: The Free-body Diagram of a Single Droplet in Crossflow [23]

which says that the body force is equal to the product of relative droplet and air

density (ρd − ρA), the droplet volume Vd, and gravitational acceleration ~g0.

Substituting equation K.2 and equation K.3 to equation K.1 yields:

ρdVd
dud

dt
= −1

2
ρA (ud − uA)

∣∣∣~UR

∣∣∣ AdCD (K.4)

ρdVd
dwd

dt
= −1

2
ρA (wd − wA)

∣∣∣~UR

∣∣∣ AdCD + (ρA − ρd) Vdg0 (K.5)

dx

dt
= ud (K.6)

dz

dt
= wd (K.7)

The drag coefficient of the droplet depends on the droplet Reynolds number

and is given by
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CD =


24

Red

[
1 + 1

6
Re

2/3
d

]
for Red ≤ 1000

0.424 for Red > 1000
(K.8)

where Red is the droplet Reynolds number and is defined as follows

Red =
2ρA|~UR|rd

µA

(K.9)

in which rd is the droplet radius and µA is the gas (air) viscosity.

K.3 Droplet Evaporation

To include the effect of evaporation rate on spray penetration, apply a control

volume at droplet surface that will change with droplet radius during evaporation

process. For simplicity, consider steady state analysis first.

K.3.1 Steady-state Analysis

A fuel droplet rarely reaches a steady state during its lifetime [5]. This

is because most commercial fuels are multi-component, where different fuel

compounds posses its own properties, for example kerosene and gasoline. To

simplify analysis, ‘steady state’ term here refers to ‘quasi-steady’, which allows

droplet lifetime and evaporation rate to be estimated to an acceptable level of

accuracy.

To simplify the analysis, in addition to the assumptions listed in trajectory

analysis as shown in Section K.2:

1. There is no radiation.

2. There is no internal circulation and internal convective heating within

droplet.
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3. Consider only single-component fuel (with well-defined boiling point).

4. It is quasi-steady flow.

Consider a fuel droplet at low fuel injection temperature that is suddenly

exposed to a gaseous crossflow at high temperature. Initially, almost all heat

supplied to the droplet serves to raise the droplet temperature. As the droplet

temperature rises, fuel vapor will form at the droplet surface and has two main

effects:

1. A large portion of heat transferred to droplet is used to vaporize the droplet.

2. The outward flow of fuel vapor impedes the rate of heat transfer to droplet.

Eventually, a stage is reached where all heat transferred to droplet is used as

the heat of vaporization and the droplet temperature will stabilize at a steady-

state temperature.

Mass Transfer Number

Assume that the thermal diffusion is negligible. Therefore, the concentration

gradient is the only driving force considered for species diffusion in the direction

of the diffusion path. Then, the following expression for an evaporating fuel

droplet of radius r is described by:

dYF

dr
= − RT

DFAP
(ṁ

′′

F YA) (K.10)

where DFA is the diffusion coefficient of fuel in air

ṁ
′′
F is the mass rate of diffusion per unit area (mass flux)

P is the ambient air pressure

R is the universal gas constant

T is the ambient air temperature

YF (r) is the fuel mass fraction

YA is the air mass fraction at range rs < r < ∞ at any time
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Figure K.3: Control Surface Surronding a Single Evaporating Droplet

YA = 1− YF (K.11)

From the continuity equation applied on the control surface surrounding a

droplet (Figure K.3), one obtains

ṁ
′′

F = ṁ
′′

F,s

(
rs

r

)2

(K.12)

where ṁ
′′
F,s is the mass flux at droplet surface

rs is the radius of droplet

r is the radius of control surface at time t

Substituting Eqs. (K.11) and (K.12) into (K.10) yields

dYF

dr
= − RT

DFAP
ṁ

′′

F

(
rs

r

)2

(1− YF,s) (K.13)

where YF,s is the fuel mass fraction at droplet surface.

Assume the ideal gas relation (ρ = P
RT

), separating variables, integrating,

and rearranging Eq. (K.13) yields

ṁ
′′

F,s = −ρDFA

rs

ln(1− YF,s) (K.14)
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where ρ is the fuel density.

Multiplying by droplet surface area (As = 4πrs) and for D = 2rs,

ṁ
′′

F,s = −2πDρDFA ln(1− YF,s) (K.15)

where D is diameter of evaporating droplet.

Unity Lewis Number (Le)

Assume Le = 1, it implies that the mass transfer rate is equal to the heat

transfer rate, i.e.,

DFA = αA (K.16)

where

αA =

(
k

ρcp

)
A

(K.17)

where αA is the thermal diffusivity of air

k is the thermal conductivity

cp is the specific heat at constant pressure

Then, Eq. (K.16) becomes

ρADFA =

(
k

ρcp

)
A

(K.18)
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Define the mass transfer number, BM :

BM =
YF,s − YF,∞

YF,drop − YF,s

(K.19)

Since YF,∞ ≈ 0 and YF,drop = 1, Eq.(K.19) is simplified as

BM =
YF,s

1− YF,s

(K.20)

where

YF,s =

[
1 +

( P

PF,s

)
(
MA

MF

)]
(K.21)

where MF is the molecular weight of fuel [kg/kg −mol]

MA is the molecular weight of fuel [kg/kg −mol]

P is the ambient pressure [kPa]

PF,s is the fuel vapor pressure at droplet surface [kPa]

Rearranging ln(1− YF ) in term of BM yields

ln(1− YF ) = − ln(1 + BM) (K.22)

Substituting Eqs. (K.18) and (K.22) into (K.15) yields the rate of evapora-

tion of a fuel drop at the surface:

ṁ
′′

F,s = 2πD

(
k

cp

)
A

ln(1 + BM) (K.23)

Reference Condition

For better accuracy, the choice of values of kg and cp,g are evaluated at the

following reference temperature (Tr) and composition (Yr) using the “one-third
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rule”:

Tr = Ts +
1

3
(T∞ − Ts) (K.24)

YF,r = YF,s +
1

3
(YF,∞ − YF,s) (K.25)

Since YF,s ≈ 0,

YF,r =
2

3
YF,s (K.26)

YA,r = 1− YF,r (K.27)

Fuel-air mixture

Therefore, the reference thermal conductivity and specific heat at constant

pressure are estimated as

kg = YA,r · kA(Tr) + YF,r · kFv(Tr) (K.28)

cp,g = YA,r · cp,A(Tr) + YF,r · cp,Fv(Tr) (K.29)

Evaporation Constant

At steady-state period, the droplet diameter D at any instant may be related

to its initial diameter D0 by D2-law:

D2
0 −D2 = λstt (K.30)

where λst [m2

s
] is the steady state evaporation constant
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λst =

(
k

cp

)
8 ln(1 + BM)

ρF

(K.31)

The D2-law states that the square of droplet diameter is a linear function

of time where the evaporation constant apparently represents the slope of the

equation. The larger the λst, the shorter the time it takes for the droplet to

vaporize completely.

Heat Transfer Number

Consider conductive and convective heat fluxes across a thin shell surround-

ing the evaporating droplet, the heat transfer number is defined as the ratio of

enthalpy available in the surrounding gas to the energy required to vaporize the

fuel:

BT =
cp,g(T∞ − Ts)

L + cp,drop(Ts − Tdrop)
(K.32)

where L is the latent heat of fuel vaporization corresponding to fuel surface

temperature [kJ/kg].

For simplicity, one can neglect the energy required to raise the droplet tem-

perature to the surface temperature. Then, equation (K.32) becomes:

BT =
cp,g(T∞ − Ts)

L
(K.33)

When heat transfer dominates the evaporation process, the rate of evapora-

tion of a fuel droplet at the surface is then described by:

ṁ
′′

F,s = 2πD

(
k

cp

)
A

ln(1 + BT ) (K.34)
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BT versus BM

Estimation of rate of fuel evaporation using equation (K.34) is only good for

steady-state conditions. Nevertheless, equation (K.23) applies under all condi-

tions, including the heat-up process of droplet [ref???].

However, under steady state conditions, BM = BT = B and equation (K.23)

and (K.34) are identical. Therefore, droplet evaporation rate can be written as:

ṁ
′′

F,s = 2πD

(
k

cp

)
A

ln(1 + B) (K.35)

K.3.2 Heat-up Process

According to Chin [6], serious error may be incurred in the calculation of fuel

evaporation rate and droplet lifetime if the transient heat-up process is neglected.

In fact, for many fuels at high ambient pressure and temperature, the transient

heat-up process constitutes a significant portion of the droplet evaporation time.

At the steady-state period, the heat used in vaporizing the fuel is given by:

Qss = ṁF L (K.36)

Substituting equation (K.15) into (K.36) yields

Qss = 2πD

(
k

cp

)
A

ln(1 + BM)L (K.37)

Including the heating process, the actual heat transfer is estimated as

Qss = 2πD

(
T∞ − Ts

)
A

ln(1 + BM)

BM

(K.38)

Then, the rate of change of the droplet surface temperature is given by
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dTs

dt
=

Qact −Qss

cp,F mdrop

(K.39)

Substituting equation (K.37) and (K.38) into (K.39) and rearranging gives

dTs

dt
=

ṁF L

cp,F mdrop

( BT

BM

− 1
)

(K.40)

where

mdrop =
π

6
ρF D3 (K.41)

Note that

ṁF =
d

dt

(π

6
ρF D3

)
(K.42)

Equating equation (K.15) and (K.42) and rearranging gives the rate of

change of droplet size

dD

dt
=

4 ln(1 + BM)

ρF D

( k

cp

)
A

(K.43)

K.3.3 Droplet Lifetime

Since the rate of chemical reactions in many practical combustion systems

are so high, the burning rate is mainly controlled by the fuel evaporation process.

Therefore, droplet lifetime is important in such situations because it determines

the residence time needed to ensure completion of combustion.

Assume the final droplet diameter, D0, equal to zero and rearranging the

D2-law, the steady state droplet lifetime is readily obtained by:
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tst =
D2

0

λst

(K.44)

K.3.4 Convective Effect

All derivations shown above are only good for droplet at stationary condition.

In addition, it is known that convection may enhance both mass and heat transfer

during the evaporation process. Moreover, to include the convective effect into

the evaporation rate equation is straightforward. Eq. (K.25) is then modified by

replacing the coefficient with the Nusselt number correlation [16]:

ṁF = NuπD
( k

cp

)
A

ln(1 + BM) (K.45)

where

Nu = 2 + 0.6Re0.5
D Pr0.33

A (K.46)

Red =
ρA · Ur ·D

µA

(K.47)

K.4 Numerical Method

Six ordinary differential equations are to be solved for the six dependent

variables x, z, ud, wd, D, and Ts. The droplet trajectory is defined by the set

of x and z values. A 4th-Order Runge-Kutta explicit method [38] was used to

solve these equations. The Runge-Kutta explicit method is an ideal numerical

scheme for solving ordinary differential equations using Excel software. It is a

self-starting method with good stability characteristics. The time step-size can

be changed as desired without any complications for higher-order schemes.

There are totally six sets of coupled equations, namely the time rate change

of x, z, ud, wd, D, and Ts, along with their solutions, as shown below: (subscript
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n stands for the nth time step.)

[1]

dx

dt
= ud = f1(ud) (K.48)

xn+1 = xn +
1

6

(
k1 + 2k2 + 2k3 + k4

)
(K.49)

where

k1 = ∆t · f1(ud,n)

k2 = ∆t · f1(ud,n +
l1
2

)

k3 = ∆t · f1(ud,n +
l2
2

)

k4 = ∆t · f1(ud,n + l3) (K.50)

[2]

dz

dt
= wd = f2(wd) (K.51)

zn+1 = zn +
1

6

(
kz1 + 2kz2 + 2kz3 + kz4

)
(K.52)
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where

kz1 = ∆t · f2(wd,n)

kz2 = ∆t · f2(wd,n +
lz1

2
)

kz3 = ∆t · f2(wd,n +
lz2

2
)

kz4 = ∆t · f2(wd,n + lz3) (K.53)

[3]

dud

dt
=

[
−1

2
ρA(ud − uA)|~UR|AdCD

]
ρdVd

= f3(ud, wd, D, Ts) (K.54)

ud,n+1 = ud,n +
1

6

(
l1 + 2l2 + 2l3 + l4

)
(K.55)

where

l1 = ∆t · f3(ud,n, wd,n, Dn, Ts,n)

l2 = ∆t · f3(ud,n +
l1
2

, wd,n +
lz1

2
, Dn +

md1

2
, Ts,n +

mt1
2

)

l3 = ∆t · f3(ud,n +
l2
2

, wd,n +
lz2

2
, Dn +

md2

2
, Ts,n +

mt2
2

)

l4 = ∆t · f3(ud,n + l3, wd,n + lz3, Dn + md3, Ts,n + mt3) (K.56)

[4]

dwd

dt
=

[
−1

2
ρA(wd − wA)|~UR|AdCD + (ρA − ρd)Vdg

]
ρdVd

= f4(ud, wd, D, Ts) (K.57)

wd,n+1 = wd,n +
1

6

(
lz1 + 2lz2 + 2lz3 + lz4

)
(K.58)
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where

lz1 = ∆t · f4(ud,n, wd,n, Dn, Ts,n)

lz2 = ∆t · f4(ud,n +
l1
2

, wd,n +
lz1

2
, Dn +

md1

2
, Ts,n +

mt1
2

)

lz3 = ∆t · f4(ud,n +
l2
2

, wd,n +
lz2

2
, Dn +

md2

2
, Ts,n +

mt2
2

)

lz4 = ∆t · f4(ud,n + l3, wd,n + lz3, Dn + md3, Ts,n + mt3) (K.59)

[5]

dD

dt
= − λ

2D
= f5(D, Ts) (K.60)

Dn+1 = Dn +
1

6

(
md1 + 2md2 + 2md3 + md4

)
(K.61)

where

md1 = ∆t · f5(Dn, Ts,n)

md2 = ∆t · f5(Dn +
md1

2
, Ts,n +

mt1
2

)

md3 = ∆t · f5(Dn +
md2

2
, Ts,n +

mt2
2

)

md4 = ∆t · f5(Dn + md3, Ts,n + mt3) (K.62)

[6]

dTs

dt
=

ṁF L

cp,F mdrop

( BT

BM

− 1
)

= f6(ud, wd, D, Ts) (K.63)

Ts,n+1 = Ts,n +
1

6

(
mt1 + 2mt2 + 2mt3 + mt4

)
(K.64)
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where

mt1 = ∆t · f6(ud,n, wd,n, Dn, Ts,n)

mt2 = ∆t · f6(ud,n +
l1
2

, wd,n +
lz1

2
, Dn +

md1

2
, Ts,n +

mt1
2

)

mt3 = ∆t · f6(ud,n +
l2
2

, wd,n +
lz2

2
, Dn +

md2

2
, Ts,n +

mt2
2

)

mt4 = ∆t · f6(ud,n + l3, wd,n + lz3, Dn + md3, Ts,n + mt3) (K.65)
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