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Abstract

The numerical solution of the incompressible Navier-Stokes Equations offers an effective

alternative to the experimental analysis of Fluid-Structure interaction i.e. dynamical cou-

pling between a fluid and a solid which otherwise is very complex, time consuming and

very expensive. To have a method which can accurately model these types of mechanical

systems by numerical solutions becomes a great option, since these advantages are even

more obvious when considering huge structures like bridges, high rise buildings, or even

wind turbine blades with diameters as large as 200 meters. The modeling of such pro-

cesses, however, involves complex multiphysics problems along with complex geometries.

This thesis focuses on a novel vorticity-velocity formulation called the KLE to solve the

incompressible Navier-stokes equations for such FSI problems. This scheme allows for

the implementation of robust adaptive ODE time integration schemes and thus allows us to

tackle the various multiphysics problems as separate modules.

The current algorithm for KLE employs a structured or unstructured mesh for spatial dis-

cretization and it allows the use of a self-adaptive or fixed time step ODE solver while

dealing with unsteady problems. This research deals with the analysis of the effects of

the Courant-Friedrichs-Lewy (CFL) condition for KLE when applied to unsteady Stoke’s

problem. The objective is to conduct a numerical analysis for stability and, hence, for con-

vergence. Our results confirm that the time step ∆t is constrained by the CFL-like condition

∆t ≤ const. hα, where h denotes the variable that represents spatial discretization.

xi



Chapter 1

Introduction

Most of the things in the universe exists in three states: solid, liquid and gaseous. The term

“Fluid” is used to describe any matter that can be classified as liquid or gas. Fluids have

tremendous importance in our natural environment as well as in almost every technical field

of any known branch of science, whether it is particle physics, aerodynamics, combustion,

astronomy, oceanography, or even bio-fluids. Study of fluids at rest or in motion is vital

in a number of applications like designing turbines or engines, building dams or canals,

studying molecules, blood circulation across body, global climate modeling, etc. Thus,

fluid flow analysis becomes one of the most important areas of research.

Mathematically, fluid flow analysis for fixed set of forces, is governed by a non-linear par-

tial differential equation, called as Navier-Stokes equation. It is time-dependent equation
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for conservation of momentum and is solved with the continuity equation i.e. conserva-

tion of mass equation, as a constraint. Analytical solution to those equations has not been

known yet, although, in some special cases, these equations can be simplified and may

have analytical solution. Given the scope of these equations, it is important and equally

challenging to find out a numerical scheme to solve them with substantial accuracy.

The numerical solution of Navier-Stoke equations can be extremely useful in modeling

physics of a range of applications in academics to industrial settings such as motion of air

around an aerofoil, ocean currents, analysis of pollution, prediction of behavior of sub-

atomic particles, etc. Such a solution could replace very expensive, difficult and sometimes

impossible experimental analysis of fluid flows.

1.1 Fluid Structure Interaction

One of the most important applications of the numerical solutions of these equations would

be the numerical modeling of fluid-structure interaction (FSI). FSI occurs when physical

structure deforms due to inside or surrounding flow changing the boundary conditions for

fluid. It elucidates a highly non-linear response in numerous engineering phenomena like

metal forming processes, hydroplaning due to interaction between water, ground and tires,

analysis of fatigue of airplane wings, wind effect on tall buildings, cable stayed bridges,

effects of shock waves induced by such explosions on the hulls of ships and submarines, etc.
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FSI explains the physics of dynamic stability of a structure in a wide range of applications

which present excellent opportunities for scientific discovery with a richness of technical

application.

An analytical solution to FSI problems is often very complex. FSI problems have to be

analyzed either by experimental analysis or by numerical simulation. The experimental ap-

proach for some of the FSI problems is not a very attractive prospect either. If we consider

the case of modern wind turbine design, the economy of scales factors have driven compa-

nies to consider rotors with diameters ranging from 160 to 200 meters. Working with such

enormous blades and gathering data from wind tunnels is neither economical nor simple.

Another example would be the modeling of huge civil structures like bridges, tall buildings

and their interaction with high winds. Such huge structures carry risk of stress-related fail-

ures, and, hence, an accurate approximation of dynamic interaction is of utmost importance

owing to the enormity of the surfaces involved. On the other hand, the microscale appli-

cations with complex roto-translational motion, like Micro-Air-Vehicles produce similar

difficulty in modeling of flow patterns but on the opposite scale.

A numerical approach seems like an effective alternative to experimental prototypes and

would also be much more economical. But it also has its own difficulties such as the

complex physics involved in slender-body aeroelastic dynamics. The aeroelastic dynamics

in slender bodies depends not only on the characteristic modes of the body structure itself,

but also on the frequency and amplitude of the fluctuating aerodynamic forces. These
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forces are strongly affected by the dynamics of the vortex-wake shed from the body, which

itself depends on the body’s oscillations. Vortex-induced vibration can lead to catastrophic

failure of engineering systems, as was clearly illustrated by the Tacoma Narrows Bridge

disaster. In essence, if the work done on the body by the surrounding fluid over a complete

cycle is positive, it results in the periodic vibration. The phase of the induced side force

relative to the body motion greatly affects the net energy transfer between the body and the

fluid, which is also related with the timing of the vortex dynamics (1).

A significant challenge in analyzing these systems is the fact that an oscillating body

can produce a vortex wake that is very different from the classic Karman vortex street,

which would translate into a complex fluctuating aerodynamic force. These rototransla-

tional mechanisms are very sensitive to the varying loads and generate sudden structural

responses to small changes in fluid flow parameters. This results in the need to have a

dynamic control system incorporated in those mechanisms to optimize their efficiency and

increase their lifespan. The simulation of the structural response and the dynamics of the

control system as well as the complexity of the geometries involved to discretize, sub-

stantially complicates the issue of finding an effective method which can solve the final

multiphysics non-linear PDE system. Further complications may arise with time-marching

integration of multiphysics problems. Adaptive variable timestep/variable-order ODE al-

gorithms provide a way to improve the efficiency of time marching schemes. But finding a

way to combine those adaptive algorithms with the discretization of the spatial PDE prob-

lem has proved to be difficult.
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An innovative mathematical model which resolves these problems and effectively simu-

lates fluid-multiphysics involving fluid structure interaction was introduced in a paper by

Ponta (2). This computational scheme is called the Kinematic Laplacian Equation (KLE)

method. The KLE is based on a generalization of the concept of the hybrid formulation

of the Navier-Stokes equations in which velocity and vorticity are used as unknown vari-

ables instead of the classical formulation in terms of the variables: pressure and velocity.

The KLE is a natural extension of well-established vorticity-stream function method. The

emergence of vorticity-velocity methods might be considered one of the most recent in-

novations in the computational solution of time-dependent viscous flows. Even though

the appearance of what could be regarded as the first vorticity-velocity approach may be

traced as early as 1976 (3), it is only during the last decade or so that a systematic research

efforts have been applied to the development of this family of methods (see (2, 4) for a

complete list of references). The vorticity-velocity methods present several advantages

compared with the classical formulation on primitive variables (velocity-pressure) or with

their vorticity-stream-function cousins. This is discussed in greater detail in Chapter 2.

The KLE algorithm solves the vorticity transport equation as an ODE problem in time with

input velocity from the solution of a modified Poisson’s equation in velocity, called the

Kinematic Laplacian Equation, at each spatial node. The input to solve the KLE is provided

by the time integration of the vorticity at each time step. Thus, it creates an evolving scheme

in which the KLE provides the input for the ODE algorithm and vice-versa. Since time is

the only iteration variable present, it is now possible to couple the fluid analysis with other
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physical mechanisms (e.g. structural response, control-system dynamics, etc.) by adding

more equations to the ODE system. The KLE also shows a substantial tolerance to the

use of unstructured meshes, which allows a more suitable meshing of complex geometries

than structured-mesh approaches would permit. The latter is a very convenient feature

for dealing with the complex aerodynamic shape of wind-turbine blades, helicopter-rotor

blades, insect wings, or other aerodynamic surfaces.

1.2 An Emerging Field of Application: The Wind Power

Challenge

This research is a small yet important part of the ongoing work towards the advancement

of computational mathematical models for complex multiphysics problems involving fluid-

structure-control interaction present in many engineering designs, providing a fundamental

tool for a better understanding of the underlying physics. One such important engineer-

ing problem is the harnessing of wind power. Given the current trend of looking towards

cheaper and cleaner ways to meet the ever increasing energy demand, wind energy might

just be the answer to our growing needs. It is not only getting cheaper with technological

innovations to harness wind energy on a large scale, wind power is also one of the cleanest

ways to produce energy. During the last three decades there has been a spontaneous ten-
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Figure 1.1: The REpower M5 5-megawatt turbine, with a rotor diameter of approximately 126

meters (from (5)).Permission to reuse in Appendix.

dency in the wind-turbine industry to increase the size of the state-of-the-art machine (6)

and substantially reduce the cost of wind energy. Output power of these turbines range from

3 to 6 MW, rotor diameters range from 100 to 130 meters with hub height up to 143 me-

ters making them gigantic structures (Figure 1.1). Next-generation offshore turbines with

rotor diameters up to 200 meters have been suggested (7). The technological challenge

in wind power nowadays is to develop the next generation of upscaled low-cost turbines

that may further reduce generation costs. If this generation of superturbines is success-
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fully developed, wind-energy costs would be reduced substantially. In fact, in favorable

sites, it might be feasible to produce hydrogen as a substitute fuel in competitive terms,

thereby getting rid of a significant roadblock towards developing hydrogen as an alternative

fuel. Unfortunately current wind-turbine blade technology based on composite laminates

is labor-intensive and requires a highly-qualified workforce, creating a critical bottleneck

in terms of industrial workforce and infrastructure that hampers a rapid expansion of wind-

energy. It also poses a barrier to turbine upscaling by increasing the share of the cost of

the rotor as turbine size increases. The structural conception of today’s blades also poses

huge challenges in terms of transport logistics and crane capacity. Transportation cost in-

creases as blades grow in length. The risk of damage during transportation, and, hence,

the cost of insurance also increases with length. Moreover, while the rest of the turbine

subsystems may be treated as modules assembled on site, blades are one-piece monolithic

components, substantially complicating transport logistics. Limitations in crane capacity

are the other critical factor to take into account during the turbine assembly phase. Thus,

transport and lifting logistics may impose a premature limit for turbine upscaling, even be-

fore the actual limits in blade length for the current manufacturing technology are reached.

Blades operate under a complex combination of fluctuating loads, and huge size differ-

ences complicate extrapolation of experimental data from the wind-tunnel to the prototype

scale. Hence, computer models of fluid-structure interaction phenomena are particularly

relevant to the design and optimization of wind-turbines. The wind-turbine industry is in-

creasingly using computer models for blade structural design and for the optimization of
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its aerodynamics. But the complex interaction of physical processes that characterize the

coupled aeroelastic problem still exceeds the capacities of existing commercial simulation

codes. The result is an industry tendency to be cautious with the introduction of new con-

cepts in order to ensure reliability. Innovations are likely to introduce changes in structural

response and may possibly require different control strategies, which should be taken into

account if the development of a new prototype blade is considered. Research efforts within

the established parameters of the composite-laminate monolithic blade concept would not

produce the breakthrough that is needed in wind-power evolution. A better understanding

of the underlying physics is needed in order to introduce innovative concepts like modular

blades and improved control strategies. This is where the KLE plays a pivotal role owing to

its ability to create a common framework for modular integration of the aeroelastic model

with control system dynamics.

1.3 Thesis Outline

The focus of the current thesis is to analyze the effects of Courant-Friedrichs-Lewy (CFL)

condition and its dependency on the spatial discretization of an incompressible viscous flow

problem using the KLE method. The experimentation is based on the canonical problem of

a semi-infinite region of stationary fluid bounded by an infinite horizontal plate and given

a sudden velocity in its own plane and thereafter maintained at that speed. This problem,

along with its analytical solution, is discussed further in context with the KLE in Chapter
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5. Since with the structured meshes it is simpler to study their impact on the solution, a

structured spatial grid is considered for implementing the KLE. Given the effectiveness of

self-adaptive Adam Bashforth Moulton methods with KLE, MATLAB solver ODE113 is

used to run the unsteady part of the method. This solver determines its time step based on

the stability and the rate of convergence, so it really suits the purpose of finding the limiting

constraint on the time step.

The first part of the thesis is concerned with analyzing the nature of selected time steps by

the solver on the basis of stability for the solution of the above mentioned flow problem

using KLE. The results are then analyzed to find the common numerical relation between

the time step and the parameters affecting the spatial grid. The ultimate objective is to come

up with the CFL condition which is independent of all the factors except those parameters.

The results obtained are quite promising and show the effects of CFL condition with the

simple numerical correlation with the factors mentioned. All the numerical constants and

courant number are computed with the analysis of the experimental data.

As mentioned before, the motivation for this research is the analysis of flow over wind tur-

bine blades. Since this type of flow can be assumed to approximate incompressible flow,

that is exactly the kind of flow which will be considered for this thesis. The next chap-

ter deals with an introduction to the incompressible Navier-Stokes equations and gives a

brief outline of some of the more popular solution methods in use. Chapter 3 is concerned

with the hybrid methods based on a vorticity/velocity approach to solve the Navier-Stokes
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equations. The chapter then goes on to introduce the KLE along with its variational formu-

lation. Chapter 4 deals with the numerical implementation of the KLE. Chapter 5 explains

the experiments with the unsteady Stoke’s problem and is concerned with the analysis of

the results obtained by the KLE based on the experiment. This chapter is also concerned

with the various mathematical operations and the subsequent calculations that leads to the

development of CFL condition. Chapter 6 summarizes the results and ends with a brief on

future prospects.
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Chapter 2

Numerical methods

2.1 The Navier-Stokes Equations

Navier-Stokes Equations are non-linear partial differential equations of the second order.

These consist of three basic conservation equations −

1. Conservation of mass or the continuity equation

∂ρ

∂t
+∇ · (ρu) = 0

where ρ is the density, u is the velocity field and t is the time.

2. Conservation of momentum

ρ
du

d t
= ρg −∇P +∇ · σ
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where, P is the pressure, σ is the stress tensor and ρg is the body force.

3. Conservation of energy

ρ
d û

d t
+ p(∇ · u) = ∇ · (k∇T ) +Φ

where Û is the internal energy per unit mass, k is the thermal conductivity, ν is the

kinematic viscosity and the function Φ represents energy dissipated due to viscous

effects.

These equations can describe almost every fluid flow by determining various flow param-

eters like velocity, density, pressure, and temperature. In practice, the simplified form of

this set of equations is used by assuming an incompressible flow of a Newtonian fluid. So,

the above equations are reduced to −

1. Conservation of mass or the continuity equation

∇ · u = 0 (2.1)

2. Conservation of momentum

ρ
du

d t
= ρg −∇P + µ∇2u (2.2)

where µ is the coefficient of dynamic viscosity.

3. Conservation of energy

ρCv
dT

d t
= k∇2T +Φ (2.3)

where Cv is the specific heat at constant volume.
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2.2 Numerical Solution of the Incompressible Viscous Flow

This section aims to explain some of the popular Navier-Stoke formulations for a viscous

incompressible flow of a homogeneous fluid in an inertial frame of reference. A set of

Equations 2.1, 2.2, and 2.3 can be derived from basic conservative equations by keeping

density constant for a homogeneous incompressible flow. These set of equations shows

the decoupling of the momentum equation with the energy equation for the incompressible

flow which means both of these equations can be solved independent of temperature to get

required velocity and pressure field.

The most important aspect in finding a numerical scheme would be which set of variables

representing the equations is chosen. Based on the selected variables, there are two main

formulations of the Navier-Stokes equations −

1. Primitive variable formulation

2. Non-primitive variable formulation

Both of these formulations have their own advantages and disadvantages which will be

discussed in a subsequent discussion. The proper specification of boundary conditions is

the main problem and the oldest point of contention for both formulations. It is mainly a

problem of not having an obvious physical representation at the boundaries for pressure for

primitive variable formulation and vorticity for non-primitive formulation.
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2.2.1 Primitive variables

The pressure-velocity-based formulation is the fundamental formulation of the Navier-

Stokes equations. It comprised of pressure and velocity as primitive variables. The Navier-

Stokes equations for incompressible viscous flow in terms of the primitive variables without

considering the body forces can be written as −

∂u

∂t
+ u · ∇u = −∇p+ ν∇2u+ g (2.4)

∇ · u = 0 (2.5)

where, p = P/ρ is defined in a spatial domain Ω with S as its boundary. Here u is the

velocity, p is the pressure divided by the fluid density (constant), and ν is the kinematic

viscosity. The Navier-stokes equations represented by the primitive variables can be called

a mixed elliptic parabolic equation since they are parabolic in time, mainly because of the

convective diffusive term and elliptic in space due to the interaction between pressure and

the continuity equation. To define the above problem completely, the equation needs to be

supplemented by a set of boundary conditions specifying it as an Initial Value Boundary

Value (IVBV) problem. The most common approach would be to start with the specifica-

tion of an initial value for the velocity in Ω

u(x, t0) = u0(x), such that ∇ · u0 = 0,where x ∈ Ω (2.6)
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followed by specifying the velocity at the boundary

u(x, t) = uS(x, t), x ∈ S = b (2.7)

with a global continuity condition obtained by integrating the continuity equation over the

entire volume and then using the Gauss theorem

∮

S

n · bdS = 0 (2.8)

where, n is a unit vector normal to the boundary surface. So with the above expression it is

clear that there is no boundary condition for pressure, which causes a number of problems

and makes it a topic of debate among researchers.

As described in the preceding section, the serious difficulty in obtaining the numerical

solution of the Navier-Stokes equations is determining the pressure field and fulfilling the

incompressibility condition simultaneously. It can be seen from Equation 2.5 that velocity

has a definite constraint, unlike pressure which appears in the Equation 2.4 with the term

∇p. For pressure, no evolutionary equation exists, hence it does not have any explicit

representation. Also with the assumption of incompressibility, pressure does not have its

thermo-dynamical meaning but it keeps adjusting itself instantaneously in order to satisfy

Equation 2.5, i.e. condition of zero divergence at all times. Theoretically, pressure imitates

the behavior of sound waves through an incompressible medium and travels at infinite

speed. This is the most important factor for a non-fractional, or the standard discretization,

approach. So any proposed numerical scheme needs to have proper boundary conditions

considering implicit coupling between velocity and pressure. In addition, the velocity and
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pressure variables need to be decoupled to avoid the complex simultaneous equations.

According to (8), by using just incompressibility constraint, it is still possible to solve these

complex simultaneous equations without imposing any boundary conditions on pressure. It

is not very common in finite difference methods due to complexity of matrices as compared

to regular block diagonal matrix. Even if this method is more common in finite elements,

the following factors make it complicated as stated by (9) −

1. Non-linearity of the equations

2. The incompressibility needs to be maintained

3. The set of PDE’s have been coupled through the advection term and continuity equa-

tion and sometimes the boundary condition

The most common method is by using a Poisson equation for the computation of pressure.

The basic idea to form a Poisson equation is to take divergence of the momentum equation.

This method is further explained in the following sections. The two types of approaches in

velocity-pressure formulation are non-fractional step and fractional step methods.

2.2.1.1 Non−fractional Step Methods

Since Poisson equation is involved in both of these approaches, it is important to distinguish

between them. The non-fractional step methods are those in which the velocity and pres-
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sure evolve simultaneously, whereas in the fractional step methods, the pressure Poisson

equation replaces the incompressibility condition, making it a significantly more attractive

method. By discretizing the non-linear advection term explicitly in time and pressure and

viscous linear terms implicitly in time from Equations 2.4 and 2.5 and neglecting the body

forces, we get −
un+1 − un

△t +∇pn+1 = ν∇2un+1 − un · ∇un (2.9)

∇ · un+1 = 0 (2.10)

where, u is the velocity vector and p is the pressure term.

Equation 2.9 can be written as

[−△△△+ γI]un+1 +∇pn+1 = g(un) (2.11)

where, ν is the kinematic viscosity, I is an Identity matrix, γ = 1
ν△t

and g(un) = γun −

ν−1un · ∇un

There are other time discretization methods such as semi-implicit or fully implicit schemes

or other higher order schemes which can be used similarly as the one mentioned in the

above equations for explanation. One of the popular methods is to use a higher order

explicit scheme like Adams-Bashforth for the advective terms and Crank-Nicolson for dif-

fusive terms. As explained before, Poisson equation is computed by taking divergence of

18



the momentum equation, i.e. 2.11, which gives −

[−△△△+ γI]∇ · un+1 +∇pn+1 = g(un) (2.12)

∇
2pn+1 = ∇ · g(un) (2.13)

Even after simplifying the above two Equations 2.12 and 2.13, the solution obtained does

not really confirm that the incompressibility condition is satisfied. But, it simply tells us

that [△△△+ γI]∇·un+1 = 0. Thus ∇·un+1 is harmonic, but not necessarily zero. However,

it was shown by Kleiser and Schumann (10) that if the divergence at the boundary is forced

to be zero, i.e.

∇ · un+1 |S= 0 (2.14)

Then, the Equations 2.12 and 2.13 can be written as a boundary value problem consisting

of two elliptic equations as follows −

[−△△△+ γI]∇ · un+1 +∇pn+1 = g(un)

∇
2pn+1 = ∇ · g(un) (2.15)

un+1 |S= bn+1

∇ · un+1 |S= 0u |S= b

with the global constraint (2.8), i.e.
∮

S
n · uSdS = 0.

Now there are two boundary conditions for u and none for pressure. But these equations

still need to be solved simultaneously. So, it is essential to find out some way of decou-
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pling these two equations with an appropriate boundary condition for pressure. There is

one finite element method described by Glowinksi and Pironneau in (11) based on one ex-

tra equation for scalar velocity potential. In the same paper there is an another method as

proposed by Kleiser and Schumann that is based on influence matrix technique. Also Quar-

tapelle and Napolitano (12) explained a better approach on implementing integral boundary

conditions on pressure which gives a better physical interpretation because of elliptic na-

ture of the Poisson equation. These are some of the non-fractional step methods for the

time-discretized Navier-Stokes problems.

2.2.1.2 Fractional step methods

The fractional-step projection method is the most widely used for solving the primitive

variable formulation of the Navier Stokes equations. This method was first introduced by

Chorin and Tenman, and has been one of the first numerical schemes which are capable of

solving three dimensional time dependent problems. Consider the following set of equa-

tions, neglecting body forces −

∂u

∂t
+ u · ∇u = −∇p+ ν∇2u

∇ · u = 0 u |S= b (2.16)

The common procedure is to discretize the momentum equation in time with the omission

of the pressure term and approximate an intermediate velocity field, which would not be sat-
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isfying the incompressibility condition, from the solution of the time-discretized equation.

This velocity field is decomposed into its divergent free component for the correction of

final velocity field and irrotational component to enforce incompressibility. Subsequently,

a pressure field is determined for that time step. Here is the intermediate step obtained from

Equation 2.16 by avoiding completely the pressure term −

u∗ − un

△t = −(un · ∇)un + ν∇2un u∗ |S= bn+1 (2.17)

Obviously, as stated above, the velocity field u∗ would not be divergence free, which leads

to the next step:

un+1 − u∗

△t = −∇pn+1 (2.18)

∇ · un+1 = 0 (2.19)

n · un+1 |S= n · bn+1 (2.20)

Equation 2.18 can also be formulated as:

u∗ = un+1 +△t∇pn+1 (2.21)

where, ∇pn+1 is not the gradient of pressure but of some artificial scalar function propor-

tional to the unknown pressure often referred to as the “Pseudo-pressure”. The quantity

un+1 which is the required velocity field, is actually the solenoidal component of u∗ and

not the real un+1 as the tangential boundary condition is not necessarily met. The normal

boundary value for velocity is a consequence of the above step being inviscid. So the re-

21



quired velocity is calculated by projecting the velocity u∗ onto a solenoidal space. The

basis for the above step is the Helmholtz-Hodge decomposition of the velocity field based

on (due to Olga Ladyzhenskaya) which states that any vector field can be decomposed as

v = w +∇φ

where, w is solenoidal and n ·w = 0 and φ is the potential function with its gradient giving

the irrotational component of v.

The gradient term can be further decomposed into −

∇φ = ∇φ0 +∇h

where h is a harmonic function and φ0 |S= 0. This leads to the vector v being decomposed

into −

v = w +∇φ0 +∇h (2.22)

Using this decompostion for the divergent u∗,

u∗ = w +∇φ0 +∇h (2.23)

Adding and subtracting another harmonic function hB to the RHS of Equation 2.39

u∗ = [w +∇hB] + [∇(h− hB)] +∇φ0] n · ∇hB = n · b (2.24)
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Clearly [w + ∇hB] represents un+1 for an incompressible flow not satisfying the no-slip

condition for the second half step. Thus, un+1 can be found using a projection of u∗ on the

divergence free space. In order to calculate the velocity from Equations 2.18 and 2.20 the

divergence of (2.18) is substituted into (2.19) to get the Poisson equation for pressure, also

called the PPE.

−∇
2pn+1 =

−1

△t∇ · u∗ (2.25)

Using Equation 2.20 along with the boundary condition u∗ |S= bn+1 the following bound-

ary condition for the PPE can be derived.

n · ∇pn+1 |S= 0 (2.26)

After the pressure field is calculated, Equations 2.18 and 2.20 can be used to determine

the required velocity field. The basic disadvantage here, as mentioned before, is that the

second half step ensuring the incompressibility condition is inviscid, thereby, able to en-

sure only the normal component of the velocity boundary condition. This error is slightly

qualified owing to the fact that the velocity boundary condition in the first half step is the

no-slip condition. There are methods that introduce the viscous component in the second

half step. One such method is mentioned in (10) in the form of a Crank-Nicholson Scheme:

u∗ − un+1

△t = −(un · ∇)un +
1

2
ν∇2un u∗ |S= bn+1 (2.27)

un+1 − u∗

△t = −∇pn+1 +
1

2
ν∇2un+1 un+1 |S= bn+1 (2.28)
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This is second order accurate for the viscous term but, like the non−fractional step schemes,

some complicated pressure condition must be used to enforce the incompressibility.

2.2.1.3 Artificial Compressibility

This method was introduced by Chorin in 1967 to take advantage of the advances made in

conjunction with the analysis of compressible flow. This approach relaxes the strict need

of enforcing the mass conservation equation at each time iteration. The basic idea behind

this method is to change the continuity equation with a slightly modified version to make

it compressible and solve it as an evolution equation in pressure. In order to achieve this,

the continuity equation is modified by adding a time-derivative of the pressure term which

gives:

1

β

∂p

∂t
+
∂ui
∂xi

(2.29)

where β is an artificial compressibility or a pseudo-compressibility parameter. This was

proposed originally for steady state Navier-Stokes equations, so that the β term disappears

as the steady state is achieved. Here “t” does not represent the true physical time but an

artificial or “pseudo” time. This gives hyperbolic-parabolic type of time dependent system

of equations and thus many implicit schemes developed for compressible flows can be used

to solve them. For a steady state formulation, Chorin proposed leap-frog time differencing

and Dufort-Frankel spatial differencing (13) for pressure and velocity at the same grid

points. Peyret and Taylor proposed the staggered grid formation with an explicit time
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differencing.

Physically, this method implies that the pressure waves propagate at finite speed into the

incompressible flow field. But, as mentioned before, the wave speed is infinite in the incom-

pressible flow medium. So for pseudo-waves, the propagation speed of pressure depends

upon the artificial compressibility factor β. So the value of β should be chosen carefully.

Ideally β value should be as high as possible to recover incompressibility quickly but at

the same time a too high value of β tends to make the equation stiff. On the other hand, if

β is too small, the waves travel too slowly, which will affect other factors like the viscous

boundary layer, flow separation, etc., which might prevent convergence. The governing

equations are iterated in the “pseudo” time until steady state is achieved. Although, owing

to the compressibility introduced in the continuity equation, this method was not preferred

for unsteady flow, it has been proven to be successful for such flows as well (14). The

general idea for unsteady flows would be to use an iterative procedure using an artificial

compressibility method for each physical time step ensuring that incompressibility is met

at each step.

2.2.2 Non-Primitive variables

The formulation of Navier-Stokes equations using non-primitive variables is primarily

based on a physical property of the fluid flow called vorticity which is very important in vor-
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tex dominant flows. It is a popular alternative to primitive variable formulation and is more

sensible to analyze the flow based on vorticity, which has an extensively researched and

understood transport equation. The study of vortex generation at boundaries, its diffusion,

and advection are important in analyzing flow seperation, drag, etc., in vortex dominated

flows. The vorticity formulation computes more accurate velocity field implicitly as the

vorticity ω is one order higher than the velocity u. Vorticity-based methods also give a

better estimate of the skin friction since they are based more on the shearing process itself.

For flows with a high Reynold’s number, the vorticity seems to be concentrated in the wake

region, greatly reducing the computational domain. But this formulation too has its own

set of problems. A common problem is the absence of boundary conditions for the vor-

ticity in the presence of no-slip boundary conditions for the velocity. Also, the kinematic

problem for the vorticity-velocity formulation is overdetermined, since the both Neumann

and Dirichlet boundary conditions are described.

The boundary conditions are usually expressed in terms of velocities. So, the velocity

boundary conditions are needed to compute the vorticity boundary conditions. The cre-

ation of vorticity can be attributed to the no slip boundary condition which results in a

torque and, hence, an angular velocity being imparted on the packets of fluid. This vor-

ticity creation at the boundary should be represented by the vorticity boundary conditions

and has been the general reasoning used to tackle this issue. Lighthill (15) was one of the

pioneers who proposed the basis for the most of the methods related to vorticity creation.

His fractional step method was based on the part that the velocity induced by an arbitrary
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vorticity field does not satisfy either of the two velocity boundary conditions. Then the

new velocity potential field is added so that the new velocity field will satisfy the normal

velocity boundary condition, thereby getting slip velocity at the boundary. Lighthill pro-

posed that this slip velocity is vortex sheet and it represents the creation of vorticity at

the boundary. A similar approach was proposed by Chorin (15) for solving the Prandtl

boundary layer equations for motionless boundaries. He basically split the Navier-Stokes

equations into a viscid and an inviscid part. The Euler equation is then solved to give a slip

velocity at the boundary. To get rid of this, vortex sheets are introduced and the resulting

vorticity field is then used to solve the diffusion equation to get the correct vorticity field at

the desired time step. This formulation does not seem to satisfy the no-slip condition as the

normal boundary condition for velocity simultaneously and independent of the geometry.

There are many such models for the vorticity creation at the boundary, but many believe

that these models do not fully explain the vorticity interaction with solid boundaries.

This led Quartapelle and Valgriz (10) to introduce an integral constraint on the vorticity.

This “nonlocal” approach couples the vorticity everywhere in the domain to the boundary

velocity. A similar approach was adopted by Anderson, explained in (15) who suggested

requiring the time derivative of these integral constraints be made to vanish. These methods

as per Quartapelle (10) are the true representation of the vorticity diffusion and interaction

with solid walls. These are of course a kind of projection methods, where an initial “wrong”

vorticity, based on an arbitrary vorticty boundary value, is “corrected” by a projection onto

the space of harmonic functions. This is achieved by the integral condition. This chapter
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deals with a particular type of formulation called the non-primitive variable formulation

and a brief overview of solution strategies based on Quartapelle’s book (10) is given for

both two and three dimensional flows. The next chapter covers the hybrid formulation, also

called the vorticity−velocity formulation.

2.2.2.1 Vorticity-Stream function formulation for two dimensional flows

One possible way to circumvent the problem of pressure boundary conditions is to elim-

inate the pressure term entirely. This is exactly what is achieved in the vorticity-stream

function formulation of the Navier-Stokes equations. In this formulation the Navier-Stokes

equations are represented in terms of the vorticity ω and the stream function ψ. So now

the unknowns are ω and ψ instead of u, v, p, reducing the number of unknowns by one.

It also presents the added advantage of automatically taking care of the incompressibility

condition owing to a property of the stream function. In two dimensions the above repre-

sentation comprises two scalar equations obtained as follows:

In two dimensions Vorticity ω is a scalar given by

ω = (∇× u) · k (2.30)

while the velocity can be represented as the curl of a Stream-function ψ given by

u = ∇× ψ (2.31)
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Equation 2.31 clearly implies that ∇ · u = 0. Substituting Equation 2.31 in 2.30 gives the

Poisson’s equation for the Stream-function.

−∇
2ψ = ω (2.32)

Taking the curl of the momentum equation and using Equations 2.30, 2.31 and ∇ · u = 0

gives the vorticity transport equation.

∂ω

∂t
+ J(ω, ψ) = ν∇2ω (2.33)

where, J(ω, ψ) is the Jacobian matrix representing the curl of the advection term namely,

∇× [(u · ∇)u].

The Dirichlet and Neumann conditions for the above two equations are derived conditions

deduced by separately tackling the normal and tangential components of boundary condi-

tions of the velocity Equation 2.7 i.e. u |S= b. They are given by, ψ |S= a and ∂ψ

∂n
|S= b,

where, a =
∫ s

s1
n ·bdS and b = −τ ·b given that s1 is any fixed point on the boundary and

τ is a unit vector tangential to the boundary. An initial condition for the vorticity can also

be derived using the definition of vorticity and the initial condition for velocity Equation

2.6 giving the following initial condition.

ω |t=0= (∇× u0) · k (2.34)

Therefore, the Navier-Stokes equations in the two dimensional vorticity-stream function
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formulation can be written as −

∂ω

∂t
+ J(ω, ψ)− ν∇2ω = 0

−∇
2ψ = ω (2.35)

ψ |S= a ,
∂ψ

∂n
|S= b

ω |t=0= (∇× u0) · k

provided that

∇ · u0 = 0

∂a(S, 0)

∂s
= n · u0 (2.36)

One of the problems with this kind of formulation is the nonlinear advection term which

also couples the vorticity and stream function variables. The other important issue is the

overspecification of ψ owing to both Dirichlet and Neumann conditions present as opposed

to the underdetermined problem for ω with no boundary condition specified for it. The

nonlinear terms can be dealt with using the standard linearizing techniques for nonlinear

equations. Some of the ways in which the problem of the boundary conditions are tackled

are discussed below.

2.2.2.2 Biharmonic formulation

One way to avoid the boundary value problem for vorticity is to eliminate the vorticity term

itself from the transport equation. This is achieved by substituting the Poisson equation for
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the stream function into the voticity transport equation resulting in the following equation:

∂2∇2ψ

∂t
− ν∇4ψ + J(∇2ψ, ψ) = 0

ψ |S= a ,
∂ψ

∂n
|S= b (2.37)

where, ψ0 is the solution of the Dirichlet problem

−∇
2ψ0 = (∇× u0) · k , ψ0 |S= a(S, t) (2.38)

where u0 and a satisfy the solenoidal and the compatibility condition and k is the unit

vector in the Z direction. Since the equation is fourth order elliptic the specification of both

Dirichlet and Neumann conditions no longer make it overspecified.

2.2.2.3 Coupled formulation in vorticity and stream function

Another method to eliminate the problems associated with the overdetermined problem is

to solve Equation 2.35 as a coupled equation in vorticity and stream function even in the

absence of the nonlinear term. This is achieved by a unique coupling through the boundary

conditions by associating one boundary condition with the transport equation and the other

with the Poisson’s equation. This can be written as −

∂2∇2ψ

∂t
− ν∇4ψ + J(∇2ψ, ψ) = 0 such that ψ |S= a

−∇
2ψ = ω such that

∂ψ

∂n
|S= b (2.39)
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The spatial discretization for both these methods can be done by any of the three meth-

ods, namely finite elements, finite differences, or spectral methods. In spite of no direct

implementation of the integral constraint, the couple formulation still satisfies the nonlocal

character of vorticity, hence, further fortifying the idea of an integral condition on vorticity.

2.2.2.4 Uncoupled formulation using vorticity integral conditions

In order to split the two terms in the vorticity stream function formulation, it becomes

necessary to determine some supplementary conditions for the vorticity to account for its

lack of boundary conditions. Quartapelle and Valz-Cris (10) came up with an integral

constraint on vorticity.
∫

ωηdΩ =

∮

(a
∂η

∂n
− bη)dS (2.40)

giving the following set of linearized equations

(−△△△+ γ)ω = f,

∫

ωηdΩ =

∮

(a
∂η

∂n
− bη)dS (2.41)

−∇
2ψ = ω, ψ |S= a

where η is any harmonic function defined in the domain Ω. This is a semi-implicit dis-

cretization in time with ω ≡ ωn+1 and ψ ≡ ψn+1 at the new time level tn+1. One of

the ways to implement the integral conditions and solve the uncoupled equations is based

on utilizing the linearity of the above formulation. It consists of decomposing the vor-

ticity transport equation using the principle of superposition. The split formulation can
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be represented in the following way which is similar to that of for the primitive variable

formulation:

ω(x) = ω0(x) +

∮

ω′(x; ζ ′)λ(ζ ′)dS(ζ ′) (2.42)

where, ω0 and, ω′ are the solutions to

(−△△△+ γ)ω0 = f ω0 |S= 0 (2.43)

(−△△△+ γ)ω′ = 0 ω′(x; ζ ′) = δ(s− ζ ′) (2.44)

for any ζ ′ ∈ S and δ is the dirac delta function over the boundary

The value of the boundary function can then be evaluated by imposing on ω the integral

constraint (2.40) with respect to all harmonic functions on the boundary which are the

solution to the following problem −

−∇
2η = 0 such that η(x; ζ) = δ(s− ζ) for any ζ ∈ S (2.45)

And finally leads to a linear equation of the type Aλ = β

where, the value of the matrix A is of the form
∫
ω(x; ζ ′)η(x; ζ)dΩ and can be calculated

and stored in the beginning.

The stream function in the above form exists only for flow in two dimensions, so the

vorticity-stream function formulation is rather difficult to implement for a three dimen-

sional flow. Also, the vorticity is now a vector with two tangential components on the

boundary. The solenoidal property of the vorticity is no longer implied by its definition

but needs to be enforced. It will be shown in the next chapter that the divergence of the

33



vorticity vector in three dimensions can be enforced to be equal to zero by the following

two boundary conditions −

∇ · ω |S= 0 (2.46)

∇ · ω |t=0= ∇ · (∇× u0) (2.47)

But the real problem starts with the boundary conditions for the three dimensional “equiv-

alent” for the stream function for which different schemes involving different vector po-

tentials have been developed, each having its own set of boundary conditions and its own

set of elliptic equations to solve. But each method has to come up with a set of boundary

conditions for the vector function to ensure its unique solution. Apart from having to solve

such complex equations with often debatable boundary conditions, these methods are also

not well suited for a variational approach which often turns out to be computationally very

expensive. On account of these issues with the three dimensional approach, another method

has begun to garner a lot of interest. This new approach, called the hybrid methods, uses a

vorticity velocity formulation of the Navier−Stokes equations and seems to be quite well

suited to two-dimensional as well as three-dimensional flows. This method will form the

basis of this research and is explained in the next chapter.
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Chapter 3

Hybrid methods

3.1 Introduction

These methods are based on hybrid formulations in terms of the primitive and nonprimitive

variables velocity and vorticity. They are well suited for both two and three-dimensional

flows. Some of the advantages of vorticity-velocity (ω, v) formulations compared to the

classical formulation with primitive variables or with the nonprimitive vorticity-stream

function methods (2) are:

1. Vorticity is a relevant physical variable which has been extensively studied and its

distribution is of immense importance. The velocity is perhaps the most important

physical variable which completely defines the kinematical problem at hand. And
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the fact that they are related by a simple elliptic equation makes this approach all the

more advantageous.

2. The velocity can be supplemented by a unique set of boundary conditions as opposed

to a vast number of boundary conditions necessary for a unique solution of the stream

vectors or the velocity potentials.

3. The non-inertial terms caused by an accelerating reference frame enter into the flow

solution through the initial and boundary conditions, without having to do anything

extra to evaluate those non-inertial terms.

4. Relative ease of implementing vorticity conditions at infinity as compared to that for

pressure.

But hybrid formulation also has some disadvantages too. As already mentioned, the issue

with this method is the over-determined kinematic problem and the underdetermined dy-

namic problem. The unsteady problem in three dimensions has six unknowns compared to

the four in primitive variable methods.The general formulation can be written as −

∂ω

∂t
+∇× (ω × u) = ν∇2ω (3.1)

∇ · u = 0 (3.2)

ω = ∇× u (3.3)
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Many methods involve a Poisson’s equation obtained from the curl of Equation 3.3 and

utilizing (3.2) to give

∇
2u = −∇× ω (3.4)

The major problem here is ensuring the divergence condition as well as the curl of velocity.

As mentioned before, the zero divergence of velocity can be ensured throughout the domain

by enforcing it on the boundary. But now the solenoidal property for the vorticity also has

to be ensured, which can be done in the following way.

Taking the divergence of the transport equation gives the following diffusion

∂(∇ · ω)

∂t
= ν∇2(∇ · ω) (3.5)

Imposing the boundary condition ∇ · ω |S= 0 on the divergence of vorticity, along with

the obvious initial condition ∇·ω |t=0= ∇·(∇×u0), should give a unique solution to the

diffusion equation for ∇·ω, i.e. ∇·ω = 0 therefore, the solenoidal property is confirmed.

Gatski (16) has classified the solution strategies into method A and method B. Method

A “utilizes” the continuity and curl Equations 3.2 and 3.3 as the kinematic equations to

solve and Equation 3.1 as the dynamic transport equation. Method B comprises of solving

Equations 3.1 and 3.4.

Fasel (3) was among the first to publish numerical results of this method. He used the

normal component of the Poisson equation for velocity and the tangential derivative of

the continuity equation along with the vorticity transport equation. The boundary condi-

tion, in addition to the usual velocity condition, was simply the above-mentioned Poisson’s
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equation on the boundary. Like this, many formulations based on a derived vorticity condi-

tion were formulated. Since none of these conditions are genuine constraints, many authors

have solved the governing equations without using any vorticity boundary conditions what-

soever. This has led to the use of an integral constraint on the vorticity rather than a local

boundary condition.

Since most of the methods do not ensure a solenoidal vorticity field by virtue of the bound-

ary conditions (17), many authors have resorted to using a projection method to ensure the

solenoidal property of vorticity. Of course, as shown by Wu, et al. (18), the non-solenoidal

vorticity can be used to solve for a solenoidal velocity field. However, to find a vorticity

field that is solenoidal, the vorticity is decomposed by the Helmholtz theorem to get the

Poisson equation,

∇
2φ = ∇ · ω0 (3.6)

where, ∇φ is the solenoidal part of the computed vorticity. Once ∇φ is solved for from

the above equation, the non-solenoidal vorticity can be projected onto the solenoidal field

using the relation −

ω = ω0 −∇φ

The next section deals with some of the formulations of the vorticity−velocity methods as

presented in (10)
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3.1.1 Equations in three dimensions

Using the above-mentioned boundary and initial conditions for vorticity along with the

definition ∇ × u = ω, the vorticity−velocity formulation in three dimensions can be

represented as −

∂(∇ · ω)

∂t
− ν∇2(∇ · ω) = 0 ω |t=0= ∇× u0

∇
2u = −∇× ω uS = b ∇ · uS = 0 (3.7)

n · ω |S= n · ∇ |S ×b ∇ · ω |S= 0

Given the compatibilty conditions
∮
n · bdS = 0, ∇ · u0 = 0, n · bt=0 = n · u0 |S

The above formulation can be solved numerically by a semi-implicit discretization in time

and a spectral method for spatial discretization. The lack of boundary values for vortic-

ity can be taken care of by the influence matrix technique as introduced by Daube (19).

This will be briefly introduced in the next section for two dimensional flows along with a

temporal discretization scheme to linearize the formulation before resolving it in space.

An uncoupled formulation using an integral constraint can be written in the following way,

∂(∇ · ω)

∂t
− ν∇2(∇ · ω) = 0 ω |t=0= ∇× u0

∫

∇× ω · ηdΩ =

∮

(n× b · ∇× η + n · b∇ · η)dS (3.8)

n · ω |S= n · ∇ |S ×b ∇ · ω |S= 0

∇
2u = −∇× ω uS = b
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Where, η is a harmonic vector field defined by the following problem,

−∇
2η = 0, n× η |S= 0 (3.9)

The problem here is the implementation of the the integral constraint in a variational form.

The culprits are the boundary conditions n · ω |S= n · ∇S × b and ∇ · ω |S= 0 which

cannot be used together in a variational formulation.

3.1.2 Equations in two dimensions

As shown in the vorticity−stream function formulation for two dimensions, the vorticity

is now a scalar variable given by ω = ∇ × u · k giving the following set of governing

equations −

(
∂ω

∂t
− ν∇2ω)k +∇× (ωk × u) = 0, ωt=0 = ∇× u0 · k (3.10)

∫

ωdΩ =

∮

τ · bdS (3.11)

−∇
2u = ∇ω × k ∇ · u |S= 0 u |S= b (3.12)

Provided the compatibility conditions
∮
n · bdS = 0, ∇ · u0 = 0, n · bt=0 = n · u0 |S are

met. Here τ is a unit vector tangential to the boundary.

As before, a semi-implicit dicretization can be performed by first discretizing the advection

term explicitly, followed by an implicit scheme like the Crank-Nicolson scheme for the
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diffusion terms. This gives the following linearized time dicretized formulation,

(−∇
2 + γ)ωn+1 = f, in Ω

−∇
2un+1 = ∇ω × kn+1 u |S= b (3.13)

∇× un+1 = ωkn+1

∮

S

bn+1
· ndS = 0

Just as for the primitive variable formulation, an influence matrix technique devised by

Kleiser and Schumann can be used for the vorticity−velocity formulation as well.

Solving these methods numerically, as with the three dimensional case, has not been free

of problems for both the finite element and the finite difference methods. The integral

constraint does offer a better representation of vorticity diffusion and its interaction with

solid boundaries, there is an inclination towards using such constraints. Several innovative

techniques like the staggered discretization of vorticity by Napolitano and Pascazio (10)

have resulted in avoiding certain problems related to a doubly singular influence matrix in

the above linear equation. The following sections describes how these problems can be

solved by a new method belonging to the hybrid family.
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3.2 The Kinematic Laplacian equation method

The Kinematic Laplacian equation method was first introduced by Ponta in a paper (20). It

is a vorticity−velocity method which decouples the evolution of vorticity from the spatial

solution of a velocity field. Vorticity is advanced in time by integrating a vorticity transport

equation for which an initial velocity field is obtained from the solution of the weak form of

a PDE called the Kinematic Laplacian equation (the KLE). The KLE in turn is solved using

the vorticity field obtained by the time integration of vorticity from the previous time step.

The no-slip, no-normal flow Boundary conditions for velocity required for solving the KLE

are solved over a sequence of two steps. This basically involves two integral projection in

each time step ensuring compatibility of the two fields at each step. This is explained in

greater detail in the following sections which are taken from a paper on KLE by F.L. Ponta

(21).

3.2.1 The constant-curl Laplacian equation

As stated in (22), the idea behind using a Laplacian was to come up with a simple lin-

ear PDE along the lines of a potential flow equation, but, which could also account for

rotational effects as seen in turbines. This lead to a Kinematic equation for solving time

dependant flows over slender bodies with no flow separation under the assumption of in-

compressible flow and a constant curl.The following vector relation can be used to get the
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Laplacian of the velocity field −

∇2u = ∇ ·∇u = ∇(∇ · u)−∇× (∇× u). (3.14)

The first and second terms can be ignored on account of the incompressibility and constant

curl condition.Thus, the Laplacian ∇2u = 0 can be solved numerically under the incom-

pressibility condition and the constant curl constraint. i.e. ∇·u = 0 and ∇×u = c, where

c is a constant.

This earlier version of KLE called the constant curl Laplacian equation (CCLE) (22), had

a narrow field of application owing to the constraint of no flow separation. Nevertheless,

CCLE was quite successfully used in the study of wind turbine blades (21).

3.2.2 A generalized Laplacian (ω, u) method: The KLE

As mentioned previously the KLE can be solved to get the spatial distribution of vorticity

and velocity. It’s a more general PDE expression than the CCLE, not limited to non-

separated flows. Consider a vorticity velocity formulation for a three dimensional Navier–

Stokes equation for incompressible viscous flow. Consider a domain with a solid boundary

S and a far field external boundary Ω. Therefore in a non-inertial reference frame,

∂ω

∂t
= −u · ∇ω + ν∇2ω + ω · ∇u (3.15)

If the velocity field is known at a particular time step then the above equation can be written
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as −
∂ω

∂t
= −u · ∇(∇× u) + ν∇2(∇× u) + (∇× u) · ∇u (3.16)

This can be integrated in time to solve for ω at each node using an ODE solver using the

vorticity and velocity field from the previous time step. However, the vorticity field so

calculated is not compatible with the instantaneous boundary conditions, and so to solve

for the correct vorticity and velocity fields in the spatial domain, the following Laplacian

equation is used −

∇2u = ∇D −∇× ω (3.17)

∇ · u = D (3.18)

∇× u = ω (3.19)

As explained in (20) the KLE is basically a solution of the weak form of (3.17) under the

simultaneous imposition of the expansion rate and the curl of the velocity i.e. the vorticity

field. These constraints are given by (3.18) and (3.19).

Sections 2.4 to 2.7 of (23) gives a good explanation of the physical significance of the two

constraints. Most hybrid methods simultaneously solve equations (3.17) and (3.16) under

the ∇ · u = 0 constraint i.e. incompressibility. The KLE, however, as mentioned earlier

solves (3.17) independent of the vorticity transport equation. Therefore the vorticity distri-

bution given by (3.19) can be used as a second constraint along with the rate of expansion

given by (3.18) to solve for the velocity field in space. For a brief validation, consider
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the decomposition of the velocity field into three orthogonal components: the irrotational

component uD with zero divergence, the solenoidal component uω with no vorticity and

the harmonic component uh. Given the no-normal flow at the boundary along with the

vorticity distribution the above mentioned decomposition i.e. u = uD + uω + uh has a

unique solution (23). (3.18) and (3.19) can be used to solve for uD and uω as −

∇ · u = ∇ · uD = D (3.20)

∇× u = ∇× uω = ω. (3.21)

For uh substitute the above mentioned decomposition in to (3.16),

∇2(uh + uD + uω) = ∇2uh +∇(∇ · uD)−∇× (∇× uω)

= ∇D −∇× ω (3.22)

Substituting (3.20) and (3.21) in (3.22) gives,

∇2uh = 0 (3.23)

This Laplacian equation gives the solution for uh. Therefore the KLE ensures a complete

and unique solution of the velocity field.

To impose the no-normal flow and no-slip velocity boundary conditions on S together with

the correspondingly compatible boundary conditions on the vorticity, a solution method

based on two consecutive solutions of the KLE is used: the first under free-slip and the

second under no-slip boundary conditions on the solid surface. The algorithmic sequence

explained below (20, 21) is iteratively performed at each time step within an iterative time

integration performed by an adaptive variable-stepsize ODE solver for incompressible flow.
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1. The vorticity is advanced in time by integrating (3.16) in time at each node in space

to get an initial vorticity field ω̃n field. Since velocity from the (n− 1)st time step is

used to get vorticity for step n, this field is not compatible with the velocity boundary

conditions.

2. Enforce homogeneous conditions ω̃n at the boundary surface to get ω̃n0 . This is done

by imposing a zero boundary value for vorticity at each node on the boundary.

3. Applying the no normal flow velocity boundary conditions and setting ∂ux
∂n

= 0 on the

solid boundary, equation (3.17) i.e. the KLE is solved for ~un under the 2 constraints

given by (3.18) and (3.19) using ω̃n0 as the vorticity field. Here ux is the tangential

component of u.

4. Using this ~un the vorticity field is again calculated as ωn = ∇× ~un, only this time

both boundary conditions i.e. no-normal flow u.n = 0 and the no slip condition

u.τ = 0 are applied on S. This ωn can be seen as a vorticity field produced as an

effect of the slip induced in the previous step, somewhat like the vorticity creation

methods (24, 25, 26).

5. Using the above calculated vorticity field ωn a fixed velocity field un is computed as

a solution to the KLE using both constraints and the two boundary conditions i.e. the

no normal flow and the no slip condition.

For the velocity boundary condition on the far field external boundary S∞, the correspond-

ing Dirichlet conditions are applied.
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The above algorithm clearly shows the vorticity in time and velocity in space approach of

KLE. The momentum equation is solved in step 1 itself. Step 2-5 consist of solving the

KLE for each time step to get the spatial distribution of velocity, compatible with both

the vorticity distribution as well as the velocity boundary conditions. Setting vorticity

equal to zero at boundary is consistent with the free slip boundary condition for velocity

in step 2 and finally as in vorticity creation methods, the no slip condition of step 4 gives

the final vorticity field in response to the slip induced in step 3. It can be seen that the

two solutions of KLE , each with a different set of boundary conditions take care of the

vorticity boundary conditions also. These two integral projections on the velocity field

ensure a vorticity compatible with the velocity boundary conditions in each time step.

This decoupling between the vorticity evolution and the solution to get velocity distribution

along with the compatible vorticity distribution, makes it possible to solve problems with

different constitutive relations using this method since the physics involved in any such

relation is independent of the spatial solution of KLE. It also becomes much simpler to

implement the variational formulation since the PDE system now does not depend either

on time or the constitutive relations, but are simply a set of kinematic equations. Since

this method is integral and not limited to just the boundary data for calculating boundary

vorticity, it does seem to have a somewhat better physical interpretation then the other

vorticity generation methods (10).
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3.2.3 Variational formulation of KLE

A variational form of (3.17) can be written using the Galerkin method (21) as follows,

∫

Ω

(∇ ·∇u) · δu dΩ = −
∫

Ω

(∇× ω) · δu dΩ, (3.24)

where δu is a virtual, arbitrary velocity field on Ω that is set to zero where ever Dirichlet

conditions are applied. The next step would be to integrate the left hand side of (3.24) by

parts and using the divergence theorem to get, δu vanishes on S∞,

∫

Ω

∇u : ∇δu dΩ−
∫

S

n · ∇u · δu dS =

∫

Ω

(∇× ω) · δu dΩ. (3.25)

The no slip (as well as the free slip) and no normal flow boundary conditions ensure that

δu = 0, thereby reducing (3.25) to:

∫

Ω

∇u : ∇δu dΩ =

∫

Ω

(∇× ω) · δu dΩ. (3.26)

The Laplacian operator also has an equivalent minimization formulation which gives for

the variational form of KLE the following functional,

Π =

∫

Ω

1

2
∇u : ∇u dΩ−

∫

Ω

(∇× ω) · u dΩ. (3.27)

To impose the constraints (3.18) and (3.19) the penalty method was used over other possible

schemes. A brief on why it is preferred over other more rigorous alternatives can be found

in (2). The penalty terms according to the two constraints given by (3.18) and(3.19) are

added to (3.27) giving the modified functional Π̃ as,

Π̃ = Π +

∫

Ω

αD

2
(∇ · u)2 +

αω
2
(∇× u− ω) · (∇× u− ω) dΩ (3.28)
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Where the penalty constants are given by αω and αD The stationary of Π̃ with respect to u

can be written as,

δΠ̃ =

∫

Ω

∇u : ∇δu− (∇× ω) · δu+ αD(∇ · u)(∇ · δu)

+ αω(∇× u− ω) · (∇× δu) dΩ = 0. (3.29)

Reordering the above equation gives,

∫

Ω

∇u : ∇δu+ αD(∇ · u)(∇ · δu) + αω(∇× u) · (∇× δu) dΩ =

∫

Ω

(∇× ω) · δu+ αωω · (∇× δu) dΩ, (3.30)

(3.30) gives the variational formulation for KLE for incompressible flow, with (3.18) and

(3.19) as the constraints. As mentioned before, this variational form can be solved by a

spatial discretization using finite elements or spectral methods. This thesis deals with a

spectral element approach which will be introduced in the next chapter.

Even though in previous paragraphs the KLE was referred to as a “vorticity-in-time/velocity-

in-space split approach”, this is more a general description of its time-space/vorticity−velocity

uncoupled nature than a strict definition of its algorithmic structure. Strictly speaking,

time-marching splitting or fractional-step methods replace simultaneous processes by se-

quential steps as a means to increase efficiency (27). Split may be by dimensions (e.g. a

three-dimensional process split into three one-dimensional substeps), or by physics (e.g.

advection on one fractional step, pressure adjustment on another, and diffusion on a third).

For the hydrodynamic equations, the advantage of splitting-by-process is that the nonlinear

advection process can be treated by a different algorithm than pressure adjustment, which
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in turn can be different from diffusion, the latter two involve a linear solution each. The

advective step is usually advanced explicitly and the adjustment of fields, is integrated im-

plicitly. A typical example of this technique is the very successful AB3CN (third-order

Adams-Bashforth/Crank-Nicholson) three-step scheme (see (28, 29), among others). Be-

sides its advantages, splitting also has some drawbacks, mostly related with consistency

and the treatment of boundary conditions (see (27), Sec. 13.1–13.4). The choice of appro-

priate boundary conditions is quite important in minimizing the splitting error, as shown by

Karniadakis et al. (30), where high-order pressure boundary conditions are found to be the

key to the time accuracy of the splitting scheme.

Contrarily, there is no splitting whatsoever in the KLE method. All terms in the physical

problem are solved simultaneously during time integration of the vorticity field, and all

the spatial components of the velocity are solved together by the KLE. Since the KLE

is an entirely Kinematic equation with the entire physics concerned with any of the non-

linearities and complex constitutive relations limited to the time integration schemes, it

favors modeling complex flow problems like non-Newtonian flows or turbulent flows etc.

Since it is also a universal vector equation, basically any field represented by this relation

can be solved for as long as the divergence and curl of that field has a solvable transport

equation. Also, since the vector relation is independent of the time iteration process, the

KLE can be coupled with other processes like heat transfer or chemical processes by simply

adding the required relation to the existing ODE system. So basically just the source term

to the KLE is changed to solve different physical problems.
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Chapter 4

Numerical implementation of the KLE

4.1 Introduction

This chapter deals with the numerical implementation of the KLE using a spectral element

method to discretize Equation 3.30 in space along with a predictor-corrector time integra-

tion scheme. The spatial discretization scheme used here is a two dimensional isopara-

metric spectral element with a high order Lagrangian polynomial to interpolate solutions

within the element. An isoparametric element was chosen because of the complex differen-

tial equations involved as also the complexity of the intended surfaces to be modeled. The

main advantage of this type of an element is that the integration has to be performed over

the “parent” element which represents a normalized domain in terms of a local co-ordinate
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Figure 4.1: A two-dimensional nine node isoparametric element in its natural coordinate system

along with a graphical representation of three of its nine interpolation functions i.e nodes 3, 8 and

9.

system varying between +1 and -1. This makes it easier to implement any numerical tech-

nique. An isoparametric element uses the same Lagarange polynomial (shape functions)

to interpolate the unknown variable within the elements as the ones used to map the global

to local coordinates. Figure 4.1 shows an example of biquadratic interpolation functions

of a nine-node isoparametric quadrilateral element on its natural system of coordinates, i.e.

(r,s). A quadrilateral element was chosen because of its high convergence rate and its abil-

ity to reduce the skin error on curvilinear bondaries when compared to linear elememts.

Nevertheless, other discretization techniques may be applied to the implementation of the

KLE method. For our experimentation, the spectral element method is used for the KLE

which will be discussed in the following section.
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4.2 The Spectral-element method for KLE

The general trend in finite element methods had been to use Lagrange polynomials of a

particular order as shape functions. To improve the accuracy, the number of elements was

increased. This is called an h-type finite element method. For sufficiently smooth problems

these methods converge at an algebraic rate with the error being proportional to 1
Np+1 where

N is the number of degrees of freedom and p is the order of the Lagrange polynomial (31).

Another approach would be to follow the h-type discretization with an increase in the

order of the interpolating polynomial within each element to improve accuracy. Again, for

sufficiently smooth solutions this would give an exponential convergence rate (31). These

are called the p-type methods. The spectral method is a particular implementation of the

p-version of an hp finite element method.

The spectral-element method was introduced some twenty years back (32, 33). It’s main

purpose was to tackle complicated domains which the spectral methods were not able to

handle. As shown in (34) this h− p type of method was capable of local refinements, and

where thus good for complex geometries and at the same time preserved the high conver-

gene rates seen in spectral methods. Owing to the h− p discretization, a high accuracy can

be achieved for less number of nodes, amking it a highly memory-minimizing method (27).

Mostly the Legendre or Chebyshev polynomials are used by the spectral element meth-

ods in order to come up with suitable basis functions. The same points are used for the

53



interpolation functions as are for the numerical integration within the elements. These col-

location points are called the Gauss-Legendre-Lobatto (GLL) quadrature points. This leads

to diagonal mass matrices making the system more efficient.

As mentioned at the beginning of this chapter, in this particular analysis an isoparametric

element is used with the Lagrangian polynomials as interpolating functions for the solution.

The variational formulation for the KLE using the Galerkin method, shown in the previous

chapter, is used to solve for the velocity field at the nodal points. The nodes are at the

GLL points.For higher order elements using the GLL points in place of the regular equis-

paced points is more economical (35). Giraldo (36), through experiments has shown that

for higher order interpolating polynomials (in excess of 4) the solution results for Gauss

Legendre and GLL quadrature are comparable.

As shown in (21) the finite-element discretization of the velocity field and its gradient can

be represented as,

u =







ux

uy






= H ·Ue, ∇u =















∂ux
∂x

∂ux
∂y

∂uy
∂x

∂uy
∂y















= B ·Ue, (4.1)

where H is the interpolation-function, B it’s derivative and Ue is the array of discretized

velocity at nodes of each element,
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Ue =























u1x

u1y

u2x

...

uNGL
2

x

uNGL
2

y























, H =







h1 0 h2 · · · hNGL
2

0

0 h1 0 · · · 0 hNGL
2






,

(4.2)

B =















∂h1

∂x
0 ∂h2

∂x
· · · ∂hNGL2

∂x
0

∂h1

∂y
0 ∂h2

∂y
· · · ∂hNGL2

∂y
0

0 ∂h1

∂x
0 · · · 0 ∂hNGL2

∂x

0 ∂h1

∂y
0 · · · 0 ∂hNGL2

∂y















, (4.3)

where NGL = p+ 1 is the number of nodes of the Gauss-Lobatto interpolation.

The elements of (4.3) are given by,






∂hk

∂x

∂hk

∂y






= J−1

·







∂hk

∂r

∂hk

∂s






, k = 1, . . . , NGL2, (4.4)

where J is the Jacobian operator which relates the natural to the local coordinate derivates,

J =







∑NGL2

k=1
∂hk

∂r
xk

∑NGL2

k=1
∂hk

∂r
yk

∑NGL2

k=1
∂hk

∂s
xk

∑NGL2

k=1
∂hk

∂s
yk






, (4.5)
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and (xk, yk) the local coordinates of the nodes. The divergence of the velocity field is given

by −

∇ · u = m ·B ·Ue, m =

[

1 0 0 1

]

, (4.6)

and the curl of the velocity ωz (the only component of the curl not equal to zero), is obtained

as,

∇× u = r ·B ·Ue, r =

[

0 −1 1 0

]

. (4.7)

Similarly for vorticity,

ω = Hω · ω
e, ∇× ω =







∂ω
∂y

−∂ω
∂x






= Bω · ω

e, (4.8)

where ωe gives the vorticity values at nodes of each element calculated by integrating in

time the vorticity transport equation, and as shown for velocity Hω and Bω are the vorticity

interpolation-functions snd their derivatives respectively,

ωe =















ω1

ω2

...

ωNGL
2















, Hω =

[

h1 h2 · · · hNGL
2

]

, (4.9)

Bω =







∂h1

∂y
∂h2

∂y
· · · ∂hNGL2

∂y

−∂h1

∂x
−∂h2

∂x
· · · −∂hNGL2

∂x






. (4.10)

For the finite element analysis, first each element can be thought of as a discretized sub-
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domain (Ωe). Therefore if equation (3.30) is considered at each Ωe and the corresponding

discretized values of the velocity and vorticity fields are substituted for, the following equa-

tion is obtained,

δUeT
· (Ke

L +Ke
D
+Ke

ω)
︸ ︷︷ ︸

Ke

·Ue = δUeT
· (Re

L +Re
ω)

︸ ︷︷ ︸

Re

·ωe, (4.11)

where

Ke
L =

∫

Ωe

BT
·B dΩ =

∫ 1

−1

∫ 1

−1

BT
·B |J| drds,

Ke
D
=

∫ 1

−1

∫ 1

−1

αD BT
·mT

·m ·B |J| drds,

Ke
ω =

∫ 1

−1

∫ 1

−1

αω B
T
· rT · r ·B |J| drds,

Re
L =

∫ 1

−1

∫ 1

−1

HT
·Bω |J| drds,

Re
ω =

∫ 1

−1

∫ 1

−1

αω B
T
· rT ·Hω |J| drds,

δUe gives the array of values at nodes of each element for the arbitrary δu.

The arrays and the matrices of (4.11) are assembled for each element to give the following

global system,

K ·Ue = R · ω. (4.12)

As mentioned earlier a quadrilateral element has high convergence rate and reduces the

skin error on circular boundaries. At the same time triangular elements find it easier to

change mesh density in a more smooth and gradual manner and are also more suitable

for unstructured meshing (21, 22). Thus the domain was first dicretized using triangular

elements which was subsequently converted to a quadrilateral mesh, by dividing each tri-
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Figure 4.2: A tri-quadrilateral finite element mesh derived from an unstructured triangular mesh.

Figure 4.3: The internal topology of a tri-quadrilateral element. Quadrilateral elements (I)–(III)

are the nine-node isoparametric elements. 1–19 is the in-triangle global numbering of the nodes.

angle into three quadrilaterals. This can be seen in figure (4.2). An important advantage

of this "tri-quadrilateralization" is a process called static condensation of internal nodes.

These nodes lying inside the triangle though used for elemental integration are not used

while assembling the final global structure matrices. These are later recovered from the

values obtained by the solution of the external nodes. To establish an equation for this
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condensation, as shown in (37), the system Ke
·Ue = Re

· ωe are partitioned as,






Ke
aa Ke

ab

Ke
ba Ke

bb






·







Ue
a

Ue
b






=







Re
a

Re
b






· ωe (4.13)

where a is for the degrees of freedom 1–24 of the velocity at nodes 1–12 and b is for the

degrees of freedom 25–38 of the velocity at nodes 13–19. The second row of the above

equation gives,

Ue
b = (Ke

bb)
−1

·Re
b

︸ ︷︷ ︸

Re
b

· ωe − (Ke
bb)

−1
·Ke

ba
︸ ︷︷ ︸

Ke
ba

·Ue
a, (4.14)

substituting this into the first row of (4.13) and reordering,

(
Ke
aa −Ke

ab · (K
e
bb)

−1
·Ke

ba

)

︸ ︷︷ ︸

Ke

·Ue
a =

(
Re
a −Ke

ab · (K
e
bb)

−1
·Re

b

)

︸ ︷︷ ︸

Re

·ωe, (4.15)

This is the condensed form. Assembling the arrays and matrices of (4.14) and (4.15) gives

the following global condensed system,

K ·Ua = R · ω, (4.16)

Ub = Rb · ω −Kba ·Ua, (4.17)

The static condensation process leads to almost a 40% reduction in the size of the global

system to be solved and also leads to a better condition number of the global structure

matrices. This is in accordance with the Schur complement method, where the condensed

matrix forms the Schur complement for the in-triangle nodes of the original system. As
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mentioned earlier none of the structure matrices depend on the physics of the problem, in

this case the vorticity or the time, they can be calculated and stored and used over and

over again as required. Since KK is positive definite and symmetric it is factorized by

the Cholesky decomposition method and the factor (triangular) so obtained can be used to

solve for Ua. One problem with the spectral element methods is the loss of the exponential

convergence and also the higher accuracy in case of singularities like shock in compressible

flow (38). This is often seen while interpolating non-smooth functions (abrupt changes in

boundaries and forces etc.) using high order polynomials.

Evaluating the right-hand side of the vorticity transport equation

As shown in (21) for the two-dimensional implementation of the time-integration proce-

dure, the vorticity transport Equation (3.16) can be written in a more convenient way as

follows,

∂ω

∂t
= F (ω, t) = ∇× (ν ∇ ·∇u− u · ∇u) . (4.18)

The RHS of (4.18)is solved for by carrying out the respective curl, divergence and gradient

operations on the discretized counterpart of u as found by the KLE algorithm previously

explained. Since, for the spectral-element case, the Gauss-Lobatto points are the same

as the nodes,therefore, for those lying on the inter-element boundaries, an average of the

values from elements sharing those boundaries can be used.

The weight of each Gaussian point depends on the mesh geometry and is calculated during
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assembly. So the arrays for the differential operators are assembled at the same time as

the Finite element matrices. Those arrays perform the differential operations on any vector

or tensor field, as a dot product with the corresponding discrete solution of that field. For

instance, the discrete form of the curl of the velocity field ∇×u is given by the dot product

Curl ·U. Thus, the discrete form of (4.18) is written as,

F(ω, t) = Curl · (ν Div −Uadv) ·Grad ·U, (4.19)

where Grad gives the gradient, Div the divergence of Grad, Curl the curl vector and Uadv

is obtained by reordering U to perfrom the dot product u · ∇u in the advective term.

Since none of them depend on the vorticity field or time, they can be, as with the structure

matrices, calculated and stored for further use. For the time integration Adams-Bashforth-

Moulton predictor-corrector (ABM-PECE) solver with multivariable order and adaptive

stepsize is used and the results show that it is efficient enough to pursue further research

(2) as discussed in the following sections.

4.3 The Adaptive time step solver for KLE

With the evolution of the various numerical schemes for complex transport problems or

multiphysics problems with combined flows, there is increasing demand for improved al-

gorithms like self adaptive time step solvers and other advancements like self adaptive grid
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refinement and coarsening. As the name suggests, both the adaptive time step solver and

grid adaptation techniques receive the response from their calculated parameters and then

the initial or intermediate values modify themselves to the next refined value. The adaptive

stepsize techniques are employed to control the accuracy of the simulations and to enhance

their efficiency to provide stable steady state or transient solutions. The adaptive time-step

algorithms usually use the values of approximate local truncation error or some of them are

even based on some kind of "Thumb Rules". In some of the standard algorithms, user is

required to specify the accuracy requirement on local truncation error which is compared

with computed values of the same which should be within accepted accuracy or tolerance

range (39).

As mentioned in previous section, Adams-Bashforth-Moulton predictor-corrector (ABM-

PECE) solver with adaptive stepsize control has been used with KLE successfully. The

solver ODE113 in MATLAB which is based on ABM-PECE, is used for the experiments

for the determination of CFL condition.

4.3.1 ODE113

The MATLAB code ODE113 was derived from the well-known code STEP (40). For more

explanation about code STEP, original research paper by L.F. Shampine and M.K. Gordon

can be referred. ODE113 is the modification to the code STEP and it is a variable step-
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size, variable order and compiled using ABM PECE method with local extrapolation. The

modified divided difference form of the interpolating polynomials is used in this method.

It means when step size is constant, they are just normal backward differences. The accep-

tance or rejection of the time step is largely dependent upon the local error estimate which

is nothing but the difference between the two corrector formulae of two consecutive orders.

This local error estimate is calculated and compared using the inbuilt checking criteria, be-

fore the final evaluation in the PkECk+1E method. Thus, a rejected time step only requires

only one function evaluation. In this code, the order from 1 to 12 can be altered (41).

The rationale behind using ODE113 for the experimentation lies in its effectiveness with

KLE. A few other reasons are stated as follows:

1. Only two function evaluations of right hand side (RHS) are required per accepted

time step as compared to ODE45 which requires six function evaluations per integra-

tion step.

2. Rejected time step only requires one function evaluation of right hand side (RHS).

3. It is good for stringent error tolerances.

4. It is also convenient for computationally intensive problems like KLE.
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Chapter 5

Experiment and analysis

5.1 Introduction

This chapter deals with an experiment performed with the aim of determining Courant-

Friedrichs-Lewy condition (CFL condition) which defines the time-step restraint for the

given numerical scheme. In mathematical terms, it only provides a necessary condition for

convergence while solving the series of differential equations. But, it is not a sufficient

condition; thus even after CFL condition is satisfied, the numerical solution still can be

unstable. This condition first introduced in 1928 by Richard Courant, Kurt Friedrichs, and

Hans Lewy for the case of the difference approximations in terms of the concept the do-

main of dependence. According to an early conceptualization (42) by the above mentioned
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trio, the convergence is attainable only if the ratio of mesh widths in different dimensions

fulfills certain inequalities which then themselves depend on the position of the characteris-

tics relative to the mesh. In simpler words, the general idea behind the CFL condition is the

solution of numerical scheme should not be independent of any of the data that determines

the solution of the given differential equation, unless the data that is being omitted has a

negligible effect. Along with the advancement of numerical methods, the CFL condition

has also evolved greatly in terms of determining stability and providing the idea of the crit-

ical characteristics required for stability. An example of the computation of CFL condition

for a very basic numerical scheme is explained in the following section.

5.2 CFL condition

For most of the numerical methods (43), in order to optimize the CFL condition, it is possi-

ble to define all the parameters of the method while defining it. Before starting any exper-

iments with KLE to establish its CFL condition, it is important to understand how method

defining factors for any numerical scheme contribute to the CFL condition. Consider this

simple initial value problem,

d u

d t
+ c

d u

d x
= 0 (5.1)

with u(x, 0) = f(x)

where, c > 0 is a constant
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For the numerical advances in space and time in the (x, t) plane small values of ∆x and ∆t

are used to lay out the grid.

After using backward difference scheme

d u

d x
(x, t) =

u(x,t) − u(x−∆x,t)

∆x
+O(∆x)

and by using forward difference for ∆t

d u

d t
(x, t) =

u(x,t+∆t) − u(x,t)
∆t

+O(∆t)

Then, truncation error, σ = O(∆t) +O(∆x). After neglecting truncation error, comparing

with equation (5.1)

u(x,t+∆t) − u(x,t)
∆t

+ c
u(x,t) − u(x−∆x,t)

∆x
= 0

Sloving

u(x,t+∆t) =
(

1− c

r

)

u(x,t) +
(c

r

)

u(x−∆x,t)

where, r =
∆x

∆t
and

c

r
≤ 1 for the solution to exist.

c∆t ≤ ∆x

This condition is known as CFL condition. The ratio
c

r
is called as the CFL number or

Courant number. Here, it can be easily seen that for space discretization and time marching

for the above method, ∆x and ∆t are need to be employed. Thus all the method defining
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factors are present in the inequality that depends upon the relation between those factors

and the Courant number.

Although it is possible in some of the simpler methods to determine the CFL condition

analytically; in the case of KLE, several factors limit the possibility of computing it analyt-

ically. The KLE algorithm is so complicated, and it uses the spectral elements for spatial

discretization which adds to the complexity in determining the relation between the time

step and the characteristics of the h-p type elements. All the terms in the physical problem

are solved simultaneously during time integration of the vorticity field, and all the spatial

components of the velocity are solved together by the KLE. With several numerical oper-

ations being involved in KLE, it is viable to look for some other way to achieve the given

objective. Thus, the experiments have to be designed to find out CFL condition numeri-

cally. There are a number of factors which can be crucial in making the analysis of the

results much easier such as the selection of the test problem, the type of the mesh, and the

total time span. As mentioned in the previous chapter, this thesis is concerned with the

spectral element implementation of the KLE; therefore both the number of elements h and

the order of interpolation p refinement test results are equally important. The description

of the experiment and the dependence of the time-step ∆t on various factors are dealt with

in subsequent sections.

67



5.3 The canonical test problem

For the experimentation, a well-defined test problem was required, so Stoke’s problem

of a semi-infinite region of stationary fluid bounded by an infinite horizontal flat plate

was selected. This problem has become canonical for the vorticity creation in the vortex

dominant flows and hence, was ideal for our tests. In that problem, a flat plate which is at

y = 0, which is suddenly given a velocity U in the horizontal plane and then continued at

the same speed. The exact analytical solution to this problem is known (see (23), Sec.4.3,

among others) which is useful in order to determine the induced error in the computational

solution. The velocity field described in a frame of reference fixed to a plate moving in the

negetive x direction is

u(y, t) = U erf

(
y√
4 ν t

)

, (5.2)

Here, erf is the error function and y is the vertical coordinate. If the velocity u and y is

normalized as u/U and y/Y (5.2), also the term τ =
√
4 ν t /Y

u

U
= erf

(
y/Y

τ

)

, (5.3)

where Y is the height of the test mesh i.e. total domain size and quantitatively Y is taken as

unity for the experimentation. The normalized vorticity distribution for this incompressible

flow is given by the Gaussian function as−

ω

U/Y
=

2

τ
√
π
e−(

y/Y
τ )

2

. (5.4)
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As mentioned above, this problem resembles to the fundamental process of (ω, v) meth-

ods, i.e. the vorticity generation at a solid surface due to the induced slip, and its further

propagation to the body of the fluid. The Gaussian and the error function of the spatial

coordinates give the analytical solution for the velocity and vorticity field, respectively, for

a specified time. For our experimentation, the time-dependent analysis of Stoke’s problem

was performed, but, the spatial analytical solution can be used to test several parameters

for the spatial discretization of the KLE. Also, for the spatial discretization, the symmetric

quadrilateral mesh elements are used to further simplify the process in the experimentation.

5.4 The experiment

This section deals with the methodology for the test experiment as well as the reasoning

behind it. It then goes on to discuss the analysis of the results in order to come up with

the limiting condition on the time-step for KLE. The first step was to decide on a variable

which will give some measure of the spatial grid size. In h-p type spectral element, the

nodes are not always equidistant. So a new variable in the form of the number of intervals

in each dimension N⋆ is introduced, which is equal to the number of nodes minus one and

represents the inverse of the average intermodal distance. As mentioned in the previous

chapter, the solver ODE113 itself computes the best possible time-step for the KLE by

analyzing the stability criteria. Thus in order to establish any relation between the spatial

grid size and the chosen time-step, it is the most logical to use N⋆; as it accounts for both
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h and p for our method. The next step was to solve KLE for many different values of h and

p and compare the adapted time-steps with each other to foresee any possible connection

with N⋆.

Here it is worthwhile to note that, when used inside the time-marching process of the

vorticity-velocity scheme, the source term for the KLE solution at a given time is provided

by a computation made by the ODE integrator from an approximation in weak form of

the velocity field at the previous time step. This has the tendency to smooth out the shock

introduced at the initial stage. Hence, forcing the theoretical vorticity distribution given by

expression (5.4) at the initial stages as a source term for the KLE poses a very strict trial

on the KLE solution. This sharp forcing is actually more challenging than KLE’s normal

operational requirements as the spatial counterpart in a vorticity-velocity scheme. So for

the experimentation, the values of both h and p were tried over a range of values keeping

one constant while varying the other. For the simplification of the input values and for better

physical understanding of the spatial discretization, instead of interpolation order p, number

of Gauss-Lobatto-Legendre node points i.e. NGL is used for the experimentation which is

equal to p+1 in our type of mesh. TheNGL values from 3 to 11 are used for conducting the

experiment. As explained in the previous section, the normalized parameter τ is considered

in the interpretation of the results instead of the actual time span t in seconds. The value

of τ ranges from 0 to 1 and gives the idea of the flow progression phase for the given time

period.

70



It is important to note here that as already mentioned in chapter 4, for polynomial orders

p ≥ 4 non-exact GLL integration is used i.e. for NGL ≥ 5. For NGL = 3, the direct

interpolation function can be used. It meant that only for NGL4, classical Gauss-Legendre

integration is required for interpolation. Hence, it is decided that all the results associated

with NGL4 will be omitted further on from all the experimental analysis.

5.5 Experimental results and Analysis

The analysis of the experiments to find out CFL condition consisted of a number of stages.

In the first stage, all the adapted times steps by ODE113 that stored throughout the process

of flow progression are compared with the normalized time τ . Then in the next stages,

time-steps are compared with the spatial grid size parameters and the generalized common

numerical relation is deduced.

5.5.1 Average time step

The purpose of this stage is to try to identify the nature of the adapted time steps by

ODE113 for each and every value of NGL and h. The primary step is to plot the time

steps against τ . Since the experimental results are taken for both an h-refinement as well

as a p-refinement, varying one while keeping the other constant; it is important to identify
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if all the cases have similar nature for the time steps.

Figures 5.1 and 5.2 show plots for the chosen three random cases with NGL =3,7 and 11

with h = 7. These plots explain the general behavior of the ODE113 for the KLE. As it

can be seen that the solver takes some time to warm up and reach to certain lower values

of the ∆t. Then as explained in previous chapter, it try to attain the higher values of ∆t till

it reaches the given accuracy limit and again the solver try to limit ∆t to the corresponding

stability requirement. It also keeps the adapted value of ∆t for certain steps and then starts

varying again with respect to the perturbations in the numerical solution. From the Figure

5.1(b) it can be seen that for some cases ODE113 smoothens with the development of the

flow and stabilize the time-step size between two limits. It is important to understand that

the curves in Figures 5.1(a) and 5.1(b), do not represent the error, but a natural process

of selecting and checking an ideal time-step, which after initial shock of impulse remains

around approximately constant value. The error systematically kept within the specified

tolerance limits.

After observing all the cases, it is not farfetched to conclude that the solver fluctuates

around a certain average value of the time step. The solver has also defined the upper

and lower limit of the time steps for the given set of input values. In order to avoid the

instability and to keep the required accuracy limit, the time step has to be in between those

limits. Hence, it is safer to say if the mean of all the time steps is computed, that value will

give the best possible value of the limiting constraint for ∆t. But it is important to eliminate
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Figure 5.1: Plots of the non-dimensionalized time τ vs ODE113 selected time-steps ∆t for some

selective cases
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the initial values of ∆t before the solver stabilizes at certain point of the time marching.

It must be noted that the solver gets stabilized at different values of τ for different cases.

Higher the node density or higher the value of N⋆, lower the value of τ at which the ∆t

starts getting stabilized. Hence, the average value of ∆t is found out for all the cases by

taking mean of all the values of time-steps from the stabilized region of τ .

5.5.2 The evaluation of CFL condition

The three plots shown here are the part of a series of plots for an interpolation order p

ranging from 2 till order 10, but the number of elements are limited by the computational

power available. So, instead of trying to vary h, the experiments are done by keeping limit

on the value of N⋆ to ensure that they did not go beyond 120. So in addition to the reason

already mentioned for using N⋆, it also gives the data for same node density for different

p, to make it very convenient to compare.

After the calculation of average time steps for all the cases, the next step was to try and

correlate the computed ∆t values with the factors affecting the discretization. Since the

node density or value of N⋆ is comprised of both h and p, there are two ways to compare

the Avg∆t i.e. h- refinement and p-refinement. So, the Avg∆t values are plotted against

N⋆ with both h- refinement and p-refinement. But it is very clear from the nature of the

curve for h- refinement that there is some kind of exponential power law between these
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plotted variables. In order to verify it, both the values are again plotted on log scale for h-

refinement which can be seen in Figure 5.3. All the curves for NGL = 3 to 11 are linear

and represent the straight lines. Not only they are linear but also they are parallel to each

other. But still it is imperative to find out the slopes of all the lines so that the nature of

the lines can be compared numerically. Although it looks like there are irregularities in

some of the lines on the plot, the complexity of the KLE plays the huge part in making

them slightly deviated from the mean value of Avg∆t. This further demands the need of

numerical confirmation of the slope values. Since all the lines on the plot should follow

the standard equations of a line in co-ordinate geometry, it is very logical to start with the

equation of the line in slope-y intercept format as follows −

y = mx+ c

Where, x and y are co-ordinate axes, m is the slope and c is the y intercept.

So, from N∗ v/s Avg(∆t) plot in the logarithmic scale we get,

log∆t = α(logN∗) + u (5.5)

Where, α is the slope and u is the y intercept.

These variables are chosen to maintain the consistency in further representation.

76



1
0

1
1

0
2

1
0

−
4

1
0

−
3

1
0

−
2

1
0

−
1

N
s

ta
r,

 N
* 

(L
o

g
a

ri
th

m
ic

) 
→

Avg ∆t (Logarithmic) →

N
s
ta

r,
 N

* 
v
/s

 A
v
g

 ∆
t 

w
it

h
 h

−
 R

e
fi

n
e
m

e
n

t

 

 

N
G

L
 =

 3

N
G

L
 =

 5

N
G

L
 =

 6

N
G

L
 =

 7

N
G

L
 =

 8

N
G

L
 =

 9

N
G

L
 =

 1
0

N
G

L
 =

 1
1

F
ig

u
re

5
.3

:
A

g
ri

d
d
en

si
ty
N
⋆

vs
A
v
g
∆
t

fo
r

h
-r

efi
n
em

en
t

sh
o
w

in
g

it
s

li
n
ea

r
n
a
tu

re
fo

r
a
ll

th
e

cu
rv

es

77



Table 5.1

The values of slope α and Interpolation order p specific constants CNGL after Least square

approximation

NGL α C

3 -1.854095 14.6011915733936

5 -1.8782592 6.88230097450442

6 -1.9009012 5.97733575041749

7 -1.879249 4.48849971626125

8 -1.8831505 3.91524418051608

9 -1.9059706 3.58583549178151

10 -1.9066073 3.02491829136806

11 -1.9284963 2.81428209317862

If the anti-log of Equation 5.5 is taken, then (5.5) becomes −

∆t = eu(N∗)α (5.6)

if eu = C

then ∆t = C(N∗)α (5.7)

The plot represents the set of points for each curve which should be identified by the com-

mon value of α, as far as the values of C are concerned, they are different for every NGL.

The curve fitting is need to be done for each line and the method of “Least Square approxi-

mation” can be used to compute the required values of α and C. Table 5.1 shows the values

of α and C for corresponding values of NGL. Now it can easily be concluded that all the

NGL share the common value of α and have the same slope.
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Figure 5.4: The log scale plot of N⋆ vs Avg∆t with average value of slope α

If the generalized equation for the CFL condition is compared with Equation 5.7, the values

of C could be identified as “constants” for the respective NGL. So, the above equation

becomes −

∆t = CNGL(N
∗)−1.8921

The above relation explains the limiting constraint on ∆t with respect to the node density

N⋆ for the spatial discretization. Although it gives the near perfect representation of the

CFL condition, it has its own disadvantage in the form of “constant CNGL”. Here the con-

stant CNGL is dependent on the interpolation order or NGL. Since the above relation does

not give the common value of “constant” for KLE, it is very inconvenient while deciding
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the time-step for adapting this numerical scheme to other physical problems. Also it should

be remembered that the experiments have been performed only for a limited number of in-

terpolation orders, so it shunts the possibility of using other values of NGL unless more

experimentation is done with that specific value of NGL. But that clearly defies the gen-

eralized concept of CFL condition. Thus, the above relation is not satisfactory as far as the

objective of this research is concerned.

As explained already, it becomes necessary to delve further with the values of NGL spe-

cific “constants”. From the Table 5.1, it can be seen that the values of C are inversely

proportional to the interpolation orders or NGL. It means C are decreasing with the in-

crease in the order of interpolation. Each constant C is defined by the lines on the N⋆ v/s

∆t plot for different NGL. The next step was to find out the relation between CNGL and

NGL, if any. It can begin the same way as was done with the earlier data. The values

of C can be plotted with NGL on different types of scales to identify any numerical fac-

tor. When both these values are plotted on logarithmic scale, it again shows the existence

of some kind of power law. Henceforth, to relate that power law with above established

equation, instead of NGL, the term interpolation order p is used because p gives more

identification to the spectral method discretization in general practice. So, if the values of

p and C are plotted on the logarithmic scale; they explains the power law that combines

them. Figure 5.5 shows the set of points that most certainly represents a linear behavior

and can be simplified to a common equation as was done for the previous plot as follows −
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From the equation of line in slope y intercept format

log(C) = β(log p) + u1

Where, β is slope and u1 is y intercept.

After taking anti-log

C = eu1pβ (5.8)

let, C1 = eu1

then C = C1 p
β (5.9)

Comparing this equation with Equation 5.7,

∆t = C1 p
β(N∗)α (5.10)

From least square approximation the values that we got for the constants in above equation

are:

C1 = 29.554032

α = −1.8920911

β = −1.0286275

So the final CFL condition obtained is:

∆t = 29.554032 p−1.0286275(N∗)−1.8920911 (5.11)

Where, p = Interpolation order, N∗ represents node density and C1 = Courant number for
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KLE. The Equation 5.10 gives the ultimate relation for CFL condition and the Equation

5.11 gives the values of constants present in that equation. The value of ∆t is restricted

by the polynomial equation with the variables in the form of interpolation order p and the

node density N⋆. Unlike the Equation 5.6, Courant number is not dependent on anything

but a actual constant irrespective of the interpolation order p or any other input variables.

With the developed CFL condition, the ideal time step ∆t can be easily predicted with the

values defining the spatial grid. The p and N⋆ are the parameters who set up the mesh on

the given geometry using the spectral elements. As these are the only variables on which

the time step is dependent, the basic definition for the CFL condition has been fulfilled.

As already mentioned, ABM PECE solver with adaptive step-size control is used for the

experimentation. It has been used with KLE successfully and hence, MATLAB ode113

solver is employed here and the CFL condition on stability is evaluated. But, in order to

validate the obtained relation on stability, variable step Runge Kutta 5th order method i.e.

MATLAB’s ode45 solver is used. With ODE45, after performing all the experiments for

some selected interpolation orders, the final CFL condition on stability is given as,

∆t = C1 p
β(N∗)α (5.12)

where, p = Interpolation order, N∗ represents node density and C1 = Courant number for

KLE for ODE45.

The comparison of the values of the coefficients and Courant numbers in the obtained CFL

condition for ODE113 and ODE45 is shown in Table 5.2.
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Table 5.2

A comparison of values of Courant number and the coefficients for CFL condition

Runge Kutta 5th order method ABM PECE self adaptive method

(MATLAB’s ode45.m) (MATLAB’s ode113.m)

C1 30.405897 29.554032

α -1.9189584 -1.8920911

β -1.2248473 -1.0286275

From the Figures 5.6 and 5.7, it can be seen that both ODE113 and ODE45 solvers give

the same nature for the selected time steps and their relation with interpolation order p and

N⋆. The Avg∆t values show identical linear and parallel curves for the selected NGLs,

exactly like ABM PECE solver when plotted againstN⋆ values. Even the values of Courant

number and coefficient α are similar. The value of β is different, but it is understandable

since we are using two different ODE solvers which act as diagnostic algorithm to identify

the optimum time step which is get restricted by stability condition. So the selection of

time steps would not be exactly the same.

The evaluation of CFL condition with ODE45 certainly validates the experimental results

and the stability condition that are obtained with ODE113. Hence, the CFL condition is

not the characteristic of the specific solver, but, it explains the effect of the interpolation

order p and mesh density on the time step for stability of the KLE for spectral element

implementation.
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Chapter 6

Concluding Remarks and outlook for

further work

The experiments have been performed to compute the CFL condition to maintain the sta-

bility of the KLE vorticity-velocity, spectral element discretization method. A canonical

problem of boundary layer development over a flat plate with the structured quadrilateral

mesh was used for the experimentation. For adaptive time marching ODE solvers, it has

been well established that adaptivity based upon local error control can produce required

stability properties for linear and non linear equations whether the underlying method is

explicit or implicit and the stability region is very small. Due to this robustness, the solver

ODE 113 has been employed for solving the unsteady Stokes’s problem. The whole process

can be broken down into the following major steps:
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1. The range of values of h and p have been selected for the experimentation so that the

common range of N⋆ is available for the comparison.

2. The values of ∆t are plotted against the non-dimensionalized time τ for h and p

refinement to observe the nature of the resultant curves.

3. The average time step for each and every case is calculated by taking mean of the time

steps after the flow is fully developed which is believed to be representing the most

ideal value of ∆t between the values maxima and minima for the stable solution.

4. The Avg∆t is then plotted against the node density N⋆ to establish the type of math-

ematical relation between them.

5. The interpolation order p dependent Courant number with time step restraint along

with the exponential constant ofN⋆ being the slope of the linear curve, is determined.

6. Since the dependency of Courant number on p doesn’t give the required flexibility to

the CFL condition, the values ofCNGL are then placed together with the interpolation

order p to develop the possible correlation.

7. The final step in the process was similar to the computation of earlier relation due to

the exactness of the linear nature of the p v/s CNGL curve. Thus, the final equation

gives an equality relation between the time step and the spatial grid size parameters.

The derived CFL condition gives the exact value of ∆t; but if the time step above the

stability limit is selected, any explicit or implicit algorithms will produce the errors in
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the propagation in the time marching, or it will not converge which means the numerical

scheme will not be stable. On the other hand, ∆t smaller than the stability limit actually

produces very stable solution. So the CFL condition for the KLE can be written as −

∆t ≤ C1 p
β(N∗)α

The above relation will guarantee the consistent stability for KLE application for unsteady

incompressible flow. For h-p type finite element method, there are two ways of increasing

accuracy: by increasing value of h or by increasing interpolation order p. If higher p is

selected, there will be less nodes for the same accuracy i.e. less cost per time step. But

with higher p, there will be more number of time steps. So, the obtained condition gives

the effect of the change of p on the total computational time. N⋆ represents h, so it also

expains the impact of the change of h on the stability. Hence, we arrive at complete charac-

terization of the effect of CFL condition on stability for both p and h refinement. Whatever

the order of the polynomial approximation, the solution will still show the convergence

making it conditionally stable. Although this condition is an indirect way of evaluating

CFL condition, the reason lies in the fact that no analytical stability criteria could be found

out and it would be almost impossible to locate the region of Absolute Stability. Having an

approximate estimate of ∆t will give many advantages such as −

1. Maintaining an acceptable rate of convergence

2. Getting the desired accuracy when numerical solution is not sufficiently accurate.
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An outlook for further work in this research line could be divided into two parts. The

computation of CFL condition paved the way for improvement of the blended methods.

The blending of the solvers like ODE113 and ODE 23s can be very effective for solving

stiff problems. The mixing of explicit and implicit solvers or a combination of numerical

schemes which are termed as methods with memory in typical MATLAB jargon can be

used in splitting the multiphysics problems and used successfully as separate time stepping

algorithms. The determination of CFL condition gives the perfect platform in identifying

the time step restraint for these blended methods.

Another aspect of future work would be analyzing the stability using eigenvalues of Ja-

cobian for this complex non-linear algorithm. It is well known that the eigenvalues play

pivotal role in determining stability of the system of differential equations. For KLE to es-

tablish any analytical relation for stability, using eigenvalues is very complicated, and since

the stability condition is already achieved, it would be interesting to start with numerical

eigenvalues of jacobian and try to find their significance towards the stability.
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Appendix

Permission for reusing the image in figure 1.1

This file is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported li-

cense. You are free:

1. to share to copy, distribute and transmit the work

2. to remix to adapt the work

Under the following conditions:

1. attribution You must attribute the work in the manner specified by the author or

licensor (but not in any way that suggests that they endorse you or your use of the

work).

2. share alike If you alter, transform, or build upon this work, you may distribute the

resulting work only under the same or similar license to this one.

ATTRIBUTION

Hans Hillewaert / CC-BY-SA-3.0
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