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ABSTRACT 

 
Shantanu Kulkarni 
 
Michigan Technological University, August 2010 
 
Advisor: Professor Amitabh Narain, MEEM, Michigan Tech University 
 
 

This doctoral thesis presents the computational work and synthesis with 

experiments for internal (tube and channel geometries) as well as external (flow of a pure 

vapor over a horizontal plate) condensing flows. The computational work obtains 

accurate numerical simulations of the full two dimensional governing equations for 

steady and unsteady condensing flows in gravity/0g environments.  

 This doctoral work investigates flow features, flow regimes, attainability issues, 

stability issues, and responses to boundary fluctuations for condensing flows in different 

flow situations. This research finds new features of unsteady solutions of condensing 

flows; reveals interesting differences in gravity and shear driven situations; and discovers 

novel boundary condition sensitivities of shear driven internal condensing flows. 

Synthesis of computational and experimental results presented here for gravity driven in-

tube flows lays framework for the future two-phase component analysis in any thermal 

system.  

It is shown for both gravity and shear driven internal condensing flows that steady 

governing equations have unique solutions for given inlet pressure, given inlet vapor 

mass flow rate, and fixed cooling method for condensing surface. But unsteady equations 

of shear driven internal condensing flows can yield different “quasi-steady” solutions 
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based on different specifications of exit pressure (equivalently exit mass flow rate) 

concurrent to the inlet pressure specification. This thesis presents a novel categorization 

of internal condensing flows based on their sensitivity to concurrently applied boundary 

(inlet and exit) conditions. 

  The computational investigations of an external shear driven flow of vapor 

condensing over a horizontal plate show limits of applicability of the analytical solution. 

Simulations for this external condensing flow discuss its stability issues and throw light 

on flow regime transitions because of ever-present bottom wall vibrations. It is identified 

that laminar to turbulent transition for these flows can get affected by ever present bottom 

wall vibrations. Detailed investigations of dynamic stability analysis of this shear driven 

external condensing flow result in the introduction of a new variable, which characterizes 

the ratio of strength of the underlying stabilizing attractor to that of destabilizing 

vibrations. 

Besides development of CFD tools and computational algorithms, direct 

application of research done for this thesis is in effective prediction and design of two-

phase components in thermal systems used in different applications. Some of the 

important internal condensing flow results about sensitivities to boundary fluctuations are 

also expected to be applicable to flow boiling phenomenon. Novel flow sensitivities 

discovered through this research, if employed effectively after system level analysis, will 

result in the development of better control strategies in ground and space based two-

phase thermal systems.  
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NOMENCLATURE  

Variable Symbols 

Cp1 Specific heat of the liquid condensate, J/(kg-K). 

D Inner diameter of tubular test-section for gravity driven in-tube 

experiments, m. 

Dmax Physical value of amplitude of displacement waves of bottom wall 

noise, m. 

D*max Non-diemsional value of Dmax (≡ Dmax/LChar). 

f Non-dimensional frequency fp of bottom wall vibraions given by 1/Tb 

≡ fp·Ye/U∞. 

fp Physical value of frequency of bottom wall vibraions, Hz. 

g Gravitational acceleration, m/s2
. 

G Non-dimensional parameter given by (Ja /Pr1)·(ρ1µ1/ ρ2µ2)1/2. This 

parameter is used to obtain the correlation for steady values of film 

thickness for external condensing flow of vapor over a horizontal 

plate.  

h Channel gap for internal condensing flows, m. 

Ja Condensate liquid Jakob number, (Cp1· ∆T)/ hfg(pin). 

k1 Conductivity of condensate liquid, W/(m-K). 

L Length of the test-section in experiments or domain in computations, 

m. 
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LC Characteristic length, LC = D (diameter) for tubes and LC = h (gap 

height) for channels, Lc = Ye for external condensing flow problem, 

m. 

LChar Intrinsic characteristic length given by µ1/(ρ1·hfg
1/2), m. This 

characteristic length is occassionally used to non-dimensionalize 

important flow parameters for exterenal condensing flow over a flat 

plate outside the computational and problem formulation context. 

m  Non-dimensional value of interfacial mass flux, m ≡ m/(ρ1· U∞) for 

external condensation and m ≡ m/(ρ1· U) for internal condensation. 

m Physical value of interfacial mass flux, kg/(m2·s). 

ni Representative number of grid points in x direction for simulations. 

nj Representative number of grid points in y direction for simulations. 

P A non-dimensional measure of the ratio of noise-sensitivity to strength 

of stability. 

pin Pressure at the test-section inlet, kPa. 

pexit Pressure at the test-section exit, kPa. 

Pr1 Condensate liquid Prandtl number, µ1·Cp1 / k1. 

pxP-i Test-section pressures at locations xP = xP-i (i = 1, 2, …), kPa. 

Qtotal
 Net heat rate out of the test-section, W. 

Rein Inlet vapor Reynolds number, ρ2ULc/µ2. 

Rex Reynolds number, Rex = ρ1Ux /µ1  for internal condensation and  

• 

• 

• 

• 
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Rex = ρ1U∞ x /µ1 for external condensation. 

Rex|Trans-cr  Critical Reynolds number that marks the transition to turbulence or to 

a qualitatvely different type of flow for external condensing flow 

problem. 

Rex|wavy-cr Critical Reynolds number at which the amplitude of waves on the 

interface due to persistent condensing-surface noise grows up to 15% 

of the mean film thickness for external condensing flow problem. 

Tb Non-dimnesional time period of bottom wall vibraions. 

θ Non-dimensional temperature. 

Tsat(p) Saturation temperature at pressure p, oC. 

wT  Mean condensing surface temperature, oC. 

Tw(xP) Non-uniform steady condensing surface temperature at xP, oC. 

U Average inlet vapor velocity for channel or tube in the direction of test 

section length, m/s. This peed U for internal condensing flow can be 

interchangeably used with vapor speed U∞ for external condensing 

flow of vapor over a horizontal plate for non-dimnesionalization of 

different flow vaiables. 

UChar Intrinsic characteristic speed (≡ hfg
1/2), m/s. This speed is occassionally 

used to non-dimensionalize important flow parameters outside the 

computational and problem formulation context for external flow of 

vapor condesning over a flat plate.  
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u* Non-dimensional far upstream vapor speed given by U∞/ UChar. 

u*cr Non-dimensional value of U∞* (≡ U∞*/UChar). 

U∞ Far upstream vapor speed for external condensation of vapor over a 

horizontal plate, m/s. This speed is used to non-dimensionalize regular 

flow field variables like liquid and vapor velocities, interfacial mass 

flow rate, time, pressure, etc. in the computational and problem 

formulation context.  

U∞* Lower threshold of vapor speed U∞ given by simulations for film wise 

condensation of external condensing flow problem, m/s. 

(u,v ) Values of x and y components of velocity, m/s. 

(u,v) Non-dimensional values of u and v, (u,v) ≡ (u /U, v /U) for internal 

condensation and (u,v) ≡ (u/ U∞, v/ U∞) for external condensation.  

vmax Physical value of the amplitude of a standing velocity wave associated 

with condensing surface noise, m/s. 

x, y Physical distances along and perpendicular to the condensing surface, 

m. 

x, y Non-dimensional distances along and perpendicular to the condensing 

surface. 

xfc Approximate length needed for full condensation (estimted by 

computations), m. 

xfc Non-dimensional xfc. 

 



xiv 
 

xe Non-dimensional value of domain length for external condensing flow 

of vapor over a flat plate, Xe/Ye. 

x* Distance from the leading edge beyond which pressure gradient in 

liquid or vapor domain is nearly equal to zero for external condensing 

flow of vapor over a flat , m. 

x* Non-dimensional value of x*, x* = x*/Ye. 

Xe Physical value of domain length for external condensing flow of vapor 

over a horizontal plate , m. 

Ζ(x) Ratio of vapor mass to the total inlet mass at any x for internal 

condensing flows.  

δ Non-dimensional value of condensate thickness. 

∆ Physical value of film thickness, m. 

Ρ Density, kg/m3
. 

µ Viscosity, kg/(m-s). 

π Non-dimensional pressure. 

ν Kinematic viscosity µ/ρ, m2/s 

σ Surface tension, N/m. 

λ Non-dimensional wave-length for the bottom wall vibrations (λ 

=λp/Ye). 

λp Physical/dimensional value of wavelength for the bottom wall  
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Subscripts 

comp Obtained from computations. 

exit Test-section exit. 

expt Obtained from experiments. 

I I = 1 for liquid and I = 2 for vapor. 

in Test-section inlet. 

Na Natural exit condition. 

sat Saturation condition. 

w Condensing surface. 

 

Superscripts 

i Value of a variable at an interface location 
 

 

 

vibraions, m.  

λo Non-dimensional wave-length for the initial disturbance δ′(x, 0) on the 

interface. 

δ' Non-dimensional  value of disturbance on the interface 
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Chapter 1 CONDENSING FLOW RESEARCH ISSUES AND 

FUNDAMENTALS 

1.1 Introduction 

Recent technological advancements in cooling/heating applications require use of 

state-of-the-art thermal systems that employ actively pumped two-phase flows for 

dissipating large heat fluxes (often > 1kW/cm2). Use of two-phase components (flow 

condenser, flow boilers, etc.) in any thermal system demands good flow attainability as 

well as reliable flow prediction capabilities for the multiphase flows occurring in these 

two-phase components. This, in turn, requires development of physics-based software 

programs that can accurately predict two-phase component behavior under different 

operating conditions. Computational results obtained from such programs can be 

synthesized with laboratory-based experimental results to develop better understanding of 

two-phase systems and, can, ultimately lead to sophisticated designs of thermal systems 

employing them.  The research presented in this dissertation focuses on computational 

study of flow condensation and its synthesis with available experiments and analytical 

solutions. The computational study presented here mainly involves continued 

development of 2-D CFD codes on FORTRAN platform and comparisons of the results 

from these codes with 1-D simulation tools [1], analytical solutions, and wherever 

applicable, with the experimental results. Some of the key results obtained in this 

research are expected to qualitatively applicable to flow boiling as well. 
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To better understand flow condensation, both the external and internal condensing 

flows were studied computationally. Some of the errors in previous understanding [2]-[6] 

for internal condensing flows has been corrected and novel results [7]-[8] regarding 

boundary condition sensitivities of these flows have been developed which is critical for 

the development of ground based as well space based thermal systems. The 

computational study for internal condensing flows was carried out for two geometries: 

tube and channel. Simulations for both gravity driven as well as shear driven internal 

condensing flows were developed and computational results were successfully compared 

with the experimental results. These investigations of internal condensing flows are of 

significant practical importance and constitute half of this thesis with computational 

results and comparisons with experiments as discussed in chapter 4. 

During investigations of internal condensing flows, it was found that shear driven 

internal condensing flows differ a lot from gravity driven internal condensing flows as far 

as nature steady solutions, different unsteady flow features, sensitivities to boundary 

condition, and flow regimes are concerned. As compared to gravity driven flows, steady 

shear driven internal condensing flows were found to be more sensitive to boundary 

condition fluctuations as well as prone to instability arising from initial disturbances. To 

gain hitherto unavailable understanding of exact nature of steady and unsteady features of 

external condensing shear driven flows, a classical academic problem of flow 

condensation over a flat plate (problem of Cess [9] and Koh [10]) has been thoroughly 

studied ([8]) - using a  newly  developed code that is based on an earlier computational 

methodology ([2]). This study is not only helpful in validating the computational 
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methodology implemented here (as an analytical solution for the steady problem based on 

similarity solution is already available) but it also discovers some new flow physics 

regarding a certain limiting criteria when steady solution – as reported by analytical 

solutions - may not exist. This external condensation flow study also provides valuable 

unsteady response of the flow - which the analytical solution could not predict. Thus 

study of unsteady solutions of this external flow problem complements the internal flow 

condensation study in the first half of this thesis and throws light on different interesting 

features inherent to the shear driven condensing flows and their full non-linear stability 

analyses. Detailed investigations of this external condensing flow problem of pure vapor 

condensing over a horizontal plate make the other half of this thesis report.   

  In summary, this research has investigated the effects of following different 

parameters on condensing flow: (i) gravity, (ii) shear, (iii) condensing flow geometry, 

(iv) cooling method (thermal boundary condition at condensing surface), (v) inlet 

conditions, (vii) exit condition fluctuations, (viii) initial disturbances, and (ix) micro-

meter scale effects such as disjoining pressures at interface and non-equilibrium 

thermodynamics. The very fundamental and novel result regarding existence of a unique 

steady flow (termed “natural”) for internal condensing flows (for both gravity driven and 

shear driven flows) has been established along with the novel response of shear driven 

internal condensing flows exhibiting multiple quasi-steady solutions in presence of the 

time-periodic fluctuating boundary conditions (inlet, exit, or concurrent). These new and 

hitherto unknown flow sensitivities (named “quasi-steady parabolicity” and “ellipticity”) 

were computationally shown ([7]) to exist for shear driven internal condensing flows and 
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have been experimentally established ([7]). Relying on the reported synthesis of 

theoretical ([1]-[8]) and experimental results ([7], [11]) novel categorization of internal 

condensing flows is presented regarding their sensitivity to simultaneously prescribed 

boundary conditions at the inlet and the exit. In addition, impact of these results on 

condensing flow morphologies (annular/stratified, plug/slug, etc.), condensing flow 

sensitivities, condensing flow instabilities (structural instability, dynamic instability, 

etc.), condensing flow attainability, and predictability are given as part of major 

investigations that were carried out during this doctoral research.  

The simulation results presented here and their synthesis with experiments are 

believed to be of great value not only to the condensing flow problems but also to other 

two-phase flow problems (flow boiling, etc.). The reported study of external condensing 

flow problem is of significant academic importance while the reported investigation of 

internal condensing flow problem is of great practical importance. Also the tool 

development done here will provide definite guidance for the ongoing development of 

enhanced computational capabilities in the area of two-phase flows and associated 

computational physics. Furthermore, the research results presented here can significantly 

assist in the design and development of much needed modern two-phase thermal systems. 

 

1.2  Development of Computational Tools 

To investigate condensing flows in various geometries (tubes or channels), 

different configurations (external or internal) and different environments (gravity or 
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shear) - the existing in-house codes were modified and new 2-D CFD programs were 

developed on FORTRAN 77. The code development work consisted of the following: 

• Modifications of unsteady codes for “in-tube” geometries for gravity driven situations 

for unspecified exit conditions: Comparisons for gravity driven in-tube condensing 

flow simulation results with experimental results and generation of comparison 

matrices for partial and fully condensing flows as reported in section 4.   This work 

has been published in [5]. 

• Debugging and modifications of steady and unsteady codes (discussed in section 4) 

for gravity driven and shear driven flows inside a channel for unspecified exit 

conditions: This work has been submitted for publication in [7]. 

• Development of new codes to solve internal shear driven/0g condensing flows in 

channel geometry to understand flow sensitivities (specified exit conditions, 

fluctuating inlet conditions, etc.): This work has been submitted for publication in [7]. 

• Development of new 2-D codes to solve external flow problem (steady and unsteady 

versions) of vapor condensing over a flat plate (problem of Cess and Koh [9]-[10]): 

This work has been published in [8]. 

A detailed description of the 2-D steady/unsteady computational approach utilized 

to obtain results in this thesis is given in section 3 of Narain et al. [2]. The boundary 

conditions, formulations of computational problems, and numerical algorithms to solve 

external and internal condensing flows are given in detail in [8] and [7] respectively.  The 

interface tracking equation used here and in [2]-[6] is the same one that is used for 

locating the interface in the interface capturing approaches for flow with phase change 
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(level-set method of Son and Dhir [12], etc.) or without phase-change (level-set method 

of Sussman et al. [13], VOF method of Hirt and Nichols [14], etc.). The interface 

tracking approaches of Esmaeeli and Tryggvason [15], Juric and Tryggvason [16], 

Tezduyar [17], M. A. Cruchaga et al. [18], etc. also use the same interfacial mass-flux 

and energy conditions but in somewhat different order and combination. The numerical 

scheme used here exploits the rigorous analytical and numerical knowledge that exists 

(see Abbott and Basco [19]) for solving the first order hyperbolic form of the interface 

tracking partial differential equation – this ensures convergence and accuracy of both the 

amplitude and the phase of the predicted interfacial waves. The above code development 

work was accompanied by data analysis, synthesis with the experimental works of [5], 

[11], and collaborative assistance in development of the MTU’s experimental systems. 

 

1.3 Internal Condensing Flow Problems Investigated  

1.3.1 Terminology 

The liquid and vapor phases in the flow (see Figure 1) are denoted by L (subscript 

I: I = 1) for liquid and V (I = 2) for vapor. The fluid properties (density ρ, viscosity µ, 

specific heat Cp, and thermal conductivity k) with subscript I are assumed to take their 

representative constant values for each phase (I = 1 or 2). Let TI be the temperature fields, 

pI be the pressure fields, Ts (p) be the saturation temperature of the vapor as a function of 

local pressure at the interface p, ∆ be the film thickness,  be the local interfacial mass 

flux (kg/s/m2), Tw (x) (< Ts (p)) be a known temperature variation of the condensing 
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surface (with its length average mean value being wT ), and ˆ ˆ = i + jI I Iu vv  be the velocity 

fields. The flow fields are defined at every point x (a 3-D Euclidean position vector) and 

time t. Furthermore, the characteristic length Lc for the channel geometry is its channel 

gap ‘h’ shown in Figure 1 and, for the tube geometry (see Figure 2), Lc is the diameter D. 

Let gx and gy be the components of gravity along x and y axes, p0 be the inlet pressure, ∆T 

≡  Ts (p0) - wT  be a representative controlling temperature difference between the vapor 

and the bottom plate, hfg be the heat of vaporization at temperature Ts (p), and U be the 

average inlet vapor speed determined by the inlet mass flow rate inM  (≡ ρ2•U•h for the 

channel flow). Let t represent the actual time and (x , y) represent the physical distances 

of a point with respect to the axes shown in Figure 1 for the channel flow (for tube flows 

in Figure 2, x = 0 is at the inlet, y = 0 is at the condensing surface). For the channel of 

height ‘h,’ y = h is an isothermal plate and is a slightly superheated non-condensing 

surface. For the tube, y = D/2 (i.e. r = 0) is the center-line where symmetry condition 

holds for all flow variables of interest. Note that, y ≡ Lc.y represents the distance from the 

condenser surface, for both channel (Figure 1) and in-tube (Figure 2) flows. A new list of 

fundamental non-dimensional variables – viz. (x, y, t, δ, uI, vI, πI, θI, m) is introduced 

through the following definitions: 

 

                                                      (1)
 

• 
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1.3.2 Steady and unsteady Flow Behavior of Internal Condensing Flows 

For the convenience of communication, a distinction has been proposed among: 

(i) parabolic/elliptic boundary conditions, (ii) parabolic/elliptic governing equations, and 

(iii) parabolic/elliptic flow behavior. These terms are defined as: 

 

Parabolic Boundary Conditions 

 In one computational approach, parabolic boundary conditions for the two 

dimensional flow in Figure 1 requires prescription of the values of inlet mass flow rate 

inM  (more precisely, for 2-D computations, x-velocity profile u2(0, y, t) and a suitable 

v2(0, y, t)), inlet temperature T2(0, y, t), the thermal and hydrodynamic wall conditions on 

the channel walls (at y = 0 and y = h), and either the inlet pressure pin (= p2(0, y, t)) or the 

exit pressure pexit (= p2(xe, y, t)) at any “one point” on the inlet or the outlet cross-section. 

The procedure for specifying pressure at a point is quite similar to specifying reference 

pressure at one point in an incompressible single-phase flow. In a second computational 

approach, parabolic boundary conditions for a two dimensional problem consists of:  

prescription of the inlet pressure pin (= p2(0, y, t)) and the exit pressure pexit (= p2(xe, y, t) 

that are concurrently specified across an arbitrary line y = y* and 0 ≤ x ≤ x e (i.e. the 

pressure-difference ∆p  ≡ p in - pexit is specified), inlet temperature T2(0, y, t), the thermal 

and hydrodynamic wall conditions on the channel walls (at y = 0 and y = h), and, in 

addition, the specification of the complete pressure variation across either the inlet or the 

exit cross-section as the normal stress for the stress boundary condition (which requires 

normal and tangential stresses) on that boundary.   
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Elliptic Boundary Conditions 

 In addition to the parabolic boundary conditions in the first computational 

approach described above, if one can specify the pressure variation across the boundary 

(say the inlet or the outlet) where the “pressure at a point” was not specified as part of the 

parabolic boundary condition, then such a specification is called an elliptic boundary 

condition. In the second computational approach for the parabolic boundary conditions, if  

besides the point pressure pin, point pressure pexit, and a cross-sectional pressure variation 

(over an inlet or outlet boundary); one specifies the inlet mass flow rate then this 

specification will be called an elliptic boundary condition.  

Parabolic Governing Equations 

 If the duct flow governing equations (steady or unsteady) are such that the 

parabolic boundary conditions in the first approach are sufficient to fully determine the 

pressure, velocity, and temperature fields elsewhere, then the governing equations are 

said to be parabolic. The parabolic governing equations discretization and solution 

technique in this computational approach (for which the “pressure at a point” at the inlet 

is prescribed) are such that to determine the value of a flow variable at a point one does 

not need information from any downstream location. If the governing equations (steady 

or unsteady) are such that the parabolic boundary conditions for the second 

computational approach are sufficient to fully determine the mass flow rate inM  (more 

precisely, the x-velocity profile u2(0, y, t) and a suitable y-velocity profile v2(0, y, t)), then 

again the governing equations are said to be parabolic. Different approaches (e.g. the 
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second approach discussed above) to specify parabolic boundary conditions are all 

equivalent to the first approach (for which the “pressure at a point” on the inlet was 

specified) because they all indirectly exploit the parabolic governing equations’ feature 

that the flow at a point is only affected by the upstream conditions.  

Elliptic Governing Equations 

 If the duct flow governing equations (steady or unsteady) are such that the elliptic 

boundary conditions need to be added to parabolic boundary conditions for either the first 

or the second approach to fully determine (within the domain and relevant parts of its 

boundary) the pressure, velocity, and temperature fields, then the governing equations are 

said to be elliptic. 

Strictly Parabolic Flow Behavior 

Steady or unsteady incompressible single phase flows (and some immiscible two-

fluid flows) are examples of strictly parabolic flows. A strict parabolic problem has the 

following two features: (i) for repeatable realization of the flow, the available knowledge 

of the parabolic boundary conditions is sufficient without any knowledge or specification 

of the remaining “elliptic” boundary condition, and (ii) any impositions (with or without 

fluctuations) of the remaining “elliptic” boundary condition is impossible as it can only 

affect the flow outside the flow domain of interest. 
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Strictly Elliptic Flow Behavior 

A strictly “elliptic” flow (steady or unsteady) will have the following feature: for 

repeatable realization of the flow, one needs specifications or knowledge of all the 

boundary conditions – the parabolic and elliptic boundary conditions defined above.  

Incompressible single-phase flows of common experience are always parabolic in 

behavior and never elliptic. This is because information to an interior point does not 

travel from both upstream and downstream locations. Some compressible duct flows are, 

however, elliptic in the above sense. 

Unique and Mixed (Parabolic and Elliptic) Nature of Internal Condensing Flow Behavior 

These flows’ behavior are characterized by the fact that: (i) steady condensing 

flow governing equations are parabolic, (ii) unsteady condensing flow governing 

equations can be parabolic for unspecified exit conditions (i. e. parabolic boundary 

conditions), and (iii) unsteady condensing flow governing equations can also be typically 

(i.e. for most thermal boundary conditions for the condensing surface) elliptic for elliptic 

boundary condition specification. The ability to impose unsteady elliptic boundary 

condition for shear driven internal condensing flows was found to become gradually 

impossible as gravity component in the direction of the flow becomes large enough to 

make the flow gravity dominant. The unique feature of “elliptic” nature of unsteady shear 

driven internal condensing flows is discussed in detail in section 4. 
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1.3.3 Existence of “Unique” Steady Solutions (Termed as “Natural” Solutions) 

Attainability and controllability of annular/stratified internal condensing flows 

under gravity or shear driven conditions are of prime importance in different practical 

applications. The interest in annular/stratified flow regime is because of their high 

thermal efficiencies for a given length of the condenser – i.e. higher heat exchange rates 

and lower pumping powers. The computational results in this dissertation corrects some 

of our earlier results ([2]-[6]) and supports some of our recent results ([1], [7]–[8], [11]). 

It is computationally found for the internal condensing flows that (in a channel of Figure 

1 or tube of Figure 2) under “parabolic” boundary condition – e.g. a given steady inlet 

vapor mass flow rate, steady inlet pressure, and a known steady thermal (temperature or 

heat-flux) boundary condition for the condensing surface – there exists a unique “natural” 

steady solution of the strictly steady governing equations. This result is found to be hold 

for both for shear driven and gravity driven cases. The uniqueness of the steady solution 

also means there are no multiple steady annular/stratified solutions of the strictly steady 

equations for different steady exit condition specifications (as was erroneously concluded 

in [2]-[6]). The experiments ([7] and [11]) and independent 1-D simulation results [1] 

also confirm repeated realization of the above stated “natural” steady solutions. This 

unique annular/stratified solution and its quasi-steady neighbors (arising from minuscule 

or large periodic fluctuations in the parabolic boundary conditions) - called “natural” 

steady or quasi-steady solutions - always exist for strictly steady or quasi-steady 

“parabolic” boundary conditions.  
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Figure 1: A schematic describing a representative condensing 

flow problem in a horizontal channel. 

 

Here “parabolic” boundary conditions mean specification of either the inlet or the 

exit pressure- but not both, inlet mass flow rate, and a known steady thermal (temperature 

or heat-flux) boundary condition for the condensing surface associated with a certain well 

defined cooling approach.  

Experimental results reported in ([7] and [11]) confirm that under quasi-steady 

“parabolic” boundary conditions, the remaining pressure boundary condition (exit 

pressure if inlet pressure was part of the “parabolic” boundary condition and vice versa) 

was steady or quasi-steady and was self sought - and this value has been termed a 

“natural” pressure condition. The unique steady pressure-difference ∆p between the inlet 
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and the exit is termed a “natural” pressure difference and is denoted as ∆p|Na. 

Experiments ([7] and [11]) also confirm the computational result that, for steady partially 

condensing flows, the “natural” remaining exit pressure value is equivalent to the 

specification of the “natural” exit liquid or vapor mass flow rate. 

 

          

Figure 2: A schematic describing a representative condensing 

flow problem inside a tube 
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1.3.4 Flow Sensitivities of Shear Driven Internal Condensing Flows  

 
  The computations find that the “strength” of the “natural” steady solutions for 

shear driven internal condensing flows is very weak as compared to the gravity driven 

internal condensing flows. By “strength,” it is meant that for shear driven condensing 

flows, it takes longer time as compared to gravity driven condensing flows (i.e. gx ≠ 0 as 

opposed to gx = 0 in Figure 1) for an arbitrary initial guess (say interfacial location at 

time t = 0) to converge (as t  ∞) to steady solution in a 2D unsteady solver under 

parabolic boundary conditions. In addition to this, computations also find that steady 

governing equations for annular/stratified shear driven flows are not strictly “parabolic,” 

because the unsteady equations exhibit “elliptic-sensitivity” in the sense that the self-

sought “natural” pressure value at the inlet or outlet boundary associated with the 

parabolic problem can be “actively” changed in the mean to a different quasi-steady (with 

superposed periodic fluctuations) pressure value. The “elliptic-sensitivity” of a shear 

driven annular/stratified portion of a partially condensing flow is computationally found 

to mean that though there exists a unique “natural” steady solution associated with the 

strictly steady equations under steady “parabolic” boundary conditions (i.e. either the 

inlet or the exit pressure is unspecified for a given inlet mass flow rate and 

thermal/hydraulic call conditions), the unsteady version of this problem exhibits limited 

“ellipticity” or “elliptic sensitivity” in the sense that concurrent steady-in-the-mean time-

periodic inlet and exit pressures can be specified. This means that shear driven flows 

allow a certain class of different “non-natural” time-periodic impositions on the 

remaining boundary (which was not specified for the underlying parabolic problem) 
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which allows different quasi-steady annular/stratified flows with mean features of the 

flow variables different than those obtained from the “natural” solution. For the 

computational results reported here, the different “non-natural” time-periodic impositions 

for the exit pressure are replaced by different mean “non-natural” exit liquid mass flow 

rates superposed with certain classes of time-periodic fluctuations. The experiments ([7] 

and [11]) also show that the superposed time-periodic fluctuations on the mean pressure 

condition on the remaining boundary (which is the inlet for experiments in [7] and [11]) – 

for partially or fully condensing flows – can be externally prescribed by an active energy 

source (compressor or pump) that facilitates presence of time-periodic fluctuations on the 

mean pressure. In the experiments, under constrained imposition of active “non-natural” 

pressure, the flow self-selects the needed time periodic fluctuations associated with the 

new mean pressure imposition at the remaining boundary and achieves a new quasi-

steady solution different than the “natural” solution. It has been experimentally found 

that, for fully condensing flows (and expected to be shown for certain partially 

condensing situations), “elliptic” Δp impositions also lead to some shifts in the flow 

regime transition boundary between the “annular/stratified” regime and the nearby 

“plug/slug” flow regimes and a larger shift in the transition boundary between the 

“plug/slug” regime and the nearby “bubbly” flow regime.   

The computations find, with the help of the reported study of quasi-steady 

partially condensing shear driven flows, that the above described “elliptic sensitivity” is 

possible because of the flows’ inherent bi-directional coupling of liquid and vapor 

motions which allows these flows to redistribute the changed mechanical power 
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consumed by the condenser under impositions of certain “non-natural” steady-in-the-

mean exit conditions. The flows accommodate this “elliptic” imposition by exploiting the 

limited freedom they have to change the steady-in-the-mean values for the interfacial 

location, interfacial mass-flux, and how the net mechanical power consumption in the 

condenser is distributed between bulk consumption and interfacial consumption (such as 

interfacial pressure working, interfacial kinetic energy exchanges, etc.). This kind of 

“elliptic sensitivity” is not present for gravity dominated Nusselt flows (see [20]) as, in 

that case, there is only a uni-directional connectivity between the motions of the two 

phases. This is because the liquid motion and the interface location is completely 

determined by gravity (see [20]) and the vapor motion must adapt itself in a way that it 

does not affect the predeterminations done by the dominant gravity.  

For the computational problem studied for this dissertation, the purely shear 

driven flows respond unsteadily to imposition of time-periodic (but steady-in-the-mean) 

“non-natural” exit liquid flow rate condition and this leads to a quasi-steady flow with a 

mean ∆p ≠ ∆p|Na and enhanced heat transfer rates. But, for “fixed” condensing-surface 

temperature – the assumed cooling approach (or thermal boundary condition) - these 

flows continue to have a tendency to return to the “natural” flow and associated natural 

value ∆p|Na whenever the constraining non-natural “elliptic” boundary condition is 

removed or no longer “actively” imposed. We term this behavior elastic or “spring” like. 

It should be noted that if the steady thermal boundary condition for the condensing-

surface is changed from a given temperature condition to the less common situation of a 

given and “actively” fixed heat-flux condition, the above reported “elliptic sensitivity” of 
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the shear driven flows will no longer exist. From here and henceforth, unless otherwise 

stated, temperature boundary condition for the condensing surface will be assumed when 

“elliptic sensitivity” of these flows is discussed. Because of the fact that the unsteady 

simulation tool employed for this research is limited to the annular/stratified morphology, 

investigation of the response of the shear driven flow is limited to investigation of only 

those exit condition imposition for which the time evolution of the flow remains within 

the category of annular/stratified morphology. This limitation is restrictive when one 

wants to study fully condensing shear driven flows for which there is an abundant 

experimental data ([21]-[23] etc.) – including that from our own research group that is 

reported in this thesis and in ([7], [11]) – which indicates downstream presence of non-

annular liquid-vapor morphology (plug/slug, bubbly, etc.).  

Besides the “elliptic-sensitivity,” computations/experiments have found a 

different sensitivity for shear driven flows called “quasi-steady parabolicity.” This means 

that for shear driven flows, different “non-natural” time-periodic impositions on the 

parabolic boundary also leads to somewhat different quasi-steady annular/stratified flows 

with mean features of the flow variables different than those obtained from the “natural” 

solution in absence of these fluctuations. These differences, however, are not found to be 

significant as are the differences in quasi-steady solutions due to “elliptic” constraining. 

This sensitivity is also found to cause changes (relatively of smaller magnitudes as 

compared to “elliptic” constraining) in the heat transfer rates inside the condenser and 

induce thermal transients in the condensing surface for the thermal condition in which 

temperature of condensing surface is allowed to change. This thesis presents only 



19 
 

preliminary results on the “quasi-steady parabolic” sensitivity and detailed investigations 

of this sensitivity are part of a future thesis work of another doctoral student.  

The results of this thesis and future research can make it possible, to design 

pumped two-phase systems that can either suppress/eliminate the impact of “elliptic 

sensitivity” and “quasi-steady parabolicity” or exploit this sensitivity to enhance heat 

transfer rates (up to > 30%) and improve the efficiency of the condenser and the system. 

With the above background information, computational investigations and 

experimental syntheses of internal condensing flows done for this dissertation can be 

classified in the following three groups: 

Gravity Driven Internal Condensing Flows inside a Tube 

This work involved: 

• Obtaining steady and unsteady solutions for “natural” partially and fully condensing 

flows and basic comparisons with experimental results obtained in [5]. 

• Obtaining a preliminary surface that represents “natural” solutions in a 3-D space 

defined by inlet mass flow rate, vapor-to-wall temperature difference, and pressure 

drop across the test section. 

• Unsteady solutions for “natural” parabolic boundary conditions to investigate flow 

regime transitions from smooth-laminar to wavy-laminar regime.  

Shear Driven/0g Internal Condensing Flows inside a Channel 

 This work involved: 

• Obtaining “natural” steady solutions of partially condensing flows and comparing 

their unsteady responses (attraction rates etc.) with gravity driven flows. 
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• Investigations for the newly discovered phenomenon of “elliptic sensitivity:”  This 

involved obtaining unsteady solutions and associated flow results for “non-natural” 

exit conditions achieved for different exit liquid mass flow rate controls. 

• Dynamic (stability) analysis in the presence of different exit condition impositions/ 

controls. 

• Effects of different parameters like wall temperature variations, inlet fluctuations, etc 

on steady and unsteady “natural” solutions. 

Preliminary Investigation of Micro-scale Effects for Internal Condensing Flows 

inside a Channel 

This work involved: 

• Assessing effects of disjoining pressures across the interface for “natural” steady 

solutions. 

• Assessing effects of non-equilibrium thermodynamic across the interface for 

“natural” steady solutions. 

All the computational results/comparisons with experiments for internal condensing 

flows are discussed in chapter 4. 

 

1.4 External Condensing Flow Problem of Vapor Condensing Over a 

Flat Plate 

 The problem studied by Cess [9] and Koh [10] deals with forced flow of 

saturated vapor (with a uniform upstream speed U∞) that approaches a semi-infinite 
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horizontal plate and starts experiencing film-wise condensation over the plate (see Figure 

3). This classical problem being external, may or may not relate to the internal 

condensing flow problem and the interest here is to understand its similarities and 

differences to the internal condensing flow problem discussed above.  

The central interest of this research was to solve the steady and unsteady 

governing equations for the full two dimensional version of this problem. 

 

 

Figure 3: A schematic for a typical finite computational domain for a film 

condensation flow over a horizontal plate due to a forced uniform vapor flow 
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This research focused on investigatation of features associated with unsteady 

solutions (attraction rates, etc.), comparisons of steady solutions with the relevant 

classical similarity solutions offered by Cess [9] and Koh [10], and improvements in the 

existing understanding of the feasibility of the film wise condensation assumption 

underlying the Cess [9] and Koh [10] solutions. 

The results of Koh [10] have been pivotal to the studies that rely on (e.g. Rose 

[24]) or use (e.g. Balasubramaniam et. al [25]) this solution to predict or estimate the 

features of shear driven external condensing flows.  

The ordinary differential equations associated with the solution of Koh [10], 

which are numerically solved, result from a boundary layer and constant pressure 

approximation of an assumed film-wise condensation behavior and a “similarity” solution 

formulation of the resulting model equations. This solution’s approach is very similar to 

other similarity solutions (Sparrow and Gregg [26], Koh et. al [27]) for gravity-driven 

condensing flows that are well-cited in the literature.  

One reason why this similarity solution for the shear driven condensate case 

([10]) has not been experimentally verified is, perhaps, significant differences exist 

between shear driven and gravity driven flows with regard to ease of attainment of film 

wise or annular condensation and another reason is the difficulty in implementing a 

suitable experiment that meets the requirements of the theory ([9], [10]). This is in 

contrast with the similarity solutions (e.g. Sparrow and Gregg [26] and Koh et al. [27]) 

for film wise condensation over a plate under conditions of gravity-driven condensate 

motion. The gravity driven cases’ similarity solutions are in good agreement with the 
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Nusselt solution [28] and, also, known to be experimentally feasible and in reasonable 

agreement with related experiments [29]. With regard to ease of achieving film wise or 

annular condensation, similar differences are known to exist between gravity driven and 

shear driven internal condensing flows. The experiments involving gravity driven internal 

condensing flows inside a vertical tube (see [30], [31], etc.) or large hydraulic diameter 

slightly inclined (downward) channels demonstrate easy attainment of a rather robust 

quasi-steady wavy annular (or film condensation) flows but annular or film wise shear 

driven internal condensing flows in mm to µm-scale horizontal tubes and channels are 

more difficult to achieve and show ([21], [23], [32]-[33]) the possibility of more complex 

vapor-liquid morphologies (such as steady or intermittent injection annular, mist, 

slug/plug, bubbly, etc.). 

It is shown in [8] and reported here that for a certain range of vapor speeds and 

vapor-to-wall temperature differences, Koh’s analytical solution [10] of this external 

condensing flow problem agrees well with the reported computational solution’s steady 

film thickness predictions. However the reported simulations in ([8]) differ from the Koh 

solution [10] in pressure and associated variables’ variation near the leading edge of the 

plate. While the analytical solution of Koh [10] assumes that the pressure stays constant 

even in the interior of the flow, computationally obtained steady solutions show that there 

are pressure variations near the leading edge part of the plate and though the resulting 

pressure differences are miniscule in value relative to the far field pressure p∞, they are 

important for determining the dynamics of the flow and in determining the feasibility of 

maintaining film wise condensation at low vapor speeds. It is found that the leading edge 
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pressure gradients become large as the vapor speed U∞ becomes sufficiently small. The 

unsteady solutions of this problem help assess attainability of the steady solutions. This is 

done by looking at limiting solutions (as t    → ∞) of the unsteady problem obtained for 

different initial guesses. Additionally, in this study, important assessment/new methods 

of stability through unsteady response of these flows are obtained and proposed. The 

effort to obtain and analyze unsteady solutions results in introduction and quantification 

of the following features of the steady solutions: (i) “attraction rate” values that measure 

the attainability of the steady solutions from different initial guesses, (ii) response of the 

steady solutions to initial disturbances, and (iii) noise-sensitivity of the steady solutions 

to ever-present minuscule noise and, as a result, expected waviness levels on the steady 

solutions. The above approach is expected to work even when linearized stability analysis 

and associated assumptions of exponential growth/decay may be of limited value. 

For the range of vapor speeds (0.2 m/s -20 m/s) considered for investigation of 

film wise condensation of typical non-metallic vapors (R113, FC-72, etc.), when an 

arbitrary initial guess (at t = 0) is used to obtain an unsteady solution in the idealized case 

of no condensing surface vibrations (no matter how minuscule), the unsteady solutions 

tend to a smooth wave free long term steady solution. The limiting steady solution, when 

obtained this way as opposed to obtaining it as a steady solution of the steady governing 

equations, has been termed a steady “attractor.” This unsteady attraction process has been 

studied and “attraction rates” to the limiting steady solution are defined. Though these 

“attraction rates” associated with attainability of a steady solution may appear to be a new 

idea, it is related to the well known idea of “decay rates” in linearized stability analyses 
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that assume exponential time evolution of initial disturbances. Thus increased monotonic 

(i.e. non-oscillatory) “attraction rates” that are reported here and in [8] correlate with the 

idea of stronger “decay rates” (i.e. larger, real, and negative coefficients multiplying time 

in the exponential decay assumption in linear stability analyses). That is large “attraction 

rates” mean both attainability and stronger stability of the steady solution. The “attraction 

rates” are used because in the present non-linear context, they were both more general 

and computationally easier to obtain than “decay rates” in the linear context. It has been 

found that this “attraction rate” when plotted as a function of time for any given point on 

the steady solution (which is close to Koh solution [10] – at least as far as steady film 

thickness values are concerned) may, in general, depend on the steady solution of the 

system (that is the underlying partial differential equations under no-noise conditions) as 

well as the starting initial conditions. However it is shown that a proper segment of the 

time-history associated with the rate of change of film thickness yields a definition of 

“attraction  rate” which is more or less independent of the choice of initial guess. This 

properly chosen measure of “attraction rate” is shown to diminish with increasing 

distance from the leading edge and also with decreasing speed U∞. As a result, it has been 

found that the assumed film wise steady condensation is difficult to achieve at very low 

free stream speeds and, for free stream speeds that are sufficiently large, attainment 

difficulty is predicted for large downstream distances. 

 For example, unsteady results find that at low vapor speeds (U∞ < U∞
* ≈ 0.2 m/s 

for the case discussed here), a long term steady limit is not reached and hence a film wise 

steady solution or a steady “attractor” does not exist. This result is further supported by 
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the fact that the steady “attractor” (for U∞ > 0.2 m/s in the example considered here) 

exhibits an approach to near zero mechanical energy availability for viscous dissipation 

in the interior of any chosen control volume. 

For sufficiently fast vapor speeds, since the “attraction rate” diminishes with 

downstream distance, one expects sensitivity to the effects of: transverse gravity (see [30] 

for similar effects for condensation inside a horizontal channel), to unintended variations 

in the far field uniform pressure p∞, and to ever present minuscule noise on the 

condensing surface. It is found that when an arbitrary initial guess (at t = 0) is used to 

obtain an unsteady solution (for t > 0) in the presence of minuscule noise on the 

condensing surface, the underlying long term solution’s diminishing attraction rates with 

distance cause the noise induced interfacial waves to grow with the distance from the 

leading edge. This thesis reports a measure of spatial growth as well as its growth rate 

with distance. A new parameter is introduced here which can characterize effects of 

attraction rates versus effects of forces that distract the solution from the smooth attractor. 

All the computational results/comparisons with analytical solution for this external 

condensing flow are discussed in chapter 5 of this thesis report. 
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Chapter 2 MATHEMATICAL MODELS FOR INTERNAL AND 

EXTERNAL CONDESING FLOWS 

This research considers condensing flows with smooth and wavy interfaces in 

annular/stratified laminar flows in which incoming vapor is assumed to be at saturation 

temperature (as 5-10⁰ superheat does not matter for the refrigerants considered). The 

computational domain is split in to two domains, vapor and liquid, which are assumed to 

be connected by a single continuous interface that can adequately model wavy/annular 

stratified flows. Both the liquid film and the vapor domains are modeled as 

incompressible Newtonian fluids. The full governing equations (Navier Stokes) are 

employed in each of the domain and all the essential interface conditions are employed 

and satisfied. Based on the problem under investigation, appropriate boundary conditions 

are applied at domain boundaries and the interface conditions are applied at the interface. 

Steady and unsteady interface configurations are respectively located for steady and 

unsteady flows. The interface is smooth for steady analysis but can be wavy for unsteady 

analysis. 

 

2.1 Internal Condensing Flows in Channels/Tubes 

The 2-D governing equations, interface conditions and boundary conditions for 

in-tube flows are similar to the ones for channel flows discussed below but are modified 

to take in to account curvature of the tube and axis symmetric nature of the flow (see 

[34]). 
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Interior Equations, Interface Conditions, Inlet Conditions, Wall Conditions, and 

Exit Conditions 

Interior Equations 

The non-dimensional differential forms of mass, momentum (x and y 

components), and energy equations for flow in the interior of either of the incompressible 

phases are the well-known equations: 
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Interface Conditions 

The nearly exact interface conditions (see Delhaye [35], Narain et. al. [2] etc.) for 

condensing flows are given in the Appendix (see Eqs. (A.1) - (A.8)). Utilizing a 

superscript “i” for values of flow variables at the interface ( , ) 0,Δφ y x t≡ − = non-

dimensional forms of the interface conditions are given below.  

• The non-dimensional form of the requirement of continuity of tangential component of 

velocities (see Eq. (A. 2)) becomes: 

                        ,)v(vδuu i
1

i
2x

i
1

i
2 −−=                                               (3) 
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where x.δ/δx ∂∂≡  

• The non-dimensional form of the normal component of momentum balance at the 

interface (see Eq. (A. 3)) becomes: 
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where We ≡ ρ 1U2h/σ, and surface tension σ = σ (T ) where T is the interfacial 

temperature. 

• The tangential component of momentum balance at the interface (see Eq. (A. 4) in 

Narain et al. [2]) becomes: 
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where the term [t] in Eq. (5) is defined in Eq. (A.9). 

• The non-dimensional form of non-zero interfacial mass fluxes m LK and mVK (defined 

in Eq. (A.5)) impose kinematic constraints on the interfacial values of the liquid and 

vapor velocity fields and are given by:      
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• The non-dimensional form of non-zero interfacial mass flux m Energy  (as given by Eq. 

(A.6)) represents the constraint imposed by net energy transfer across the interface and is 

given by: 

           }n/θ)/kk(n/θ){Pr(ReJa/m i
212

i
111Energy ∂∂−∂∂≡ ,                         (7) 
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where fg
0

p1 /ΔCJa hΤ≡ , and ≅≡ ))(( osfgfg
0 pThh  )(( i

2fg pTh s
. 

• The interfacial mass balance requires that the net mass flux (in kg/m2/s) at a point on 

the interface, as given by Eq. (A.7), be single-valued regardless of which physical 

process is used to obtain it. The non-dimensional form of this requirement becomes: 

            .mmmm EnergyVKLK  ≡==                                              (8) 

 It should be noted that negligible interfacial thermal resistance and equilibrium 

thermodynamics on either side of the interface is assumed to hold for all x values slightly 

downstream of the origin (i. e., second or third computational cell onwards). And hence, 

as per discussions leading to Eq. (A.8) in the Appendix, no model for the interfacial 

mass-flux m  is needed to obtain a solution.  

• The non-dimensional thermodynamic restriction on interfacial temperatures (as given 

by Eq. (A.8)) becomes: 

                   ( ) ( ). πθΔθθ i
2s

i
2s

i
2

i
1 ≡=≅ ΤpΤ                                           (9) 

Within the vapor phase, for the refrigerants considered here, changes in absolute 

pressure relative to the inlet pressure are big enough to affect vapor motion but, at the 

same time, they are usually very small (except in micro-scale ducts) to affect saturation 

temperatures.  Therefore, we have )0(θ)(πθ s
i
2s ≅ . 

Boundary Conditions 

 The problem posed by Eqs. (2) – (9) are computationally solved subject to the 

well-known (see [2]) boundary conditions on the top and bottom walls.  

Top wall: No slip condition (i.e. u2(x, 1, t) = 0 and v2(x, 1, t) = 0) holds for the top wall. 

Furthermore, the top wall temperature T2(x, h, t) = T20 > Tsat(p0) is at a superheated value 
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close to saturation temperature to allow the assumption of a nearly constant saturation 

temperature for the vapor at all location. This is reasonable because effects of superheat 

(in the typical 5 – 10oC range) are negligible. 

Bottom wall: Besides the no-slip condition (u1(x, 0, t) = v1(x, 0, t) = 0) at the condensing 

surface, one could have one of two types of thermal boundary conditions. If the 

condensing-surface temperature (T1(x, 0, t) = Tw(x)) is prescribed, its non-dimensional 

form is written as   

            θ1(x, 0, t) = θW(x) ≡ TW(x) / ∆T         (10) 

 Here Eq. (10) is known as steady temperature boundary condition for a known 

condensing surface temperature distribution TW(x). 

Alternatively, one could have the physical heat flux (i.e. q ″w(x) = - k1(∂T1/∂y) = q″w0 *  

q ″(x)) specified where q″ w0 is any known representative constant value of heat flux. 

Then the thermal boundary condition, instead of Eq. (10), becomes: 

    (∂θ1/∂y) (x, 0, t) = (q″w0⋅ h⋅ q ″(x)) / (k1⋅∆T)         (11) 

 Equation (11) is known as steady heat flux boundary condition for a known heat-

flux distribution q″w(x). This type of boundary condition does not allow flows to exhibit 

‘elliptical sensitivity’ and is not considered here. Often the heat-flux q″ w(x, t) is only 

implicitly known through the convection condition. In such case, Eq. (11) is replaced by 

               (∂θ1/∂y) (x, 0, t) = (hexth/k1) {θ1(x,0,t) – θres}              

where, (1/hext) is known as external thermal resistance and θres = Tres / ∆T is the non 

dimensional value of the reference temperature. 
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Inlet Conditions: At the inlet x = 0,  u2 = U and hence: 

                                       u2(0, y, t) = 1 , 0xv
0x2 =∂∂

=  .                                           (12) 

 Pressure is not prescribed across the inlet boundary but its value p0 appears 

indirectly through important thermodynamic properties such as hfg(p2
i) ≈ h fg(p0) and 

Tsat(p2
i) ≈ T sat(p0). The interfacial pressure variations are obtained from the non-

dimensional computed pressures π2
i(x, y, t) through the relation p2 = p0 + ρ2.U2 π2 (x, δ(x, 

t), t). 

Exit Conditions: 

 In the computational study, “parabolic” boundary conditions include a prescribed 

inlet pressure p0 along with inlet mass flow rate and wall condition. As far as exit 

conditions are concerned, it is assumed that none is needed for temperature. Whether 

response to exit condition impositions (pressure or equivalent) occur or not can only be 

investigated by attempting to solve condensing flow problem under such impositions. For 

this, we do not make any a priori assumption (based on single phase flows or air water 

flows) as to whether exit condition can or cannot be imposed. The approach here focuses 

on investigating partially condensing (film condensation) shear driven (annular/stratified) 

flows under two situations: one in which a steady-in-the-mean – but time periodic and 

unsteady - exit condition (exit pressure or exit liquid mass flow rate or exit vapor mass 

flow rate) is specified as if the unsteady problem has some “ellipticity” and the other in 

which exit condition is left unspecified and both the steady and unsteady problem is 

solved under steady “parabolic” boundary conditions.  
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 Earlier results [2]-[6] in our research group correctly established that for steady 

inlet and wall conditions (i.e. “parabolic” boundary conditions), a long term t ∞ 

solution could be obtained from the unsteady equations (in absence of exit conditions) 

and that the resulting solution was the same as the steady solution obtained from the 

steady equations. Research work for this thesis shows that a steady and unique 

annular/stratified solution (also termed “natural” solution) can be obtained without 

specification of exit conditions – and, in fact, the solution predicts a unique steady exit 

condition (also termed “natural” exit condition) as a part of the solution. 

 After knowing the existence of unique steady “natural” solution for steady 

governing equations, the question regarding whether the unique steady annular/stratified 

solution for the self-sought exit condition is the only annular/stratified solution possible 

(as in “parabolic” single phase flows where exit pressure can not be independently 

specified) or other steady-in-the-mean exit conditions can be imposed such that the 

resulting condensing flows lead to different long term steady-in-the-mean (or quasi-

steady) solutions with significantly changed interface location and/or liquid/vapor 

morphology. Note that the computational code used here is somewhat limited and, cannot 

find solutions unless the resulting morphology is also of the unsteady annular/stratified 

type. Despite the fact that these simulation results are limited to the annular/stratified 

morphology of Figure 1, response of the flow has been investigated – within the unsteady 

annular/stratified context – by imposing different steady and time-periodic unsteady exit 

conditions for the case in Figure 1. The reason for this investigation is an abundance of 

experimental data ([21]-[23]) for fully condensing shear driven flows that show the 
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presence of non-annular (plug/slug, bubbly, etc.) liquid vapor morphologies without well 

defined flow regime boundaries as well as experimental data (see Carey [36]) for heat 

transfer rates that are not useful because their scatter (see Figure 5.1 in [11]) results from 

sensitivity to specific experimental conditions and flow geometry.  

 For these reasons, one would like to experimentally and/or computationally 

investigate the impact of imposition of “off-natural” mean values of time-periodic exit 

conditions on the mean interface locations and flow regime transition locations for shear 

driven condensing flows. To better understand this issue, the full 2-D steady/unsteady 

approach of Narain et al. [2] needs to be re-examined. In this approach, at any instance of 

time t, the liquid domain and the vapor domain in Figures 4-5 are solved separately after 

a tentative guess of interfacial location δ.  

 

 

 

 

 

 
Figure 4: A schematic depicting computational procedure to solve liquid domain 

The liquid domain calculations underneath δshift(x,t) with prescribed values of u1s
i  and 

v1s
i  on δshift(x,t) satisfy the correct shear and pressure condition on the actual liquid 

domain underneath δ(x,t). 
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Figure 5: A schematic depicting computational procedure to solve vapor domain  

The vapor domain calculations above δ(x,t) with prescribed values of u2i  and v2i on 
δ(x,t) satisfy the requirement of continuity of tangential velocities and equality of 
interfacial mass balance. 
 
 

 The liquid domain is solved subject to stress boundary conditions (namely shear 

stress τi and pressure pi in Figure 4) and the vapor domain is solved subject to the velocity 

boundary condition (u2
i and v2

i in Figure 5). 

 The temperature boundary condition at the interface - viz. values of θ1
i and θ2

i - 

are determined by the saturation condition in Eq. (9) – which, for all current purposes, 

equal known temperatures θs(0). In this approach, the five guesses of {u2
i, v2

i, τ1
i
, 

 p1
i
, δ} 

are equivalent to the five guesses of {u2
i, v2

i, u1s
i, v1s

i
, δ} where, {τ1

i
, 

 p1
i} are replaced, in 

Figure 4, by  {u1s
i, v1s

i}. The {u1s
i, v1s

i} are liquid velocities imposed on the shifted 

interface that is approximately one cell above the actual interface and adjustment of their 
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values is used to satisfy stress condition at the actual interface locations. These five 

guesses are iteratively updated with the help of five interfacial conditions, viz. two from 

tangential and normal stress conditions (Eq. (4) and Eq. (5)), two from interface mass 

balance (Eq. 8), and one from continuity of tangential velocity (Eq. (3)).  

 Since the liquid flow in Figure 4 is solvable as a “parabolic” problem for a given 

{δ, τ1
i
, 

 p1
i} and the vapor flow in Figure 5 is solvable as a “parabolic” problem for {δ, u2

i, 

v2
i}, the question is what overall boundary conditions for the control volume are needed, 

or can be imposed, to deterministically predict these five key variables {δ, τ1
i
, 

 p1
i
, u2

i, v2
i} 

at all times t > 0 if the flow condition at some t = 0 were known. To begin with, the 

structure of the governing equations for these complex problems is not assumed as the 

physics of the flow suggests that at least, for shear driven flows, it is possible that some 

of the experimentally observed changes in the interface location within the 

annular/stratified flow regimes as well as uncertainty in locating flow regime transition 

boundaries may be a result of the fact that these flow are more susceptible to 

inadvertently imposed fluctuations at the inlet and the outlet boundaries. To investigate 

this issue, the unsteady annular/stratified problems (for gravity and shear driven flows) 

are to be solved, as per definitions to follow, under “unspecified” exit conditions in 

formulation [A] and under “specified” exit conditions in formulation [B].  

Unspecified Exit Condition or “Parabolic” Formulation [A]: The “natural” 

specification of liquid or vapor exit flow rate is one that does not constrain the flow 

because it allows the flow to “self-seek” its exit condition. This is achieved by the 

imposition of the following “outflow” type condition at the exit: 
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for I = 1 and 2, while also ensuring that the x-component of the exit velocities uI|x=xe are 

positive (for I = 1 and 2) and satisfy the overall mass balance for the entire partially 

condensing control volume in Figure 1. 

 It is shown here that in the absence of specification of exit condition (i.e. the 

above formulation [A]), there exists a unique annular steady solution of strictly steady 

equations for gravity driven as well as shear driven internal condensing flows. 

Furthermore, it is also found that the unsteady solutions for these flows under formulation 

[A] and assumed annular/stratified morphology also seek the same steady solution as       

t   ∞.  In addition, as shown later, these steady solutions are found to be stable – at least 

for the partially condensing flow lengths investigated here. This “unique” solution of the 

parabolic problem is termed as “natural” solution and corresponding exit condition (exit 

pressure or exit liquid mass flow rate or exit vapor mass flow rate obtained as a part of 

the solution) and pressure difference are termed “natural” exit condition and “natural” 

pressure difference respectively. It is also found that, in the unsteady solution procedure, 

any reasonable initial guess of the interface location and other variables are attracted, in 

time, to the same unique “natural” solution. 
 

The unique steady solutions for shear and gravity driven flows that have been 

obtained by the 2-D approach described above, were also obtained by a computationally 

more efficient and powerful (though more approximate) 1-D solution technique [1] that 

has been recently developed to support and reinforce the 2-D solution technique.  
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 However, the fact that steady annular/stratified solutions are obtainable for 

internal condensing flows under unspecified exit condition (formulation [A]) does not 

preclude the possibility that the flow is only partially parabolic and it can respond 

differently (with different steady liquid-vapor morphology or different quasi-steady – 

both in waviness and mean values - annular/stratified morphology) to certain (steady or 

unsteady) exit condition specifications imposed through the formulation [B] given below. 

In the present context of unsteady equations, formulation [B] below is used for 

“elliptic/specified” condition at the exit of unsteady shear driven flows.  An imposition of 

exit condition through this same formulation [B] for gravity dominated flows proved 

unsuccessful. As discussed in [11], such impositions proved unsuccessful for gravity 

dominated experiments as well. The reason behind absence of this kind of suspected 

“elliptic sensitivity” for gravity dominated flows (see [9]) is now understood. For these 

conditions, there is uni-directional connectivity between liquid and vapor domain flows 

as liquid domain determines the vapor motion completely and the liquid motion as well 

as the interface location is determined only by an external agency, namely gravity. Thus, 

any imposition of “non-natural” exit condition cannot be accommodated by changes in 

liquid motion without altering the “parabolic” boundary conditions themselves. For a 

closed flow loop, it is experimentally found [11] that the changes in the “parabolic” 

boundary conditions under changes in the exit conditions only leads to a new “natural” 

solution consistent with the new “parabolic” boundary conditions.  

Formulation [B]: For unsteady annular/stratified internal condensing flow 

problems (purely shear driven flows – 0g or horizontal channel in Figure 1), it is 
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tentatively assumed that exit condition can be specified in terms of exit flow rate (either 

non dimensional exit vapor flow rate 
V eM̂ (t)−
 at the exit or non dimensional liquid flow rate 

L eM̂ (t)−
  at the exit) or suitable exit pressure specifications (not implemented in this paper). 

Equation (14) below shows one of the ways in which exit condition can be specified in 

terms of non-dimensional liquid exit mass flow rate:
                                               

 

         

      ≡ Known function of time t for each t ≥ 0                              (14) 

Even though one can test different constants or time varying values on the right 

hand side of Eq. (14), it is already known that there must exist only one unique time 

independent constant value for the right side of Eq. (14) for which a long term (t  ∞) 

steady solution can be obtained for the unsteady problem under exit condition imposition 

through Eq. (14). This unique constant must be the same as the one obtained from the 

solution of the steady equations under formulation [A]. Physically these solutions are 

realized when one does not constrain the flow from seeking its “natural” exit condition.  

A key question here is whether steady-in-the-mean time periodic specification in Eq. (14) 

– corresponding to a system imposed mean exit condition superposed with time-periodic 

fluctuations can or can not lead to a quasi-steady solutions that are different in the mean 

than the mean features associated with steady or quasi-steady “natural” solutions under 

formulation [A]. 
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Initial Conditions 

 If t = 0 is chosen to be the time when saturated vapor first comes in contact and 

condenses on a dry sub-cooled (Tw (x) < Ts (p0)) bottom plate, the above described 

continuum equations do not apply at very early times (t ~ 0). This is because these 

equations do not model and incorporate various inter-molecular forces that are important 

in determining the time evolution of very thin (10 - 100 nm) condensate film thickness    

δ (x, t). Because of the above modeling limitations, the strategy here is to start at a time  

(t = 0) for which one has a sufficiently thick arbitrary guess of the steady solution of the 

continuum equations (where all the governing equations clearly apply) and then, from 

there, one can obtain the natural large time (t → ∞) steady/quasi-steady solutions with the 

help of the unsteady equations. That is, if φ(x,y,t) is any variable (such as uI, vI, πI, θI, 

etc.), the initial values of φ and film thickness δ(x,t) are such that: 

 

 )y,x()0,y,x( steadyφ=φ or φguess(x,y) 

and )x()0,x( steadyδ=δ  or  δguess(x)                                          (15)                

 

where φguess and δguess are reasonable but arbitrary initial guesses and  steadyφ  and steadyδ  are 

solutions of the governing equations obtained by dropping all time dependencies in 

equations (2) – (9) and solving the resulting steady equations.  
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2.2 External Condensing Flow of Vapor over a Horizontal Plate 

2.2.1 Mathematical Model for Computational Problem 

The governing equations in individual domains (Eq. (2)), interface conditions 

(Eqs. (3)-(9)), variables denotations, and initial conditions for this flow problem remain 

similar to that discussed for internal condensing flows discussed in section 2.1. The non-

dimensional forms of all the variables are also the same except for the fact that the far 

upstream speed of forced vapor (used as characteristic speed) and height of flow domain 

(used as characteristic length) used in non-dimensionalization in Eq. (1) are denoted as 

U∞ and Ye respectively (see Figure 3). From mathematical modeling perspective, the 

difference lies in the applied boundary conditions and this is discussed in this section.  As 

shown in Figure 3, instead of the original infinite domain ( x  ≥ 0 and y ≥ 0), considered 

for the Koh problem [10] computational solutions for this problem are to be 

computationally obtained over a finite domain ( 0  ≤ x ≤  Xe and 0 ≤ y ≤ Ye).  

For convenience, the characteristic length for this problem is chosen to be Ye, 

where Ye can be chosen to be a known numerical multiple of the well known physical 

value of steady film thickness for an altogether different problem – the one associated 

with a vertical inclination of the plate (gravity driven condensate) and for U∞ = 0 - viz. 

the Nusselt problem (see [20], [28]). That is, Ye ≡ c1·∆Ν(Xe), where c1 = 47 for most of 

the cases considered in this research and ∆Ν(Xe) is the Nusselt film thickness at x = Xe. 

An equivalent alternative is      Ye ≡ (c2·μ1)/(ρ1·hfg)0.5, where c2 = 1.133x105 for most of 

the cases considered in this research. These choices make Ye an a priori known number 

that is sufficiently large to capture all the relevant vapor flow domain of interest. Though 
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other choices of intrinsic characteristic length Ye are also possible (e.g. e 1 1Y /( .U )∞= µ ρ

or 3/ 4 1/ 4 1/ 2 3/ 4 1
e 1 1 p1 1Y k C− − −= µ ∆ ρT ), the earlier two choices suffice for this problem. 

Furthermore, as discussed in the later section, either of the two choices of Ye is a 

posteriori verified to be effective by showing that the numerically obtained values of the 

flows’ physical variables are independent of different choices of the number for Ye. The 

above choice of Ye for characteristic length and U∞ for characteristic speed are used for 

defining the non-dimensional variables in Eq. (1). As needed, these values can easily be 

related to the results obtained from other commonly used choices of characteristic length 

and speed. Let gy be gravitational acceleration acting along y axis (gravity along x 

direction is zero for this horizontal flow), p∞ be the pressure of the far field vapor at y  ≥  

Ye, ∆T ≡  Ts (p∞) - Tw(0) be the representative controlling temperature difference between 

the vapor and the bottom plate, and hfg be the heat of vaporization at saturation 

temperature Ts (p). 

 With t representing the physical time, a new list of fundamental non-dimensional 

variables is introduced through the following definitions which is similar to what is given 

in Eq. (1):    

 

 

   (16) 
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Boundary Conditions 

 Since the vapor flow is nearly uniform at locations at large y, appropriate 

boundary conditions are prescribed along lines OA (x = 0), AB (y = Ye or y = 1) and BC 

(x = Xe or x = xe = Xe/Ye) in Figure 3. Assuming onset of condensation at x = 0(i.e. Δ (0, 

t) = 0), the boundary conditions are:  

Inlet: At the inlet x = 0, we have: 

                                      u2(0, y, t) = U∞ , 0xv
0x2 =∂∂

=  on OA in Figure 3                  (17) 

Pressure is not prescribed across the inlet boundary but is prescribed to be the far 

field pressure p∞ at the top corner reference location (point A with x = 0 and y = OA in 

Figure 3) on the inlet boundary. Pressures within the entire domain, including the inlet 

values p2 (0, y, t), are calculated as part of the solution of the problem being considered. 

However, outside and above the control volume, one expects the far field pressures to be: 

p2 - p∞ ≡ (ρ2.U∞
2)· π2 (0, y, t) = 0 for y ≥ OA (see Figure 3) or  y ≥ 1. For temperature, one 

also iteratively imposes the condition T2(0, y, t) = Tsat (p2 (0, y, t)) - which is, in principle, 

a non-constant prescription of vapor temperature at the inlet.  

It should be noted that prescription of pressure at reference location (point A in 

Figure 3) does not make inlet boundary condition one of pressure-inlet. It remains a 

boundary where x-component of vapor velocity u2 is uniform but y-component of vapor 

velocity v2 is given the requisite freedom through the condition 0xv
0x2 =∂∂

=
. 

Top: On the top boundary, where y = OA (see Figure 3) or y = 1, the pressure is p∞ and 

shear stress is nearly zero. This leads to standard far field boundary modeling condition: 

                               π2(x,1,t) = 0 and ∂u2/∂y|(x,1,t) = 0 on AB in Figure 3             (18) 
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The temperature at the top boundary is also considered to be one of saturated 

vapor, i. e.  T2(x, Ye, t) = Tsat(p∞). Therefore, according to Eq. (1), θ2(x,1,t) = Tsat(p∞)/ΔT. 

If the temperature at the top boundary is allowed some superheat (5-10 oC), a non-zero 

thickness for temperature boundary layer develops near the interface. For saturated vapor 

flow conditions considered here, this thermal boundary layer thickness is not present. 

Even if the boundary layer has non-zero thickness because of presence of vapor 

superheat, a non-zero superheat has no impact on the reported results for most vapors 

(this well known fact has been computationally verified and the physical reasons are 

discussed later). 

Exit: 
As far as exit condition is concerned, none is needed for temperature. For the Koh 

problem [10], and the steady solution, the exit pressure remains externally unspecified 

and, as a result, it remains close to the far field pressure p∞ if the exit is sufficiently far 

from the inlet. This is not only the original assumption of Koh formulation [10] but is also 

the assumption for most parabolic external flow problems (such as single phase flow over 

a flat plate, etc.). For this modeling, either of the two formulations [A] or [B] below is 

used. 

[A] The pressure is prescribed to be the uniform steady pressure p∞ (i.e. non 

dimensional pressure π2 of zero) along some of the vapor phase at the exit section (along 

BD' in Figure 3) that is close to the top boundary. Thus the best way to faithfully 

reproduce the above assumption for pressure at the exit, is 

π2(xe,, y, t) ≈ 0 and 
e

2
(x ,y,t)

v | 0
x

∂
≅

∂
                          (19) 
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whenever xe and y are sufficiently large (i.e., y is on D΄B  in Figure 3) . For smaller y 

values (i.e., y on CD΄ in Figure 3 where the point D΄ at x = Xe can be taken to be any 

point that is sufficiently close to the interface), no boundary condition is prescribed 

except for the “outflow” boundary condition. The “outflow” condition is simply that the 

mass flow across CD΄ – which specifically includes the liquid portion 0 ≤ y ≤ ∆(Xe, t) – is 

such that it satisfies the overall mass balance for a control volume formed by the 

bounding surfaces x = 0, x = Xe, y = 0, and y = Ye.  

[B] The pressure is left unspecified along the entire (or most) vapor phase at the 

exit section (along BC in Figure 3). Because uniform pressure p∞ is already prescribed 

along the top (AB in Figure 3), only an “outflow” condition at the exit section is enforced 

to preserve an overall mass balance for the entire control volume (see OABC in Figure 

3).  This formulation is adequate as the resulting computational solution obtained under 

this formulation also satisfies the requisite π2(xe, y, t) ≈ 0 condition. The  steady or 

unsteady solution obtained under [B] is found to be nearly identical (within 

computational convergence bounds) to the solution under [A] above. So, from here and 

henceforth, unless otherwise stated, this exit formulation [B] is used to closely follow the 

original intent of the Koh formulation [10] – that is to assume that the uniform far field 

pressure (= p∞) condition holds for the exit section if it is sufficiently far from the inlet 

and, as a result, at these locations no significant adjustments in cross-sectional kinetic 

energy takes place. 

The exit condition related “elliptic sensitivity” discussed for internal condensing 

flows is not investigated here as meaningful physical ways to impose steady-in-the-mean 
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but periodic exit pressure or exit liquid flow rate are possible but make problem 

significantly different than the one of Cess [9] and Koh [10]. 

Condensing Surface: 

At the condensing surface (y = 0), we have: 

                    u1(x,0,t) = v1(x,0,t) = 0 and θ1(x,0,t) = θw ≡ Tw/ΔT.                                   (20) 

An inspection of all the non-dimensional governing equations, interface 

conditions, and boundary conditions reveals the fact that the computational solutions are 

affected by the following set of seven independent non-dimensional parameters:  

                                  We},,Pr,
μ
μ

,
ρ
ρ

,FrJa,,{Re 1
1

2

1

21-
y1                                      (21) 

where Fr-1
y = U∞

2/gyYe and Re1 ≡ ρ1U∞Ye/µ1. For the downstream distances considered in 

this research, the role of Fr-1
y is insignificant. The role of surface tension, through We, is 

also found to be insignificant for cases considered here. 

2.2.2 Koh’s Formulation for a Similarity Solution of the Steady Problem 

The formulation for this problem (see Cess [9] or Koh [10]) is posed by governing 

equations (A.16) – (A. 19) in the Appendix A.4 being replaced by Eq. (A.20) of the 

Appendix A.4 along with the interface and boundary conditions given earlier being 

replaced by (A.21)-(A.25) of the Appendix A.4. The “similarity” formulation is sought 

after rewriting (A.20)-(A.25) following an introduction of certain assumed forms of 

velocity and temperature functions in terms of two new similarity variables (η for the 

liquid phase and ξ for the vapor phase) that replace x and y. These “new” similarity 

variables are defined as   
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1

U( , ) ∞η ≡
ν

x y y
x

  ,     
2

U( , ) ( ( )) ∞ξ ≡ − ∆
ν

x y y x
x

.                             (22) 

The physical variables of velocity and temperature are sought as functions (viz. f1, f2, g1, 

and g2) of the variables introduced above. The defining relations for these physical 

variables (see Koh [10]) are: 

pI(x,y) = p∞ = constant   (I = 1 or 2), 1
Koh( ) ( )

Uδ
∞

ν
∆ ≡ ∆ ≡ η

x
x x

)(U)( '
11 η≡ ∞ fyx,u               (23) 

)(U)( '
22 ξ≡ ∞ fyx,u , 1 1( ) . ( ),w− ≡ ∆ ηT x  , y T T g )(.),( 22 ξ∆≡− gTTyxT w

                        (24) 

Eqs. (22) - (24) transform the governing equations (A.20) and interface/boundary 

conditions (A.21)-(A.25) given in the Appendix A.4 for the Koh formulation [10], to a set 

of ordinary differential equations (ODE) over the liquid ( 0  ≤ η ≤  ηδ) and vapor (0 ≤ ξ < 

∞) domains with proper boundary conditions at η = 0, η = ηδ, ξ = 0, and ξ  →  ∞. This 

ODE formulation – unlike the formulation in section 2.2.1 – is always such that a unique 

steady solution exists and can be numerically obtained by a suitable method (e.g. fourth 

order Runge-Kutta method combined with a shooting technique that can satisfy all the 

boundary conditions). Thus, the steady Koh formulation (which is always well-posed and 

solvable for plates of large finite length) cannot, by itself, assess attainability issues for 

these solutions. The solution obtained by Koh’s method, based on the results presented 

here, are found to represent a meaningful approximate solution, when a solution exists, 

either as a steady solution of the steady version of the formulation in section 2.2.1 or as 

the long term steady limit of the unsteady formulation. 
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Chapter 3 COMPUTATIONAL METHODOLOGY 

3.1 Internal Condensing Flows in Channels and Tubes 

In its broad outline, the computational methodology for the channel and in-tube 

cases is similar to the methodology described in Narain et al. [2], Liang et al. [3] and 

Phan et al. [4] for the channel case. But there have been significant 

changes/improvements in the flow algorithms and codes for channel cases to establish: (i) 

unique “steady” solutions of steady governing equations for internal condensing flows in 

gravity and shear driven environments for unspecified exit cases (formulation [A] in 

section 2.1), (ii) existence of multiple “quasi-steady” solutions for unsteady governing 

equations under elliptically specified quasi-steady exit conditions for shear driven 

internal condensing flows (formulation [B] in section 2.1), (iii) “quasi-steady” solutions 

pertaining to “quasi-steady parabolic” boundary conditions for shear and gravity driven 

situations, and (iv)modifications to steady solutions under modeling changes that account 

for some micro-scale effects (see later section).  

In addition, for in-tube cases, this research work includes modifying/running the 

codes developed in [34] to obtain steady/unsteady solutions for unspecified exit 

conditions (formulation [A]) for fully condensing flows and partially condensing flows to 

compare with the experiments. Whether it is an unspecified or a specified exit condition 

case, the computational algorithm broadly consists of the steps described in the Appendix 

A.2. 
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 3.2 External Condensing Flow of Vapor Condensing over a Flat Plate 

Even though the computational approach and methodology adopted here remains 

the same as for internal condensing flows, unlike the internal flows discussed in [2] and 

[7], the imposition of the top and exit boundaries for this external flow is different from 

the internal flow situations but is the same as the one given by us in Phan and Narain [20] 

for the external flow Nusselt problem [28]. The difference is primarily another use of the 

earlier established ([2]) τ-p method towards prescribing stress boundary-conditions – i.e., 

pressure (with τ = normal derivative of the tangential velocity component = 0) on the top 

(AB in Figure 3) and side (BD' in Figure 3) boundaries. The τ-p method was originally 

developed (see [2]) for prescribing τ (tangential velocity gradient in the normal direction) 

and p (pressure) at the interface. 

In general for any computational problem (internal or external condensation), the 

solution must show convergence in the interior of each phase, grid independence, and 

satisfaction of interface and boundary conditions. The converged solutions reported here 

exhibited all these features and are good (i.e. they are within 5% of each other). On any 

interface with propagating waves, the critical and difficult to satisfy requirement is Eq. 

(7) – the requirement of the equality of three differently computed/obtained values of 

interfacial mass flux (this is known to be difficult for the more general interface capturing 

techniques such as level-set [13] or VOF [14]). However, this requirement is met by the 

interface tracking approach employed in this research. The spatial and temporal grid 

spacings and total lengths impose a restriction on wavelength λ and frequency f that can 

be adequately resolved. If the maximum spacing of the grid in x direction is ∆xm and its 
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total length is xe while the total time duration is te and is divided in equal intervals of 

duration ∆t; the restrictions imposed by Nyquist criteria [19] are well satisfied for 

λ ≥ 4· ∆xm and  f ≤ (4·∆t)-1 and the restrictions imposed by the domain lengths are well 

satisfied for λ  ≤  xe/2 and f ≥ 2/te. The initial (t = 0) spatial and temporal grids are 

defined by (ni × nj × nt), where “ni” is the total number of initial grid points along x, “nj” 

is the total number of initial grid points along y (0 to 1), and nt is number of time steps 

with equal intervals (∆t). Typical values of ni were 30-40, nj were within 50-70, x values 

were within 0-50 and y values were within 0-1. Attainable values of nt depend on ni, nj, 

∆t, interfacial variables, numerical methodology, and the available computer memory for 

the storage of flow variables. A new way to march for any number of time steps nt (as 

long as the solution was obtainable) was formulated by periodically deleting and 

replacing the values stored in the storage variable arrays of size nt.  
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Chapter 4 COMPUTATIONAL RESULTS AND COMPARISONS 

WITH EXPERIMENTS FOR INTERNAL CONDENSING FLOWS1

4.1. Existence of “Natural” Steady Solutions for Gravity and Shear 

Driven Flows  

 

   2-D computational results correct the previous results [2]-[6] and establish that, 

for a parabolic problem (given values of vapor inlet mass flow rate, inlet pressure, vapor-

to-wall temperature difference), steady equations of internal condensing flows have a 

unique annular steady solution and the solution does not need exit-condition prescription.  

Because of the nature of the equations there are other “almost” steady solutions which, 

because of the inaccuracies in the previously reported solutions ([2]-[6]), led us to believe  

                                                 
1 Some of the results described in this section have been published in 

(A) Narain, A., S. Kulkarni, S. Mitra, J. H. Kurita, M. Kivisalu, 2009, “Computational and Ground 

Based Experimental Investigations of the Effects of Specified and Unspecified (Free) Pressure 

Conditions at Condenser Exit for Condensing Flows in Terrestrial and Micro-Gravity 

Environments,” Annals of New York Academy of Sciences , Interdisciplinary Transport 

Phenomena in Space Sciences, Vol. 1161, pp. 321-360. Please see Appendix A.5 for the 

copyright permission to reproduce these results in this thesis. 

(B) Narain, A., J. H. Kurita, M. Kivisalu, S. D. Kulkarni, A. Siemionko, T. W. Ng, N. Kim, and L. 

Phan, 2007, “Internal Condensing Flows Inside a Vertical Pipe – Experimental/Computational 

Investigations of the Effects of Specified and Unspecified (Free) Conditions at Exit,” ASME 

Journal of Heat Transfer, pp. 1352-1372. Please see Appendix A.6 for the copyright permission 

to reproduce these results in this thesis. 
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that these were multiple steady solutions for multiple exit conditions (as if the problem 

were fully “elliptic”). 

This solution is termed “natural” solution and can be obtained as steady solution of 

the steady governing equations or a long-term steady solution of the unsteady governing 

equations under formulation [A] discussed in section 2.1. The exit pressure (equivalently 

exit vapor quality for partially condensing flows and length of full condensation for fully 

condensation) found as part of the solution is termed “natural” exit condition. 

 

 
Figure 6: Existence of "natural" steady solution for gravity driven condensing flows 

The figure compares steady/quasi-steady solutions for a vertical channel obtained by 2-D 
and 1-D techniques. The solutions are obtained for R-113 vapor with inlet speed of U = 
0.41 m/s, ΔT = 5 °C, h = 0.004 m, and gx = 9.8 m/s2. 
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Figure 7: Existence of "natural" steady solution for shear driven condensing flows 

The figure compares steady/quasi-steady solutions for a channel under 0g conditions. The 
results are obtained by 2-D and 1-D techniques. The solutions are obtained for R-113 
vapor with inlet speed of U = 0.6 m/s, ΔT = 5 °C, and h = 0.004 m. 

 

 

This result has been independently obtained by a newly developed 1-D technique 

[1]. Figure 6 (for gravity driven flows) and Figure 7 (for shear driven flows) compare 

unique steady solutions of the strictly steady governing equations obtained by 1-D and 2-

D techniques for a partially condensing flow inside a channel. It is found that both results 

are in very good agreement with each other.  
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       Figure 8: Existence of an "attractor" for gravity driven condensing flows 

This figure for a condensing flow in vertical channel shows that any initial guess (Curve 
C-3) at time t = 0, gets attracted towards long-term “natural” quasi-steady solution (Curve 
C-2) in time which is same as the solution (Curve C-1) obtained by solving steady 
governing equations. These solutions are obtained for R-113 vapor with inlet speed of U 
= 0.41 m/s, ΔT = 5 °C, h = 0.004 m, and gx = 9.8 m/s2. 
 

Figures 8-9 show that this “natural” steady solution can also be obtained as long-

term steady solution of unsteady equation under formulation [A] of section 2.1. This 

solution is also called an “attractor” as any initial guess, as shown in Figures 8-9 for 

gravity and shear driven cases respectively, gets attracted towards this “attracting” steady 

solution as time t  ∞.   
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Figure 9: Existence of an "attractor" for shear driven condensing flows 

This figure for a condensing flow in a horizontal channel shows that any initial guess (red 
curve) at time t = 0, gets attracted towards long-term “natural” quasi-steady solution (blue 
curve) in time. These solutions are obtained for R-113 vapor with inlet speed of U = 0.41 
m/s, ΔT = 5 °C, h = 0.004 m, and gx = gy = 0  m/s2. 
 

4.2 Synthesis of Simulations and Experiments for Gravity Driven In-

tube Condensing Flows. 

4.2.1 Partially Condensing Flows in a Vertical Tube 

Gravity driven internal condensing flows were thoroughly studied by synthesizing 

computational results of this thesis work with the experimental work of Jorge Kurita  (see 
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[11]). Experiments were carried by employing 0.8 m long, vertical, stainless steel (316 

SS) tube with 6.6 mm inner diameter, D, and 12.7 mm outer diameter. The experiments 

involved a single pure working fluid (viz. FC-72 by 3M Corp.) and focused on inlet mass 

flow rates that correspond to inlet vapor Reynolds numbers in the range of 10,000 - 

40,000 and vapor to wall temperature differences of 3 - 60oC (i.e. 0 ≤  Ja ≤ 0.4).  The 

experimental procedures to obtain “natural” (unspecified exit condition) cases for partial 

and full condensation have been discussed in detail in [5] and [11].  

The experimentally obtained partial condensation cases in unspecified exit 

(“natural” solutions) are listed in Table 1 with all the essential details including exit vapor 

quality Ze (fourth column) and its value obtained from simulations (fifth column). It can 

be seen that there is very good agreement between exit vapor quality (thus film thickness 

and average heat transfer coefficient values) predicted by simulations and experiments. 

The test matrix for all partial condensation cases is limited by the system limits 

and flow regime boundaries indicated on the plane marked by inlet mass flow rate inM
⋅

and temperature difference T∆  values. 

Figure 10 shows all the partial condensation cases plotted on the two dimensional 

plane formed by inM
⋅

 and T∆ . These parameters were found to be the key variables 

controlling the dynamics of the condensing flows in the test section. The typical values 

for lower and upper limits for inlet mass flow rate were found to be 1 g/s and 2 g/s 

respectively and that for the T∆  were recorded to be 2° C and 12 ° C respectively. The 

interior shaded zone in Figure 10 represents inM and T∆  values for which “natural” quasi-

steady partially condensing annular flows were attained. For most of the cases (except for 
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non-annular flows) in this shaded zone, simulations were run to obtain local variation of 

film thickness, velocities, heat transfer, pressure values, etc. The bounding curves B and 

C are experimental in nature and represent flow boundaries for the test-section. They are 

discussed in [5]. The dotted curve-A on the left bottom has been experimentally noticed. 

It does not represent a flow regime boundary for the test-section, as it is a result of the 

exit pressure oscillations or unsteadiness in test section imposed by oscillatory or other 

plug/slug instabilities occurring elsewhere in the system (in this case, in the auxiliary 

condenser downstream of the test section). 

 

 

Figure 10: Two-dimensional test data matrix for “natural” partial condensation 

cases’ points and different bounding curves represented on inM - T∆  -  plane 
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Its possible cause can be explained by “ellipticity” sensitivity results (that may 

apply to auxiliary condenser) discussed in the next section for shear driven condensing 

flows. The bounding curve in the upper left corner of Figure 10 is marked as curve-D. 

This curve represents transition from partial condensation to full condensation. If  inM  is 

reduced and T∆ is increased further, computations show that the left side of curve-D 

represent the zone for which the entire vapor coming in condenses inside the test section  

The values of pressure drop Δp (pin-pexit) obtained from simulations for all the 

“natural” partial cases were negative and below 50 Pa indicating pexit was greater than pin 

for all the condensation cases in given inM  range. This is confirmed by the experimental 

values of Δp (see Table 1) which are also all negative (except a very few cases). 

However, as expected, the magnitudes for experimental values of Δp were found to be 

greater than those from simulations. The reason behind this is that the simulations assume 

laminar vapor/laminar liquid flows with smooth interface while, in reality, the interface is 

wavy and vapor Reynolds numbers are in the higher range (20000-30000) and this makes 

vapor flows significantly turbulent in the core. The turbulence in vapor core does not 

affect the mass transfer across the interface by much because condensate motion is 

laminar and gravity dominated. However, turbulent vapor core significantly increases ∆p 

values in the vapor domain. Because of this, the values of vapor quality obtained from the 

simulation are in good agreement with the experiments but the values of pressure drop ∆p 

obtained from experiments are higher in magnitudes. The predicted pressure drop ∆p 

values can be made comparable to experimental values if suitable corrections for vapor 

turbulence are made. 
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4.2.2 Complete or Full Condensation Flows in a Vertical Tube  

The test matrix for the “natural” steady/quasi-steady full condensation cases 

accommodates a range of vapor mass flow rates and temperature difference T∆  values 

that are shown in Figure 11.  The shaded region in Figure 11 contains most of the 

experimentally (as well as computationally) obtained data points for steady full 

condensation cases.  These full condensation cases lie in a zone bounded by semi-

schematic curves X, and Y as shown in Figure 11.  

 
Table 1: Experimentally measured data and some key calculated and computed 

variables for steady states achieved for unspecified exit condition partial 

condensation flows 

• *The error values for this case were greater than the representative error values shown in the 
column headers due to small T∆  and high relative error associated with its measurement. 

• NA: The data was not available due to some equipment problem 
 
 
  
  
 
 
 
 
 
 
 
 
 
 

 

Run 
No. 

inM  VM  
 

Ze 

exp 

 
Ze 

comp 
wT
 

Tsat T∆
  Δp Re Ja Pr1 outQ   q ′′  

h  

(g/s) (g/s)   (K) (K) (K) (kPa)    (J/s) (W/m2) (W/m2K) 

±0.05 ±0.04 ±0.04 
 

±1 ±0.15 ±1 ±0.05 ±900 ±0.02 ±0.02 ±5 ±800 ±80 

1 1.44 0.48 0.33 0.33 320 331.49 11 -0.82 23900 0.14 9.61 81 5200 453 

2 1.76 1.08 0.62 0.57 317 325.23 8 -0.36 29700 0.10 10.11 58 3700 450 

3 1.54 0.69 0.44 0.36 323 335.55 12 -0.19 25300 0.15 9.21 71 4500 387 

4 1.29 0.49 0.38 0.38 320 329.64 10 -2.09 21500 0.11 9.69 68 4300 476 

5 1.70 0.83 0.51 0.52 324 332.55 9 -0.93 28100 0.11 9.37 70 4400 508 

6 1.17 0.47 0.40 0.39 320 332.64 13 -0.12 19325 0.16 9.55 59 3700 298 

7 1.31 0.49 0.37 0.37 321 330.85 10 -2.06 21700 0.12 9.58 69 4400 462 

8* 1.93 1.39 0.72 0.72 322 325.55 4 0.01 32500 0.05 9.85 47 3000 742 

9 1.59 1.11 0.69 0.63 328 334.25 6 NA 26200 0.08 9.07 40 2500 418 

10 2.12 1.37 0.64 0.64 320 327.85 8 -0.10 35500 0.10 9.83 64 4100 503 

11 1.30 0.45 0.35 0.38 321 329.29 8 -1.62 21700 0.10 9.70 72 4600 537 
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Figure 11: Two-dimensional test data matrix for full condensation cases’ points with 

unspecified exit condition (“natural” flows) represented on inM - T∆  -  plane 

The curve Y (with two computationally obtained points) in Figure 11 

schematically depicts the right upper bound on the test matrix. For cases to the right hand 

side of this curve, the “natural” point of full condensation is outside the test-section (in 

other words, flow is expected to become partially condensing). Curve X (with two 

experimentally obtained points), on the left hand side in Figure 11, represents the lower 

left bound on the test matrix. As mass flow rate decreases below the value given by this 

curve, there is an experimentally observed instability in the flow, which, in all likelihood 

(flow visualization pictures are difficult to produce), marks the transition from quasi-

steady annular to a plug/slug (see Carey [36]) regime.  
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The simulations for most of the “natural” (unspecified exit condition) full 

condensation cases confirm the fact that the point of full condensation lies within the test 

section and almost all the cases lie in the region bounded by the curves X and Y shown in 

Figure 11. The simulations were performed only approximately up to xfc (distance to the 

point of full condensation) and they predict that the length xfc for full condensation 

decreases as the mass flow decreases or value of  T∆  increases.  

 

 

 
   

Figure 12: Film thickness and vapor velocity profiles for a representative fully 

condensing flow in a tube 

This figure shows computational results for steady/quasi-steady “natural” fully 
condensing 1g flow in a cylinder for FC-72 with inlet vapor speed 1 m/s, and T∆  
(difference between the vapor saturation temperature at the inlet and average wall 
temperature) of 26 ºC. It shows the quasi-steady film thickness profile and steady vapor 
velocity profiles at two different cross sections.  
 
 



62 
 

 

 
                     

Figure 13: Vapor mass fraction profile for a representative fully condensing flow 

inside a tube 

For the same case as in Figure 12, this figure shows the vapor mass fraction Z (x) versus 
x values.  
 
 

As an example, Figures 12-14 show computational results for a “natural” full 

condensation in-tube case for which xfc ≈ 90. These results are obtained as long term (t  

∞) solutions of unsteady problem with exit condition formulation [A] in section 2.1. The 

steady/quasi-steady vapor velocity at the centerline becomes negative near the point of 

full condensation for steady solution, indicating the intrinsic possibility (i.e. if the 
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interfacial configuration was stable) of the presence of re-circulating vortices responsible 

for the flow reversal. The interface shown in Figures 12-14 is quasi-steady in nature i.e. 

as t  ∞, it remains steady-in-the-mean but exhibits waves around the mean value. The 

flow typically does this after certain x location up to which it is in the smooth annular 

regime and after this location it shifts in to the wavy annular regime.  

 

        

Figure 14: Temperature and liquid velocity profiles for a representative fully 

condensing flow inside a tube 

For the same case as in Figure 12, Figure 14 shows the “quasi-steady” graphs of non-
dimensional film thickness δ, non-dimensional temperature (θ) profile and non-
dimensional u-velocity profile at certain x locations. 
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This waviness in the interface is due to the amplification of very small initial 

disturbances or small computational disturbances. These amplifications appear on the 

interface only after certain downstream distance x*.  For example for the case in Figures 

12-14, the intrinsic waviness and associated instability occur over 24 < x < 90 (Reδ > 

100). The quantitative study of flows’ response to the superimposed initial disturbances 

in gravity driven situation has been done in detail for the external condensing flow 

(Nusselt case) in [20]. For the gravity driven in-tube flows being discussed here, this 

waviness associated instability was observed for all the simulations for the different flow 

cases marked in Figures 10-11. Figure 15 re-plots all the points of Figure 10-11 that 

include different partial condensation and full condensation “natural” (unspecified exit 

condition) cases. In Figure 15, for each computationally-run “natural” case, a number is 

marked followed by (in case of full condensation) the non-dimensional length of full 

condensation xfc.  This number indicates the ratio of downstream distance x* at which 

waviness starts appearing on the interface in long term unsteady solutions to the total 

length of the test-section used in experiments (0.7 m). It is conjectured that in 

experiments, a quasi-steady flow with approximately same xFC will actually be realized 

for full condensation – however, the annular flow regime over part of x* < x < xFC will 

most likely be more wavy (higher amplitude) liquid condensate flow. Since this work, an 

actual correlation for xFC has been obtained and reported in [1]. 

The waviness inducing instability (growth of initial disturbance as opposed to 

response to ubiquitous noise) in these cases was primarily due to condensate speeding up 

in the presence of gravity and this kind of instability was not found to exist for shear 
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driven flows. The detailed analysis of stability of these gravity driven flows for classical 

problem of Nusselt [28] has been accomplished in [20] and was not considered during 

this research. 

The above discussed synthesis (Figure 10-11) of “natural” gravity driven partially 

and fully condensing flow experiments with simulation was a preliminary work and more 

extensive synthesis of experimental and computations has since been developed in  [11].  

 

Figure 15: Test matrix plot showing quasi-steady features of fully condensing flows 

inside a tube 

This test matrix re-plots all the “natural” partial and full condensation cases of 
experiments marked in Figures 10-11 and marks, for computationally run cases, the ratio 
x*/L followed by (for fully condensing flows)the non-dimensional length of full 
condensation. The non-dimensional length x* denotes the downstream distance after 
which interface was computationally found to become wavy in presence of 
computationally generated disturbances.     
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4.3 Differences between Gravity Driven and Shear Driven Internal 

Condensing Flows 

Even though “natural” attracting steady/quasi-steady solutions exist for 

unspecified exit condition (formulation [A] of 2.1) in both gravity driven and shear 

driven internal condensing flow cases, there are basic and important differences between 

these attractors. In general (see Figures 11a-11b of [7]), for all else remaining the same, 

shear driven flows have much thicker condensate and, hence, much lower heat transfer 

rates (which is typically inversely proportional to film thickness). The velocity profile for 

gravity driven flow is parabolic with nearly zero slope at the interface (the condensate 

does not need shear for its motion) while the one for the shear driven flow is linear 

(which provides adequate shear for condensate motion). For a method of cooling that 

results in only moderate imposition of wall heat-flux, the pressure variations for gravity 

driven flows often amount to a pressure rise (see Figure 11b of [7]) where as a small 

pressure drop is associated with shear driven 0g flows (also see Figure 11b of [7]).  

Besides the “steady” features of the “steady” solutions, there are differences in 

unsteady characters of gravity and shear driven condensing flows.   

Because of the logarithmic nature of the time scale, Figure 16  shows that steady 

solutions are much more quickly attained for gravity driven condensing flows as opposed 

to shear driven condensing flows - if the initial guess is away from the steady solution by 

the same margin. For example, to achieve steady/quasi-steady attracting solutions at a 

particular downstream location for the flow conditions in Figure 8 (gravity driven) -9 

(shear driven) from initial guesses equally apart from the final attracting solution, Figure 
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16 shows the time required in both the cases. Figure 16 plots  ∂∆/∂t (rate of change of 

film thickness) values on time log plot at non-dimensional x = 10. It can be seen that: (i) 

in gravity driven case solution is attained much quicker than the shear driven case (t*gravity 

<< t*shear), (ii) initial values of rate of change of film thickness are much higher for 

gravity driven case, (iii) initially rate of change of film thickness increases for gravity 

driven case while it is somewhat constant for shear driven case, and (iv) values of final 

decelerations (slope of ∂ ∆/∂t versus t curves) to the steady solution are higher in case of 

gravity driven flows.    

Additionally, the solution for gravity driven case can be seen to be wavy and 

quasi-steady (as ∂ ∆/∂t oscillates about mean zero value after reaching zero value) while 

for shear driven case, the final attracting solution is smooth and steady (as ∂∆/∂t goes 

smoothly to zero value). It was further noticed during the investigations of shear driven 

external condensing flows that these attractors have strengths which are functions of 

distance and vapor speed. The strengths of attractors have been defined ([8]) and 

quantified for this external condensing flow problem and these computational results are 

discussed in the next section. Even though detailed analysis of attraction rates and 

stability theory for internal condensing flows (as it is done for external condensing flows 

in the next section) is not part of this research thesis, the basic approach given in [8] and 

section 5 can be applied for detailed characterization of the internal flow behavior in 

Figure 16. 
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Figure 16: Comparison of attraction rates for gravity and shear driven internal 

condensing flows 

This figure plots and compares ∂∆/∂t values indicating “attraction rates” (see definition in 
[8]) versus times for shear and gravity internal condensing flows. The figure also 
compares the times (t*gravity and t*shear) required, at a particular downstream location 
(x = 10), for a typical gravity driven internal condensing flow and a typical shear driven 
(0g) internal condensing flow solution to reach the respective quasi-steady “natural” 
attractors from arbitrary initial guesses which are 10 % away from the respective 
attracting “natural” solutions. The propensity towards the oscillating wavy behavior 
associated with positive and negative values of   ∂∆/∂t is clearly present for 1g flows at 
longer times. The flow is clearly monotonic for shear driven 0g flows. 
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4.4 Nature of Governing Equations for Internal Condensing Flows 

 Considering relatively much weaker attractions associated with steady shear 

driven internal condensing flows, one can conjecture the possibility of controlling and 

stabilizing internal shear driven condensing flow by controlling both its inlet and the exit 

pressures. In other words, one can ask what if, for given inlet mass flow rate inM , inlet 

pressure pin, and a given cooling approach of known condensing surface temperatures; 

the exit liquid mass flow rate (and thus exit pressure) could be varied/controlled such that 

the mean splitting of the inlet mass flow rate inM in to exit vapor mass flow rate and exit 

liquid mass flow rate is not “natural”? In the above question, “natural” splitting of inlet 

mass flow rate is defined by “natural” steady solution obtained for unspecified exit 

condition (formulation [A] given in section 2.1).    

 

From the steady simulations for shear driven flows, it is clear that flow can not 

respond to any “non-natural” exit condition specification as there exists only one unique 

annular/stratified steady solution for the steady governing equations. This is only half of 

the requirement of parabolic behavior. The answer to the above question was then 

obtained by obtaining unsteady solutions for the shear driven internal condensing flow 

under a completely new algorithm (developed to implement exit condition formulation 

[B] given in section 2.1) under various unsteady impositions of “non-natural” exit 

conditions. This should normally be impossible for any “fully” parabolic problem but it is 

possible for elliptic unsteady equations. We term this mixed behavior parabolic (for 

steady equations) with elliptic sensitivity (arising from unsteady equations). 
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Figure 17: A representative 3D plot showing computationally obtained boundaries 

that mark transitions between gravity and shear dominated regimes for internal 

condensing flows 

The figure shows the computationally obtained boundaries in {x, Rein, Gp} space that 
mark various transitions from gravity dominated regime to shear dominated regime for a 
flow of FC-72 vapor with Ja1/Pr1 = 0.004, ρ2/ρ1 = 0.0148 and µ2/ µ1 = 0.0241. The nature 
of steady governing equations is parabolic over the entire parameter space while the 
nature of unsteady equations changes from “parabolic” to “elliptic” as one moves from 
gravity driven to shear driven flow regime. 
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Figure 18: Computational example of exit condition control through unsteady 

control of exit liquid mass flow rate for a shear driven internal condensing flow. 

 
It has been found during this research that the unsteady governing equations for 

annular/stratified flows allow “elliptic” impositions in the shear driven zone while they 

only allow “parabolic” boundary condition impositions for the gravity dominated zone. In 

a shear dominated zone, unsteady equations can be solved using parabolic boundary 

conditions and , also,  they allow elliptic prescription of exit condition.The zones shown 

in Figure 17 have been  identified using 1-D tool in the work of Mitra et al. [1] based on 

the differences between gravity and shear driven flows. The 1-D tool has yielded such 

zones (see Figure 17) which demarcate gravity driven, shear driven, and transitional 
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annular stratified flows in a 3-D parameter space defined by {x, Rein, Gp}. Here x  ≡ x /Lc, 

Rein ≡ ρ2UDh/μ2, and Gp ≡ ρ2
2gxDh

3/μ2
2

. 

The zones in Figure 17 have been discussed in detail in [1]. Figure 17 states that 

the nature of unsteady governing equation changes from being “elliptic” to purely 

“parabolic” as one moves in the parameter zone from a shear driven flow to a gravity 

dominated flow. This fact is established in this thesis. Figure 18 shows an example of 

ellipticity related to unsteady equations of shear driven condensing flows by showing an 

unsteady (time varying) exit condition prescription realized through controlling exit 

liquid mass flow rates.  

 
 
 
 

Figure 19: Film thickness response to the unsteady exit liquid mass flow rate 

prescription of Figure 18. 
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It can be seen from Figure 18 that exit condition (exit liquid mass flow rate) can 

be controlled in unsteady fashion by following one of the many possible different curves 

of exit liquid mass liquid mass flow rates with respect to time. 

The multiplicity of such curves indicates “ellipticity” in unsteady equations of 

shear driven condensing flows. The response of the flow to the prescription in Figure 18 

is shown in Figure 19. The question arises what happens if the control curve steadies up 

at a certain particular value at or way from the “natural” value of exit liquid mass flow 

rate? This answer to this question is discussed in detail in the next section. Here, Figures 

18-19 are shown just to exemplify unsteady ellipticity of shear driven condensing flows. 

This nuance in understanding the character of the internal condensing flow equations is 

new for condensing flows but is not new in fluid dynamics. For example, the gas 

dynamics Tricomi equation (see chapter 26 of [37]) undergoes a change in character from 

“elliptic” to “hyperbolic” as one moves in the parameter space of Mach number (Ma) 

from the sub-sonic regime (Ma < 1) to the super-sonic regime (Ma > 1). 

 

4.5 Parabolicity and Ellipticity Issues for Shear Driven Internal 

Condensing Flows  

4.5.1 Definitions of Strict Parabolicity and Strict Ellipticity 

Computational result discussed in Figures 6-7 shows that steady shear driven and 

gravity driven internal condensing flows exhibit the first of the two mentioned features of 

a strictly parabolic flow (i.e. parabolic boundary conditions suffice to determine the 
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steady solution) and computational results in the next section (or in [7]) show that 

unsteady shear driven internal condensing flows also exhibit the second of the two above 

mentioned features of the strictly elliptic flows (i.e. the solution in the interior changes 

when unsteady elliptic boundary conditions are imposed). This means that shear driven 

flows are neither strictly “parabolic” nor strictly “elliptic” but behave more like 

“parabolic” flows with “elliptic-sensitivity” to actively imposed quasi-steady pressures at 

the inlet and the outlet. While the computational results presented in this thesis so far are 

for fixed condensing-surface temperature condition, the nature of governing equations for 

shear driven internal condensing flows should be looked at from a generalized 

perspective in which wall’s thermal conditions are determined by any fixed cooling 

approach (temperature, heat flux, or convection boundary condition for the condensing 

surface through a conjugate problem). Depending on the cooling approach, either the 

temperature of the condensing surface remains fixed between one steady state to another 

(as in the theory), or all or part of the temperatures of the condensing surface may vary 

between one steady state to another while a thermal boundary condition is being satisfied 

for a conjugate problem.  

4.5.2 Parabolicity of Shear Driven Internal Condensing Flows 

 As discussed earlier, the strictly steady shear driven flows exhibit one of the 

features of a parabolic flow – e.g., if inlet (pressure and mass flow rate) and condensing-

surface cooling conditions (known steady temperature of condensing surface) are 

prescribed in a steady fashion in a noise free environment, a unique (termed “natural”) 

steady noise-free flow and unique steady noise-free exit pressure is achieved. This has 
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been experimentally and computationally established for shear driven internal condensing 

flows ([7], [11]). 

4.5.3 Quasi-steady Parabolic Nature of Shear Driven Internal Condensing Flows 

 The “quasi-steady parabolicity” result (obtained from experiments/computations) 

says that when fluctuations are added on the prescribed conditions of the strictly steady 

parabolic problem, fluctuations appear within the flow as well as in the unspecified 

variables at the boundary (including thermal boundary). In presence of these fluctuations, 

the flow exhibits “quasi-steady parabolicity.” The effects of fluctuations on “quasi-steady 

parabolic” flows are found to be unique in two ways: (i) they are important even for these 

laminar/laminar flows with wavy interface, and (ii) their effects depend on the cooling 

approach. For fixed condensing surface temperature cooling, the mean flow variables in 

the interior and the boundary are not significantly affected, as the increased interfacial 

waves are not able to significantly enhance heat transfer rates. For the cooling approach 

that allows variation in most of the local condensing surface temperatures, the mean flow 

variables in the interior and at the exit change to significantly enhance heat transfer rates.  

This ‘quasi-steady parabolicity” result says that there are a continuum of quasi-steady 

pressures (inlet or outlet) and condensing surface temperatures that results from solutions 

for a “continuum” of fluctuation levels. The result of quasi-steady parabolicity has been 

experimentally found ([7], [11]) and some preliminary computational results about this 

quasi-steady parabolicity are given in this thesis. It has been experimentally found in [7]  

that the long term impact of this quasi-steady parabolic behavior under variable 

condensing-surface temperature cooling is quite significant for the condenser (> 20 – 30 
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% heat transfer enhancement). Detailed computational work on “quasi-steady 

parabolicity” is part of future work of this research. 

4.5.4 Elliptic Sensitivity or Ellipticity of Unsteady Equations of Shear Driven 

Internal Condensing Flows 

 In addition to the above described quasi-steady parabolic feature, shear driven 

flows exhibit a special additional feature of “elliptic-sensitivity” that says that the 

unspecified pressure boundary condition for the parabolic problem can also be 

additionally specified or forced by an energy source in the presence of suitable time-

periodic fluctuations. This is possible because the as mentioned in section 4.4, unsteady 

equations for shear driven flows allow “elliptic” boundary condition. This results in 

changes in heat transfer inside condenser, changes in flow regimes, and mean flow 

variables for shear driven internal condensing flows. This is different from strict 

“ellipticity” where no forcing (against an initially elastic response) would be necessary. 

This additional pressure boundary condition imposition can be at the exit or the inlet 

depending on what parabolic conditions are being specified. The result on “elliptic 

sensitivity” also depends on the method of cooling and computations in this research 

thesis show the “elliptic sensitivity” results when the thermal boundary at the condensing 

surface holds the temperature fixed. However, the experiments reported here show that 

this “elliptic sensitivity” can also manifest even if the temperature of the condensing 

surface is allowed to change through a conjugate problem. In such case, imposition of 

“elliptic” boundary brings in thermal transients in the condensing surface.  This thesis 

work involves investigating elliptic sensitivity issues for shear driven internal condensing 
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flows by looking at the impacts of different exit condition controls and these results are 

discussed in the next section. These results are also reported in [7]. 

 

4.6 Computational Results for Internal Condensing Shear Driven 

Flows for Different Exit Condition Specifications (“Elliptic Sensitivity” 

Results) 

4.6.1 Results on Flow Controllability through Exit Liquid Mass Flow Rate Control  

As discussed in section 2.1, the solutions to the unsteady equations of internal 

condensing shear driven flows are sought to assess the physics of the problem. For the 

unsteady flow, under steady parabolic boundary conditions (of steady inlet mass flow 

rate, steady condensing surface temperature, and steady inlet pressure) and an unsteady 

exit condition specification of exit liquid mass flow rate in Eq. (14) shown in Figure 18, 

it is found that there is an unsteady solution whose unsteady film-thickness response is 

shown in Figure 19. This unsteady exit condition imposition  was computationally found 

to be feasible for the shear driven case and not feasible for the gravity driven (and 

dominated) flow cases. For gravity dominated flow cases, the film thickness profile, for 

Tw(x) = constant cases considered in this study, is found to be same as in the Nusselt 

solution [28] regardless of the inlet mass-flow rate. This means that the purely elliptic 

behavior of the unsteady annular/stratified flows as exhibited in Figures 18-19 is limited 

to the shear driven zone in the parameter space of Figure 17 and that the unsteady 

equations are strictly parabolic in the far right gravity dominated zone of Figure 17. The 
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steady and unsteady shear driven flows considered here are for 0g and horizontal 

channel flows. 

 It has been observed that, for the relatively small condenser length involving 

partially condensing flows investigated, the shear driven flows for 0g (i.e. gx = 0 and gy 

= 0 in Figure 1) are approximately the same as the shear driven horizontal channel flows 

with transverse gravity (i.e. gx = 0 and gy ≠ 0 in Figure 1).  

 

 

Figure 20: Time histories for different exit liquid mass flow rate controls with the 

mean higher than the “natural” value for a shear driven internal condensing flow 

For condensing flow in Figure 1 in zero gravity with inlet vapor speed of 0.6 m/s and 
vapor-to-wall temperature difference of 5ºC, this figure shows three different time 
histories of “specified” exit liquid flow mass rates. The vapor is R113 and the channel 
gap height is 0.004 m. 
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Figure 21: Time histories for different exit liquid mass flow rate controls with the 

mean lower than the “natural” value for a shear driven internal condensing flow 

For condensing flow in zero gravity with inlet vapor speed of 0.6 m/s and vapor-to-wall 
temperature difference of 5ºC, this figure shows a time history of “specified” exit liquid 
flow mass rate for an on-off  type of fluctuations such that the mean liquid mass flow rate 
at the exit is slightly less than the “natural” one. This example shows that the exit liquid 
mass flow rate can, in principle, be controlled such that during the on portion of the 
control, liquid exit mass flow rate is on the lower side of the “natural” and during off 
portion of the control, flow bounces back to seek its “natural” exit condition while the 
mean of the prescription stays near the “natural” value. 
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Therefore the computational results shown in this paper for 0g are also applicable 

for partially condensing horizontal channel flows.  

 Although the unsteady imposition in Figures 20-21 alone is reported here, several 

non-periodic finite duration unsteady impositions (not shown) were implemented and 

they led to accurate unsteady solutions in the annular regime. It should be further noted 

that unsteady solutions for the unsteady governing equations are possible without 

specifying the exit conditions (for example, by using parabolic exit condition 

formulation [A]) provided there are sources of unsteadiness either in the parabolic 

boundary conditions or in the initial conditions. 

Computational results in Figures 20-28 show that shear driven internal 

condensing channel flows operating under steady “parabolic” boundary conditions may 

additionally respond to certain “non-natural” time periodic exit condition impositions and 

thus, in this sense, these flows show “elliptic-sensitivity.”   

Figure 20 shows three different time history prescriptions for non-dimensional 

exit liquid mass flow rate 
L eM̂ (t)−
  in Eq. (14). The red curve is associated with a constant 

steady control at “natural” steady exit condition i.e. 
L eM̂ (t)−


 = 
L e NaM̂ |−
  ≈ 0.116. The blue 

curve is associated with a time-periodic prescription (
L eM̂ (t)−


 = 
L e on-offM̂ |−
 ) that has an “off-

natural” mean (
L e on-off-meanM̂ |−
 ≈ 0.123) above the “natural” value and the green curve is an 

attempt to prescribe a constant steady control (
L eM̂ (t)−


 = 
L e constantM̂ |−
 ) at an “off-natural” 

mean (
L e constantM̂ |−
 ≈ 0.127).   

Figure 21 shows another time-periodic control with an “off-natural” mean very 

slightly below the “natural” value. Figures 22-23 show the response of the flow on film 
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thickness that results from the exit liquid mass flow rate control depicted in Figure 20 

and 21.  For the constant steady control with the mean at the “natural” value of exit 

liquid mass flow rate, film thickness attains a steady value in time, which is also the 

same as the film thickness obtained by solving the steady equations. For the on-off 

control of Figure 20, film thickness keeps on oscillating, for all times t > 0, in a band (as 

shown in Figure 22) which has a mean that is different than the one associated with 

“natural” curve given by the red curve.  Similar but much smaller impact of the 

imposition in Figure 21 leads to a response in Figure 23, which has a slightly higher 

mean film thickness than the “natural” one. Also, for the kind of imposed exit condition 

(which has a “non-natural” mean and superposed periodic fluctuations in Figure 22), a 

new quasi-steady flow is achieved with different steady-in-the-mean values of the exit 

liquid mass flow rate, the exit vapor mass flow rate, and the rest of flow variables. Note, 

for the constant steady control at “natural” exit condition and for the on-off control at an 

“off-natural” mean, flow continues to remain in the annular/stratified flow regime for all 

times t > 0 (see Figures 22-23).  

However, for the constant steady “off-natural” control case given by the green curve in 

Figure 22, the flow cannot remain steady despite its ability to handle this imposition of 

steady exit condition for a short while. This case represents impossibility of this 

imposition and a strong desire of the flow to seek a fluctuating energy source to accept 

this imposition in a quasi-steady fashion. In the absence of this energy source, the 

solution shows breakdown of the resulting monotonically unsteady response after a 

certain time t = t* (≈ 1170 in Figure 22). 
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Figure 22: Response of film thickness for exit condition controls shown in Figure 20 

for a shear driven internal condensing flow 

For the flow conditions and exit liquid mass flow-rate prescription of Figure 20, this 
figure shows response of film thickness values with distance x and non-dimensional time 
t (t is a parameter). For all times t > 0, annular/stratified solutions exist for the on-off 
prescriptions as well as for the constant steady prescription at the “natural” exit condition. 
For the constant steady prescription at an “off-natural” mean, film-thickness can be seen 
to have become wavy at time t ( ≈  1150) well before time t* after which no 
annular/stratified solutions exist for this type of constant “off-natural” steady 
prescription. 
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Note that in Figure 22, the waves start appearing on the interface before the 

annular/stratified solution becomes impossible for t ≥ t*. As discussed later, the flow will 

simply disallow this imposition unless one of the boundary conditions (e.g. mass flow 

rate oscillations in Wedekind and Bhatt [38]-[41], fluctuations in pressure, etc.) is able to 

provide time-periodic fluctuations to realize an oscillatory or quasi-steady response. 

 

Figure 23: Response of film thickness for exit condition controls shown in Figure 21 

for a shear driven internal condensing flow 

For the flow conditions and exit liquid mass flow-rate control of Figure 21, this figure 
shows response of film thickness values with distance x and non-dimensional time t (t is 
a parameter). This figure shows that at all times t > 0, annular/stratified solutions exist for 
the on-off prescription as well as for the constant steady prescription at the “natural” exit 
condition. For constant steady prescription at the “natural” exit condition, film thickness 
steadies up at unique “natural” solution (red curve) while for the on-off prescription with 
a mean slightly lower than the “natural” liquid exit mass flow rate, the solution keeps on 
oscillating in a band near (on the higher side) the natural film thickness solution.   
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Figure 24: Computationally obtained characteristic curves for representative exit 

condition control cases for a shear driven internal condensing flow 

This figure shows the characteristic curves xc(t) originating at different x values along 
which film thickness δ evolves for two different exit liquid mass flow rate controls: (i) 
control at “natural” value (see the green curves) (ii) on-off control with the “off-natural” 
mean value. 
 

Figure 24 show characteristic curves xc(t) (see [2] for definition of characteristic 

curves) for two exit liquid mass flow rate controls, namely constant steady control at 

“natural” value (green curves in Figure 24) and the other on-off control at “off-natural” 

mean shown in Figure 20 (red curves in Figure 24). These characteristics curves are 

obtained by integrating the following equation: 

t 

xc(t) 

Constant steady control at “Natural” Value 
On-off control at “off-natural” mean 
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where x* is any given value of x between the inlet and the outlet in Figure 1. The 

evolution of film thickness δ(x, t) takes place along the characteristic curves and is 

governed by Eq. 26 of [2]. Here the Figure 24 is used to show that for exit condition 

control at “non-natural” value; characteristic curves originating from any x location are 

seen to bend away from those for exit condition control at the “natural” value. Also, this 

bending can be seen (see Figure 24) to increase with x at any particular time. In Figure 24 

zigzag nature of characteristics given by the red curves indicate the “on-off” nature of the 

exit condition control. For the on-off exit liquid mass flow rate control, during the “on” 

portion of the control characteristics bend away from the “natural” curves while during 

“off” portion they bend towards the “natural” curves. 

It should be further noted that even when the film thickness in Figure 22 

significantly decreases (the blue curve), the mean pressure increase needed to decelerate 

the vapor (see Figures 25-26) is small. It is clear that imposition of the type in Figure 21 

is difficult and very small film thickness increase in Figure 23 and pressure drop is 

possible. This fact is also verified by the experiments (see next section).  

For certain other situations, this type of quasi-steady response for quasi-steady 

exit condition imposition may also involve flow morphology change because of a shift 

in flow regime boundary. 
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Figure 25: Pressure drop variations for different exit condition controls shown in 

Figure 20 for a shear driven internal condensing flow 

For the exit condition impositions shown in Figure 20, this figure shows response of the 
non-dimensional pressure drop values between the inlet and the outlet of the condenser. 
 

This important physics cannot be captured by the current simulation tool that can 

only handle annular/stratified morphology. For the impositions in Figures 20 –21, 

Figures 27 – 28 respectively show the time histories of non-dimensional values of net 

mechanical energy input rate (see definition in Eq. (A.11) in the Appendix) into 

the condenser control volume. Figure 27 shows that the mean value of the net 
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mechanical energy for the new quasi-steady solution (blue curve) is lower than the 

“natural” value whereas, in Figure 28, it is slightly higher than the natural value. 

Figure 29 shows how the time averaged values of get affected by the 

different mean quasi-steady exit-conditions imposition. The reduction and increase in 

these overall time averaged values are associated with changes in total interface energy 

transfer rate shown in Figure 30.  

 

 

Figure 26: Pressure drop variations for different exit condition controls shown in 

Figure 21 for a shear driven internal condensing flow 

For the exit conditions impositions shown in Figure 21, this figure shows response of 
non-dimensional pressure drop values between the inlet and the outlet of the condenser. 
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Figure 27: Control volume energy response for different exit condition controls 

shown in Figure 20 for a shear driven internal condensing flow 

For the flow conditions and exit liquid mass flow-rate control shown in Figure 20, this 
figure shows the response of non-dimensional values of net mechanical energy in to the 
condenser over non-dimensional time t. It is shown that typically negative slopes are 
associated with the constant steady “off-natural” prescription and this suggests no long-
term quasi-steady solution exists. However, for the on-off prescriptions at “off-natural” 
means, net mechanical energy in to the condenser steadies up at a mean lower but near 
the “natural” value. 
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Figure 28: Control volume energy response for different exit condition controls 

shown in Figure 21 for a shear driven internal condensing flow 

For the flow conditions and exit liquid mass flow-rate control shown in Figure 21, this 
figure shows the response of non-dimensional values of net mechanical energy in to the 
condenser with non-dimensional time t. It is shown that for the on-off prescriptions at 
“off-natural” mean, net mechanical energy in to the condenser steadies up at a mean 
slightly higher but near the “natural” value. 
 

The interface energy transfer rate is defined in (A.13) of the Appendix A.2 and 

is made up of pressure and kinetic energy transfer across the interface. The fact that  

increases on either side of the “natural” exit condition is indicative of the energetic 

resistance at the interface to consume energy at non-natural rates. Table 2 shows non-

dimensional values of various energies related to condenser control volume and 

0.25

0.27

0.29

0.31

0.33

0.35

0.37

0.39

50 100 150 200

Non Dimensional Time t

N
on

 D
im

en
si

on
al

 N
et

M
ec

ha
ni

ca
l E

ne
rg

y 
in

 th
e 

Co
nd

en
se

r

Control Volume Energy Response to Exit Condition Prescription 
Through Liquid Exit Mass Flow Rate

Energy Response to on-off prescription in Fig. 6b 

Energy Response to constant steady prescription at 
"natural" value of exit liquid mass flow rate in Fig. 6b

Mean energy
value for on-off
prescription

21 

21 



90 
 

redistribution of these energies as quasi-steady exit liquid mass flow rate control 

changes. For the constant steady control of exit liquid mass flow rate at “off-natural” 

value, energy keeps decreasing with a non-zero negative slope (see Figure 27) inside the 

domain before the solution becomes impossible. This is another indicator of eventual 

impossibility of this imposition in the absence of suitable superposed time periodic 

fluctuations.  

 

Figure 29: Mechanical energy in the condenser control volume for different quasi-

steady exit condition prescriptions for shear driven internal condensing flows 

For 0g shear driven flows, this figure shows eventual mean values of net mechanical 
energy into the condenser for on-off type prescriptions with the mean prescription values 
on either side of the “natural” exit condition. It is shown that even though 
annular/stratified quasi-steady solutions exist for such on-off prescriptions in the vicinity 
of the “natural” (bounded by the two red lines); the range of available values may be 
limited for the annular/stratified flow regime. 
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Figure 30: Interfacial energy transfer for different quasi-steady exit condition 

controls for shear driven internal condensing flows 

For 0g flows, this figure shows mean values of total energy transfer ( ΣD ) at the interface 
for on-off type prescriptions with the mean control values on either side of the “natural” 
exit condition. It can be seen that the value of total interfacial energy transfer increases on 
both sides of the “natural” exit condition and it is least at the “natural” exit condition. 
This “spring” like behavior is indicative of “active” and energetic imposition needed for 
“elliptic-sensitive” boundary condition imposition. 

 

Again, it should be noted that the eventual impossibility of this imposition is 

different from outright impossibility for strictly parabolic unsteady equations. It should 

also be noted that relative to the strictly steady “natural” flow, the quasi-steady flows 

show significant differences (about 7% for the total heat load) in the heat transfer rates 
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q″w(x) and Nux values where q″w(x) ≡ hx(∆T) ≈ (k1 ∆T) /(h δ(x))  and     Nux ≡ hx h / k1 ≈ 

1 / δ(x).                    

   However, for these special time-periodic on-off impositions with a steady mean 

near the “natural” value, mean energy in the condenser settles (see Figure 29) to steady 

values near the steady “natural” value associated with the unique steady solution. 

 
 
Table 2: Table showing non-dimensional values of different energies associated with 

condenser control volume for different quasi-steady exit liquid mass flow rate 

controls for a shear driven internal condensing flow 

 

Type of Exit 
Liquid Mass 
Flow Rate  

Control 

Time 
averaged 

mean value 
of exit 

liquid mass 
flow rate 

Net 
mechanical 
energy in 

to the 
control 
volume, 

 

Absolute 
value of net 

energy 
dissipated 
across the 
interface 

ΣD  

Net energy 
dissipated in the 
control volume 

ΦL + ΦV 

Continuous 
control at the 

“natural” value 
0.1161 0.3139 0.0266 0.3405 

On-off control 
with the mean 
higher than the 
‘natural’ value 

0.1232 0.3090 0.0278 0.3368 

On-off control 
with the mean 
less than the 

‘natural’ value 

0.1120 0.3190 0.0274 0.3464 
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Just as a different quasi-steady flow can be achieved through such quasi-steady 

(mean plus fluctuation) exit-condition impositions at slightly higher mean value of liquid 

exit mass flow rate than the natural one (Figure 29), it can also be achieved at slightly 

lower mean value of liquid exit mass flow rate than the “natural” one. But the responses 

in Figure 23, Figure 26, Figure 28, and Figure 30 suggest that fluctuating impositions at a 

mean lower than the natural are more difficult that the fluctuating impositions at a mean 

higher than the natural. In other words, Figure 30 suggests that the interfacial energy 

transfer behaves like a non-linear spring towards “non-natural” elliptic impositions. It 

should also be noted though that the ratio of time periods for the ‘on’ and ‘off’ portions 

for the on-off impositions (which, in the experiments, are self-selected) that have a mean 

higher than the natural (Figure 20) is quite different than the one for an “on-off” 

imposition which has a mean on the lower side of the natural (Figure 21). This suggests 

that intrinsic character of the flow decide the frequency content of the fluctuating 

component of quasi-steady exit condition impositions in any self-selection process (also 

see experimental results in next section).   

4.6.2 Stability of the Flow at “Parabolic/Natural” and “Elliptic/Non-Natural” 

Specifications   

For the constant steady “non-natural” control, the above-suggested impossibility 

of sustaining any sort of quasi-steady annular/stratified flow near the unique steady 

“natural” flow is further substantiated by the instability of these evolving flows. 

Figures 31-32 show response of the flow to the initial disturbances on the 

interface for two different strictly steady exit condition impositions.   
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The result in Figure 31 is for constant steady liquid exit mass flow rate imposition 

at the “natural” value while for the result in Figure 32, the liquid exit mass flow rate 

imposition is strictly steady and at slightly higher constant value (
L e constantM̂ |−
 ≈ 0.123)  than 

the “natural.”  

 

  
 

Figure 31: Dynamic stability investigation for a shear driven internal condensing 

flow with unspecified exit condition 

For condensing flow in zero gravity with inlet vapor speed of 0.6 m/s and vapor-to-wall 
temperature difference of 5ºC, this figure shows the stable response of the flow to an 
initial disturbance on the interface if the exit condition for the flow is free or controlled to 
be exactly at the “natural” value  (

L eM̂ (t)−
 =

L e NaM̂ |−
 = 0.116).  

Initial disturbance δ′(x,t) added 
to the “natural” solution at t = 0 

Disturbance dies at t = 125 
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It can be seen that the initial disturbance in Figure 31 has died out at non-

dimensional time t = 125 while initial disturbance in Figure 32 has significantly grown 

over the same non-dimensional time. Characteristic curves (given by Eq. (25) here or by 

Eq. (26) in [2]) for growing disturbance of Figure 32 are given in Figure 33. 

 

 

 

Figure 32: Dynamic stability investigation for a shear driven internal condensing 

flow with exit condition controlled at an "off-natural" value 

For flow conditions of Figure 31 this figure shows the unstable response of flow to an 
initial disturbance on the interface if the exit of the flow is controlled at a constant  “off-
natural” value (

L eM̂ (t)−


 = 
L e constantM̂ |−
   ≈ 0.123).  

 

Disturbance grows at t = 100 

Disturbance moves  
forward at t = 75 

Initial disturbance δ′(x,t) added 
to the non-natural constant 
steady solution at t = 0 
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It can be seen that as the disturbance travels downstream, the characteristic curves 

tend to intersect indicating possible interface break-up and transition to non-annular 

regime. 

The break up time t* as well as t → ∞ behavior for the constant steady off -natural 

exit condition imposition (green curve in Figure 20) are expected to depend on whether 

or not the boundary conditions will allow a fluctuation to sustain such an imposition.  

 

Figure 33: Computationally obtained characteristic curves for shear driven internal 

condensing flow’s response to an initial disturbance 

This figure shows the characteristic curves xc(t) originating at different x values for the initial 

disturbance case of Figure 32. The intersecting nature of characteristic curves indicates possible 

film break-up. 

t 

xc(t) 
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These results are consistent with the facts that: (i) annular/stratified partially 

condensing “natural” flow or a more complex fully condensing “natural” flow is 

compatible with only one unique self-sought constant steady exit condition (for a given 

inlet conditions, method of cooling, and condenser geometry) – termed “natural” exit 

condition, and (ii) the flows still allow imposition of suitable steady-in-the-mean quasi-

steady exit condition imposition.  

This result is important because other fluctuating conditions may inadvertently be 

imposed – particularly for shear driven flows – depending on the nature of the system to 

which the condenser belongs. Therefore, in any practical application in 0g or micrometer 

scale shear driven flow, where the “natural” solution is a weak “attractor,” the choice is to 

either ensure “parabolic” conditions with one unconstrained or unspecified boundary 

condition or to exploit the above described “elliptic sensitivity.”  

4.6.3 Mathematically/Physically Sensible Response of the System to Time-Periodic 

Exit Condition Impositions  

It should be noted that only a limited type (self-selected or imposed) of exit 

condition impositions are compatible with stable realizations of quasi-steady annular 

flows for horizontal/0g flows and this fact is depicted in the computational result shown 

in Figure 29. Figure 29 shows the time average mean values of net mechanical energy 

input rate to the condenser for fluctuating time-periodic impositions whose mean values 

lie on either sides of the “natural” value and the condensing flow responds by achieving a 

long-term quasi-steady annular/stratified solutions (as per the computations and 

experiments). It is seen from Figure 29 that for the flow to stay in the annular/stratified 



98 
 

regime, not only the mean (
L e on-off-meanM̂ |−
 ) of any on-off imposition on exit liquid mass flow 

rate cannot be very far from the “natural” value but it must also be such that it leads to a 

mean steady mechanical energy input close to the “natural” value associated with the 

annular/stratified condensing flow situation. Mean value for any on-off type control can 

be adjusted in practical situations by suitably adjusting a compressor or a pump speed 

(see section 5-6 of [7]). The result in Figure 29 suggests that for quasi-steady 

annular/stratified flows in practice, there is a whole range of energy values around the 

“natural” value that can keep the flow in the annular/stratified regime and yet may have 

significant impact on heat transfer rates and overall system behavior. 

 

4.7 Preliminary Computational Results on “Quasi-steady 

Parabolicity” of Shear Driven Internal Condensing Flows 

 As discussed in section 4.5, the “quasi-steady parabolicity” result says that when 

fluctuations are added on the prescribed conditions of the strictly steady parabolic 

problem, fluctuations appear within the flow as well as in the unspecified variables at the 

boundary (including thermal boundary).  

 This “quasi-steady parabolciity” has been recently discovered by our experiments 

and experimental results are discussed in the next section (4.8). Computational 

investigations of “quasi-steady parabolicity” are limited to the preliminary level for this 

thesis work.  The computational work is aimed to show that: 
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(i) The effects of fluctuations depend on the cooling approach. For fixed condensing 

surface temperature cooling, the mean flow variables in the interior and the 

boundary are not significantly affected. 

(ii) For the cooling approach that allows variation in most of the local condensing 

surface temperatures, the fluctuations in the parabolic boundary (when the elliptic 

boundary is not specified) indeed can bring thermal transients in the condensing 

surface. To investigate this, one needs to understand and define a conjugate 

problem through which condensing surface temperature may get determined in 

response of fluctuations at the parabolic boundary. 

 

Conjugate Problem for Condensing Wall for Shear Driven Flow inside a Channel  

 Different models of varying complexity levels can be used to define conjugate 

problem that relates condensing surface temperature to the cooling method employed. 

The simplest model used here assumes that condensing wall has zero thickness, is being 

cooled by water flowing underneath at ambient temperature T∞ and heat transfer 

coefficient h⁰ which remains constant over given length of the condensing wall.  

 It is assumed that even though flow fluctuations at the inlet (parabolic boundary 

for this problem) can change the condensing surface temperature, the ambient 

temperature T∞ remains fixed at any time. For the length of the condenser where 

assumption of linear condensate temperature profiles hold, following set of approximate 

equations apply: 
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                                                q"(x, t) ≈ k1∙(Tsat - Tw(x, t))/∆(x, t) 

                               q"(x, t) = h⁰∙ (Tw(x, t)-T∞) 

                         Tw(x, t) = (k1∙Tsat + ∆(x, t) ∙h⁰∙T∞)/(k1+∆(x, t) ∙h⁰)                               (26) 

         

 

Figure 34: Fluctuating vapor velocity profile at the inlet of horizontal 0g channel 

This figure shows non-dimensional values of fluctuating vapor velocity with time at the 
inlet of a horizontal channel (0g). The figure also marks two times t1 and t2 the response 
of the flow at which times is shown in Figure 35.   
 

u(0,  t) 

     t      t1      t2 
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This set of model equations assumes that the slab is very thin and thermal inertia of the 

slab is small. To more accurately model the conjugate problem, thermal inertia of the 

bottom plate should be taken in to account. 

 For given inlet vapor velocity u2(0, t) (equivalently vapor mass flow rate), inlet 

pressure pin (equivalently interfacial temperature Tsat), and assumed fixed values of T∞ 

and h⁰, an unsteady algorithm given in the Appendix A.2 for unspecified exit condition 

(formulation [A] of section 2.1) is applied at each time t until converged values of Tw(x, 

t), ∆(x, t), and q"(x, t) are obtained.  

 Figure 34 shows sample fluctuations in non-dimensional inlet vapor speed u2(0, 

t). The fluctuations start appearing at the inlet only after certain time t*. The fluctuating 

velocity at the inlet is given as: u2(0, t) = 1+ A0(t)∙sin(2πt/Г), where A0(t) is amplitude of 

fluctuations and Г is time period of the sine wave. For this sample inlet time varying 

vapor speed, A0(t) = 0.2  and Г = 10.  

 For constant temperature condition of the condensing surface, these fluctuations, 

as expected, do not change the mean film thickness by much but film (along with the 

other flow variables) keeps on oscillating in a very narrow band with the mean remaining 

the same as the steady film thickness in absence of any fluctuations. When the same 

fluctuations are applied in presence of conjugate problem defined by Eq. (26), there is not 

much effect on film thickness variations but miniscule thermal transients are observed on 

the condensing surface and these are shown in Figure 35.  

 Figure 35 shows non-dimensional temperature of condensing surface θ(x, 0, t) 

versus non-dimensional distance x before and after the application of conjugate problem 
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model. The black dotted line in Figure 35 shows constant steady wall temperature before 

the conjugate problem algorithm is switched on. The two sets of curves shown by red and 

blue lines show the response of condensing surface temperature for two different 

assumed values of h⁰ (1000 W/m2K and 500 W/m2K respectively) when the conjugate 

problem is switched on and eventually (beginning from time t*) fluctuations shown in 

Figure 34 are applied. It can be seen that before the fluctuations begin, the wall 

temperature steadies up at different values for two different assumed values of h⁰. Figure 

35 also shows that when fluctuations in the mass flow rate start appearing at the inlet 

there are thermal transients induced (shown at time t1 and t2 in the fluctuation cycle in 

Figure 34) in the wall temperatures. 

In general following observations were made from this computational exercise: 

(i) In presence of fluctuations, condensing surface temperature profiles (see red and 

blue curves shown at times t1 and t2 in fluctuation cycle) do not necessarily 

oscillate around the steady profiles (thick red and thick blue curves shown in 

Figure 35). The values of thermal transients in condensing surface temperature 

induced for amplitude, time period of fluctuations in the inlet mass flow rate 

considered in Figure 34 are found to be minuscule in amplitude, and thus they 

insignificantly affect film thickness and heat transfer rates.  However, it can be 

expected that there will be considerable thermal transients (and corresponding 

heat transfer changes) for large values of amplitude A0(t) and varying ranges of 

time periods Г.  
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(ii) It should also be noted that the response of conjugate problem shown in Figure 35 

differs for different h⁰ values. It is indicative of the fact that the “quasi-steady 

parabolicity” sensitivity depends upon modeling of conjugate problem in 

computations and actual cooling method in experiments. More complex models 

with finite thickness of condensing plate, which consider thermal inertia of the 

plate can be applied and response of the flow can be investigated. 

   

 

Figure 35: thermal transients induced in condensing surface because of inlet mass 

flow rate fluctuations in Figure 34 and underlying conjugate problem 

    θ (x, t) 

     x 

Constant uniform condensing surface temperature before 
application of the conjugate problem 

 
  θ(x, t) at time t1 for h⁰ = 500 W/m2K  
   
              θ(x, t) at time t2 for h⁰ = 500  W/m2K 

Steady condensing temperature before time t*  
for h⁰ = 1000 W/m2K  
   
         θ(x, t) at time t1 for h⁰ = 1000 W/m2K  
 
                      θ(x, t) at time t2 for h⁰ = 1000 W/m2K  
 

Steady condensing temperature before time t* for h⁰ = 500 W/m2k 
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  The computational results shown above only indicate that in presence of 

fluctuations in the parabolic boundary (inlet for the cases considered in Figures 34-35) 

can bring in thermal transients in the condensing surface. Detailed investigations about 

changes in mean flow variables in response to different types of fluctuations at the inlet, 

modeling of different conjugate problems, and comparisons with experiments are part of 

computational work of Soumya Mitra. 

 

4.8 Experimental Investigation of a Shear Driven Flow and Its 

Qualitative Comparisons with the Computational Problem/Results 

4.8.1 Physical Arrangement of the Experimental System   

To study the experimental verification of the computational results regarding 

unsteady/quasi-steady condensing flows’ “ellipticity,” the 2-D flow in Figure 1 is 

approximated by the 3-D situation of Figure 36. This involves fully condensing flows of 

FC-72 vapor in a  rectangular cross-section (2 mm gap height and 15 mm wide) duct of 

1m length. Its horizontal condensing surface area (15 mm x 1 m) is the top of a 12.7 mm 

thick stainless plate.  

The channel’s top and side surfaces are made of a thick transparent material 

(lexan), which is covered with an insulation that can be removed to allow flow 

visualization. The test-section shown in Figure 36 is used in the flow loop facility 

depicted in 38. 
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Figure 36: A schematic showing horizontal channel test section and a particular 

realization of shear driven fully condensing flow in it 

The condensing surface’s “cooling approach” (which defines its thermal boundary 

condition) consists of:  

(i) Coolant water flows under the thick condensing plate at a controlled steady flow 

rate and a nearly uniform temperature Tres. 

(ii) A thermo-electric cooler underneath the heat-flux meter (HFX-1 on top of a 

thermo-electric cooler TEC-1 in Figure 36) cools the condensing-surface 

approximately over 50 cm ≤ x ≤ 60 cm in a fashion that keeps the mean surface 

temperature fixed at an average and approximate constant value. This is done 

with the help of feedback control of TEC-1 through a thermocouple which holds 

the local temperature at x = 58.5 cm fixed. 

(iii) A thermo-electric cooler (TEC-2 in Figure 36) underneath the condensing surface 

cools an approximate region of 80 cm   ≤ x ≤ 1 m. The thermo-electric cooler 
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TEC2 is operated at a fixed maximum driving voltage (17.5 Volt). The thermo-

electric cooler lowers the condensing surface temperature (for the reported full 

condensation cases) past the onset of bubbly regime – thereby ensuring that the 

subsequent flow morphology changes rapidly to an all liquid flow over this zone. 

 

The above described “cooling approach” defines the following thermal boundary 

condition for the condensing surface: 

(a) At all locations other than the ones associated with HFX-1/ TEC-1 and TEC-2 in 

Figure 36, let R″slab and R″conv denote the respective thermal resistances – on per unit area 

basis – that model steady or quasi-steady heat flow through the slab and the water flow 

(at temp Tres). Furthermore, if hext is given by 1 / hext ≡ R″slab + R″conv, then the thermal 

boundary condition at these “x” locations are of the convection type (Eq. (11)) and is 

given by (for R″slab << R″conv): 

             

 

where 0 ≤ x ≤ 50 cm or 60 cm ≤ x ≤ 80 cm. For non-negligible R″slab, the model above is 

best replaced by a conjugate analysis which correctly models the thermal inertia (effects 

of specific heat and the volume of the slab) issues for the transient heat flow through the 

slab.  

(b) At the thermo-electric cooler TEC-1 and heat flux meter HFX-1 location, a nearly 

steady temperature  boundary condition of: 

                T1( x, 0, t)  ≈  58.5 °C     for 50 cm  ≤ x ≤ 60 cm                                 
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 can be assumed since the surface temperature variation in this region was measured to be 

small.  

(c) If one respectively denotes the bottom and top temperatures of the thermo-electric 

cooler (TEC-2 in Figure 36) by Tbot and Ttop, and the area-averaged heat flux by q′′, 

then the constant voltage operation of TEC-2 defines a known function 
TECf   such that 

                                               ΔΤΤΕC ≡     Tbot - Ttop    = ( )q ′′

TECf      

 

Figure 37: Schematic of flow loop for shear driven partial or fully condensing flow 

experiments 
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This non-linear function 
TECf  is experimentally known and follows the trends 

implied by the manufacturer’s specification. If the per unit area thermal resistance 

between the top of the TEC-2 and the condensing-surface is denoted by R″ top, and the 

thermal resistance between the bottom of TEC-2 and water flow is denoted by R″ bot; then 

the thermal boundary condition over the TEC-2, under quasi-steady conditions, is well 

approximated by: 

                     [T1(x, 0, t) - Tres]   =     ( ) ( )q q′′ ′′ ′′ ′′

bot top TECR +R -f  

 for 80 cm  ≤  x ≤  1m, where  

        
1

1
y 0

Tk
y

q
=

∂′′ ≡ −
∂

  

It is evaluated at a suitable x-location. For truly unsteady conditions and non-negligible 

conductive thermal resistance contributions to R″ top and R″ bot, the model above is best 

replaced by a conjugate analysis which correctly models the thermal inertia (effects of 

specific heat and the volume of the slab) issues for the transient conduction heat flow. 

Although, both computations and experiments deal with purely shear driven 

horizontal channel flows, the condensing surface thermal boundary condition for the 

experiments – as given above – are not the same as the one assumed for the theory (i.e. 

T1(x, 0, t) = Tw(x) = constant.   The computational simulations for the above experimental 

thermal boundary condition and the results’ comparisons with experiments are part of a 

forthcoming research. 
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4.8.2 Experimental Procedure and Observations 

Procedure and observations for the first quasi-steady realization (for t ≤ t0) in Figures 38-

40 

For the reported cases, the valve V in Figure 37 is closed and the pump P2 in 

Figure 37 is removed and eventually attained steady operating values of inlet mass flow 

rate, pin, and  are such that the point of full condensation is within the test-section 

and the “Collection Chamber” in Figure 37 is filled with liquid. This procedure involves: 

(i) removing the compressor from the flow loop by keeping the compressor running at a 

very low speed with the bypass valve (VBP in Figure 37) fully open,  (ii) holding fixed the 

Coriolis mass flow meter FC (in Figure 37) reading of the mass flow rate by a PID control 

of the evaporator heater, (iii) fixing the evaporator bath temperature Tbath, (iv) steadying 

condensing surface temperature TW (x) through a control that achieves a steady  coolant 

flow rate for the water that flows underneath the condensing surface and maintains a 

nearly uniform temperature, and (v) using the controllable displacement pump P1, 

through a PID control, to hold the exit pressure fixed at pexit = pexit*. This procedure 

allows the inlet pressure pin to freely seek its natural steady value pin|Na.  

As depicted in Figure 36, it is found that the morphology of the fully condensing 

flow cases (depending on inlet mass flow rate and ∆T values) were found to vary from: 

(i) cases where the flows are annular/stratified almost up to the point of full condensation 

(and only a small amount of “plug/slug” flows are seen near the point of full 

condensation) to (ii) cases where the flows are significantly non-annular over 

approximately half of the test-section. 
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Figure 38: Response of pressure drop and heat flux to the "elliptic" constraining of 

a fully condensing shear driven flow inside a horizontal channel 

This figure shows time histories of inlet mass flow rate, inlet pressure, and exit pressure 
for a  “natural” (t < t0) and an “elliptically” constrained (t > t0+10) realization of a fully 
condensing shear driven flow in the horizontal test-section of Figure 36. 

 

It was experimentally observed that even though fully condensing flows exhibit 

different flow regimes (annular, non-annular, plug-slug, bubbly, etc.) inside the test 

section, the observed transition locations (schematically shown in Figure 36) by xPlug/Slug, 

xBubbly,  etc. were experimentally found to be robust and repeatable. Along with this, the 

mean measured values of flow variables in Figures 38-39 were also found to be 
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repeatable for t ≤ t 0. In Figures 38-39, the mean values of  inlet mas flow rate, pin, pexit*, 

∆p, etc. are accurate to within 5%, the temperatures are accurate to within ± 1oC,  but the 

absolute values of the mean heat-flux q˝W|HFX-1 is not representative (because the heat 

flux-meter was not calibrated)  - though the relative magnitude of changes in q˝W|HFX-1 

(i.e. Δq˝W|HFX-1/q˝W|HFX-1) are representative and correct to within 5%. Therefore, the 

results reliably tell that one can achieve repeatable and stable “natural” fully condensing 

flows if the flow loop is designed in a way that all the “parabolic” boundary condition 

impositions are well controlled and repeatable.  

 

 

Figure 39: Response of pressure drop and heat flux to the "elliptic" constraining of 

a fully condensing shear driven flow inside a horizontal channel 
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Figure 40: Thermal transients introduced because of constraining of a shear driven 

fully condensing flow inside a horizontal channel 

For constraining shown in Figures 38-39, this figure shows thermal transient response 
(notice the green curve for temperature takes 65 minutes to become steady after time t0) 
and compares it shorter hydrodynamic response of the average heat flux q˝HFX-1 which 
becomes steady in only 10 minutes after time t0.  

 

Additonally  the flow loops design needs to allow the flow to seek its own 

pressure condition at the inlet (pin|Na).  However, as discussed next, when an unsteady 

“elliptic” boundary condition is imposed for shear driven flows, not only do the flow 

regime transition boundary locations (marked xPlug/Slug, xBubbly,  etc. in the schematic of 

Figure 36) change in time but, also, the mean values of the flow variables changes in 

time. 
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Figure 41: Shift in flow regimes and condensing surface temperature response for 

"elliptic" constraining of a shear driven fully condensing flow inside a channel 

This figure shows the steady Tw(x)-1 values for t < t0 and new steady Tw(x)-2 for t > t0 + 
65 minutes in Figures 38-40  
 

Procedure for imposition of an unsteady/quasi-steady “elliptic” pressure boundary 

condition at the inlet 

To begin with, the quasi-steady flow was “natural” for  t  ≤ t0 with the inlet mass 

flow rate, natural inlet pressure pin|Na-1, fixed exit pressure pexit
* , natural pressure 

difference ∆p, and the heat flux q˝W|HFX-1  values were as shown in  Figures 38-39. The 

steady condensing - surface temperature variation TW(x)-1 was as in Figure 41.  
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           The subsequent (t  ≥  t0) imposition of unsteady “elliptic” boundary condition 

procedure involves: 

Use the flow controls to continue to hold fixed the earlier (for  t  ≤  t0) values of 

mean exit pressure pexit
*, inlet mass flow rate, bath temperature Tbath (to stabilize boiler 

pressure variations during compressor aided imposition of inlet pressure), the coolant 

flow rate, and the coolant temperature for t ≥ t0 while increasing the inlet pressure pin(t) in 

time (over t0 ≤ t ≤ t0 + 10) with the help of the compressor by increasing the speed of the 

compressor and partly  closing the bypass valve (VBP  in Figure 37) to a new value pin|2 > 

pin-1. Because the steady cooling approach in the experiments allows time variations in 

the values of condensing surface temperature TW(x), it is found that this unsteady 

“elliptic” imposition causes the shear driven flow to respond unsteadily – exhibiting 

thermal transients (see Figure 40) before a final quasi-steady state is reached at t > t0 + 

65. This final steady state is another “quasi-steady parabolic” state associated with the 

new condensing surface temperature distribution Tw(x)-2 in Figure 41.  

These results in Figures 38-41 show that the mean inlet pressure has been 

successfully increased with the help of the compressor induced fluctuations while the exit 

pressure has remained constant. Concurrent to this imposition, at the end of the 10 

minutes long hydrodynamic transient (during which the unsteady imposition occurs), the 

pressure-difference ∆p between the inlet and the exit increases and, as in the 

computational results, the mean film thickness of the wavy interface decreases in the 

annular/stratified region and this leads to significantly enhanced heat-transfer rates (see 

representative q′′| HFX-1 values in Figure 39). It should be noted that the significant 
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enhancement in heat-transfer rate is there because an increase in ∆p by 60 Pa is quite 

significant compared to the original pressure difference (about 275 Pa) for the annular 

stratified portion of the flow (see Figure 39). 

 

The role of fluctuations in the experimentally observed elliptic sensitivity 

 This imposition of non-natural quasi-steady inlet pressure pin|2 and associated 

heat-transfer enhancements (which may yield a total heat transfer rate significantly above 

the one that is obtained without fluctuations due to energy contained within the inlet 

vapor fluctuations being absorbed by the interface) are accompanied/enabled by the time-

periodic fluctuations  in the inlet pressure and in the inlet mass flow rate.  For the 

fluctuations accompanying the mean inlet pressure, the compressor provides a significant 

additional flow work  and an additional inlet enthalpy flux. Since, eventually, the mean 

inlet pressure is what is experimentally imposed at a non-natural quasi-steady value, the 

inlet fluctuations that enabled the requisite changes in the mean value of the flow 

variables were self-selected by the flow. Because the thermal transients accompany the 

hydrodynamic transients (see Figure 40), the heat-transfer enhancements gradually 

become permanent as the new steady temperatures Tw(x)|2  are reached. Unlike the 

computational cases where Tw(x) was constant, the new quasi-steady flow at t > t0 + 65 is 

another quasi-steady parabolic flow and it does not have the feature of elastic bounce-

back between the two quasi-steady states – one associated with t ≤ t 0 and the other with t 

> t0 + 65. These two states can only be interchanged gradually with the help of thermal 

transients. 
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4.9 Computational Results on Micro-scale Effects in Internal 

Condensing Flows 

Under certain flow conditions, effects arising due to micro-scale nature of 

condensate film may become very important. As far as micro-scale effects are concerned, 

this thesis work limits itself to the basic investigations of impact of non-equilibrium 

thermodynamics ([36], [42] - [43]) induced interfacial thermal resistance and disjoining 

pressure effects ([36], [42] - [13]) on “natural” steady internal condensing flows. For 

some commonly occurring operating conditions considered for Figures 42 and 43, the 

condensate motion is µm-scale (0-5 µm) over the entire length (xe = 5) of a mm-scale 

(channel gap is 0.4 mm) condenser. After including the effects ([36], [42] - [43]) of 

disjoining pressure pd for thin film flows, the corresponding simulation result in Figure 

42 show non-dimensional film thickness δ and non-dimensional interfacial pressure 

difference {(ρ2 * π2/ρ1) - π1}. To obtain these results, the interface pressure condition (see 

Eq. (A.5) of [6]) was modified as: 

                                                         (27) 

where pd = -A/∆B with A = 1.3*10-4 - 4*10-4 Pa-m0.6 and B = 0.6 as representative 

constants in this model (see Eq. (3.46) of [36]). The chosen range of constants in the 

above equation is merely representative and needs to be made precise with the help of 

carefully conducted micro-scale experiments that can yield results which can be 

compared with simulation results of the type indicated in Figure 42.  
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 To account for non-zero interfacial thermal resistance due to a possibly significant 

role of non-equilibrium steady thermodynamics ([36], [42] - [43]) that is expected for 

thin condensate flows with relatively larger interfacial mass-flux values, one allows 

interfacial temperature T1
i in the liquid phase to be different from the interfacial vapor 

temperature T2
i = Tsat(p2

i). One way to compute the T1
i  ≠ T2

i values is to obtain the 

interfacial heat-flux value i ii
1 1 2 2q [ / n / n ]k T k T′′ ≈ ⋅∂ ∂ − ⋅∂ ∂  from the computational simulations 

in the absence of interfacial resistance effects (e.g. from simulation results in Figure 43 

under T1
i  = T2

i assumption) and then use these values to solve for T1
i as a zero of the 

well known model equation (see Eq. (4.139) of [36]): 

                                           (28) 

under representative values of a = 1.3*10-4, accommodation co-efficient ˆ 0.3 1.0= −σ , Mvap 

= MR-113 = 187.38 kg/kmol, and psat(T) being the known saturation pressure function for 

R-113, and universal gas-constant Ru = 8.314*103 J/Kmol-K. 

By finding the root of Eq. (28) above at each x for the above described first-guess 

value of q"i, we obtain the first-guess value of the liquid interfacial temperature profile 

T1
i. A subsequent guess of q"i is obtained by solving the liquid domain energy equation in 

the simulation scheme under the above obtained first-guess new values of T1
i  ≠ T2

i. 

Inserting this subsequent estimate of q"i in Eq. (28) above, one can obtain the second 

estimate for the liquid interfacial temperature profile T1
i. Repeating the above process 

yields a converged set of q"i and T1
i values that satisfies the interfacial resistance model 

equation given by Eq. (28) above. 
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Figure 42: Effects of disjoining pressure at the interface for a micro-meter scale 

internal condensing flow 

For the flow of R-113 vapor through a vertical channel of 0.4 mm, vapor inlet speed Uin 
= 6 m/s, and ΔT = 3 °C, this figure shows the effects of disjoining pressures on pressure-
difference across the interface on “natural” steady solutions. Figure plots non-
dimensional film thickness values and the difference between non-dimensional pressures 
on the two sides of interface for three different cases: (i) without the disjoining pressure 
effect, (ii) inclusion of the disjoining pressure effect through Eq. (27) and model constant 
A = 1.3*10-4, and (iii) inclusion of the disjoining pressure effect through Eq. (27) and 
model constant A = 4*10-4. It is seen that though the effect of disjoining pressure is 
small on the film thickness variation for this micro-scale condensing flow (film thickness 
values around 5 microns), there is a considerable effect on the pressure-difference across 
the interface.  
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Figure 43: Effects of thermal non-equilibrium at the interface for a micro-meter 

scale internal condensing flow 

For the flow of R-113 vapor through a vertical channel of 0.4 mm, vapor inlet speed Uin 
= 6 m/s, and ΔT = 3 °C, this figure shows the effects of non-equilibrium thermodynamics 
at the interface. The temperatures on the liquid side of the interface and the heat flux 
values are plotted for three different cases: (i) without employing any non-equilibrium 
thermodynamic model, (ii) inclusion of an interfacial non-equilibrium thermodynamic 
model in Eq. (28) with σ̂ = 1.0 , and (iii) inclusion of an interfacial non-equilibrium 
thermodynamic model in Eq. (28) with σ̂ = 0.3 . The temperature on the vapor side of the 
interface Tsat (p2

i) was approximately constant at 49.47 °C. It is seen that there is a 
noticeable impact on the heat transfer rate because of the micro scale film thickness 
(around 5 microns). This is because heat-flux values and the temperature on the liquid 
side of the interface decrease after inclusion of effects of the non-equilibrium 
thermodynamic model.  
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 Figure 42 results show that the influence of disjoining pressure is negligible on 

film thickness values (in 0 - 5 µm range) but has significant impact on interfacial 

pressure-difference values (5 – 15%). In Figure 42 the influence of interfacial thermal 

resistance is also negligible on film thickness values (in 0 - 5 µm range), but affects the 

heat transfer rate by 0.6 - 2.5% (if accommodation co-efficient σ̂  is varied between 0.3 – 

1.0).  

 The above reported computational approach for accounting for these effects is 

important because, in conjunction with suitable forthcoming experiments, this approach 

can be used for better and more precise estimation of the constants/equations that model 

these effects.  

 In addition to the micro-scale effects discussed above, these micro-scale flows are 

also prone to “quasi-steady parabolcity” and “elliptic sensitivity” effects discussed for 

macro-scale internal condensing flows in earlier sections. Investigation of these effects 

for micro-scale internal condensing flows is outside the scope of this thesis work. 

 

4. 10 Regularity and Accuracy of the Computational Methods  

 For a computational solutions presented in section4 to be accurate, it needs to 

meet the following criteria: (i) satisfaction of the convergence criteria in the interior of 

each fluid (since finite volume SIMPLER technique is used, it means smallness of “b” 

defined on p.125 of Patankar [44]), (ii) satisfaction of all the interface conditions, (iii) 

grid independence of solutions for grids that are sufficiently refined, and (iv) unsteady 
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simulations’ time varying predictions of the interface location should be free of 

computational noise in the absence of physical noise. The steady and unsteady 

simulations presented here satisfy all the above criteria.  

The satisfaction of the governing equations in the interior and all the conditions at 

the interface is demonstrated in Liang et. al. [3]. Let the number of spatial grid lines 

( )i j |L j |V I or IIn n n× ×  in grid-I or grid-II respectively indicate the number of grid lines over 

0 < x < xe, 0 < y < δsteady(x), and δsteady(x) < y < 1 for the interface location at t = 0.  

 

 

 
 
 
 
 
                            
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 44: Figure showing grid independence of the solution in response to an 

imposed initial disturbance. 
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These numbers undergo minor changes as one marches forward in time in integer 

multiples of a time step ∆t. We consider two different sufficiently refined choices of grid, 

viz. grid-I and grid-II, for computing the unsteady results in Figure 44. For these grids I 

and II, we have: ( ) tnnn V|jL|ji ∆×××
Ι

= ( ) 5.2203030 ××× and ( ) tnnn V|jL|ji ∆×××
ΙΙ  =

( ) 5305050 ××× . For these two refined grids, the combined sum of truncation and round 

off errors are minimized to a plateau level and the solutions in Figure 44 are seen to be 

grid independent to within 1–2%. For a technical estimate of total discretization error say 

for a representative flow variable, film thickness in Figure 44, the analysis leads to an 

approximate total error of around 3%. The error in other converged flow variables for this 

representative flow situation was found to be of the same order of magnitude (within 2-5 

%). 
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Chapter 5 COMPUTATIONAL RESULTS FOR EXTERNAL 

CONDENSING FLOW OF A VAPOR CONDESNING OVER A FLAT 

PLATE2

 

 

After understanding features of shear driven internal condensing flows, to gain 

hitherto unavailable understanding of exact nature of steady and unsteady features of 

external condensing shear driven flows, an academic problem (see Figure 3) of vapor 

condensing over a flat plate (Koh’s problem [10]) was thoroughly investigated ([8]) and 

compared with the analytical solution. The computational results are based on the 

formulation discussed in section 2.2.1. The formulation for the analytical solution is 

given in section 2.2.2. 

 

5.1 Computational Results Obtained for Steady Solutions 

5.1.1 Results Obtained for the Full Steady Problem and Comparison with Koh 

Solution [10] 

Even though refrigerant R113’s properties were used to run most of the 

computational simulations performed for this thesis work for external condensation, 

                                                 
2 Some of the results described in this section have been published in: Kulkarni, S. D., A. Narain, S. Mitra, 

and L. Phan, 2010, “Forced Flow of Vapor Condensing over a Horizontal Plate (Problem of Cess and 

Koh*) - Steady and Unsteady Solutions of the Full 2D Governing Equations,” ASME Journal of Heat 

Transfer, Vol. 132, pp. 101502:1-18. Please see Appendix A.6 for the copyright permission to reproduce 

these results in this thesis. 
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similar results are expected, in principle, for any non-metallic pure vapor flowing over a 

flat plate.  

The Koh formulation [10] discussed in section 2.2.2 for computational domain in 

Figure 3 is best represented by solution of the steady problem under unspecified exit 

conditions (see eq. (19)) as described in section 2.2.1 After establishing near equivalence 

of solutions obtained by imposing exit conditions under formulations [A] and [B] of 

section-2.2.1, the formulation [B] is used here to obtain the computational solutions of 

the steady problem and to discuss their comparisons with the corresponding Koh 

solutions [10]. For a representative R113 flow case, specified by sufficiently fast U∞ = 2 

m/s, xe = 45, ∆T = 5º C, and gy = 0, the results obtained from steady solution are shown in 

Figures 45-49. Figure 45 compares, for a representative case, non-dimensional film 

thickness values predicted by computational solution of the complete steady version of 

the formulation described in section 2.2.1 with the numerical solution of the Koh 

formulation [10] described in section 2.2.2. 

It is seen that the computationally obtained values of film thickness are in good 

agreement with the classical similarity solution as the underlying boundary layer 

approximations for the Koh formulation [10] are approximately valid. For the case in 

Figure 45, comparisons of vapor and liquid u-velocity profiles and liquid and vapor 

temperature profiles as obtained from the two different solution approaches were found to 

agree with each other (not shown here for brevity). 

Thus film thickness, velocity profiles, and the temperature profiles from the 

simulations are in good agreement with Koh’s approximate solution. This establishes 

                                                                                                                                                 
 



125 
 

that, for the ranges of vapor speeds investigated here, the solution obtained from Koh’s 

similarity formulation (see section 2.2.2) yields film thickness, velocity, and temperature 

profiles with reasonable accuracy (e.g., both the formulations yield, as expected, linear 

velocity and temperature profiles in the liquid domain for the laminar condensate flow). 

For the case in Figure 45, Figure 46 shows the non-dimensional pressure variation 

π2(x, y) for 0 ≤ x ≤ 45 in the vapor domain al ong the x direction at y = 0.8 Note that, for 

the corresponding case in Figure 45, δ(xe) < 0.8. 

 
Figure 45: Comparison of film thickness profiles for steady solution of an external 

condensing flow of vapor over a horizontal plate 

For flow of R113 vapor with U∞ = 2 m/s, ∆T = 5 oC, p∞ = 1 atm, xe = 45, gy = 0, and Ye = 
0.004 m, this figure compares non-dimensional film thickness (δ) values for the steady 
solution (obtained from solving the steady governing equations) with those obtained from 
Koh’s similarity solution [10]. 
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Figure 46: Pressure variation along the plate obtained from simulations for steady 

solution of an external condensing flow of vapor over a horizontal plate 

For the steady solution of Figure 45, this figure shows, at a fixed y = 0.8 location, 
computationally obtained variation of non-dimensional pressure π2 with non-dimensional 
distance x.   
 
 

The Koh formulation [10] in section 2.2.2 neglects the pressure gradient terms in 

the governing momentum equations but, as seen from Figure 46, there is a zone 0  <  x  ≤ 

x* near the leading edge, up to which there exists a significant adverse pressure gradient 

that is needed to slow the vapor down by the amount that is consistent with the slow 

motion of the adjacent condensate and mass transfer across its interface. After this length 

x* (= x*/Ye), pressure gradient dπ2/dx reduces nearly to zero value and Koh’s [10] 

assumption of uniform pressure is valid.   
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Figure 47: Pressure variation across the plate obtained from simulations for steady 

solution of an external condensing flow of vapor over a horizontal plate 

For the steady solution of Figure 45, Figure 47 shows computationally obtained y-
directional variation of non-dimensional pressure π across different cross sections along 
the domain.  
 

The pressure gradient in this frontal zone (0 < x  ≤  x*) is very significant in 

determining the vapor and condensate dynamics for this horizontal condensing flow 

problem. As the vapor speed reduces, this pressure gradient is found to increase. 

For the same case, the non-dimensional pressure profiles (values of π2(y) for y ≥ δ(x) and 

values of ρ1π1(y)/ρ2 for 0 ≤ y ≤ δ(x)) across the plate at different cross sections are shown 

in Figure 47. The pressure discontinuities across the interface in Figure 47 arise from the 

last two terms on the right side of Eq. (3) and are found to be inconsequential because of 
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their smallness. The cross-sectional pressure rise seen in Figure 47 over the same frontal 

part, is needed to provide the necessary centripetal acceleration for bending some of the 

streamlines (see Figure 48) towards the condensate. As seen from Figure 46, the pressure 

variations over the locations x  ≥ x* are insignificant as π 2 (x, y = 0.8)  ≈ 0. In the 

computational results obtained from the formulation described in section 2.2.1, this 

bending of streamlines is assisted by pressure variations along and across the vapor 

domain as well as the variations in interfacial velocities (see, e.g., u1
i variations in Figure 

49). Unlike this solution of the full formulation, in the similarity solution obtained from 

the formulation summarized in section 2.2.2, the pressure and interfacial velocity 

variations are not present and the bending of the streamline is kinematically enforced by 

an assumed constant value of pressure, constant value of interfacial velocity (u1
i ≈ u2

i) 

independent of x, and condensate thickness values constrained by Eq. (19). Though, in 

the frontal portion of the plate, the computational solution of the full problem 

significantly differs in its pressure predictions from the Koh solution [10] obtained under 

the assumption of constant pressure, the two solutions differ by less than 1 % in the 

important heat transfer rate controlling values of film thickness variation. This agreement 

(within 1-2%) for film thickness variations was found to be valid over a range of flow 

parameters (2 ⋅ 105 ≤ Rex ≤ 6 ⋅ 107, 0.02 ≤ Ja ≤ 0.12, 0.0052 ≤ (ρ2/ρ1) ≤ 0.00526, 0.020 ≤ 

(μ2/μ1) ≤ 0.0212, 7 ≤ Pr1 ≤ 7.5) investigated by during this research. 

The differences in the pressure fields cause the differences between the simulation 

and the Koh solution in the converged values of the vertical and horizontal component of 
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condensate velocities at the interface viz. v1
i = v1(x, δ(x)) (not shown) and in u1

i = u1(x, 

δ(x)) shown in Figure 49. 

 

Figure 49 shows a mismatch between the horizontal components of interfacial 

velocities as obtained by computational solution of the full steady problem and those 

obtained by the Koh similarity solution [10]. This mismatch occurs over a leading edge 

zone (0   ≤   x  ≤  x*) that is the same for which there is significant variation in vapor 

pressure field (see Figure 46).  

 

 
 

Figure 48: Streamline pattern obtained from simulation for steady solution of 

external condensing flow of vapor over a horizontal plate 
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The streamline pattern (Figure 48) obtained from computations has been 

compared with the streamline pattern obtained from the Koh solution [10] for the same 

case. Both of the patterns were found to be very similar to each other. It is seen that the 

streamlines bend at the interface and that this bending reduces at the interface as one 

moves further downstream in x direction.  The background color in Figure 48 denotes the 

magnitude of x-directional component of velocity. 

 

 
Figure 49: Comparison of liquid velocity profile in x-direction for steady solution of 

an external condensing flow of vapor over a horizontal plate 

For the steady solution of Figure 45, this figure compares non-dimensional values of x-
directional liquid velocities at the interface (u1

i ) as obtained from the similarity solution 
[10] with those obtained from the computational solution. 
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It is also found that, over the relatively short distances and vapor speeds 

considered for this research, the transverse component of gravity insignificantly affects 

the film thickness values and velocity profiles of the steady solution. The transverse 

component of gravity does, however, affect the condensate pressure profiles in the y 

direction and it is also known - from the results given [1] for internal condensing flows in 

horizontal channels – that transverse component of gravity does affect the flow at 

sufficiently long downstream distances once condensate thickness is “sufficiently” large.  

This version of the simulation tool developed for this external flow problem is not able to 

go far enough downstream to detect the phenomena we have observed, in [1], for internal 

flows in horizontal channels. 

The above discussions for U∞ = 2 m/s describe a region 0 ≤ x ≤  x* (≈ 20) for 

which the pressure variations in the vapor phase (Figures 46-47) and interfacial speed u1
i 

(Figure 49) differ from the Koh solution [10] and yet the film thickness variations in 

Figure 45 are close to the Koh solution [10] for all x > 2 and not just x > 20. If U∞ is 

reduced, it is found that the value of x* decreases, film thickness values increase, and the 

physical values of interfacial shear Si ≈ µ1 (∂u1/∂y)|i also decrease as per Koh [10] 

predictions. 

5.1.2 Numerical Accuracy and Regularities of the Computationally Obtained 

Solutions 

The computational procedure for obtaining steady and unsteady solutions as 

described in section 3.2, was verified for accuracy and consistency with regard to 

different choices of the number of grid points as well as different choices of the 
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characteristic length Ye appearing in Figure 3 and in the definition of non-dimensional 

parameters listed in Eq. (16). 

Even though Figure 50 shows only the grid independence for the steady solution 

scheme employed here though similar grid independence has also been established for the 

reported unsteady solution scheme. 

      

Figure 50: Grid independence of computational solutions for external condensing 

flow of vapor on a horizontal plate 

For flow of R113 vapor with U∞ = 2 m/s, ∆T = 5 oC, p∞ = 1 atm,  xe = 50, and gy = 0,  this 
figure compares non-dimensional values of film thickness δ obtained from simulations 
for the same steady conditions under two different choices of grids (ni x nj) and domain 
heights Ye. Grid 1 corresponds to the grid size of 30 x 50 with Ye1 = 0.004 m and Grid 2 
corresponds to the grid size of 35 x 70 with Ye2 = 0.008 m. Non-dimensional values of δ 
and x for grid 2 are converted and compared in terms of grid 1 (by multiplying them by 
Ye2/ Ye1). 
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In Figure 50, film thickness variations for the same flow situation is 

computationally obtained for two different grids and two different choices of Ye values. 

In Figure 50, Ye = 0.004 m is used for “Grid 1” and Ye = 0.008 m is used for “Grid 2.” 

Furthermore, for “Grid 1” and “Grid 2,” the number of grid points represented by “ni x 

nj” values (see Narain et al. [2]) are respectively given as 30 x 50 and 35 x 70.  

 

Although Figure 50 only shows the nearly equal values of the two equivalent non-

dimensional film thickness values, similar proximity of the two solutions was confirmed 

for velocity, temperature, and relative pressure profiles as well. From computational point 

of view, it should be observed that shear driven horizontal condensing flows, as opposed 

to gravity driven flows ([2] , [20], etc.), require more iterations to converge.  

5.1.3 Other Comments/Results 

Since the computational cases deal with high vapor velocities (U∞  = 0.2 – 20 

m/s), it is natural to ask whether the Koh [10] assumption of laminar nature of the vapor 

flow holds for the near interface region. Since the near interface vapor flow is 

qualitatively similar to a boundary layer flow with suction, it can be assumed that the 

transition to turbulence criteria for such boundary layer flows – as given by Eq. (17.10) 

of Schlichting [45] – will yield reasonable estimates for determining whether or not the 

vapor boundary layer flow in the Koh problem [10] is laminar or turbulent. The 

computationally obtained vapor boundary layer (momentum) thickness Δv values in the 

Koh solution as well as the values obtained from the computational solution was used to 

verify that Eq. (17.10) of [45], viz. ρ2U∞∆v(x)/μ2 << 70,000, holds for all cases considered 
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here. That is, these vapor flows, because of the suction effects, appear to be strongly 

laminar at all x locations considered here. However, such vapor-phase boundary-layer 

stability arguments based on vapor suction rates, may miss “stability” or “noise-

sensitivity” of the associated condensate motion and this must be separately assessed in 

determining attainability and waviness of these flows. 

5. 2 Computational Results Obtained from Unsteady Solutions 

5.2.1 Unsteady Simulation Results That Indicate the Domain and Attraction Rates 

of the Steady Solution 

The unsteady computational solutions based investigations cover speeds U∞ in a 

range of 0.2 m/s < U∞ < 20 m/s (for the reported R-113 and similar vapors) and, for 

temperature difference ∆T, a range of 3 – 15˚C is covered. For this range, it is found that, 

if the unsteady solution was started at t = 0 from a reasonable initial guess for δ(x, 0), it 

would always seek a long–term time independent steady solution.  

The long-term (t → ∞) steady solution of the unsteady governing equations is 

found to be computationally equal (within 3 to 5% of computational error) to the steady 

solution obtained by solving the steady governing equations. This long-term (t → ∞) 

steady solution obtained this way is termed an “attractor” (like the way it is done for 

internal condensing flows) because unsteady solutions starting at different initial guesses 

are attracted to it.  

Though these solutions in Figure 51 show the existence of a steady attractor, it is 

observed that the phenomenon of attraction in Figure 51 shows a different attraction rate 
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to the steady solution at different downstream locations. The example shown in Figure 51 

is for R-113 vapor at U∞ = 1.7 m/s and ∆T = 5˚C.  

In Figure 51, the unsteady solution is started at t = 0 with an initial guess of δ(x, 

0) that is about 16% below the final attracting steady solution. A similar attracting 

behavior, though not shown here, exists if the initial guess was somewhat above the long-

term steady solution. 

 
Figure 51: Computationally obtained attracting zones for steady solution of external 

condensing flow of vapor over a horizontal plate 

For flow of R113 vapor with U∞ = 1.7 m/s, ∆T = 5°C, and gy = 0, this figure shows non-
dimensional film thickness values at different non-dimensional times given by the 
unsteady solution of the problem. An initial guess given at time t = 0 (about 16 % below 
the final long term solution) is seen to get attracted to the long term steady solution at 
different rates. The markings, at different times, demarcate the zones that have “nearly” 
converged to the steady solution from the zones that have not. 
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Figure 52: Rates of attraction at different x values for steady solution of external 

condensing flow of vapor over a horizontal plate 

For flow of R113 with U∞ = 1.7 m/s, ΔT = 5°C and gy = 0, this figure shows different 
rates of attraction versus time - as indicated by different representative deceleration rates 
- for different x values along the length of the plate. The value of the initial attraction rate  
∂∆/∂t (x,0) ≡  ∂∆/∂t|init as well as the “strength” of the attractors (as marked by the 
representative magnitude of deceleration rates associated with the slopes of the lines AB, 
A'B', etc.) decrease with increasing x. The initial guess of δ(x, 0) for the unsteady 
solution was 16% below the long term steady solution. 

 

 

It is seen from Figure 51 that the attraction to the steady solution takes 

progressively longer times for locations that are farther and farther downstream of the 

inlet. The steady solution “attractor” in Figure 51 is said to have a “strength” which 

diminishes with x. Here, by “strength,” one means the rate of steadily falling values of  
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∂∆/∂t as indicated by representative slopes of “∂∆/∂t vs. t” curves for different values of x 

(these slopes are indicated by representative line segments AB, A'B', etc. in Figure 52). 

As shown in Figure 52, for the no-noise unsteady simulation results at x = 0.12 m, 

initial guess at any x has a delay time 
D1τ  over which the attraction speed ∂∆/∂t| init does 

not change by much. 

 

 
 

Figure 53: Rates of attraction at different vapor speed values for steady solutions of 

external condensing flow of vapor over a horizontal plate 

For flow of R113 with ΔT = 5°C, gy = 0, and x = 30, the figure shows different rates of 
attraction versus time - as indicated by different representative magnitudes of 
deceleration rates associated with the slopes of the lines AB, A'B', etc. - at different vapor 
speeds. The initial guess of δ(x,0) for the unsteady solution was 16% below the long term 
steady solution. The Figure demonstrates higher rates of attraction for higher speeds. 
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Figure 54: Characterization of attraction rate for external condensing flow of vapor 

over a horizontal plate 

This figure shows computationally obtained curves depicting the rate of change of film 
thickness at x = 23 when the unsteady solutions approach the same long-term steady 
attractor from three different initial guesses for flow of R-113 vapor at U∞ = 2 m/s, gy = 0 
and ∆T = 5˚ C. The three initial guesses 1, 2, and 3 are respectively 2 %, 5 %, and 7 % 
away from the unique long-term steady attractor. The subsequent time duration (marked 
τRep) over which a nearly constant deceleration rate ( ∂ 2Δ/∂t2 ) exists is marked by nearly 
equal constant decelerating slopes of lines AB, A'B', A"B" on curves X, Y, and Z. This 
shows that for a given vapor speed, the above characterized attraction rates over τRep are 
associated with the long term steady solutions rather than the values of the initial guesses. 

 

Following this, over time duration τeff, there is a nearly constant representative 

deceleration rate 2 2

Rep|(no noise)−
∂ ∆ ∂t  (termed “attraction rates” and measured by the slopes 

of lines AB, A´B´, etc.). This deceleration rate is needed to impede the attracting solution 

so it can reach a nearly steady ( ∂∆/∂t  ≈ 0) behavior over a subsequent time duration D2τ .  
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 Figure 53 shows “∂∆/∂t vs. t” curves at x = 30 for three different vapor speeds. 

For all the speeds compared in Figure 53, initially guessed δ(x, 0) values were 

approximately 16 % below their corresponding long-term steady solutions. In Figure 53, 

it can be seen that the attraction rate  2 2

Rep|(no noise)−
∂ ∆ ∂t  increases with increasing speed 

U∞ and, through Figure 52, it can be seen that the attraction rate decreases with 

downstream distance. 

Figure 54 shows, at x = 23 and U∞ = 2 m/s, “∂∆/∂t vs. t” curves for different initial 

guesses. It is shown in this Figure that the “attraction rates” obtained over the time 

segment 
Repτ are, indeed, more or less independent of initial conditions and thus represent 

the inherent character of the attracting steady solution. This justifies use of the magnitude 

of deceleration rates - given by the approximate slopes of the line segments AB, A'B', etc. 

- as “attraction rates.” The above described trends were established for R113 flows for a 

range of vapor speeds 0.2 m/s ≤ U ∞ ≤ 20 m/s, a range of temperature differences 3˚C ≤ 

∆T  ≤ 15˚C, and a range of domain lengths 0 ≤  Xe  ≤  0.4 m. 

5.2.2 Stability of the “Steady Attractors”/Steady Solutions to Initial Interfacial 

Disturbances 

The long term steady limit of the unsteady solution was found to exist (and be the 

same as the steady solution of the steady problem) for this horizontal external flow 

problem if the inlet speed U∞ was above a certain threshold value (about 0.2 m/s for the 

example case discussed here). These solutions were tested for their response to the initial 

disturbances on the interface. Different vapor speeds ranging from 0.2 to 25 m/s were 
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tested for interfacial disturbances of different non-dimensional wavelengths ranging from 

5 to 30. Over the downstream distances investigated here, these external flows of vapor 

were found to be quite stable to the forward moving disturbances on the interface - 

whether or not transverse gravitational field was present.  

 

 

Figure 55: Dynamic stability investigation of external condensing flow of vapor over 

a horizontal plate 

For flow of R113 vapor with U∞ = 3 m/s, xe = 50, ∆T = 5oC, gy = 0, this figure shows the 
stable response of the long term steady solution to the rather large initial disturbance 
given at time t = 0. The non-dimensional disturbance is given as δ(x, 0) = δsteady (x) [1 + 
εo δ′(x, 0)], where δ′(x, 0) ≡ sin (2πx/ λo), εo = 0.35 and λo = 5. The disturbance dies out, 
almost completely, by the time t = 1500. 
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A representative example of this stable response to interfacial disturbances is 

shown in Figure 55 where - even in the absence of the transverse component of gravity - 

the large initial disturbances die out for the inlet vapor speed of U∞ = 3 m/s and ∆T = 

5oC.  

Computations show very stable response to these disturbances and all of these 

disturbances die out as the waves move downstream. The response to imposed 

disturbances in the initial (t = 0) values of velocities (not shown here) was found to be 

similar to the ones in Figure 55. However the unsteady solutions, as expected, showed 

longer persistence (i.e. smaller “decay rates”) in the weakly attracting (i.e. smaller 

“attraction rates”) downstream portions of the flow. Recall that the measure of “attraction 

rates” was chosen over “decay rates” for this analysis because: (a) they are 

computationally easier to obtain, (b) they are physically meaningful even in the non-

linear context (i. e. without the requirement of modeling time behavior by an exponential 

function of time), and (c) they also relate to physical attainability of steady flows. The 

response of the solution to disturbances when transverse downward component of gravity 

is present was also found to be equally stable because of the thinness of the film over the 

distances our computations could be implemented.  

 

The above described response is different than the response [20] for the gravity 

driven external flow problem of Nusselt [28], where the gradually speeding condensate 

allows disturbances on the interface to grow only after a certain critical distance x and 

only for wavelengths λ ≥ λ cr, where λcr is a certain critical wavelength. For gravity-driven 
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flows, it was this inertial instability associated with speeding condensate that marked the 

transition from smooth laminar to wavy laminar flows. This typically happened when the 

condensate Reynolds number Reδ (≡ ∫
∆

0
111 μ/d).(ρ4 yx,yu ) - which represents the size of 

inertia to viscous forces associated with fluctuations (a quantity which increases with x) - 

was computationally found to be higher than some critical value in the range of 20  ≤ 

Reδ ≤ 40. In contrast, the above described stable response for the Koh problem involved a 

much more weakly increasing Reδ values with Reδ ≤ 10. 

Therefore the reasons for this external flow showing very strong and stable 

response to initial disturbances are: 

• The condensate flow is slow because it is not driven by gravity, and hence, the 

mechanism for the wave evolution on the interface is very different as compared to 

the gravity driven flows in which the liquid condensate accelerates. 

• The well defined far field pressure prescription of p∞ (along AB and BD' in Figure 3) 

and the process of condensation (mass transfer at the interface) make the flow more 

stable as compared to the known Kelvin Helmholtz instability (see [46] – [47]) for 

adiabatic (air water type) flows which do not involve gas-phase suction or mass 

transfer in to the liquid phase. As shown in Figure 55, this well known dynamic 

instability for adiabatic flows is truly suppressed. This suppression of Kelvin 

Helmholtz instability for the interface is over and above the earlier described issue of 

delayed transition to turbulence in the vapor boundary layer due to vapor suction 

effects. 
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 Despite the fact that, in the presence of non-zero interfacial mass flux, these flows 

show no instabilities over the distances considered, one still expects that at larger 

downstream distances, the flow will undergo transition to waviness whether or not 

transverse gravity is present.  

5.2.3 Sensitivity of “Attractors”/Steady Solutions to Persistent Condensing-Surface 

Noise and Stability Analysis 

Irrespective of their stability to initial disturbances superposed on the interface, 

the stable solutions obtained for this external condensing flow over a horizontal plate are 

found to be sensitive to small and persistent condensing-surface noise of standing wave 

types - whose single representative Fourier component is modeled as shown in Figure 56. 

While response of condensing flows to these types of noise has been considered for 

internal condensing flows in [2]-[6] and also for an external condensing flow ([28]), this 

thesis reports, for the first time, a quantitative analysis of the resulting wave forms along 

with a quantitative measurement of the resulting noise-sensitivity. The ever-present 

miniscule condensing surface noise is assumed to have a standing wave pattern in 

transverse displacement of the plate (of the type indicated in Figure 56) with a 

representative Fourier component of the form: 

                                                                                     (29) 

where,  λp (≡ λ·Ye)  is a physical wavelength ( ≥  0.02 m), fp  (≡ f·U∞/Ye) is a physical 

frequency (0 - 15 Hz), and Dmax is a physical amplitude (0  – 5 µm) with which the 

condensing-surface is likely to vibrate under typical ever-present noise conditions that are 
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neither seen nor heard. The flow sees this noise through the following boundary condition 

for the vertical component of liquid velocity at the bottom wall location (y = 0):  

                              v1(x, 0, t) = vmaxsin(2πx/λp)·sin(2πfpt).                                         (30) 

Since, v1(x, 0, t) = ∂ Dw(x,t)/∂t , it follows that the amplitude vmax (≡ εw·U∞) in Eq. (30) 

above is related to Dmax in Eq. (29) by 

                                              vmax = -2πDmaxfp  .                                                        (31) 

It has been established – by post processing the details of the resulting wave 

forms – that the response of the interface is of the form  

            Δ(x, t) - Δ(x)steady = {a(x) sin[(2πx/λp) + γ0(t)]·cos[(2πfpt)+ψ0(x)]},                 (32) 

where, a(x) is the x-dependent amplitude of the resulting standing wave pattern on the 

interface.  

Thus, waves on the interface, in response to the bottom wall noise, do have the 

same spatial wavelength λp and temporal frequency fp as that of the displacement noise 

component Dw(x,t) experienced by the condensing-surface. However, the phases of the 

interfacial waves slightly differ from that of the condensing-surface’s transverse 

displacement wave. The spatial phase difference is time dependent and is denoted by 

“γ0(t)” and the temporal phase difference is location dependent and is denoted by “ψ0(x).”  

Figure 57 shows the unsteady interface at different times in response to the 

representative condensing-surface noise. For the cases considered in this research, over a 

wide range of different affecting parameters, it is found that the amplitude a(x) of these 

interfacial waves increases with x and can be determined. 
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Figure 56: A schematic defining structure of ever-present condensing wall  

This figure depicts the definition of the type of miniscule ever-present noise given to the 
condensing surface to investigate the sensitivity of condensing flows to persistent 
disturbances.  The inset shows the displacement profile of the condensing surface at two 
out-of-phase instants associated with a mode of the standing wave.   

 

However spatial phase difference function γ0(t) is a sufficiently weak function of 

time and the temporal phase difference ψ0(x) is a sufficiently weak function of space that 

they cannot be determined, with sufficient precision, with the help of the simulation tool 

employed here. The spatially growing noise-induced waves are expected to be related to 

Reδ values – which represents both the cross-sectional liquid mass-flux and the effects of 

local interfacial mass-flux m . The noise-sensitive values of the amplitudes a(x) ( ≡  

a(x)/Ye) of these interfacial waves were computationally obtained for different flow cases 

for a range of different non-dimensional parameters viz. wavelength λ ( ≡ λp/Ye), bottom 
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wall velocity amplitude εw (≡ vmax/U∞), and frequency f (f  ≡  1/T w ≡  f p·Ye/ U∞). The 

amplitude a(x) values were measured by looking at several peak values of 

computationally obtained “δ(x,t) - δ(x)steady” signals in the space-time domain.  

 
Figure 57: Response of external condensing flow of vapor over a horizontal plate to 

the ever-present minuscule condensing surface vibrations 

For R113 vapor with U∞ = 3 m/s, xe = 48, ∆T = 5oC, gy = 0, this figure shows unsteady 
response of the flow to the typical condensing surface noise with λ ( ≡  λp/Ye) = 10, Tw (≡ 
U∞/(f p·Ye)) = 240, εw (≡ vmax/U∞) = 3·10-6.  The noise given to the condensing surface is 
represented as v1(x, 0, t) = vmaxsin(2πx/λp)·sin(2πfpt), where v1(x, 0, t) is condensing 
surface velocity. Figure shows non-dimensional film thickness δ(x,t) plotted vs. x at two 
different non-dimensional times  t = 140 and t = 260. The steady film thickness values 
δ(x)steady are shown as an initial solution at time t = 0. 
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Figure 58: Growth rate of amplitude of interfacial wave in response to the ever-

present noise for an external condensing flow of vapor over a horizontal plate 

For different ranges of condensing surface noise parameters, namely: time period T, 
wavelength λ, and condensing surface velocity vibration amplitude εw, and different 
vapor speeds U∞; this figure plots computationally obtained non-dimensional a/Dmax 
values (amplitude of interfacial waves divided by amplitude of bottom wall displacement 
waves) against dimensional values of x (= x·Ye). The range of R-113 vapor (with gy = 0) 
flows considered here is described in the inset. 

 

After obtaining the values of a(x) at different x locations, for different flow cases 

involving different Dmax values , linear curves – as in Figure 58 - were found to be 

adequate fits to the data of a(x) over the range of distances considered. This linear 

relation can be expressed as  

a(x)/Dmax = 
1c x  + 

2c                                (33) 
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where 
1c  and c2 are respectively found to be 120.9 (m-1) and 3.00 for R-113 flow 

parameters indicated in the inset of Figure 58. 

If the intrinsic characteristic speed definition UChar = hfg
1/2 and characteristic 

length definition LChar = µ1/(ρ1·hfg
1/2) are used, Eq. (33) is rewritten in the following non-

dimensional form: 

    a(x)/Dmax = c1(x /LChar)  + 
2c ,                                                 (34) 

where c1≡ 1c · LChar = 1.1·10-7 , c2 = 3.00, and  

                    x/LChar ≡ x·ρ1hfg
1/2/µ1 = Rex/u*,                                                       (35) 

where Rex =ρ1U∞x /µ1 and u* = U∞ /hfg
1/2. Combining equations (34)-(35), the result in 

Figure 58 is summarized by the following important non-dimensional form of Eq. (34): 

                 a(x)/Dmax = Φ ·Rex + 
2c                                              (36) 

where, Φ ≡ (c1/u*), c1 = 1.1 ·10-7, and c2 = 3.00.  

By looking at the parameter variations considered for Figure 58, it is easy to 

conclude that the reported values of constants c1 and c2 in Eq. (34) can, at most, depend 

on passive fluid parameters ρ2/ρ1, µ2/µ1, and Pr1. Figure 59 shows three different curves 

C1, C2, and C3 representing a(x)/Dmax vs. Rex for three different non-dimensional vapor 

speeds u* (corresponding to U∞ = 1 m/s, 2 m/s, and 3 m/s).  

It can be seen that for the same set of fluid parameters (μ1, ρ1, etc.) that 

correspond to the same value of the constants c1 and c2 in Eq. (34), as the vapor speed U∞ 

reduces  the rate of growth of a(x)/Dmax (denoted by the slope value Ф) with respect to 

Rex increases (in Figure 59, Ф1 < Ф2 < Ф3). 
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Figure 59: Effects of vapor speed on growth rate of interfacial wave amplitude in 

response to the ever-present noise for an external condensing flow of vapor over a 

horizontal plate 

For different cases considered in Figure 58, this figure plots computationally obtained 
a/Dmax values (amplitude of interfacial waves divided by amplitude of bottom wall 
displacement waves) vs. Rex (= ρ1U∞ x /µ1) for different vapor speeds U∞. Three curves 
C1, C2 and C3 have different slopes Φ1, Φ2, Φ3 such that the slope value Φ increases while 
speed U∞ decreases. The ranges of Tb, εb, and λ values are same as in the inset of Figure 
58. 

 

Retrospectively, Eqs. (33)-(36) summarize the important wave amplitude growth 

relation obtained from computational experiments.  But it leaves the question open as to 

what combination of local physical variables bring about the presence of the physical 

variable x  in Eq. (33) so as to make the right side of Eq. (33) independent of changes in 
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U∞ and ∆T  (see Figure 58). We conjecture that x in Eq. (33) represents the ratio of 

M / m , where 1 1
0 0

M d d
∆

≡ ρ ⋅ ≡ ⋅∫ ∫



x

u y m x is the cross sectional liquid mass-flux associated 

with the underlying steady flow and 
m is associated interfacial mass-flux. This conjecture 

is based on the fact that x = (½)· M / m because 1 fgk [ ( )] [1/ ]≅ ∆ ∆ ⋅m  T/ x h  and ∆( x) 

approximately satisfies Eq. (23). Since both M  and 
m  scale linearly with U∞ and ∆T, 

this conjecture seems to be a valid generalization for the variable x appearing in Eq. (33).  

Since Figures 58-59 establish nature of spatially growing interfacial waves in 

response to ever present noise, one needs to address: (i) the issue of waviness with an 

intent to identify the downstream zones for which wave-amplitudes are sufficiently large 

relative to the mean thickness (say > 15%) and, therefore, one cannot effectively treat the 

underlying laminar flow as essentially smooth; (ii) the issue of onset of turbulence which 

requires identification of downstream zones, where the various noise-induced waves will 

grow so much beyond 15% of the amplitude that they will non-linearly superpose to 

define a steady-in-the mean flow which is fundamentally different from the underlying 

smooth and steady laminar attractor. 

In the above context, when attractors are attainable over U∞ > U∞* (see next 

section for computational value of this lower speed), it is meaningful to characterize 

waviness by comparing the steadily growing amplitude a(x) of interfacial waves to the 

local steady film thickness Δ(x) values. The steady local film thickness values are 

predicted with good accuracy by Koh’s analytical solution [10] and are well correlated by 
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the following approximate correlations (given by Fujii and Uehara in [48] and utilized by 

Rose in [24]): 

                      ∆(x)/x   = [0.45Rex
1/2(1.2 + G-1)1/3]-1

,  0.1 ≤ G ≤ 10                                       (37)                                                

where Rex (≡ ρ1U∞x /µ1) is called the local Reynolds number, and G ≡ [Ja /Pr1][(ρ1µ1/ 

ρ2µ2)1/2]. 

In order to obtain a criterion for determining Rex|wavy-cr values such that Rex > Rex|wavy-cr 

implies: 

a(x)/Δ(x) ≥ 0.15,          (38) 

Eq. (36) and (37) can be combined and written in the form: 

    a(x)/Δ(x) = D*max·ψ(Rex, G, u*)         (39) 

where 

 D*max  ≡ Dmax·ρ1· hfg
1/2/µ1,             (40) 

and  

ψ(Rex, G, u*) ≡ c1·[0.45Rex
1/2(1.2 + G-1)1/3] +[c2·{0.45Rex

1/2(1.2 + G-1)1/3}/{Rex/u*}].       

    (41) 

Since the relative interfacial wave amplitude a(x)/Δ(x) depends strongly on the 

value of displacement wave amplitude Dmax, it is only meaningful to compare these 

values at the same values of Dmax. For ever-present miniscule bottom wall vibrations 

involving Dmax values of 1 – 2 microns, the value of D*max  ranges, for R-113 cases, from 

1000–2000. In this thesis work, therefore, D*max = 2000 will be considered the 

characterizing level of maximum condensing-surface noise present and will be used in 

the waviness characterization criterion given by Eq. (38). 
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Choosing D*max = 2000, for a representative flow of R-113, corresponding to u* = 

0.0079 (U∞ = 3 m/s) and (5°C < ΔT < 100 °C), a plot of ψ  ≡ (1/ D*max )· a(x)/Δ(x) versus 

Rex is shown in Figure 60. Figure 60 shows an increase with Rex in the values of the 

relative amplitude a(x)/Δ(x). The criterion given by Eq. (38) results in 

  5·105 ≤ Rex|wavy-cr ≤ 14.25·105 ,                                                  (42) 

for the range of G values (0.5 ≤ G ≤ 10) con sidered. It is clear from Figure 60 that 

Rex|wavy-cr for a given value of u* = 0.0079, and D*max  = 2000, depends on the value of G 

and can be written as Rex|wavy-cr = Rex|wavy-cr(u*, D*max, G) = 
x|wavy-cr Re  (G). The graph of 

this 
x|wavy-cr Re  (G) as function of G, for a constant value of u*, is shown in Figure 59. 

For G = 1 (ΔT ≈ 10° C) and D*max = 2000, and a range of u* values from 0.00132 

to 0.0132 (U∞ = 0.5 m/s to 5 m/s), a plot of ψ ≡ (1/ D*max )· a(x)/Δ(x) versus Rex is shown 

in Figure 62. Figure 62 also shows an increase in the values of the relative amplitude 

a(x)/Δ(x) with Rex. For the range of u* values (0.00132 to 0.0132) considered, the 

criterion given by Eq. (38) results  

           

               6.25·105 ≤ Rex|wavy-cr ≤ 12.75·105 ,                                (43) 

 

It is clear from Figure 62 that Rex|wavy-cr for a given value of G = 1 and D*max  = 

2000, depends on the value of u* and can be written as Rex|wavy-cr = Rex|wavy-cr(u*, D*max, 

G) = 
x|wavy-cr Reˆ  (u*). The graph of this

x|wavy-cr Reˆ  (u*) as function of u*, for a constant 

value of G, is shown in Figure 63. 
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Figure 60: Characterization of critical Reynolds number Rex|wavy-cr which marks 

transition from smooth to wavy annular regime for different ‘G’ values for an 

external condensing flow of vapor over a horizontal plate 

For R-113 vapor with constant value of u* (≡ U∞/UChar) = 0.0079 (i.e. U∞ = 3 m/s) and 
gy = 0, this figure plots function ψ(Rex, G, u*) versus Rex (≡ ρ1U∞ x /µ1) for a range of  
G values varying from 0.5 to 10. G is given as (Ja /Pr1)·(ρ1µ1/ ρ2µ2)1/2 This Figure 
marks the critical Reynolds number Rex|wavy-cr for ∆max = 2 microns, such that for 
Rex values higher than this the growth of amplitude of waves on the interface relative to 
mean film thickness due to condensing-surface vibrations exceeds the value 0.15. This 
growth is given by a(x)/Δsteady(x) (≡ D*max· ψ(Rex, G, u*)) where the function ψ(Rex, 
G, u*) is given by Eq. (41) and G is given as (Ja /Pr1)·(ρ1µ1/ ρ2µ2)1/2. As seen from the 
figure, the value of Rex|wavy-cr increases with increase in value of G. 
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Figure 61: Variation of critical Reynolds number Rex|wavy-cr with ‘G’ for external 

condensing flow of vapor over a horizontal plate 

For the data in Figure 60, this figure plots variation in Rex|wavy-cr with respect to G at a 
fixed value of u* (≡ U∞/UChar) = 0.0079 (U∞ = 3 m/s). 
 
 

The spatially increasing amplitude of these waves with increasing Rex (or Reδ) 

suggests, at some x ≈ x cr (or Rex ≈ Rex|Trans-cr) various Fourier modes of noise induced 

waves will grow so much that they will non-linearly interact to form a mean quasi-steady 

solution that is qualitatively different from the underlying steady laminar “attractor” and 

such an Rex|Trans-cr can be said to mark the onset of turbulence or a qualitatively different 

wavy-laminar flow.  
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Figure 62: Characterization of critical Reynolds number Rex|wavy-cr which marks 

transition from smooth to wavy annular regime for different vapor speeds for an 

external condensing flow of vapor over a horizontal plate 

For pure R-113 vapor flow with constant value of G = 1 and gy = 0, this figure plots 
function ψ(Rex, G, u*) versus Rex (≡ ρ1U∞ x /µ1) for a range of  u* (≡ U ∞/UChar) values 
varying from 0.001317 to 0.01318. This figure marks the critical Reynolds number 
Rex|wavy-cr for ∆max = 2 microns, such that for Rex values higher than this the growth of 
amplitude of waves on the interface relative to mean film thickness due to condensing-
surface vibrations exceeds the value 0.15. This growth is given by a(x)/Δsteady(x) ( ≡ 
D*max· ψ(Rex, G, u*)) where function ψ(Rex, G, u*) is given by Eq. (41) and G is given as 
(Ja /Pr1)·(ρ1µ1/ ρ2µ2)1/2

. As seen from the figure, the value of Rex|wavy-cr increases with 
decrease in the value of u*. 
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Figure 63: Variation of critical Reynolds number Rex|wavy-cr with vapor speed for an 

external condensing flow of vapor over a horizontal plate 

For the data in Figure 62, this figure plots variation in Rex|wavy-cr with respect to u* ( ≡  
U∞/UChar) at a fixed value of G =1. 
 

 

Towards understanding the relevant physics for the onset of this type of transition, 

this thesis presents an investigation of the unsteady physics of the solutions obtained for 

U∞ > U∞*.  A combination of the analysis reported below and future experiments may 

help anybody to obtain Rex|Trans-cr > Rex|wavy-cr that marks the above stated transition. If 

one were to investigate the likelihood of an evolution of a solution from its initial guess (t 

= 0) to its final long term attractor in the presence of noise source and instabilities 

(instabilities are absent for this case), one needs a measure of the ratio of the tendency of 
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the waves to grow – hence to move away from the relevant smooth laminar attractor - to 

the tendency of the initial guess to move towards the relevant smooth laminar attractor 

(which is, for this problem, the long term steady solution). As established earlier for 

Figure 54 in the absence of persistent noise,  

               Strength of attraction rate ∝  2 2

Rep|(no noise)−
∂ ∆ ∂t             (44) 

Since the interfacial noise, in the presence of persistent condensing surface noise, is given 

by Eq. (32), a measure of acceleration associated with the tendency of interfacial waves 

to move away from the underlying smooth attractor is obtainable by taking the maximum 

magnitude of the principle second time derivative of Eq. (32). This gives: 

Acceleration associated with growing interfacial waves ∝  2 2∂ ∆ ∂t (for noise) ≈ a(x)(2πfp)2       

   (45) 

The ratio of the noise-induced destabilizing acceleration to the acceleration associated 

with the underlying stabilizing “attraction rate,” as suggested respectively by Eqs. (44) 

and (45), is defined by the parameter P given below: 

                      
2 2 2

p Rep|(no noise)
P { ( )(2 ) } }/{

−
≡ π ∂ ∆ ∂ta x f                 (46) 

Clearly, based on discussions of dependency of terms in (45) and (46), one 

expects the parameter P to have significant dependence on the downstream distance x and 

inlet vapor speed U∞. Since a(x) and 2 2

Rep|(no noise)−
∂ ∆ ∂t  in (46) are obtained directly from 

computational simulations for any flow of interest. If Ye in Eq. (16) is replaced by LChar ≡ 

µ1/(ρ1·hfg
1/2), the non-dimensional parameter P depends on a non-dimensional value of x 

given by Rex/u* and the original non-dimensional parameters (see Eq. (16)): Re1 = u*, Ja, 
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Fr-1
y, ρ2/ρ1, μ2/μ1, Pr1, and We.  In addition, the non-dimensional noise parameters 

associated with physical values of Dmax and fp in Eq. (46) become D*max and f  = fp*/u*, 

where fp*≡ (µ1· fp)/(ρ1·hfg). An assumed “typical” range, taken here to be: 0.5 μm ≤ Dmax ≤ 

2 μm, 5 Hz ≤ fp ≤ 15 Hz, is needed for determining a “typical” range of critical values of 

P (viz. Pcr values) that are expected to mark the onset of the expected transition to 

turbulence or a qualitatively different wavy-laminar flow. In what follows, for the 

“typical” range of noises, it will be assumed that P – like a(x)/Δ(x) - depends significantly 

on u*, Rex, and G and insignificantly on other remaining non-dimensional parameters. 

As stated earlier, the evolution of initial guess in the vicinity of the underlying 

steady solution or attractor depends on the parameter P - since this parameter compares 

the tendency of the solution to move away from the smooth steady solution to the 

tendency of the solution to move towards the steady solution.  If this parameter P 

approaches a certain critical value (obtained by experiments), the noise components will 

reach a threshold level that would initiate mutual non-linear interactions that would 

fundamentally alter the nature of the underlying steady solution/attractor. This critical 

value of P, denoted as Pcr could be assumed, to begin with, to be of the form Pcr = Pcr(Rex, 

u*, G, D*max) as is the dependence for a(x)/Δ(x) in Eq. (39). However, only experiments 

can determine which of the parameters besides Rex and D*max are really important in 

determination of Pcr values which must yield a critical value of Rex (termed Rex|Trans-cr) 

that satisfies Rex|Trans-cr > Rex|wavy-cr. For discussion purposes, instead of experimentally 

determining Rex|Trans-cr and Pcr for a given flow, here it is illustrated how to use a 

computationally obtained relationship of P = P (Rex, u*, G, D*max) and an a priori 
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estimate of Pcr to obtain an estimate of Rex|Trans-cr for a specific flow case. For example 

consider an R-113 flow case with G = 0.48, u* = 0.0036, D*max = 2000 (which 

corresponds to Dmax = 2 μm), fp = 15 Hz, and Pcr = Pcr-guessed ≈ 2.2·106. Using the earlier 

described methodology (see Eq. (38)-(41)) for estimating Rex|wavy-cr, it is found that 

Rex|wavy-cr ≈ 7.8·105. The resulting P versus Rex curve is shown in Figure 64.   

 

 
Figure 64: Computational criteria to determine critical Reynolds number Rex|Trans-cr 

which marks transition from laminar to turbulent regime for an external 

condensing flow of vapor over a horizontal plate 

For an R-113 flow case with G = 0.48 (i.e. ∆T = 5oC), D*max = 2000 (i.e. Dmax = 2 µm), 
u* = 0.0036 (i.e. U∞ = 1.4 m/s), fp = 15 Hz, the value of P is computationally obtained 
from Eq. (46) and plotted as a function of Rex. For Pcr-guessed ≈ 2.2·106, the shaded portion 
marks the post –transition flow regime. 
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The shaded portion in Figure 64 represents the post transition flow regime of Rex 

≥ Rex|Trans-cr ≈ 9.8·105 and P ≥ Pcr.  

 

General Remarks About Onset the Proposed Transition Criterion for Rex|Trans-cr  

 It is clear from the results described above that for the transition scenario 

presented above, the estimate of critical value or values of Pcr for the parameter P 

introduced in this thesis work plays a very important role in describing the flow behavior 

at very high Rex > Rex|wavy-cr values - even as the underlying steady flow remains stable to 

initial disturbances. The interplay of decreasing attraction strength to the attractor and 

increasing strength of the growing waves tries to dictate a transition away from the 

underlying attractor. This analysis for marking the onset of transition to turbulence or a 

qualitatively different wavy-laminar flows by looking at high Rex behavior in the range of 

Rex|wavy-cr  ≤ Rex ≤ Rex|Trans-cr could not have been achieved by the traditional method of 

sole reliance on analyses that are based on classical instability mechanisms associated 

with initial disturbances. Therefore the methodology presented here is valuable for 

marking the onset of transition for many flows whose turbulence type transition criterion 

is not preceded by instability to initial disturbances. Furthermore, even for flows whose 

march to turbulence is preceded by a series of instabilities (an example of which is 

progressively repeated occurrences of oscillatory instabilities in the so called Ruelle-

Takens [49] scenario), a synthesis of stability analysis based on initial disturbances and 

an analysis of the type introduced here for persistent noise-induced disturbances may give 

more meaningful results. 
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5.2.4 Non-attainability of Steady Film Flows at Lower Vapor Speeds 

 The computational results presented so far in sections 5 were mainly for R113 

vapor flows at speeds: 10 m/s > U∞ > 0.2 m/s. As one approaches the lower vapor speeds 

(U∞ ≤ 0.2 m/s) in Figure 65, unsteady solutions show non-existence of a steady long term   

(t → ∞) limit that exists for U∞ > 0.2 m/s. One is tempted to say that the steady solutions 

for  U∞ > 0.2 m/s loses stability as speed U∞ is lowered further but the situation is 

different because one does not find, at least computationally, a steady solution for U∞ < 

0.2 m/s. Since one does not have a steady solution in this range, one cannot say that the 

steady solution for U∞ < 0.2 m/s has lost its stability. This non-existence of a steady limit 

is a gradual phenomena which is depicted in Figure 65. The signs of non-existence of a 

steady limit is especially apparent in the aft portion of the flow for vapor speed U∞ = 0.08 

m/s. This is different than noise-sensitive steady limits discussed earlier for higher speeds 

(also see U∞ = 0.2 m/s in Figure 65 which exhibits existence of a steady limit). This fact 

is more apparent through Figure 66 which plots long term physical values of rate of 

change of film thickness ( ∂∆/∂t) at a fixed ‘x’ location (x = 30). It can be seen that as 

vapor speed reduces below some critical value (below 0.2 m/s), the rate of change of film 

thickness starts increasing indicating above its effectively zero value (which is defined in 

Figure 66, within computational errors, to be 1.5x10-7).  

 This sustained unsteadiness at such low vapor speeds implies non-attainment of 

any limiting steady solution of the film condensation type and one expects an eventual 

long time behavior that involves a more complex liquid-vapor morphology.  
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Figure 65: Unsteady behavior of solutions at low vapor speeds for an external 

condensing flow of vapor over a horizontal plate 

The figure plots two different sets (for U∞ = 0.2 m/s and U∞ = 0.08 m/s) of long term film 
thickness values δ (x, t) with x at large non-dimensional times t = 22 s and 34 s. The 
flows are of R113 vapor at ∆T = 5°C and initial conditions (not shown) for each of these 
cases was the Koh similarity solution [10]. For U∞ < 0.2 m/s, the aft portions of these 
curves suggest non-existence of

t
limδ(x,t)
→∞  

 

 It is known that, as vapor speed reduces, the available shear stress for driving the 

thin liquid film reduces and, also, more kinetic energy of the vapor is deflected away 

from the condensate (the upward bending streamlines in Figure 48 cover more of the 

leading edge and pressure gradients near the leading edge – as shown in Figure 66 - 

become sharper).  
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Figure 66: Increasing nature of effective unsteadiness at lower vapor speeds for an 

external condensing flow of vapor over a horizontal plate 

The figure plots long term steadiness measure ∂∆
∂t

(estimated at x = 40) with free stream 

speed U∞. The flows are of R113 vapor at ∆T = 5°C. The values of ∂∆
∂t

for U∞ > 0.2 m/s 

is considered effectively zero within computational error. This suggests existence of a 

long time steady solution. However the rising positive values of ∂∆
∂t

for U∞ < 0.2 m/s 

suggest non-existence of a long time steady solution. 
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Figure 67: Trend of normalized dissipation rates with vapor speeds for an external 

condensing flow of vapor over a horizontal plate 

For flow of R113 vapor with ∆T = 5°C, Xe = 0.2 m, and gy = 0, this figure plots 
normalized viscous dissipation rates φ/φref  (see Eq. (A.27) in the Appendix for the 
definition of φ) obtained from steady and unsteady (long-term) steady solutions in a 
representative control volume given by 0 < x < 40 and 0 < y < 0.5. As the vapor speed U∞ 
reduces below 0.2 m/s, dissipation rates can be seen becoming effectively equal to the 
zero value associated with U∞ = 0. 

 

 The gradualness of the loss of the above described steady limit (i. e. existence of 

steady film wise solution) is further demonstrated by insufficient availability of 

mechanical energy (i.e. near zero values of viscous dissipation rates in Figure 67). In 

Figure 67, the viscous dissipation rate φ (see Eq. (A27) in the Appendix at which energy 

is dissipated in the interior of the vapor and the liquid phases inside any representative 

control volume for which long term steady solutions exist, it is observed that, as vapor 
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speed decreases (and approaches values below U∞  = 0.2 - 0.3 m/s), the dissipative energy 

asymptotically approaches negligible or near zero value.Figure 67 shows normalized 

dissipative energies (φ/φref) as obtained by steady as well as long-term steady solutions of 

this problem in a representative control volume defined by 0 < x < 40 and 0 < y < 0.5.  

 Even though the energy dissipated in any control volume depends on its size, it 

was observed that the normalized values follow exactly the same trend irrespective of the 

size of the control volume. Here the normalizing dissipation rate φref  is the value of φ for 

the chosen control volume at speed U∞  = 3 m/s. In Figure 67, the value of  φref =  

3.48x10-2  W for U∞ = 3 m/s and a control volume defined by 0 < x < 40 and 0 < y < 0.5. 

For vapor speeds between 1 m/s < U∞ <  3 m/s, the thick line in Figure 67 shows φ/φref 

values as obtained from the steady solutions while the dotted line in Figure 67 shows 

φ/φref values obtained from long-term steady limits of unsteady solutions for 0.2 m/s < 

U∞ <  3 m/s. 

 There were some algorithmic issues in the steady solver for 0.2 m/s < U∞ < 1 m/s 

whose improvements were not considered necessary and therefore were not included for 

results in Figure 67. It should be noted that the integral theorem on expended mechanical 

power (see Ch. 15, [50]) or the integral form of mechanical energy equation (see Eq. 

(5.4.13) of [51]) says that a steady solution exists if and only if φ/φref  > 0 and this 

condition is hard to satisfy in Figure 67 for 0 m/s < U∞ <  0.2 m/s because the energy for 

U∞ = 0, where the theorem is violated, is effectively equivalent to the energy at U∞ = 0.2 

m/s. This fact that energy available to dissipate at U∞ <  0.2 m/s (say U∞ = 0.08 m/s) is 

effectively the zero value associated with U∞ = 0 should lead to a response that is also 
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somewhat similar to what is expected at U∞ = 0 and fixed ∆T . Clearly, for U∞ = 0 and 

fixed ∆T, one expects a rising unsteady film type solution which is similar to what is 

being found in Figure 66. However the flow for 0 < U∞ < 0.2 m/s also has an option to 

come to a new quasi-steady flow under a more complex liquid/vapor morphology.  

 Because of the mutually supportive nature of the above described independent 

facts, one can reliably state that film wise steady condensation solution for this problem 

is not possible for effectively zero inlet speeds that correspond to a certain finite range of 

values of the type: 0  < U∞ < U∞
*.  This result states that Koh solution [10] for 0 < U∞ < 

U∞
* is not valid. 
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Chapter 6 CONCLUSIONS OF THESIS WORK 

6.1 Summary of Computational Results  

6.1.1 Internal Condensing Flows (Gravity Driven and Shear Driven) 

1. This thesis work establishes an important result that there exists a unique steady 

“natural” solution of the strictly steady parabolic problem for the gravity and shear driven 

internal condensing flows. This result has been confirmed by a 1D tool and by 

experiemtns as well. It also shows that this “unique” solution can be obtained as an 

“attracting” solution (as t  ∞) of the unsteady parabolic problem. 

2.  The simulation results presented in this thesis show the remarkable differences 

between gravity driven and shear driven condensing flows.  

3. 2-D computational results show that there could be multiple quasi-steady/unsteady 

solutions of the unsteady governing equations (which exhibit “elliptic sensitivity”) for 

shear driven cases under different quasi-steady impositions of the elliptic boundary 

condition. This thesis presents novel categorization of internal condensing flow behavior  

based on its elliptic sensitivity. It is shown that steady governing equations of shear 

driven internal condensing flow are  “parabolic” while the unsteady equations are 

“elliptic.” However, it is also found that the unsteady behavior remains “parabolic” (even 

under quasi-steady/unsteady fluctuations on the parabolic boundary conditions) for: (i) 

gravity dominated flows, and (ii) thermal boundary conditions which hold the wall heat-

flux profile fixed.  
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4. Computational and experimental results presented in this thesis show that shear 

driven internal condensing flows are sensitive to the nature of fluctuations present at the 

inlet/outlet boundaries and, in addition, the condenser response also depends on the 

method of cooling used.  

5. The computational and experimental synthesis accomplished for gravity driven in-

tube condensing flows provides a basic framework for analyzing two-phase component 

and characterizing its flow regime boundaries.  

6. Preliminary results for micro-scale flows presented here can predict importance of 

parameters (non-equilibrium thermodynamics and disjoining pressure effects) at such 

small scales. 

6.1.2 External Condensing Flow of a Vapor Condensing Over a Flat Plate 

1. For the ranges of the flow parameters investigated, the analytical solution of Koh  

[10] for film thickness is found to be reasonably accurate for horizontal condensing flows 

over a flat plate under conditions of sufficiently fast vapor speeds and nearly uniform far 

field pressure p∞. Over this range, it is found that, there is some departure from the Koh 

solution [10] in the frontal portion of the plate with regard to the values of interfacial 

velocities and pressure variations in the liquid and vapor domains. The gradients in 

pressure become sharper as vapor speed reduces and such dynamics cannot be captured 

using analytical solution of Koh [10]. 

2. The computational results show that the presence or absence of transverse 

component of gravity does not change the steady solution by much if only a certain 
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length from the leading edge (lengths investigated here) is considered. Over this length 

only changes in the hydrostatic pressure variations, resulting from presence or absence of 

gravitational component of pressure, are observed in the liquid film. 

3. For the ranges of the flow parameters investigated, unsteady solutions predict, just 

like internal condensing flows, that there exists a long-term (t  ∞) steady solution 

(attractor) for this external condensing flow problem. A new measure termed “attraction 

rate” is introduced for the reported “non-linear” stability analysis. This value decreases 

with increasing distance and increases with increasing vapor speeds. The qualitative and 

quantitative variation in the strength of the attractor is presented for the cases of U∞  > 

U∞
*
. Unsteady results, along with several supporting results, find that at low vapor speeds 

(0  < U∞ < U∞
* ≈ 0.2 m/s) a film wise steady solution does not exist.  

 

4. It is established here that the smooth underlying steady solutions for these cases are 

stable to the momentary initial disturbances (of various wavelengths and amplitudes) on 

the interface because of prominent vapor suction effects. 

 
5. The computational results show that the stable attracting solutions for this condensing 

flow over a horizontal plate, found for U∞ > U∞
* are very sensitive to persistent but 

minuscule condensing-surface noise. It is shown here that for U∞ > U∞*,  an Rex|wavy-cr (≈ 

5·105 - 12·105 for representative flows) can be obtained from the given criterion. For Rex 

> Rex|wavy-cr, the flow shifts to a wavy laminar flow regime in which amplitudes of the 

waves are more than 15% of the steady mean film thickness values. 
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6. A new parameter P has been introduced in this research to characterize stability of 

flows. With the help from suitable experimental research, critical values of parameter P 

can be obtained. Such analysis can yield identifiable values of Rex|Trans-cr which can be 

used to mark the onset of turbulence or a qualitatively different wavy-laminar flow. 

6.2 Benefits/Applications of Research 

1. 2-D computational tools developed during this research can predict flow 

behavior/flow regime boundaries for annular stratified internal/external condensing flows 

in a two-phase flow component. These tools are of great importance in designing ground 

based or 0g two-phase thermal systems, which will have improved attainability, 

repeatability, and stability.  

2. The computational results obtained from this thesis work will keep on aiding 

designing of the lab experiments and analysis of experimental future results for the 

ongoing shear driven channel experiments. 

3.  The codes (on FORTRAN platform) and algorithms used/developed for this thesis 

work will be guidelines for the ongoing development of a new version of 2D/3D 

computational tool being developed on MATLAB/COSMSOL platform.   

4. The differences between gravity and shear driven internal condensing flows and newly 

discovered sensitivities of shear driven flows predicted by computations can be exploited 

for achieving better condenser performance in different applications. These sensitivities, 

corresponding flow regime maps, and controllability of shear driven flows discussed in 

this thesis can be used in a novel thermal system to:  

a. Improve predictability of flow behavior in a thermal system. 



171 
 

b. Design condenser geometry to operate in the required flow regime (gravity in-

sensitive, gravity driven, shear driven, etc.). 

c. Provide real time controls at specific locations to improve the heat transfer 

and maintain flow regimes. 

d. Isolate systems from unwanted boundary conditions at the inlet, exit, and 

walls to utilize “natural” selection of boundary condition and avoid flow 

oscillations. 

e. Allow to pass only certain “desirable” frequency ranges from boundary 

locations to avoid dynamic instability. 

f. Provide thermal control at the condensing boundaries to realize different flow 

sensitivities and use them towards improving performance of 

condensers/thermal systems. 

5. The dynamic stability analysis of external condensing flow accomplished for this 

thesis work is first of its kind in characterizing effects of ever-present fluctuations in 

determining flow regimes and transition to turbulence. Such analysis can be repeated for 

any condensing flow system to better understand different flow transitions and impacts 

on heat transfer rates. 

6.3 Future Directions 

 6.3.1 Computational Tool Development 

Current computational tools (based on FORTRAN platform) used to solve condensing 

flows in this research are limited to solving annular stratified flows with laminar vapor 
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and laminar liquid. These tools can only predict flow situations when the film may break 

and form droplets and enter in to non-annular regime but can not resolve the physics of 

non-annular regime. This tool is currently being transferred to COMSOL/MATLAB 

platform. In a new tool, commercially available code (COMSOL) will be used to solve 

individual domains (liquid and vapor). Interface conditions (Eqs. (4)-(9)) will be applied 

through user written MATLAB programs. Through the use of commercial software, one 

can address the following issues that can not be addressed with the current computational 

tool: 

a. Effects of compressibility in vapor domain (high Mach number flows):  

b. Effects of vapor turbulence. 

c. Steady and unsteady solutions at longer condenser lengths for fully condensing 

shear driven flows. 

d. Micro-scale effects (surface tension, etc.) for micro-meter scale flows. 

e. Better meshing techniques, faster and better solvers (steady/unsteady), and inbuilt 

high-end graphics. 

Development of a New Method to Solve the Interface 

In the current 2-D approach (see [2]-[7]), at any instance of time t, the liquid 

domain and the vapor domain are solved separately after a tentative guess of interfacial 

location δ – which is modeled as a sharp interface (this is unlike popular level-set 

approaches [13], [52]-[53]). The liquid domain is solved subject to stress and pressure 

boundary condition (values of shear stress are denoted as τ1
i and pressure as p1

i) on the 
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interface and any exit condition if imposed, and the vapor domain is solved subject to the 

velocity-component boundary condition (denoted as u2
i and v2

i) on the interface. The 

temperature boundary condition at the interface (viz. values denoted as θ1
i and θ2

i) is 

specified by the thermodynamic saturation temperature at the interface. In this approach, 

the five guesses of {u2
i, v2

i, τ1
i
, 

 p1
i
, δ} are iteratively updated with the help of five 

interfacial conditions, viz. two from tangential and normal stress conditions, two from 

interface mass balance, and one from continuity of tangential velocities. One of the 

interface conditions that determine the steady/unsteady interface location (given by φ(x, 

t) = 0) results in an interface-tracking equation of the level-set type: 

•t 0∂φ ∂ + φ =eff grad v , where veff is a vector that can be easily obtained from mass-flux 

equalities, e.g. veff is available in Eq. (15) of [53]. The current approach ([2]-[8]) uses an 

explicit form φ(x, t) = y- δ (x, t) = 0 but the proposed approach will use an implicit form 

to identify xPlug/Slug. In the new tool, this equation will be solved through a newly 

developed MATLAB subroutine. This subroutine will employ a modified level-set type 

solver. By doing this, different flow physics involving non-annular flows, film break-up, 

etc. can be captured effectively.   

6.3.2 Condensing Flow Problems that Need to be Investigated in Future 

After the development of the new computational tool, following flow problems 

related to this thesis need to be investigated with the help of a new tool: 
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(i) For shear driven internal condensing flows, phenomenon of inducement of thermal 

gradients in condensing plate needs to be studied in detail and the results should be 

synthesized with the experiments.  

(ii) Current computational tool can not capture the condensing physics downstream of 

the shear driven condensing flows in presence of transverse component of gravity 

where flow are highly likely to enter in to non-annular regime. The new tool should 

investigate these effect implementing the level set method ([13], [52]-[53]) and 

these results need be synthesized with the ongoing experiments of condensation in 

horizontal channel. 

(iii) Investigations of sensitivity of ever-present bottom wall noise for internal shear 

driven flows (on the parallel line of what has been done for external shear driven 

condensing flows in thesis) need to be carried out. This will throw light on 

transition of these flows in to wavy annular and interfacial turbulence regime. 

(iv) Based on the preliminary synthesis of computational and experimental results for 

gravity driven in-tube condensing flows carried out for this thesis work, detailed 

synthesis for the same geometry has been done using 1D tool for development of 

heat flux, pressure drop correlations etc. Such synthesis needs to be done for shear 

driven internal condensing flows. 

 

6.3.3 System Level Analysis 

To apply the results presented in this thesis for a two-phase thermal system 

including a flow condenser and a flow boiler, a 2D (or 1D) computational tool needs to 
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be developed for annular flow boiling as well. With the help of such a tool, boundary 

condition sensitivities found for flow condensation should be investigated for flow 

boiling phenomena. After synthesizing the results for flow boiling and flow 

condensation, system level analysis can be undertaken to design novel thermal system 

discussed in section 6.2. This is the topic of ongoing research in our group at MTU. 
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APPENDIX A.1 

The interface conditions that apply at Φ (x, y, t) = y – Δ(x, t) = 0, involve values of flow 

variables at the interface that are denoted by a superscript ‘i’. The unit normal at any 

point on the interface, directed from the liquid towards the vapor, is denoted by n̂  and is 

equal to φ φ/∇ ∇ .  The unit tangent at any point on the interface, directed towards 

increasing x, is denoted by t̂ .  Each phase is modeled as a viscous and incompressible 

Newtonian fluid with stress tensor IIp S1T +−=  where  

2/})grad()grad{(μ I
T

III vvS ⋅+⋅=  and 1 is the identity tensor. 

• The surface velocity vs of a point on the interface ( 0φ = ) at time t is associated with this 

point’s movement to a new mapped position on the interface at time t +  ∆t.  All such 

mappings must be such that the normal component of this vs is given by: 

                                                          s ˆ ( / /  .φ φt)⋅ = − ∂ ∂ ∇nv                                      (A.1) 

• The tangential component of the vapor and liquid velocities at the interface must be 

continuous, i.e. 

                                                              . ˆˆ i
2

i
1 tvtv •=•                                                     (A.2) 

• Allowing for variations in surface tension  σ over the interface such that the vector  

σ∇s  is in the tangent plane and ignoring the normal component of viscous stresses in 
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comparison to interfacial pressures, the normal component of momentum balance at a 

point on the interface is given by: 

                            . xxxmp

mpp
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(A.3) 

The symbols for the vector σ∇s and the curvature n̂s •∇  in the first equality of the above 

equation respectively denote surface-gradient operator and surface-divergence operator 

and their meanings are well defined in suitable differential geometry textbooks (see, e.g., 

Weatherburn [54]). 

• The tangential component of momentum balance at any point on the interface, which 

allows for surface variations in the surface tension σ, reduces to: 

                  .ttnStnS i
2

i
1

ˆˆˆˆˆ s •σ∇+•=•                        (A.4)  

• The mass-fluxes m KV and m KL  as determined by the kinematic restrictions imposed by 

interfacial values of vapor and liquid velocities are: 

                                             (A.5) 

• The energy balance at a point on the interface, with energy fluxes being relative to the 

interface, imposes a restriction on the interfacial mass flux m Energy , and this restriction is 

given by:       
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                                                                                                                                       (A.6) 

In deriving the first equality in Eq. (A.6) above, the equality of surface energy per unit 

area to surface tension force per unit length is assumed as per usual assumption regarding 

equilibrium interfacial thermodynamics. The symbol 
dt
d

s

σ
denotes rate of change of 

surface energy per unit area per unit time and equals s s
t
σ σ•

∂
+ ∇

∂
v . This term along with 

interfacial kinetic energy exchanges and exchanges associated with the workings of the 

normal components of the viscous stresses are considered negligible to the net interfacial 

heat transfer. 

• Mass Balance at any point on the interface requires a single-valued interfacial mass-

flux.  That is: 

             . EnergyVKLK mmmm  ≡==                                             (A.7)        

 • To account for the non-equilibrium thermodynamic effects of non-zero interfacial mass 

flux m , the interfacial pressures i
1p  and i

2p  along with their difference i
2

i
1

iΔ ppp −≡  that 

appear in Eq. (A.3) are additionally considered to be controlled by non-equilibrium 

thermodynamics and are thought as )( i
1

i
eq-n  1

i
1 Tpp ≡  and )( i

2
i

eq-n  2
i
2 Tpp ≡ , where T i

1  is 

the liquid side interfacial temperature and T i
2  is the vapor side interfacial temperature.  In 
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the limit of zero mass flux m , these thermodynamic pressures reach their equilibrium 

thermodynamic values and are denoted as )T(pp i
1sat

i
1 ≡ and )( i

2sat
i
2 Tpp ≡ , where psat is 

the inverse function of the saturation temperature )(s pT . Here, the non-equilibrium and 

equilibrium values of the interfacial pressure differences are denoted as ( iΔp )n-eq and ( iΔp

)sat. To allow for a temperature discontinuity (i.e. interfacial thermal resistance) across the 

interface, one must set ( iΔp )n-eq equal to i
2

i
1

iΔ ppp −≡  as obtained from Eq. (A.3), and, 

in addition,  one must provide an explicit or implicit model for a function f of the type  (

iΔp )n-eq = f{( iΔp )sat, m }, where f allows the two pressure differences to become the same 

for zero mass flux m . It is common to model f by considerations that involve kinetic 

theory of gas for the vapor phase (see, e.g., section 4.5 of Carey [36], Plesset and 

Prosperetti [55], etc.). At all points away from x ~ 0, the assumption that use of either

eq-n
i )(Δp  or ( iΔp ) sat as iΔp in Eq. (A.3) do not significantly affect the near zero value of 

)()Δ(Δ i
2s

ii
2s

i pTppTT −+≡  is well known and well justified in the present context where 

interfacial thermal resistances are overshadowed by significantly larger thermal 

resistance of the thin condensate (see section 4.5 of Carey [36]). Furthermore, the 

computations in this thesis also show: (i) that the solution further downstream is not 

affected by the nature of the singular solution at x ~ 0 (where non-equilibrium 

thermodynamics is important), and, (ii) that the computed downstream values of 

)()Δ(Δ i
2

i
2 pTppTT s

i
s

i −+≡  , where iΔp  values are obtained from Eq. (A.3, satisfy 

0Δ ≅iT  in the sense that TT ΔΔ <<i , where TΔ is the number defined for Eq. (1). 
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Therefore, under negligible interfacial resistance approximation, the interfacial 

temperature values satisfy:         . )p( i
2s

i
2

i
1 TTT =≅                                               (A.8)                                                                                                                            

• The term [t] on the right side of Eq. (5) is given by:
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APPENDIX A.2                                      

Summary of the algorithm used by 2-D computational approach to solve internal 

condensing flow  problem :                                                                                                                                                                                                                                                

1. At discrete number of spatial locations, following variables are guessed: δ, u1s
i, v1s

i, 

θ1s
i, u2

i, v2
i, θ2

i. These seven guess functions are adjusted with the help of seven 

interface conditions and imposed exit condition if any. The following steps 

implement this philosophy by separate single-phase (liquid and vapor domain) 

calculations (see Figures 4-5) for a “sharp interface” model.  

2. After fixing {u1s
i, v2s

i, θ1s
i} on shifted interface (see Figure 4), liquid domain is solved 

under shifted interface by a finite-volume (SIMPLER) or a finite-element method. The 

{u1s
i, v1s

i, θ1s
i} are adjusted to satisfy tangential stress (Eq. (5)), normal stress (Eq. 

(4)), and saturation temperature (Eq. (9)) conditions at the interface respectively. If it 

is an unspecified exit condition case, exit condition given by formulation [A] (see Eq. 

(11)) is used. If it is a specified exit condition case (formulation [B]) is used. For the 

specified case in Eq. (14), after using an initial guess of u1
i  =  u1

i |guess and a desired 

imposition function on the right side of Eq. (14) (this function agrees with the exit 

mass flow rate values for the unspecified case for t < t*), the tentative value of the 

specified imposition at t = t* + ∆t is imposed by changing the guess for  u1
i  =  u1

i |guess 

for  t = t* + ∆t as: u1
i |guess = β•u1

i |current with β found so as to equate the left and right 

side of Eq. (14). Based on these modified values of u1
i, u1s

i values are adjusted to 

satisfy tangential stress condition. Finally, in this computational approach, it is the 

converged value of β at t = t* + ∆t as obtained at the end of iterative completion of all 
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the steps (steps 1 -5) for this time (t = t* + ∆t) that determines the right side of Eq. 

(14) and, hence, the actual value of the imposed exit liquid mass flow rate. The value 

of imposed exit liquid mass flow rate is usually in the neighborhood of the original 

choice for the value of the function on the right side of Eq. (14). Clearly, other 

superior algorithms for imposing the exit condition on the right side of Eq. (14) are 

possible. 

3. After fixing {u2
i, v2

i, θ2
i} on interface δ (see Figure 5), vapor domain above the 

interface is solved by the same finite-volume method (SIMPLER). The guesses for 

u2
i, v2

i, and θ2
i are updated with the help of: continuity of tangential velocity (Eq. (3)), 

interfacial mass flux equality  EnergyVK mm  = , and saturation temperature (Eq. (9)) 

conditions at the interface respectively.  

4. The interface location is updated (by tracking the interface) on an adaptive Eulerian 

Grid which remains fixed over a time interval [t, t + ∆t] of interest. This is done by 

solving the following equation obtained through the remaining interface condition, 

namely: EnergyLK mm  =  

 

 

 

 (A.10) 

  

anysteady

δ δu(x,t) v(x,t)t x
δ(0,t) 0

δ(x,0) δ (x)   or   δ (x) 

∂ ∂+ =∂ ∂
=

=
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The numerical solution of Eq. (A.10) yields a converged value of δ (x, t+∆t) on the 

fixed Eulerian grid. These values are then used to obtain the δ (x, t+∆t) values on the 

fixed (for all t) CFD grid being used for the liquid and vapor CFD calculations. 

5. Next the newly obtained liquid and vapor domains for time t + ∆t under the new 

interface locations define a change of the domains in Figure 1 (i.e., Lt → Lt+Δt and Vt 

→ Vt+Δt). A simple mapping technique is used to map the computed values of the 

flow variables (velocity, pressure, etc.) to the newly updated extents for the vapor and 

liquid domains. 

  The above steps 1-5 are repeated in such a way that all the interface conditions, 

differential equations, etc. are satisfied (and, for the specified exit condition case, the 

specified exit flow rate is consistent with the converged values of β at all times t). It 

should be noted that while solving strictly steady governing equations, the same 

algorithm is followed but all the time dependencies are made equal to zero and, also, no 

exit condition is (or can be) prescribed as steady equations are essentially parabolic in 

nature.  
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APPENDIX A.3 

Net mechanical energy Mech-in input rate into the condenser control volume 

Net rate of mechanical energy going in to the control volume Mech-inW  is obtained from the 

integral form of mechanical energy equation (see [51]) for individual liquid and vapor 

domains and then adding them together. For any control-volume “CVf–total” that 

represents the condenser and encloses separate liquid and vapor domains of the type in 

Figures 4-5, if one denotes the liquid-vapor interface by Σ, the bounding surface of the 

control volume by “CSf-total,” and unit normal on the bounding surface by n, the 

expression for Mech-inW  is given as: 

                

2
( ) (1 / 2) ( ) {relp da daρ ρ= − ⋅ + − ⋅ + ⋅∫ ∫ ∫Mech-in

Csf-total Csf-total Cvf-total

W n V V n V V}d g v

                                                                                          

                                                                                            (A.11)
 

where prel ≡ p – p0 are the relative values of the absolute pressures pI (I = 1 or 2) with 

respect to the reference inlet pressure p0. The above expression for the net mechanical 

energy into the control volume is also obtained from the differential form of mechanical 

energy equation (see Eq. (5.4-13) in Whitaker [51]) integral over individual liquid (L) 

and vapor (V) volumes and then adding them together. This analysis relates Mech-inW  to total 

viscous dissipations within each of the two domains (ΦL> 0 for the liquid and ΦV > 0 for 

the vapor) and the net mechanical energy consumed ΣD  across the interface as: 

The analysis yields the following form of (A.11): 

                                                                             (A.12) 
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where we have,  

                         

2 2

2 1
2 1

0.5rel

m m
p da m da

ρ ρ∑ ∑

   ≡ − + −     
∫ ∫ i i

ΣD V V 





  

ΦL≡ 1 {[ v1] + [ v1
T]}:[ v1]dv

  

                
ΦV≡ 2 {[ v2] + [ v2

T]}:[ v2]dv 

                                                                          (A.13)
 

ΦL and ΦV are well known viscous dissipation rates (see [51]) over the control 

volume Cvf-total. The interface energy transfer rate ΣD  is made up of pressure energy 

transferred across the interface and kinetic energy transferred across the interface and 

these are given by (A.14) and (A.15) below.
  
 

      2 1
Pressure energy transferred across the interface = rel

m m p da
ρ ρ∑

 
 
  

−∫
 

   (A.14) 

2 2

2 1Kinetic energy transferred across the interface 0.5 m da
∑

 = −  ∫ i iV V

              (A.15)
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APPENDIX A.4 

 

The differential forms of mass, momentum (x and y components) and energy 

equations in terms of non-dimensional variables for flows in the interior of either of the 

phases (I = 1 or 2) for the external flow problem of Koh [10] are given as  

0
y

v

x

u II =
∂

∂
+

∂

∂
                                     (A.16) 

I I I I I I
I I

I

2u u u u u1
u v 2 2t x y x Re x y

2

 

∂ ∂ ∂ ∂π ∂ ∂
+ + = − + +

∂ ∂ ∂ ∂ ∂ ∂

  
       
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where Re1 ≡ ρ1U∞Ye/µ1, Pr1 ≡ µ1Cp1/k1, and Fry
-1 ≡ gy Ye/U∞

2.  

Under assumptions of: uniform pressure throughout the flow, steadiness (∂/∂t = 

0), horizontalness (gx = 0), and boundary layer approximations (∂/∂x << ∂/∂y & v I << uI) 

associated with thin condensate flow; the Koh formulation ([10]) effectively replaces 

A(16)-A(19) by: 
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In addition to the above, the Koh formulation [10] also assumes negligible 

interfacial slope approximation (δ´(x)2 << 1) and, as a result, interface conditions given 

by Eqs. (3)-(9) in the section 2.1 are simplified and respectively replaced by eqs. (A.21) - 

(A.25) given below:  

 

i i
2 1u u=                                                             (A.21) 

i i2
1 2

1

ρπ π ,
ρ

=                                                          (A.22) 

                                                                   
                                       (A.23) 

                                  (A.24) 

                       (A.25) 

The remaining interface conditions given by Eqs. (7)-(8) in section 2 continue to hold as 

they need no further approximations. Furthermore, for the Koh formulation [10], no top 

or exit condition regarding pressure is necessary. Instead, the inlet and the far-field 

conditions respectively become:  

u2(0,y) = U∞,  and 2y
lim u (x,y)=U∞→∞

.                                                        

                                                                                                             (A.26) 

Total integral viscous dissipation rate φ (= φ 1 + φ 2) inside any control volume is 

obtained from power law theorem ([50]) or the integral form of mechanical energy 

equation (see [51]) for individual liquid and vapor domains and then adding them 
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together. For any control-volume “CVf –total” of the type OABD in Figure 3, if one 

denotes the liquid-vapor interface by Σ, the bounding surface by “CSf-total,” unit normal 

on the bounding surface by n, it results in the following expression: 

2 2 2

2 1
1 2

( ) 0.5 ( ) 0.5ρ
ρ ρ∑

   = − ⋅ + − − ⋅ − −     
∫ ∫ ∫ ∫ i i
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m m
p da p da da m da                    

              (A.27) 

where prel ≡ p - p∞ is the relative value of absolute pressure p = pI (I = 1 0r 2) with respect 

to the far field pressure p∞ . 
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